1 /*- 2 * SPDX-License-Identifier: BSD-2-Clause-FreeBSD 3 * 4 * Copyright (C) 2011-2014 Matteo Landi 5 * Copyright (C) 2011-2016 Luigi Rizzo 6 * Copyright (C) 2011-2016 Giuseppe Lettieri 7 * Copyright (C) 2011-2016 Vincenzo Maffione 8 * All rights reserved. 9 * 10 * Redistribution and use in source and binary forms, with or without 11 * modification, are permitted provided that the following conditions 12 * are met: 13 * 1. Redistributions of source code must retain the above copyright 14 * notice, this list of conditions and the following disclaimer. 15 * 2. Redistributions in binary form must reproduce the above copyright 16 * notice, this list of conditions and the following disclaimer in the 17 * documentation and/or other materials provided with the distribution. 18 * 19 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 22 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 29 * SUCH DAMAGE. 30 */ 31 32 33 /* 34 * $FreeBSD$ 35 * 36 * This module supports memory mapped access to network devices, 37 * see netmap(4). 38 * 39 * The module uses a large, memory pool allocated by the kernel 40 * and accessible as mmapped memory by multiple userspace threads/processes. 41 * The memory pool contains packet buffers and "netmap rings", 42 * i.e. user-accessible copies of the interface's queues. 43 * 44 * Access to the network card works like this: 45 * 1. a process/thread issues one or more open() on /dev/netmap, to create 46 * select()able file descriptor on which events are reported. 47 * 2. on each descriptor, the process issues an ioctl() to identify 48 * the interface that should report events to the file descriptor. 49 * 3. on each descriptor, the process issues an mmap() request to 50 * map the shared memory region within the process' address space. 51 * The list of interesting queues is indicated by a location in 52 * the shared memory region. 53 * 4. using the functions in the netmap(4) userspace API, a process 54 * can look up the occupation state of a queue, access memory buffers, 55 * and retrieve received packets or enqueue packets to transmit. 56 * 5. using some ioctl()s the process can synchronize the userspace view 57 * of the queue with the actual status in the kernel. This includes both 58 * receiving the notification of new packets, and transmitting new 59 * packets on the output interface. 60 * 6. select() or poll() can be used to wait for events on individual 61 * transmit or receive queues (or all queues for a given interface). 62 * 63 64 SYNCHRONIZATION (USER) 65 66 The netmap rings and data structures may be shared among multiple 67 user threads or even independent processes. 68 Any synchronization among those threads/processes is delegated 69 to the threads themselves. Only one thread at a time can be in 70 a system call on the same netmap ring. The OS does not enforce 71 this and only guarantees against system crashes in case of 72 invalid usage. 73 74 LOCKING (INTERNAL) 75 76 Within the kernel, access to the netmap rings is protected as follows: 77 78 - a spinlock on each ring, to handle producer/consumer races on 79 RX rings attached to the host stack (against multiple host 80 threads writing from the host stack to the same ring), 81 and on 'destination' rings attached to a VALE switch 82 (i.e. RX rings in VALE ports, and TX rings in NIC/host ports) 83 protecting multiple active senders for the same destination) 84 85 - an atomic variable to guarantee that there is at most one 86 instance of *_*xsync() on the ring at any time. 87 For rings connected to user file 88 descriptors, an atomic_test_and_set() protects this, and the 89 lock on the ring is not actually used. 90 For NIC RX rings connected to a VALE switch, an atomic_test_and_set() 91 is also used to prevent multiple executions (the driver might indeed 92 already guarantee this). 93 For NIC TX rings connected to a VALE switch, the lock arbitrates 94 access to the queue (both when allocating buffers and when pushing 95 them out). 96 97 - *xsync() should be protected against initializations of the card. 98 On FreeBSD most devices have the reset routine protected by 99 a RING lock (ixgbe, igb, em) or core lock (re). lem is missing 100 the RING protection on rx_reset(), this should be added. 101 102 On linux there is an external lock on the tx path, which probably 103 also arbitrates access to the reset routine. XXX to be revised 104 105 - a per-interface core_lock protecting access from the host stack 106 while interfaces may be detached from netmap mode. 107 XXX there should be no need for this lock if we detach the interfaces 108 only while they are down. 109 110 111 --- VALE SWITCH --- 112 113 NMG_LOCK() serializes all modifications to switches and ports. 114 A switch cannot be deleted until all ports are gone. 115 116 For each switch, an SX lock (RWlock on linux) protects 117 deletion of ports. When configuring or deleting a new port, the 118 lock is acquired in exclusive mode (after holding NMG_LOCK). 119 When forwarding, the lock is acquired in shared mode (without NMG_LOCK). 120 The lock is held throughout the entire forwarding cycle, 121 during which the thread may incur in a page fault. 122 Hence it is important that sleepable shared locks are used. 123 124 On the rx ring, the per-port lock is grabbed initially to reserve 125 a number of slot in the ring, then the lock is released, 126 packets are copied from source to destination, and then 127 the lock is acquired again and the receive ring is updated. 128 (A similar thing is done on the tx ring for NIC and host stack 129 ports attached to the switch) 130 131 */ 132 133 134 /* --- internals ---- 135 * 136 * Roadmap to the code that implements the above. 137 * 138 * > 1. a process/thread issues one or more open() on /dev/netmap, to create 139 * > select()able file descriptor on which events are reported. 140 * 141 * Internally, we allocate a netmap_priv_d structure, that will be 142 * initialized on ioctl(NIOCREGIF). There is one netmap_priv_d 143 * structure for each open(). 144 * 145 * os-specific: 146 * FreeBSD: see netmap_open() (netmap_freebsd.c) 147 * linux: see linux_netmap_open() (netmap_linux.c) 148 * 149 * > 2. on each descriptor, the process issues an ioctl() to identify 150 * > the interface that should report events to the file descriptor. 151 * 152 * Implemented by netmap_ioctl(), NIOCREGIF case, with nmr->nr_cmd==0. 153 * Most important things happen in netmap_get_na() and 154 * netmap_do_regif(), called from there. Additional details can be 155 * found in the comments above those functions. 156 * 157 * In all cases, this action creates/takes-a-reference-to a 158 * netmap_*_adapter describing the port, and allocates a netmap_if 159 * and all necessary netmap rings, filling them with netmap buffers. 160 * 161 * In this phase, the sync callbacks for each ring are set (these are used 162 * in steps 5 and 6 below). The callbacks depend on the type of adapter. 163 * The adapter creation/initialization code puts them in the 164 * netmap_adapter (fields na->nm_txsync and na->nm_rxsync). Then, they 165 * are copied from there to the netmap_kring's during netmap_do_regif(), by 166 * the nm_krings_create() callback. All the nm_krings_create callbacks 167 * actually call netmap_krings_create() to perform this and the other 168 * common stuff. netmap_krings_create() also takes care of the host rings, 169 * if needed, by setting their sync callbacks appropriately. 170 * 171 * Additional actions depend on the kind of netmap_adapter that has been 172 * registered: 173 * 174 * - netmap_hw_adapter: [netmap.c] 175 * This is a system netdev/ifp with native netmap support. 176 * The ifp is detached from the host stack by redirecting: 177 * - transmissions (from the network stack) to netmap_transmit() 178 * - receive notifications to the nm_notify() callback for 179 * this adapter. The callback is normally netmap_notify(), unless 180 * the ifp is attached to a bridge using bwrap, in which case it 181 * is netmap_bwrap_intr_notify(). 182 * 183 * - netmap_generic_adapter: [netmap_generic.c] 184 * A system netdev/ifp without native netmap support. 185 * 186 * (the decision about native/non native support is taken in 187 * netmap_get_hw_na(), called by netmap_get_na()) 188 * 189 * - netmap_vp_adapter [netmap_vale.c] 190 * Returned by netmap_get_bdg_na(). 191 * This is a persistent or ephemeral VALE port. Ephemeral ports 192 * are created on the fly if they don't already exist, and are 193 * always attached to a bridge. 194 * Persistent VALE ports must must be created separately, and i 195 * then attached like normal NICs. The NIOCREGIF we are examining 196 * will find them only if they had previosly been created and 197 * attached (see VALE_CTL below). 198 * 199 * - netmap_pipe_adapter [netmap_pipe.c] 200 * Returned by netmap_get_pipe_na(). 201 * Both pipe ends are created, if they didn't already exist. 202 * 203 * - netmap_monitor_adapter [netmap_monitor.c] 204 * Returned by netmap_get_monitor_na(). 205 * If successful, the nm_sync callbacks of the monitored adapter 206 * will be intercepted by the returned monitor. 207 * 208 * - netmap_bwrap_adapter [netmap_vale.c] 209 * Cannot be obtained in this way, see VALE_CTL below 210 * 211 * 212 * os-specific: 213 * linux: we first go through linux_netmap_ioctl() to 214 * adapt the FreeBSD interface to the linux one. 215 * 216 * 217 * > 3. on each descriptor, the process issues an mmap() request to 218 * > map the shared memory region within the process' address space. 219 * > The list of interesting queues is indicated by a location in 220 * > the shared memory region. 221 * 222 * os-specific: 223 * FreeBSD: netmap_mmap_single (netmap_freebsd.c). 224 * linux: linux_netmap_mmap (netmap_linux.c). 225 * 226 * > 4. using the functions in the netmap(4) userspace API, a process 227 * > can look up the occupation state of a queue, access memory buffers, 228 * > and retrieve received packets or enqueue packets to transmit. 229 * 230 * these actions do not involve the kernel. 231 * 232 * > 5. using some ioctl()s the process can synchronize the userspace view 233 * > of the queue with the actual status in the kernel. This includes both 234 * > receiving the notification of new packets, and transmitting new 235 * > packets on the output interface. 236 * 237 * These are implemented in netmap_ioctl(), NIOCTXSYNC and NIOCRXSYNC 238 * cases. They invoke the nm_sync callbacks on the netmap_kring 239 * structures, as initialized in step 2 and maybe later modified 240 * by a monitor. Monitors, however, will always call the original 241 * callback before doing anything else. 242 * 243 * 244 * > 6. select() or poll() can be used to wait for events on individual 245 * > transmit or receive queues (or all queues for a given interface). 246 * 247 * Implemented in netmap_poll(). This will call the same nm_sync() 248 * callbacks as in step 5 above. 249 * 250 * os-specific: 251 * linux: we first go through linux_netmap_poll() to adapt 252 * the FreeBSD interface to the linux one. 253 * 254 * 255 * ---- VALE_CTL ----- 256 * 257 * VALE switches are controlled by issuing a NIOCREGIF with a non-null 258 * nr_cmd in the nmreq structure. These subcommands are handled by 259 * netmap_bdg_ctl() in netmap_vale.c. Persistent VALE ports are created 260 * and destroyed by issuing the NETMAP_BDG_NEWIF and NETMAP_BDG_DELIF 261 * subcommands, respectively. 262 * 263 * Any network interface known to the system (including a persistent VALE 264 * port) can be attached to a VALE switch by issuing the 265 * NETMAP_REQ_VALE_ATTACH command. After the attachment, persistent VALE ports 266 * look exactly like ephemeral VALE ports (as created in step 2 above). The 267 * attachment of other interfaces, instead, requires the creation of a 268 * netmap_bwrap_adapter. Moreover, the attached interface must be put in 269 * netmap mode. This may require the creation of a netmap_generic_adapter if 270 * we have no native support for the interface, or if generic adapters have 271 * been forced by sysctl. 272 * 273 * Both persistent VALE ports and bwraps are handled by netmap_get_bdg_na(), 274 * called by nm_bdg_ctl_attach(), and discriminated by the nm_bdg_attach() 275 * callback. In the case of the bwrap, the callback creates the 276 * netmap_bwrap_adapter. The initialization of the bwrap is then 277 * completed by calling netmap_do_regif() on it, in the nm_bdg_ctl() 278 * callback (netmap_bwrap_bdg_ctl in netmap_vale.c). 279 * A generic adapter for the wrapped ifp will be created if needed, when 280 * netmap_get_bdg_na() calls netmap_get_hw_na(). 281 * 282 * 283 * ---- DATAPATHS ----- 284 * 285 * -= SYSTEM DEVICE WITH NATIVE SUPPORT =- 286 * 287 * na == NA(ifp) == netmap_hw_adapter created in DEVICE_netmap_attach() 288 * 289 * - tx from netmap userspace: 290 * concurrently: 291 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 292 * kring->nm_sync() == DEVICE_netmap_txsync() 293 * 2) device interrupt handler 294 * na->nm_notify() == netmap_notify() 295 * - rx from netmap userspace: 296 * concurrently: 297 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 298 * kring->nm_sync() == DEVICE_netmap_rxsync() 299 * 2) device interrupt handler 300 * na->nm_notify() == netmap_notify() 301 * - rx from host stack 302 * concurrently: 303 * 1) host stack 304 * netmap_transmit() 305 * na->nm_notify == netmap_notify() 306 * 2) ioctl(NIOCRXSYNC)/netmap_poll() in process context 307 * kring->nm_sync() == netmap_rxsync_from_host 308 * netmap_rxsync_from_host(na, NULL, NULL) 309 * - tx to host stack 310 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 311 * kring->nm_sync() == netmap_txsync_to_host 312 * netmap_txsync_to_host(na) 313 * nm_os_send_up() 314 * FreeBSD: na->if_input() == ether_input() 315 * linux: netif_rx() with NM_MAGIC_PRIORITY_RX 316 * 317 * 318 * -= SYSTEM DEVICE WITH GENERIC SUPPORT =- 319 * 320 * na == NA(ifp) == generic_netmap_adapter created in generic_netmap_attach() 321 * 322 * - tx from netmap userspace: 323 * concurrently: 324 * 1) ioctl(NIOCTXSYNC)/netmap_poll() in process context 325 * kring->nm_sync() == generic_netmap_txsync() 326 * nm_os_generic_xmit_frame() 327 * linux: dev_queue_xmit() with NM_MAGIC_PRIORITY_TX 328 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 329 * gna->save_start_xmit == orig. dev. start_xmit 330 * FreeBSD: na->if_transmit() == orig. dev if_transmit 331 * 2) generic_mbuf_destructor() 332 * na->nm_notify() == netmap_notify() 333 * - rx from netmap userspace: 334 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 335 * kring->nm_sync() == generic_netmap_rxsync() 336 * mbq_safe_dequeue() 337 * 2) device driver 338 * generic_rx_handler() 339 * mbq_safe_enqueue() 340 * na->nm_notify() == netmap_notify() 341 * - rx from host stack 342 * FreeBSD: same as native 343 * Linux: same as native except: 344 * 1) host stack 345 * dev_queue_xmit() without NM_MAGIC_PRIORITY_TX 346 * ifp->ndo_start_xmit == generic_ndo_start_xmit() 347 * netmap_transmit() 348 * na->nm_notify() == netmap_notify() 349 * - tx to host stack (same as native): 350 * 351 * 352 * -= VALE =- 353 * 354 * INCOMING: 355 * 356 * - VALE ports: 357 * ioctl(NIOCTXSYNC)/netmap_poll() in process context 358 * kring->nm_sync() == netmap_vp_txsync() 359 * 360 * - system device with native support: 361 * from cable: 362 * interrupt 363 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 364 * kring->nm_sync() == DEVICE_netmap_rxsync() 365 * netmap_vp_txsync() 366 * kring->nm_sync() == DEVICE_netmap_rxsync() 367 * from host stack: 368 * netmap_transmit() 369 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 370 * kring->nm_sync() == netmap_rxsync_from_host() 371 * netmap_vp_txsync() 372 * 373 * - system device with generic support: 374 * from device driver: 375 * generic_rx_handler() 376 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr != host ring) 377 * kring->nm_sync() == generic_netmap_rxsync() 378 * netmap_vp_txsync() 379 * kring->nm_sync() == generic_netmap_rxsync() 380 * from host