10b57cec5SDimitry Andric //===- MachinePipeliner.cpp - Machine Software Pipeliner Pass -------------===//
20b57cec5SDimitry Andric //
30b57cec5SDimitry Andric // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
40b57cec5SDimitry Andric // See https://llvm.org/LICENSE.txt for license information.
50b57cec5SDimitry Andric // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
60b57cec5SDimitry Andric //
70b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
80b57cec5SDimitry Andric //
90b57cec5SDimitry Andric // An implementation of the Swing Modulo Scheduling (SMS) software pipeliner.
100b57cec5SDimitry Andric //
110b57cec5SDimitry Andric // This SMS implementation is a target-independent back-end pass. When enabled,
120b57cec5SDimitry Andric // the pass runs just prior to the register allocation pass, while the machine
130b57cec5SDimitry Andric // IR is in SSA form. If software pipelining is successful, then the original
140b57cec5SDimitry Andric // loop is replaced by the optimized loop. The optimized loop contains one or
150b57cec5SDimitry Andric // more prolog blocks, the pipelined kernel, and one or more epilog blocks. If
160b57cec5SDimitry Andric // the instructions cannot be scheduled in a given MII, we increase the MII by
170b57cec5SDimitry Andric // one and try again.
180b57cec5SDimitry Andric //
190b57cec5SDimitry Andric // The SMS implementation is an extension of the ScheduleDAGInstrs class. We
200b57cec5SDimitry Andric // represent loop carried dependences in the DAG as order edges to the Phi
210b57cec5SDimitry Andric // nodes. We also perform several passes over the DAG to eliminate unnecessary
220b57cec5SDimitry Andric // edges that inhibit the ability to pipeline. The implementation uses the
230b57cec5SDimitry Andric // DFAPacketizer class to compute the minimum initiation interval and the check
240b57cec5SDimitry Andric // where an instruction may be inserted in the pipelined schedule.
250b57cec5SDimitry Andric //
260b57cec5SDimitry Andric // In order for the SMS pass to work, several target specific hooks need to be
270b57cec5SDimitry Andric // implemented to get information about the loop structure and to rewrite
280b57cec5SDimitry Andric // instructions.
290b57cec5SDimitry Andric //
300b57cec5SDimitry Andric //===----------------------------------------------------------------------===//
310b57cec5SDimitry Andric 
320b57cec5SDimitry Andric #include "llvm/ADT/ArrayRef.h"
330b57cec5SDimitry Andric #include "llvm/ADT/BitVector.h"
340b57cec5SDimitry Andric #include "llvm/ADT/DenseMap.h"
350b57cec5SDimitry Andric #include "llvm/ADT/MapVector.h"
360b57cec5SDimitry Andric #include "llvm/ADT/PriorityQueue.h"
37*5f7ddb14SDimitry Andric #include "llvm/ADT/SetOperations.h"
380b57cec5SDimitry Andric #include "llvm/ADT/SetVector.h"
390b57cec5SDimitry Andric #include "llvm/ADT/SmallPtrSet.h"
400b57cec5SDimitry Andric #include "llvm/ADT/SmallSet.h"
410b57cec5SDimitry Andric #include "llvm/ADT/SmallVector.h"
420b57cec5SDimitry Andric #include "llvm/ADT/Statistic.h"
430b57cec5SDimitry Andric #include "llvm/ADT/iterator_range.h"
440b57cec5SDimitry Andric #include "llvm/Analysis/AliasAnalysis.h"
450b57cec5SDimitry Andric #include "llvm/Analysis/MemoryLocation.h"
460b57cec5SDimitry Andric #include "llvm/Analysis/ValueTracking.h"
470b57cec5SDimitry Andric #include "llvm/CodeGen/DFAPacketizer.h"
480b57cec5SDimitry Andric #include "llvm/CodeGen/LiveIntervals.h"
490b57cec5SDimitry Andric #include "llvm/CodeGen/MachineBasicBlock.h"
500b57cec5SDimitry Andric #include "llvm/CodeGen/MachineDominators.h"
510b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunction.h"
520b57cec5SDimitry Andric #include "llvm/CodeGen/MachineFunctionPass.h"
530b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstr.h"
540b57cec5SDimitry Andric #include "llvm/CodeGen/MachineInstrBuilder.h"
550b57cec5SDimitry Andric #include "llvm/CodeGen/MachineLoopInfo.h"
560b57cec5SDimitry Andric #include "llvm/CodeGen/MachineMemOperand.h"
570b57cec5SDimitry Andric #include "llvm/CodeGen/MachineOperand.h"
580b57cec5SDimitry Andric #include "llvm/CodeGen/MachinePipeliner.h"
590b57cec5SDimitry Andric #include "llvm/CodeGen/MachineRegisterInfo.h"
608bcb0991SDimitry Andric #include "llvm/CodeGen/ModuloSchedule.h"
610b57cec5SDimitry Andric #include "llvm/CodeGen/RegisterPressure.h"
620b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAG.h"
630b57cec5SDimitry Andric #include "llvm/CodeGen/ScheduleDAGMutation.h"
640b57cec5SDimitry Andric #include "llvm/CodeGen/TargetOpcodes.h"
650b57cec5SDimitry Andric #include "llvm/CodeGen/TargetRegisterInfo.h"
660b57cec5SDimitry Andric #include "llvm/CodeGen/TargetSubtargetInfo.h"
670b57cec5SDimitry Andric #include "llvm/Config/llvm-config.h"
680b57cec5SDimitry Andric #include "llvm/IR/Attributes.h"
690b57cec5SDimitry Andric #include "llvm/IR/DebugLoc.h"
700b57cec5SDimitry Andric #include "llvm/IR/Function.h"
710b57cec5SDimitry Andric #include "llvm/MC/LaneBitmask.h"
720b57cec5SDimitry Andric #include "llvm/MC/MCInstrDesc.h"
730b57cec5SDimitry Andric #include "llvm/MC/MCInstrItineraries.h"
740b57cec5SDimitry Andric #include "llvm/MC/MCRegisterInfo.h"
750b57cec5SDimitry Andric #include "llvm/Pass.h"
760b57cec5SDimitry Andric #include "llvm/Support/CommandLine.h"
770b57cec5SDimitry Andric #include "llvm/Support/Compiler.h"
780b57cec5SDimitry Andric #include "llvm/Support/Debug.h"
790b57cec5SDimitry Andric #include "llvm/Support/MathExtras.h"
800b57cec5SDimitry Andric #include "llvm/Support/raw_ostream.h"
810b57cec5SDimitry Andric #include <algorithm>
820b57cec5SDimitry Andric #include <cassert>
830b57cec5SDimitry Andric #include <climits>
840b57cec5SDimitry Andric #include <cstdint>
850b57cec5SDimitry Andric #include <deque>
860b57cec5SDimitry Andric #include <functional>
870b57cec5SDimitry Andric #include <iterator>
880b57cec5SDimitry Andric #include <map>
890b57cec5SDimitry Andric #include <memory>
900b57cec5SDimitry Andric #include <tuple>
910b57cec5SDimitry Andric #include <utility>
920b57cec5SDimitry Andric #include <vector>
930b57cec5SDimitry Andric 
940b57cec5SDimitry Andric using namespace llvm;
950b57cec5SDimitry Andric 
960b57cec5SDimitry Andric #define DEBUG_TYPE "pipeliner"
970b57cec5SDimitry Andric 
980b57cec5SDimitry Andric STATISTIC(NumTrytoPipeline, "Number of loops that we attempt to pipeline");
990b57cec5SDimitry Andric STATISTIC(NumPipelined, "Number of loops software pipelined");
1000b57cec5SDimitry Andric STATISTIC(NumNodeOrderIssues, "Number of node order issues found");
1010b57cec5SDimitry Andric STATISTIC(NumFailBranch, "Pipeliner abort due to unknown branch");
1020b57cec5SDimitry Andric STATISTIC(NumFailLoop, "Pipeliner abort due to unsupported loop");
1030b57cec5SDimitry Andric STATISTIC(NumFailPreheader, "Pipeliner abort due to missing preheader");
1040b57cec5SDimitry Andric STATISTIC(NumFailLargeMaxMII, "Pipeliner abort due to MaxMII too large");
1050b57cec5SDimitry Andric STATISTIC(NumFailZeroMII, "Pipeliner abort due to zero MII");
1060b57cec5SDimitry Andric STATISTIC(NumFailNoSchedule, "Pipeliner abort due to no schedule found");
1070b57cec5SDimitry Andric STATISTIC(NumFailZeroStage, "Pipeliner abort due to zero stage");
1080b57cec5SDimitry Andric STATISTIC(NumFailLargeMaxStage, "Pipeliner abort due to too many stages");
1090b57cec5SDimitry Andric 
1100b57cec5SDimitry Andric /// A command line option to turn software pipelining on or off.
1110b57cec5SDimitry Andric static cl::opt<bool> EnableSWP("enable-pipeliner", cl::Hidden, cl::init(true),
1120b57cec5SDimitry Andric                                cl::ZeroOrMore,
1130b57cec5SDimitry Andric                                cl::desc("Enable Software Pipelining"));
1140b57cec5SDimitry Andric 
1150b57cec5SDimitry Andric /// A command line option to enable SWP at -Os.
1160b57cec5SDimitry Andric static cl::opt<bool> EnableSWPOptSize("enable-pipeliner-opt-size",
1170b57cec5SDimitry Andric                                       cl::desc("Enable SWP at Os."), cl::Hidden,
1180b57cec5SDimitry Andric                                       cl::init(false));
1190b57cec5SDimitry Andric 
1200b57cec5SDimitry Andric /// A command line argument to limit minimum initial interval for pipelining.
1210b57cec5SDimitry Andric static cl::opt<int> SwpMaxMii("pipeliner-max-mii",
1220b57cec5SDimitry Andric                               cl::desc("Size limit for the MII."),
1230b57cec5SDimitry Andric                               cl::Hidden, cl::init(27));
1240b57cec5SDimitry Andric 
1250b57cec5SDimitry Andric /// A command line argument to limit the number of stages in the pipeline.
1260b57cec5SDimitry Andric static cl::opt<int>
1270b57cec5SDimitry Andric     SwpMaxStages("pipeliner-max-stages",
1280b57cec5SDimitry Andric                  cl::desc("Maximum stages allowed in the generated scheduled."),
1290b57cec5SDimitry Andric                  cl::Hidden, cl::init(3));
1300b57cec5SDimitry Andric 
1310b57cec5SDimitry Andric /// A command line option to disable the pruning of chain dependences due to
1320b57cec5SDimitry Andric /// an unrelated Phi.
1330b57cec5SDimitry Andric static cl::opt<bool>
1340b57cec5SDimitry Andric     SwpPruneDeps("pipeliner-prune-deps",
1350b57cec5SDimitry Andric                  cl::desc("Prune dependences between unrelated Phi nodes."),
1360b57cec5SDimitry Andric                  cl::Hidden, cl::init(true));
1370b57cec5SDimitry Andric 
1380b57cec5SDimitry Andric /// A command line option to disable the pruning of loop carried order
1390b57cec5SDimitry Andric /// dependences.
1400b57cec5SDimitry Andric static cl::opt<bool>
1410b57cec5SDimitry Andric     SwpPruneLoopCarried("pipeliner-prune-loop-carried",
1420b57cec5SDimitry Andric                         cl::desc("Prune loop carried order dependences."),
1430b57cec5SDimitry Andric                         cl::Hidden, cl::init(true));
1440b57cec5SDimitry Andric 
1450b57cec5SDimitry Andric #ifndef NDEBUG
1460b57cec5SDimitry Andric static cl::opt<int> SwpLoopLimit("pipeliner-max", cl::Hidden, cl::init(-1));
1470b57cec5SDimitry Andric #endif
1480b57cec5SDimitry Andric 
1490b57cec5SDimitry Andric static cl::opt<bool> SwpIgnoreRecMII("pipeliner-ignore-recmii",
1500b57cec5SDimitry Andric                                      cl::ReallyHidden, cl::init(false),
1510b57cec5SDimitry Andric                                      cl::ZeroOrMore, cl::desc("Ignore RecMII"));
1520b57cec5SDimitry Andric 
1530b57cec5SDimitry Andric static cl::opt<bool> SwpShowResMask("pipeliner-show-mask", cl::Hidden,
1540b57cec5SDimitry Andric                                     cl::init(false));
1550b57cec5SDimitry Andric static cl::opt<bool> SwpDebugResource("pipeliner-dbg-res", cl::Hidden,
1560b57cec5SDimitry Andric                                       cl::init(false));
1570b57cec5SDimitry Andric 
1588bcb0991SDimitry Andric static cl::opt<bool> EmitTestAnnotations(
1598bcb0991SDimitry Andric     "pipeliner-annotate-for-testing", cl::Hidden, cl::init(false),
1608bcb0991SDimitry Andric     cl::desc("Instead of emitting the pipelined code, annotate instructions "
1618bcb0991SDimitry Andric              "with the generated schedule for feeding into the "
1628bcb0991SDimitry Andric              "-modulo-schedule-test pass"));
1638bcb0991SDimitry Andric 
1648bcb0991SDimitry Andric static cl::opt<bool> ExperimentalCodeGen(
1658bcb0991SDimitry Andric     "pipeliner-experimental-cg", cl::Hidden, cl::init(false),
1668bcb0991SDimitry Andric     cl::desc(
1678bcb0991SDimitry Andric         "Use the experimental peeling code generator for software pipelining"));
1688bcb0991SDimitry Andric 
1690b57cec5SDimitry Andric namespace llvm {
1700b57cec5SDimitry Andric 
1710b57cec5SDimitry Andric // A command line option to enable the CopyToPhi DAG mutation.
1720b57cec5SDimitry Andric cl::opt<bool>
1730b57cec5SDimitry Andric     SwpEnableCopyToPhi("pipeliner-enable-copytophi", cl::ReallyHidden,
1740b57cec5SDimitry Andric                        cl::init(true), cl::ZeroOrMore,
1750b57cec5SDimitry Andric                        cl::desc("Enable CopyToPhi DAG Mutation"));
1760b57cec5SDimitry Andric 
1770b57cec5SDimitry Andric } // end namespace llvm
1780b57cec5SDimitry Andric 
1790b57cec5SDimitry Andric unsigned SwingSchedulerDAG::Circuits::MaxPaths = 5;
1800b57cec5SDimitry Andric char MachinePipeliner::ID = 0;
1810b57cec5SDimitry Andric #ifndef NDEBUG
1820b57cec5SDimitry Andric int MachinePipeliner::NumTries = 0;
1830b57cec5SDimitry Andric #endif
1840b57cec5SDimitry Andric char &llvm::MachinePipelinerID = MachinePipeliner::ID;
1850b57cec5SDimitry Andric 
1860b57cec5SDimitry Andric INITIALIZE_PASS_BEGIN(MachinePipeliner, DEBUG_TYPE,
1870b57cec5SDimitry Andric                       "Modulo Software Pipelining", false, false)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)1880b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
1890b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
1900b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
1910b57cec5SDimitry Andric INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
1920b57cec5SDimitry Andric INITIALIZE_PASS_END(MachinePipeliner, DEBUG_TYPE,
1930b57cec5SDimitry Andric                     "Modulo Software Pipelining", false, false)
1940b57cec5SDimitry Andric 
1950b57cec5SDimitry Andric /// The "main" function for implementing Swing Modulo Scheduling.
1960b57cec5SDimitry Andric bool MachinePipeliner::runOnMachineFunction(MachineFunction &mf) {
1970b57cec5SDimitry Andric   if (skipFunction(mf.getFunction()))
1980b57cec5SDimitry Andric     return false;
1990b57cec5SDimitry Andric 
2000b57cec5SDimitry Andric   if (!EnableSWP)
2010b57cec5SDimitry Andric     return false;
2020b57cec5SDimitry Andric 
2030b57cec5SDimitry Andric   if (mf.getFunction().getAttributes().hasAttribute(
2040b57cec5SDimitry Andric           AttributeList::FunctionIndex, Attribute::OptimizeForSize) &&
2050b57cec5SDimitry Andric       !EnableSWPOptSize.getPosition())
2060b57cec5SDimitry Andric     return false;
2070b57cec5SDimitry Andric 
2080b57cec5SDimitry Andric   if (!mf.getSubtarget().enableMachinePipeliner())
2090b57cec5SDimitry Andric     return false;
2100b57cec5SDimitry Andric 
2110b57cec5SDimitry Andric   // Cannot pipeline loops without instruction itineraries if we are using
2120b57cec5SDimitry Andric   // DFA for the pipeliner.
2130b57cec5SDimitry Andric   if (mf.getSubtarget().useDFAforSMS() &&
2140b57cec5SDimitry Andric       (!mf.getSubtarget().getInstrItineraryData() ||
2150b57cec5SDimitry Andric        mf.getSubtarget().getInstrItineraryData()->isEmpty()))
2160b57cec5SDimitry Andric     return false;
2170b57cec5SDimitry Andric 
2180b57cec5SDimitry Andric   MF = &mf;
2190b57cec5SDimitry Andric   MLI = &getAnalysis<MachineLoopInfo>();
2200b57cec5SDimitry Andric   MDT = &getAnalysis<MachineDominatorTree>();
2215ffd83dbSDimitry Andric   ORE = &getAnalysis<MachineOptimizationRemarkEmitterPass>().getORE();
2220b57cec5SDimitry Andric   TII = MF->getSubtarget().getInstrInfo();
2230b57cec5SDimitry Andric   RegClassInfo.runOnMachineFunction(*MF);
2240b57cec5SDimitry Andric 
2250b57cec5SDimitry Andric   for (auto &L : *MLI)
2260b57cec5SDimitry Andric     scheduleLoop(*L);
2270b57cec5SDimitry Andric 
2280b57cec5SDimitry Andric   return false;
2290b57cec5SDimitry Andric }
2300b57cec5SDimitry Andric 
2310b57cec5SDimitry Andric /// Attempt to perform the SMS algorithm on the specified loop. This function is
2320b57cec5SDimitry Andric /// the main entry point for the algorithm.  The function identifies candidate
2330b57cec5SDimitry Andric /// loops, calculates the minimum initiation interval, and attempts to schedule
2340b57cec5SDimitry Andric /// the loop.
scheduleLoop(MachineLoop & L)2350b57cec5SDimitry Andric bool MachinePipeliner::scheduleLoop(MachineLoop &L) {
2360b57cec5SDimitry Andric   bool Changed = false;
2370b57cec5SDimitry Andric   for (auto &InnerLoop : L)
2380b57cec5SDimitry Andric     Changed |= scheduleLoop(*InnerLoop);
2390b57cec5SDimitry Andric 
2400b57cec5SDimitry Andric #ifndef NDEBUG
2410b57cec5SDimitry Andric   // Stop trying after reaching the limit (if any).
2420b57cec5SDimitry Andric   int Limit = SwpLoopLimit;
2430b57cec5SDimitry Andric   if (Limit >= 0) {
2440b57cec5SDimitry Andric     if (NumTries >= SwpLoopLimit)
2450b57cec5SDimitry Andric       return Changed;
2460b57cec5SDimitry Andric     NumTries++;
2470b57cec5SDimitry Andric   }
2480b57cec5SDimitry Andric #endif
2490b57cec5SDimitry Andric 
2500b57cec5SDimitry Andric   setPragmaPipelineOptions(L);
2510b57cec5SDimitry Andric   if (!canPipelineLoop(L)) {
2520b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "\n!!! Can not pipeline loop.\n");
2535ffd83dbSDimitry Andric     ORE->emit([&]() {
2545ffd83dbSDimitry Andric       return MachineOptimizationRemarkMissed(DEBUG_TYPE, "canPipelineLoop",
2555ffd83dbSDimitry Andric                                              L.getStartLoc(), L.getHeader())
2565ffd83dbSDimitry Andric              << "Failed to pipeline loop";
2575ffd83dbSDimitry Andric     });
2585ffd83dbSDimitry Andric 
2590b57cec5SDimitry Andric     return Changed;
2600b57cec5SDimitry Andric   }
2610b57cec5SDimitry Andric 
2620b57cec5SDimitry Andric   ++NumTrytoPipeline;
2630b57cec5SDimitry Andric 
2640b57cec5SDimitry Andric   Changed = swingModuloScheduler(L);
2650b57cec5SDimitry Andric 
2660b57cec5SDimitry Andric   return Changed;
2670b57cec5SDimitry Andric }
2680b57cec5SDimitry Andric 
setPragmaPipelineOptions(MachineLoop & L)2690b57cec5SDimitry Andric void MachinePipeliner::setPragmaPipelineOptions(MachineLoop &L) {
2705ffd83dbSDimitry Andric   // Reset the pragma for the next loop in iteration.
2715ffd83dbSDimitry Andric   disabledByPragma = false;
272af732203SDimitry Andric   II_setByPragma = 0;
2735ffd83dbSDimitry Andric 
2740b57cec5SDimitry Andric   MachineBasicBlock *LBLK = L.getTopBlock();
2750b57cec5SDimitry Andric 
2760b57cec5SDimitry Andric   if (LBLK == nullptr)
2770b57cec5SDimitry Andric     return;
2780b57cec5SDimitry Andric 
2790b57cec5SDimitry Andric   const BasicBlock *BBLK = LBLK->getBasicBlock();
2800b57cec5SDimitry Andric   if (BBLK == nullptr)
2810b57cec5SDimitry Andric     return;
2820b57cec5SDimitry Andric 
2830b57cec5SDimitry Andric   const Instruction *TI = BBLK->getTerminator();
2840b57cec5SDimitry Andric   if (TI == nullptr)
2850b57cec5SDimitry Andric     return;
2860b57cec5SDimitry Andric 
2870b57cec5SDimitry Andric   MDNode *LoopID = TI->getMetadata(LLVMContext::MD_loop);
2880b57cec5SDimitry Andric   if (LoopID == nullptr)
2890b57cec5SDimitry Andric     return;
2900b57cec5SDimitry Andric 
2910b57cec5SDimitry Andric   assert(LoopID->getNumOperands() > 0 && "requires atleast one operand");
2920b57cec5SDimitry Andric   assert(LoopID->getOperand(0) == LoopID && "invalid loop");
2930b57cec5SDimitry Andric 
2940b57cec5SDimitry Andric   for (unsigned i = 1, e = LoopID->getNumOperands(); i < e; ++i) {
2950b57cec5SDimitry Andric     MDNode *MD = dyn_cast<MDNode>(LoopID->getOperand(i));
2960b57cec5SDimitry Andric 
2970b57cec5SDimitry Andric     if (MD == nullptr)
2980b57cec5SDimitry Andric       continue;
2990b57cec5SDimitry Andric 
3000b57cec5SDimitry Andric     MDString *S = dyn_cast<MDString>(MD->getOperand(0));
3010b57cec5SDimitry Andric 
3020b57cec5SDimitry Andric     if (S == nullptr)
3030b57cec5SDimitry Andric       continue;
3040b57cec5SDimitry Andric 
3050b57cec5SDimitry Andric     if (S->getString() == "llvm.loop.pipeline.initiationinterval") {
3060b57cec5SDimitry Andric       assert(MD->getNumOperands() == 2 &&
3070b57cec5SDimitry Andric              "Pipeline initiation interval hint metadata should have two operands.");
3080b57cec5SDimitry Andric       II_setByPragma =
3090b57cec5SDimitry Andric           mdconst::extract<ConstantInt>(MD->getOperand(1))->getZExtValue();
3100b57cec5SDimitry Andric       assert(II_setByPragma >= 1 && "Pipeline initiation interval must be positive.");
3110b57cec5SDimitry Andric     } else if (S->getString() == "llvm.loop.pipeline.disable") {
3120b57cec5SDimitry Andric       disabledByPragma = true;
3130b57cec5SDimitry Andric     }
3140b57cec5SDimitry Andric   }
3150b57cec5SDimitry Andric }
3160b57cec5SDimitry Andric 
3170b57cec5SDimitry Andric /// Return true if the loop can be software pipelined.  The algorithm is
3180b57cec5SDimitry Andric /// restricted to loops with a single basic block.  Make sure that the
3190b57cec5SDimitry Andric /// branch in the loop can be analyzed.
canPipelineLoop(MachineLoop & L)3200b57cec5SDimitry Andric bool MachinePipeliner::canPipelineLoop(MachineLoop &L) {
3215ffd83dbSDimitry Andric   if (L.getNumBlocks() != 1) {
3225ffd83dbSDimitry Andric     ORE->emit([&]() {
3235ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
3245ffd83dbSDimitry Andric                                                L.getStartLoc(), L.getHeader())
3255ffd83dbSDimitry Andric              << "Not a single basic block: "
3265ffd83dbSDimitry Andric              << ore::NV("NumBlocks", L.getNumBlocks());
3275ffd83dbSDimitry Andric     });
3280b57cec5SDimitry Andric     return false;
3295ffd83dbSDimitry Andric   }
3300b57cec5SDimitry Andric 
3315ffd83dbSDimitry Andric   if (disabledByPragma) {
3325ffd83dbSDimitry Andric     ORE->emit([&]() {
3335ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
3345ffd83dbSDimitry Andric                                                L.getStartLoc(), L.getHeader())
3355ffd83dbSDimitry Andric              << "Disabled by Pragma.";
3365ffd83dbSDimitry Andric     });
3370b57cec5SDimitry Andric     return false;
3385ffd83dbSDimitry Andric   }
3390b57cec5SDimitry Andric 
3400b57cec5SDimitry Andric   // Check if the branch can't be understood because we can't do pipelining
3410b57cec5SDimitry Andric   // if that's the case.
3420b57cec5SDimitry Andric   LI.TBB = nullptr;
3430b57cec5SDimitry Andric   LI.FBB = nullptr;
3440b57cec5SDimitry Andric   LI.BrCond.clear();
3450b57cec5SDimitry Andric   if (TII->analyzeBranch(*L.getHeader(), LI.TBB, LI.FBB, LI.BrCond)) {
3465ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Unable to analyzeBranch, can NOT pipeline Loop\n");
3470b57cec5SDimitry Andric     NumFailBranch++;
3485ffd83dbSDimitry Andric     ORE->emit([&]() {
3495ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
3505ffd83dbSDimitry Andric                                                L.getStartLoc(), L.getHeader())
3515ffd83dbSDimitry Andric              << "The branch can't be understood";
3525ffd83dbSDimitry Andric     });
3530b57cec5SDimitry Andric     return false;
3540b57cec5SDimitry Andric   }
3550b57cec5SDimitry Andric 
3560b57cec5SDimitry Andric   LI.LoopInductionVar = nullptr;
3570b57cec5SDimitry Andric   LI.LoopCompare = nullptr;
3588bcb0991SDimitry Andric   if (!TII->analyzeLoopForPipelining(L.getTopBlock())) {
3595ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Unable to analyzeLoop, can NOT pipeline Loop\n");
3600b57cec5SDimitry Andric     NumFailLoop++;
3615ffd83dbSDimitry Andric     ORE->emit([&]() {
3625ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
3635ffd83dbSDimitry Andric                                                L.getStartLoc(), L.getHeader())
3645ffd83dbSDimitry Andric              << "The loop structure is not supported";
3655ffd83dbSDimitry Andric     });
3660b57cec5SDimitry Andric     return false;
3670b57cec5SDimitry Andric   }
3680b57cec5SDimitry Andric 
3690b57cec5SDimitry Andric   if (!L.getLoopPreheader()) {
3705ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Preheader not found, can NOT pipeline Loop\n");
3710b57cec5SDimitry Andric     NumFailPreheader++;
3725ffd83dbSDimitry Andric     ORE->emit([&]() {
3735ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(DEBUG_TYPE, "canPipelineLoop",
3745ffd83dbSDimitry Andric                                                L.getStartLoc(), L.getHeader())
3755ffd83dbSDimitry Andric              << "No loop preheader found";
3765ffd83dbSDimitry Andric     });
3770b57cec5SDimitry Andric     return false;
3780b57cec5SDimitry Andric   }
3790b57cec5SDimitry Andric 
3800b57cec5SDimitry Andric   // Remove any subregisters from inputs to phi nodes.
3810b57cec5SDimitry Andric   preprocessPhiNodes(*L.getHeader());
3820b57cec5SDimitry Andric   return true;
3830b57cec5SDimitry Andric }
3840b57cec5SDimitry Andric 
preprocessPhiNodes(MachineBasicBlock & B)3850b57cec5SDimitry Andric void MachinePipeliner::preprocessPhiNodes(MachineBasicBlock &B) {
3860b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF->getRegInfo();
3870b57cec5SDimitry Andric   SlotIndexes &Slots = *getAnalysis<LiveIntervals>().getSlotIndexes();
3880b57cec5SDimitry Andric 
3890b57cec5SDimitry Andric   for (MachineInstr &PI : make_range(B.begin(), B.getFirstNonPHI())) {
3900b57cec5SDimitry Andric     MachineOperand &DefOp = PI.getOperand(0);
3910b57cec5SDimitry Andric     assert(DefOp.getSubReg() == 0);
3920b57cec5SDimitry Andric     auto *RC = MRI.getRegClass(DefOp.getReg());
3930b57cec5SDimitry Andric 
3940b57cec5SDimitry Andric     for (unsigned i = 1, n = PI.getNumOperands(); i != n; i += 2) {
3950b57cec5SDimitry Andric       MachineOperand &RegOp = PI.getOperand(i);
3960b57cec5SDimitry Andric       if (RegOp.getSubReg() == 0)
3970b57cec5SDimitry Andric         continue;
3980b57cec5SDimitry Andric 
3990b57cec5SDimitry Andric       // If the operand uses a subregister, replace it with a new register
4000b57cec5SDimitry Andric       // without subregisters, and generate a copy to the new register.
