1 //===-- RenderScriptRuntime.cpp ---------------------------------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "RenderScriptRuntime.h" 10 #include "RenderScriptScriptGroup.h" 11 12 #include "lldb/Breakpoint/StoppointCallbackContext.h" 13 #include "lldb/Core/Debugger.h" 14 #include "lldb/Core/DumpDataExtractor.h" 15 #include "lldb/Core/PluginManager.h" 16 #include "lldb/Core/ValueObjectVariable.h" 17 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 18 #include "lldb/Expression/UserExpression.h" 19 #include "lldb/Host/OptionParser.h" 20 #include "lldb/Host/StringConvert.h" 21 #include "lldb/Interpreter/CommandInterpreter.h" 22 #include "lldb/Interpreter/CommandObjectMultiword.h" 23 #include "lldb/Interpreter/CommandReturnObject.h" 24 #include "lldb/Interpreter/Options.h" 25 #include "lldb/Symbol/Function.h" 26 #include "lldb/Symbol/Symbol.h" 27 #include "lldb/Symbol/Type.h" 28 #include "lldb/Symbol/VariableList.h" 29 #include "lldb/Target/Process.h" 30 #include "lldb/Target/RegisterContext.h" 31 #include "lldb/Target/SectionLoadList.h" 32 #include "lldb/Target/Target.h" 33 #include "lldb/Target/Thread.h" 34 #include "lldb/Utility/Args.h" 35 #include "lldb/Utility/ConstString.h" 36 #include "lldb/Utility/Log.h" 37 #include "lldb/Utility/RegisterValue.h" 38 #include "lldb/Utility/RegularExpression.h" 39 #include "lldb/Utility/Status.h" 40 41 #include "llvm/ADT/StringSwitch.h" 42 43 #include <memory> 44 45 using namespace lldb; 46 using namespace lldb_private; 47 using namespace lldb_renderscript; 48 49 #define FMT_COORD "(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ")" 50 51 char RenderScriptRuntime::ID = 0; 52 53 namespace { 54 55 // The empirical_type adds a basic level of validation to arbitrary data 56 // allowing us to track if data has been discovered and stored or not. An 57 // empirical_type will be marked as valid only if it has been explicitly 58 // assigned to. 59 template <typename type_t> class empirical_type { 60 public: 61 // Ctor. Contents is invalid when constructed. 62 empirical_type() : valid(false) {} 63 64 // Return true and copy contents to out if valid, else return false. 65 bool get(type_t &out) const { 66 if (valid) 67 out = data; 68 return valid; 69 } 70 71 // Return a pointer to the contents or nullptr if it was not valid. 72 const type_t *get() const { return valid ? &data : nullptr; } 73 74 // Assign data explicitly. 75 void set(const type_t in) { 76 data = in; 77 valid = true; 78 } 79 80 // Mark contents as invalid. 81 void invalidate() { valid = false; } 82 83 // Returns true if this type contains valid data. 84 bool isValid() const { return valid; } 85 86 // Assignment operator. 87 empirical_type<type_t> &operator=(const type_t in) { 88 set(in); 89 return *this; 90 } 91 92 // Dereference operator returns contents. 93 // Warning: Will assert if not valid so use only when you know data is valid. 94 const type_t &operator*() const { 95 assert(valid); 96 return data; 97 } 98 99 protected: 100 bool valid; 101 type_t data; 102 }; 103 104 // ArgItem is used by the GetArgs() function when reading function arguments 105 // from the target. 106 struct ArgItem { 107 enum { ePointer, eInt32, eInt64, eLong, eBool } type; 108 109 uint64_t value; 110 111 explicit operator uint64_t() const { return value; } 112 }; 113 114 // Context structure to be passed into GetArgsXXX(), argument reading functions 115 // below. 116 struct GetArgsCtx { 117 RegisterContext *reg_ctx; 118 Process *process; 119 }; 120 121 bool GetArgsX86(const GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 122 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 123 124 Status err; 125 126 // get the current stack pointer 127 uint64_t sp = ctx.reg_ctx->GetSP(); 128 129 for (size_t i = 0; i < num_args; ++i) { 130 ArgItem &arg = arg_list[i]; 131 // advance up the stack by one argument 132 sp += sizeof(uint32_t); 133 // get the argument type size 134 size_t arg_size = sizeof(uint32_t); 135 // read the argument from memory 136 arg.value = 0; 137 Status err; 138 size_t read = 139 ctx.process->ReadMemory(sp, &arg.value, sizeof(uint32_t), err); 140 if (read != arg_size || !err.Success()) { 141 if (log) 142 log->Printf("%s - error reading argument: %" PRIu64 " '%s'", 143 __FUNCTION__, uint64_t(i), err.AsCString()); 144 return false; 145 } 146 } 147 return true; 148 } 149 150 bool GetArgsX86_64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 151 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 152 153 // number of arguments passed in registers 154 static const uint32_t args_in_reg = 6; 155 // register passing order 156 static const std::array<const char *, args_in_reg> reg_names{ 157 {"rdi", "rsi", "rdx", "rcx", "r8", "r9"}}; 158 // argument type to size mapping 159 static const std::array<size_t, 5> arg_size{{ 160 8, // ePointer, 161 4, // eInt32, 162 8, // eInt64, 163 8, // eLong, 164 4, // eBool, 165 }}; 166 167 Status err; 168 169 // get the current stack pointer 170 uint64_t sp = ctx.reg_ctx->GetSP(); 171 // step over the return address 172 sp += sizeof(uint64_t); 173 174 // check the stack alignment was correct (16 byte aligned) 175 if ((sp & 0xf) != 0x0) { 176 if (log) 177 log->Printf("%s - stack misaligned", __FUNCTION__); 178 return false; 179 } 180 181 // find the start of arguments on the stack 182 uint64_t sp_offset = 0; 183 for (uint32_t i = args_in_reg; i < num_args; ++i) { 184 sp_offset += arg_size[arg_list[i].type]; 185 } 186 // round up to multiple of 16 187 sp_offset = (sp_offset + 0xf) & 0xf; 188 sp += sp_offset; 189 190 for (size_t i = 0; i < num_args; ++i) { 191 bool success = false; 192 ArgItem &arg = arg_list[i]; 193 // arguments passed in registers 194 if (i < args_in_reg) { 195 const RegisterInfo *reg = 196 ctx.reg_ctx->GetRegisterInfoByName(reg_names[i]); 197 RegisterValue reg_val; 198 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 199 arg.value = reg_val.GetAsUInt64(0, &success); 200 } 201 // arguments passed on the stack 202 else { 203 // get the argument type size 204 const size_t size = arg_size[arg_list[i].type]; 205 // read the argument from memory 206 arg.value = 0; 207 // note: due to little endian layout reading 4 or 8 bytes will give the 208 // correct value. 