stack: 381 * netmap_transmit() 382 * na->nm_notify() == netmap_bwrap_intr_notify(ring_nr == host ring) 383 * kring->nm_sync() == netmap_rxsync_from_host() 384 * netmap_vp_txsync() 385 * 386 * (all cases) --> nm_bdg_flush() 387 * dest_na->nm_notify() == (see below) 388 * 389 * OUTGOING: 390 * 391 * - VALE ports: 392 * concurrently: 393 * 1) ioctl(NIOCRXSYNC)/netmap_poll() in process context 394 * kring->nm_sync() == netmap_vp_rxsync() 395 * 2) from nm_bdg_flush() 396 * na->nm_notify() == netmap_notify() 397 * 398 * - system device with native support: 399 * to cable: 400 * na->nm_notify() == netmap_bwrap_notify() 401 * netmap_vp_rxsync() 402 * kring->nm_sync() == DEVICE_netmap_txsync() 403 * netmap_vp_rxsync() 404 * to host stack: 405 * netmap_vp_rxsync() 406 * kring->nm_sync() == netmap_txsync_to_host 407 * netmap_vp_rxsync_locked() 408 * 409 * - system device with generic adapter: 410 * to device driver: 411 * na->nm_notify() == netmap_bwrap_notify() 412 * netmap_vp_rxsync() 413 * kring->nm_sync() == generic_netmap_txsync() 414 * netmap_vp_rxsync() 415 * to host stack: 416 * netmap_vp_rxsync() 417 * kring->nm_sync() == netmap_txsync_to_host 418 * netmap_vp_rxsync() 419 * 420 */ 421 422 /* 423 * OS-specific code that is used only within this file. 424 * Other OS-specific code that must be accessed by drivers 425 * is present in netmap_kern.h 426 */ 427 428 #if defined(__FreeBSD__) 429 #include <sys/cdefs.h> /* prerequisite */ 430 #include <sys/types.h> 431 #include <sys/errno.h> 432 #include <sys/param.h> /* defines used in kernel.h */ 433 #include <sys/kernel.h> /* types used in module initialization */ 434 #include <sys/conf.h> /* cdevsw struct, UID, GID */ 435 #include <sys/filio.h> /* FIONBIO */ 436 #include <sys/sockio.h> 437 #include <sys/socketvar.h> /* struct socket */ 438 #include <sys/malloc.h> 439 #include <sys/poll.h> 440 #include <sys/rwlock.h> 441 #include <sys/socket.h> /* sockaddrs */ 442 #include <sys/selinfo.h> 443 #include <sys/sysctl.h> 444 #include <sys/jail.h> 445 #include <net/vnet.h> 446 #include <net/if.h> 447 #include <net/if_var.h> 448 #include <net/bpf.h> /* BIOCIMMEDIATE */ 449 #include <machine/bus.h> /* bus_dmamap_* */ 450 #include <sys/endian.h> 451 #include <sys/refcount.h> 452 #include <net/ethernet.h> /* ETHER_BPF_MTAP */ 453 454 455 #elif defined(linux) 456 457 #include "bsd_glue.h" 458 459 #elif defined(__APPLE__) 460 461 #warning OSX support is only partial 462 #include "osx_glue.h" 463 464 #elif defined (_WIN32) 465 466 #include "win_glue.h" 467 468 #else 469 470 #error Unsupported platform 471 472 #endif /* unsupported */ 473 474 /* 475 * common headers 476 */ 477 #include <net/netmap.h> 478 #include <dev/netmap/netmap_kern.h> 479 #include <dev/netmap/netmap_mem2.h> 480 481 482 /* user-controlled variables */ 483 int netmap_verbose; 484 #ifdef CONFIG_NETMAP_DEBUG 485 int netmap_debug; 486 #endif /* CONFIG_NETMAP_DEBUG */ 487 488 static int netmap_no_timestamp; /* don't timestamp on rxsync */ 489 int netmap_no_pendintr = 1; 490 int netmap_txsync_retry = 2; 491 static int netmap_fwd = 0; /* force transparent forwarding */ 492 493 /* 494 * netmap_admode selects the netmap mode to use. 495 * Invalid values are reset to NETMAP_ADMODE_BEST 496 */ 497 enum { NETMAP_ADMODE_BEST = 0, /* use native, fallback to generic */ 498 NETMAP_ADMODE_NATIVE, /* either native or none */ 499 NETMAP_ADMODE_GENERIC, /* force generic */ 500 NETMAP_ADMODE_LAST }; 501 static int netmap_admode = NETMAP_ADMODE_BEST; 502 503 /* netmap_generic_mit controls mitigation of RX notifications for 504 * the generic netmap adapter. The value is a time interval in 505 * nanoseconds. */ 506 int netmap_generic_mit = 100*1000; 507 508 /* We use by default netmap-aware qdiscs with generic netmap adapters, 509 * even if there can be a little performance hit with hardware NICs. 510 * However, using the qdisc is the safer approach, for two reasons: 511 * 1) it prevents non-fifo qdiscs to break the TX notification 512 * scheme, which is based on mbuf destructors when txqdisc is 513 * not used. 514 * 2) it makes it possible to transmit over software devices that 515 * change skb->dev, like bridge, veth, ... 516 * 517 * Anyway users looking for the best performance should 518 * use native adapters. 519 */ 520 #ifdef linux 521 int netmap_generic_txqdisc = 1; 522 #endif 523 524 /* Default number of slots and queues for generic adapters. */ 525 int netmap_generic_ringsize = 1024; 526 int netmap_generic_rings = 1; 527 528 /* Non-zero to enable checksum offloading in NIC drivers */ 529 int netmap_generic_hwcsum = 0; 530 531 /* Non-zero if ptnet devices are allowed to use virtio-net headers. */ 532 int ptnet_vnet_hdr = 1; 533 534 /* 535 * SYSCTL calls are grouped between SYSBEGIN and SYSEND to be emulated 536 * in some other operating systems 537 */ 538 SYSBEGIN(main_init); 539 540 SYSCTL_DECL(_dev_netmap); 541 SYSCTL_NODE(_dev, OID_AUTO, netmap, CTLFLAG_RW, 0, "Netmap args"); 542 SYSCTL_INT(_dev_netmap, OID_AUTO, verbose, 543 CTLFLAG_RW, &netmap_verbose, 0, "Verbose mode"); 544 #ifdef CONFIG_NETMAP_DEBUG 545 SYSCTL_INT(_dev_netmap, OID_AUTO, debug, 546 CTLFLAG_RW, &netmap_debug, 0, "Debug messages"); 547 #endif /* CONFIG_NETMAP_DEBUG */ 548 SYSCTL_INT(_dev_netmap, OID_AUTO, no_timestamp, 549 CTLFLAG_RW, &netmap_no_timestamp, 0, "no_timestamp"); 550 SYSCTL_INT(_dev_netmap, OID_AUTO, no_pendintr, CTLFLAG_RW, &netmap_no_pendintr, 551 0, "Always look for new received packets."); 552 SYSCTL_INT(_dev_netmap, OID_AUTO, txsync_retry, CTLFLAG_RW, 553 &netmap_txsync_retry, 0, "Number of txsync loops in bridge's flush."); 554 555 SYSCTL_INT(_dev_netmap, OID_AUTO, fwd, CTLFLAG_RW, &netmap_fwd, 0, 556 "Force NR_FORWARD mode"); 557 SYSCTL_INT(_dev_netmap, OID_AUTO, admode, CTLFLAG_RW, &netmap_admode, 0, 558 "Adapter mode. 0 selects the best option available," 559 "1 forces native adapter, 2 forces emulated adapter"); 560 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_hwcsum, CTLFLAG_RW, &netmap_generic_hwcsum, 561 0, "Hardware checksums. 0 to disable checksum generation by the NIC (default)," 562 "1 to enable checksum generation by the NIC"); 563 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_mit, CTLFLAG_RW, &netmap_generic_mit, 564 0, "RX notification interval in nanoseconds"); 565 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_ringsize, CTLFLAG_RW, 566 &netmap_generic_ringsize, 0, 567 "Number of per-ring slots for emulated netmap mode"); 568 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_rings, CTLFLAG_RW, 569 &netmap_generic_rings, 0, 570 "Number of TX/RX queues for emulated netmap adapters"); 571 #ifdef linux 572 SYSCTL_INT(_dev_netmap, OID_AUTO, generic_txqdisc, CTLFLAG_RW, 573 &netmap_generic_txqdisc, 0, "Use qdisc for generic adapters"); 574 #endif 575 SYSCTL_INT(_dev_netmap, OID_AUTO, ptnet_vnet_hdr, CTLFLAG_RW, &ptnet_vnet_hdr, 576 0, "Allow ptnet devices to use virtio-net headers"); 577 578 SYSEND; 579 580 NMG_LOCK_T netmap_global_lock; 581 582 /* 583 * mark the ring as stopped, and run through the locks 584 * to make sure other users get to see it. 585 * stopped must be either NR_KR_STOPPED (for unbounded stop) 586 * of NR_KR_LOCKED (brief stop for mutual exclusion purposes) 587 */ 588 static void 589 netmap_disable_ring(struct netmap_kring *kr, int stopped) 590 { 591 nm_kr_stop(kr, stopped); 592 // XXX check if nm_kr_stop is sufficient 593 mtx_lock(&kr->q_lock); 594 mtx_unlock(&kr->q_lock); 595 nm_kr_put(kr); 596 } 597 598 /* stop or enable a single ring */ 599 void 600 netmap_set_ring(struct netmap_adapter *na, u_int ring_id, enum txrx t, int stopped) 601 { 602 if (stopped) 603 netmap_disable_ring(NMR(na, t)[ring_id], stopped); 604 else 605 NMR(na, t)[ring_id]->nkr_stopped = 0; 606 } 607 608 609 /* stop or enable all the rings of na */ 610 void 611 netmap_set_all_rings(struct netmap_adapter *na, int stopped) 612 { 613 int i; 614 enum txrx t; 615 616 if (!nm_netmap_on(na)) 617 return; 618 619 for_rx_tx(t) { 620 for (i = 0; i < netmap_real_rings(na, t); i++) { 621 netmap_set_ring(na, i, t, stopped); 622 } 623 } 624 } 625 626 /* 627 * Convenience function used in drivers. Waits for current txsync()s/rxsync()s 628 * to finish and prevents any new one from starting. Call this before turning 629 * netmap mode off, or before removing the hardware rings (e.g., on module 630 * onload). 631 */ 632 void 633 netmap_disable_all_rings(struct ifnet *ifp) 634 { 635 if (NM_NA_VALID(ifp)) { 636 netmap_set_all_rings(NA(ifp), NM_KR_STOPPED); 637 } 638 } 639 640 /* 641 * Convenience function used in drivers. Re-enables rxsync and txsync on the 642 * adapter's rings In linux drivers, this should be placed near each 643 * napi_enable(). 644 */ 645 void 646 netmap_enable_all_rings(struct ifnet *ifp) 647 { 648 if (NM_NA_VALID(ifp)) { 649 netmap_set_all_rings(NA(ifp), 0 /* enabled */); 650 } 651 } 652 653 void 654 netmap_make_zombie(struct ifnet *ifp) 655 { 656 if (NM_NA_VALID(ifp)) { 657 struct netmap_adapter *na = NA(ifp); 658 netmap_set_all_rings(na, NM_KR_LOCKED); 659 na->na_flags |= NAF_ZOMBIE; 660 netmap_set_all_rings(na, 0); 661 } 662 } 663 664 void 665 netmap_undo_zombie(struct ifnet *ifp) 666 { 667 if (NM_NA_VALID(ifp)) { 668 struct netmap_adapter *na = NA(ifp); 669 if (na->na_flags & NAF_ZOMBIE) { 670 netmap_set_all_rings(na, NM_KR_LOCKED); 671 na->na_flags &= ~NAF_ZOMBIE; 672 netmap_set_all_rings(na, 0); 673 } 674 } 675 } 676 677 /* 678 * generic bound_checking function 679 */ 680 u_int 681 nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg) 682 { 683 u_int oldv = *v; 684 const char *op = NULL; 685 686 if (dflt < lo) 687 dflt = lo; 688 if (dflt > hi) 689 dflt = hi; 690 if (oldv < lo) { 691 *v = dflt; 692 op = "Bump"; 693 } else if (oldv > hi) { 694 *v = hi; 695 op = "Clamp"; 696 } 697 if (op && msg) 698 nm_prinf("%s %s to %d (was %d)", op, msg, *v, oldv); 699 return *v; 700 } 701 702 703 /* 704 * packet-dump function, user-supplied or static buffer. 705 * The destination buffer must be at least 30+4*len 706 */ 707 const char * 708 nm_dump_buf(char *p, int len, int lim, char *dst) 709 { 710 static char _dst[8192]; 711 int i, j, i0; 712 static char hex[] ="0123456789abcdef"; 713 char *o; /* output position */ 714 715 #define P_HI(x) hex[((x) & 0xf0)>>4] 716 #define P_LO(x) hex[((x) & 0xf)] 717 #define P_C(x) ((x) >= 0x20 && (x) <= 0x7e ? (x) : '.') 718 if (!dst) 719 dst = _dst; 720 if (lim <= 0 || lim > len) 721 lim = len; 722 o = dst; 723 sprintf(o, "buf 0x%p len %d lim %d\n", p, len, lim); 724 o += strlen(o); 725 /* hexdump routine */ 726 for (i = 0; i < lim; ) { 727 sprintf(o, "%5d: ", i); 728 o += strlen(o); 729 memset(o, ' ', 48); 730 i0 = i; 731 for (j=0; j < 16 && i < lim; i++, j++) { 732 o[j*3] = P_HI(p[i]); 733 o[j*3+1] = P_LO(p[i]); 734 } 735 i = i0; 736 for (j=0; j < 16 && i < lim; i++, j++) 737 o[j + 48] = P_C(p[i]); 738 o[j+48] = '\n'; 739 o += j+49; 740 } 741 *o = '\0'; 742 #undef P_HI 743 #undef P_LO 744 #undef P_C 745 return dst; 746 } 747 748 749 /* 750 * Fetch configuration from the device, to cope with dynamic 751 * reconfigurations after loading the module. 752 */ 753 /* call with NMG_LOCK held */ 754 int 755 netmap_update_config(struct netmap_adapter *na) 756 { 757 struct nm_config_info info; 758 759 bzero(&info, sizeof(info)); 760 if (na->nm_config == NULL || 761 na->nm_config(na, &info)) { 762 /* take whatever we had at init time */ 763 info.num_tx_rings = na->num_tx_rings; 764 info.num_tx_descs = na->num_tx_desc; 765 info.num_rx_rings = na->num_rx_rings; 766 info.num_rx_descs = na->num_rx_desc; 767 info.rx_buf_maxsize = na->rx_buf_maxsize; 768 } 769 770 if (na->num_tx_rings == info.num_tx_rings && 771 na->num_tx_desc == info.num_tx_descs && 772 na->num_rx_rings == info.num_rx_rings && 773 na->num_rx_desc == info.num_rx_descs && 774 na->rx_buf_maxsize == info.rx_buf_maxsize) 775 return 0; /* nothing changed */ 776 if (na->active_fds == 0) { 777 na->num_tx_rings = info.num_tx_rings; 778 na->num_tx_desc = info.num_tx_descs; 779 na->num_rx_rings = info.num_rx_rings; 780 na->num_rx_desc = info.num_rx_descs; 781 na->rx_buf_maxsize = info.rx_buf_maxsize; 782 if (netmap_verbose) 783 nm_prinf("configuration changed for %s: txring %d x %d, " 784 "rxring %d x %d, rxbufsz %d", 785 na->name, na->num_tx_rings, na->num_tx_desc, 786 na->num_rx_rings, na->num_rx_desc, na->rx_buf_maxsize); 787 return 0; 788 } 789 nm_prerr("WARNING: configuration changed for %s while active: " 790 "txring %d x %d, rxring %d x %d, rxbufsz %d", 791 na->name, info.num_tx_rings, info.num_tx_descs, 792 info.num_rx_rings, info.num_rx_descs, 793 info.rx_buf_maxsize); 794 return 1; 795 } 796 797 /* nm_sync callbacks for the host rings */ 798 static int netmap_txsync_to_host(struct netmap_kring *kring, int flags); 799 static int netmap_rxsync_from_host(struct netmap_kring *kring, int flags); 800 801 /* create the krings array and initialize the fields common to all adapters. 802 * The array layout is this: 803 * 804 * +----------+ 805 * na->tx_rings ----->| | \ 806 * | | } na->num_tx_ring 807 * | | / 808 * +----------+ 809 * | | host tx kring 810 * na->rx_rings ----> +----------+ 811 * | | \ 812 * | | } na->num_rx_rings 813 * | | / 814 * +----------+ 815 * | | host rx kring 816 * +----------+ 817 * na->tailroom ----->| | \ 818 * | | } tailroom bytes 819 * | | / 820 * +----------+ 821 * 822 * Note: for compatibility, host krings are created even when not needed. 823 * The tailroom space is currently used by vale ports for allocating leases. 824 */ 825 /* call with NMG_LOCK held */ 826 int 827 netmap_krings_create(struct netmap_adapter *na, u_int tailroom) 828 { 829 u_int i, len, ndesc; 830 struct netmap_kring *kring; 831 u_int n[NR_TXRX]; 832 enum txrx t; 833 int err = 0; 834 835 if (na->tx_rings != NULL) { 836 if (netmap_debug & NM_DEBUG_ON) 837 nm_prerr("warning: krings were already created"); 838 return 0; 839 } 840 841 /* account for the (possibly fake) host rings */ 842 n[NR_TX] = netmap_all_rings(na, NR_TX); 843 n[NR_RX] = netmap_all_rings(na, NR_RX); 844 845 len = (n[NR_TX] + n[NR_RX]) * 846 (sizeof(struct netmap_kring) + sizeof(struct netmap_kring *)) 847 + tailroom; 848 849 na->tx_rings = nm_os_malloc((size_t)len); 850 if (na->tx_rings == NULL) { 851 nm_prerr("Cannot allocate krings"); 852 return ENOMEM; 853 } 854 na->rx_rings = na->tx_rings + n[NR_TX]; 855 na->tailroom = na->rx_rings + n[NR_RX]; 856 857 /* link the krings in the krings array */ 858 kring = (struct netmap_kring *)((char *)na->tailroom + tailroom); 859 for (i = 0; i < n[NR_TX] + n[NR_RX]; i++) { 860 na->tx_rings[i] = kring; 861 kring++; 862 } 863 864 /* 865 * All fields in krings are 0 except the one initialized below. 866 * but better be explicit on important kring fields. 867 */ 868 for_rx_tx(t) { 869 ndesc = nma_get_ndesc(na, t); 870 for (i = 0; i < n[t]; i++) { 871 kring = NMR(na, t)[i]; 872 bzero(kring, sizeof(*kring)); 873 kring->notify_na = na; 874 kring->ring_id = i; 875 kring->tx = t; 876 kring->nkr_num_slots = ndesc; 877 kring->nr_mode = NKR_NETMAP_OFF; 878 kring->nr_pending_mode = NKR_NETMAP_OFF; 879 if (i < nma_get_nrings(na, t)) { 880 kring->nm_sync = (t == NR_TX ? na->nm_txsync : na->nm_rxsync); 881 } else { 882 if (!(na->na_flags & NAF_HOST_RINGS)) 883 kring->nr_kflags |= NKR_FAKERING; 884 kring->nm_sync = (t == NR_TX ? 885 netmap_txsync_to_host: 886 netmap_rxsync_from_host); 887 } 888 kring->nm_notify = na->nm_notify; 889 kring->rhead = kring->rcur = kring->nr_hwcur = 0; 890 /* 891 * IMPORTANT: Always keep one slot empty. 