4018bcb0991SDimitry Andric       Register NewReg = MRI.createVirtualRegister(RC);
4020b57cec5SDimitry Andric       MachineBasicBlock &PredB = *PI.getOperand(i+1).getMBB();
4030b57cec5SDimitry Andric       MachineBasicBlock::iterator At = PredB.getFirstTerminator();
4040b57cec5SDimitry Andric       const DebugLoc &DL = PredB.findDebugLoc(At);
4050b57cec5SDimitry Andric       auto Copy = BuildMI(PredB, At, DL, TII->get(TargetOpcode::COPY), NewReg)
4060b57cec5SDimitry Andric                     .addReg(RegOp.getReg(), getRegState(RegOp),
4070b57cec5SDimitry Andric                             RegOp.getSubReg());
4080b57cec5SDimitry Andric       Slots.insertMachineInstrInMaps(*Copy);
4090b57cec5SDimitry Andric       RegOp.setReg(NewReg);
4100b57cec5SDimitry Andric       RegOp.setSubReg(0);
4110b57cec5SDimitry Andric     }
4120b57cec5SDimitry Andric   }
4130b57cec5SDimitry Andric }
4140b57cec5SDimitry Andric 
4150b57cec5SDimitry Andric /// The SMS algorithm consists of the following main steps:
4160b57cec5SDimitry Andric /// 1. Computation and analysis of the dependence graph.
4170b57cec5SDimitry Andric /// 2. Ordering of the nodes (instructions).
4180b57cec5SDimitry Andric /// 3. Attempt to Schedule the loop.
swingModuloScheduler(MachineLoop & L)4190b57cec5SDimitry Andric bool MachinePipeliner::swingModuloScheduler(MachineLoop &L) {
4200b57cec5SDimitry Andric   assert(L.getBlocks().size() == 1 && "SMS works on single blocks only.");
4210b57cec5SDimitry Andric 
4220b57cec5SDimitry Andric   SwingSchedulerDAG SMS(*this, L, getAnalysis<LiveIntervals>(), RegClassInfo,
4230b57cec5SDimitry Andric                         II_setByPragma);
4240b57cec5SDimitry Andric 
4250b57cec5SDimitry Andric   MachineBasicBlock *MBB = L.getHeader();
4260b57cec5SDimitry Andric   // The kernel should not include any terminator instructions.  These
4270b57cec5SDimitry Andric   // will be added back later.
4280b57cec5SDimitry Andric   SMS.startBlock(MBB);
4290b57cec5SDimitry Andric 
4300b57cec5SDimitry Andric   // Compute the number of 'real' instructions in the basic block by
4310b57cec5SDimitry Andric   // ignoring terminators.
4320b57cec5SDimitry Andric   unsigned size = MBB->size();
4330b57cec5SDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstTerminator(),
4340b57cec5SDimitry Andric                                    E = MBB->instr_end();
4350b57cec5SDimitry Andric        I != E; ++I, --size)
4360b57cec5SDimitry Andric     ;
4370b57cec5SDimitry Andric 
4380b57cec5SDimitry Andric   SMS.enterRegion(MBB, MBB->begin(), MBB->getFirstTerminator(), size);
4390b57cec5SDimitry Andric   SMS.schedule();
4400b57cec5SDimitry Andric   SMS.exitRegion();
4410b57cec5SDimitry Andric 
4420b57cec5SDimitry Andric   SMS.finishBlock();
4430b57cec5SDimitry Andric   return SMS.hasNewSchedule();
4440b57cec5SDimitry Andric }
4450b57cec5SDimitry Andric 
getAnalysisUsage(AnalysisUsage & AU) const446af732203SDimitry Andric void MachinePipeliner::getAnalysisUsage(AnalysisUsage &AU) const {
447af732203SDimitry Andric   AU.addRequired<AAResultsWrapperPass>();
448af732203SDimitry Andric   AU.addPreserved<AAResultsWrapperPass>();
449af732203SDimitry Andric   AU.addRequired<MachineLoopInfo>();
450af732203SDimitry Andric   AU.addRequired<MachineDominatorTree>();
451af732203SDimitry Andric   AU.addRequired<LiveIntervals>();
452af732203SDimitry Andric   AU.addRequired<MachineOptimizationRemarkEmitterPass>();
453af732203SDimitry Andric   MachineFunctionPass::getAnalysisUsage(AU);
454af732203SDimitry Andric }
455af732203SDimitry Andric 
setMII(unsigned ResMII,unsigned RecMII)4560b57cec5SDimitry Andric void SwingSchedulerDAG::setMII(unsigned ResMII, unsigned RecMII) {
4570b57cec5SDimitry Andric   if (II_setByPragma > 0)
4580b57cec5SDimitry Andric     MII = II_setByPragma;
4590b57cec5SDimitry Andric   else
4600b57cec5SDimitry Andric     MII = std::max(ResMII, RecMII);
4610b57cec5SDimitry Andric }
4620b57cec5SDimitry Andric 
setMAX_II()4630b57cec5SDimitry Andric void SwingSchedulerDAG::setMAX_II() {
4640b57cec5SDimitry Andric   if (II_setByPragma > 0)
4650b57cec5SDimitry Andric     MAX_II = II_setByPragma;
4660b57cec5SDimitry Andric   else
4670b57cec5SDimitry Andric     MAX_II = MII + 10;
4680b57cec5SDimitry Andric }
4690b57cec5SDimitry Andric 
4700b57cec5SDimitry Andric /// We override the schedule function in ScheduleDAGInstrs to implement the
4710b57cec5SDimitry Andric /// scheduling part of the Swing Modulo Scheduling algorithm.
schedule()4720b57cec5SDimitry Andric void SwingSchedulerDAG::schedule() {
4730b57cec5SDimitry Andric   AliasAnalysis *AA = &Pass.getAnalysis<AAResultsWrapperPass>().getAAResults();
4740b57cec5SDimitry Andric   buildSchedGraph(AA);
4750b57cec5SDimitry Andric   addLoopCarriedDependences(AA);
4760b57cec5SDimitry Andric   updatePhiDependences();
4770b57cec5SDimitry Andric   Topo.InitDAGTopologicalSorting();
4780b57cec5SDimitry Andric   changeDependences();
4790b57cec5SDimitry Andric   postprocessDAG();
4800b57cec5SDimitry Andric   LLVM_DEBUG(dump());
4810b57cec5SDimitry Andric 
4820b57cec5SDimitry Andric   NodeSetType NodeSets;
4830b57cec5SDimitry Andric   findCircuits(NodeSets);
4840b57cec5SDimitry Andric   NodeSetType Circuits = NodeSets;
4850b57cec5SDimitry Andric 
4860b57cec5SDimitry Andric   // Calculate the MII.
4870b57cec5SDimitry Andric   unsigned ResMII = calculateResMII();
4880b57cec5SDimitry Andric   unsigned RecMII = calculateRecMII(NodeSets);
4890b57cec5SDimitry Andric 
4900b57cec5SDimitry Andric   fuseRecs(NodeSets);
4910b57cec5SDimitry Andric 
4920b57cec5SDimitry Andric   // This flag is used for testing and can cause correctness problems.
4930b57cec5SDimitry Andric   if (SwpIgnoreRecMII)
4940b57cec5SDimitry Andric     RecMII = 0;
4950b57cec5SDimitry Andric 
4960b57cec5SDimitry Andric   setMII(ResMII, RecMII);
4970b57cec5SDimitry Andric   setMAX_II();
4980b57cec5SDimitry Andric 
4990b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "MII = " << MII << " MAX_II = " << MAX_II
5000b57cec5SDimitry Andric                     << " (rec=" << RecMII << ", res=" << ResMII << ")\n");
5010b57cec5SDimitry Andric 
5020b57cec5SDimitry Andric   // Can't schedule a loop without a valid MII.
5030b57cec5SDimitry Andric   if (MII == 0) {
5045ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "Invalid Minimal Initiation Interval: 0\n");
5050b57cec5SDimitry Andric     NumFailZeroMII++;
5065ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
5075ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
5085ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
5095ffd83dbSDimitry Andric              << "Invalid Minimal Initiation Interval: 0";
5105ffd83dbSDimitry Andric     });
5110b57cec5SDimitry Andric     return;
5120b57cec5SDimitry Andric   }
5130b57cec5SDimitry Andric 
5140b57cec5SDimitry Andric   // Don't pipeline large loops.
5150b57cec5SDimitry Andric   if (SwpMaxMii != -1 && (int)MII > SwpMaxMii) {
5160b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "MII > " << SwpMaxMii
5170b57cec5SDimitry Andric                       << ", we don't pipleline large loops\n");
5180b57cec5SDimitry Andric     NumFailLargeMaxMII++;
5195ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
5205ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
5215ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
5225ffd83dbSDimitry Andric              << "Minimal Initiation Interval too large: "
5235ffd83dbSDimitry Andric              << ore::NV("MII", (int)MII) << " > "
5245ffd83dbSDimitry Andric              << ore::NV("SwpMaxMii", SwpMaxMii) << "."
5255ffd83dbSDimitry Andric              << "Refer to -pipeliner-max-mii.";
5265ffd83dbSDimitry Andric     });
5270b57cec5SDimitry Andric     return;
5280b57cec5SDimitry Andric   }
5290b57cec5SDimitry Andric 
5300b57cec5SDimitry Andric   computeNodeFunctions(NodeSets);
5310b57cec5SDimitry Andric 
5320b57cec5SDimitry Andric   registerPressureFilter(NodeSets);
5330b57cec5SDimitry Andric 
5340b57cec5SDimitry Andric   colocateNodeSets(NodeSets);
5350b57cec5SDimitry Andric 
5360b57cec5SDimitry Andric   checkNodeSets(NodeSets);
5370b57cec5SDimitry Andric 
5380b57cec5SDimitry Andric   LLVM_DEBUG({
5390b57cec5SDimitry Andric     for (auto &I : NodeSets) {
5400b57cec5SDimitry Andric       dbgs() << "  Rec NodeSet ";
5410b57cec5SDimitry Andric       I.dump();
5420b57cec5SDimitry Andric     }
5430b57cec5SDimitry Andric   });
5440b57cec5SDimitry Andric 
5450b57cec5SDimitry Andric   llvm::stable_sort(NodeSets, std::greater<NodeSet>());
5460b57cec5SDimitry Andric 
5470b57cec5SDimitry Andric   groupRemainingNodes(NodeSets);
5480b57cec5SDimitry Andric 
5490b57cec5SDimitry Andric   removeDuplicateNodes(NodeSets);
5500b57cec5SDimitry Andric 
5510b57cec5SDimitry Andric   LLVM_DEBUG({
5520b57cec5SDimitry Andric     for (auto &I : NodeSets) {
5530b57cec5SDimitry Andric       dbgs() << "  NodeSet ";
5540b57cec5SDimitry Andric       I.dump();
5550b57cec5SDimitry Andric     }
5560b57cec5SDimitry Andric   });
5570b57cec5SDimitry Andric 
5580b57cec5SDimitry Andric   computeNodeOrder(NodeSets);
5590b57cec5SDimitry Andric 
5600b57cec5SDimitry Andric   // check for node order issues
5610b57cec5SDimitry Andric   checkValidNodeOrder(Circuits);
5620b57cec5SDimitry Andric 
5630b57cec5SDimitry Andric   SMSchedule Schedule(Pass.MF);
5640b57cec5SDimitry Andric   Scheduled = schedulePipeline(Schedule);
5650b57cec5SDimitry Andric 
5660b57cec5SDimitry Andric   if (!Scheduled){
5670b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "No schedule found, return\n");
5680b57cec5SDimitry Andric     NumFailNoSchedule++;
5695ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
5705ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
5715ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
5725ffd83dbSDimitry Andric              << "Unable to find schedule";
5735ffd83dbSDimitry Andric     });
5740b57cec5SDimitry Andric     return;
5750b57cec5SDimitry Andric   }
5760b57cec5SDimitry Andric 
5770b57cec5SDimitry Andric   unsigned numStages = Schedule.getMaxStageCount();
5780b57cec5SDimitry Andric   // No need to generate pipeline if there are no overlapped iterations.
5790b57cec5SDimitry Andric   if (numStages == 0) {
5805ffd83dbSDimitry Andric     LLVM_DEBUG(dbgs() << "No overlapped iterations, skip.\n");
5810b57cec5SDimitry Andric     NumFailZeroStage++;
5825ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
5835ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
5845ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
5855ffd83dbSDimitry Andric              << "No need to pipeline - no overlapped iterations in schedule.";
5865ffd83dbSDimitry Andric     });
5870b57cec5SDimitry Andric     return;
5880b57cec5SDimitry Andric   }
5890b57cec5SDimitry Andric   // Check that the maximum stage count is less than user-defined limit.
5900b57cec5SDimitry Andric   if (SwpMaxStages > -1 && (int)numStages > SwpMaxStages) {
5910b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "numStages:" << numStages << ">" << SwpMaxStages
5920b57cec5SDimitry Andric                       << " : too many stages, abort\n");
5930b57cec5SDimitry Andric     NumFailLargeMaxStage++;
5945ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
5955ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
5965ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
5975ffd83dbSDimitry Andric              << "Too many stages in schedule: "
5985ffd83dbSDimitry Andric              << ore::NV("numStages", (int)numStages) << " > "
5995ffd83dbSDimitry Andric              << ore::NV("SwpMaxStages", SwpMaxStages)
6005ffd83dbSDimitry Andric              << ". Refer to -pipeliner-max-stages.";
6015ffd83dbSDimitry Andric     });
6020b57cec5SDimitry Andric     return;
6030b57cec5SDimitry Andric   }
6040b57cec5SDimitry Andric 
6055ffd83dbSDimitry Andric   Pass.ORE->emit([&]() {
6065ffd83dbSDimitry Andric     return MachineOptimizationRemark(DEBUG_TYPE, "schedule", Loop.getStartLoc(),
6075ffd83dbSDimitry Andric                                      Loop.getHeader())
6085ffd83dbSDimitry Andric            << "Pipelined succesfully!";
6095ffd83dbSDimitry Andric   });
6105ffd83dbSDimitry Andric 
6118bcb0991SDimitry Andric   // Generate the schedule as a ModuloSchedule.
6128bcb0991SDimitry Andric   DenseMap<MachineInstr *, int> Cycles, Stages;
6138bcb0991SDimitry Andric   std::vector<MachineInstr *> OrderedInsts;
6148bcb0991SDimitry Andric   for (int Cycle = Schedule.getFirstCycle(); Cycle <= Schedule.getFinalCycle();
6158bcb0991SDimitry Andric        ++Cycle) {
6168bcb0991SDimitry Andric     for (SUnit *SU : Schedule.getInstructions(Cycle)) {
6178bcb0991SDimitry Andric       OrderedInsts.push_back(SU->getInstr());
6188bcb0991SDimitry Andric       Cycles[SU->getInstr()] = Cycle;
6198bcb0991SDimitry Andric       Stages[SU->getInstr()] = Schedule.stageScheduled(SU);
6208bcb0991SDimitry Andric     }
6218bcb0991SDimitry Andric   }
6228bcb0991SDimitry Andric   DenseMap<MachineInstr *, std::pair<unsigned, int64_t>> NewInstrChanges;
6238bcb0991SDimitry Andric   for (auto &KV : NewMIs) {
6248bcb0991SDimitry Andric     Cycles[KV.first] = Cycles[KV.second];
6258bcb0991SDimitry Andric     Stages[KV.first] = Stages[KV.second];
6268bcb0991SDimitry Andric     NewInstrChanges[KV.first] = InstrChanges[getSUnit(KV.first)];
6278bcb0991SDimitry Andric   }
6288bcb0991SDimitry Andric 
6298bcb0991SDimitry Andric   ModuloSchedule MS(MF, &Loop, std::move(OrderedInsts), std::move(Cycles),
6308bcb0991SDimitry Andric                     std::move(Stages));
6318bcb0991SDimitry Andric   if (EmitTestAnnotations) {
6328bcb0991SDimitry Andric     assert(NewInstrChanges.empty() &&
6338bcb0991SDimitry Andric            "Cannot serialize a schedule with InstrChanges!");
6348bcb0991SDimitry Andric     ModuloScheduleTestAnnotater MSTI(MF, MS);
6358bcb0991SDimitry Andric     MSTI.annotate();
6368bcb0991SDimitry Andric     return;
6378bcb0991SDimitry Andric   }
6388bcb0991SDimitry Andric   // The experimental code generator can't work if there are InstChanges.
6398bcb0991SDimitry Andric   if (ExperimentalCodeGen && NewInstrChanges.empty()) {
6408bcb0991SDimitry Andric     PeelingModuloScheduleExpander MSE(MF, MS, &LIS);
6418bcb0991SDimitry Andric     MSE.expand();
6428bcb0991SDimitry Andric   } else {
6438bcb0991SDimitry Andric     ModuloScheduleExpander MSE(MF, MS, LIS, std::move(NewInstrChanges));
6448bcb0991SDimitry Andric     MSE.expand();
6458bcb0991SDimitry Andric     MSE.cleanup();
6468bcb0991SDimitry Andric   }
6470b57cec5SDimitry Andric   ++NumPipelined;
6480b57cec5SDimitry Andric }
6490b57cec5SDimitry Andric 
6500b57cec5SDimitry Andric /// Clean up after the software pipeliner runs.
finishBlock()6510b57cec5SDimitry Andric void SwingSchedulerDAG::finishBlock() {
6528bcb0991SDimitry Andric   for (auto &KV : NewMIs)
6538bcb0991SDimitry Andric     MF.DeleteMachineInstr(KV.second);
6540b57cec5SDimitry Andric   NewMIs.clear();
6550b57cec5SDimitry Andric 
6560b57cec5SDimitry Andric   // Call the superclass.
6570b57cec5SDimitry Andric   ScheduleDAGInstrs::finishBlock();
6580b57cec5SDimitry Andric }
6590b57cec5SDimitry Andric 
6600b57cec5SDimitry Andric /// Return the register values for  the operands of a Phi instruction.
6610b57cec5SDimitry Andric /// This function assume the instruction is a Phi.
getPhiRegs(MachineInstr & Phi,MachineBasicBlock * Loop,unsigned & InitVal,unsigned & LoopVal)6620b57cec5SDimitry Andric static void getPhiRegs(MachineInstr &Phi, MachineBasicBlock *Loop,
6630b57cec5SDimitry Andric                        unsigned &InitVal, unsigned &LoopVal) {
6640b57cec5SDimitry Andric   assert(Phi.isPHI() && "Expecting a Phi.");
6650b57cec5SDimitry Andric 
6660b57cec5SDimitry Andric   InitVal = 0;
6670b57cec5SDimitry Andric   LoopVal = 0;
6680b57cec5SDimitry Andric   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
6690b57cec5SDimitry Andric     if (Phi.getOperand(i + 1).getMBB() != Loop)
6700b57cec5SDimitry Andric       InitVal = Phi.getOperand(i).getReg();
6710b57cec5SDimitry Andric     else
6720b57cec5SDimitry Andric       LoopVal = Phi.getOperand(i).getReg();
6730b57cec5SDimitry Andric 
6740b57cec5SDimitry Andric   assert(InitVal != 0 && LoopVal != 0 && "Unexpected Phi structure.");
6750b57cec5SDimitry Andric }
6760b57cec5SDimitry Andric 
6770b57cec5SDimitry Andric /// Return the Phi register value that comes the loop block.
getLoopPhiReg(MachineInstr & Phi,MachineBasicBlock * LoopBB)6780b57cec5SDimitry Andric static unsigned getLoopPhiReg(MachineInstr &Phi, MachineBasicBlock *LoopBB) {
6790b57cec5SDimitry Andric   for (unsigned i = 1, e = Phi.getNumOperands(); i != e; i += 2)
6800b57cec5SDimitry Andric     if (Phi.getOperand(i + 1).getMBB() == LoopBB)
6810b57cec5SDimitry Andric       return Phi.getOperand(i).getReg();
6820b57cec5SDimitry Andric   return 0;
6830b57cec5SDimitry Andric }
6840b57cec5SDimitry Andric 
6850b57cec5SDimitry Andric /// Return true if SUb can be reached from SUa following the chain edges.
isSuccOrder(SUnit * SUa,SUnit * SUb)6860b57cec5SDimitry Andric static bool isSuccOrder(SUnit *SUa, SUnit *SUb) {
6870b57cec5SDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
6880b57cec5SDimitry Andric   SmallVector<SUnit *, 8> Worklist;
6890b57cec5SDimitry Andric   Worklist.push_back(SUa);
6900b57cec5SDimitry Andric   while (!Worklist.empty()) {
6910b57cec5SDimitry Andric     const SUnit *SU = Worklist.pop_back_val();
6920b57cec5SDimitry Andric     for (auto &SI : SU->Succs) {
6930b57cec5SDimitry Andric       SUnit *SuccSU = SI.getSUnit();
6940b57cec5SDimitry Andric       if (SI.getKind() == SDep::Order) {
6950b57cec5SDimitry Andric         if (Visited.count(SuccSU))
6960b57cec5SDimitry Andric           continue;
6970b57cec5SDimitry Andric         if (SuccSU == SUb)
6980b57cec5SDimitry Andric           return true;
6990b57cec5SDimitry Andric         Worklist.push_back(SuccSU);
7000b57cec5SDimitry Andric         Visited.insert(SuccSU);
7010b57cec5SDimitry Andric       }
7020b57cec5SDimitry Andric     }
7030b57cec5SDimitry Andric   }
7040b57cec5SDimitry Andric   return false;
7050b57cec5SDimitry Andric }
7060b57cec5SDimitry Andric 
7070b57cec5SDimitry Andric /// Return true if the instruction causes a chain between memory
7080b57cec5SDimitry Andric /// references before and after it.
isDependenceBarrier(MachineInstr & MI,AliasAnalysis * AA)7090b57cec5SDimitry Andric static bool isDependenceBarrier(MachineInstr &MI, AliasAnalysis *AA) {
7100b57cec5SDimitry Andric   return MI.isCall() || MI.mayRaiseFPException() ||
7110b57cec5SDimitry Andric          MI.hasUnmodeledSideEffects() ||
7120b57cec5SDimitry Andric          (MI.hasOrderedMemoryRef() &&
7130b57cec5SDimitry Andric           (!MI.mayLoad() || !MI.isDereferenceableInvariantLoad(AA)));
7140b57cec5SDimitry Andric }
7150b57cec5SDimitry Andric 
7160b57cec5SDimitry Andric /// Return the underlying objects for the memory references of an instruction.
7170b57cec5SDimitry Andric /// This function calls the code in ValueTracking, but first checks that the
7180b57cec5SDimitry Andric /// instruction has a memory operand.
getUnderlyingObjects(const MachineInstr * MI,SmallVectorImpl<const Value * > & Objs)7190b57cec5SDimitry Andric static void getUnderlyingObjects(const MachineInstr *MI,
720af732203SDimitry Andric                                  SmallVectorImpl<const Value *> &Objs) {
7210b57cec5SDimitry Andric   if (!MI->hasOneMemOperand())
7220b57cec5SDimitry Andric     return;
7230b57cec5SDimitry Andric   MachineMemOperand *MM = *MI->memoperands_begin();
7240b57cec5SDimitry Andric   if (!MM->getValue())
7250b57cec5SDimitry Andric     return;
726af732203SDimitry Andric   getUnderlyingObjects(MM->getValue(), Objs);
7270b57cec5SDimitry Andric   for (const Value *V : Objs) {
7280b57cec5SDimitry Andric     if (!isIdentifiedObject(V)) {
7290b57cec5SDimitry Andric       Objs.clear();
7300b57cec5SDimitry Andric       return;
7310b57cec5SDimitry Andric     }
7320b57cec5SDimitry Andric     Objs.push_back(V);
7330b57cec5SDimitry Andric   }
7340b57cec5SDimitry Andric }
7350b57cec5SDimitry Andric 
7360b57cec5SDimitry Andric /// Add a chain edge between a load and store if the store can be an
7370b57cec5SDimitry Andric /// alias of the load on a subsequent iteration, i.e., a loop carried
7380b57cec5SDimitry Andric /// dependence. This code is very similar to the code in ScheduleDAGInstrs
7390b57cec5SDimitry Andric /// but that code doesn't create loop carried dependences.
addLoopCarriedDependences(AliasAnalysis * AA)7400b57cec5SDimitry Andric void SwingSchedulerDAG::addLoopCarriedDependences(AliasAnalysis *AA) {
7410b57cec5SDimitry Andric   MapVector<const Value *, SmallVector<SUnit *, 4>> PendingLoads;
7420b57cec5SDimitry Andric   Value *UnknownValue =
7430b57cec5SDimitry Andric     UndefValue::get(Type::getVoidTy(MF.getFunction().getContext()));
7440b57cec5SDimitry Andric   for (auto &SU : SUnits) {
7450b57cec5SDimitry Andric     MachineInstr &MI = *SU.getInstr();
7460b57cec5SDimitry Andric     if (isDependenceBarrier(MI, AA))
7470b57cec5SDimitry Andric       PendingLoads.clear();
7480b57cec5SDimitry Andric     else if (MI.mayLoad()) {
7490b57cec5SDimitry Andric       SmallVector<const Value *, 4> Objs;
750af732203SDimitry Andric       ::getUnderlyingObjects(&MI, Objs);
7510b57cec5SDimitry Andric       if (Objs.empty())
7520b57cec5SDimitry Andric         Objs.push_back(UnknownValue);
7530b57cec5SDimitry Andric       for (auto V : Objs) {
7540b57cec5SDimitry Andric         SmallVector<SUnit *, 4> &SUs = PendingLoads[V];
7550b57cec5SDimitry Andric         SUs.push_back(&SU);
7560b57cec5SDimitry Andric       }
7570b57cec5SDimitry Andric     } else if (MI.mayStore()) {
7580b57cec5SDimitry Andric       SmallVector<const Value *, 4> Objs;
759af732203SDimitry Andric       ::getUnderlyingObjects(&MI, Objs);
7600b57cec5SDimitry Andric       if (Objs.empty())
7610b57cec5SDimitry Andric         Objs.push_back(UnknownValue);
7620b57cec5SDimitry Andric       for (auto V : Objs) {
7630b57cec5SDimitry Andric         MapVector<const Value *, SmallVector<SUnit *, 4>>::iterator I =
7640b57cec5SDimitry Andric             PendingLoads.find(V);
7650b57cec5SDimitry Andric         if (I == PendingLoads.end())
7660b57cec5SDimitry Andric           continue;
7670b57cec5SDimitry Andric         for (auto Load : I->second) {
7680b57cec5SDimitry Andric           if (isSuccOrder(Load, &SU))
7690b57cec5SDimitry Andric             continue;
7700b57cec5SDimitry Andric           MachineInstr &LdMI = *Load->getInstr();
7710b57cec5SDimitry Andric           // First, perform the cheaper check that compares the base register.
7720b57cec5SDimitry Andric           // If they are the same and the load offset is less than the store
7730b57cec5SDimitry Andric           // offset, then mark the dependence as loop carried potentially.
7740b57cec5SDimitry Andric           const MachineOperand *BaseOp1, *BaseOp2;
7750b57cec5SDimitry Andric           int64_t Offset1, Offset2;
7765ffd83dbSDimitry Andric           bool Offset1IsScalable, Offset2IsScalable;
7775ffd83dbSDimitry Andric           if (TII->getMemOperandWithOffset(LdMI, BaseOp1, Offset1,
7785ffd83dbSDimitry Andric                                            Offset1IsScalable, TRI) &&
7795ffd83dbSDimitry Andric               TII->getMemOperandWithOffset(MI, BaseOp2, Offset2,
7805ffd83dbSDimitry Andric                                            Offset2IsScalable, TRI)) {
7810b57cec5SDimitry Andric             if (BaseOp1->isIdenticalTo(*BaseOp2) &&
7825ffd83dbSDimitry Andric                 Offset1IsScalable == Offset2IsScalable &&
7830b57cec5SDimitry Andric                 (int)Offset1 < (int)Offset2) {
7848bcb0991SDimitry Andric               assert(TII->areMemAccessesTriviallyDisjoint(LdMI, MI) &&
7850b57cec5SDimitry Andric                      "What happened to the chain edge?");
7860b57cec5SDimitry Andric               SDep Dep(Load, SDep::Barrier);
7870b57cec5SDimitry Andric               Dep.setLatency(1);
7880b57cec5SDimitry Andric               SU.addPred(Dep);
7890b57cec5SDimitry Andric               continue;
7900b57cec5SDimitry Andric             }
7910b57cec5SDimitry Andric           }
7920b57cec5SDimitry Andric           // Second, the more expensive check that uses alias analysis on the
7930b57cec5SDimitry Andric           // base registers. If they alias, and the load offset is less than
7940b57cec5SDimitry Andric           // the store offset, the mark the dependence as loop carried.