892 */ 893 kring->rtail = kring->nr_hwtail = (t == NR_TX ? ndesc - 1 : 0); 894 snprintf(kring->name, sizeof(kring->name) - 1, "%s %s%d", na->name, 895 nm_txrx2str(t), i); 896 ND("ktx %s h %d c %d t %d", 897 kring->name, kring->rhead, kring->rcur, kring->rtail); 898 err = nm_os_selinfo_init(&kring->si, kring->name); 899 if (err) { 900 netmap_krings_delete(na); 901 return err; 902 } 903 mtx_init(&kring->q_lock, (t == NR_TX ? "nm_txq_lock" : "nm_rxq_lock"), NULL, MTX_DEF); 904 kring->na = na; /* setting this field marks the mutex as initialized */ 905 } 906 err = nm_os_selinfo_init(&na->si[t], na->name); 907 if (err) { 908 netmap_krings_delete(na); 909 return err; 910 } 911 } 912 913 return 0; 914 } 915 916 917 /* undo the actions performed by netmap_krings_create */ 918 /* call with NMG_LOCK held */ 919 void 920 netmap_krings_delete(struct netmap_adapter *na) 921 { 922 struct netmap_kring **kring = na->tx_rings; 923 enum txrx t; 924 925 if (na->tx_rings == NULL) { 926 if (netmap_debug & NM_DEBUG_ON) 927 nm_prerr("warning: krings were already deleted"); 928 return; 929 } 930 931 for_rx_tx(t) 932 nm_os_selinfo_uninit(&na->si[t]); 933 934 /* we rely on the krings layout described above */ 935 for ( ; kring != na->tailroom; kring++) { 936 if ((*kring)->na != NULL) 937 mtx_destroy(&(*kring)->q_lock); 938 nm_os_selinfo_uninit(&(*kring)->si); 939 } 940 nm_os_free(na->tx_rings); 941 na->tx_rings = na->rx_rings = na->tailroom = NULL; 942 } 943 944 945 /* 946 * Destructor for NIC ports. They also have an mbuf queue 947 * on the rings connected to the host so we need to purge 948 * them first. 949 */ 950 /* call with NMG_LOCK held */ 951 void 952 netmap_hw_krings_delete(struct netmap_adapter *na) 953 { 954 u_int lim = netmap_real_rings(na, NR_RX), i; 955 956 for (i = nma_get_nrings(na, NR_RX); i < lim; i++) { 957 struct mbq *q = &NMR(na, NR_RX)[i]->rx_queue; 958 ND("destroy sw mbq with len %d", mbq_len(q)); 959 mbq_purge(q); 960 mbq_safe_fini(q); 961 } 962 netmap_krings_delete(na); 963 } 964 965 static void 966 netmap_mem_drop(struct netmap_adapter *na) 967 { 968 int last = netmap_mem_deref(na->nm_mem, na); 969 /* if the native allocator had been overrided on regif, 970 * restore it now and drop the temporary one 971 */ 972 if (last && na->nm_mem_prev) { 973 netmap_mem_put(na->nm_mem); 974 na->nm_mem = na->nm_mem_prev; 975 na->nm_mem_prev = NULL; 976 } 977 } 978 979 /* 980 * Undo everything that was done in netmap_do_regif(). In particular, 981 * call nm_register(ifp,0) to stop netmap mode on the interface and 982 * revert to normal operation. 983 */ 984 /* call with NMG_LOCK held */ 985 static void netmap_unset_ringid(struct netmap_priv_d *); 986 static void netmap_krings_put(struct netmap_priv_d *); 987 void 988 netmap_do_unregif(struct netmap_priv_d *priv) 989 { 990 struct netmap_adapter *na = priv->np_na; 991 992 NMG_LOCK_ASSERT(); 993 na->active_fds--; 994 /* unset nr_pending_mode and possibly release exclusive mode */ 995 netmap_krings_put(priv); 996 997 #ifdef WITH_MONITOR 998 /* XXX check whether we have to do something with monitor 999 * when rings change nr_mode. */ 1000 if (na->active_fds <= 0) { 1001 /* walk through all the rings and tell any monitor 1002 * that the port is going to exit netmap mode 1003 */ 1004 netmap_monitor_stop(na); 1005 } 1006 #endif 1007 1008 if (na->active_fds <= 0 || nm_kring_pending(priv)) { 1009 na->nm_register(na, 0); 1010 } 1011 1012 /* delete rings and buffers that are no longer needed */ 1013 netmap_mem_rings_delete(na); 1014 1015 if (na->active_fds <= 0) { /* last instance */ 1016 /* 1017 * (TO CHECK) We enter here 1018 * when the last reference to this file descriptor goes 1019 * away. This means we cannot have any pending poll() 1020 * or interrupt routine operating on the structure. 1021 * XXX The file may be closed in a thread while 1022 * another thread is using it. 1023 * Linux keeps the file opened until the last reference 1024 * by any outstanding ioctl/poll or mmap is gone. 1025 * FreeBSD does not track mmap()s (but we do) and 1026 * wakes up any sleeping poll(). Need to check what 1027 * happens if the close() occurs while a concurrent 1028 * syscall is running. 1029 */ 1030 if (netmap_debug & NM_DEBUG_ON) 1031 nm_prinf("deleting last instance for %s", na->name); 1032 1033 if (nm_netmap_on(na)) { 1034 nm_prerr("BUG: netmap on while going to delete the krings"); 1035 } 1036 1037 na->nm_krings_delete(na); 1038 } 1039 1040 /* possibily decrement counter of tx_si/rx_si users */ 1041 netmap_unset_ringid(priv); 1042 /* delete the nifp */ 1043 netmap_mem_if_delete(na, priv->np_nifp); 1044 /* drop the allocator */ 1045 netmap_mem_drop(na); 1046 /* mark the priv as unregistered */ 1047 priv->np_na = NULL; 1048 priv->np_nifp = NULL; 1049 } 1050 1051 struct netmap_priv_d* 1052 netmap_priv_new(void) 1053 { 1054 struct netmap_priv_d *priv; 1055 1056 priv = nm_os_malloc(sizeof(struct netmap_priv_d)); 1057 if (priv == NULL) 1058 return NULL; 1059 priv->np_refs = 1; 1060 nm_os_get_module(); 1061 return priv; 1062 } 1063 1064 /* 1065 * Destructor of the netmap_priv_d, called when the fd is closed 1066 * Action: undo all the things done by NIOCREGIF, 1067 * On FreeBSD we need to track whether there are active mmap()s, 1068 * and we use np_active_mmaps for that. On linux, the field is always 0. 1069 * Return: 1 if we can free priv, 0 otherwise. 1070 * 1071 */ 1072 /* call with NMG_LOCK held */ 1073 void 1074 netmap_priv_delete(struct netmap_priv_d *priv) 1075 { 1076 struct netmap_adapter *na = priv->np_na; 1077 1078 /* number of active references to this fd */ 1079 if (--priv->np_refs > 0) { 1080 return; 1081 } 1082 nm_os_put_module(); 1083 if (na) { 1084 netmap_do_unregif(priv); 1085 } 1086 netmap_unget_na(na, priv->np_ifp); 1087 bzero(priv, sizeof(*priv)); /* for safety */ 1088 nm_os_free(priv); 1089 } 1090 1091 1092 /* call with NMG_LOCK *not* held */ 1093 void 1094 netmap_dtor(void *data) 1095 { 1096 struct netmap_priv_d *priv = data; 1097 1098 NMG_LOCK(); 1099 netmap_priv_delete(priv); 1100 NMG_UNLOCK(); 1101 } 1102 1103 1104 /* 1105 * Handlers for synchronization of the rings from/to the host stack. 1106 * These are associated to a network interface and are just another 1107 * ring pair managed by userspace. 1108 * 1109 * Netmap also supports transparent forwarding (NS_FORWARD and NR_FORWARD 1110 * flags): 1111 * 1112 * - Before releasing buffers on hw RX rings, the application can mark 1113 * them with the NS_FORWARD flag. During the next RXSYNC or poll(), they 1114 * will be forwarded to the host stack, similarly to what happened if 1115 * the application moved them to the host TX ring. 1116 * 1117 * - Before releasing buffers on the host RX ring, the application can 1118 * mark them with the NS_FORWARD flag. During the next RXSYNC or poll(), 1119 * they will be forwarded to the hw TX rings, saving the application 1120 * from doing the same task in user-space. 1121 * 1122 * Transparent fowarding can be enabled per-ring, by setting the NR_FORWARD 1123 * flag, or globally with the netmap_fwd sysctl. 1124 * 1125 * The transfer NIC --> host is relatively easy, just encapsulate 1126 * into mbufs and we are done. The host --> NIC side is slightly 1127 * harder because there might not be room in the tx ring so it 1128 * might take a while before releasing the buffer. 1129 */ 1130 1131 1132 /* 1133 * Pass a whole queue of mbufs to the host stack as coming from 'dst' 1134 * We do not need to lock because the queue is private. 1135 * After this call the queue is empty. 1136 */ 1137 static void 1138 netmap_send_up(struct ifnet *dst, struct mbq *q) 1139 { 1140 struct mbuf *m; 1141 struct mbuf *head = NULL, *prev = NULL; 1142 1143 /* Send packets up, outside the lock; head/prev machinery 1144 * is only useful for Windows. */ 1145 while ((m = mbq_dequeue(q)) != NULL) { 1146 if (netmap_debug & NM_DEBUG_HOST) 1147 nm_prinf("sending up pkt %p size %d", m, MBUF_LEN(m)); 1148 prev = nm_os_send_up(dst, m, prev); 1149 if (head == NULL) 1150 head = prev; 1151 } 1152 if (head) 1153 nm_os_send_up(dst, NULL, head); 1154 mbq_fini(q); 1155 } 1156 1157 1158 /* 1159 * Scan the buffers from hwcur to ring->head, and put a copy of those 1160 * marked NS_FORWARD (or all of them if forced) into a queue of mbufs. 1161 * Drop remaining packets in the unlikely event 1162 * of an mbuf shortage. 1163 */ 1164 static void 1165 netmap_grab_packets(struct netmap_kring *kring, struct mbq *q, int force) 1166 { 1167 u_int const lim = kring->nkr_num_slots - 1; 1168 u_int const head = kring->rhead; 1169 u_int n; 1170 struct netmap_adapter *na = kring->na; 1171 1172 for (n = kring->nr_hwcur; n != head; n = nm_next(n, lim)) { 1173 struct mbuf *m; 1174 struct netmap_slot *slot = &kring->ring->slot[n]; 1175 1176 if ((slot->flags & NS_FORWARD) == 0 && !force) 1177 continue; 1178 if (slot->len < 14 || slot->len > NETMAP_BUF_SIZE(na)) { 1179 RD(5, "bad pkt at %d len %d", n, slot->len); 1180 continue; 1181 } 1182 slot->flags &= ~NS_FORWARD; // XXX needed ? 1183 /* XXX TODO: adapt to the case of a multisegment packet */ 1184 m = m_devget(NMB(na, slot), slot->len, 0, na->ifp, NULL); 1185 1186 if (m == NULL) 1187 break; 1188 mbq_enqueue(q, m); 1189 } 1190 } 1191 1192 static inline int 1193 _nm_may_forward(struct netmap_kring *kring) 1194 { 1195 return ((netmap_fwd || kring->ring->flags & NR_FORWARD) && 1196 kring->na->na_flags & NAF_HOST_RINGS && 1197 kring->tx == NR_RX); 1198 } 1199 1200 static inline int 1201 nm_may_forward_up(struct netmap_kring *kring) 1202 { 1203 return _nm_may_forward(kring) && 1204 kring->ring_id != kring->na->num_rx_rings; 1205 } 1206 1207 static inline int 1208 nm_may_forward_down(struct netmap_kring *kring, int sync_flags) 1209 { 1210 return _nm_may_forward(kring) && 1211 (sync_flags & NAF_CAN_FORWARD_DOWN) && 1212 kring->ring_id == kring->na->num_rx_rings; 1213 } 1214 1215 /* 1216 * Send to the NIC rings packets marked NS_FORWARD between 1217 * kring->nr_hwcur and kring->rhead. 1218 * Called under kring->rx_queue.lock on the sw rx ring. 1219 * 1220 * It can only be called if the user opened all the TX hw rings, 1221 * see NAF_CAN_FORWARD_DOWN flag. 1222 * We can touch the TX netmap rings (slots, head and cur) since 1223 * we are in poll/ioctl system call context, and the application 1224 * is not supposed to touch the ring (using a different thread) 1225 * during the execution of the system call. 1226 */ 1227 static u_int 1228 netmap_sw_to_nic(struct netmap_adapter *na) 1229 { 1230 struct netmap_kring *kring = na->rx_rings[na->num_rx_rings]; 1231 struct netmap_slot *rxslot = kring->ring->slot; 1232 u_int i, rxcur = kring->nr_hwcur; 1233 u_int const head = kring->rhead; 1234 u_int const src_lim = kring->nkr_num_slots - 1; 1235 u_int sent = 0; 1236 1237 /* scan rings to find space, then fill as much as possible */ 1238 for (i = 0; i < na->num_tx_rings; i++) { 1239 struct netmap_kring *kdst = na->tx_rings[i]; 1240 struct netmap_ring *rdst = kdst->ring; 1241 u_int const dst_lim = kdst->nkr_num_slots - 1; 1242 1243 /* XXX do we trust ring or kring->rcur,rtail ? */ 1244 for (; rxcur != head && !nm_ring_empty(rdst); 1245 rxcur = nm_next(rxcur, src_lim) ) { 1246 struct netmap_slot *src, *dst, tmp; 1247 u_int dst_head = rdst->head; 1248 1249 src = &rxslot[rxcur]; 1250 if ((src->flags & NS_FORWARD) == 0 && !netmap_fwd) 1251 continue; 1252 1253 sent++; 1254 1255 dst = &rdst->slot[dst_head]; 1256 1257 tmp = *src; 1258 1259 src->buf_idx = dst->buf_idx; 1260 src->flags = NS_BUF_CHANGED; 1261 1262 dst->buf_idx = tmp.buf_idx; 1263 dst->len = tmp.len; 1264 dst->flags = NS_BUF_CHANGED; 1265 1266 rdst->head = rdst->cur = nm_next(dst_head, dst_lim); 1267 } 1268 /* if (sent) XXX txsync ? it would be just an optimization */ 1269 } 1270 return sent; 1271 } 1272 1273 1274 /* 1275 * netmap_txsync_to_host() passes packets up. We are called from a 1276 * system call in user process context, and the only contention 1277 * can be among multiple user threads erroneously calling 1278 * this routine concurrently. 1279 */ 1280 static int 1281 netmap_txsync_to_host(struct netmap_kring *kring, int flags) 1282 { 1283 struct netmap_adapter *na = kring->na; 1284 u_int const lim = kring->nkr_num_slots - 1; 1285 u_int const head = kring->rhead; 1286 struct mbq q; 1287 1288 /* Take packets from hwcur to head and pass them up. 1289 * Force hwcur = head since netmap_grab_packets() stops at head 1290 */ 1291 mbq_init(&q); 1292 netmap_grab_packets(kring, &q, 1 /* force */); 1293 ND("have %d pkts in queue", mbq_len(&q)); 1294 kring->nr_hwcur = head; 1295 kring->nr_hwtail = head + lim; 1296 if (kring->nr_hwtail > lim) 1297 kring->nr_hwtail -= lim + 1; 1298 1299 netmap_send_up(na->ifp, &q); 1300 return 0; 1301 } 1302 1303 1304 /* 1305 * rxsync backend for packets coming from the host stack. 1306 * They have been put in kring->rx_queue by netmap_transmit(). 1307 * We protect access to the kring using kring->rx_queue.lock 1308 * 1309 * also moves to the nic hw rings any packet the user has marked 1310 * for transparent-mode forwarding, then sets the NR_FORWARD 1311 * flag in the kring to let the caller push them out 1312 */ 1313 static int 1314 netmap_rxsync_from_host(struct netmap_kring *kring, int flags) 1315 { 1316 struct netmap_adapter *na = kring->na; 1317 struct netmap_ring *ring = kring->ring; 1318 u_int nm_i, n; 1319 u_int const lim = kring->nkr_num_slots - 1; 1320 u_int const head = kring->rhead; 1321 int ret = 0; 1322 struct mbq *q = &kring->rx_queue, fq; 1323 1324 mbq_init(&fq); /* fq holds packets to be freed */ 1325 1326 mbq_lock(q); 1327 1328 /* First part: import newly received packets */ 1329 n = mbq_len(q); 1330 if (n) { /* grab packets from the queue */ 1331 struct mbuf *m; 1332 uint32_t stop_i; 1333 1334 nm_i = kring->nr_hwtail; 1335 stop_i = nm_prev(kring->nr_hwcur, lim); 1336 while ( nm_i != stop_i && (m = mbq_dequeue(q)) != NULL ) { 1337 int len = MBUF_LEN(m); 1338 struct netmap_slot *slot = &ring->slot[nm_i]; 1339 1340 m_copydata(m, 0, len, NMB(na, slot)); 1341 ND("nm %d len %d", nm_i, len); 1342 if (netmap_debug & NM_DEBUG_HOST) 1343 nm_prinf("%s", nm_dump_buf(NMB(na, slot),len, 128, NULL)); 1344 1345 slot->len = len; 1346 slot->flags = 0; 1347 nm_i = nm_next(nm_i, lim); 1348 mbq_enqueue(&fq, m); 1349 } 1350 kring->nr_hwtail = nm_i; 1351 } 1352 1353 /* 1354 * Second part: skip past packets that userspace has released. 1355 */ 1356 nm_i = kring->nr_hwcur; 1357 if (nm_i != head) { /* something was released */ 1358 if (nm_may_forward_down(kring, flags)) { 1359 ret = netmap_sw_to_nic(na); 1360 if (ret > 0) { 1361 kring->nr_kflags |= NR_FORWARD; 1362 ret = 0; 1363 } 1364 } 1365 kring->nr_hwcur = head; 1366 } 1367 1368 mbq_unlock(q); 1369 1370 mbq_purge(&fq); 1371 mbq_fini(&fq); 1372 1373 return ret; 1374 } 1375 1376 1377 /* Get a netmap adapter for the port. 1378 * 1379 * If it is possible to satisfy the request, return 0 1380 * with *na containing the netmap adapter found. 1381 * Otherwise return an error code, with *na containing NULL. 1382 * 1383 * When the port is attached to a bridge, we always return 1384 * EBUSY. 1385 * Otherwise, if the port is already bound to a file descriptor, 1386 * then we unconditionally return the existing adapter into *na. 1387 * In all the other cases, we return (into *na) either native, 1388 * generic or NULL, according to the following table: 1389 * 1390 * native_support 1391 * active_fds dev.netmap.admode YES NO 1392 * ------------------------------------------------------- 1393 * >0 * NA(ifp) NA(ifp) 1394 * 1395 * 0 NETMAP_ADMODE_BEST NATIVE GENERIC 1396 * 0 NETMAP_ADMODE_NATIVE NATIVE NULL 1397 * 0 NETMAP_ADMODE_GENERIC GENERIC GENERIC 1398 * 1399 */ 1400 static void netmap_hw_dtor(struct netmap_adapter *); /* needed by NM_IS_NATIVE() */ 1401 int 1402 netmap_get_hw_na(struct ifnet *ifp, struct netmap_mem_d *nmd, struct netmap_adapter **na) 1403 { 1404 /* generic support */ 1405 int i = netmap_admode; /* Take a snapshot. */ 1406 struct netmap_adapter *prev_na; 1407 int error = 0; 1408 1409 *na = NULL; /* default */ 1410 1411 /* reset in case of invalid value */ 1412 if (i < NETMAP_ADMODE_BEST || i >= NETMAP_ADMODE_LAST) 1413 i = netmap_admode = NETMAP_ADMODE_BEST; 1414 1415 if (NM_NA_VALID(ifp)) { 1416 prev_na = NA(ifp); 1417 /* If an adapter already exists, return it if 1418 * there are active file descriptors or if 1419 * netmap is not forced to use generic 1420 * adapters. 1421 */ 1422 if (NETMAP_OWNED_BY_ANY(prev_na) 1423 || i != NETMAP_ADMODE_GENERIC 1424 || prev_na->na_flags & NAF_FORCE_NATIVE 1425 #ifdef WITH_PIPES 1426 /* ugly, but we cannot allow an adapter switch 1427 * if some pipe is referring to this one 1428 */ 1429 || prev_na->na_next_pipe > 0 1430 #endif 1431 ) { 1432 *na = prev_na; 1433 goto assign_mem; 1434 } 1435 } 1436 1437 /* If there isn't native support and netmap is not allowed 1438 * to use generic adapters, we cannot satisfy the request. 1439 */ 1440 if (!NM_IS_NATIVE(ifp) && i == NETMAP_ADMODE_NATIVE) 1441 return EOPNOTSUPP; 1442 1443 /* Otherwise, create a generic adapter and return it, 1444 * saving the previously used netmap adapter, if any. 1445 * 1446 * Note that here 'prev_na', if not NULL, MUST be a 1447 * native adapter, and CANNOT be a generic one. This is 1448 * true because generic adapters are created on demand, and 1449 * destroyed when not used anymore. Therefore, if the adapter 1450 * currently attached to an interface 'ifp' is generic, it 1451 * must be that 1452 * (NA(ifp)->active_fds > 0 || NETMAP_OWNED_BY_KERN(NA(ifp))). 1453 * Consequently, if NA(ifp) is generic, we will enter one of 1454 * the branches above. This ensures that we never override 1455 * a generic adapter with another generic adapter. 1456 */ 1457 error = generic_netmap_attach(ifp); 1458 if (error) 1459 return error; 1460 1461 *na = NA(ifp); 1462 1463 assign_mem: 1464 if (nmd != NULL && !((*na)->na_flags & NAF_MEM_OWNER) && 1465 (*na)->active_fds == 0 && ((*na)->nm_mem != nmd)) { 1466 (*na)->nm_mem_prev = (*na)->nm_mem; 1467 (*na)->nm_mem = netmap_mem_get(nmd); 1468 } 1469 1470 return 0; 1471 } 1472 1473 /* 1474 * MUST BE CALLED UNDER NMG_LOCK() 1475 * 1476 * Get a refcounted reference to a netmap adapter attached 1477 * to the interface specified by req. 1478 * This is always called in the execution of an ioctl(). 1479 * 1480 * Return ENXIO if the interface specified by the request does 1481 * not exist, ENOTSUP if netmap is not supported by the interface, 1482 * EBUSY if the interface is already attached to a bridge, 1483 * EINVAL if parameters are invalid, ENOMEM if needed resources 1484 * could not be allocated. 1485 * If successful, hold a reference to the netmap adapter. 1486 * 1487 * If the interface specified by req is a system one, also keep 1488 * a reference to it and return a valid *ifp. 1489 */ 1490 int 1491 netmap_get_na(struct nmreq_header *hdr, 1492 struct netmap_adapter **na, struct ifnet **ifp, 1493 struct netmap_mem_d *nmd, int create) 1494 { 1495 struct nmreq_register *req = (struct nmreq_register *)(uintptr_t)hdr->nr_body; 1496 int error = 0; 1497 struct netmap_adapter *ret = NULL; 1498 int nmd_ref = 0; 1499 1500 *na = NULL; /* default return value */ 1501 *ifp = NULL; 1502 1503 if (hdr->nr_reqtype != NETMAP_REQ_REGISTER) { 1504 return EINVAL; 1505 } 1506 1507 if (req->nr_mode == NR_REG_PIPE_MASTER || 1508 req->nr_mode == NR_REG_PIPE_SLAVE) { 1509 /* Do not accept deprecated pipe modes. */ 1510 nm_prerr("Deprecated pipe nr_mode, use xx{yy or xx}yy syntax"); 1511 return EINVAL; 1512 } 1513 1514 NMG_LOCK_ASSERT(); 1515 1516 /* if the request contain a memid, try to find the 1517 * corresponding memory region 1518 */ 1519 if (nmd == NULL && req->nr_mem_id) { 1520 nmd = netmap_mem_find(req->nr_mem_id); 1521 if (nmd == NULL) 1522 return EINVAL; 1523 /* keep the rereference */ 1524 nmd_ref = 1; 1525 } 1526 1527 /* We cascade through all possible types of netmap adapter. 1528 * All netmap_get_*_na() functions return an error and an na, 1529 * with the following combinations: 1530 * 1531 * error na 1532 * 0 NULL type doesn't match 1533 * !0 NULL type matches, but na creation/lookup failed 1534 * 0 !NULL type matches and na created/found 1535 * !0 !NULL impossible 1536 */ 1537 error = netmap_get_null_na(hdr, na, nmd, create); 1538 if (error || *na != NULL) 1539 goto out; 1540 1541 /* try to see if this is a monitor port */ 1542 error = netmap_get_monitor_na(hdr, na, nmd, create); 1543 if (error || *na != NULL) 1544 goto out; 1545 1546 /* try to see if this is a pipe port */ 1547 error = netmap_get_pipe_na(hdr, na, nmd, create); 1548 if (error || *na != NULL) 1549 goto out; 1550 1551 /* try to see if this is a bridge port */ 1552 error = netmap_get_vale_na(hdr, na, nmd, create); 1553 if (error) 1554 goto out; 1555 1556 if (*na != NULL) /* valid match in netmap_get_bdg_na() */ 1557 goto out; 1558 1559 /* 1560 * This must be a hardware na, lookup the name in the system. 1561 * Note that by hardware we actually mean "it shows up in ifconfig". 1562 * This may still be a tap, a veth/epair, or even a 1563 * persistent VALE port. 1564 */ 1565 *ifp = ifunit_ref(hdr->nr_name); 1566 if (*ifp == NULL) { 1567 error = ENXIO; 1568 goto out; 1569 } 1570 1571 error = netmap_get_hw_na(*ifp, nmd, &ret); 1572 if (error) 1573 goto out; 1574 1575 *na = ret; 1576 netmap_adapter_get(ret); 1577 1578 out: 1579 if (error) { 1580 if (ret) 1581 netmap_adapter_put(ret); 1582 if (*ifp) { 1583 if_rele(*ifp); 1584 *ifp = NULL; 1585 } 1586 } 1587 if (nmd_ref) 1588 netmap_mem_put(nmd); 1589 1590 return error; 1591 } 1592 1593 /* undo netmap_get_na() */ 1594 void 1595 netmap_unget_na(struct netmap_adapter *na, struct ifnet *ifp) 1596 { 1597 if (ifp) 1598 if_rele(ifp); 1599 if (na) 1600 netmap_adapter_put(na); 1601 } 1602 1603 1604 #define NM_FAIL_ON(t) do { \ 1605 if (unlikely(t)) { \ 1606 RD(5, "%s: fail '" #t "' " \ 1607 "h %d c %d t %d " \ 1608 "rh %d rc %d rt %d " \ 1609 "hc %d ht %d", \ 1610 kring->name, \ 1611 head, cur, ring->tail, \ 1612 kring->rhead, kring->rcur, kring->rtail, \ 1613 kring->nr_hwcur, kring->nr_hwtail); \ 1614 return kring->nkr_num_slots; \ 1615 } \ 1616 } while (0) 1617 1618 /* 1619 * validate parameters on entry for *_txsync() 1620 * Returns ring->cur if ok, or something >= kring->nkr_num_slots 1621 * in case of error. 1622 * 1623 * rhead, rcur and rtail=hwtail are stored from previous round. 1624 * hwcur is the next packet to send to the ring. 1625 * 1626 * We want 1627 * hwcur <= *rhead <= head <= cur <= tail = *rtail <= hwtail 1628 * 1629 * hwcur, rhead, rtail and hwtail are reliable 1630 */ 1631 u_int 1632 nm_txsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1633 { 1634 u_int head = ring->head; /* read only once */ 1635 u_int cur = ring->cur; /* read only once */ 1636 u_int n = kring->nkr_num_slots; 1637 1638 ND(5, "%s kcur %d ktail %d head %d cur %d tail %d", 1639 kring->name, 1640 kring->nr_hwcur, kring->nr_hwtail, 1641 ring->head, ring->cur, ring->tail); 1642 #if 1 /* kernel sanity checks; but we can trust the kring. */ 1643 NM_FAIL_ON(kring->nr_hwcur >= n || kring->rhead >= n || 1644 kring->rtail >= n || kring->nr_hwtail >= n); 1645 #endif /* kernel sanity checks */ 1646 /* 1647 * user sanity checks. We only use head, 1648 * A, B, ... are possible positions for head: 1649 * 1650 * 0 A rhead B rtail C n-1 1651 * 0 D rtail E rhead F n-1 1652 * 1653 * B, F, D are valid. A, C, E are wrong 1654 */ 1655 if (kring->rtail >= kring->rhead) { 1656 /* want rhead <= head <= rtail */ 1657 NM_FAIL_ON(head < kring->rhead || head > kring->rtail); 1658 /* and also head <= cur <= rtail */ 1659 NM_FAIL_ON(cur < head || cur > kring->rtail); 1660 } else { /* here rtail < rhead */ 1661 /* we need head outside rtail .. rhead */ 1662 NM_FAIL_ON(head > kring->rtail && head < kring->rhead); 1663 1664 /* two cases now: head <= rtail or head >= rhead */ 1665 if (head <= kring->rtail) { 1666 /* want head <= cur <= rtail */ 1667 NM_FAIL_ON(cur < head || cur > kring->rtail); 1668 } else { /* head >= rhead */ 1669 /* cur must be outside rtail..head */ 1670 NM_FAIL_ON(cur > kring->rtail && cur < head); 1671 } 1672 } 1673 if (ring->tail != kring->rtail) { 1674 RD(5, "%s tail overwritten was %d need %d", kring->name, 1675 ring->tail, kring->rtail); 1676 ring->tail = kring->rtail; 1677 } 1678 kring->rhead = head; 1679 kring->rcur = cur; 1680 return head; 1681 } 1682 1683 1684 /* 1685 * validate parameters on entry for *_rxsync() 1686 * Returns ring->head if ok, kring->nkr_num_slots on error. 1687 * 1688 * For a valid configuration, 1689 * hwcur <= head <= cur <= tail <= hwtail 1690 * 1691 * We only consider head and cur. 1692 * hwcur and hwtail are reliable. 1693 * 1694 */ 1695 u_int 1696 nm_rxsync_prologue(struct netmap_kring *kring, struct netmap_ring *ring) 1697 { 1698 uint32_t const n = kring->nkr_num_slots; 1699 uint32_t head, cur; 1700 1701 ND(5,"%s kc %d kt %d h %d c %d t %d", 1702 kring->name, 1703 kring->nr_hwcur, kring->nr_hwtail, 1704 ring->head, ring->cur, ring->tail); 1705 /* 1706 * Before storing the new values, we should check they do not 1707 * move backwards. However: 1708 * - head is not an issue because the previous value is hwcur; 1709 * - cur could in principle go back, however it does not matter 1710 * because we are processing a brand new rxsync() 1711 */ 1712 cur = kring->rcur = ring->cur; /* read only once */ 1713 head = kring->rhead = ring->head; /* read only once */ 1714 #if 1 /* kernel sanity checks */ 1715 NM_FAIL_ON(kring->nr_hwcur >= n || kring->nr_hwtail >= n); 1716 #endif /* kernel sanity checks */ 1717 /* user sanity checks */ 1718 if (kring->nr_hwtail >= kring->nr_hwcur) { 1719 /* want hwcur <= rhead <= hwtail */ 1720 NM_FAIL_ON(head < kring->nr_hwcur || head > kring->nr_hwtail); 1721 /* and also rhead <= rcur <= hwtail */ 1722 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1723 } else { 1724 /* we need rhead outside hwtail..hwcur */ 1725 NM_FAIL_ON(head < kring->nr_hwcur && head > kring->nr_hwtail); 1726 /* two cases now: head <= hwtail or head >= hwcur */ 1727 if (head <= kring->nr_hwtail) { 1728 /* want head <= cur <= hwtail */ 1729 NM_FAIL_ON(cur < head || cur > kring->nr_hwtail); 1730 } else { 1731 /* cur must be outside hwtail..head */ 1732 NM_FAIL_ON(cur < head && cur > kring->nr_hwtail); 1733 } 1734 } 1735 if (ring->tail != kring->rtail) { 1736 RD(5, "%s tail overwritten was %d need %d", 1737 kring->name, 1738 ring->tail, kring->rtail); 1739 ring->tail = kring->rtail; 1740 } 1741 return head; 1742 } 1743 1744 1745 /* 1746 * Error routine called when txsync/rxsync detects an error. 1747 * Can't do much more than resetting head = cur = hwcur, tail = hwtail 1748 * Return 1 on reinit. 1749 * 1750 * This routine is only called by the upper half of the kernel. 1751 * It only reads hwcur (which is changed only by the upper half, too) 1752 * and hwtail (which may be changed by the lower half, but only on 1753 * a tx ring and only to increase it, so any error will be recovered 1754 * on the next call). For the above, we don't strictly need to call 1755 * it under lock. 1756 */ 1757 int 1758 netmap_ring_reinit(struct netmap_kring *kring) 1759 { 1760 struct netmap_ring *ring = kring->ring; 1761 u_int i, lim = kring->nkr_num_slots - 1; 1762 int errors = 0; 1763 1764 // XXX KASSERT nm_kr_tryget 1765 RD(10, "called for %s", kring->name); 1766 // XXX probably wrong to trust userspace 1767 kring->rhead = ring->head; 1768 kring->rcur = ring->cur; 1769 kring->rtail = ring->tail; 1770 1771 if (ring->cur > lim) 1772 errors++; 1773 if (ring->head > lim) 1774 errors++; 1775 if (ring->tail > lim) 1776 errors++; 1777 for (i = 0; i <= lim; i++) { 1778 u_int idx = ring->slot[i].buf_idx; 1779 u_int len = ring->slot[i].len; 1780 if (idx < 2 || idx >= kring->na->na_lut.objtotal) { 1781 RD(5, "bad index at slot %d idx %d len %d ", i, idx, len); 1782 ring->slot[i].buf_idx = 0; 1783 ring->slot[i].len = 0; 1784 } else if (len > NETMAP_BUF_SIZE(kring->na)) { 1785 ring->slot[i].len = 0; 1786 RD(5, "bad len at slot %d idx %d len %d", i, idx, len); 1787 } 1788 } 1789 if (errors) { 1790 RD(10, "total %d errors", errors); 1791 RD(10, "%s reinit, cur %d -> %d tail %d -> %d", 1792 kring->name, 1793 ring->cur, kring->nr_hwcur, 1794 ring->tail, kring->nr_hwtail); 1795 ring->head = kring->rhead = kring->nr_hwcur; 1796 ring->cur = kring->rcur = kring->nr_hwcur; 1797 ring->tail = kring->rtail = kring->nr_hwtail; 1798 } 1799 return (errors ? 1 : 0); 1800 } 1801 1802 /* interpret the ringid and flags fields of an nmreq, by translating them 1803 * into a pair of intervals of ring indices: 1804 * 1805 * [priv->np_txqfirst, priv->np_txqlast) and 1806 * [priv->np_rxqfirst, priv->np_rxqlast) 1807 * 1808 */ 1809 int 1810 netmap_interp_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1811 uint16_t nr_ringid, uint64_t nr_flags) 1812 { 1813 struct netmap_adapter *na = priv->np_na; 1814 int excluded_direction[] = { NR_TX_RINGS_ONLY, NR_RX_RINGS_ONLY }; 1815 enum txrx t; 1816 u_int j; 1817 1818 for_rx_tx(t) { 1819 if (nr_flags & excluded_direction[t]) { 1820 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1821 continue; 1822 } 1823 switch (nr_mode) { 1824 case NR_REG_ALL_NIC: 1825 case NR_REG_NULL: 1826 priv->np_qfirst[t] = 0; 1827 priv->np_qlast[t] = nma_get_nrings(na, t); 1828 ND("ALL/PIPE: %s %d %d", nm_txrx2str(t), 1829 priv->np_qfirst[t], priv->np_qlast[t]); 1830 break; 1831 case NR_REG_SW: 1832 case NR_REG_NIC_SW: 1833 if (!(na->na_flags & NAF_HOST_RINGS)) { 1834 nm_prerr("host rings not supported"); 1835 return EINVAL; 1836 } 1837 priv->np_qfirst[t] = (nr_mode == NR_REG_SW ? 1838 nma_get_nrings(na, t) : 0); 1839 priv->np_qlast[t] = netmap_all_rings(na, t); 1840 ND("%s: %s %d %d", nr_mode == NR_REG_SW ? "SW" : "NIC+SW", 1841 nm_txrx2str(t), 1842 priv->np_qfirst[t], priv->np_qlast[t]); 1843 break; 1844 case NR_REG_ONE_NIC: 1845 if (nr_ringid >= na->num_tx_rings && 1846 nr_ringid >= na->num_rx_rings) { 1847 nm_prerr("invalid ring id %d", nr_ringid); 1848 return EINVAL; 1849 } 1850 /* if not enough rings, use the first one */ 1851 j = nr_ringid; 1852 if (j >= nma_get_nrings(na, t)) 1853 j = 0; 1854 priv->np_qfirst[t] = j; 1855 priv->np_qlast[t] = j + 1; 1856 ND("ONE_NIC: %s %d %d", nm_txrx2str(t), 1857 priv->np_qfirst[t], priv->np_qlast[t]); 1858 break; 1859 default: 1860 nm_prerr("invalid regif type %d", nr_mode); 1861 return EINVAL; 1862 } 1863 } 1864 priv->np_flags = nr_flags; 1865 1866 /* Allow transparent forwarding mode in the host --> nic 1867 * direction only if all the TX hw rings have been opened. */ 1868 if (priv->np_qfirst[NR_TX] == 0 && 1869 priv->np_qlast[NR_TX] >= na->num_tx_rings) { 1870 priv->np_sync_flags |= NAF_CAN_FORWARD_DOWN; 1871 } 1872 1873 if (netmap_verbose) { 1874 nm_prinf("%s: tx [%d,%d) rx [%d,%d) id %d", 1875 na->name, 1876 priv->np_qfirst[NR_TX], 1877 priv->np_qlast[NR_TX], 1878 priv->np_qfirst[NR_RX], 1879 priv->np_qlast[NR_RX], 1880 nr_ringid); 1881 } 1882 return 0; 1883 } 1884 1885 1886 /* 1887 * Set the ring ID. For devices with a single queue, a request 1888 * for all rings is the same as a single ring. 1889 */ 1890 static int 1891 netmap_set_ringid(struct netmap_priv_d *priv, uint32_t nr_mode, 1892 uint16_t nr_ringid, uint64_t nr_flags) 1893 { 1894 struct netmap_adapter *na = priv->np_na; 1895 int error; 1896 enum txrx t; 1897 1898 error = netmap_interp_ringid(priv, nr_mode, nr_ringid, nr_flags); 1899 if (error) { 1900 return error; 1901 } 1902 1903 priv->np_txpoll = (nr_flags & NR_NO_TX_POLL) ? 0 : 1; 1904 1905 /* optimization: count the users registered for more than 1906 * one ring, which are the ones sleeping on the global queue. 1907 * The default netmap_notify() callback will then 1908 * avoid signaling the global queue if nobody is using it 1909 */ 1910 for_rx_tx(t) { 1911 if (nm_si_user(priv, t)) 1912 na->si_users[t]++; 1913 } 1914 return 0; 1915 } 1916 1917 static void 1918 netmap_unset_ringid(struct netmap_priv_d *priv) 1919 { 1920 struct netmap_adapter *na = priv->np_na; 1921 enum txrx t; 1922 1923 for_rx_tx(t) { 1924 if (nm_si_user(priv, t)) 1925 na->si_users[t]--; 1926 priv->np_qfirst[t] = priv->np_qlast[t] = 0; 1927 } 1928 priv->np_flags = 0; 1929 priv->np_txpoll = 0; 1930 priv->np_kloop_state = 0; 1931 } 1932 1933 1934 /* Set the nr_pending_mode for the requested rings. 