7950b57cec5SDimitry Andric           if (!AA) {
7960b57cec5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
7970b57cec5SDimitry Andric             Dep.setLatency(1);
7980b57cec5SDimitry Andric             SU.addPred(Dep);
7990b57cec5SDimitry Andric             continue;
8000b57cec5SDimitry Andric           }
8010b57cec5SDimitry Andric           MachineMemOperand *MMO1 = *LdMI.memoperands_begin();
8020b57cec5SDimitry Andric           MachineMemOperand *MMO2 = *MI.memoperands_begin();
8030b57cec5SDimitry Andric           if (!MMO1->getValue() || !MMO2->getValue()) {
8040b57cec5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
8050b57cec5SDimitry Andric             Dep.setLatency(1);
8060b57cec5SDimitry Andric             SU.addPred(Dep);
8070b57cec5SDimitry Andric             continue;
8080b57cec5SDimitry Andric           }
8090b57cec5SDimitry Andric           if (MMO1->getValue() == MMO2->getValue() &&
8100b57cec5SDimitry Andric               MMO1->getOffset() <= MMO2->getOffset()) {
8110b57cec5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
8120b57cec5SDimitry Andric             Dep.setLatency(1);
8130b57cec5SDimitry Andric             SU.addPred(Dep);
8140b57cec5SDimitry Andric             continue;
8150b57cec5SDimitry Andric           }
816*5f7ddb14SDimitry Andric           if (!AA->isNoAlias(
817af732203SDimitry Andric                   MemoryLocation::getAfter(MMO1->getValue(), MMO1->getAAInfo()),
818*5f7ddb14SDimitry Andric                   MemoryLocation::getAfter(MMO2->getValue(),
819*5f7ddb14SDimitry Andric                                            MMO2->getAAInfo()))) {
8200b57cec5SDimitry Andric             SDep Dep(Load, SDep::Barrier);
8210b57cec5SDimitry Andric             Dep.setLatency(1);
8220b57cec5SDimitry Andric             SU.addPred(Dep);
8230b57cec5SDimitry Andric           }
8240b57cec5SDimitry Andric         }
8250b57cec5SDimitry Andric       }
8260b57cec5SDimitry Andric     }
8270b57cec5SDimitry Andric   }
8280b57cec5SDimitry Andric }
8290b57cec5SDimitry Andric 
8300b57cec5SDimitry Andric /// Update the phi dependences to the DAG because ScheduleDAGInstrs no longer
8310b57cec5SDimitry Andric /// processes dependences for PHIs. This function adds true dependences
8320b57cec5SDimitry Andric /// from a PHI to a use, and a loop carried dependence from the use to the
8330b57cec5SDimitry Andric /// PHI. The loop carried dependence is represented as an anti dependence
8340b57cec5SDimitry Andric /// edge. This function also removes chain dependences between unrelated
8350b57cec5SDimitry Andric /// PHIs.
updatePhiDependences()8360b57cec5SDimitry Andric void SwingSchedulerDAG::updatePhiDependences() {
8370b57cec5SDimitry Andric   SmallVector<SDep, 4> RemoveDeps;
8380b57cec5SDimitry Andric   const TargetSubtargetInfo &ST = MF.getSubtarget<TargetSubtargetInfo>();
8390b57cec5SDimitry Andric 
8400b57cec5SDimitry Andric   // Iterate over each DAG node.
8410b57cec5SDimitry Andric   for (SUnit &I : SUnits) {
8420b57cec5SDimitry Andric     RemoveDeps.clear();
8430b57cec5SDimitry Andric     // Set to true if the instruction has an operand defined by a Phi.
8440b57cec5SDimitry Andric     unsigned HasPhiUse = 0;
8450b57cec5SDimitry Andric     unsigned HasPhiDef = 0;
8460b57cec5SDimitry Andric     MachineInstr *MI = I.getInstr();
8470b57cec5SDimitry Andric     // Iterate over each operand, and we process the definitions.
8480b57cec5SDimitry Andric     for (MachineInstr::mop_iterator MOI = MI->operands_begin(),
8490b57cec5SDimitry Andric                                     MOE = MI->operands_end();
8500b57cec5SDimitry Andric          MOI != MOE; ++MOI) {
8510b57cec5SDimitry Andric       if (!MOI->isReg())
8520b57cec5SDimitry Andric         continue;
8538bcb0991SDimitry Andric       Register Reg = MOI->getReg();
8540b57cec5SDimitry Andric       if (MOI->isDef()) {
8550b57cec5SDimitry Andric         // If the register is used by a Phi, then create an anti dependence.
8560b57cec5SDimitry Andric         for (MachineRegisterInfo::use_instr_iterator
8570b57cec5SDimitry Andric                  UI = MRI.use_instr_begin(Reg),
8580b57cec5SDimitry Andric                  UE = MRI.use_instr_end();
8590b57cec5SDimitry Andric              UI != UE; ++UI) {
8600b57cec5SDimitry Andric           MachineInstr *UseMI = &*UI;
8610b57cec5SDimitry Andric           SUnit *SU = getSUnit(UseMI);
8620b57cec5SDimitry Andric           if (SU != nullptr && UseMI->isPHI()) {
8630b57cec5SDimitry Andric             if (!MI->isPHI()) {
8640b57cec5SDimitry Andric               SDep Dep(SU, SDep::Anti, Reg);
8650b57cec5SDimitry Andric               Dep.setLatency(1);
8660b57cec5SDimitry Andric               I.addPred(Dep);
8670b57cec5SDimitry Andric             } else {
8680b57cec5SDimitry Andric               HasPhiDef = Reg;
8690b57cec5SDimitry Andric               // Add a chain edge to a dependent Phi that isn't an existing
8700b57cec5SDimitry Andric               // predecessor.
8710b57cec5SDimitry Andric               if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
8720b57cec5SDimitry Andric                 I.addPred(SDep(SU, SDep::Barrier));
8730b57cec5SDimitry Andric             }
8740b57cec5SDimitry Andric           }
8750b57cec5SDimitry Andric         }
8760b57cec5SDimitry Andric       } else if (MOI->isUse()) {
8770b57cec5SDimitry Andric         // If the register is defined by a Phi, then create a true dependence.
8780b57cec5SDimitry Andric         MachineInstr *DefMI = MRI.getUniqueVRegDef(Reg);
8790b57cec5SDimitry Andric         if (DefMI == nullptr)
8800b57cec5SDimitry Andric           continue;
8810b57cec5SDimitry Andric         SUnit *SU = getSUnit(DefMI);
8820b57cec5SDimitry Andric         if (SU != nullptr && DefMI->isPHI()) {
8830b57cec5SDimitry Andric           if (!MI->isPHI()) {
8840b57cec5SDimitry Andric             SDep Dep(SU, SDep::Data, Reg);
8850b57cec5SDimitry Andric             Dep.setLatency(0);
8865ffd83dbSDimitry Andric             ST.adjustSchedDependency(SU, 0, &I, MI->getOperandNo(MOI), Dep);
8870b57cec5SDimitry Andric             I.addPred(Dep);
8880b57cec5SDimitry Andric           } else {
8890b57cec5SDimitry Andric             HasPhiUse = Reg;
8900b57cec5SDimitry Andric             // Add a chain edge to a dependent Phi that isn't an existing
8910b57cec5SDimitry Andric             // predecessor.
8920b57cec5SDimitry Andric             if (SU->NodeNum < I.NodeNum && !I.isPred(SU))
8930b57cec5SDimitry Andric               I.addPred(SDep(SU, SDep::Barrier));
8940b57cec5SDimitry Andric           }
8950b57cec5SDimitry Andric         }
8960b57cec5SDimitry Andric       }
8970b57cec5SDimitry Andric     }
8980b57cec5SDimitry Andric     // Remove order dependences from an unrelated Phi.
8990b57cec5SDimitry Andric     if (!SwpPruneDeps)
9000b57cec5SDimitry Andric       continue;
9010b57cec5SDimitry Andric     for (auto &PI : I.Preds) {
9020b57cec5SDimitry Andric       MachineInstr *PMI = PI.getSUnit()->getInstr();
9030b57cec5SDimitry Andric       if (PMI->isPHI() && PI.getKind() == SDep::Order) {
9040b57cec5SDimitry Andric         if (I.getInstr()->isPHI()) {
9050b57cec5SDimitry Andric           if (PMI->getOperand(0).getReg() == HasPhiUse)
9060b57cec5SDimitry Andric             continue;
9070b57cec5SDimitry Andric           if (getLoopPhiReg(*PMI, PMI->getParent()) == HasPhiDef)
9080b57cec5SDimitry Andric             continue;
9090b57cec5SDimitry Andric         }
9100b57cec5SDimitry Andric         RemoveDeps.push_back(PI);
9110b57cec5SDimitry Andric       }
9120b57cec5SDimitry Andric     }
9130b57cec5SDimitry Andric     for (int i = 0, e = RemoveDeps.size(); i != e; ++i)
9140b57cec5SDimitry Andric       I.removePred(RemoveDeps[i]);
9150b57cec5SDimitry Andric   }
9160b57cec5SDimitry Andric }
9170b57cec5SDimitry Andric 
9180b57cec5SDimitry Andric /// Iterate over each DAG node and see if we can change any dependences
9190b57cec5SDimitry Andric /// in order to reduce the recurrence MII.
changeDependences()9200b57cec5SDimitry Andric void SwingSchedulerDAG::changeDependences() {
9210b57cec5SDimitry Andric   // See if an instruction can use a value from the previous iteration.
9220b57cec5SDimitry Andric   // If so, we update the base and offset of the instruction and change
9230b57cec5SDimitry Andric   // the dependences.
9240b57cec5SDimitry Andric   for (SUnit &I : SUnits) {
9250b57cec5SDimitry Andric     unsigned BasePos = 0, OffsetPos = 0, NewBase = 0;
9260b57cec5SDimitry Andric     int64_t NewOffset = 0;
9270b57cec5SDimitry Andric     if (!canUseLastOffsetValue(I.getInstr(), BasePos, OffsetPos, NewBase,
9280b57cec5SDimitry Andric                                NewOffset))
9290b57cec5SDimitry Andric       continue;
9300b57cec5SDimitry Andric 
9310b57cec5SDimitry Andric     // Get the MI and SUnit for the instruction that defines the original base.
9328bcb0991SDimitry Andric     Register OrigBase = I.getInstr()->getOperand(BasePos).getReg();
9330b57cec5SDimitry Andric     MachineInstr *DefMI = MRI.getUniqueVRegDef(OrigBase);
9340b57cec5SDimitry Andric     if (!DefMI)
9350b57cec5SDimitry Andric       continue;
9360b57cec5SDimitry Andric     SUnit *DefSU = getSUnit(DefMI);
9370b57cec5SDimitry Andric     if (!DefSU)
9380b57cec5SDimitry Andric       continue;
9390b57cec5SDimitry Andric     // Get the MI and SUnit for the instruction that defins the new base.
9400b57cec5SDimitry Andric     MachineInstr *LastMI = MRI.getUniqueVRegDef(NewBase);
9410b57cec5SDimitry Andric     if (!LastMI)
9420b57cec5SDimitry Andric       continue;
9430b57cec5SDimitry Andric     SUnit *LastSU = getSUnit(LastMI);
9440b57cec5SDimitry Andric     if (!LastSU)
9450b57cec5SDimitry Andric       continue;
9460b57cec5SDimitry Andric 
9470b57cec5SDimitry Andric     if (Topo.IsReachable(&I, LastSU))
9480b57cec5SDimitry Andric       continue;
9490b57cec5SDimitry Andric 
9500b57cec5SDimitry Andric     // Remove the dependence. The value now depends on a prior iteration.
9510b57cec5SDimitry Andric     SmallVector<SDep, 4> Deps;
952*5f7ddb14SDimitry Andric     for (const SDep &P : I.Preds)
953*5f7ddb14SDimitry Andric       if (P.getSUnit() == DefSU)
954*5f7ddb14SDimitry Andric         Deps.push_back(P);
9550b57cec5SDimitry Andric     for (int i = 0, e = Deps.size(); i != e; i++) {
9560b57cec5SDimitry Andric       Topo.RemovePred(&I, Deps[i].getSUnit());
9570b57cec5SDimitry Andric       I.removePred(Deps[i]);
9580b57cec5SDimitry Andric     }
9590b57cec5SDimitry Andric     // Remove the chain dependence between the instructions.
9600b57cec5SDimitry Andric     Deps.clear();
9610b57cec5SDimitry Andric     for (auto &P : LastSU->Preds)
9620b57cec5SDimitry Andric       if (P.getSUnit() == &I && P.getKind() == SDep::Order)
9630b57cec5SDimitry Andric         Deps.push_back(P);
9640b57cec5SDimitry Andric     for (int i = 0, e = Deps.size(); i != e; i++) {
9650b57cec5SDimitry Andric       Topo.RemovePred(LastSU, Deps[i].getSUnit());
9660b57cec5SDimitry Andric       LastSU->removePred(Deps[i]);
9670b57cec5SDimitry Andric     }
9680b57cec5SDimitry Andric 
9690b57cec5SDimitry Andric     // Add a dependence between the new instruction and the instruction
9700b57cec5SDimitry Andric     // that defines the new base.
9710b57cec5SDimitry Andric     SDep Dep(&I, SDep::Anti, NewBase);
9720b57cec5SDimitry Andric     Topo.AddPred(LastSU, &I);
9730b57cec5SDimitry Andric     LastSU->addPred(Dep);
9740b57cec5SDimitry Andric 
9750b57cec5SDimitry Andric     // Remember the base and offset information so that we can update the
9760b57cec5SDimitry Andric     // instruction during code generation.
9770b57cec5SDimitry Andric     InstrChanges[&I] = std::make_pair(NewBase, NewOffset);
9780b57cec5SDimitry Andric   }
9790b57cec5SDimitry Andric }
9800b57cec5SDimitry Andric 
9810b57cec5SDimitry Andric namespace {
9820b57cec5SDimitry Andric 
9830b57cec5SDimitry Andric // FuncUnitSorter - Comparison operator used to sort instructions by
9840b57cec5SDimitry Andric // the number of functional unit choices.
9850b57cec5SDimitry Andric struct FuncUnitSorter {
9860b57cec5SDimitry Andric   const InstrItineraryData *InstrItins;
9870b57cec5SDimitry Andric   const MCSubtargetInfo *STI;
9885ffd83dbSDimitry Andric   DenseMap<InstrStage::FuncUnits, unsigned> Resources;
9890b57cec5SDimitry Andric 
FuncUnitSorter__anon6bac73c50d11::FuncUnitSorter9900b57cec5SDimitry Andric   FuncUnitSorter(const TargetSubtargetInfo &TSI)
9910b57cec5SDimitry Andric       : InstrItins(TSI.getInstrItineraryData()), STI(&TSI) {}
9920b57cec5SDimitry Andric 
9930b57cec5SDimitry Andric   // Compute the number of functional unit alternatives needed
9940b57cec5SDimitry Andric   // at each stage, and take the minimum value. We prioritize the
9950b57cec5SDimitry Andric   // instructions by the least number of choices first.
minFuncUnits__anon6bac73c50d11::FuncUnitSorter9965ffd83dbSDimitry Andric   unsigned minFuncUnits(const MachineInstr *Inst,
9975ffd83dbSDimitry Andric                         InstrStage::FuncUnits &F) const {
9980b57cec5SDimitry Andric     unsigned SchedClass = Inst->getDesc().getSchedClass();
9990b57cec5SDimitry Andric     unsigned min = UINT_MAX;
10000b57cec5SDimitry Andric     if (InstrItins && !InstrItins->isEmpty()) {
10010b57cec5SDimitry Andric       for (const InstrStage &IS :
10020b57cec5SDimitry Andric            make_range(InstrItins->beginStage(SchedClass),
10030b57cec5SDimitry Andric                       InstrItins->endStage(SchedClass))) {
10045ffd83dbSDimitry Andric         InstrStage::FuncUnits funcUnits = IS.getUnits();
10050b57cec5SDimitry Andric         unsigned numAlternatives = countPopulation(funcUnits);
10060b57cec5SDimitry Andric         if (numAlternatives < min) {
10070b57cec5SDimitry Andric           min = numAlternatives;
10080b57cec5SDimitry Andric           F = funcUnits;
10090b57cec5SDimitry Andric         }
10100b57cec5SDimitry Andric       }
10110b57cec5SDimitry Andric       return min;
10120b57cec5SDimitry Andric     }
10130b57cec5SDimitry Andric     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
10140b57cec5SDimitry Andric       const MCSchedClassDesc *SCDesc =
10150b57cec5SDimitry Andric           STI->getSchedModel().getSchedClassDesc(SchedClass);
10160b57cec5SDimitry Andric       if (!SCDesc->isValid())
10170b57cec5SDimitry Andric         // No valid Schedule Class Desc for schedClass, should be
10180b57cec5SDimitry Andric         // Pseudo/PostRAPseudo
10190b57cec5SDimitry Andric         return min;
10200b57cec5SDimitry Andric 
10210b57cec5SDimitry Andric       for (const MCWriteProcResEntry &PRE :
10220b57cec5SDimitry Andric            make_range(STI->getWriteProcResBegin(SCDesc),
10230b57cec5SDimitry Andric                       STI->getWriteProcResEnd(SCDesc))) {
10240b57cec5SDimitry Andric         if (!PRE.Cycles)
10250b57cec5SDimitry Andric           continue;
10260b57cec5SDimitry Andric         const MCProcResourceDesc *ProcResource =
10270b57cec5SDimitry Andric             STI->getSchedModel().getProcResource(PRE.ProcResourceIdx);
10280b57cec5SDimitry Andric         unsigned NumUnits = ProcResource->NumUnits;
10290b57cec5SDimitry Andric         if (NumUnits < min) {
10300b57cec5SDimitry Andric           min = NumUnits;
10310b57cec5SDimitry Andric           F = PRE.ProcResourceIdx;
10320b57cec5SDimitry Andric         }
10330b57cec5SDimitry Andric       }
10340b57cec5SDimitry Andric       return min;
10350b57cec5SDimitry Andric     }
10360b57cec5SDimitry Andric     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
10370b57cec5SDimitry Andric   }
10380b57cec5SDimitry Andric 
10390b57cec5SDimitry Andric   // Compute the critical resources needed by the instruction. This
10400b57cec5SDimitry Andric   // function records the functional units needed by instructions that
10410b57cec5SDimitry Andric   // must use only one functional unit. We use this as a tie breaker
10420b57cec5SDimitry Andric   // for computing the resource MII. The instrutions that require
10430b57cec5SDimitry Andric   // the same, highly used, functional unit have high priority.
calcCriticalResources__anon6bac73c50d11::FuncUnitSorter10440b57cec5SDimitry Andric   void calcCriticalResources(MachineInstr &MI) {
10450b57cec5SDimitry Andric     unsigned SchedClass = MI.getDesc().getSchedClass();
10460b57cec5SDimitry Andric     if (InstrItins && !InstrItins->isEmpty()) {
10470b57cec5SDimitry Andric       for (const InstrStage &IS :
10480b57cec5SDimitry Andric            make_range(InstrItins->beginStage(SchedClass),
10490b57cec5SDimitry Andric                       InstrItins->endStage(SchedClass))) {
10505ffd83dbSDimitry Andric         InstrStage::FuncUnits FuncUnits = IS.getUnits();
10510b57cec5SDimitry Andric         if (countPopulation(FuncUnits) == 1)
10520b57cec5SDimitry Andric           Resources[FuncUnits]++;
10530b57cec5SDimitry Andric       }
10540b57cec5SDimitry Andric       return;
10550b57cec5SDimitry Andric     }
10560b57cec5SDimitry Andric     if (STI && STI->getSchedModel().hasInstrSchedModel()) {
10570b57cec5SDimitry Andric       const MCSchedClassDesc *SCDesc =
10580b57cec5SDimitry Andric           STI->getSchedModel().getSchedClassDesc(SchedClass);
10590b57cec5SDimitry Andric       if (!SCDesc->isValid())
10600b57cec5SDimitry Andric         // No valid Schedule Class Desc for schedClass, should be
10610b57cec5SDimitry Andric         // Pseudo/PostRAPseudo
10620b57cec5SDimitry Andric         return;
10630b57cec5SDimitry Andric 
10640b57cec5SDimitry Andric       for (const MCWriteProcResEntry &PRE :
10650b57cec5SDimitry Andric            make_range(STI->getWriteProcResBegin(SCDesc),
10660b57cec5SDimitry Andric                       STI->getWriteProcResEnd(SCDesc))) {
10670b57cec5SDimitry Andric         if (!PRE.Cycles)
10680b57cec5SDimitry Andric           continue;
10690b57cec5SDimitry Andric         Resources[PRE.ProcResourceIdx]++;
10700b57cec5SDimitry Andric       }
10710b57cec5SDimitry Andric       return;
10720b57cec5SDimitry Andric     }
10730b57cec5SDimitry Andric     llvm_unreachable("Should have non-empty InstrItins or hasInstrSchedModel!");
10740b57cec5SDimitry Andric   }
10750b57cec5SDimitry Andric 
10760b57cec5SDimitry Andric   /// Return true if IS1 has less priority than IS2.
operator ()__anon6bac73c50d11::FuncUnitSorter10770b57cec5SDimitry Andric   bool operator()(const MachineInstr *IS1, const MachineInstr *IS2) const {
10785ffd83dbSDimitry Andric     InstrStage::FuncUnits F1 = 0, F2 = 0;
10790b57cec5SDimitry Andric     unsigned MFUs1 = minFuncUnits(IS1, F1);
10800b57cec5SDimitry Andric     unsigned MFUs2 = minFuncUnits(IS2, F2);
10818bcb0991SDimitry Andric     if (MFUs1 == MFUs2)
10820b57cec5SDimitry Andric       return Resources.lookup(F1) < Resources.lookup(F2);
10830b57cec5SDimitry Andric     return MFUs1 > MFUs2;
10840b57cec5SDimitry Andric   }
10850b57cec5SDimitry Andric };
10860b57cec5SDimitry Andric 
10870b57cec5SDimitry Andric } // end anonymous namespace
10880b57cec5SDimitry Andric 
10890b57cec5SDimitry Andric /// Calculate the resource constrained minimum initiation interval for the
10900b57cec5SDimitry Andric /// specified loop. We use the DFA to model the resources needed for
10910b57cec5SDimitry Andric /// each instruction, and we ignore dependences. A different DFA is created
10920b57cec5SDimitry Andric /// for each cycle that is required. When adding a new instruction, we attempt
10930b57cec5SDimitry Andric /// to add it to each existing DFA, until a legal space is found. If the
10940b57cec5SDimitry Andric /// instruction cannot be reserved in an existing DFA, we create a new one.
calculateResMII()10950b57cec5SDimitry Andric unsigned SwingSchedulerDAG::calculateResMII() {
10960b57cec5SDimitry Andric 
10970b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "calculateResMII:\n");
10980b57cec5SDimitry Andric   SmallVector<ResourceManager*, 8> Resources;
10990b57cec5SDimitry Andric   MachineBasicBlock *MBB = Loop.getHeader();
11000b57cec5SDimitry Andric   Resources.push_back(new ResourceManager(&MF.getSubtarget()));
11010b57cec5SDimitry Andric 
11020b57cec5SDimitry Andric   // Sort the instructions by the number of available choices for scheduling,
11030b57cec5SDimitry Andric   // least to most. Use the number of critical resources as the tie breaker.
11040b57cec5SDimitry Andric   FuncUnitSorter FUS = FuncUnitSorter(MF.getSubtarget());
11050b57cec5SDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
11060b57cec5SDimitry Andric                                    E = MBB->getFirstTerminator();
11070b57cec5SDimitry Andric        I != E; ++I)
11080b57cec5SDimitry Andric     FUS.calcCriticalResources(*I);
11090b57cec5SDimitry Andric   PriorityQueue<MachineInstr *, std::vector<MachineInstr *>, FuncUnitSorter>
11100b57cec5SDimitry Andric       FuncUnitOrder(FUS);
11110b57cec5SDimitry Andric 
11120b57cec5SDimitry Andric   for (MachineBasicBlock::iterator I = MBB->getFirstNonPHI(),
11130b57cec5SDimitry Andric                                    E = MBB->getFirstTerminator();
11140b57cec5SDimitry Andric        I != E; ++I)
11150b57cec5SDimitry Andric     FuncUnitOrder.push(&*I);
11160b57cec5SDimitry Andric 
11170b57cec5SDimitry Andric   while (!FuncUnitOrder.empty()) {
11180b57cec5SDimitry Andric     MachineInstr *MI = FuncUnitOrder.top();
11190b57cec5SDimitry Andric     FuncUnitOrder.pop();
11200b57cec5SDimitry Andric     if (TII->isZeroCost(MI->getOpcode()))
11210b57cec5SDimitry Andric       continue;
11220b57cec5SDimitry Andric     // Attempt to reserve the instruction in an existing DFA. At least one
11230b57cec5SDimitry Andric     // DFA is needed for each cycle.
11240b57cec5SDimitry Andric     unsigned NumCycles = getSUnit(MI)->Latency;
11250b57cec5SDimitry Andric     unsigned ReservedCycles = 0;
11260b57cec5SDimitry Andric     SmallVectorImpl<ResourceManager *>::iterator RI = Resources.begin();
11270b57cec5SDimitry Andric     SmallVectorImpl<ResourceManager *>::iterator RE = Resources.end();
11280b57cec5SDimitry Andric     LLVM_DEBUG({
11290b57cec5SDimitry Andric       dbgs() << "Trying to reserve resource for " << NumCycles
11300b57cec5SDimitry Andric              << " cycles for \n";
11310b57cec5SDimitry Andric       MI->dump();
11320b57cec5SDimitry Andric     });
11330b57cec5SDimitry Andric     for (unsigned C = 0; C < NumCycles; ++C)
11340b57cec5SDimitry Andric       while (RI != RE) {
11350b57cec5SDimitry Andric         if ((*RI)->canReserveResources(*MI)) {
11360b57cec5SDimitry Andric           (*RI)->reserveResources(*MI);
11370b57cec5SDimitry Andric           ++ReservedCycles;
11380b57cec5SDimitry Andric           break;
11390b57cec5SDimitry Andric         }
11400b57cec5SDimitry Andric         RI++;
11410b57cec5SDimitry Andric       }
11420b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "ReservedCycles:" << ReservedCycles
11430b57cec5SDimitry Andric                       << ", NumCycles:" << NumCycles << "\n");
11440b57cec5SDimitry Andric     // Add new DFAs, if needed, to reserve resources.
11450b57cec5SDimitry Andric     for (unsigned C = ReservedCycles; C < NumCycles; ++C) {
11460b57cec5SDimitry Andric       LLVM_DEBUG(if (SwpDebugResource) dbgs()
11470b57cec5SDimitry Andric                  << "NewResource created to reserve resources"
11480b57cec5SDimitry Andric                  << "\n");
11490b57cec5SDimitry Andric       ResourceManager *NewResource = new ResourceManager(&MF.getSubtarget());
11500b57cec5SDimitry Andric       assert(NewResource->canReserveResources(*MI) && "Reserve error.");
11510b57cec5SDimitry Andric       NewResource->reserveResources(*MI);
11520b57cec5SDimitry Andric       Resources.push_back(NewResource);
11530b57cec5SDimitry Andric     }
11540b57cec5SDimitry Andric   }
11550b57cec5SDimitry Andric   int Resmii = Resources.size();
11565ffd83dbSDimitry Andric   LLVM_DEBUG(dbgs() << "Return Res MII:" << Resmii << "\n");
11570b57cec5SDimitry Andric   // Delete the memory for each of the DFAs that were created earlier.
11580b57cec5SDimitry Andric   for (ResourceManager *RI : Resources) {
11590b57cec5SDimitry Andric     ResourceManager *D = RI;
11600b57cec5SDimitry Andric     delete D;
11610b57cec5SDimitry Andric   }
11620b57cec5SDimitry Andric   Resources.clear();
11630b57cec5SDimitry Andric   return Resmii;
11640b57cec5SDimitry Andric }
11650b57cec5SDimitry Andric 
11660b57cec5SDimitry Andric /// Calculate the recurrence-constrainted minimum initiation interval.
11670b57cec5SDimitry Andric /// Iterate over each circuit.  Compute the delay(c) and distance(c)
11680b57cec5SDimitry Andric /// for each circuit. The II needs to satisfy the inequality
11690b57cec5SDimitry Andric /// delay(c) - II*distance(c) <= 0. For each circuit, choose the smallest
11700b57cec5SDimitry Andric /// II that satisfies the inequality, and the RecMII is the maximum
11710b57cec5SDimitry Andric /// of those values.
calculateRecMII(NodeSetType & NodeSets)11720b57cec5SDimitry Andric unsigned SwingSchedulerDAG::calculateRecMII(NodeSetType &NodeSets) {
11730b57cec5SDimitry Andric   unsigned RecMII = 0;
11740b57cec5SDimitry Andric 
11750b57cec5SDimitry Andric   for (NodeSet &Nodes : NodeSets) {
11760b57cec5SDimitry Andric     if (Nodes.empty())
11770b57cec5SDimitry Andric       continue;
11780b57cec5SDimitry Andric 
11790b57cec5SDimitry Andric     unsigned Delay = Nodes.getLatency();
11800b57cec5SDimitry Andric     unsigned Distance = 1;
11810b57cec5SDimitry Andric 
11820b57cec5SDimitry Andric     // ii = ceil(delay / distance)
11830b57cec5SDimitry Andric     unsigned CurMII = (Delay + Distance - 1) / Distance;
11840b57cec5SDimitry Andric     Nodes.setRecMII(CurMII);
11850b57cec5SDimitry Andric     if (CurMII > RecMII)
11860b57cec5SDimitry Andric       RecMII = CurMII;
11870b57cec5SDimitry Andric   }
11880b57cec5SDimitry Andric 
11890b57cec5SDimitry Andric   return RecMII;
11900b57cec5SDimitry Andric }
11910b57cec5SDimitry Andric 
11920b57cec5SDimitry Andric /// Swap all the anti dependences in the DAG. That means it is no longer a DAG,
11930b57cec5SDimitry Andric /// but we do this to find the circuits, and then change them back.
swapAntiDependences(std::vector<SUnit> & SUnits)11940b57cec5SDimitry Andric static void swapAntiDependences(std::vector<SUnit> &SUnits) {
11950b57cec5SDimitry Andric   SmallVector<std::pair<SUnit *, SDep>, 8> DepsAdded;
11960b57cec5SDimitry Andric   for (unsigned i = 0, e = SUnits.size(); i != e; ++i) {
11970b57cec5SDimitry Andric     SUnit *SU = &SUnits[i];
11980b57cec5SDimitry Andric     for (SUnit::pred_iterator IP = SU->Preds.begin(), EP = SU->Preds.end();
11990b57cec5SDimitry Andric          IP != EP; ++IP) {
12000b57cec5SDimitry Andric       if (IP->getKind() != SDep::Anti)
12010b57cec5SDimitry Andric         continue;
12020b57cec5SDimitry Andric       DepsAdded.push_back(std::make_pair(SU, *IP));
12030b57cec5SDimitry Andric     }
12040b57cec5SDimitry Andric   }
1205*5f7ddb14SDimitry Andric   for (std::pair<SUnit *, SDep> &P : DepsAdded) {
12060b57cec5SDimitry Andric     // Remove this anti dependency and add one in the reverse direction.