1935 * If requested, also try to get exclusive access to the rings, provided 1936 * the rings we want to bind are not exclusively owned by a previous bind. 1937 */ 1938 static int 1939 netmap_krings_get(struct netmap_priv_d *priv) 1940 { 1941 struct netmap_adapter *na = priv->np_na; 1942 u_int i; 1943 struct netmap_kring *kring; 1944 int excl = (priv->np_flags & NR_EXCLUSIVE); 1945 enum txrx t; 1946 1947 if (netmap_debug & NM_DEBUG_ON) 1948 nm_prinf("%s: grabbing tx [%d, %d) rx [%d, %d)", 1949 na->name, 1950 priv->np_qfirst[NR_TX], 1951 priv->np_qlast[NR_TX], 1952 priv->np_qfirst[NR_RX], 1953 priv->np_qlast[NR_RX]); 1954 1955 /* first round: check that all the requested rings 1956 * are neither alread exclusively owned, nor we 1957 * want exclusive ownership when they are already in use 1958 */ 1959 for_rx_tx(t) { 1960 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1961 kring = NMR(na, t)[i]; 1962 if ((kring->nr_kflags & NKR_EXCLUSIVE) || 1963 (kring->users && excl)) 1964 { 1965 ND("ring %s busy", kring->name); 1966 return EBUSY; 1967 } 1968 } 1969 } 1970 1971 /* second round: increment usage count (possibly marking them 1972 * as exclusive) and set the nr_pending_mode 1973 */ 1974 for_rx_tx(t) { 1975 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 1976 kring = NMR(na, t)[i]; 1977 kring->users++; 1978 if (excl) 1979 kring->nr_kflags |= NKR_EXCLUSIVE; 1980 kring->nr_pending_mode = NKR_NETMAP_ON; 1981 } 1982 } 1983 1984 return 0; 1985 1986 } 1987 1988 /* Undo netmap_krings_get(). This is done by clearing the exclusive mode 1989 * if was asked on regif, and unset the nr_pending_mode if we are the 1990 * last users of the involved rings. */ 1991 static void 1992 netmap_krings_put(struct netmap_priv_d *priv) 1993 { 1994 struct netmap_adapter *na = priv->np_na; 1995 u_int i; 1996 struct netmap_kring *kring; 1997 int excl = (priv->np_flags & NR_EXCLUSIVE); 1998 enum txrx t; 1999 2000 ND("%s: releasing tx [%d, %d) rx [%d, %d)", 2001 na->name, 2002 priv->np_qfirst[NR_TX], 2003 priv->np_qlast[NR_TX], 2004 priv->np_qfirst[NR_RX], 2005 priv->np_qlast[MR_RX]); 2006 2007 for_rx_tx(t) { 2008 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 2009 kring = NMR(na, t)[i]; 2010 if (excl) 2011 kring->nr_kflags &= ~NKR_EXCLUSIVE; 2012 kring->users--; 2013 if (kring->users == 0) 2014 kring->nr_pending_mode = NKR_NETMAP_OFF; 2015 } 2016 } 2017 } 2018 2019 static int 2020 nm_priv_rx_enabled(struct netmap_priv_d *priv) 2021 { 2022 return (priv->np_qfirst[NR_RX] != priv->np_qlast[NR_RX]); 2023 } 2024 2025 /* Validate the CSB entries for both directions (atok and ktoa). 2026 * To be called under NMG_LOCK(). */ 2027 static int 2028 netmap_csb_validate(struct netmap_priv_d *priv, struct nmreq_opt_csb *csbo) 2029 { 2030 struct nm_csb_atok *csb_atok_base = 2031 (struct nm_csb_atok *)(uintptr_t)csbo->csb_atok; 2032 struct nm_csb_ktoa *csb_ktoa_base = 2033 (struct nm_csb_ktoa *)(uintptr_t)csbo->csb_ktoa; 2034 enum txrx t; 2035 int num_rings[NR_TXRX], tot_rings; 2036 size_t entry_size[2]; 2037 void *csb_start[2]; 2038 int i; 2039 2040 if (priv->np_kloop_state & NM_SYNC_KLOOP_RUNNING) { 2041 nm_prerr("Cannot update CSB while kloop is running"); 2042 return EBUSY; 2043 } 2044 2045 tot_rings = 0; 2046 for_rx_tx(t) { 2047 num_rings[t] = priv->np_qlast[t] - priv->np_qfirst[t]; 2048 tot_rings += num_rings[t]; 2049 } 2050 if (tot_rings <= 0) 2051 return 0; 2052 2053 if (!(priv->np_flags & NR_EXCLUSIVE)) { 2054 nm_prerr("CSB mode requires NR_EXCLUSIVE"); 2055 return EINVAL; 2056 } 2057 2058 entry_size[0] = sizeof(*csb_atok_base); 2059 entry_size[1] = sizeof(*csb_ktoa_base); 2060 csb_start[0] = (void *)csb_atok_base; 2061 csb_start[1] = (void *)csb_ktoa_base; 2062 2063 for (i = 0; i < 2; i++) { 2064 /* On Linux we could use access_ok() to simplify 2065 * the validation. However, the advantage of 2066 * this approach is that it works also on 2067 * FreeBSD. */ 2068 size_t csb_size = tot_rings * entry_size[i]; 2069 void *tmp; 2070 int err; 2071 2072 if ((uintptr_t)csb_start[i] & (entry_size[i]-1)) { 2073 nm_prerr("Unaligned CSB address"); 2074 return EINVAL; 2075 } 2076 2077 tmp = nm_os_malloc(csb_size); 2078 if (!tmp) 2079 return ENOMEM; 2080 if (i == 0) { 2081 /* Application --> kernel direction. */ 2082 err = copyin(csb_start[i], tmp, csb_size); 2083 } else { 2084 /* Kernel --> application direction. */ 2085 memset(tmp, 0, csb_size); 2086 err = copyout(tmp, csb_start[i], csb_size); 2087 } 2088 nm_os_free(tmp); 2089 if (err) { 2090 nm_prerr("Invalid CSB address"); 2091 return err; 2092 } 2093 } 2094 2095 priv->np_csb_atok_base = csb_atok_base; 2096 priv->np_csb_ktoa_base = csb_ktoa_base; 2097 2098 /* Initialize the CSB. */ 2099 for_rx_tx(t) { 2100 for (i = 0; i < num_rings[t]; i++) { 2101 struct netmap_kring *kring = 2102 NMR(priv->np_na, t)[i + priv->np_qfirst[t]]; 2103 struct nm_csb_atok *csb_atok = csb_atok_base + i; 2104 struct nm_csb_ktoa *csb_ktoa = csb_ktoa_base + i; 2105 2106 if (t == NR_RX) { 2107 csb_atok += num_rings[NR_TX]; 2108 csb_ktoa += num_rings[NR_TX]; 2109 } 2110 2111 CSB_WRITE(csb_atok, head, kring->rhead); 2112 CSB_WRITE(csb_atok, cur, kring->rcur); 2113 CSB_WRITE(csb_atok, appl_need_kick, 1); 2114 CSB_WRITE(csb_atok, sync_flags, 1); 2115 CSB_WRITE(csb_ktoa, hwcur, kring->nr_hwcur); 2116 CSB_WRITE(csb_ktoa, hwtail, kring->nr_hwtail); 2117 CSB_WRITE(csb_ktoa, kern_need_kick, 1); 2118 2119 nm_prinf("csb_init for kring %s: head %u, cur %u, " 2120 "hwcur %u, hwtail %u", kring->name, 2121 kring->rhead, kring->rcur, kring->nr_hwcur, 2122 kring->nr_hwtail); 2123 } 2124 } 2125 2126 return 0; 2127 } 2128 2129 /* Ensure that the netmap adapter can support the given MTU. 2130 * @return EINVAL if the na cannot be set to mtu, 0 otherwise. 2131 */ 2132 int 2133 netmap_buf_size_validate(const struct netmap_adapter *na, unsigned mtu) { 2134 unsigned nbs = NETMAP_BUF_SIZE(na); 2135 2136 if (mtu <= na->rx_buf_maxsize) { 2137 /* The MTU fits a single NIC slot. We only 2138 * Need to check that netmap buffers are 2139 * large enough to hold an MTU. NS_MOREFRAG 2140 * cannot be used in this case. */ 2141 if (nbs < mtu) { 2142 nm_prerr("error: netmap buf size (%u) " 2143 "< device MTU (%u)", nbs, mtu); 2144 return EINVAL; 2145 } 2146 } else { 2147 /* More NIC slots may be needed to receive 2148 * or transmit a single packet. Check that 2149 * the adapter supports NS_MOREFRAG and that 2150 * netmap buffers are large enough to hold 2151 * the maximum per-slot size. */ 2152 if (!(na->na_flags & NAF_MOREFRAG)) { 2153 nm_prerr("error: large MTU (%d) needed " 2154 "but %s does not support " 2155 "NS_MOREFRAG", mtu, 2156 na->ifp->if_xname); 2157 return EINVAL; 2158 } else if (nbs < na->rx_buf_maxsize) { 2159 nm_prerr("error: using NS_MOREFRAG on " 2160 "%s requires netmap buf size " 2161 ">= %u", na->ifp->if_xname, 2162 na->rx_buf_maxsize); 2163 return EINVAL; 2164 } else { 2165 nm_prinf("info: netmap application on " 2166 "%s needs to support " 2167 "NS_MOREFRAG " 2168 "(MTU=%u,netmap_buf_size=%u)", 2169 na->ifp->if_xname, mtu, nbs); 2170 } 2171 } 2172 return 0; 2173 } 2174 2175 2176 /* 2177 * possibly move the interface to netmap-mode. 2178 * If success it returns a pointer to netmap_if, otherwise NULL. 2179 * This must be called with NMG_LOCK held. 2180 * 2181 * The following na callbacks are called in the process: 2182 * 2183 * na->nm_config() [by netmap_update_config] 2184 * (get current number and size of rings) 2185 * 2186 * We have a generic one for linux (netmap_linux_config). 2187 * The bwrap has to override this, since it has to forward 2188 * the request to the wrapped adapter (netmap_bwrap_config). 2189 * 2190 * 2191 * na->nm_krings_create() 2192 * (create and init the krings array) 2193 * 2194 * One of the following: 2195 * 2196 * * netmap_hw_krings_create, (hw ports) 2197 * creates the standard layout for the krings 2198 * and adds the mbq (used for the host rings). 2199 * 2200 * * netmap_vp_krings_create (VALE ports) 2201 * add leases and scratchpads 2202 * 2203 * * netmap_pipe_krings_create (pipes) 2204 * create the krings and rings of both ends and 2205 * cross-link them 2206 * 2207 * * netmap_monitor_krings_create (monitors) 2208 * avoid allocating the mbq 2209 * 2210 * * netmap_bwrap_krings_create (bwraps) 2211 * create both the brap krings array, 2212 * the krings array of the wrapped adapter, and 2213 * (if needed) the fake array for the host adapter 2214 * 2215 * na->nm_register(, 1) 2216 * (put the adapter in netmap mode) 2217 * 2218 * This may be one of the following: 2219 * 2220 * * netmap_hw_reg (hw ports) 2221 * checks that the ifp is still there, then calls 2222 * the hardware specific callback; 2223 * 2224 * * netmap_vp_reg (VALE ports) 2225 * If the port is connected to a bridge, 2226 * set the NAF_NETMAP_ON flag under the 2227 * bridge write lock. 2228 * 2229 * * netmap_pipe_reg (pipes) 2230 * inform the other pipe end that it is no 2231 * longer responsible for the lifetime of this 2232 * pipe end 2233 * 2234 * * netmap_monitor_reg (monitors) 2235 * intercept the sync callbacks of the monitored 2236 * rings 2237 * 2238 * * netmap_bwrap_reg (bwraps) 2239 * cross-link the bwrap and hwna rings, 2240 * forward the request to the hwna, override 2241 * the hwna notify callback (to get the frames 2242 * coming from outside go through the bridge). 2243 * 2244 * 2245 */ 2246 int 2247 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 2248 uint32_t nr_mode, uint16_t nr_ringid, uint64_t nr_flags) 2249 { 2250 struct netmap_if *nifp = NULL; 2251 int error; 2252 2253 NMG_LOCK_ASSERT(); 2254 priv->np_na = na; /* store the reference */ 2255 error = netmap_mem_finalize(na->nm_mem, na); 2256 if (error) 2257 goto err; 2258 2259 if (na->active_fds == 0) { 2260 2261 /* cache the allocator info in the na */ 2262 error = netmap_mem_get_lut(na->nm_mem, &na->na_lut); 2263 if (error) 2264 goto err_drop_mem; 2265 ND("lut %p bufs %u size %u", na->na_lut.lut, na->na_lut.objtotal, 2266 na->na_lut.objsize); 2267 2268 /* ring configuration may have changed, fetch from the card */ 2269 netmap_update_config(na); 2270 } 2271 2272 /* compute the range of tx and rx rings to monitor */ 2273 error = netmap_set_ringid(priv, nr_mode, nr_ringid, nr_flags); 2274 if (error) 2275 goto err_put_lut; 2276 2277 if (na->active_fds == 0) { 2278 /* 2279 * If this is the first registration of the adapter, 2280 * perform sanity checks and create the in-kernel view 2281 * of the netmap rings (the netmap krings). 2282 */ 2283 if (na->ifp && nm_priv_rx_enabled(priv)) { 2284 /* This netmap adapter is attached to an ifnet. */ 2285 unsigned mtu = nm_os_ifnet_mtu(na->ifp); 2286 2287 ND("%s: mtu %d rx_buf_maxsize %d netmap_buf_size %d", 2288 na->name, mtu, na->rx_buf_maxsize, NETMAP_BUF_SIZE(na)); 2289 2290 if (na->rx_buf_maxsize == 0) { 2291 nm_prerr("%s: error: rx_buf_maxsize == 0", na->name); 2292 error = EIO; 2293 goto err_drop_mem; 2294 } 2295 2296 error = netmap_buf_size_validate(na, mtu); 2297 if (error) 2298 goto err_drop_mem; 2299 } 2300 2301 /* 2302 * Depending on the adapter, this may also create 2303 * the netmap rings themselves 2304 */ 2305 error = na->nm_krings_create(na); 2306 if (error) 2307 goto err_put_lut; 2308 2309 } 2310 2311 /* now the krings must exist and we can check whether some 2312 * previous bind has exclusive ownership on them, and set 2313 * nr_pending_mode 2314 */ 2315 error = netmap_krings_get(priv); 2316 if (error) 2317 goto err_del_krings; 2318 2319 /* create all needed missing netmap rings */ 2320 error = netmap_mem_rings_create(na); 2321 if (error) 2322 goto err_rel_excl; 2323 2324 /* in all cases, create a new netmap if */ 2325 nifp = netmap_mem_if_new(na, priv); 2326 if (nifp == NULL) { 2327 error = ENOMEM; 2328 goto err_rel_excl; 2329 } 2330 2331 if (nm_kring_pending(priv)) { 2332 /* Some kring is switching mode, tell the adapter to 2333 * react on this. */ 2334 error = na->nm_register(na, 1); 2335 if (error) 2336 goto err_del_if; 2337 } 2338 2339 /* Commit the reference. */ 2340 na->active_fds++; 2341 2342 /* 2343 * advertise that the interface is ready by setting np_nifp. 2344 * The barrier is needed because readers (poll, *SYNC and mmap) 2345 * check for priv->np_nifp != NULL without locking 2346 */ 2347 mb(); /* make sure previous writes are visible to all CPUs */ 2348 priv->np_nifp = nifp; 2349 2350 return 0; 2351 2352 err_del_if: 2353 netmap_mem_if_delete(na, nifp); 2354 err_rel_excl: 2355 netmap_krings_put(priv); 2356 netmap_mem_rings_delete(na); 2357 err_del_krings: 2358 if (na->active_fds == 0) 2359 na->nm_krings_delete(na); 2360 err_put_lut: 2361 if (na->active_fds == 0) 2362 memset(&na->na_lut, 0, sizeof(na->na_lut)); 2363 err_drop_mem: 2364 netmap_mem_drop(na); 2365 err: 2366 priv->np_na = NULL; 2367 return error; 2368 } 2369 2370 2371 /* 2372 * update kring and ring at the end of rxsync/txsync. 2373 */ 2374 static inline void 2375 nm_sync_finalize(struct netmap_kring *kring) 2376 { 2377 /* 2378 * Update ring tail to what the kernel knows 2379 * After txsync: head/rhead/hwcur might be behind cur/rcur 2380 * if no carrier. 2381 */ 2382 kring->ring->tail = kring->rtail = kring->nr_hwtail; 2383 2384 ND(5, "%s now hwcur %d hwtail %d head %d cur %d tail %d", 2385 kring->name, kring->nr_hwcur, kring->nr_hwtail, 2386 kring->rhead, kring->rcur, kring->rtail); 2387 } 2388 2389 /* set ring timestamp */ 2390 static inline void 2391 ring_timestamp_set(struct netmap_ring *ring) 2392 { 2393 if (netmap_no_timestamp == 0 || ring->flags & NR_TIMESTAMP) { 2394 microtime(&ring->ts); 2395 } 2396 } 2397 2398 static int nmreq_copyin(struct nmreq_header *, int); 2399 static int nmreq_copyout(struct nmreq_header *, int); 2400 static int nmreq_checkoptions(struct nmreq_header *); 2401 2402 /* 2403 * ioctl(2) support for the "netmap" device. 2404 * 2405 * Following a list of accepted commands: 2406 * - NIOCCTRL device control API 2407 * - NIOCTXSYNC sync TX rings 2408 * - NIOCRXSYNC sync RX rings 2409 * - SIOCGIFADDR just for convenience 2410 * - NIOCGINFO deprecated (legacy API) 2411 * - NIOCREGIF deprecated (legacy API) 2412 * 2413 * Return 0 on success, errno otherwise. 2414 */ 2415 int 2416 netmap_ioctl(struct netmap_priv_d *priv, u_long cmd, caddr_t data, 2417 struct thread *td, int nr_body_is_user) 2418 { 2419 struct mbq q; /* packets from RX hw queues to host stack */ 2420 struct netmap_adapter *na = NULL; 2421 struct netmap_mem_d *nmd = NULL; 2422 struct ifnet *ifp = NULL; 2423 int error = 0; 2424 u_int i, qfirst, qlast; 2425 struct netmap_kring **krings; 2426 int sync_flags; 2427 enum txrx t; 2428 2429 switch (cmd) { 2430 case NIOCCTRL: { 2431 struct nmreq_header *hdr = (struct nmreq_header *)data; 2432 2433 if (hdr->nr_version < NETMAP_MIN_API || 2434 hdr->nr_version > NETMAP_MAX_API) { 2435 nm_prerr("API mismatch: got %d need %d", 2436 hdr->nr_version, NETMAP_API); 2437 return EINVAL; 2438 } 2439 2440 /* Make a kernel-space copy of the user-space nr_body. 2441 * For convenince, the nr_body pointer and the pointers 2442 * in the options list will be replaced with their 2443 * kernel-space counterparts. The original pointers are 2444 * saved internally and later restored by nmreq_copyout 2445 */ 2446 error = nmreq_copyin(hdr, nr_body_is_user); 2447 if (error) { 2448 return error; 2449 } 2450 2451 /* Sanitize hdr->nr_name. */ 2452 hdr->nr_name[sizeof(hdr->nr_name) - 1] = '\0'; 2453 2454 switch (hdr->nr_reqtype) { 2455 case NETMAP_REQ_REGISTER: { 2456 struct nmreq_register *req = 2457 (struct nmreq_register *)(uintptr_t)hdr->nr_body; 2458 struct netmap_if *nifp; 2459 2460 /* Protect access to priv from concurrent requests. */ 2461 NMG_LOCK(); 2462 do { 2463 struct nmreq_option *opt; 2464 u_int memflags; 2465 2466 if (priv->np_nifp != NULL) { /* thread already registered */ 2467 error = EBUSY; 2468 break; 2469 } 2470 2471 #ifdef WITH_EXTMEM 2472 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2473 NETMAP_REQ_OPT_EXTMEM); 2474 if (opt != NULL) { 2475 struct nmreq_opt_extmem *e = 2476 (struct nmreq_opt_extmem *)opt; 2477 2478 error = nmreq_checkduplicate(opt); 2479 if (error) { 2480 opt->nro_status = error; 2481 break; 2482 } 2483 nmd = netmap_mem_ext_create(e->nro_usrptr, 2484 &e->nro_info, &error); 2485 opt->nro_status = error; 2486 if (nmd == NULL) 2487 break; 2488 } 2489 #endif /* WITH_EXTMEM */ 2490 2491 if (nmd == NULL && req->nr_mem_id) { 2492 /* find the allocator and get a reference */ 2493 nmd = netmap_mem_find(req->nr_mem_id); 2494 if (nmd == NULL) { 2495 if (netmap_verbose) { 2496 nm_prerr("%s: failed to find mem_id %u", 2497 hdr->nr_name, req->nr_mem_id); 2498 } 2499 error = EINVAL; 2500 break; 2501 } 2502 } 2503 /* find the interface and a reference */ 2504 error = netmap_get_na(hdr, &na, &ifp, nmd, 2505 1 /* create */); /* keep reference */ 2506 if (error) 2507 break; 2508 if (NETMAP_OWNED_BY_KERN(na)) { 2509 error = EBUSY; 2510 break; 2511 } 2512 2513 if (na->virt_hdr_len && !(req->nr_flags & NR_ACCEPT_VNET_HDR)) { 2514 nm_prerr("virt_hdr_len=%d, but application does " 2515 "not accept it", na->virt_hdr_len); 2516 error = EIO; 2517 break; 2518 } 2519 2520 error = netmap_do_regif(priv, na, req->nr_mode, 2521 req->nr_ringid, req->nr_flags); 2522 if (error) { /* reg. failed, release priv and ref */ 2523 break; 2524 } 2525 2526 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2527 NETMAP_REQ_OPT_CSB); 2528 if (opt != NULL) { 2529 struct nmreq_opt_csb *csbo = 2530 (struct nmreq_opt_csb *)opt; 2531 error = nmreq_checkduplicate(opt); 2532 if (!error) { 2533 error = netmap_csb_validate(priv, csbo); 2534 } 2535 opt->nro_status = error; 2536 if (error) { 2537 netmap_do_unregif(priv); 2538 break; 2539 } 2540 } 2541 2542 nifp = priv->np_nifp; 2543 2544 /* return the offset of the netmap_if object */ 2545 req->nr_rx_rings = na->num_rx_rings; 2546 req->nr_tx_rings = na->num_tx_rings; 2547 req->nr_rx_slots = na->num_rx_desc; 2548 req->nr_tx_slots = na->num_tx_desc; 2549 error = netmap_mem_get_info(na->nm_mem, &req->nr_memsize, &memflags, 2550 &req->nr_mem_id); 2551 if (error) { 2552 netmap_do_unregif(priv); 2553 break; 2554 } 2555 if (memflags & NETMAP_MEM_PRIVATE) { 2556 *(uint32_t *)(uintptr_t)&nifp->ni_flags |= NI_PRIV_MEM; 2557 } 2558 for_rx_tx(t) { 2559 priv->np_si[t] = nm_si_user(priv, t) ? 2560 &na->si[t] : &NMR(na, t)[priv->np_qfirst[t]]->si; 2561 } 2562 2563 if (req->nr_extra_bufs) { 2564 if (netmap_verbose) 2565 nm_prinf("requested %d extra buffers", 2566 req->nr_extra_bufs); 2567 req->nr_extra_bufs = netmap_extra_alloc(na, 2568 &nifp->ni_bufs_head, req->nr_extra_bufs); 2569 if (netmap_verbose) 2570 nm_prinf("got %d extra buffers", req->nr_extra_bufs); 2571 } 2572 req->nr_offset = netmap_mem_if_offset(na->nm_mem, nifp); 2573 2574 error = nmreq_checkoptions(hdr); 2575 if (error) { 2576 netmap_do_unregif(priv); 2577 break; 2578 } 2579 2580 /* store ifp reference so that priv destructor may release it */ 2581 priv->np_ifp = ifp; 2582 } while (0); 2583 if (error) { 2584 netmap_unget_na(na, ifp); 2585 } 2586 /* release the reference from netmap_mem_find() or 2587 * netmap_mem_ext_create() 2588 */ 2589 if (nmd) 2590 netmap_mem_put(nmd); 2591 NMG_UNLOCK(); 2592 break; 2593 } 2594 2595 case NETMAP_REQ_PORT_INFO_GET: { 2596 struct nmreq_port_info_get *req = 2597 (struct nmreq_port_info_get *)(uintptr_t)hdr->nr_body; 2598 2599 NMG_LOCK(); 2600 do { 2601 u_int memflags; 2602 2603 if (hdr->nr_name[0] != '\0') { 2604 /* Build a nmreq_register out of the nmreq_port_info_get, 2605 * so that we can call netmap_get_na(). */ 2606 struct nmreq_register regreq; 2607 bzero(®req, sizeof(regreq)); 2608 regreq.nr_mode = NR_REG_ALL_NIC; 2609 regreq.nr_tx_slots = req->nr_tx_slots; 2610 regreq.nr_rx_slots = req->nr_rx_slots; 2611 regreq.nr_tx_rings = req->nr_tx_rings; 2612 regreq.nr_rx_rings = req->nr_rx_rings; 2613 regreq.nr_mem_id = req->nr_mem_id; 2614 2615 /* get a refcount */ 2616 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2617 hdr->nr_body = (uintptr_t)®req; 2618 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2619 hdr->nr_reqtype = NETMAP_REQ_PORT_INFO_GET; /* reset type */ 2620 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2621 if (error) { 2622 na = NULL; 2623 ifp = NULL; 2624 break; 2625 } 2626 nmd = na->nm_mem; /* get memory allocator */ 2627 } else { 2628 nmd = netmap_mem_find(req->nr_mem_id ? req->nr_mem_id : 1); 2629 if (nmd == NULL) { 2630 if (netmap_verbose) 2631 nm_prerr("%s: failed to find mem_id %u", 2632 hdr->nr_name, 2633 req->nr_mem_id ? req->nr_mem_id : 1); 2634 error = EINVAL; 2635 break; 2636 } 2637 } 2638 2639 error = netmap_mem_get_info(nmd, &req->nr_memsize, &memflags, 2640 &req->nr_mem_id); 2641 if (error) 2642 break; 2643 if (na == NULL) /* only memory info */ 2644 break; 2645 netmap_update_config(na); 2646 req->nr_rx_rings = na->num_rx_rings; 2647 req->nr_tx_rings = na->num_tx_rings; 2648 req->nr_rx_slots = na->num_rx_desc; 2649 req->nr_tx_slots = na->num_tx_desc; 2650 } while (0); 2651 netmap_unget_na(na, ifp); 2652 NMG_UNLOCK(); 2653 break; 2654 } 2655 #ifdef WITH_VALE 2656 case NETMAP_REQ_VALE_ATTACH: { 2657 error = netmap_vale_attach(hdr, NULL /* userspace request */); 2658 break; 2659 } 2660 2661 case NETMAP_REQ_VALE_DETACH: { 2662 error = netmap_vale_detach(hdr, NULL /* userspace request */); 2663 break; 2664 } 2665 2666 case NETMAP_REQ_VALE_LIST: { 2667 error = netmap_vale_list(hdr); 2668 break; 2669 } 2670 2671 case NETMAP_REQ_PORT_HDR_SET: { 2672 struct nmreq_port_hdr *req = 2673 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2674 /* Build a nmreq_register out of the nmreq_port_hdr, 2675 * so that we can call netmap_get_bdg_na(). */ 2676 struct nmreq_register regreq; 2677 bzero(®req, sizeof(regreq)); 2678 regreq.nr_mode = NR_REG_ALL_NIC; 2679 2680 /* For now we only support virtio-net headers, and only for 2681 * VALE ports, but this may change in future. Valid lengths 2682 * for the virtio-net header are 0 (no header), 10 and 12. */ 2683 if (req->nr_hdr_len != 0 && 2684 req->nr_hdr_len != sizeof(struct nm_vnet_hdr) && 2685 req->nr_hdr_len != 12) { 2686 if (netmap_verbose) 2687 nm_prerr("invalid hdr_len %u", req->nr_hdr_len); 2688 error = EINVAL; 2689 break; 2690 } 2691 NMG_LOCK(); 2692 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2693 hdr->nr_body = (uintptr_t)®req; 2694 error = netmap_get_vale_na(hdr, &na, NULL, 0); 2695 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_SET; 2696 hdr->nr_body = (uintptr_t)req; 2697 if (na && !error) { 2698 struct netmap_vp_adapter *vpna = 2699 (struct netmap_vp_adapter *)na; 2700 na->virt_hdr_len = req->nr_hdr_len; 2701 if (na->virt_hdr_len) { 2702 vpna->mfs = NETMAP_BUF_SIZE(na); 2703 } 2704 if (netmap_verbose) 2705 nm_prinf("Using vnet_hdr_len %d for %p", na->virt_hdr_len, na); 2706 netmap_adapter_put(na); 2707 } else if (!na) { 2708 error = ENXIO; 2709 } 2710 NMG_UNLOCK(); 2711 break; 2712 } 2713 2714 case NETMAP_REQ_PORT_HDR_GET: { 2715 /* Get vnet-header length for this netmap port */ 2716 struct nmreq_port_hdr *req = 2717 (struct nmreq_port_hdr *)(uintptr_t)hdr->nr_body; 2718 /* Build a nmreq_register out of the nmreq_port_hdr, 2719 * so that we can call netmap_get_bdg_na(). */ 2720 struct nmreq_register regreq; 2721 struct ifnet *ifp; 2722 2723 bzero(®req, sizeof(regreq)); 2724 regreq.nr_mode = NR_REG_ALL_NIC; 2725 NMG_LOCK(); 2726 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2727 hdr->nr_body = (uintptr_t)®req; 2728 error = netmap_get_na(hdr, &na, &ifp, NULL, 0); 2729 hdr->nr_reqtype = NETMAP_REQ_PORT_HDR_GET; 2730 hdr->nr_body = (uintptr_t)req; 2731 if (na && !error) { 2732 req->nr_hdr_len = na->virt_hdr_len; 2733 } 2734 netmap_unget_na(na, ifp); 2735 NMG_UNLOCK(); 2736 break; 2737 } 2738 2739 case NETMAP_REQ_VALE_NEWIF: { 2740 error = nm_vi_create(hdr); 2741 break; 2742 } 2743 2744 case NETMAP_REQ_VALE_DELIF: { 2745 error = nm_vi_destroy(hdr->nr_name); 2746 break; 2747 } 2748 2749 case NETMAP_REQ_VALE_POLLING_ENABLE: 2750 case NETMAP_REQ_VALE_POLLING_DISABLE: { 2751 error = nm_bdg_polling(hdr); 2752 break; 2753 } 2754 #endif /* WITH_VALE */ 2755 case NETMAP_REQ_POOLS_INFO_GET: { 2756 /* Get information from the memory allocator used for 2757 * hdr->nr_name. */ 2758 struct nmreq_pools_info *req = 2759 (struct nmreq_pools_info *)(uintptr_t)hdr->nr_body; 2760 NMG_LOCK(); 2761 do { 2762 /* Build a nmreq_register out of the nmreq_pools_info, 2763 * so that we can call netmap_get_na(). */ 2764 struct nmreq_register regreq; 2765 bzero(®req, sizeof(regreq)); 2766 regreq.nr_mem_id = req->nr_mem_id; 2767 regreq.nr_mode = NR_REG_ALL_NIC; 2768 2769 hdr->nr_reqtype = NETMAP_REQ_REGISTER; 2770 hdr->nr_body = (uintptr_t)®req; 2771 error = netmap_get_na(hdr, &na, &ifp, NULL, 1 /* create */); 2772 hdr->nr_reqtype = NETMAP_REQ_POOLS_INFO_GET; /* reset type */ 2773 hdr->nr_body = (uintptr_t)req; /* reset nr_body */ 2774 if (error) { 2775 na = NULL; 2776 ifp = NULL; 2777 break; 2778 } 2779 nmd = na->nm_mem; /* grab the memory allocator */ 2780 if (nmd == NULL) { 2781 error = EINVAL; 2782 break; 2783 } 2784 2785 /* Finalize the memory allocator, get the pools 2786 * information and release the allocator. */ 2787 error = netmap_mem_finalize(nmd, na); 2788 if (error) { 2789 break; 2790 } 2791 error = netmap_mem_pools_info_get(req, nmd); 2792 netmap_mem_drop(na); 2793 } while (0); 2794 netmap_unget_na(na, ifp); 2795 NMG_UNLOCK(); 2796 break; 2797 } 2798 2799 case NETMAP_REQ_CSB_ENABLE: { 2800 struct nmreq_option *opt; 2801 2802 opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)hdr->nr_options, 2803 NETMAP_REQ_OPT_CSB); 2804 if (opt == NULL) { 2805 error = EINVAL; 2806 } else { 2807 struct nmreq_opt_csb *csbo = 2808 (struct nmreq_opt_csb *)opt; 2809 error = nmreq_checkduplicate(opt); 2810 if (!error) { 2811 NMG_LOCK(); 2812 error = netmap_csb_validate(priv, csbo); 2813 NMG_UNLOCK(); 2814 } 2815 opt->nro_status = error; 2816 } 2817 break; 2818 } 2819 2820 case NETMAP_REQ_SYNC_KLOOP_START: { 2821 error = netmap_sync_kloop(priv, hdr); 2822 break; 2823 } 2824 2825 case NETMAP_REQ_SYNC_KLOOP_STOP: { 2826 error = netmap_sync_kloop_stop(priv); 2827 break; 2828 } 2829 2830 default: { 2831 error = EINVAL; 2832 break; 2833 } 2834 } 2835 /* Write back request body to userspace and reset the 2836 * user-space pointer. */ 2837 error = nmreq_copyout(hdr, error); 2838 break; 2839 } 2840 2841 case NIOCTXSYNC: 2842 case NIOCRXSYNC: { 2843 if (unlikely(priv->np_nifp == NULL)) { 2844 error = ENXIO; 2845 break; 2846 } 2847 mb(); /* make sure following reads are not from cache */ 2848 2849 if (unlikely(priv->np_csb_atok_base)) { 2850 nm_prerr("Invalid sync in CSB mode"); 2851 error = EBUSY; 2852 break; 2853 } 2854 2855 na = priv->np_na; /* we have a reference */ 2856 2857 mbq_init(&q); 2858 t = (cmd == NIOCTXSYNC ? NR_TX : NR_RX); 2859 krings = NMR(na, t); 2860 qfirst = priv->np_qfirst[t]; 2861 qlast = priv->np_qlast[t]; 2862 sync_flags = priv->np_sync_flags; 2863 2864 for (i = qfirst; i < qlast; i++) { 2865 struct netmap_kring *kring = krings[i]; 2866 struct netmap_ring *ring = kring->ring; 2867 2868 if (unlikely(nm_kr_tryget(kring, 1, &error))) { 2869 error = (error ? EIO : 0); 2870 continue; 2871 } 2872 2873 if (cmd == NIOCTXSYNC) { 2874 if (netmap_debug & NM_DEBUG_TXSYNC) 2875 nm_prinf("pre txsync ring %d cur %d hwcur %d", 2876 i, ring->cur, 2877 kring->nr_hwcur); 2878 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2879 netmap_ring_reinit(kring); 2880 } else if (kring->nm_sync(kring, sync_flags | NAF_FORCE_RECLAIM) == 0) { 2881 nm_sync_finalize(kring); 2882 } 2883 if (netmap_debug & NM_DEBUG_TXSYNC) 2884 nm_prinf("post txsync ring %d cur %d hwcur %d", 2885 i, ring->cur, 2886 kring->nr_hwcur); 2887 } else { 2888 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 2889 netmap_ring_reinit(kring); 2890 } 2891 if (nm_may_forward_up(kring)) { 2892 /* transparent forwarding, see netmap_poll() */ 2893 netmap_grab_packets(kring, &q, netmap_fwd); 2894 } 2895 if (kring->nm_sync(kring, sync_flags | NAF_FORCE_READ) == 0) { 2896 nm_sync_finalize(kring); 2897 } 2898 ring_timestamp_set(ring); 2899 } 2900 nm_kr_put(kring); 2901 } 2902 2903 if (mbq_peek(&q)) { 2904 netmap_send_up(na->ifp, &q); 2905 } 2906 2907 break; 2908 } 2909 2910 default: { 2911 return netmap_ioctl_legacy(priv, cmd, data, td); 2912 break; 2913 } 2914 } 2915 2916 return (error); 2917 } 2918 2919 size_t 2920 nmreq_size_by_type(uint16_t nr_reqtype) 2921 { 2922 switch (nr_reqtype) { 2923 case NETMAP_REQ_REGISTER: 2924 return sizeof(struct nmreq_register); 2925 case NETMAP_REQ_PORT_INFO_GET: 2926 return sizeof(struct nmreq_port_info_get); 2927 case NETMAP_REQ_VALE_ATTACH: 2928 return sizeof(struct nmreq_vale_attach); 2929 case NETMAP_REQ_VALE_DETACH: 2930 return sizeof(struct nmreq_vale_detach); 2931 case NETMAP_REQ_VALE_LIST: 2932 return sizeof(struct nmreq_vale_list); 2933 case NETMAP_REQ_PORT_HDR_SET: 2934 case NETMAP_REQ_PORT_HDR_GET: 2935 return sizeof(struct nmreq_port_hdr); 2936 case NETMAP_REQ_VALE_NEWIF: 2937 return sizeof(struct nmreq_vale_newif); 2938 case NETMAP_REQ_VALE_DELIF: 2939 case NETMAP_REQ_SYNC_KLOOP_STOP: 2940 case NETMAP_REQ_CSB_ENABLE: 2941 return 0; 2942 case NETMAP_REQ_VALE_POLLING_ENABLE: 2943 case NETMAP_REQ_VALE_POLLING_DISABLE: 2944 return sizeof(struct nmreq_vale_polling); 2945 case NETMAP_REQ_POOLS_INFO_GET: 2946 return sizeof(struct nmreq_pools_info); 2947 case NETMAP_REQ_SYNC_KLOOP_START: 2948 return sizeof(struct nmreq_sync_kloop_start); 2949 } 2950 return 0; 2951 } 2952 2953 static size_t 2954 nmreq_opt_size_by_type(uint32_t nro_reqtype, uint64_t nro_size) 2955 { 2956 size_t rv = sizeof(struct nmreq_option); 2957 #ifdef NETMAP_REQ_OPT_DEBUG 2958 if (nro_reqtype & NETMAP_REQ_OPT_DEBUG) 2959 return (nro_reqtype & ~NETMAP_REQ_OPT_DEBUG); 2960 #endif /* NETMAP_REQ_OPT_DEBUG */ 2961 switch (nro_reqtype) { 2962 #ifdef WITH_EXTMEM 2963 case NETMAP_REQ_OPT_EXTMEM: 2964 rv = sizeof(struct nmreq_opt_extmem); 2965 break; 2966 #endif /* WITH_EXTMEM */ 2967 case NETMAP_REQ_OPT_SYNC_KLOOP_EVENTFDS: 2968 if (nro_size >= rv) 2969 rv = nro_size; 2970 break; 2971 case NETMAP_REQ_OPT_CSB: 2972 rv = sizeof(struct nmreq_opt_csb); 2973 break; 2974 } 2975 /* subtract the common header */ 2976 return rv - sizeof(struct nmreq_option); 2977 } 2978 2979 int 2980 nmreq_copyin(struct nmreq_header *hdr, int nr_body_is_user) 2981 { 2982 size_t rqsz, optsz, bufsz; 2983 int error; 2984 char *ker = NULL, *p; 2985 struct nmreq_option **next, *src; 2986 struct nmreq_option buf; 2987 uint64_t *ptrs; 2988 2989 if (hdr->nr_reserved) { 2990 if (netmap_verbose) 2991 nm_prerr("nr_reserved must be zero"); 2992 return EINVAL; 2993 } 2994 2995 if (!nr_body_is_user) 2996 return 0; 2997 2998 hdr->nr_reserved = nr_body_is_user; 2999 3000 /* compute the total size of the buffer */ 3001 rqsz = nmreq_size_by_type(hdr->nr_reqtype); 3002 if (rqsz > NETMAP_REQ_MAXSIZE) { 3003 error = EMSGSIZE; 3004 goto out_err; 3005 } 3006 if ((rqsz && hdr->nr_body == (uintptr_t)NULL) || 3007 (!rqsz && hdr->nr_body != (uintptr_t)NULL)) { 3008 /* Request body expected, but not found; or 3009 * request body found but unexpected. */ 3010 if (netmap_verbose) 3011 nm_prerr("nr_body expected but not found, or vice versa"); 3012 error = EINVAL; 3013 goto out_err; 3014 } 3015 3016 bufsz = 2 * sizeof(void *) + rqsz; 3017 optsz = 0; 3018 for (src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; src; 3019 src = (struct nmreq_option *)(uintptr_t)buf.nro_next) 3020 { 3021 error = copyin(src, &buf, sizeof(*src)); 3022 if (error) 3023 goto out_err; 3024 optsz += sizeof(*src); 3025 optsz += nmreq_opt_size_by_type(buf.nro_reqtype, buf.nro_size); 3026 if (rqsz + optsz > NETMAP_REQ_MAXSIZE) { 3027 error = EMSGSIZE; 3028 goto out_err; 3029 } 3030 bufsz += optsz + sizeof(void *); 3031 } 3032 3033 ker = nm_os_malloc(bufsz); 3034 if (ker == NULL) { 3035 error = ENOMEM; 3036 goto out_err; 3037 } 3038 p = ker; 3039 3040 /* make a copy of the user pointers */ 3041 ptrs = (uint64_t*)p; 3042 *ptrs++ = hdr->nr_body; 3043 *ptrs++ = hdr->nr_options; 3044 p = (char *)ptrs; 3045 3046 /* copy the body */ 3047 error = copyin((void *)(uintptr_t)hdr->nr_body, p, rqsz); 3048 if (error) 3049 goto out_restore; 3050 /* overwrite the user pointer with the in-kernel one */ 3051 hdr->nr_body = (uintptr_t)p; 3052 p += rqsz; 3053 3054 /* copy the options */ 3055 next = (struct nmreq_option **)&hdr->nr_options; 3056 src = *next; 3057 while (src) { 3058 struct nmreq_option *opt; 3059 3060 /* copy the option header */ 3061 ptrs = (uint64_t *)p; 3062 opt = (struct nmreq_option *)(ptrs + 1); 3063 error = copyin(src, opt, sizeof(*src)); 3064 if (error) 3065 goto out_restore; 3066 /* make a copy of the user next pointer */ 3067 *ptrs = opt->nro_next; 3068 /* overwrite the user pointer with the in-kernel one */ 3069 *next = opt; 3070 3071 /* initialize the option as not supported. 