1207*5f7ddb14SDimitry Andric     SUnit *SU = P.first;
1208*5f7ddb14SDimitry Andric     SDep &D = P.second;
12090b57cec5SDimitry Andric     SUnit *TargetSU = D.getSUnit();
12100b57cec5SDimitry Andric     unsigned Reg = D.getReg();
12110b57cec5SDimitry Andric     unsigned Lat = D.getLatency();
12120b57cec5SDimitry Andric     SU->removePred(D);
12130b57cec5SDimitry Andric     SDep Dep(SU, SDep::Anti, Reg);
12140b57cec5SDimitry Andric     Dep.setLatency(Lat);
12150b57cec5SDimitry Andric     TargetSU->addPred(Dep);
12160b57cec5SDimitry Andric   }
12170b57cec5SDimitry Andric }
12180b57cec5SDimitry Andric 
12190b57cec5SDimitry Andric /// Create the adjacency structure of the nodes in the graph.
createAdjacencyStructure(SwingSchedulerDAG * DAG)12200b57cec5SDimitry Andric void SwingSchedulerDAG::Circuits::createAdjacencyStructure(
12210b57cec5SDimitry Andric     SwingSchedulerDAG *DAG) {
12220b57cec5SDimitry Andric   BitVector Added(SUnits.size());
12230b57cec5SDimitry Andric   DenseMap<int, int> OutputDeps;
12240b57cec5SDimitry Andric   for (int i = 0, e = SUnits.size(); i != e; ++i) {
12250b57cec5SDimitry Andric     Added.reset();
12260b57cec5SDimitry Andric     // Add any successor to the adjacency matrix and exclude duplicates.
12270b57cec5SDimitry Andric     for (auto &SI : SUnits[i].Succs) {
12280b57cec5SDimitry Andric       // Only create a back-edge on the first and last nodes of a dependence
12290b57cec5SDimitry Andric       // chain. This records any chains and adds them later.
12300b57cec5SDimitry Andric       if (SI.getKind() == SDep::Output) {
12310b57cec5SDimitry Andric         int N = SI.getSUnit()->NodeNum;
12320b57cec5SDimitry Andric         int BackEdge = i;
12330b57cec5SDimitry Andric         auto Dep = OutputDeps.find(BackEdge);
12340b57cec5SDimitry Andric         if (Dep != OutputDeps.end()) {
12350b57cec5SDimitry Andric           BackEdge = Dep->second;
12360b57cec5SDimitry Andric           OutputDeps.erase(Dep);
12370b57cec5SDimitry Andric         }
12380b57cec5SDimitry Andric         OutputDeps[N] = BackEdge;
12390b57cec5SDimitry Andric       }
12400b57cec5SDimitry Andric       // Do not process a boundary node, an artificial node.
12410b57cec5SDimitry Andric       // A back-edge is processed only if it goes to a Phi.
12420b57cec5SDimitry Andric       if (SI.getSUnit()->isBoundaryNode() || SI.isArtificial() ||
12430b57cec5SDimitry Andric           (SI.getKind() == SDep::Anti && !SI.getSUnit()->getInstr()->isPHI()))
12440b57cec5SDimitry Andric         continue;
12450b57cec5SDimitry Andric       int N = SI.getSUnit()->NodeNum;
12460b57cec5SDimitry Andric       if (!Added.test(N)) {
12470b57cec5SDimitry Andric         AdjK[i].push_back(N);
12480b57cec5SDimitry Andric         Added.set(N);
12490b57cec5SDimitry Andric       }
12500b57cec5SDimitry Andric     }
12510b57cec5SDimitry Andric     // A chain edge between a store and a load is treated as a back-edge in the
12520b57cec5SDimitry Andric     // adjacency matrix.
12530b57cec5SDimitry Andric     for (auto &PI : SUnits[i].Preds) {
12540b57cec5SDimitry Andric       if (!SUnits[i].getInstr()->mayStore() ||
12550b57cec5SDimitry Andric           !DAG->isLoopCarriedDep(&SUnits[i], PI, false))
12560b57cec5SDimitry Andric         continue;
12570b57cec5SDimitry Andric       if (PI.getKind() == SDep::Order && PI.getSUnit()->getInstr()->mayLoad()) {
12580b57cec5SDimitry Andric         int N = PI.getSUnit()->NodeNum;
12590b57cec5SDimitry Andric         if (!Added.test(N)) {
12600b57cec5SDimitry Andric           AdjK[i].push_back(N);
12610b57cec5SDimitry Andric           Added.set(N);
12620b57cec5SDimitry Andric         }
12630b57cec5SDimitry Andric       }
12640b57cec5SDimitry Andric     }
12650b57cec5SDimitry Andric   }
12660b57cec5SDimitry Andric   // Add back-edges in the adjacency matrix for the output dependences.
12670b57cec5SDimitry Andric   for (auto &OD : OutputDeps)
12680b57cec5SDimitry Andric     if (!Added.test(OD.second)) {
12690b57cec5SDimitry Andric       AdjK[OD.first].push_back(OD.second);
12700b57cec5SDimitry Andric       Added.set(OD.second);
12710b57cec5SDimitry Andric     }
12720b57cec5SDimitry Andric }
12730b57cec5SDimitry Andric 
12740b57cec5SDimitry Andric /// Identify an elementary circuit in the dependence graph starting at the
12750b57cec5SDimitry Andric /// specified node.
circuit(int V,int S,NodeSetType & NodeSets,bool HasBackedge)12760b57cec5SDimitry Andric bool SwingSchedulerDAG::Circuits::circuit(int V, int S, NodeSetType &NodeSets,
12770b57cec5SDimitry Andric                                           bool HasBackedge) {
12780b57cec5SDimitry Andric   SUnit *SV = &SUnits[V];
12790b57cec5SDimitry Andric   bool F = false;
12800b57cec5SDimitry Andric   Stack.insert(SV);
12810b57cec5SDimitry Andric   Blocked.set(V);
12820b57cec5SDimitry Andric 
12830b57cec5SDimitry Andric   for (auto W : AdjK[V]) {
12840b57cec5SDimitry Andric     if (NumPaths > MaxPaths)
12850b57cec5SDimitry Andric       break;
12860b57cec5SDimitry Andric     if (W < S)
12870b57cec5SDimitry Andric       continue;
12880b57cec5SDimitry Andric     if (W == S) {
12890b57cec5SDimitry Andric       if (!HasBackedge)
12900b57cec5SDimitry Andric         NodeSets.push_back(NodeSet(Stack.begin(), Stack.end()));
12910b57cec5SDimitry Andric       F = true;
12920b57cec5SDimitry Andric       ++NumPaths;
12930b57cec5SDimitry Andric       break;
12940b57cec5SDimitry Andric     } else if (!Blocked.test(W)) {
12950b57cec5SDimitry Andric       if (circuit(W, S, NodeSets,
12960b57cec5SDimitry Andric                   Node2Idx->at(W) < Node2Idx->at(V) ? true : HasBackedge))
12970b57cec5SDimitry Andric         F = true;
12980b57cec5SDimitry Andric     }
12990b57cec5SDimitry Andric   }
13000b57cec5SDimitry Andric 
13010b57cec5SDimitry Andric   if (F)
13020b57cec5SDimitry Andric     unblock(V);
13030b57cec5SDimitry Andric   else {
13040b57cec5SDimitry Andric     for (auto W : AdjK[V]) {
13050b57cec5SDimitry Andric       if (W < S)
13060b57cec5SDimitry Andric         continue;
13070b57cec5SDimitry Andric       if (B[W].count(SV) == 0)
13080b57cec5SDimitry Andric         B[W].insert(SV);
13090b57cec5SDimitry Andric     }
13100b57cec5SDimitry Andric   }
13110b57cec5SDimitry Andric   Stack.pop_back();
13120b57cec5SDimitry Andric   return F;
13130b57cec5SDimitry Andric }
13140b57cec5SDimitry Andric 
13150b57cec5SDimitry Andric /// Unblock a node in the circuit finding algorithm.
unblock(int U)13160b57cec5SDimitry Andric void SwingSchedulerDAG::Circuits::unblock(int U) {
13170b57cec5SDimitry Andric   Blocked.reset(U);
13180b57cec5SDimitry Andric   SmallPtrSet<SUnit *, 4> &BU = B[U];
13190b57cec5SDimitry Andric   while (!BU.empty()) {
13200b57cec5SDimitry Andric     SmallPtrSet<SUnit *, 4>::iterator SI = BU.begin();
13210b57cec5SDimitry Andric     assert(SI != BU.end() && "Invalid B set.");
13220b57cec5SDimitry Andric     SUnit *W = *SI;
13230b57cec5SDimitry Andric     BU.erase(W);
13240b57cec5SDimitry Andric     if (Blocked.test(W->NodeNum))
13250b57cec5SDimitry Andric       unblock(W->NodeNum);
13260b57cec5SDimitry Andric   }
13270b57cec5SDimitry Andric }
13280b57cec5SDimitry Andric 
13290b57cec5SDimitry Andric /// Identify all the elementary circuits in the dependence graph using
13300b57cec5SDimitry Andric /// Johnson's circuit algorithm.
findCircuits(NodeSetType & NodeSets)13310b57cec5SDimitry Andric void SwingSchedulerDAG::findCircuits(NodeSetType &NodeSets) {
13320b57cec5SDimitry Andric   // Swap all the anti dependences in the DAG. That means it is no longer a DAG,
13330b57cec5SDimitry Andric   // but we do this to find the circuits, and then change them back.
13340b57cec5SDimitry Andric   swapAntiDependences(SUnits);
13350b57cec5SDimitry Andric 
13360b57cec5SDimitry Andric   Circuits Cir(SUnits, Topo);
13370b57cec5SDimitry Andric   // Create the adjacency structure.
13380b57cec5SDimitry Andric   Cir.createAdjacencyStructure(this);
13390b57cec5SDimitry Andric   for (int i = 0, e = SUnits.size(); i != e; ++i) {
13400b57cec5SDimitry Andric     Cir.reset();
13410b57cec5SDimitry Andric     Cir.circuit(i, i, NodeSets);
13420b57cec5SDimitry Andric   }
13430b57cec5SDimitry Andric 
13440b57cec5SDimitry Andric   // Change the dependences back so that we've created a DAG again.
13450b57cec5SDimitry Andric   swapAntiDependences(SUnits);
13460b57cec5SDimitry Andric }
13470b57cec5SDimitry Andric 
13480b57cec5SDimitry Andric // Create artificial dependencies between the source of COPY/REG_SEQUENCE that
13490b57cec5SDimitry Andric // is loop-carried to the USE in next iteration. This will help pipeliner avoid
13500b57cec5SDimitry Andric // additional copies that are needed across iterations. An artificial dependence
13510b57cec5SDimitry Andric // edge is added from USE to SOURCE of COPY/REG_SEQUENCE.
13520b57cec5SDimitry Andric 
13530b57cec5SDimitry Andric // PHI-------Anti-Dep-----> COPY/REG_SEQUENCE (loop-carried)
13540b57cec5SDimitry Andric // SRCOfCopY------True-Dep---> COPY/REG_SEQUENCE
13550b57cec5SDimitry Andric // PHI-------True-Dep------> USEOfPhi
13560b57cec5SDimitry Andric 
13570b57cec5SDimitry Andric // The mutation creates
13580b57cec5SDimitry Andric // USEOfPHI -------Artificial-Dep---> SRCOfCopy
13590b57cec5SDimitry Andric 
13600b57cec5SDimitry Andric // This overall will ensure, the USEOfPHI is scheduled before SRCOfCopy
13610b57cec5SDimitry Andric // (since USE is a predecessor), implies, the COPY/ REG_SEQUENCE is scheduled
13620b57cec5SDimitry Andric // late  to avoid additional copies across iterations. The possible scheduling
13630b57cec5SDimitry Andric // order would be
13640b57cec5SDimitry Andric // USEOfPHI --- SRCOfCopy---  COPY/REG_SEQUENCE.
13650b57cec5SDimitry Andric 
apply(ScheduleDAGInstrs * DAG)13660b57cec5SDimitry Andric void SwingSchedulerDAG::CopyToPhiMutation::apply(ScheduleDAGInstrs *DAG) {
13670b57cec5SDimitry Andric   for (SUnit &SU : DAG->SUnits) {
13680b57cec5SDimitry Andric     // Find the COPY/REG_SEQUENCE instruction.
13690b57cec5SDimitry Andric     if (!SU.getInstr()->isCopy() && !SU.getInstr()->isRegSequence())
13700b57cec5SDimitry Andric       continue;
13710b57cec5SDimitry Andric 
13720b57cec5SDimitry Andric     // Record the loop carried PHIs.
13730b57cec5SDimitry Andric     SmallVector<SUnit *, 4> PHISUs;
13740b57cec5SDimitry Andric     // Record the SrcSUs that feed the COPY/REG_SEQUENCE instructions.
13750b57cec5SDimitry Andric     SmallVector<SUnit *, 4> SrcSUs;
13760b57cec5SDimitry Andric 
13770b57cec5SDimitry Andric     for (auto &Dep : SU.Preds) {
13780b57cec5SDimitry Andric       SUnit *TmpSU = Dep.getSUnit();
13790b57cec5SDimitry Andric       MachineInstr *TmpMI = TmpSU->getInstr();
13800b57cec5SDimitry Andric       SDep::Kind DepKind = Dep.getKind();
13810b57cec5SDimitry Andric       // Save the loop carried PHI.
13820b57cec5SDimitry Andric       if (DepKind == SDep::Anti && TmpMI->isPHI())
13830b57cec5SDimitry Andric         PHISUs.push_back(TmpSU);
13840b57cec5SDimitry Andric       // Save the source of COPY/REG_SEQUENCE.
13850b57cec5SDimitry Andric       // If the source has no pre-decessors, we will end up creating cycles.
13860b57cec5SDimitry Andric       else if (DepKind == SDep::Data && !TmpMI->isPHI() && TmpSU->NumPreds > 0)
13870b57cec5SDimitry Andric         SrcSUs.push_back(TmpSU);
13880b57cec5SDimitry Andric     }
13890b57cec5SDimitry Andric 
13900b57cec5SDimitry Andric     if (PHISUs.size() == 0 || SrcSUs.size() == 0)
13910b57cec5SDimitry Andric       continue;
13920b57cec5SDimitry Andric 
13930b57cec5SDimitry Andric     // Find the USEs of PHI. If the use is a PHI or REG_SEQUENCE, push back this
13940b57cec5SDimitry Andric     // SUnit to the container.
13950b57cec5SDimitry Andric     SmallVector<SUnit *, 8> UseSUs;
1396480093f4SDimitry Andric     // Do not use iterator based loop here as we are updating the container.
1397480093f4SDimitry Andric     for (size_t Index = 0; Index < PHISUs.size(); ++Index) {
1398480093f4SDimitry Andric       for (auto &Dep : PHISUs[Index]->Succs) {
13990b57cec5SDimitry Andric         if (Dep.getKind() != SDep::Data)
14000b57cec5SDimitry Andric           continue;
14010b57cec5SDimitry Andric 
14020b57cec5SDimitry Andric         SUnit *TmpSU = Dep.getSUnit();
14030b57cec5SDimitry Andric         MachineInstr *TmpMI = TmpSU->getInstr();
14040b57cec5SDimitry Andric         if (TmpMI->isPHI() || TmpMI->isRegSequence()) {
14050b57cec5SDimitry Andric           PHISUs.push_back(TmpSU);
14060b57cec5SDimitry Andric           continue;
14070b57cec5SDimitry Andric         }
14080b57cec5SDimitry Andric         UseSUs.push_back(TmpSU);
14090b57cec5SDimitry Andric       }
14100b57cec5SDimitry Andric     }
14110b57cec5SDimitry Andric 
14120b57cec5SDimitry Andric     if (UseSUs.size() == 0)
14130b57cec5SDimitry Andric       continue;
14140b57cec5SDimitry Andric 
14150b57cec5SDimitry Andric     SwingSchedulerDAG *SDAG = cast<SwingSchedulerDAG>(DAG);
14160b57cec5SDimitry Andric     // Add the artificial dependencies if it does not form a cycle.
14170b57cec5SDimitry Andric     for (auto I : UseSUs) {
14180b57cec5SDimitry Andric       for (auto Src : SrcSUs) {
14190b57cec5SDimitry Andric         if (!SDAG->Topo.IsReachable(I, Src) && Src != I) {
14200b57cec5SDimitry Andric           Src->addPred(SDep(I, SDep::Artificial));
14210b57cec5SDimitry Andric           SDAG->Topo.AddPred(Src, I);
14220b57cec5SDimitry Andric         }
14230b57cec5SDimitry Andric       }
14240b57cec5SDimitry Andric     }
14250b57cec5SDimitry Andric   }
14260b57cec5SDimitry Andric }
14270b57cec5SDimitry Andric 
14280b57cec5SDimitry Andric /// Return true for DAG nodes that we ignore when computing the cost functions.
14290b57cec5SDimitry Andric /// We ignore the back-edge recurrence in order to avoid unbounded recursion
14300b57cec5SDimitry Andric /// in the calculation of the ASAP, ALAP, etc functions.
ignoreDependence(const SDep & D,bool isPred)14310b57cec5SDimitry Andric static bool ignoreDependence(const SDep &D, bool isPred) {
14320b57cec5SDimitry Andric   if (D.isArtificial())
14330b57cec5SDimitry Andric     return true;
14340b57cec5SDimitry Andric   return D.getKind() == SDep::Anti && isPred;
14350b57cec5SDimitry Andric }
14360b57cec5SDimitry Andric 
14370b57cec5SDimitry Andric /// Compute several functions need to order the nodes for scheduling.
14380b57cec5SDimitry Andric ///  ASAP - Earliest time to schedule a node.
14390b57cec5SDimitry Andric ///  ALAP - Latest time to schedule a node.
14400b57cec5SDimitry Andric ///  MOV - Mobility function, difference between ALAP and ASAP.
14410b57cec5SDimitry Andric ///  D - Depth of each node.
14420b57cec5SDimitry Andric ///  H - Height of each node.
computeNodeFunctions(NodeSetType & NodeSets)14430b57cec5SDimitry Andric void SwingSchedulerDAG::computeNodeFunctions(NodeSetType &NodeSets) {
14440b57cec5SDimitry Andric   ScheduleInfo.resize(SUnits.size());
14450b57cec5SDimitry Andric 
14460b57cec5SDimitry Andric   LLVM_DEBUG({
1447*5f7ddb14SDimitry Andric     for (int I : Topo) {
1448*5f7ddb14SDimitry Andric       const SUnit &SU = SUnits[I];
14490b57cec5SDimitry Andric       dumpNode(SU);
14500b57cec5SDimitry Andric     }
14510b57cec5SDimitry Andric   });
14520b57cec5SDimitry Andric 
14530b57cec5SDimitry Andric   int maxASAP = 0;
14540b57cec5SDimitry Andric   // Compute ASAP and ZeroLatencyDepth.
1455*5f7ddb14SDimitry Andric   for (int I : Topo) {
14560b57cec5SDimitry Andric     int asap = 0;
14570b57cec5SDimitry Andric     int zeroLatencyDepth = 0;
1458*5f7ddb14SDimitry Andric     SUnit *SU = &SUnits[I];
14590b57cec5SDimitry Andric     for (SUnit::const_pred_iterator IP = SU->Preds.begin(),
14600b57cec5SDimitry Andric                                     EP = SU->Preds.end();
14610b57cec5SDimitry Andric          IP != EP; ++IP) {
14620b57cec5SDimitry Andric       SUnit *pred = IP->getSUnit();
14630b57cec5SDimitry Andric       if (IP->getLatency() == 0)
14640b57cec5SDimitry Andric         zeroLatencyDepth =
14650b57cec5SDimitry Andric             std::max(zeroLatencyDepth, getZeroLatencyDepth(pred) + 1);
14660b57cec5SDimitry Andric       if (ignoreDependence(*IP, true))
14670b57cec5SDimitry Andric         continue;
14680b57cec5SDimitry Andric       asap = std::max(asap, (int)(getASAP(pred) + IP->getLatency() -
14690b57cec5SDimitry Andric                                   getDistance(pred, SU, *IP) * MII));
14700b57cec5SDimitry Andric     }
14710b57cec5SDimitry Andric     maxASAP = std::max(maxASAP, asap);
1472*5f7ddb14SDimitry Andric     ScheduleInfo[I].ASAP = asap;
1473*5f7ddb14SDimitry Andric     ScheduleInfo[I].ZeroLatencyDepth = zeroLatencyDepth;
14740b57cec5SDimitry Andric   }
14750b57cec5SDimitry Andric 
14760b57cec5SDimitry Andric   // Compute ALAP, ZeroLatencyHeight, and MOV.
14770b57cec5SDimitry Andric   for (ScheduleDAGTopologicalSort::const_reverse_iterator I = Topo.rbegin(),
14780b57cec5SDimitry Andric                                                           E = Topo.rend();
14790b57cec5SDimitry Andric        I != E; ++I) {
14800b57cec5SDimitry Andric     int alap = maxASAP;
14810b57cec5SDimitry Andric     int zeroLatencyHeight = 0;
14820b57cec5SDimitry Andric     SUnit *SU = &SUnits[*I];
14830b57cec5SDimitry Andric     for (SUnit::const_succ_iterator IS = SU->Succs.begin(),
14840b57cec5SDimitry Andric                                     ES = SU->Succs.end();
14850b57cec5SDimitry Andric          IS != ES; ++IS) {
14860b57cec5SDimitry Andric       SUnit *succ = IS->getSUnit();
14870b57cec5SDimitry Andric       if (IS->getLatency() == 0)
14880b57cec5SDimitry Andric         zeroLatencyHeight =
14890b57cec5SDimitry Andric             std::max(zeroLatencyHeight, getZeroLatencyHeight(succ) + 1);
14900b57cec5SDimitry Andric       if (ignoreDependence(*IS, true))
14910b57cec5SDimitry Andric         continue;
14920b57cec5SDimitry Andric       alap = std::min(alap, (int)(getALAP(succ) - IS->getLatency() +
14930b57cec5SDimitry Andric                                   getDistance(SU, succ, *IS) * MII));
14940b57cec5SDimitry Andric     }
14950b57cec5SDimitry Andric 
14960b57cec5SDimitry Andric     ScheduleInfo[*I].ALAP = alap;
14970b57cec5SDimitry Andric     ScheduleInfo[*I].ZeroLatencyHeight = zeroLatencyHeight;
14980b57cec5SDimitry Andric   }
14990b57cec5SDimitry Andric 
15000b57cec5SDimitry Andric   // After computing the node functions, compute the summary for each node set.
15010b57cec5SDimitry Andric   for (NodeSet &I : NodeSets)
15020b57cec5SDimitry Andric     I.computeNodeSetInfo(this);
15030b57cec5SDimitry Andric 
15040b57cec5SDimitry Andric   LLVM_DEBUG({
15050b57cec5SDimitry Andric     for (unsigned i = 0; i < SUnits.size(); i++) {
15060b57cec5SDimitry Andric       dbgs() << "\tNode " << i << ":\n";
15070b57cec5SDimitry Andric       dbgs() << "\t   ASAP = " << getASAP(&SUnits[i]) << "\n";
15080b57cec5SDimitry Andric       dbgs() << "\t   ALAP = " << getALAP(&SUnits[i]) << "\n";
15090b57cec5SDimitry Andric       dbgs() << "\t   MOV  = " << getMOV(&SUnits[i]) << "\n";
15100b57cec5SDimitry Andric       dbgs() << "\t   D    = " << getDepth(&SUnits[i]) << "\n";
15110b57cec5SDimitry Andric       dbgs() << "\t   H    = " << getHeight(&SUnits[i]) << "\n";
15120b57cec5SDimitry Andric       dbgs() << "\t   ZLD  = " << getZeroLatencyDepth(&SUnits[i]) << "\n";
15130b57cec5SDimitry Andric       dbgs() << "\t   ZLH  = " << getZeroLatencyHeight(&SUnits[i]) << "\n";
15140b57cec5SDimitry Andric     }
15150b57cec5SDimitry Andric   });
15160b57cec5SDimitry Andric }
15170b57cec5SDimitry Andric 
15180b57cec5SDimitry Andric /// Compute the Pred_L(O) set, as defined in the paper. The set is defined
15190b57cec5SDimitry Andric /// as the predecessors of the elements of NodeOrder that are not also in
15200b57cec5SDimitry Andric /// NodeOrder.
pred_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Preds,const NodeSet * S=nullptr)15210b57cec5SDimitry Andric static bool pred_L(SetVector<SUnit *> &NodeOrder,
15220b57cec5SDimitry Andric                    SmallSetVector<SUnit *, 8> &Preds,
15230b57cec5SDimitry Andric                    const NodeSet *S = nullptr) {
15240b57cec5SDimitry Andric   Preds.clear();
15250b57cec5SDimitry Andric   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
15260b57cec5SDimitry Andric        I != E; ++I) {
1527*5f7ddb14SDimitry Andric     for (const SDep &Pred : (*I)->Preds) {
1528*5f7ddb14SDimitry Andric       if (S && S->count(Pred.getSUnit()) == 0)
15290b57cec5SDimitry Andric         continue;
1530*5f7ddb14SDimitry Andric       if (ignoreDependence(Pred, true))
15310b57cec5SDimitry Andric         continue;
1532*5f7ddb14SDimitry Andric       if (NodeOrder.count(Pred.getSUnit()) == 0)
1533*5f7ddb14SDimitry Andric         Preds.insert(Pred.getSUnit());
15340b57cec5SDimitry Andric     }
15350b57cec5SDimitry Andric     // Back-edges are predecessors with an anti-dependence.
1536*5f7ddb14SDimitry Andric     for (const SDep &Succ : (*I)->Succs) {
1537*5f7ddb14SDimitry Andric       if (Succ.getKind() != SDep::Anti)
15380b57cec5SDimitry Andric         continue;
1539*5f7ddb14SDimitry Andric       if (S && S->count(Succ.getSUnit()) == 0)
15400b57cec5SDimitry Andric         continue;
1541*5f7ddb14SDimitry Andric       if (NodeOrder.count(Succ.getSUnit()) == 0)
1542*5f7ddb14SDimitry Andric         Preds.insert(Succ.getSUnit());
15430b57cec5SDimitry Andric     }
15440b57cec5SDimitry Andric   }
15450b57cec5SDimitry Andric   return !Preds.empty();
15460b57cec5SDimitry Andric }
15470b57cec5SDimitry Andric 
15480b57cec5SDimitry Andric /// Compute the Succ_L(O) set, as defined in the paper. The set is defined
15490b57cec5SDimitry Andric /// as the successors of the elements of NodeOrder that are not also in
15500b57cec5SDimitry Andric /// NodeOrder.
succ_L(SetVector<SUnit * > & NodeOrder,SmallSetVector<SUnit *,8> & Succs,const NodeSet * S=nullptr)15510b57cec5SDimitry Andric static bool succ_L(SetVector<SUnit *> &NodeOrder,
15520b57cec5SDimitry Andric                    SmallSetVector<SUnit *, 8> &Succs,
15530b57cec5SDimitry Andric                    const NodeSet *S = nullptr) {
15540b57cec5SDimitry Andric   Succs.clear();
15550b57cec5SDimitry Andric   for (SetVector<SUnit *>::iterator I = NodeOrder.begin(), E = NodeOrder.end();
15560b57cec5SDimitry Andric        I != E; ++I) {
1557*5f7ddb14SDimitry Andric     for (SDep &Succ : (*I)->Succs) {
1558*5f7ddb14SDimitry Andric       if (S && S->count(Succ.getSUnit()) == 0)
15590b57cec5SDimitry Andric         continue;
1560*5f7ddb14SDimitry Andric       if (ignoreDependence(Succ, false))
15610b57cec5SDimitry Andric         continue;
1562*5f7ddb14SDimitry Andric       if (NodeOrder.count(Succ.getSUnit()) == 0)
1563*5f7ddb14SDimitry Andric         Succs.insert(Succ.getSUnit());
15640b57cec5SDimitry Andric     }
1565*5f7ddb14SDimitry Andric     for (SDep &Pred : (*I)->Preds) {
1566*5f7ddb14SDimitry Andric       if (Pred.getKind() != SDep::Anti)
15670b57cec5SDimitry Andric         continue;
1568*5f7ddb14SDimitry Andric       if (S && S->count(Pred.getSUnit()) == 0)
15690b57cec5SDimitry Andric         continue;
1570*5f7ddb14SDimitry Andric       if (NodeOrder.count(Pred.getSUnit()) == 0)
1571*5f7ddb14SDimitry Andric         Succs.insert(Pred.getSUnit());
15720b57cec5SDimitry Andric     }
15730b57cec5SDimitry Andric   }
15740b57cec5SDimitry Andric   return !Succs.empty();
15750b57cec5SDimitry Andric }
15760b57cec5SDimitry Andric 
15770b57cec5SDimitry Andric /// Return true if there is a path from the specified node to any of the nodes
15780b57cec5SDimitry Andric /// in DestNodes. Keep track and return the nodes in any path.
computePath(SUnit * Cur,SetVector<SUnit * > & Path,SetVector<SUnit * > & DestNodes,SetVector<SUnit * > & Exclude,SmallPtrSet<SUnit *,8> & Visited)15790b57cec5SDimitry Andric static bool computePath(SUnit *Cur, SetVector<SUnit *> &Path,
15800b57cec5SDimitry Andric                         SetVector<SUnit *> &DestNodes,
15810b57cec5SDimitry Andric                         SetVector<SUnit *> &Exclude,
15820b57cec5SDimitry Andric                         SmallPtrSet<SUnit *, 8> &Visited) {
15830b57cec5SDimitry Andric   if (Cur->isBoundaryNode())
15840b57cec5SDimitry Andric     return false;
1585af732203SDimitry Andric   if (Exclude.contains(Cur))
15860b57cec5SDimitry Andric     return false;
1587af732203SDimitry Andric   if (DestNodes.contains(Cur))
15880b57cec5SDimitry Andric     return true;
15890b57cec5SDimitry Andric   if (!Visited.insert(Cur).second)
1590af732203SDimitry Andric     return Path.contains(Cur);
15910b57cec5SDimitry Andric   bool FoundPath = false;
15920b57cec5SDimitry Andric   for (auto &SI : Cur->Succs)
15930b57cec5SDimitry Andric     FoundPath |= computePath(SI.getSUnit(), Path, DestNodes, Exclude, Visited);
15940b57cec5SDimitry Andric   for (auto &PI : Cur->Preds)
15950b57cec5SDimitry Andric     if (PI.getKind() == SDep::Anti)
15960b57cec5SDimitry Andric       FoundPath |=
15970b57cec5SDimitry Andric           computePath(PI.getSUnit(), Path, DestNodes, Exclude, Visited);
15980b57cec5SDimitry Andric   if (FoundPath)
15990b57cec5SDimitry Andric     Path.insert(Cur);
16000b57cec5SDimitry Andric   return FoundPath;
16010b57cec5SDimitry Andric }
16020b57cec5SDimitry Andric 
16030b57cec5SDimitry Andric /// Compute the live-out registers for the instructions in a node-set.