3072 * Recognized options will update this field. 3073 */ 3074 opt->nro_status = EOPNOTSUPP; 3075 3076 p = (char *)(opt + 1); 3077 3078 /* copy the option body */ 3079 optsz = nmreq_opt_size_by_type(opt->nro_reqtype, 3080 opt->nro_size); 3081 if (optsz) { 3082 /* the option body follows the option header */ 3083 error = copyin(src + 1, p, optsz); 3084 if (error) 3085 goto out_restore; 3086 p += optsz; 3087 } 3088 3089 /* move to next option */ 3090 next = (struct nmreq_option **)&opt->nro_next; 3091 src = *next; 3092 } 3093 return 0; 3094 3095 out_restore: 3096 ptrs = (uint64_t *)ker; 3097 hdr->nr_body = *ptrs++; 3098 hdr->nr_options = *ptrs++; 3099 hdr->nr_reserved = 0; 3100 nm_os_free(ker); 3101 out_err: 3102 return error; 3103 } 3104 3105 static int 3106 nmreq_copyout(struct nmreq_header *hdr, int rerror) 3107 { 3108 struct nmreq_option *src, *dst; 3109 void *ker = (void *)(uintptr_t)hdr->nr_body, *bufstart; 3110 uint64_t *ptrs; 3111 size_t bodysz; 3112 int error; 3113 3114 if (!hdr->nr_reserved) 3115 return rerror; 3116 3117 /* restore the user pointers in the header */ 3118 ptrs = (uint64_t *)ker - 2; 3119 bufstart = ptrs; 3120 hdr->nr_body = *ptrs++; 3121 src = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3122 hdr->nr_options = *ptrs; 3123 3124 if (!rerror) { 3125 /* copy the body */ 3126 bodysz = nmreq_size_by_type(hdr->nr_reqtype); 3127 error = copyout(ker, (void *)(uintptr_t)hdr->nr_body, bodysz); 3128 if (error) { 3129 rerror = error; 3130 goto out; 3131 } 3132 } 3133 3134 /* copy the options */ 3135 dst = (struct nmreq_option *)(uintptr_t)hdr->nr_options; 3136 while (src) { 3137 size_t optsz; 3138 uint64_t next; 3139 3140 /* restore the user pointer */ 3141 next = src->nro_next; 3142 ptrs = (uint64_t *)src - 1; 3143 src->nro_next = *ptrs; 3144 3145 /* always copy the option header */ 3146 error = copyout(src, dst, sizeof(*src)); 3147 if (error) { 3148 rerror = error; 3149 goto out; 3150 } 3151 3152 /* copy the option body only if there was no error */ 3153 if (!rerror && !src->nro_status) { 3154 optsz = nmreq_opt_size_by_type(src->nro_reqtype, 3155 src->nro_size); 3156 if (optsz) { 3157 error = copyout(src + 1, dst + 1, optsz); 3158 if (error) { 3159 rerror = error; 3160 goto out; 3161 } 3162 } 3163 } 3164 src = (struct nmreq_option *)(uintptr_t)next; 3165 dst = (struct nmreq_option *)(uintptr_t)*ptrs; 3166 } 3167 3168 3169 out: 3170 hdr->nr_reserved = 0; 3171 nm_os_free(bufstart); 3172 return rerror; 3173 } 3174 3175 struct nmreq_option * 3176 nmreq_findoption(struct nmreq_option *opt, uint16_t reqtype) 3177 { 3178 for ( ; opt; opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3179 if (opt->nro_reqtype == reqtype) 3180 return opt; 3181 return NULL; 3182 } 3183 3184 int 3185 nmreq_checkduplicate(struct nmreq_option *opt) { 3186 uint16_t type = opt->nro_reqtype; 3187 int dup = 0; 3188 3189 while ((opt = nmreq_findoption((struct nmreq_option *)(uintptr_t)opt->nro_next, 3190 type))) { 3191 dup++; 3192 opt->nro_status = EINVAL; 3193 } 3194 return (dup ? EINVAL : 0); 3195 } 3196 3197 static int 3198 nmreq_checkoptions(struct nmreq_header *hdr) 3199 { 3200 struct nmreq_option *opt; 3201 /* return error if there is still any option 3202 * marked as not supported 3203 */ 3204 3205 for (opt = (struct nmreq_option *)(uintptr_t)hdr->nr_options; opt; 3206 opt = (struct nmreq_option *)(uintptr_t)opt->nro_next) 3207 if (opt->nro_status == EOPNOTSUPP) 3208 return EOPNOTSUPP; 3209 3210 return 0; 3211 } 3212 3213 /* 3214 * select(2) and poll(2) handlers for the "netmap" device. 3215 * 3216 * Can be called for one or more queues. 3217 * Return true the event mask corresponding to ready events. 3218 * If there are no ready events (and 'sr' is not NULL), do a 3219 * selrecord on either individual selinfo or on the global one. 3220 * Device-dependent parts (locking and sync of tx/rx rings) 3221 * are done through callbacks. 3222 * 3223 * On linux, arguments are really pwait, the poll table, and 'td' is struct file * 3224 * The first one is remapped to pwait as selrecord() uses the name as an 3225 * hidden argument. 3226 */ 3227 int 3228 netmap_poll(struct netmap_priv_d *priv, int events, NM_SELRECORD_T *sr) 3229 { 3230 struct netmap_adapter *na; 3231 struct netmap_kring *kring; 3232 struct netmap_ring *ring; 3233 u_int i, want[NR_TXRX], revents = 0; 3234 NM_SELINFO_T *si[NR_TXRX]; 3235 #define want_tx want[NR_TX] 3236 #define want_rx want[NR_RX] 3237 struct mbq q; /* packets from RX hw queues to host stack */ 3238 3239 /* 3240 * In order to avoid nested locks, we need to "double check" 3241 * txsync and rxsync if we decide to do a selrecord(). 3242 * retry_tx (and retry_rx, later) prevent looping forever. 3243 */ 3244 int retry_tx = 1, retry_rx = 1; 3245 3246 /* Transparent mode: send_down is 1 if we have found some 3247 * packets to forward (host RX ring --> NIC) during the rx 3248 * scan and we have not sent them down to the NIC yet. 3249 * Transparent mode requires to bind all rings to a single 3250 * file descriptor. 3251 */ 3252 int send_down = 0; 3253 int sync_flags = priv->np_sync_flags; 3254 3255 mbq_init(&q); 3256 3257 if (unlikely(priv->np_nifp == NULL)) { 3258 return POLLERR; 3259 } 3260 mb(); /* make sure following reads are not from cache */ 3261 3262 na = priv->np_na; 3263 3264 if (unlikely(!nm_netmap_on(na))) 3265 return POLLERR; 3266 3267 if (unlikely(priv->np_csb_atok_base)) { 3268 nm_prerr("Invalid poll in CSB mode"); 3269 return POLLERR; 3270 } 3271 3272 if (netmap_debug & NM_DEBUG_ON) 3273 nm_prinf("device %s events 0x%x", na->name, events); 3274 want_tx = events & (POLLOUT | POLLWRNORM); 3275 want_rx = events & (POLLIN | POLLRDNORM); 3276 3277 /* 3278 * If the card has more than one queue AND the file descriptor is 3279 * bound to all of them, we sleep on the "global" selinfo, otherwise 3280 * we sleep on individual selinfo (FreeBSD only allows two selinfo's 3281 * per file descriptor). 3282 * The interrupt routine in the driver wake one or the other 3283 * (or both) depending on which clients are active. 3284 * 3285 * rxsync() is only called if we run out of buffers on a POLLIN. 3286 * txsync() is called if we run out of buffers on POLLOUT, or 3287 * there are pending packets to send. The latter can be disabled 3288 * passing NETMAP_NO_TX_POLL in the NIOCREG call. 3289 */ 3290 si[NR_RX] = nm_si_user(priv, NR_RX) ? &na->si[NR_RX] : 3291 &na->rx_rings[priv->np_qfirst[NR_RX]]->si; 3292 si[NR_TX] = nm_si_user(priv, NR_TX) ? &na->si[NR_TX] : 3293 &na->tx_rings[priv->np_qfirst[NR_TX]]->si; 3294 3295 #ifdef __FreeBSD__ 3296 /* 3297 * We start with a lock free round which is cheap if we have 3298 * slots available. If this fails, then lock and call the sync 3299 * routines. We can't do this on Linux, as the contract says 3300 * that we must call nm_os_selrecord() unconditionally. 3301 */ 3302 if (want_tx) { 3303 const enum txrx t = NR_TX; 3304 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3305 kring = NMR(na, t)[i]; 3306 if (kring->ring->cur != kring->ring->tail) { 3307 /* Some unseen TX space is available, so what 3308 * we don't need to run txsync. */ 3309 revents |= want[t]; 3310 want[t] = 0; 3311 break; 3312 } 3313 } 3314 } 3315 if (want_rx) { 3316 const enum txrx t = NR_RX; 3317 int rxsync_needed = 0; 3318 3319 for (i = priv->np_qfirst[t]; i < priv->np_qlast[t]; i++) { 3320 kring = NMR(na, t)[i]; 3321 if (kring->ring->cur == kring->ring->tail 3322 || kring->rhead != kring->ring->head) { 3323 /* There are no unseen packets on this ring, 3324 * or there are some buffers to be returned 3325 * to the netmap port. We therefore go ahead 3326 * and run rxsync. */ 3327 rxsync_needed = 1; 3328 break; 3329 } 3330 } 3331 if (!rxsync_needed) { 3332 revents |= want_rx; 3333 want_rx = 0; 3334 } 3335 } 3336 #endif 3337 3338 #ifdef linux 3339 /* The selrecord must be unconditional on linux. */ 3340 nm_os_selrecord(sr, si[NR_RX]); 3341 nm_os_selrecord(sr, si[NR_TX]); 3342 #endif /* linux */ 3343 3344 /* 3345 * If we want to push packets out (priv->np_txpoll) or 3346 * want_tx is still set, we must issue txsync calls 3347 * (on all rings, to avoid that the tx rings stall). 3348 * Fortunately, normal tx mode has np_txpoll set. 3349 */ 3350 if (priv->np_txpoll || want_tx) { 3351 /* 3352 * The first round checks if anyone is ready, if not 3353 * do a selrecord and another round to handle races. 3354 * want_tx goes to 0 if any space is found, and is 3355 * used to skip rings with no pending transmissions. 3356 */ 3357 flush_tx: 3358 for (i = priv->np_qfirst[NR_TX]; i < priv->np_qlast[NR_TX]; i++) { 3359 int found = 0; 3360 3361 kring = na->tx_rings[i]; 3362 ring = kring->ring; 3363 3364 /* 3365 * Don't try to txsync this TX ring if we already found some 3366 * space in some of the TX rings (want_tx == 0) and there are no 3367 * TX slots in this ring that need to be flushed to the NIC 3368 * (head == hwcur). 3369 */ 3370 if (!send_down && !want_tx && ring->head == kring->nr_hwcur) 3371 continue; 3372 3373 if (nm_kr_tryget(kring, 1, &revents)) 3374 continue; 3375 3376 if (nm_txsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3377 netmap_ring_reinit(kring); 3378 revents |= POLLERR; 3379 } else { 3380 if (kring->nm_sync(kring, sync_flags)) 3381 revents |= POLLERR; 3382 else 3383 nm_sync_finalize(kring); 3384 } 3385 3386 /* 3387 * If we found new slots, notify potential 3388 * listeners on the same ring. 3389 * Since we just did a txsync, look at the copies 3390 * of cur,tail in the kring. 3391 */ 3392 found = kring->rcur != kring->rtail; 3393 nm_kr_put(kring); 3394 if (found) { /* notify other listeners */ 3395 revents |= want_tx; 3396 want_tx = 0; 3397 #ifndef linux 3398 kring->nm_notify(kring, 0); 3399 #endif /* linux */ 3400 } 3401 } 3402 /* if there were any packet to forward we must have handled them by now */ 3403 send_down = 0; 3404 if (want_tx && retry_tx && sr) { 3405 #ifndef linux 3406 nm_os_selrecord(sr, si[NR_TX]); 3407 #endif /* !linux */ 3408 retry_tx = 0; 3409 goto flush_tx; 3410 } 3411 } 3412 3413 /* 3414 * If want_rx is still set scan receive rings. 3415 * Do it on all rings because otherwise we starve. 3416 */ 3417 if (want_rx) { 3418 /* two rounds here for race avoidance */ 3419 do_retry_rx: 3420 for (i = priv->np_qfirst[NR_RX]; i < priv->np_qlast[NR_RX]; i++) { 3421 int found = 0; 3422 3423 kring = na->rx_rings[i]; 3424 ring = kring->ring; 3425 3426 if (unlikely(nm_kr_tryget(kring, 1, &revents))) 3427 continue; 3428 3429 if (nm_rxsync_prologue(kring, ring) >= kring->nkr_num_slots) { 3430 netmap_ring_reinit(kring); 3431 revents |= POLLERR; 3432 } 3433 /* now we can use kring->rcur, rtail */ 3434 3435 /* 3436 * transparent mode support: collect packets from 3437 * hw rxring(s) that have been released by the user 3438 */ 3439 if (nm_may_forward_up(kring)) { 3440 netmap_grab_packets(kring, &q, netmap_fwd); 3441 } 3442 3443 /* Clear the NR_FORWARD flag anyway, it may be set by 3444 * the nm_sync() below only on for the host RX ring (see 3445 * netmap_rxsync_from_host()). */ 3446 kring->nr_kflags &= ~NR_FORWARD; 3447 if (kring->nm_sync(kring, sync_flags)) 3448 revents |= POLLERR; 3449 else 3450 nm_sync_finalize(kring); 3451 send_down |= (kring->nr_kflags & NR_FORWARD); 3452 ring_timestamp_set(ring); 3453 found = kring->rcur != kring->rtail; 3454 nm_kr_put(kring); 3455 if (found) { 3456 revents |= want_rx; 3457 retry_rx = 0; 3458 #ifndef linux 3459 kring->nm_notify(kring, 0); 3460 #endif /* linux */ 3461 } 3462 } 3463 3464 #ifndef linux 3465 if (retry_rx && sr) { 3466 nm_os_selrecord(sr, si[NR_RX]); 3467 } 3468 #endif /* !linux */ 3469 if (send_down || retry_rx) { 3470 retry_rx = 0; 3471 if (send_down) 3472 goto flush_tx; /* and retry_rx */ 3473 else 3474 goto do_retry_rx; 3475 } 3476 } 3477 3478 /* 3479 * Transparent mode: released bufs (i.e. between kring->nr_hwcur and 3480 * ring->head) marked with NS_FORWARD on hw rx rings are passed up 3481 * to the host stack. 3482 */ 3483 3484 if (mbq_peek(&q)) { 3485 netmap_send_up(na->ifp, &q); 3486 } 3487 3488 return (revents); 3489 #undef want_tx 3490 #undef want_rx 3491 } 3492 3493 int 3494 nma_intr_enable(struct netmap_adapter *na, int onoff) 3495 { 3496 bool changed = false; 3497 enum txrx t; 3498 int i; 3499 3500 for_rx_tx(t) { 3501 for (i = 0; i < nma_get_nrings(na, t); i++) { 3502 struct netmap_kring *kring = NMR(na, t)[i]; 3503 int on = !(kring->nr_kflags & NKR_NOINTR); 3504 3505 if (!!onoff != !!on) { 3506 changed = true; 3507 } 3508 if (onoff) { 3509 kring->nr_kflags &= ~NKR_NOINTR; 3510 } else { 3511 kring->nr_kflags |= NKR_NOINTR; 3512 } 3513 } 3514 } 3515 3516 if (!changed) { 3517 return 0; /* nothing to do */ 3518 } 3519 3520 if (!na->nm_intr) { 3521 nm_prerr("Cannot %s interrupts for %s", onoff ? "enable" : "disable", 3522 na->name); 3523 return -1; 3524 } 3525 3526 na->nm_intr(na, onoff); 3527 3528 return 0; 3529 } 3530 3531 3532 /*-------------------- driver support routines -------------------*/ 3533 3534 /* default notify callback */ 3535 static int 3536 netmap_notify(struct netmap_kring *kring, int flags) 3537 { 3538 struct netmap_adapter *na = kring->notify_na; 3539 enum txrx t = kring->tx; 3540 3541 nm_os_selwakeup(&kring->si); 3542 /* optimization: avoid a wake up on the global 3543 * queue if nobody has registered for more 3544 * than one ring 3545 */ 3546 if (na->si_users[t] > 0) 3547 nm_os_selwakeup(&na->si[t]); 3548 3549 return NM_IRQ_COMPLETED; 3550 } 3551 3552 /* called by all routines that create netmap_adapters. 3553 * provide some defaults and get a reference to the 3554 * memory allocator 3555 */ 3556 int 3557 netmap_attach_common(struct netmap_adapter *na) 3558 { 3559 if (!na->rx_buf_maxsize) { 3560 /* Set a conservative default (larger is safer). */ 3561 na->rx_buf_maxsize = PAGE_SIZE; 3562 } 3563 3564 #ifdef __FreeBSD__ 3565 if (na->na_flags & NAF_HOST_RINGS && na->ifp) { 3566 na->if_input = na->ifp->if_input; /* for netmap_send_up */ 3567 } 3568 na->pdev = na; /* make sure netmap_mem_map() is called */ 3569 #endif /* __FreeBSD__ */ 3570 if (na->na_flags & NAF_HOST_RINGS) { 3571 if (na->num_host_rx_rings == 0) 3572 na->num_host_rx_rings = 1; 3573 if (na->num_host_tx_rings == 0) 3574 na->num_host_tx_rings = 1; 3575 } 3576 if (na->nm_krings_create == NULL) { 3577 /* we assume that we have been called by a driver, 3578 * since other port types all provide their own 3579 * nm_krings_create 3580 */ 3581 na->nm_krings_create = netmap_hw_krings_create; 3582 na->nm_krings_delete = netmap_hw_krings_delete; 3583 } 3584 if (na->nm_notify == NULL) 3585 na->nm_notify = netmap_notify; 3586 na->active_fds = 0; 3587 3588 if (na->nm_mem == NULL) { 3589 /* use the global allocator */ 3590 na->nm_mem = netmap_mem_get(&nm_mem); 3591 } 3592 #ifdef WITH_VALE 3593 if (na->nm_bdg_attach == NULL) 3594 /* no special nm_bdg_attach callback. On VALE 3595 * attach, we need to interpose a bwrap 3596 */ 3597 na->nm_bdg_attach = netmap_default_bdg_attach; 3598 #endif 3599 3600 return 0; 3601 } 3602 3603 /* Wrapper for the register callback provided netmap-enabled 3604 * hardware drivers. 3605 * nm_iszombie(na) means that the driver module has been 3606 * unloaded, so we cannot call into it. 3607 * nm_os_ifnet_lock() must guarantee mutual exclusion with 3608 * module unloading. 3609 */ 3610 static int 3611 netmap_hw_reg(struct netmap_adapter *na, int onoff) 3612 { 3613 struct netmap_hw_adapter *hwna = 3614 (struct netmap_hw_adapter*)na; 3615 int error = 0; 3616 3617 nm_os_ifnet_lock(); 3618 3619 if (nm_iszombie(na)) { 3620 if (onoff) { 3621 error = ENXIO; 3622 } else if (na != NULL) { 3623 na->na_flags &= ~NAF_NETMAP_ON; 3624 } 3625 goto out; 3626 } 3627 3628 error = hwna->nm_hw_register(na, onoff); 3629 3630 out: 3631 nm_os_ifnet_unlock(); 3632 3633 return error; 3634 } 3635 3636 static void 3637 netmap_hw_dtor(struct netmap_adapter *na) 3638 { 3639 if (na->ifp == NULL) 3640 return; 3641 3642 NM_DETACH_NA(na->ifp); 3643 } 3644 3645 3646 /* 3647 * Allocate a netmap_adapter object, and initialize it from the 3648 * 'arg' passed by the driver on attach. 