16040b57cec5SDimitry Andric /// The live-out registers are those that are defined in the node-set,
16050b57cec5SDimitry Andric /// but not used. Except for use operands of Phis.
computeLiveOuts(MachineFunction & MF,RegPressureTracker & RPTracker,NodeSet & NS)16060b57cec5SDimitry Andric static void computeLiveOuts(MachineFunction &MF, RegPressureTracker &RPTracker,
16070b57cec5SDimitry Andric                             NodeSet &NS) {
16080b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
16090b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
16100b57cec5SDimitry Andric   SmallVector<RegisterMaskPair, 8> LiveOutRegs;
16110b57cec5SDimitry Andric   SmallSet<unsigned, 4> Uses;
16120b57cec5SDimitry Andric   for (SUnit *SU : NS) {
16130b57cec5SDimitry Andric     const MachineInstr *MI = SU->getInstr();
16140b57cec5SDimitry Andric     if (MI->isPHI())
16150b57cec5SDimitry Andric       continue;
16160b57cec5SDimitry Andric     for (const MachineOperand &MO : MI->operands())
16170b57cec5SDimitry Andric       if (MO.isReg() && MO.isUse()) {
16188bcb0991SDimitry Andric         Register Reg = MO.getReg();
16198bcb0991SDimitry Andric         if (Register::isVirtualRegister(Reg))
16200b57cec5SDimitry Andric           Uses.insert(Reg);
16210b57cec5SDimitry Andric         else if (MRI.isAllocatable(Reg))
1622af732203SDimitry Andric           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1623af732203SDimitry Andric                ++Units)
16240b57cec5SDimitry Andric             Uses.insert(*Units);
16250b57cec5SDimitry Andric       }
16260b57cec5SDimitry Andric   }
16270b57cec5SDimitry Andric   for (SUnit *SU : NS)
16280b57cec5SDimitry Andric     for (const MachineOperand &MO : SU->getInstr()->operands())
16290b57cec5SDimitry Andric       if (MO.isReg() && MO.isDef() && !MO.isDead()) {
16308bcb0991SDimitry Andric         Register Reg = MO.getReg();
16318bcb0991SDimitry Andric         if (Register::isVirtualRegister(Reg)) {
16320b57cec5SDimitry Andric           if (!Uses.count(Reg))
16330b57cec5SDimitry Andric             LiveOutRegs.push_back(RegisterMaskPair(Reg,
16340b57cec5SDimitry Andric                                                    LaneBitmask::getNone()));
16350b57cec5SDimitry Andric         } else if (MRI.isAllocatable(Reg)) {
1636af732203SDimitry Andric           for (MCRegUnitIterator Units(Reg.asMCReg(), TRI); Units.isValid();
1637af732203SDimitry Andric                ++Units)
16380b57cec5SDimitry Andric             if (!Uses.count(*Units))
16390b57cec5SDimitry Andric               LiveOutRegs.push_back(RegisterMaskPair(*Units,
16400b57cec5SDimitry Andric                                                      LaneBitmask::getNone()));
16410b57cec5SDimitry Andric         }
16420b57cec5SDimitry Andric       }
16430b57cec5SDimitry Andric   RPTracker.addLiveRegs(LiveOutRegs);
16440b57cec5SDimitry Andric }
16450b57cec5SDimitry Andric 
16460b57cec5SDimitry Andric /// A heuristic to filter nodes in recurrent node-sets if the register
16470b57cec5SDimitry Andric /// pressure of a set is too high.
registerPressureFilter(NodeSetType & NodeSets)16480b57cec5SDimitry Andric void SwingSchedulerDAG::registerPressureFilter(NodeSetType &NodeSets) {
16490b57cec5SDimitry Andric   for (auto &NS : NodeSets) {
16500b57cec5SDimitry Andric     // Skip small node-sets since they won't cause register pressure problems.
16510b57cec5SDimitry Andric     if (NS.size() <= 2)
16520b57cec5SDimitry Andric       continue;
16530b57cec5SDimitry Andric     IntervalPressure RecRegPressure;
16540b57cec5SDimitry Andric     RegPressureTracker RecRPTracker(RecRegPressure);
16550b57cec5SDimitry Andric     RecRPTracker.init(&MF, &RegClassInfo, &LIS, BB, BB->end(), false, true);
16560b57cec5SDimitry Andric     computeLiveOuts(MF, RecRPTracker, NS);
16570b57cec5SDimitry Andric     RecRPTracker.closeBottom();
16580b57cec5SDimitry Andric 
16590b57cec5SDimitry Andric     std::vector<SUnit *> SUnits(NS.begin(), NS.end());
16600b57cec5SDimitry Andric     llvm::sort(SUnits, [](const SUnit *A, const SUnit *B) {
16610b57cec5SDimitry Andric       return A->NodeNum > B->NodeNum;
16620b57cec5SDimitry Andric     });
16630b57cec5SDimitry Andric 
16640b57cec5SDimitry Andric     for (auto &SU : SUnits) {
16650b57cec5SDimitry Andric       // Since we're computing the register pressure for a subset of the
16660b57cec5SDimitry Andric       // instructions in a block, we need to set the tracker for each
16670b57cec5SDimitry Andric       // instruction in the node-set. The tracker is set to the instruction
16680b57cec5SDimitry Andric       // just after the one we're interested in.
16690b57cec5SDimitry Andric       MachineBasicBlock::const_iterator CurInstI = SU->getInstr();
16700b57cec5SDimitry Andric       RecRPTracker.setPos(std::next(CurInstI));
16710b57cec5SDimitry Andric 
16720b57cec5SDimitry Andric       RegPressureDelta RPDelta;
16730b57cec5SDimitry Andric       ArrayRef<PressureChange> CriticalPSets;
16740b57cec5SDimitry Andric       RecRPTracker.getMaxUpwardPressureDelta(SU->getInstr(), nullptr, RPDelta,
16750b57cec5SDimitry Andric                                              CriticalPSets,
16760b57cec5SDimitry Andric                                              RecRegPressure.MaxSetPressure);
16770b57cec5SDimitry Andric       if (RPDelta.Excess.isValid()) {
16780b57cec5SDimitry Andric         LLVM_DEBUG(
16790b57cec5SDimitry Andric             dbgs() << "Excess register pressure: SU(" << SU->NodeNum << ") "
16800b57cec5SDimitry Andric                    << TRI->getRegPressureSetName(RPDelta.Excess.getPSet())
16810b57cec5SDimitry Andric                    << ":" << RPDelta.Excess.getUnitInc());
16820b57cec5SDimitry Andric         NS.setExceedPressure(SU);
16830b57cec5SDimitry Andric         break;
16840b57cec5SDimitry Andric       }
16850b57cec5SDimitry Andric       RecRPTracker.recede();
16860b57cec5SDimitry Andric     }
16870b57cec5SDimitry Andric   }
16880b57cec5SDimitry Andric }
16890b57cec5SDimitry Andric 
16900b57cec5SDimitry Andric /// A heuristic to colocate node sets that have the same set of
16910b57cec5SDimitry Andric /// successors.
colocateNodeSets(NodeSetType & NodeSets)16920b57cec5SDimitry Andric void SwingSchedulerDAG::colocateNodeSets(NodeSetType &NodeSets) {
16930b57cec5SDimitry Andric   unsigned Colocate = 0;
16940b57cec5SDimitry Andric   for (int i = 0, e = NodeSets.size(); i < e; ++i) {
16950b57cec5SDimitry Andric     NodeSet &N1 = NodeSets[i];
16960b57cec5SDimitry Andric     SmallSetVector<SUnit *, 8> S1;
16970b57cec5SDimitry Andric     if (N1.empty() || !succ_L(N1, S1))
16980b57cec5SDimitry Andric       continue;
16990b57cec5SDimitry Andric     for (int j = i + 1; j < e; ++j) {
17000b57cec5SDimitry Andric       NodeSet &N2 = NodeSets[j];
17010b57cec5SDimitry Andric       if (N1.compareRecMII(N2) != 0)
17020b57cec5SDimitry Andric         continue;
17030b57cec5SDimitry Andric       SmallSetVector<SUnit *, 8> S2;
17040b57cec5SDimitry Andric       if (N2.empty() || !succ_L(N2, S2))
17050b57cec5SDimitry Andric         continue;
1706*5f7ddb14SDimitry Andric       if (llvm::set_is_subset(S1, S2) && S1.size() == S2.size()) {
17070b57cec5SDimitry Andric         N1.setColocate(++Colocate);
17080b57cec5SDimitry Andric         N2.setColocate(Colocate);
17090b57cec5SDimitry Andric         break;
17100b57cec5SDimitry Andric       }
17110b57cec5SDimitry Andric     }
17120b57cec5SDimitry Andric   }
17130b57cec5SDimitry Andric }
17140b57cec5SDimitry Andric 
17150b57cec5SDimitry Andric /// Check if the existing node-sets are profitable. If not, then ignore the
17160b57cec5SDimitry Andric /// recurrent node-sets, and attempt to schedule all nodes together. This is
17170b57cec5SDimitry Andric /// a heuristic. If the MII is large and all the recurrent node-sets are small,
17180b57cec5SDimitry Andric /// then it's best to try to schedule all instructions together instead of
17190b57cec5SDimitry Andric /// starting with the recurrent node-sets.
checkNodeSets(NodeSetType & NodeSets)17200b57cec5SDimitry Andric void SwingSchedulerDAG::checkNodeSets(NodeSetType &NodeSets) {
17210b57cec5SDimitry Andric   // Look for loops with a large MII.
17220b57cec5SDimitry Andric   if (MII < 17)
17230b57cec5SDimitry Andric     return;
17240b57cec5SDimitry Andric   // Check if the node-set contains only a simple add recurrence.
17250b57cec5SDimitry Andric   for (auto &NS : NodeSets) {
17260b57cec5SDimitry Andric     if (NS.getRecMII() > 2)
17270b57cec5SDimitry Andric       return;
17280b57cec5SDimitry Andric     if (NS.getMaxDepth() > MII)
17290b57cec5SDimitry Andric       return;
17300b57cec5SDimitry Andric   }
17310b57cec5SDimitry Andric   NodeSets.clear();
17320b57cec5SDimitry Andric   LLVM_DEBUG(dbgs() << "Clear recurrence node-sets\n");
17330b57cec5SDimitry Andric }
17340b57cec5SDimitry Andric 
17350b57cec5SDimitry Andric /// Add the nodes that do not belong to a recurrence set into groups
17360b57cec5SDimitry Andric /// based upon connected componenets.
groupRemainingNodes(NodeSetType & NodeSets)17370b57cec5SDimitry Andric void SwingSchedulerDAG::groupRemainingNodes(NodeSetType &NodeSets) {
17380b57cec5SDimitry Andric   SetVector<SUnit *> NodesAdded;
17390b57cec5SDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
17400b57cec5SDimitry Andric   // Add the nodes that are on a path between the previous node sets and
17410b57cec5SDimitry Andric   // the current node set.
17420b57cec5SDimitry Andric   for (NodeSet &I : NodeSets) {
17430b57cec5SDimitry Andric     SmallSetVector<SUnit *, 8> N;
17440b57cec5SDimitry Andric     // Add the nodes from the current node set to the previous node set.
17450b57cec5SDimitry Andric     if (succ_L(I, N)) {
17460b57cec5SDimitry Andric       SetVector<SUnit *> Path;
17470b57cec5SDimitry Andric       for (SUnit *NI : N) {
17480b57cec5SDimitry Andric         Visited.clear();
17490b57cec5SDimitry Andric         computePath(NI, Path, NodesAdded, I, Visited);
17500b57cec5SDimitry Andric       }
17510b57cec5SDimitry Andric       if (!Path.empty())
17520b57cec5SDimitry Andric         I.insert(Path.begin(), Path.end());
17530b57cec5SDimitry Andric     }
17540b57cec5SDimitry Andric     // Add the nodes from the previous node set to the current node set.
17550b57cec5SDimitry Andric     N.clear();
17560b57cec5SDimitry Andric     if (succ_L(NodesAdded, N)) {
17570b57cec5SDimitry Andric       SetVector<SUnit *> Path;
17580b57cec5SDimitry Andric       for (SUnit *NI : N) {
17590b57cec5SDimitry Andric         Visited.clear();
17600b57cec5SDimitry Andric         computePath(NI, Path, I, NodesAdded, Visited);
17610b57cec5SDimitry Andric       }
17620b57cec5SDimitry Andric       if (!Path.empty())
17630b57cec5SDimitry Andric         I.insert(Path.begin(), Path.end());
17640b57cec5SDimitry Andric     }
17650b57cec5SDimitry Andric     NodesAdded.insert(I.begin(), I.end());
17660b57cec5SDimitry Andric   }
17670b57cec5SDimitry Andric 
17680b57cec5SDimitry Andric   // Create a new node set with the connected nodes of any successor of a node
17690b57cec5SDimitry Andric   // in a recurrent set.
17700b57cec5SDimitry Andric   NodeSet NewSet;
17710b57cec5SDimitry Andric   SmallSetVector<SUnit *, 8> N;
17720b57cec5SDimitry Andric   if (succ_L(NodesAdded, N))
17730b57cec5SDimitry Andric     for (SUnit *I : N)
17740b57cec5SDimitry Andric       addConnectedNodes(I, NewSet, NodesAdded);
17750b57cec5SDimitry Andric   if (!NewSet.empty())
17760b57cec5SDimitry Andric     NodeSets.push_back(NewSet);
17770b57cec5SDimitry Andric 
17780b57cec5SDimitry Andric   // Create a new node set with the connected nodes of any predecessor of a node
17790b57cec5SDimitry Andric   // in a recurrent set.
17800b57cec5SDimitry Andric   NewSet.clear();
17810b57cec5SDimitry Andric   if (pred_L(NodesAdded, N))
17820b57cec5SDimitry Andric     for (SUnit *I : N)
17830b57cec5SDimitry Andric       addConnectedNodes(I, NewSet, NodesAdded);
17840b57cec5SDimitry Andric   if (!NewSet.empty())
17850b57cec5SDimitry Andric     NodeSets.push_back(NewSet);
17860b57cec5SDimitry Andric 
17870b57cec5SDimitry Andric   // Create new nodes sets with the connected nodes any remaining node that
17880b57cec5SDimitry Andric   // has no predecessor.
1789*5f7ddb14SDimitry Andric   for (SUnit &SU : SUnits) {
1790*5f7ddb14SDimitry Andric     if (NodesAdded.count(&SU) == 0) {
17910b57cec5SDimitry Andric       NewSet.clear();
1792*5f7ddb14SDimitry Andric       addConnectedNodes(&SU, NewSet, NodesAdded);
17930b57cec5SDimitry Andric       if (!NewSet.empty())
17940b57cec5SDimitry Andric         NodeSets.push_back(NewSet);
17950b57cec5SDimitry Andric     }
17960b57cec5SDimitry Andric   }
17970b57cec5SDimitry Andric }
17980b57cec5SDimitry Andric 
17990b57cec5SDimitry Andric /// Add the node to the set, and add all of its connected nodes to the set.
addConnectedNodes(SUnit * SU,NodeSet & NewSet,SetVector<SUnit * > & NodesAdded)18000b57cec5SDimitry Andric void SwingSchedulerDAG::addConnectedNodes(SUnit *SU, NodeSet &NewSet,
18010b57cec5SDimitry Andric                                           SetVector<SUnit *> &NodesAdded) {
18020b57cec5SDimitry Andric   NewSet.insert(SU);
18030b57cec5SDimitry Andric   NodesAdded.insert(SU);
18040b57cec5SDimitry Andric   for (auto &SI : SU->Succs) {
18050b57cec5SDimitry Andric     SUnit *Successor = SI.getSUnit();
18060b57cec5SDimitry Andric     if (!SI.isArtificial() && NodesAdded.count(Successor) == 0)
18070b57cec5SDimitry Andric       addConnectedNodes(Successor, NewSet, NodesAdded);
18080b57cec5SDimitry Andric   }
18090b57cec5SDimitry Andric   for (auto &PI : SU->Preds) {
18100b57cec5SDimitry Andric     SUnit *Predecessor = PI.getSUnit();
18110b57cec5SDimitry Andric     if (!PI.isArtificial() && NodesAdded.count(Predecessor) == 0)
18120b57cec5SDimitry Andric       addConnectedNodes(Predecessor, NewSet, NodesAdded);
18130b57cec5SDimitry Andric   }
18140b57cec5SDimitry Andric }
18150b57cec5SDimitry Andric 
18160b57cec5SDimitry Andric /// Return true if Set1 contains elements in Set2. The elements in common
18170b57cec5SDimitry Andric /// are returned in a different container.
isIntersect(SmallSetVector<SUnit *,8> & Set1,const NodeSet & Set2,SmallSetVector<SUnit *,8> & Result)18180b57cec5SDimitry Andric static bool isIntersect(SmallSetVector<SUnit *, 8> &Set1, const NodeSet &Set2,
18190b57cec5SDimitry Andric                         SmallSetVector<SUnit *, 8> &Result) {
18200b57cec5SDimitry Andric   Result.clear();
18210b57cec5SDimitry Andric   for (unsigned i = 0, e = Set1.size(); i != e; ++i) {
18220b57cec5SDimitry Andric     SUnit *SU = Set1[i];
18230b57cec5SDimitry Andric     if (Set2.count(SU) != 0)
18240b57cec5SDimitry Andric       Result.insert(SU);
18250b57cec5SDimitry Andric   }
18260b57cec5SDimitry Andric   return !Result.empty();
18270b57cec5SDimitry Andric }
18280b57cec5SDimitry Andric 
18290b57cec5SDimitry Andric /// Merge the recurrence node sets that have the same initial node.
fuseRecs(NodeSetType & NodeSets)18300b57cec5SDimitry Andric void SwingSchedulerDAG::fuseRecs(NodeSetType &NodeSets) {
18310b57cec5SDimitry Andric   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
18320b57cec5SDimitry Andric        ++I) {
18330b57cec5SDimitry Andric     NodeSet &NI = *I;
18340b57cec5SDimitry Andric     for (NodeSetType::iterator J = I + 1; J != E;) {
18350b57cec5SDimitry Andric       NodeSet &NJ = *J;
18360b57cec5SDimitry Andric       if (NI.getNode(0)->NodeNum == NJ.getNode(0)->NodeNum) {
18370b57cec5SDimitry Andric         if (NJ.compareRecMII(NI) > 0)
18380b57cec5SDimitry Andric           NI.setRecMII(NJ.getRecMII());
1839*5f7ddb14SDimitry Andric         for (SUnit *SU : *J)
1840*5f7ddb14SDimitry Andric           I->insert(SU);
18410b57cec5SDimitry Andric         NodeSets.erase(J);
18420b57cec5SDimitry Andric         E = NodeSets.end();
18430b57cec5SDimitry Andric       } else {
18440b57cec5SDimitry Andric         ++J;
18450b57cec5SDimitry Andric       }
18460b57cec5SDimitry Andric     }
18470b57cec5SDimitry Andric   }
18480b57cec5SDimitry Andric }
18490b57cec5SDimitry Andric 
18500b57cec5SDimitry Andric /// Remove nodes that have been scheduled in previous NodeSets.
removeDuplicateNodes(NodeSetType & NodeSets)18510b57cec5SDimitry Andric void SwingSchedulerDAG::removeDuplicateNodes(NodeSetType &NodeSets) {
18520b57cec5SDimitry Andric   for (NodeSetType::iterator I = NodeSets.begin(), E = NodeSets.end(); I != E;
18530b57cec5SDimitry Andric        ++I)
18540b57cec5SDimitry Andric     for (NodeSetType::iterator J = I + 1; J != E;) {
18550b57cec5SDimitry Andric       J->remove_if([&](SUnit *SUJ) { return I->count(SUJ); });
18560b57cec5SDimitry Andric 
18570b57cec5SDimitry Andric       if (J->empty()) {
18580b57cec5SDimitry Andric         NodeSets.erase(J);
18590b57cec5SDimitry Andric         E = NodeSets.end();
18600b57cec5SDimitry Andric       } else {
18610b57cec5SDimitry Andric         ++J;
18620b57cec5SDimitry Andric       }
18630b57cec5SDimitry Andric     }
18640b57cec5SDimitry Andric }
18650b57cec5SDimitry Andric 
18660b57cec5SDimitry Andric /// Compute an ordered list of the dependence graph nodes, which
18670b57cec5SDimitry Andric /// indicates the order that the nodes will be scheduled.  This is a
18680b57cec5SDimitry Andric /// two-level algorithm. First, a partial order is created, which
18690b57cec5SDimitry Andric /// consists of a list of sets ordered from highest to lowest priority.
computeNodeOrder(NodeSetType & NodeSets)18700b57cec5SDimitry Andric void SwingSchedulerDAG::computeNodeOrder(NodeSetType &NodeSets) {
18710b57cec5SDimitry Andric   SmallSetVector<SUnit *, 8> R;
18720b57cec5SDimitry Andric   NodeOrder.clear();
18730b57cec5SDimitry Andric 
18740b57cec5SDimitry Andric   for (auto &Nodes : NodeSets) {
18750b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "NodeSet size " << Nodes.size() << "\n");
18760b57cec5SDimitry Andric     OrderKind Order;
18770b57cec5SDimitry Andric     SmallSetVector<SUnit *, 8> N;
1878*5f7ddb14SDimitry Andric     if (pred_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
18790b57cec5SDimitry Andric       R.insert(N.begin(), N.end());
18800b57cec5SDimitry Andric       Order = BottomUp;
18810b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (preds) ");
1882*5f7ddb14SDimitry Andric     } else if (succ_L(NodeOrder, N) && llvm::set_is_subset(N, Nodes)) {
18830b57cec5SDimitry Andric       R.insert(N.begin(), N.end());
18840b57cec5SDimitry Andric       Order = TopDown;
18850b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Top down (succs) ");
18860b57cec5SDimitry Andric     } else if (isIntersect(N, Nodes, R)) {
18870b57cec5SDimitry Andric       // If some of the successors are in the existing node-set, then use the
18880b57cec5SDimitry Andric       // top-down ordering.
18890b57cec5SDimitry Andric       Order = TopDown;
18900b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Top down (intersect) ");
18910b57cec5SDimitry Andric     } else if (NodeSets.size() == 1) {
18920b57cec5SDimitry Andric       for (auto &N : Nodes)
18930b57cec5SDimitry Andric         if (N->Succs.size() == 0)
18940b57cec5SDimitry Andric           R.insert(N);
18950b57cec5SDimitry Andric       Order = BottomUp;
18960b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (all) ");
18970b57cec5SDimitry Andric     } else {
18980b57cec5SDimitry Andric       // Find the node with the highest ASAP.
18990b57cec5SDimitry Andric       SUnit *maxASAP = nullptr;
19000b57cec5SDimitry Andric       for (SUnit *SU : Nodes) {
19010b57cec5SDimitry Andric         if (maxASAP == nullptr || getASAP(SU) > getASAP(maxASAP) ||
19020b57cec5SDimitry Andric             (getASAP(SU) == getASAP(maxASAP) && SU->NodeNum > maxASAP->NodeNum))
19030b57cec5SDimitry Andric           maxASAP = SU;
19040b57cec5SDimitry Andric       }
19050b57cec5SDimitry Andric       R.insert(maxASAP);
19060b57cec5SDimitry Andric       Order = BottomUp;
19070b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << "  Bottom up (default) ");
19080b57cec5SDimitry Andric     }
19090b57cec5SDimitry Andric 
19100b57cec5SDimitry Andric     while (!R.empty()) {
19110b57cec5SDimitry Andric       if (Order == TopDown) {
19120b57cec5SDimitry Andric         // Choose the node with the maximum height.  If more than one, choose
19130b57cec5SDimitry Andric         // the node wiTH the maximum ZeroLatencyHeight. If still more than one,
19140b57cec5SDimitry Andric         // choose the node with the lowest MOV.
19150b57cec5SDimitry Andric         while (!R.empty()) {
19160b57cec5SDimitry Andric           SUnit *maxHeight = nullptr;
19170b57cec5SDimitry Andric           for (SUnit *I : R) {
19180b57cec5SDimitry Andric             if (maxHeight == nullptr || getHeight(I) > getHeight(maxHeight))
19190b57cec5SDimitry Andric               maxHeight = I;
19200b57cec5SDimitry Andric             else if (getHeight(I) == getHeight(maxHeight) &&
19210b57cec5SDimitry Andric                      getZeroLatencyHeight(I) > getZeroLatencyHeight(maxHeight))
19220b57cec5SDimitry Andric               maxHeight = I;
19230b57cec5SDimitry Andric             else if (getHeight(I) == getHeight(maxHeight) &&
19240b57cec5SDimitry Andric                      getZeroLatencyHeight(I) ==
19250b57cec5SDimitry Andric                          getZeroLatencyHeight(maxHeight) &&
19260b57cec5SDimitry Andric                      getMOV(I) < getMOV(maxHeight))
19270b57cec5SDimitry Andric               maxHeight = I;
19280b57cec5SDimitry Andric           }
19290b57cec5SDimitry Andric           NodeOrder.insert(maxHeight);
19300b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << maxHeight->NodeNum << " ");
19310b57cec5SDimitry Andric           R.remove(maxHeight);
19320b57cec5SDimitry Andric           for (const auto &I : maxHeight->Succs) {
19330b57cec5SDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
19340b57cec5SDimitry Andric               continue;
1935af732203SDimitry Andric             if (NodeOrder.contains(I.getSUnit()))
19360b57cec5SDimitry Andric               continue;
19370b57cec5SDimitry Andric             if (ignoreDependence(I, false))
19380b57cec5SDimitry Andric               continue;
19390b57cec5SDimitry Andric             R.insert(I.getSUnit());
19400b57cec5SDimitry Andric           }
19410b57cec5SDimitry Andric           // Back-edges are predecessors with an anti-dependence.
19420b57cec5SDimitry Andric           for (const auto &I : maxHeight->Preds) {
19430b57cec5SDimitry Andric             if (I.getKind() != SDep::Anti)
19440b57cec5SDimitry Andric               continue;
19450b57cec5SDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
19460b57cec5SDimitry Andric               continue;
1947af732203SDimitry Andric             if (NodeOrder.contains(I.getSUnit()))
19480b57cec5SDimitry Andric               continue;
19490b57cec5SDimitry Andric             R.insert(I.getSUnit());
19500b57cec5SDimitry Andric           }
19510b57cec5SDimitry Andric         }
19520b57cec5SDimitry Andric         Order = BottomUp;
19530b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "\n   Switching order to bottom up ");
19540b57cec5SDimitry Andric         SmallSetVector<SUnit *, 8> N;
19550b57cec5SDimitry Andric         if (pred_L(NodeOrder, N, &Nodes))
19560b57cec5SDimitry Andric           R.insert(N.begin(), N.end());
19570b57cec5SDimitry Andric       } else {
19580b57cec5SDimitry Andric         // Choose the node with the maximum depth.  If more than one, choose
19590b57cec5SDimitry Andric         // the node with the maximum ZeroLatencyDepth. If still more than one,
19600b57cec5SDimitry Andric         // choose the node with the lowest MOV.
19610b57cec5SDimitry Andric         while (!R.empty()) {
19620b57cec5SDimitry Andric           SUnit *maxDepth = nullptr;
19630b57cec5SDimitry Andric           for (SUnit *I : R) {
19640b57cec5SDimitry Andric             if (maxDepth == nullptr || getDepth(I) > getDepth(maxDepth))
19650b57cec5SDimitry Andric               maxDepth = I;
19660b57cec5SDimitry Andric             else if (getDepth(I) == getDepth(maxDepth) &&
19670b57cec5SDimitry Andric                      getZeroLatencyDepth(I) > getZeroLatencyDepth(maxDepth))
19680b57cec5SDimitry Andric               maxDepth = I;
19690b57cec5SDimitry Andric             else if (getDepth(I) == getDepth(maxDepth) &&
19700b57cec5SDimitry Andric                      getZeroLatencyDepth(I) == getZeroLatencyDepth(maxDepth) &&
19710b57cec5SDimitry Andric                      getMOV(I) < getMOV(maxDepth))
19720b57cec5SDimitry Andric               maxDepth = I;
19730b57cec5SDimitry Andric           }
19740b57cec5SDimitry Andric           NodeOrder.insert(maxDepth);
19750b57cec5SDimitry Andric           LLVM_DEBUG(dbgs() << maxDepth->NodeNum << " ");
19760b57cec5SDimitry Andric           R.remove(maxDepth);
19770b57cec5SDimitry Andric           if (Nodes.isExceedSU(maxDepth)) {
19780b57cec5SDimitry Andric             Order = TopDown;
19790b57cec5SDimitry Andric             R.clear();
19800b57cec5SDimitry Andric             R.insert(Nodes.getNode(0));
19810b57cec5SDimitry Andric             break;
19820b57cec5SDimitry Andric           }
19830b57cec5SDimitry Andric           for (const auto &I : maxDepth->Preds) {
19840b57cec5SDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
19850b57cec5SDimitry Andric               continue;
1986af732203SDimitry Andric             if (NodeOrder.contains(I.getSUnit()))
19870b57cec5SDimitry Andric               continue;
19880b57cec5SDimitry Andric             R.insert(I.getSUnit());
19890b57cec5SDimitry Andric           }
19900b57cec5SDimitry Andric           // Back-edges are predecessors with an anti-dependence.
19910b57cec5SDimitry Andric           for (const auto &I : maxDepth->Succs) {
19920b57cec5SDimitry Andric             if (I.getKind() != SDep::Anti)
19930b57cec5SDimitry Andric               continue;
19940b57cec5SDimitry Andric             if (Nodes.count(I.getSUnit()) == 0)
19950b57cec5SDimitry Andric               continue;
1996af732203SDimitry Andric             if (NodeOrder.contains(I.getSUnit()))
19970b57cec5SDimitry Andric               continue;
19980b57cec5SDimitry Andric             R.insert(I.getSUnit());
19990b57cec5SDimitry Andric           }
20000b57cec5SDimitry Andric         }
20010b57cec5SDimitry Andric         Order = TopDown;
20020b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "\n   Switching order to top down ");
20030b57cec5SDimitry Andric         SmallSetVector<SUnit *, 8> N;
20040b57cec5SDimitry Andric         if (succ_L(NodeOrder, N, &Nodes))
20050b57cec5SDimitry Andric           R.insert(N.begin(), N.end());
20060b57cec5SDimitry Andric       }
20070b57cec5SDimitry Andric     }
20080b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "\nDone with Nodeset\n");
20090b57cec5SDimitry Andric   }
20100b57cec5SDimitry Andric 
20110b57cec5SDimitry Andric   LLVM_DEBUG({
20120b57cec5SDimitry Andric     dbgs() << "Node order: ";
20130b57cec5SDimitry Andric     for (SUnit *I : NodeOrder)
20140b57cec5SDimitry Andric       dbgs() << " " << I->NodeNum << " ";
20150b57cec5SDimitry Andric     dbgs() << "\n";
20160b57cec5SDimitry Andric   });
20170b57cec5SDimitry Andric }
20180b57cec5SDimitry Andric 
20190b57cec5SDimitry Andric /// Process the nodes in the computed order and create the pipelined schedule
20200b57cec5SDimitry Andric /// of the instructions, if possible. Return true if a schedule is found.
schedulePipeline(SMSchedule & Schedule)20210b57cec5SDimitry Andric bool SwingSchedulerDAG::schedulePipeline(SMSchedule &Schedule) {
20220b57cec5SDimitry Andric 
20230b57cec5SDimitry Andric   if (NodeOrder.empty()){
20240b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "NodeOrder is empty! abort scheduling\n" );
20250b57cec5SDimitry Andric     return false;
20260b57cec5SDimitry Andric   }
20270b57cec5SDimitry Andric 
20280b57cec5SDimitry Andric   bool scheduleFound = false;
20290b57cec5SDimitry Andric   // Keep increasing II until a valid schedule is found.
2030*5f7ddb14SDimitry Andric   for (unsigned II = MII; II <= MAX_II && !scheduleFound; ++II) {
20310b57cec5SDimitry Andric     Schedule.reset();
20320b57cec5SDimitry Andric     Schedule.setInitiationInterval(II);
20330b57cec5SDimitry Andric     LLVM_DEBUG(dbgs() << "Try to schedule with " << II << "\n");
20340b57cec5SDimitry Andric 
20350b57cec5SDimitry Andric     SetVector<SUnit *>::iterator NI = NodeOrder.begin();
20360b57cec5SDimitry Andric     SetVector<SUnit *>::iterator NE = NodeOrder.end();
20370b57cec5SDimitry Andric     do {
20380b57cec5SDimitry Andric       SUnit *SU = *NI;
20390b57cec5SDimitry Andric 
20400b57cec5SDimitry Andric       // Compute the schedule time for the instruction, which is based
20410b57cec5SDimitry Andric       // upon the scheduled time for any predecessors/successors.
20420b57cec5SDimitry Andric       int EarlyStart = INT_MIN;
20430b57cec5SDimitry Andric       int LateStart = INT_MAX;
20440b57cec5SDimitry Andric       // These values are set when the size of the schedule window is limited
20450b57cec5SDimitry Andric       // due to chain dependences.
20460b57cec5SDimitry Andric       int SchedEnd = INT_MAX;
20470b57cec5SDimitry Andric       int SchedStart = INT_MIN;
20480b57cec5SDimitry Andric       Schedule.computeStart(SU, &EarlyStart, &LateStart, &SchedEnd, &SchedStart,
20490b57cec5SDimitry Andric                             II, this);
20500b57cec5SDimitry Andric       LLVM_DEBUG({
20510b57cec5SDimitry Andric         dbgs() << "\n";
20520b57cec5SDimitry Andric         dbgs() << "Inst (" << SU->NodeNum << ") ";
20530b57cec5SDimitry Andric         SU->getInstr()->dump();
20540b57cec5SDimitry Andric         dbgs() << "\n";
20550b57cec5SDimitry Andric       });
20560b57cec5SDimitry Andric       LLVM_DEBUG({
20570b57cec5SDimitry Andric         dbgs() << format("\tes: %8x ls: %8x me: %8x ms: %8x\n", EarlyStart,
20580b57cec5SDimitry Andric                          LateStart, SchedEnd, SchedStart);
20590b57cec5SDimitry Andric       });
20600b57cec5SDimitry Andric 
20610b57cec5SDimitry Andric       if (EarlyStart > LateStart || SchedEnd < EarlyStart ||
20620b57cec5SDimitry Andric           SchedStart > LateStart)
20630b57cec5SDimitry Andric         scheduleFound = false;
20640b57cec5SDimitry Andric       else if (EarlyStart != INT_MIN && LateStart == INT_MAX) {
20650b57cec5SDimitry Andric         SchedEnd = std::min(SchedEnd, EarlyStart + (int)II - 1);
20660b57cec5SDimitry Andric         scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
20670b57cec5SDimitry Andric       } else if (EarlyStart == INT_MIN && LateStart != INT_MAX) {
20680b57cec5SDimitry Andric         SchedStart = std::max(SchedStart, LateStart - (int)II + 1);
20690b57cec5SDimitry Andric         scheduleFound = Schedule.insert(SU, LateStart, SchedStart, II);
20700b57cec5SDimitry Andric       } else if (EarlyStart != INT_MIN && LateStart != INT_MAX) {
20710b57cec5SDimitry Andric         SchedEnd =
20720b57cec5SDimitry Andric             std::min(SchedEnd, std::min(LateStart, EarlyStart + (int)II - 1));
20730b57cec5SDimitry Andric         // When scheduling a Phi it is better to start at the late cycle and go
20740b57cec5SDimitry Andric         // backwards. The default order may insert the Phi too far away from
20750b57cec5SDimitry Andric         // its first dependence.
20760b57cec5SDimitry Andric         if (SU->getInstr()->isPHI())
20770b57cec5SDimitry Andric           scheduleFound = Schedule.insert(SU, SchedEnd, EarlyStart, II);
20780b57cec5SDimitry Andric         else
20790b57cec5SDimitry Andric           scheduleFound = Schedule.insert(SU, EarlyStart, SchedEnd, II);
20800b57cec5SDimitry Andric       } else {
20810b57cec5SDimitry Andric         int FirstCycle = Schedule.getFirstCycle();
20820b57cec5SDimitry Andric         scheduleFound = Schedule.insert(SU, FirstCycle + getASAP(SU),
20830b57cec5SDimitry Andric                                         FirstCycle + getASAP(SU) + II - 1, II);
20840b57cec5SDimitry Andric       }
20850b57cec5SDimitry Andric       // Even if we find a schedule, make sure the schedule doesn't exceed the
20860b57cec5SDimitry Andric       // allowable number of stages. We keep trying if this happens.
20870b57cec5SDimitry Andric       if (scheduleFound)
20880b57cec5SDimitry Andric         if (SwpMaxStages > -1 &&
20890b57cec5SDimitry Andric             Schedule.getMaxStageCount() > (unsigned)SwpMaxStages)
20900b57cec5SDimitry Andric           scheduleFound = false;
20910b57cec5SDimitry Andric 
20920b57cec5SDimitry Andric       LLVM_DEBUG({
20930b57cec5SDimitry Andric         if (!scheduleFound)
20940b57cec5SDimitry Andric           dbgs() << "\tCan't schedule\n";
20950b57cec5SDimitry Andric       });
20960b57cec5SDimitry Andric     } while (++NI != NE && scheduleFound);
20970b57cec5SDimitry Andric 
20980b57cec5SDimitry Andric     // If a schedule is found, check if it is a valid schedule too.
20990b57cec5SDimitry Andric     if (scheduleFound)
21000b57cec5SDimitry Andric       scheduleFound = Schedule.isValidSchedule(this);
21010b57cec5SDimitry Andric   }
21020b57cec5SDimitry Andric 
2103*5f7ddb14SDimitry Andric   LLVM_DEBUG(dbgs() << "Schedule Found? " << scheduleFound
2104*5f7ddb14SDimitry Andric                     << " (II=" << Schedule.getInitiationInterval()
21050b57cec5SDimitry Andric                     << ")\n");
21060b57cec5SDimitry Andric 
21075ffd83dbSDimitry Andric   if (scheduleFound) {
21080b57cec5SDimitry Andric     Schedule.finalizeSchedule(this);
21095ffd83dbSDimitry Andric     Pass.ORE->emit([&]() {
21105ffd83dbSDimitry Andric       return MachineOptimizationRemarkAnalysis(
21115ffd83dbSDimitry Andric                  DEBUG_TYPE, "schedule", Loop.getStartLoc(), Loop.getHeader())
2112*5f7ddb14SDimitry Andric              << "Schedule found with Initiation Interval: "
2113*5f7ddb14SDimitry Andric              << ore::NV("II", Schedule.getInitiationInterval())
21145ffd83dbSDimitry Andric              << ", MaxStageCount: "
21155ffd83dbSDimitry Andric              << ore::NV("MaxStageCount", Schedule.getMaxStageCount());
21165ffd83dbSDimitry Andric     });
21175ffd83dbSDimitry Andric   } else
21180b57cec5SDimitry Andric     Schedule.reset();
21190b57cec5SDimitry Andric 
21200b57cec5SDimitry Andric   return scheduleFound && Schedule.getMaxStageCount() > 0;
21210b57cec5SDimitry Andric }
21220b57cec5SDimitry Andric 
21230b57cec5SDimitry Andric /// Return true if we can compute the amount the instruction changes
21240b57cec5SDimitry Andric /// during each iteration. Set Delta to the amount of the change.
computeDelta(MachineInstr & MI,unsigned & Delta)21250b57cec5SDimitry Andric bool SwingSchedulerDAG::computeDelta(MachineInstr &MI, unsigned &Delta) {
21260b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
21270b57cec5SDimitry Andric   const MachineOperand *BaseOp;
21280b57cec5SDimitry Andric   int64_t Offset;
21295ffd83dbSDimitry Andric   bool OffsetIsScalable;
21305ffd83dbSDimitry Andric   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
21315ffd83dbSDimitry Andric     return false;
21325ffd83dbSDimitry Andric 
21335ffd83dbSDimitry Andric   // FIXME: This algorithm assumes instructions have fixed-size offsets.
21345ffd83dbSDimitry Andric   if (OffsetIsScalable)
21350b57cec5SDimitry Andric     return false;
21360b57cec5SDimitry Andric 
21370b57cec5SDimitry Andric   if (!BaseOp->isReg())
21380b57cec5SDimitry Andric     return false;
21390b57cec5SDimitry Andric 
21408bcb0991SDimitry Andric   Register BaseReg = BaseOp->getReg();
21410b57cec5SDimitry Andric 
21420b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MF.getRegInfo();
21430b57cec5SDimitry Andric   // Check if there is a Phi. If so, get the definition in the loop.
21440b57cec5SDimitry Andric   MachineInstr *BaseDef = MRI.getVRegDef(BaseReg);
21450b57cec5SDimitry Andric   if (BaseDef && BaseDef->isPHI()) {
21460b57cec5SDimitry Andric     BaseReg = getLoopPhiReg(*BaseDef, MI.getParent());
21470b57cec5SDimitry Andric     BaseDef = MRI.getVRegDef(BaseReg);
21480b57cec5SDimitry Andric   }
21490b57cec5SDimitry Andric   if (!BaseDef)
21500b57cec5SDimitry Andric     return false;
21510b57cec5SDimitry Andric 
21520b57cec5SDimitry Andric   int D = 0;
21530b57cec5SDimitry Andric   if (!TII->getIncrementValue(*BaseDef, D) && D >= 0)
21540b57cec5SDimitry Andric     return false;
21550b57cec5SDimitry Andric 
21560b57cec5SDimitry Andric   Delta = D;
21570b57cec5SDimitry Andric   return true;
21580b57cec5SDimitry Andric }
21590b57cec5SDimitry Andric 
21600b57cec5SDimitry Andric /// Check if we can change the instruction to use an offset value from the
21610b57cec5SDimitry Andric /// previous iteration. If so, return true and set the base and offset values
21620b57cec5SDimitry Andric /// so that we can rewrite the load, if necessary.
21630b57cec5SDimitry Andric ///   v1 = Phi(v0, v3)
21640b57cec5SDimitry Andric ///   v2 = load v1, 0
21650b57cec5SDimitry Andric ///   v3 = post_store v1, 4, x
21660b57cec5SDimitry Andric /// This function enables the load to be rewritten as v2 = load v3, 4.
canUseLastOffsetValue(MachineInstr * MI,unsigned & BasePos,unsigned & OffsetPos,unsigned & NewBase,int64_t & Offset)21670b57cec5SDimitry Andric bool SwingSchedulerDAG::canUseLastOffsetValue(MachineInstr *MI,
21680b57cec5SDimitry Andric                                               unsigned &BasePos,
21690b57cec5SDimitry Andric                                               unsigned &OffsetPos,
21700b57cec5SDimitry Andric                                               unsigned &NewBase,
21710b57cec5SDimitry Andric                                               int64_t &Offset) {
21720b57cec5SDimitry Andric   // Get the load instruction.
21730b57cec5SDimitry Andric   if (TII->isPostIncrement(*MI))
21740b57cec5SDimitry Andric     return false;
21750b57cec5SDimitry Andric   unsigned BasePosLd, OffsetPosLd;
21760b57cec5SDimitry Andric   if (!TII->getBaseAndOffsetPosition(*MI, BasePosLd, OffsetPosLd))
21770b57cec5SDimitry Andric     return false;
21788bcb0991SDimitry Andric   Register BaseReg = MI->getOperand(BasePosLd).getReg();
21790b57cec5SDimitry Andric 
21800b57cec5SDimitry Andric   // Look for the Phi instruction.
21810b57cec5SDimitry Andric   MachineRegisterInfo &MRI = MI->getMF()->getRegInfo();
21820b57cec5SDimitry Andric   MachineInstr *Phi = MRI.getVRegDef(BaseReg);
21830b57cec5SDimitry Andric   if (!Phi || !Phi->isPHI())
21840b57cec5SDimitry Andric     return false;
21850b57cec5SDimitry Andric   // Get the register defined in the loop block.
21860b57cec5SDimitry Andric   unsigned PrevReg = getLoopPhiReg(*Phi, MI->getParent());
21870b57cec5SDimitry Andric   if (!PrevReg)
21880b57cec5SDimitry Andric     return false;
21890b57cec5SDimitry Andric 
21900b57cec5SDimitry Andric   // Check for the post-increment load/store instruction.
21910b57cec5SDimitry Andric   MachineInstr *PrevDef = MRI.getVRegDef(PrevReg);
21920b57cec5SDimitry Andric   if (!PrevDef || PrevDef == MI)
21930b57cec5SDimitry Andric     return false;
21940b57cec5SDimitry Andric 
21950b57cec5SDimitry Andric   if (!TII->isPostIncrement(*PrevDef))
21960b57cec5SDimitry Andric     return false;
21970b57cec5SDimitry Andric 
21980b57cec5SDimitry Andric   unsigned BasePos1 = 0, OffsetPos1 = 0;
21990b57cec5SDimitry Andric   if (!TII->getBaseAndOffsetPosition(*PrevDef, BasePos1, OffsetPos1))
22000b57cec5SDimitry Andric     return false;
22010b57cec5SDimitry Andric 
22020b57cec5SDimitry Andric   // Make sure that the instructions do not access the same memory location in
22030b57cec5SDimitry Andric   // the next iteration.
22040b57cec5SDimitry Andric   int64_t LoadOffset = MI->getOperand(OffsetPosLd).getImm();
22050b57cec5SDimitry Andric   int64_t StoreOffset = PrevDef->getOperand(OffsetPos1).getImm();
22060b57cec5SDimitry Andric   MachineInstr *NewMI = MF.CloneMachineInstr(MI);
22070b57cec5SDimitry Andric   NewMI->getOperand(OffsetPosLd).setImm(LoadOffset + StoreOffset);
22080b57cec5SDimitry Andric   bool Disjoint = TII->areMemAccessesTriviallyDisjoint(*NewMI, *PrevDef);
22090b57cec5SDimitry Andric   MF.DeleteMachineInstr(NewMI);
22100b57cec5SDimitry Andric   if (!Disjoint)
22110b57cec5SDimitry Andric     return false;
22120b57cec5SDimitry Andric 
22130b57cec5SDimitry Andric   // Set the return value once we determine that we return true.
22140b57cec5SDimitry Andric   BasePos = BasePosLd;
22150b57cec5SDimitry Andric   OffsetPos = OffsetPosLd;
22160b57cec5SDimitry Andric   NewBase = PrevReg;
22170b57cec5SDimitry Andric   Offset = StoreOffset;
22180b57cec5SDimitry Andric   return true;
22190b57cec5SDimitry Andric }
22200b57cec5SDimitry Andric 
22210b57cec5SDimitry Andric /// Apply changes to the instruction if needed. The changes are need
22220b57cec5SDimitry Andric /// to improve the scheduling and depend up on the final schedule.
applyInstrChange(MachineInstr * MI,SMSchedule & Schedule)22230b57cec5SDimitry Andric void SwingSchedulerDAG::applyInstrChange(MachineInstr *MI,
22240b57cec5SDimitry Andric                                          SMSchedule &Schedule) {
22250b57cec5SDimitry Andric   SUnit *SU = getSUnit(MI);
22260b57cec5SDimitry Andric   DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
22270b57cec5SDimitry Andric       InstrChanges.find(SU);
22280b57cec5SDimitry Andric   if (It != InstrChanges.end()) {
22290b57cec5SDimitry Andric     std::pair<unsigned, int64_t> RegAndOffset = It->second;
22300b57cec5SDimitry Andric     unsigned BasePos, OffsetPos;
22310b57cec5SDimitry Andric     if (!TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
22320b57cec5SDimitry Andric       return;
22338bcb0991SDimitry Andric     Register BaseReg = MI->getOperand(BasePos).getReg();
22340b57cec5SDimitry Andric     MachineInstr *LoopDef = findDefInLoop(BaseReg);
22350b57cec5SDimitry Andric     int DefStageNum = Schedule.stageScheduled(getSUnit(LoopDef));
22360b57cec5SDimitry Andric     int DefCycleNum = Schedule.cycleScheduled(getSUnit(LoopDef));
22370b57cec5SDimitry Andric     int BaseStageNum = Schedule.stageScheduled(SU);
22380b57cec5SDimitry Andric     int BaseCycleNum = Schedule.cycleScheduled(SU);
22390b57cec5SDimitry Andric     if (BaseStageNum < DefStageNum) {
22400b57cec5SDimitry Andric       MachineInstr *NewMI = MF.CloneMachineInstr(MI);
22410b57cec5SDimitry Andric       int OffsetDiff = DefStageNum - BaseStageNum;
22420b57cec5SDimitry Andric       if (DefCycleNum < BaseCycleNum) {
22430b57cec5SDimitry Andric         NewMI->getOperand(BasePos).setReg(RegAndOffset.first);
22440b57cec5SDimitry Andric         if (OffsetDiff > 0)
22450b57cec5SDimitry Andric           --OffsetDiff;
22460b57cec5SDimitry Andric       }
22470b57cec5SDimitry Andric       int64_t NewOffset =
22480b57cec5SDimitry Andric           MI->getOperand(OffsetPos).getImm() + RegAndOffset.second * OffsetDiff;
22490b57cec5SDimitry Andric       NewMI->getOperand(OffsetPos).setImm(NewOffset);
22500b57cec5SDimitry Andric       SU->setInstr(NewMI);
22510b57cec5SDimitry Andric       MISUnitMap[NewMI] = SU;
22528bcb0991SDimitry Andric       NewMIs[MI] = NewMI;
22530b57cec5SDimitry Andric     }
22540b57cec5SDimitry Andric   }
22550b57cec5SDimitry Andric }
22560b57cec5SDimitry Andric 
22578bcb0991SDimitry Andric /// Return the instruction in the loop that defines the register.
22588bcb0991SDimitry Andric /// If the definition is a Phi, then follow the Phi operand to
22598bcb0991SDimitry Andric /// the instruction in the loop.
findDefInLoop(Register Reg)2260af732203SDimitry Andric MachineInstr *SwingSchedulerDAG::findDefInLoop(Register Reg) {
22618bcb0991SDimitry Andric   SmallPtrSet<MachineInstr *, 8> Visited;
22628bcb0991SDimitry Andric   MachineInstr *Def = MRI.getVRegDef(Reg);
22638bcb0991SDimitry Andric   while (Def->isPHI()) {
22648bcb0991SDimitry Andric     if (!Visited.insert(Def).second)
22658bcb0991SDimitry Andric       break;
22668bcb0991SDimitry Andric     for (unsigned i = 1, e = Def->getNumOperands(); i < e; i += 2)
22678bcb0991SDimitry Andric       if (Def->getOperand(i + 1).getMBB() == BB) {
22688bcb0991SDimitry Andric         Def = MRI.getVRegDef(Def->getOperand(i).getReg());
22698bcb0991SDimitry Andric         break;
22708bcb0991SDimitry Andric       }
22718bcb0991SDimitry Andric   }
22728bcb0991SDimitry Andric   return Def;
22738bcb0991SDimitry Andric }
22748bcb0991SDimitry Andric 
22750b57cec5SDimitry Andric /// Return true for an order or output dependence that is loop carried
22760b57cec5SDimitry Andric /// potentially. A dependence is loop carried if the destination defines a valu
22770b57cec5SDimitry Andric /// that may be used or defined by the source in a subsequent iteration.
isLoopCarriedDep(SUnit * Source,const SDep & Dep,bool isSucc)22780b57cec5SDimitry Andric bool SwingSchedulerDAG::isLoopCarriedDep(SUnit *Source, const SDep &Dep,
22790b57cec5SDimitry Andric                                          bool isSucc) {
22800b57cec5SDimitry Andric   if ((Dep.getKind() != SDep::Order && Dep.getKind() != SDep::Output) ||
22810b57cec5SDimitry Andric       Dep.isArtificial())
22820b57cec5SDimitry Andric     return false;
22830b57cec5SDimitry Andric 
22840b57cec5SDimitry Andric   if (!SwpPruneLoopCarried)
22850b57cec5SDimitry Andric     return true;
22860b57cec5SDimitry Andric 
22870b57cec5SDimitry Andric   if (Dep.getKind() == SDep::Output)
22880b57cec5SDimitry Andric     return true;
22890b57cec5SDimitry Andric 
22900b57cec5SDimitry Andric   MachineInstr *SI = Source->getInstr();
22910b57cec5SDimitry Andric   MachineInstr *DI = Dep.getSUnit()->getInstr();
22920b57cec5SDimitry Andric   if (!isSucc)
22930b57cec5SDimitry Andric     std::swap(SI, DI);
22940b57cec5SDimitry Andric   assert(SI != nullptr && DI != nullptr && "Expecting SUnit with an MI.");
22950b57cec5SDimitry Andric 
22960b57cec5SDimitry Andric   // Assume ordered loads and stores may have a loop carried dependence.
22970b57cec5SDimitry Andric   if (SI->hasUnmodeledSideEffects() || DI->hasUnmodeledSideEffects() ||
22980b57cec5SDimitry Andric       SI->mayRaiseFPException() || DI->mayRaiseFPException() ||
22990b57cec5SDimitry Andric       SI->hasOrderedMemoryRef() || DI->hasOrderedMemoryRef())
23000b57cec5SDimitry Andric     return true;
23010b57cec5SDimitry Andric 
23020b57cec5SDimitry Andric   // Only chain dependences between a load and store can be loop carried.
23030b57cec5SDimitry Andric   if (!DI->mayStore() || !SI->mayLoad())
23040b57cec5SDimitry Andric     return false;
23050b57cec5SDimitry Andric 
23060b57cec5SDimitry Andric   unsigned DeltaS, DeltaD;
23070b57cec5SDimitry Andric   if (!computeDelta(*SI, DeltaS) || !computeDelta(*DI, DeltaD))
23080b57cec5SDimitry Andric     return true;
23090b57cec5SDimitry Andric 
23100b57cec5SDimitry Andric   const MachineOperand *BaseOpS, *BaseOpD;
23110b57cec5SDimitry Andric   int64_t OffsetS, OffsetD;
23125ffd83dbSDimitry Andric   bool OffsetSIsScalable, OffsetDIsScalable;
23130b57cec5SDimitry Andric   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
23145ffd83dbSDimitry Andric   if (!TII->getMemOperandWithOffset(*SI, BaseOpS, OffsetS, OffsetSIsScalable,
23155ffd83dbSDimitry Andric                                     TRI) ||
23165ffd83dbSDimitry Andric       !TII->getMemOperandWithOffset(*DI, BaseOpD, OffsetD, OffsetDIsScalable,
23175ffd83dbSDimitry Andric                                     TRI))
23180b57cec5SDimitry Andric     return true;
23190b57cec5SDimitry Andric 
23205ffd83dbSDimitry Andric   assert(!OffsetSIsScalable && !OffsetDIsScalable &&
23215ffd83dbSDimitry Andric          "Expected offsets to be byte offsets");
23225ffd83dbSDimitry Andric 
23230b57cec5SDimitry Andric   if (!BaseOpS->isIdenticalTo(*BaseOpD))
23240b57cec5SDimitry Andric     return true;
23250b57cec5SDimitry Andric 
23260b57cec5SDimitry Andric   // Check that the base register is incremented by a constant value for each
23270b57cec5SDimitry Andric   // iteration.
23280b57cec5SDimitry Andric   MachineInstr *Def = MRI.getVRegDef(BaseOpS->getReg());
23290b57cec5SDimitry Andric   if (!Def || !Def->isPHI())
23300b57cec5SDimitry Andric     return true;
23310b57cec5SDimitry Andric   unsigned InitVal = 0;
23320b57cec5SDimitry Andric   unsigned LoopVal = 0;
23330b57cec5SDimitry Andric   getPhiRegs(*Def, BB, InitVal, LoopVal);
23340b57cec5SDimitry Andric   MachineInstr *LoopDef = MRI.getVRegDef(LoopVal);
23350b57cec5SDimitry Andric   int D = 0;
23360b57cec5SDimitry Andric   if (!LoopDef || !TII->getIncrementValue(*LoopDef, D))
23370b57cec5SDimitry Andric     return true;
23380b57cec5SDimitry Andric 
23390b57cec5SDimitry Andric   uint64_t AccessSizeS = (*SI->memoperands_begin())->getSize();
23400b57cec5SDimitry Andric   uint64_t AccessSizeD = (*DI->memoperands_begin())->getSize();
23410b57cec5SDimitry Andric 
23420b57cec5SDimitry Andric   // This is the main test, which checks the offset values and the loop
23430b57cec5SDimitry Andric   // increment value to determine if the accesses may be loop carried.