3649 * We allocate a block of memory of 'size' bytes, which has room 3650 * for struct netmap_adapter plus additional room private to 3651 * the caller. 3652 * Return 0 on success, ENOMEM otherwise. 3653 */ 3654 int 3655 netmap_attach_ext(struct netmap_adapter *arg, size_t size, int override_reg) 3656 { 3657 struct netmap_hw_adapter *hwna = NULL; 3658 struct ifnet *ifp = NULL; 3659 3660 if (size < sizeof(struct netmap_hw_adapter)) { 3661 if (netmap_debug & NM_DEBUG_ON) 3662 nm_prerr("Invalid netmap adapter size %d", (int)size); 3663 return EINVAL; 3664 } 3665 3666 if (arg == NULL || arg->ifp == NULL) { 3667 if (netmap_debug & NM_DEBUG_ON) 3668 nm_prerr("either arg or arg->ifp is NULL"); 3669 return EINVAL; 3670 } 3671 3672 if (arg->num_tx_rings == 0 || arg->num_rx_rings == 0) { 3673 if (netmap_debug & NM_DEBUG_ON) 3674 nm_prerr("%s: invalid rings tx %d rx %d", 3675 arg->name, arg->num_tx_rings, arg->num_rx_rings); 3676 return EINVAL; 3677 } 3678 3679 ifp = arg->ifp; 3680 if (NM_NA_CLASH(ifp)) { 3681 /* If NA(ifp) is not null but there is no valid netmap 3682 * adapter it means that someone else is using the same 3683 * pointer (e.g. ax25_ptr on linux). This happens for 3684 * instance when also PF_RING is in use. */ 3685 nm_prerr("Error: netmap adapter hook is busy"); 3686 return EBUSY; 3687 } 3688 3689 hwna = nm_os_malloc(size); 3690 if (hwna == NULL) 3691 goto fail; 3692 hwna->up = *arg; 3693 hwna->up.na_flags |= NAF_HOST_RINGS | NAF_NATIVE; 3694 strlcpy(hwna->up.name, ifp->if_xname, sizeof(hwna->up.name)); 3695 if (override_reg) { 3696 hwna->nm_hw_register = hwna->up.nm_register; 3697 hwna->up.nm_register = netmap_hw_reg; 3698 } 3699 if (netmap_attach_common(&hwna->up)) { 3700 nm_os_free(hwna); 3701 goto fail; 3702 } 3703 netmap_adapter_get(&hwna->up); 3704 3705 NM_ATTACH_NA(ifp, &hwna->up); 3706 3707 nm_os_onattach(ifp); 3708 3709 if (arg->nm_dtor == NULL) { 3710 hwna->up.nm_dtor = netmap_hw_dtor; 3711 } 3712 3713 if_printf(ifp, "netmap queues/slots: TX %d/%d, RX %d/%d\n", 3714 hwna->up.num_tx_rings, hwna->up.num_tx_desc, 3715 hwna->up.num_rx_rings, hwna->up.num_rx_desc); 3716 return 0; 3717 3718 fail: 3719 nm_prerr("fail, arg %p ifp %p na %p", arg, ifp, hwna); 3720 return (hwna ? EINVAL : ENOMEM); 3721 } 3722 3723 3724 int 3725 netmap_attach(struct netmap_adapter *arg) 3726 { 3727 return netmap_attach_ext(arg, sizeof(struct netmap_hw_adapter), 3728 1 /* override nm_reg */); 3729 } 3730 3731 3732 void 3733 NM_DBG(netmap_adapter_get)(struct netmap_adapter *na) 3734 { 3735 if (!na) { 3736 return; 3737 } 3738 3739 refcount_acquire(&na->na_refcount); 3740 } 3741 3742 3743 /* returns 1 iff the netmap_adapter is destroyed */ 3744 int 3745 NM_DBG(netmap_adapter_put)(struct netmap_adapter *na) 3746 { 3747 if (!na) 3748 return 1; 3749 3750 if (!refcount_release(&na->na_refcount)) 3751 return 0; 3752 3753 if (na->nm_dtor) 3754 na->nm_dtor(na); 3755 3756 if (na->tx_rings) { /* XXX should not happen */ 3757 if (netmap_debug & NM_DEBUG_ON) 3758 nm_prerr("freeing leftover tx_rings"); 3759 na->nm_krings_delete(na); 3760 } 3761 netmap_pipe_dealloc(na); 3762 if (na->nm_mem) 3763 netmap_mem_put(na->nm_mem); 3764 bzero(na, sizeof(*na)); 3765 nm_os_free(na); 3766 3767 return 1; 3768 } 3769 3770 /* nm_krings_create callback for all hardware native adapters */ 3771 int 3772 netmap_hw_krings_create(struct netmap_adapter *na) 3773 { 3774 int ret = netmap_krings_create(na, 0); 3775 if (ret == 0) { 3776 /* initialize the mbq for the sw rx ring */ 3777 u_int lim = netmap_real_rings(na, NR_RX), i; 3778 for (i = na->num_rx_rings; i < lim; i++) { 3779 mbq_safe_init(&NMR(na, NR_RX)[i]->rx_queue); 3780 } 3781 ND("initialized sw rx queue %d", na->num_rx_rings); 3782 } 3783 return ret; 3784 } 3785 3786 3787 3788 /* 3789 * Called on module unload by the netmap-enabled drivers 3790 */ 3791 void 3792 netmap_detach(struct ifnet *ifp) 3793 { 3794 struct netmap_adapter *na = NA(ifp); 3795 3796 if (!na) 3797 return; 3798 3799 NMG_LOCK(); 3800 netmap_set_all_rings(na, NM_KR_LOCKED); 3801 /* 3802 * if the netmap adapter is not native, somebody 3803 * changed it, so we can not release it here. 3804 * The NAF_ZOMBIE flag will notify the new owner that 3805 * the driver is gone. 3806 */ 3807 if (!(na->na_flags & NAF_NATIVE) || !netmap_adapter_put(na)) { 3808 na->na_flags |= NAF_ZOMBIE; 3809 } 3810 /* give active users a chance to notice that NAF_ZOMBIE has been 3811 * turned on, so that they can stop and return an error to userspace. 3812 * Note that this becomes a NOP if there are no active users and, 3813 * therefore, the put() above has deleted the na, since now NA(ifp) is 3814 * NULL. 3815 */ 3816 netmap_enable_all_rings(ifp); 3817 NMG_UNLOCK(); 3818 } 3819 3820 3821 /* 3822 * Intercept packets from the network stack and pass them 3823 * to netmap as incoming packets on the 'software' ring. 3824 * 3825 * We only store packets in a bounded mbq and then copy them 3826 * in the relevant rxsync routine. 3827 * 3828 * We rely on the OS to make sure that the ifp and na do not go 3829 * away (typically the caller checks for IFF_DRV_RUNNING or the like). 3830 * In nm_register() or whenever there is a reinitialization, 3831 * we make sure to make the mode change visible here. 3832 */ 3833 int 3834 netmap_transmit(struct ifnet *ifp, struct mbuf *m) 3835 { 3836 struct netmap_adapter *na = NA(ifp); 3837 struct netmap_kring *kring, *tx_kring; 3838 u_int len = MBUF_LEN(m); 3839 u_int error = ENOBUFS; 3840 unsigned int txr; 3841 struct mbq *q; 3842 int busy; 3843 u_int i; 3844 3845 i = MBUF_TXQ(m); 3846 if (i >= na->num_host_rx_rings) { 3847 i = i % na->num_host_rx_rings; 3848 } 3849 kring = NMR(na, NR_RX)[nma_get_nrings(na, NR_RX) + i]; 3850 3851 // XXX [Linux] we do not need this lock 3852 // if we follow the down/configure/up protocol -gl 3853 // mtx_lock(&na->core_lock); 3854 3855 if (!nm_netmap_on(na)) { 3856 nm_prerr("%s not in netmap mode anymore", na->name); 3857 error = ENXIO; 3858 goto done; 3859 } 3860 3861 txr = MBUF_TXQ(m); 3862 if (txr >= na->num_tx_rings) { 3863 txr %= na->num_tx_rings; 3864 } 3865 tx_kring = NMR(na, NR_TX)[txr]; 3866 3867 if (tx_kring->nr_mode == NKR_NETMAP_OFF) { 3868 return MBUF_TRANSMIT(na, ifp, m); 3869 } 3870 3871 q = &kring->rx_queue; 3872 3873 // XXX reconsider long packets if we handle fragments 3874 if (len > NETMAP_BUF_SIZE(na)) { /* too long for us */ 3875 nm_prerr("%s from_host, drop packet size %d > %d", na->name, 3876 len, NETMAP_BUF_SIZE(na)); 3877 goto done; 3878 } 3879 3880 if (!netmap_generic_hwcsum) { 3881 if (nm_os_mbuf_has_csum_offld(m)) { 3882 RD(1, "%s drop mbuf that needs checksum offload", na->name); 3883 goto done; 3884 } 3885 } 3886 3887 if (nm_os_mbuf_has_seg_offld(m)) { 3888 RD(1, "%s drop mbuf that needs generic segmentation offload", na->name); 3889 goto done; 3890 } 3891 3892 #ifdef __FreeBSD__ 3893 ETHER_BPF_MTAP(ifp, m); 3894 #endif /* __FreeBSD__ */ 3895 3896 /* protect against netmap_rxsync_from_host(), netmap_sw_to_nic() 3897 * and maybe other instances of netmap_transmit (the latter 3898 * not possible on Linux). 3899 * We enqueue the mbuf only if we are sure there is going to be 3900 * enough room in the host RX ring, otherwise we drop it. 3901 */ 3902 mbq_lock(q); 3903 3904 busy = kring->nr_hwtail - kring->nr_hwcur; 3905 if (busy < 0) 3906 busy += kring->nkr_num_slots; 3907 if (busy + mbq_len(q) >= kring->nkr_num_slots - 1) { 3908 RD(2, "%s full hwcur %d hwtail %d qlen %d", na->name, 3909 kring->nr_hwcur, kring->nr_hwtail, mbq_len(q)); 3910 } else { 3911 mbq_enqueue(q, m); 3912 ND(2, "%s %d bufs in queue", na->name, mbq_len(q)); 3913 /* notify outside the lock */ 3914 m = NULL; 3915 error = 0; 3916 } 3917 mbq_unlock(q); 3918 3919 done: 3920 if (m) 3921 m_freem(m); 3922 /* unconditionally wake up listeners */ 3923 kring->nm_notify(kring, 0); 3924 /* this is normally netmap_notify(), but for nics 3925 * connected to a bridge it is netmap_bwrap_intr_notify(), 3926 * that possibly forwards the frames through the switch 3927 */ 3928 3929 return (error); 3930 } 3931 3932 3933 /* 3934 * netmap_reset() is called by the driver routines when reinitializing 3935 * a ring. The driver is in charge of locking to protect the kring. 3936 * If native netmap mode is not set just return NULL. 3937 * If native netmap mode is set, in particular, we have to set nr_mode to 3938 * NKR_NETMAP_ON. 3939 */ 3940 struct netmap_slot * 3941 netmap_reset(struct netmap_adapter *na, enum txrx tx, u_int n, 3942 u_int new_cur) 3943 { 3944 struct netmap_kring *kring; 3945 int new_hwofs, lim; 3946 3947 if (!nm_native_on(na)) { 3948 ND("interface not in native netmap mode"); 3949 return NULL; /* nothing to reinitialize */ 3950 } 3951 3952 /* XXX note- in the new scheme, we are not guaranteed to be 3953 * under lock (e.g. when called on a device reset). 3954 * In this case, we should set a flag and do not trust too 3955 * much the values. In practice: TODO 3956 * - set a RESET flag somewhere in the kring 3957 * - do the processing in a conservative way 3958 * - let the *sync() fixup at the end. 3959 */ 3960 if (tx == NR_TX) { 3961 if (n >= na->num_tx_rings) 3962 return NULL; 3963 3964 kring = na->tx_rings[n]; 3965 3966 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3967 kring->nr_mode = NKR_NETMAP_OFF; 3968 return NULL; 3969 } 3970 3971 // XXX check whether we should use hwcur or rcur 3972 new_hwofs = kring->nr_hwcur - new_cur; 3973 } else { 3974 if (n >= na->num_rx_rings) 3975 return NULL; 3976 kring = na->rx_rings[n]; 3977 3978 if (kring->nr_pending_mode == NKR_NETMAP_OFF) { 3979 kring->nr_mode = NKR_NETMAP_OFF; 3980 return NULL; 3981 } 3982 3983 new_hwofs = kring->nr_hwtail - new_cur; 3984 } 3985 lim = kring->nkr_num_slots - 1; 3986 if (new_hwofs > lim) 3987 new_hwofs -= lim + 1; 3988 3989 /* Always set the new offset value and realign the ring. */ 3990 if (netmap_debug & NM_DEBUG_ON) 3991 nm_prinf("%s %s%d hwofs %d -> %d, hwtail %d -> %d", 3992 na->name, 3993 tx == NR_TX ? "TX" : "RX", n, 3994 kring->nkr_hwofs, new_hwofs, 3995 kring->nr_hwtail, 3996 tx == NR_TX ? lim : kring->nr_hwtail); 3997 kring->nkr_hwofs = new_hwofs; 3998 if (tx == NR_TX) { 3999 kring->nr_hwtail = kring->nr_hwcur + lim; 4000 if (kring->nr_hwtail > lim) 4001 kring->nr_hwtail -= lim + 1; 4002 } 4003 4004 /* 4005 * Wakeup on the individual and global selwait 4006 * We do the wakeup here, but the ring is not yet reconfigured. 4007 * However, we are under lock so there are no races. 4008 */ 4009 kring->nr_mode = NKR_NETMAP_ON; 4010 kring->nm_notify(kring, 0); 4011 return kring->ring->slot; 4012 } 4013 4014 4015 /* 4016 * Dispatch rx/tx interrupts to the netmap rings. 4017 * 4018 * "work_done" is non-null on the RX path, NULL for the TX path. 4019 * We rely on the OS to make sure that there is only one active 4020 * instance per queue, and that there is appropriate locking. 4021 * 4022 * The 'notify' routine depends on what the ring is attached to. 4023 * - for a netmap file descriptor, do a selwakeup on the individual 4024 * waitqueue, plus one on the global one if needed 4025 * (see netmap_notify) 4026 * - for a nic connected to a switch, call the proper forwarding routine 4027 * (see netmap_bwrap_intr_notify) 4028 */ 4029 int 4030 netmap_common_irq(struct netmap_adapter *na, u_int q, u_int *work_done) 4031 { 4032 struct netmap_kring *kring; 4033 enum txrx t = (work_done ? NR_RX : NR_TX); 4034 4035 q &= NETMAP_RING_MASK; 4036 4037 if (netmap_debug & (NM_DEBUG_RXINTR|NM_DEBUG_TXINTR)) { 4038 nm_prlim(5, "received %s queue %d", work_done ? "RX" : "TX" , q); 4039 } 4040 4041 if (q >= nma_get_nrings(na, t)) 4042 return NM_IRQ_PASS; // not a physical queue 4043 4044 kring = NMR(na, t)[q]; 4045 4046 if (kring->nr_mode == NKR_NETMAP_OFF) { 4047 return NM_IRQ_PASS; 4048 } 4049 4050 if (t == NR_RX) { 4051 kring->nr_kflags |= NKR_PENDINTR; // XXX atomic ? 4052 *work_done = 1; /* do not fire napi again */ 4053 } 4054 4055 return kring->nm_notify(kring, 0); 4056 } 4057 4058 4059 /* 4060 * Default functions to handle rx/tx interrupts from a physical device. 4061 * "work_done" is non-null on the RX path, NULL for the TX path. 4062 * 4063 * If the card is not in netmap mode, simply return NM_IRQ_PASS, 4064 * so that the caller proceeds with regular processing. 4065 * Otherwise call netmap_common_irq(). 4066 * 4067 * If the card is connected to a netmap file descriptor, 4068 * do a selwakeup on the individual queue, plus one on the global one 4069 * if needed (multiqueue card _and_ there are multiqueue listeners), 4070 * and return NR_IRQ_COMPLETED. 4071 * 4072 * Finally, if called on rx from an interface connected to a switch, 4073 * calls the proper forwarding routine. 4074 */ 4075 int 4076 netmap_rx_irq(struct ifnet *ifp, u_int q, u_int *work_done) 4077 { 4078 struct netmap_adapter *na = NA(ifp); 4079 4080 /* 4081 * XXX emulated netmap mode sets NAF_SKIP_INTR so 4082 * we still use the regular driver even though the previous 4083 * check fails. It is unclear whether we should use 4084 * nm_native_on() here. 4085 */ 4086 if (!nm_netmap_on(na)) 4087 return NM_IRQ_PASS; 4088 4089 if (na->na_flags & NAF_SKIP_INTR) { 4090 ND("use regular interrupt"); 4091 return NM_IRQ_PASS; 4092 } 4093 4094 return netmap_common_irq(na, q, work_done); 4095 } 4096 4097 /* set/clear native flags and if_transmit/netdev_ops */ 4098 void 4099 nm_set_native_flags(struct netmap_adapter *na) 4100 { 4101 struct ifnet *ifp = na->ifp; 4102 4103 /* We do the setup for intercepting packets only if we are the 4104 * first user of this adapapter. */ 4105 if (na->active_fds > 0) { 4106 return; 4107 } 4108 4109 na->na_flags |= NAF_NETMAP_ON; 4110 nm_os_onenter(ifp); 4111 nm_update_hostrings_mode(na); 4112 } 4113 4114 void 4115 nm_clear_native_flags(struct netmap_adapter *na) 4116 { 4117 struct ifnet *ifp = na->ifp; 4118 4119 /* We undo the setup for intercepting packets only if we are the 4120 * last user of this adapter. */ 4121 if (na->active_fds > 0) { 4122 return; 4123 } 4124 4125 nm_update_hostrings_mode(na); 4126 nm_os_onexit(ifp); 4127 4128 na->na_flags &= ~NAF_NETMAP_ON; 4129 } 4130 4131 /* 4132 * Module loader and unloader 4133 * 4134 * netmap_init() creates the /dev/netmap device and initializes 4135 * all global variables. Returns 0 on success, errno on failure 4136 * (but there is no chance) 4137 * 4138 * netmap_fini() destroys everything. 4139 */ 4140 4141 static struct cdev *netmap_dev; /* /dev/netmap character device. */ 4142 extern struct cdevsw netmap_cdevsw; 4143 4144 4145 void 4146 netmap_fini(void) 4147 { 4148 if (netmap_dev) 4149 destroy_dev(netmap_dev); 4150 /* we assume that there are no longer netmap users */ 4151 nm_os_ifnet_fini(); 4152 netmap_uninit_bridges(); 4153 netmap_mem_fini(); 4154 NMG_LOCK_DESTROY(); 4155 nm_prinf("netmap: unloaded module."); 4156 } 4157 4158 4159 int 4160 netmap_init(void) 4161 { 4162 int error; 4163 4164 NMG_LOCK_INIT(); 4165 4166 error = netmap_mem_init(); 4167 if (error != 0) 4168 goto fail; 4169 /* 4170 * MAKEDEV_ETERNAL_KLD avoids an expensive check on syscalls 4171 * when the module is compiled in. 4172 * XXX could use make_dev_credv() to get error number 4173 */ 4174 netmap_dev = make_dev_credf(MAKEDEV_ETERNAL_KLD, 4175 &netmap_cdevsw, 0, NULL, UID_ROOT, GID_WHEEL, 0600, 4176 "netmap"); 4177 if (!netmap_dev) 4178 goto fail; 4179 4180 error = netmap_init_bridges(); 4181 if (error) 4182 goto fail; 4183 4184 #ifdef __FreeBSD__ 4185 nm_os_vi_init_index(); 4186 #endif 4187 4188 error = nm_os_ifnet_init(); 4189 if (error) 4190 goto fail; 4191 4192 nm_prinf("netmap: loaded module"); 4193 return (0); 4194 fail: 4195 netmap_fini(); 4196 return (EINVAL); /* may be incorrect */ 4197 } 4198