23440b57cec5SDimitry Andric   if (AccessSizeS == MemoryLocation::UnknownSize ||
23450b57cec5SDimitry Andric       AccessSizeD == MemoryLocation::UnknownSize)
23460b57cec5SDimitry Andric     return true;
23470b57cec5SDimitry Andric 
23480b57cec5SDimitry Andric   if (DeltaS != DeltaD || DeltaS < AccessSizeS || DeltaD < AccessSizeD)
23490b57cec5SDimitry Andric     return true;
23500b57cec5SDimitry Andric 
23510b57cec5SDimitry Andric   return (OffsetS + (int64_t)AccessSizeS < OffsetD + (int64_t)AccessSizeD);
23520b57cec5SDimitry Andric }
23530b57cec5SDimitry Andric 
postprocessDAG()23540b57cec5SDimitry Andric void SwingSchedulerDAG::postprocessDAG() {
23550b57cec5SDimitry Andric   for (auto &M : Mutations)
23560b57cec5SDimitry Andric     M->apply(this);
23570b57cec5SDimitry Andric }
23580b57cec5SDimitry Andric 
23590b57cec5SDimitry Andric /// Try to schedule the node at the specified StartCycle and continue
23600b57cec5SDimitry Andric /// until the node is schedule or the EndCycle is reached.  This function
23610b57cec5SDimitry Andric /// returns true if the node is scheduled.  This routine may search either
23620b57cec5SDimitry Andric /// forward or backward for a place to insert the instruction based upon
23630b57cec5SDimitry Andric /// the relative values of StartCycle and EndCycle.
insert(SUnit * SU,int StartCycle,int EndCycle,int II)23640b57cec5SDimitry Andric bool SMSchedule::insert(SUnit *SU, int StartCycle, int EndCycle, int II) {
23650b57cec5SDimitry Andric   bool forward = true;
23660b57cec5SDimitry Andric   LLVM_DEBUG({
23670b57cec5SDimitry Andric     dbgs() << "Trying to insert node between " << StartCycle << " and "
23680b57cec5SDimitry Andric            << EndCycle << " II: " << II << "\n";
23690b57cec5SDimitry Andric   });
23700b57cec5SDimitry Andric   if (StartCycle > EndCycle)
23710b57cec5SDimitry Andric     forward = false;
23720b57cec5SDimitry Andric 
23730b57cec5SDimitry Andric   // The terminating condition depends on the direction.
23740b57cec5SDimitry Andric   int termCycle = forward ? EndCycle + 1 : EndCycle - 1;
23750b57cec5SDimitry Andric   for (int curCycle = StartCycle; curCycle != termCycle;
23760b57cec5SDimitry Andric        forward ? ++curCycle : --curCycle) {
23770b57cec5SDimitry Andric 
23780b57cec5SDimitry Andric     // Add the already scheduled instructions at the specified cycle to the
23790b57cec5SDimitry Andric     // DFA.
23800b57cec5SDimitry Andric     ProcItinResources.clearResources();
23810b57cec5SDimitry Andric     for (int checkCycle = FirstCycle + ((curCycle - FirstCycle) % II);
23820b57cec5SDimitry Andric          checkCycle <= LastCycle; checkCycle += II) {
23830b57cec5SDimitry Andric       std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[checkCycle];
23840b57cec5SDimitry Andric 
2385*5f7ddb14SDimitry Andric       for (SUnit *CI : cycleInstrs) {
2386*5f7ddb14SDimitry Andric         if (ST.getInstrInfo()->isZeroCost(CI->getInstr()->getOpcode()))
23870b57cec5SDimitry Andric           continue;
2388*5f7ddb14SDimitry Andric         assert(ProcItinResources.canReserveResources(*CI->getInstr()) &&
23890b57cec5SDimitry Andric                "These instructions have already been scheduled.");
2390*5f7ddb14SDimitry Andric         ProcItinResources.reserveResources(*CI->getInstr());
23910b57cec5SDimitry Andric       }
23920b57cec5SDimitry Andric     }
23930b57cec5SDimitry Andric     if (ST.getInstrInfo()->isZeroCost(SU->getInstr()->getOpcode()) ||
23940b57cec5SDimitry Andric         ProcItinResources.canReserveResources(*SU->getInstr())) {
23950b57cec5SDimitry Andric       LLVM_DEBUG({
23960b57cec5SDimitry Andric         dbgs() << "\tinsert at cycle " << curCycle << " ";
23970b57cec5SDimitry Andric         SU->getInstr()->dump();
23980b57cec5SDimitry Andric       });
23990b57cec5SDimitry Andric 
24000b57cec5SDimitry Andric       ScheduledInstrs[curCycle].push_back(SU);
24010b57cec5SDimitry Andric       InstrToCycle.insert(std::make_pair(SU, curCycle));
24020b57cec5SDimitry Andric       if (curCycle > LastCycle)
24030b57cec5SDimitry Andric         LastCycle = curCycle;
24040b57cec5SDimitry Andric       if (curCycle < FirstCycle)
24050b57cec5SDimitry Andric         FirstCycle = curCycle;
24060b57cec5SDimitry Andric       return true;
24070b57cec5SDimitry Andric     }
24080b57cec5SDimitry Andric     LLVM_DEBUG({
24090b57cec5SDimitry Andric       dbgs() << "\tfailed to insert at cycle " << curCycle << " ";
24100b57cec5SDimitry Andric       SU->getInstr()->dump();
24110b57cec5SDimitry Andric     });
24120b57cec5SDimitry Andric   }
24130b57cec5SDimitry Andric   return false;
24140b57cec5SDimitry Andric }
24150b57cec5SDimitry Andric 
24160b57cec5SDimitry Andric // Return the cycle of the earliest scheduled instruction in the chain.
earliestCycleInChain(const SDep & Dep)24170b57cec5SDimitry Andric int SMSchedule::earliestCycleInChain(const SDep &Dep) {
24180b57cec5SDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
24190b57cec5SDimitry Andric   SmallVector<SDep, 8> Worklist;
24200b57cec5SDimitry Andric   Worklist.push_back(Dep);
24210b57cec5SDimitry Andric   int EarlyCycle = INT_MAX;
24220b57cec5SDimitry Andric   while (!Worklist.empty()) {
24230b57cec5SDimitry Andric     const SDep &Cur = Worklist.pop_back_val();
24240b57cec5SDimitry Andric     SUnit *PrevSU = Cur.getSUnit();
24250b57cec5SDimitry Andric     if (Visited.count(PrevSU))
24260b57cec5SDimitry Andric       continue;
24270b57cec5SDimitry Andric     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(PrevSU);
24280b57cec5SDimitry Andric     if (it == InstrToCycle.end())
24290b57cec5SDimitry Andric       continue;
24300b57cec5SDimitry Andric     EarlyCycle = std::min(EarlyCycle, it->second);
24310b57cec5SDimitry Andric     for (const auto &PI : PrevSU->Preds)
24325ffd83dbSDimitry Andric       if (PI.getKind() == SDep::Order || PI.getKind() == SDep::Output)
24330b57cec5SDimitry Andric         Worklist.push_back(PI);
24340b57cec5SDimitry Andric     Visited.insert(PrevSU);
24350b57cec5SDimitry Andric   }
24360b57cec5SDimitry Andric   return EarlyCycle;
24370b57cec5SDimitry Andric }
24380b57cec5SDimitry Andric 
24390b57cec5SDimitry Andric // Return the cycle of the latest scheduled instruction in the chain.
latestCycleInChain(const SDep & Dep)24400b57cec5SDimitry Andric int SMSchedule::latestCycleInChain(const SDep &Dep) {
24410b57cec5SDimitry Andric   SmallPtrSet<SUnit *, 8> Visited;
24420b57cec5SDimitry Andric   SmallVector<SDep, 8> Worklist;
24430b57cec5SDimitry Andric   Worklist.push_back(Dep);
24440b57cec5SDimitry Andric   int LateCycle = INT_MIN;
24450b57cec5SDimitry Andric   while (!Worklist.empty()) {
24460b57cec5SDimitry Andric     const SDep &Cur = Worklist.pop_back_val();
24470b57cec5SDimitry Andric     SUnit *SuccSU = Cur.getSUnit();
24480b57cec5SDimitry Andric     if (Visited.count(SuccSU))
24490b57cec5SDimitry Andric       continue;
24500b57cec5SDimitry Andric     std::map<SUnit *, int>::const_iterator it = InstrToCycle.find(SuccSU);
24510b57cec5SDimitry Andric     if (it == InstrToCycle.end())
24520b57cec5SDimitry Andric       continue;
24530b57cec5SDimitry Andric     LateCycle = std::max(LateCycle, it->second);
24540b57cec5SDimitry Andric     for (const auto &SI : SuccSU->Succs)
24555ffd83dbSDimitry Andric       if (SI.getKind() == SDep::Order || SI.getKind() == SDep::Output)
24560b57cec5SDimitry Andric         Worklist.push_back(SI);
24570b57cec5SDimitry Andric     Visited.insert(SuccSU);
24580b57cec5SDimitry Andric   }
24590b57cec5SDimitry Andric   return LateCycle;
24600b57cec5SDimitry Andric }
24610b57cec5SDimitry Andric 
24620b57cec5SDimitry Andric /// If an instruction has a use that spans multiple iterations, then
24630b57cec5SDimitry Andric /// return true. These instructions are characterized by having a back-ege
24640b57cec5SDimitry Andric /// to a Phi, which contains a reference to another Phi.
multipleIterations(SUnit * SU,SwingSchedulerDAG * DAG)24650b57cec5SDimitry Andric static SUnit *multipleIterations(SUnit *SU, SwingSchedulerDAG *DAG) {
24660b57cec5SDimitry Andric   for (auto &P : SU->Preds)
24670b57cec5SDimitry Andric     if (DAG->isBackedge(SU, P) && P.getSUnit()->getInstr()->isPHI())
24680b57cec5SDimitry Andric       for (auto &S : P.getSUnit()->Succs)
24690b57cec5SDimitry Andric         if (S.getKind() == SDep::Data && S.getSUnit()->getInstr()->isPHI())
24700b57cec5SDimitry Andric           return P.getSUnit();
24710b57cec5SDimitry Andric   return nullptr;
24720b57cec5SDimitry Andric }
24730b57cec5SDimitry Andric 
24740b57cec5SDimitry Andric /// Compute the scheduling start slot for the instruction.  The start slot
24750b57cec5SDimitry Andric /// depends on any predecessor or successor nodes scheduled already.
computeStart(SUnit * SU,int * MaxEarlyStart,int * MinLateStart,int * MinEnd,int * MaxStart,int II,SwingSchedulerDAG * DAG)24760b57cec5SDimitry Andric void SMSchedule::computeStart(SUnit *SU, int *MaxEarlyStart, int *MinLateStart,
24770b57cec5SDimitry Andric                               int *MinEnd, int *MaxStart, int II,
24780b57cec5SDimitry Andric                               SwingSchedulerDAG *DAG) {
24790b57cec5SDimitry Andric   // Iterate over each instruction that has been scheduled already.  The start
24800b57cec5SDimitry Andric   // slot computation depends on whether the previously scheduled instruction
24810b57cec5SDimitry Andric   // is a predecessor or successor of the specified instruction.
24820b57cec5SDimitry Andric   for (int cycle = getFirstCycle(); cycle <= LastCycle; ++cycle) {
24830b57cec5SDimitry Andric 
24840b57cec5SDimitry Andric     // Iterate over each instruction in the current cycle.
24850b57cec5SDimitry Andric     for (SUnit *I : getInstructions(cycle)) {
24860b57cec5SDimitry Andric       // Because we're processing a DAG for the dependences, we recognize
24870b57cec5SDimitry Andric       // the back-edge in recurrences by anti dependences.
24880b57cec5SDimitry Andric       for (unsigned i = 0, e = (unsigned)SU->Preds.size(); i != e; ++i) {
24890b57cec5SDimitry Andric         const SDep &Dep = SU->Preds[i];
24900b57cec5SDimitry Andric         if (Dep.getSUnit() == I) {
24910b57cec5SDimitry Andric           if (!DAG->isBackedge(SU, Dep)) {
24920b57cec5SDimitry Andric             int EarlyStart = cycle + Dep.getLatency() -
24930b57cec5SDimitry Andric                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
24940b57cec5SDimitry Andric             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
24950b57cec5SDimitry Andric             if (DAG->isLoopCarriedDep(SU, Dep, false)) {
24960b57cec5SDimitry Andric               int End = earliestCycleInChain(Dep) + (II - 1);
24970b57cec5SDimitry Andric               *MinEnd = std::min(*MinEnd, End);
24980b57cec5SDimitry Andric             }
24990b57cec5SDimitry Andric           } else {
25000b57cec5SDimitry Andric             int LateStart = cycle - Dep.getLatency() +
25010b57cec5SDimitry Andric                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
25020b57cec5SDimitry Andric             *MinLateStart = std::min(*MinLateStart, LateStart);
25030b57cec5SDimitry Andric           }
25040b57cec5SDimitry Andric         }
25050b57cec5SDimitry Andric         // For instruction that requires multiple iterations, make sure that
25060b57cec5SDimitry Andric         // the dependent instruction is not scheduled past the definition.
25070b57cec5SDimitry Andric         SUnit *BE = multipleIterations(I, DAG);
25080b57cec5SDimitry Andric         if (BE && Dep.getSUnit() == BE && !SU->getInstr()->isPHI() &&
25090b57cec5SDimitry Andric             !SU->isPred(I))
25100b57cec5SDimitry Andric           *MinLateStart = std::min(*MinLateStart, cycle);
25110b57cec5SDimitry Andric       }
25120b57cec5SDimitry Andric       for (unsigned i = 0, e = (unsigned)SU->Succs.size(); i != e; ++i) {
25130b57cec5SDimitry Andric         if (SU->Succs[i].getSUnit() == I) {
25140b57cec5SDimitry Andric           const SDep &Dep = SU->Succs[i];
25150b57cec5SDimitry Andric           if (!DAG->isBackedge(SU, Dep)) {
25160b57cec5SDimitry Andric             int LateStart = cycle - Dep.getLatency() +
25170b57cec5SDimitry Andric                             DAG->getDistance(SU, Dep.getSUnit(), Dep) * II;
25180b57cec5SDimitry Andric             *MinLateStart = std::min(*MinLateStart, LateStart);
25190b57cec5SDimitry Andric             if (DAG->isLoopCarriedDep(SU, Dep)) {
25200b57cec5SDimitry Andric               int Start = latestCycleInChain(Dep) + 1 - II;
25210b57cec5SDimitry Andric               *MaxStart = std::max(*MaxStart, Start);
25220b57cec5SDimitry Andric             }
25230b57cec5SDimitry Andric           } else {
25240b57cec5SDimitry Andric             int EarlyStart = cycle + Dep.getLatency() -
25250b57cec5SDimitry Andric                              DAG->getDistance(Dep.getSUnit(), SU, Dep) * II;
25260b57cec5SDimitry Andric             *MaxEarlyStart = std::max(*MaxEarlyStart, EarlyStart);
25270b57cec5SDimitry Andric           }
25280b57cec5SDimitry Andric         }
25290b57cec5SDimitry Andric       }
25300b57cec5SDimitry Andric     }
25310b57cec5SDimitry Andric   }
25320b57cec5SDimitry Andric }
25330b57cec5SDimitry Andric 
25340b57cec5SDimitry Andric /// Order the instructions within a cycle so that the definitions occur
25350b57cec5SDimitry Andric /// before the uses. Returns true if the instruction is added to the start
25360b57cec5SDimitry Andric /// of the list, or false if added to the end.
orderDependence(SwingSchedulerDAG * SSD,SUnit * SU,std::deque<SUnit * > & Insts)25370b57cec5SDimitry Andric void SMSchedule::orderDependence(SwingSchedulerDAG *SSD, SUnit *SU,
25380b57cec5SDimitry Andric                                  std::deque<SUnit *> &Insts) {
25390b57cec5SDimitry Andric   MachineInstr *MI = SU->getInstr();
25400b57cec5SDimitry Andric   bool OrderBeforeUse = false;
25410b57cec5SDimitry Andric   bool OrderAfterDef = false;
25420b57cec5SDimitry Andric   bool OrderBeforeDef = false;
25430b57cec5SDimitry Andric   unsigned MoveDef = 0;
25440b57cec5SDimitry Andric   unsigned MoveUse = 0;
25450b57cec5SDimitry Andric   int StageInst1 = stageScheduled(SU);
25460b57cec5SDimitry Andric 
25470b57cec5SDimitry Andric   unsigned Pos = 0;
25480b57cec5SDimitry Andric   for (std::deque<SUnit *>::iterator I = Insts.begin(), E = Insts.end(); I != E;
25490b57cec5SDimitry Andric        ++I, ++Pos) {
25500b57cec5SDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
25510b57cec5SDimitry Andric       MachineOperand &MO = MI->getOperand(i);
25528bcb0991SDimitry Andric       if (!MO.isReg() || !Register::isVirtualRegister(MO.getReg()))
25530b57cec5SDimitry Andric         continue;
25540b57cec5SDimitry Andric 
25558bcb0991SDimitry Andric       Register Reg = MO.getReg();
25560b57cec5SDimitry Andric       unsigned BasePos, OffsetPos;
25570b57cec5SDimitry Andric       if (ST.getInstrInfo()->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos))
25580b57cec5SDimitry Andric         if (MI->getOperand(BasePos).getReg() == Reg)
25590b57cec5SDimitry Andric           if (unsigned NewReg = SSD->getInstrBaseReg(SU))
25600b57cec5SDimitry Andric             Reg = NewReg;
25610b57cec5SDimitry Andric       bool Reads, Writes;
25620b57cec5SDimitry Andric       std::tie(Reads, Writes) =
25630b57cec5SDimitry Andric           (*I)->getInstr()->readsWritesVirtualRegister(Reg);
25640b57cec5SDimitry Andric       if (MO.isDef() && Reads && stageScheduled(*I) <= StageInst1) {
25650b57cec5SDimitry Andric         OrderBeforeUse = true;
25660b57cec5SDimitry Andric         if (MoveUse == 0)
25670b57cec5SDimitry Andric           MoveUse = Pos;
25680b57cec5SDimitry Andric       } else if (MO.isDef() && Reads && stageScheduled(*I) > StageInst1) {
25690b57cec5SDimitry Andric         // Add the instruction after the scheduled instruction.
25700b57cec5SDimitry Andric         OrderAfterDef = true;
25710b57cec5SDimitry Andric         MoveDef = Pos;
25720b57cec5SDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) == StageInst1) {
25730b57cec5SDimitry Andric         if (cycleScheduled(*I) == cycleScheduled(SU) && !(*I)->isSucc(SU)) {
25740b57cec5SDimitry Andric           OrderBeforeUse = true;
25750b57cec5SDimitry Andric           if (MoveUse == 0)
25760b57cec5SDimitry Andric             MoveUse = Pos;
25770b57cec5SDimitry Andric         } else {
25780b57cec5SDimitry Andric           OrderAfterDef = true;
25790b57cec5SDimitry Andric           MoveDef = Pos;
25800b57cec5SDimitry Andric         }
25810b57cec5SDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) > StageInst1) {
25820b57cec5SDimitry Andric         OrderBeforeUse = true;
25830b57cec5SDimitry Andric         if (MoveUse == 0)
25840b57cec5SDimitry Andric           MoveUse = Pos;
25850b57cec5SDimitry Andric         if (MoveUse != 0) {
25860b57cec5SDimitry Andric           OrderAfterDef = true;
25870b57cec5SDimitry Andric           MoveDef = Pos - 1;
25880b57cec5SDimitry Andric         }
25890b57cec5SDimitry Andric       } else if (MO.isUse() && Writes && stageScheduled(*I) < StageInst1) {
25900b57cec5SDimitry Andric         // Add the instruction before the scheduled instruction.
25910b57cec5SDimitry Andric         OrderBeforeUse = true;
25920b57cec5SDimitry Andric         if (MoveUse == 0)
25930b57cec5SDimitry Andric           MoveUse = Pos;
25940b57cec5SDimitry Andric       } else if (MO.isUse() && stageScheduled(*I) == StageInst1 &&
25950b57cec5SDimitry Andric                  isLoopCarriedDefOfUse(SSD, (*I)->getInstr(), MO)) {
25960b57cec5SDimitry Andric         if (MoveUse == 0) {
25970b57cec5SDimitry Andric           OrderBeforeDef = true;
25980b57cec5SDimitry Andric           MoveUse = Pos;
25990b57cec5SDimitry Andric         }
26000b57cec5SDimitry Andric       }
26010b57cec5SDimitry Andric     }
26020b57cec5SDimitry Andric     // Check for order dependences between instructions. Make sure the source
26030b57cec5SDimitry Andric     // is ordered before the destination.
26040b57cec5SDimitry Andric     for (auto &S : SU->Succs) {
26050b57cec5SDimitry Andric       if (S.getSUnit() != *I)
26060b57cec5SDimitry Andric         continue;
26070b57cec5SDimitry Andric       if (S.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
26080b57cec5SDimitry Andric         OrderBeforeUse = true;
26090b57cec5SDimitry Andric         if (Pos < MoveUse)
26100b57cec5SDimitry Andric           MoveUse = Pos;
26110b57cec5SDimitry Andric       }
26120b57cec5SDimitry Andric       // We did not handle HW dependences in previous for loop,
26130b57cec5SDimitry Andric       // and we normally set Latency = 0 for Anti deps,
26140b57cec5SDimitry Andric       // so may have nodes in same cycle with Anti denpendent on HW regs.
26150b57cec5SDimitry Andric       else if (S.getKind() == SDep::Anti && stageScheduled(*I) == StageInst1) {
26160b57cec5SDimitry Andric         OrderBeforeUse = true;
26170b57cec5SDimitry Andric         if ((MoveUse == 0) || (Pos < MoveUse))
26180b57cec5SDimitry Andric           MoveUse = Pos;
26190b57cec5SDimitry Andric       }
26200b57cec5SDimitry Andric     }
26210b57cec5SDimitry Andric     for (auto &P : SU->Preds) {
26220b57cec5SDimitry Andric       if (P.getSUnit() != *I)
26230b57cec5SDimitry Andric         continue;
26240b57cec5SDimitry Andric       if (P.getKind() == SDep::Order && stageScheduled(*I) == StageInst1) {
26250b57cec5SDimitry Andric         OrderAfterDef = true;
26260b57cec5SDimitry Andric         MoveDef = Pos;
26270b57cec5SDimitry Andric       }
26280b57cec5SDimitry Andric     }
26290b57cec5SDimitry Andric   }
26300b57cec5SDimitry Andric 
26310b57cec5SDimitry Andric   // A circular dependence.
26320b57cec5SDimitry Andric   if (OrderAfterDef && OrderBeforeUse && MoveUse == MoveDef)
26330b57cec5SDimitry Andric     OrderBeforeUse = false;
26340b57cec5SDimitry Andric 
26350b57cec5SDimitry Andric   // OrderAfterDef takes precedences over OrderBeforeDef. The latter is due
26360b57cec5SDimitry Andric   // to a loop-carried dependence.
26370b57cec5SDimitry Andric   if (OrderBeforeDef)
26380b57cec5SDimitry Andric     OrderBeforeUse = !OrderAfterDef || (MoveUse > MoveDef);
26390b57cec5SDimitry Andric 
26400b57cec5SDimitry Andric   // The uncommon case when the instruction order needs to be updated because
26410b57cec5SDimitry Andric   // there is both a use and def.
26420b57cec5SDimitry Andric   if (OrderBeforeUse && OrderAfterDef) {
26430b57cec5SDimitry Andric     SUnit *UseSU = Insts.at(MoveUse);
26440b57cec5SDimitry Andric     SUnit *DefSU = Insts.at(MoveDef);
26450b57cec5SDimitry Andric     if (MoveUse > MoveDef) {
26460b57cec5SDimitry Andric       Insts.erase(Insts.begin() + MoveUse);
26470b57cec5SDimitry Andric       Insts.erase(Insts.begin() + MoveDef);
26480b57cec5SDimitry Andric     } else {
26490b57cec5SDimitry Andric       Insts.erase(Insts.begin() + MoveDef);
26500b57cec5SDimitry Andric       Insts.erase(Insts.begin() + MoveUse);
26510b57cec5SDimitry Andric     }
26520b57cec5SDimitry Andric     orderDependence(SSD, UseSU, Insts);
26530b57cec5SDimitry Andric     orderDependence(SSD, SU, Insts);
26540b57cec5SDimitry Andric     orderDependence(SSD, DefSU, Insts);
26550b57cec5SDimitry Andric     return;
26560b57cec5SDimitry Andric   }
26570b57cec5SDimitry Andric   // Put the new instruction first if there is a use in the list. Otherwise,
26580b57cec5SDimitry Andric   // put it at the end of the list.
26590b57cec5SDimitry Andric   if (OrderBeforeUse)
26600b57cec5SDimitry Andric     Insts.push_front(SU);
26610b57cec5SDimitry Andric   else
26620b57cec5SDimitry Andric     Insts.push_back(SU);
26630b57cec5SDimitry Andric }
26640b57cec5SDimitry Andric 
26650b57cec5SDimitry Andric /// Return true if the scheduled Phi has a loop carried operand.
isLoopCarried(SwingSchedulerDAG * SSD,MachineInstr & Phi)26660b57cec5SDimitry Andric bool SMSchedule::isLoopCarried(SwingSchedulerDAG *SSD, MachineInstr &Phi) {
26670b57cec5SDimitry Andric   if (!Phi.isPHI())
26680b57cec5SDimitry Andric     return false;
26690b57cec5SDimitry Andric   assert(Phi.isPHI() && "Expecting a Phi.");
26700b57cec5SDimitry Andric   SUnit *DefSU = SSD->getSUnit(&Phi);
26710b57cec5SDimitry Andric   unsigned DefCycle = cycleScheduled(DefSU);
26720b57cec5SDimitry Andric   int DefStage = stageScheduled(DefSU);
26730b57cec5SDimitry Andric 
26740b57cec5SDimitry Andric   unsigned InitVal = 0;
26750b57cec5SDimitry Andric   unsigned LoopVal = 0;
26760b57cec5SDimitry Andric   getPhiRegs(Phi, Phi.getParent(), InitVal, LoopVal);
26770b57cec5SDimitry Andric   SUnit *UseSU = SSD->getSUnit(MRI.getVRegDef(LoopVal));
26780b57cec5SDimitry Andric   if (!UseSU)
26790b57cec5SDimitry Andric     return true;
26800b57cec5SDimitry Andric   if (UseSU->getInstr()->isPHI())
26810b57cec5SDimitry Andric     return true;
26820b57cec5SDimitry Andric   unsigned LoopCycle = cycleScheduled(UseSU);
26830b57cec5SDimitry Andric   int LoopStage = stageScheduled(UseSU);
26840b57cec5SDimitry Andric   return (LoopCycle > DefCycle) || (LoopStage <= DefStage);
26850b57cec5SDimitry Andric }
26860b57cec5SDimitry Andric 
26870b57cec5SDimitry Andric /// Return true if the instruction is a definition that is loop carried
26880b57cec5SDimitry Andric /// and defines the use on the next iteration.
26890b57cec5SDimitry Andric ///        v1 = phi(v2, v3)
26900b57cec5SDimitry Andric ///  (Def) v3 = op v1
26910b57cec5SDimitry Andric ///  (MO)   = v1
26920b57cec5SDimitry Andric /// If MO appears before Def, then then v1 and v3 may get assigned to the same
26930b57cec5SDimitry Andric /// register.
isLoopCarriedDefOfUse(SwingSchedulerDAG * SSD,MachineInstr * Def,MachineOperand & MO)26940b57cec5SDimitry Andric bool SMSchedule::isLoopCarriedDefOfUse(SwingSchedulerDAG *SSD,
26950b57cec5SDimitry Andric                                        MachineInstr *Def, MachineOperand &MO) {
26960b57cec5SDimitry Andric   if (!MO.isReg())
26970b57cec5SDimitry Andric     return false;
26980b57cec5SDimitry Andric   if (Def->isPHI())
26990b57cec5SDimitry Andric     return false;
27000b57cec5SDimitry Andric   MachineInstr *Phi = MRI.getVRegDef(MO.getReg());
27010b57cec5SDimitry Andric   if (!Phi || !Phi->isPHI() || Phi->getParent() != Def->getParent())
27020b57cec5SDimitry Andric     return false;
27030b57cec5SDimitry Andric   if (!isLoopCarried(SSD, *Phi))
27040b57cec5SDimitry Andric     return false;
27050b57cec5SDimitry Andric   unsigned LoopReg = getLoopPhiReg(*Phi, Phi->getParent());
27060b57cec5SDimitry Andric   for (unsigned i = 0, e = Def->getNumOperands(); i != e; ++i) {
27070b57cec5SDimitry Andric     MachineOperand &DMO = Def->getOperand(i);
27080b57cec5SDimitry Andric     if (!DMO.isReg() || !DMO.isDef())
27090b57cec5SDimitry Andric       continue;
27100b57cec5SDimitry Andric     if (DMO.getReg() == LoopReg)
27110b57cec5SDimitry Andric       return true;
27120b57cec5SDimitry Andric   }
27130b57cec5SDimitry Andric   return false;
27140b57cec5SDimitry Andric }
27150b57cec5SDimitry Andric 
27160b57cec5SDimitry Andric // Check if the generated schedule is valid. This function checks if
27170b57cec5SDimitry Andric // an instruction that uses a physical register is scheduled in a
27180b57cec5SDimitry Andric // different stage than the definition. The pipeliner does not handle
27190b57cec5SDimitry Andric // physical register values that may cross a basic block boundary.
isValidSchedule(SwingSchedulerDAG * SSD)27200b57cec5SDimitry Andric bool SMSchedule::isValidSchedule(SwingSchedulerDAG *SSD) {
2721*5f7ddb14SDimitry Andric   for (SUnit &SU : SSD->SUnits) {
27220b57cec5SDimitry Andric     if (!SU.hasPhysRegDefs)
27230b57cec5SDimitry Andric       continue;
27240b57cec5SDimitry Andric     int StageDef = stageScheduled(&SU);
27250b57cec5SDimitry Andric     assert(StageDef != -1 && "Instruction should have been scheduled.");
27260b57cec5SDimitry Andric     for (auto &SI : SU.Succs)
27270b57cec5SDimitry Andric       if (SI.isAssignedRegDep())
27288bcb0991SDimitry Andric         if (Register::isPhysicalRegister(SI.getReg()))
27290b57cec5SDimitry Andric           if (stageScheduled(SI.getSUnit()) != StageDef)
27300b57cec5SDimitry Andric             return false;
27310b57cec5SDimitry Andric   }
27320b57cec5SDimitry Andric   return true;
27330b57cec5SDimitry Andric }
27340b57cec5SDimitry Andric 
27350b57cec5SDimitry Andric /// A property of the node order in swing-modulo-scheduling is
27360b57cec5SDimitry Andric /// that for nodes outside circuits the following holds:
27370b57cec5SDimitry Andric /// none of them is scheduled after both a successor and a
27380b57cec5SDimitry Andric /// predecessor.
27390b57cec5SDimitry Andric /// The method below checks whether the property is met.
27400b57cec5SDimitry Andric /// If not, debug information is printed and statistics information updated.
27410b57cec5SDimitry Andric /// Note that we do not use an assert statement.
27420b57cec5SDimitry Andric /// The reason is that although an invalid node oder may prevent
27430b57cec5SDimitry Andric /// the pipeliner from finding a pipelined schedule for arbitrary II,
27440b57cec5SDimitry Andric /// it does not lead to the generation of incorrect code.
checkValidNodeOrder(const NodeSetType & Circuits) const27450b57cec5SDimitry Andric void SwingSchedulerDAG::checkValidNodeOrder(const NodeSetType &Circuits) const {
27460b57cec5SDimitry Andric 
27470b57cec5SDimitry Andric   // a sorted vector that maps each SUnit to its index in the NodeOrder
27480b57cec5SDimitry Andric   typedef std::pair<SUnit *, unsigned> UnitIndex;
27490b57cec5SDimitry Andric   std::vector<UnitIndex> Indices(NodeOrder.size(), std::make_pair(nullptr, 0));
27500b57cec5SDimitry Andric 
27510b57cec5SDimitry Andric   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i)
27520b57cec5SDimitry Andric     Indices.push_back(std::make_pair(NodeOrder[i], i));
27530b57cec5SDimitry Andric 
27540b57cec5SDimitry Andric   auto CompareKey = [](UnitIndex i1, UnitIndex i2) {
27550b57cec5SDimitry Andric     return std::get<0>(i1) < std::get<0>(i2);
27560b57cec5SDimitry Andric   };
27570b57cec5SDimitry Andric 
27580b57cec5SDimitry Andric   // sort, so that we can perform a binary search
27590b57cec5SDimitry Andric   llvm::sort(Indices, CompareKey);
27600b57cec5SDimitry Andric 
27610b57cec5SDimitry Andric   bool Valid = true;
27620b57cec5SDimitry Andric   (void)Valid;
27630b57cec5SDimitry Andric   // for each SUnit in the NodeOrder, check whether
27640b57cec5SDimitry Andric   // it appears after both a successor and a predecessor
27650b57cec5SDimitry Andric   // of the SUnit. If this is the case, and the SUnit
27660b57cec5SDimitry Andric   // is not part of circuit, then the NodeOrder is not
27670b57cec5SDimitry Andric   // valid.
27680b57cec5SDimitry Andric   for (unsigned i = 0, s = NodeOrder.size(); i < s; ++i) {
27690b57cec5SDimitry Andric     SUnit *SU = NodeOrder[i];
27700b57cec5SDimitry Andric     unsigned Index = i;
27710b57cec5SDimitry Andric 
27720b57cec5SDimitry Andric     bool PredBefore = false;
27730b57cec5SDimitry Andric     bool SuccBefore = false;
27740b57cec5SDimitry Andric 
27750b57cec5SDimitry Andric     SUnit *Succ;
27760b57cec5SDimitry Andric     SUnit *Pred;
27770b57cec5SDimitry Andric     (void)Succ;
27780b57cec5SDimitry Andric     (void)Pred;
27790b57cec5SDimitry Andric 
27800b57cec5SDimitry Andric     for (SDep &PredEdge : SU->Preds) {
27810b57cec5SDimitry Andric       SUnit *PredSU = PredEdge.getSUnit();
27820b57cec5SDimitry Andric       unsigned PredIndex = std::get<1>(
27830b57cec5SDimitry Andric           *llvm::lower_bound(Indices, std::make_pair(PredSU, 0), CompareKey));
27840b57cec5SDimitry Andric       if (!PredSU->getInstr()->isPHI() && PredIndex < Index) {
27850b57cec5SDimitry Andric         PredBefore = true;
27860b57cec5SDimitry Andric         Pred = PredSU;
27870b57cec5SDimitry Andric         break;
27880b57cec5SDimitry Andric       }
27890b57cec5SDimitry Andric     }
27900b57cec5SDimitry Andric 
27910b57cec5SDimitry Andric     for (SDep &SuccEdge : SU->Succs) {
27920b57cec5SDimitry Andric       SUnit *SuccSU = SuccEdge.getSUnit();
27930b57cec5SDimitry Andric       // Do not process a boundary node, it was not included in NodeOrder,
27940b57cec5SDimitry Andric       // hence not in Indices either, call to std::lower_bound() below will
27950b57cec5SDimitry Andric       // return Indices.end().
27960b57cec5SDimitry Andric       if (SuccSU->isBoundaryNode())
27970b57cec5SDimitry Andric         continue;
27980b57cec5SDimitry Andric       unsigned SuccIndex = std::get<1>(
27990b57cec5SDimitry Andric           *llvm::lower_bound(Indices, std::make_pair(SuccSU, 0), CompareKey));
28000b57cec5SDimitry Andric       if (!SuccSU->getInstr()->isPHI() && SuccIndex < Index) {
28010b57cec5SDimitry Andric         SuccBefore = true;
28020b57cec5SDimitry Andric         Succ = SuccSU;
28030b57cec5SDimitry Andric         break;
28040b57cec5SDimitry Andric       }
28050b57cec5SDimitry Andric     }
28060b57cec5SDimitry Andric 
28070b57cec5SDimitry Andric     if (PredBefore && SuccBefore && !SU->getInstr()->isPHI()) {
28080b57cec5SDimitry Andric       // instructions in circuits are allowed to be scheduled
28090b57cec5SDimitry Andric       // after both a successor and predecessor.
28100b57cec5SDimitry Andric       bool InCircuit = llvm::any_of(
28110b57cec5SDimitry Andric           Circuits, [SU](const NodeSet &Circuit) { return Circuit.count(SU); });
28120b57cec5SDimitry Andric       if (InCircuit)
28130b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "In a circuit, predecessor ";);
28140b57cec5SDimitry Andric       else {
28150b57cec5SDimitry Andric         Valid = false;
28160b57cec5SDimitry Andric         NumNodeOrderIssues++;
28170b57cec5SDimitry Andric         LLVM_DEBUG(dbgs() << "Predecessor ";);
28180b57cec5SDimitry Andric       }
28190b57cec5SDimitry Andric       LLVM_DEBUG(dbgs() << Pred->NodeNum << " and successor " << Succ->NodeNum
28200b57cec5SDimitry Andric                         << " are scheduled before node " << SU->NodeNum
28210b57cec5SDimitry Andric                         << "\n";);
28220b57cec5SDimitry Andric     }
28230b57cec5SDimitry Andric   }
28240b57cec5SDimitry Andric 
28250b57cec5SDimitry Andric   LLVM_DEBUG({
28260b57cec5SDimitry Andric     if (!Valid)
28270b57cec5SDimitry Andric       dbgs() << "Invalid node order found!\n";
28280b57cec5SDimitry Andric   });
28290b57cec5SDimitry Andric }
28300b57cec5SDimitry Andric 
28310b57cec5SDimitry Andric /// Attempt to fix the degenerate cases when the instruction serialization
28320b57cec5SDimitry Andric /// causes the register lifetimes to overlap. For example,
28330b57cec5SDimitry Andric ///   p' = store_pi(p, b)
28340b57cec5SDimitry Andric ///      = load p, offset
28350b57cec5SDimitry Andric /// In this case p and p' overlap, which means that two registers are needed.
28360b57cec5SDimitry Andric /// Instead, this function changes the load to use p' and updates the offset.
fixupRegisterOverlaps(std::deque<SUnit * > & Instrs)28370b57cec5SDimitry Andric void SwingSchedulerDAG::fixupRegisterOverlaps(std::deque<SUnit *> &Instrs) {
28380b57cec5SDimitry Andric   unsigned OverlapReg = 0;
28390b57cec5SDimitry Andric   unsigned NewBaseReg = 0;
28400b57cec5SDimitry Andric   for (SUnit *SU : Instrs) {
28410b57cec5SDimitry Andric     MachineInstr *MI = SU->getInstr();
28420b57cec5SDimitry Andric     for (unsigned i = 0, e = MI->getNumOperands(); i < e; ++i) {
28430b57cec5SDimitry Andric       const MachineOperand &MO = MI->getOperand(i);
28440b57cec5SDimitry Andric       // Look for an instruction that uses p. The instruction occurs in the
28450b57cec5SDimitry Andric       // same cycle but occurs later in the serialized order.
28460b57cec5SDimitry Andric       if (MO.isReg() && MO.isUse() && MO.getReg() == OverlapReg) {
28470b57cec5SDimitry Andric         // Check that the instruction appears in the InstrChanges structure,
28480b57cec5SDimitry Andric         // which contains instructions that can have the offset updated.
28490b57cec5SDimitry Andric         DenseMap<SUnit *, std::pair<unsigned, int64_t>>::iterator It =
28500b57cec5SDimitry Andric           InstrChanges.find(SU);
28510b57cec5SDimitry Andric         if (It != InstrChanges.end()) {
28520b57cec5SDimitry Andric           unsigned BasePos, OffsetPos;
28530b57cec5SDimitry Andric           // Update the base register and adjust the offset.
28540b57cec5SDimitry Andric           if (TII->getBaseAndOffsetPosition(*MI, BasePos, OffsetPos)) {
28550b57cec5SDimitry Andric             MachineInstr *NewMI = MF.CloneMachineInstr(MI);
28560b57cec5SDimitry Andric             NewMI->getOperand(BasePos).setReg(NewBaseReg);
28570b57cec5SDimitry Andric             int64_t NewOffset =
28580b57cec5SDimitry Andric                 MI->getOperand(OffsetPos).getImm() - It->second.second;
28590b57cec5SDimitry Andric             NewMI->getOperand(OffsetPos).setImm(NewOffset);
28600b57cec5SDimitry Andric             SU->setInstr(NewMI);
28610b57cec5SDimitry Andric             MISUnitMap[NewMI] = SU;
28628bcb0991SDimitry Andric             NewMIs[MI] = NewMI;
28630b57cec5SDimitry Andric           }
28640b57cec5SDimitry Andric         }
28650b57cec5SDimitry Andric         OverlapReg = 0;
28660b57cec5SDimitry Andric         NewBaseReg = 0;
28670b57cec5SDimitry Andric         break;
28680b57cec5SDimitry Andric       }
28690b57cec5SDimitry Andric       // Look for an instruction of the form p' = op(p), which uses and defines
28700b57cec5SDimitry Andric       // two virtual registers that get allocated to the same physical register.
28710b57cec5SDimitry Andric       unsigned TiedUseIdx = 0;
28720b57cec5SDimitry Andric       if (MI->isRegTiedToUseOperand(i, &TiedUseIdx)) {
28730b57cec5SDimitry Andric         // OverlapReg is p in the example above.
28740b57cec5SDimitry Andric         OverlapReg = MI->getOperand(TiedUseIdx).getReg();
28750b57cec5SDimitry Andric         // NewBaseReg is p' in the example above.
28760b57cec5SDimitry Andric         NewBaseReg = MI->getOperand(i).getReg();
28770b57cec5SDimitry Andric         break;
28780b57cec5SDimitry Andric       }
28790b57cec5SDimitry Andric     }
28800b57cec5SDimitry Andric   }
28810b57cec5SDimitry Andric }
28820b57cec5SDimitry Andric 
28830b57cec5SDimitry Andric /// After the schedule has been formed, call this function to combine
28840b57cec5SDimitry Andric /// the instructions from the different stages/cycles.  That is, this
28850b57cec5SDimitry Andric /// function creates a schedule that represents a single iteration.
finalizeSchedule(SwingSchedulerDAG * SSD)28860b57cec5SDimitry Andric void SMSchedule::finalizeSchedule(SwingSchedulerDAG *SSD) {
28870b57cec5SDimitry Andric   // Move all instructions to the first stage from later stages.
28880b57cec5SDimitry Andric   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
28890b57cec5SDimitry Andric     for (int stage = 1, lastStage = getMaxStageCount(); stage <= lastStage;
28900b57cec5SDimitry Andric          ++stage) {
28910b57cec5SDimitry Andric       std::deque<SUnit *> &cycleInstrs =
28920b57cec5SDimitry Andric           ScheduledInstrs[cycle + (stage * InitiationInterval)];
28930b57cec5SDimitry Andric       for (std::deque<SUnit *>::reverse_iterator I = cycleInstrs.rbegin(),
28940b57cec5SDimitry Andric                                                  E = cycleInstrs.rend();
28950b57cec5SDimitry Andric            I != E; ++I)
28960b57cec5SDimitry Andric         ScheduledInstrs[cycle].push_front(*I);
28970b57cec5SDimitry Andric     }
28980b57cec5SDimitry Andric   }
28990b57cec5SDimitry Andric 
29000b57cec5SDimitry Andric   // Erase all the elements in the later stages. Only one iteration should
29010b57cec5SDimitry Andric   // remain in the scheduled list, and it contains all the instructions.
29020b57cec5SDimitry Andric   for (int cycle = getFinalCycle() + 1; cycle <= LastCycle; ++cycle)
29030b57cec5SDimitry Andric     ScheduledInstrs.erase(cycle);
29040b57cec5SDimitry Andric 
29050b57cec5SDimitry Andric   // Change the registers in instruction as specified in the InstrChanges
29060b57cec5SDimitry Andric   // map. We need to use the new registers to create the correct order.
29070b57cec5SDimitry Andric   for (int i = 0, e = SSD->SUnits.size(); i != e; ++i) {
29080b57cec5SDimitry Andric     SUnit *SU = &SSD->SUnits[i];
29090b57cec5SDimitry Andric     SSD->applyInstrChange(SU->getInstr(), *this);
29100b57cec5SDimitry Andric   }
29110b57cec5SDimitry Andric 
29120b57cec5SDimitry Andric   // Reorder the instructions in each cycle to fix and improve the
29130b57cec5SDimitry Andric   // generated code.
29140b57cec5SDimitry Andric   for (int Cycle = getFirstCycle(), E = getFinalCycle(); Cycle <= E; ++Cycle) {
29150b57cec5SDimitry Andric     std::deque<SUnit *> &cycleInstrs = ScheduledInstrs[Cycle];
29160b57cec5SDimitry Andric     std::deque<SUnit *> newOrderPhi;
2917*5f7ddb14SDimitry Andric     for (SUnit *SU : cycleInstrs) {
29180b57cec5SDimitry Andric       if (SU->getInstr()->isPHI())
29190b57cec5SDimitry Andric         newOrderPhi.push_back(SU);
29200b57cec5SDimitry Andric     }
29210b57cec5SDimitry Andric     std::deque<SUnit *> newOrderI;
2922*5f7ddb14SDimitry Andric     for (SUnit *SU : cycleInstrs) {
29230b57cec5SDimitry Andric       if (!SU->getInstr()->isPHI())
29240b57cec5SDimitry Andric         orderDependence(SSD, SU, newOrderI);
29250b57cec5SDimitry Andric     }
29260b57cec5SDimitry Andric     // Replace the old order with the new order.
29270b57cec5SDimitry Andric     cycleInstrs.swap(newOrderPhi);
2928af732203SDimitry Andric     llvm::append_range(cycleInstrs, newOrderI);
29290b57cec5SDimitry Andric     SSD->fixupRegisterOverlaps(cycleInstrs);
29300b57cec5SDimitry Andric   }
29310b57cec5SDimitry Andric 
29320b57cec5SDimitry Andric   LLVM_DEBUG(dump(););
29330b57cec5SDimitry Andric }
29340b57cec5SDimitry Andric 
print(raw_ostream & os) const29350b57cec5SDimitry Andric void NodeSet::print(raw_ostream &os) const {
29360b57cec5SDimitry Andric   os << "Num nodes " << size() << " rec " << RecMII << " mov " << MaxMOV
29370b57cec5SDimitry Andric      << " depth " << MaxDepth << " col " << Colocate << "\n";
29380b57cec5SDimitry Andric   for (const auto &I : Nodes)
29390b57cec5SDimitry Andric     os << "   SU(" << I->NodeNum << ") " << *(I->getInstr());
29400b57cec5SDimitry Andric   os << "\n";
29410b57cec5SDimitry Andric }
29420b57cec5SDimitry Andric 
29430b57cec5SDimitry Andric #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
29440b57cec5SDimitry Andric /// Print the schedule information to the given output.
print(raw_ostream & os) const29450b57cec5SDimitry Andric void SMSchedule::print(raw_ostream &os) const {
29460b57cec5SDimitry Andric   // Iterate over each cycle.
29470b57cec5SDimitry Andric   for (int cycle = getFirstCycle(); cycle <= getFinalCycle(); ++cycle) {
29480b57cec5SDimitry Andric     // Iterate over each instruction in the cycle.
29490b57cec5SDimitry Andric     const_sched_iterator cycleInstrs = ScheduledInstrs.find(cycle);
29500b57cec5SDimitry Andric     for (SUnit *CI : cycleInstrs->second) {
29510b57cec5SDimitry Andric       os << "cycle " << cycle << " (" << stageScheduled(CI) << ") ";
29520b57cec5SDimitry Andric       os << "(" << CI->NodeNum << ") ";
29530b57cec5SDimitry Andric       CI->getInstr()->print(os);
29540b57cec5SDimitry Andric       os << "\n";
29550b57cec5SDimitry Andric     }
29560b57cec5SDimitry Andric   }
29570b57cec5SDimitry Andric }
29580b57cec5SDimitry Andric 
29590b57cec5SDimitry Andric /// Utility function used for debugging to print the schedule.
dump() const29600b57cec5SDimitry Andric LLVM_DUMP_METHOD void SMSchedule::dump() const { print(dbgs()); }
dump() const29610b57cec5SDimitry Andric LLVM_DUMP_METHOD void NodeSet::dump() const { print(dbgs()); }
29620b57cec5SDimitry Andric 
29630b57cec5SDimitry Andric #endif
29640b57cec5SDimitry Andric 
initProcResourceVectors(const MCSchedModel & SM,SmallVectorImpl<uint64_t> & Masks)29650b57cec5SDimitry Andric void ResourceManager::initProcResourceVectors(
29660b57cec5SDimitry Andric     const MCSchedModel &SM, SmallVectorImpl<uint64_t> &Masks) {
29670b57cec5SDimitry Andric   unsigned ProcResourceID = 0;
29680b57cec5SDimitry Andric 
29690b57cec5SDimitry Andric   // We currently limit the resource kinds to 64 and below so that we can use
29700b57cec5SDimitry Andric   // uint64_t for Masks
29710b57cec5SDimitry Andric   assert(SM.getNumProcResourceKinds() < 64 &&
29720b57cec5SDimitry Andric          "Too many kinds of resources, unsupported");
29730b57cec5SDimitry Andric   // Create a unique bitmask for every processor resource unit.
29740b57cec5SDimitry Andric   // Skip resource at index 0, since it always references 'InvalidUnit'.
29750b57cec5SDimitry Andric   Masks.resize(SM.getNumProcResourceKinds());
29760b57cec5SDimitry Andric   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
29770b57cec5SDimitry Andric     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
29780b57cec5SDimitry Andric     if (Desc.SubUnitsIdxBegin)
29790b57cec5SDimitry Andric       continue;
29800b57cec5SDimitry Andric     Masks[I] = 1ULL << ProcResourceID;
29810b57cec5SDimitry Andric     ProcResourceID++;
29820b57cec5SDimitry Andric   }
29830b57cec5SDimitry Andric   // Create a unique bitmask for every processor resource group.
29840b57cec5SDimitry Andric   for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
29850b57cec5SDimitry Andric     const MCProcResourceDesc &Desc = *SM.getProcResource(I);
29860b57cec5SDimitry Andric     if (!Desc.SubUnitsIdxBegin)
29870b57cec5SDimitry Andric       continue;
29880b57cec5SDimitry Andric     Masks[I] = 1ULL << ProcResourceID;
29890b57cec5SDimitry Andric     for (unsigned U = 0; U < Desc.NumUnits; ++U)
29900b57cec5SDimitry Andric       Masks[I] |= Masks[Desc.SubUnitsIdxBegin[U]];
29910b57cec5SDimitry Andric     ProcResourceID++;
29920b57cec5SDimitry Andric   }
29930b57cec5SDimitry Andric   LLVM_DEBUG({
29940b57cec5SDimitry Andric     if (SwpShowResMask) {
29950b57cec5SDimitry Andric       dbgs() << "ProcResourceDesc:\n";
29960b57cec5SDimitry Andric       for (unsigned I = 1, E = SM.getNumProcResourceKinds(); I < E; ++I) {
29970b57cec5SDimitry Andric         const MCProcResourceDesc *ProcResource = SM.getProcResource(I);
29980b57cec5SDimitry Andric         dbgs() << format(" %16s(%2d): Mask: 0x%08x, NumUnits:%2d\n",
29990b57cec5SDimitry Andric                          ProcResource->Name, I, Masks[I],
30000b57cec5SDimitry Andric                          ProcResource->NumUnits);
30010b57cec5SDimitry Andric       }
30020b57cec5SDimitry Andric       dbgs() << " -----------------\n";
30030b57cec5SDimitry Andric     }
30040b57cec5SDimitry Andric   });
30050b57cec5SDimitry Andric }
30060b57cec5SDimitry Andric 
canReserveResources(const MCInstrDesc * MID) const30070b57cec5SDimitry Andric bool ResourceManager::canReserveResources(const MCInstrDesc *MID) const {
30080b57cec5SDimitry Andric 
30090b57cec5SDimitry Andric   LLVM_DEBUG({
30100b57cec5SDimitry Andric     if (SwpDebugResource)
30110b57cec5SDimitry Andric       dbgs() << "canReserveResources:\n";
30120b57cec5SDimitry Andric   });
30130b57cec5SDimitry Andric   if (UseDFA)
30140b57cec5SDimitry Andric     return DFAResources->canReserveResources(MID);
30150b57cec5SDimitry Andric 
30160b57cec5SDimitry Andric   unsigned InsnClass = MID->getSchedClass();
30170b57cec5SDimitry Andric   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
30180b57cec5SDimitry Andric   if (!SCDesc->isValid()) {
30190b57cec5SDimitry Andric     LLVM_DEBUG({
30200b57cec5SDimitry Andric       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
30210b57cec5SDimitry Andric       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
30220b57cec5SDimitry Andric     });
30230b57cec5SDimitry Andric     return true;
30240b57cec5SDimitry Andric   }
30250b57cec5SDimitry Andric 
30260b57cec5SDimitry Andric   const MCWriteProcResEntry *I = STI->getWriteProcResBegin(SCDesc);
30270b57cec5SDimitry Andric   const MCWriteProcResEntry *E = STI->getWriteProcResEnd(SCDesc);
30280b57cec5SDimitry Andric   for (; I != E; ++I) {
30290b57cec5SDimitry Andric     if (!I->Cycles)
30300b57cec5SDimitry Andric       continue;
30310b57cec5SDimitry Andric     const MCProcResourceDesc *ProcResource =
30320b57cec5SDimitry Andric         SM.getProcResource(I->ProcResourceIdx);
30330b57cec5SDimitry Andric     unsigned NumUnits = ProcResource->NumUnits;
30340b57cec5SDimitry Andric     LLVM_DEBUG({
30350b57cec5SDimitry Andric       if (SwpDebugResource)
30360b57cec5SDimitry Andric         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
30370b57cec5SDimitry Andric                          ProcResource->Name, I->ProcResourceIdx,
30380b57cec5SDimitry Andric                          ProcResourceCount[I->ProcResourceIdx], NumUnits,
30390b57cec5SDimitry Andric                          I->Cycles);
30400b57cec5SDimitry Andric     });
30410b57cec5SDimitry Andric     if (ProcResourceCount[I->ProcResourceIdx] >= NumUnits)
30420b57cec5SDimitry Andric       return false;
30430b57cec5SDimitry Andric   }
30440b57cec5SDimitry Andric   LLVM_DEBUG(if (SwpDebugResource) dbgs() << "return true\n\n";);
30450b57cec5SDimitry Andric   return true;
30460b57cec5SDimitry Andric }
30470b57cec5SDimitry Andric 
reserveResources(const MCInstrDesc * MID)30480b57cec5SDimitry Andric void ResourceManager::reserveResources(const MCInstrDesc *MID) {
30490b57cec5SDimitry Andric   LLVM_DEBUG({
30500b57cec5SDimitry Andric     if (SwpDebugResource)
30510b57cec5SDimitry Andric       dbgs() << "reserveResources:\n";
30520b57cec5SDimitry Andric   });
30530b57cec5SDimitry Andric   if (UseDFA)
30540b57cec5SDimitry Andric     return DFAResources->reserveResources(MID);
30550b57cec5SDimitry Andric 
30560b57cec5SDimitry Andric   unsigned InsnClass = MID->getSchedClass();
30570b57cec5SDimitry Andric   const MCSchedClassDesc *SCDesc = SM.getSchedClassDesc(InsnClass);
30580b57cec5SDimitry Andric   if (!SCDesc->isValid()) {
30590b57cec5SDimitry Andric     LLVM_DEBUG({
30600b57cec5SDimitry Andric       dbgs() << "No valid Schedule Class Desc for schedClass!\n";
30610b57cec5SDimitry Andric       dbgs() << "isPseduo:" << MID->isPseudo() << "\n";
30620b57cec5SDimitry Andric     });
30630b57cec5SDimitry Andric     return;
30640b57cec5SDimitry Andric   }
30650b57cec5SDimitry Andric   for (const MCWriteProcResEntry &PRE :
30660b57cec5SDimitry Andric        make_range(STI->getWriteProcResBegin(SCDesc),
30670b57cec5SDimitry Andric                   STI->getWriteProcResEnd(SCDesc))) {
30680b57cec5SDimitry Andric     if (!PRE.Cycles)
30690b57cec5SDimitry Andric       continue;
30700b57cec5SDimitry Andric     ++ProcResourceCount[PRE.ProcResourceIdx];
30710b57cec5SDimitry Andric     LLVM_DEBUG({
30720b57cec5SDimitry Andric       if (SwpDebugResource) {
30730b57cec5SDimitry Andric         const MCProcResourceDesc *ProcResource =
30740b57cec5SDimitry Andric             SM.getProcResource(PRE.ProcResourceIdx);
30750b57cec5SDimitry Andric         dbgs() << format(" %16s(%2d): Count: %2d, NumUnits:%2d, Cycles:%2d\n",
30760b57cec5SDimitry Andric                          ProcResource->Name, PRE.ProcResourceIdx,
30770b57cec5SDimitry Andric                          ProcResourceCount[PRE.ProcResourceIdx],
30780b57cec5SDimitry Andric                          ProcResource->NumUnits, PRE.Cycles);
30790b57cec5SDimitry Andric       }
30800b57cec5SDimitry Andric     });
30810b57cec5SDimitry Andric   }
30820b57cec5SDimitry Andric   LLVM_DEBUG({
30830b57cec5SDimitry Andric     if (SwpDebugResource)
30840b57cec5SDimitry Andric       dbgs() << "reserveResources: done!\n\n";
30850b57cec5SDimitry Andric   });
30860b57cec5SDimitry Andric }
30870b57cec5SDimitry Andric 
canReserveResources(const MachineInstr & MI) const30880b57cec5SDimitry Andric bool ResourceManager::canReserveResources(const MachineInstr &MI) const {
30890b57cec5SDimitry Andric   return canReserveResources(&MI.getDesc());
30900b57cec5SDimitry Andric }
30910b57cec5SDimitry Andric 
reserveResources(const MachineInstr & MI)30920b57cec5SDimitry Andric void ResourceManager::reserveResources(const MachineInstr &MI) {
30930b57cec5SDimitry Andric   return reserveResources(&MI.getDesc());
30940b57cec5SDimitry Andric }
30950b57cec5SDimitry Andric 
clearResources()30960b57cec5SDimitry Andric void ResourceManager::clearResources() {
30970b57cec5SDimitry Andric   if (UseDFA)
30980b57cec5SDimitry Andric     return DFAResources->clearResources();
30990b57cec5SDimitry Andric   std::fill(ProcResourceCount.begin(), ProcResourceCount.end(), 0);
31000b57cec5SDimitry Andric }
3101