209 size_t read = ctx.process->ReadMemory(sp, &arg.value, size, err); 210 success = (err.Success() && read == size); 211 // advance past this argument 212 sp -= size; 213 } 214 // fail if we couldn't read this argument 215 if (!success) { 216 if (log) 217 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 218 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 219 return false; 220 } 221 } 222 return true; 223 } 224 225 bool GetArgsArm(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 226 // number of arguments passed in registers 227 static const uint32_t args_in_reg = 4; 228 229 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 230 231 Status err; 232 233 // get the current stack pointer 234 uint64_t sp = ctx.reg_ctx->GetSP(); 235 236 for (size_t i = 0; i < num_args; ++i) { 237 bool success = false; 238 ArgItem &arg = arg_list[i]; 239 // arguments passed in registers 240 if (i < args_in_reg) { 241 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 242 RegisterValue reg_val; 243 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 244 arg.value = reg_val.GetAsUInt32(0, &success); 245 } 246 // arguments passed on the stack 247 else { 248 // get the argument type size 249 const size_t arg_size = sizeof(uint32_t); 250 // clear all 64bits 251 arg.value = 0; 252 // read this argument from memory 253 size_t bytes_read = 254 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 255 success = (err.Success() && bytes_read == arg_size); 256 // advance the stack pointer 257 sp += sizeof(uint32_t); 258 } 259 // fail if we couldn't read this argument 260 if (!success) { 261 if (log) 262 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 263 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 264 return false; 265 } 266 } 267 return true; 268 } 269 270 bool GetArgsAarch64(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 271 // number of arguments passed in registers 272 static const uint32_t args_in_reg = 8; 273 274 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 275 276 for (size_t i = 0; i < num_args; ++i) { 277 bool success = false; 278 ArgItem &arg = arg_list[i]; 279 // arguments passed in registers 280 if (i < args_in_reg) { 281 const RegisterInfo *reg = ctx.reg_ctx->GetRegisterInfoAtIndex(i); 282 RegisterValue reg_val; 283 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 284 arg.value = reg_val.GetAsUInt64(0, &success); 285 } 286 // arguments passed on the stack 287 else { 288 if (log) 289 log->Printf("%s - reading arguments spilled to stack not implemented", 290 __FUNCTION__); 291 } 292 // fail if we couldn't read this argument 293 if (!success) { 294 if (log) 295 log->Printf("%s - error reading argument: %" PRIu64, __FUNCTION__, 296 uint64_t(i)); 297 return false; 298 } 299 } 300 return true; 301 } 302 303 bool GetArgsMipsel(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 304 // number of arguments passed in registers 305 static const uint32_t args_in_reg = 4; 306 // register file offset to first argument 307 static const uint32_t reg_offset = 4; 308 309 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 310 311 Status err; 312 313 // find offset to arguments on the stack (+16 to skip over a0-a3 shadow 314 // space) 315 uint64_t sp = ctx.reg_ctx->GetSP() + 16; 316 317 for (size_t i = 0; i < num_args; ++i) { 318 bool success = false; 319 ArgItem &arg = arg_list[i]; 320 // arguments passed in registers 321 if (i < args_in_reg) { 322 const RegisterInfo *reg = 323 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 324 RegisterValue reg_val; 325 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 326 arg.value = reg_val.GetAsUInt64(0, &success); 327 } 328 // arguments passed on the stack 329 else { 330 const size_t arg_size = sizeof(uint32_t); 331 arg.value = 0; 332 size_t bytes_read = 333 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 334 success = (err.Success() && bytes_read == arg_size); 335 // advance the stack pointer 336 sp += arg_size; 337 } 338 // fail if we couldn't read this argument 339 if (!success) { 340 if (log) 341 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 342 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 343 return false; 344 } 345 } 346 return true; 347 } 348 349 bool GetArgsMips64el(GetArgsCtx &ctx, ArgItem *arg_list, size_t num_args) { 350 // number of arguments passed in registers 351 static const uint32_t args_in_reg = 8; 352 // register file offset to first argument 353 static const uint32_t reg_offset = 4; 354 355 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 356 357 Status err; 358 359 // get the current stack pointer 360 uint64_t sp = ctx.reg_ctx->GetSP(); 361 362 for (size_t i = 0; i < num_args; ++i) { 363 bool success = false; 364 ArgItem &arg = arg_list[i]; 365 // arguments passed in registers 366 if (i < args_in_reg) { 367 const RegisterInfo *reg = 368 ctx.reg_ctx->GetRegisterInfoAtIndex(i + reg_offset); 369 RegisterValue reg_val; 370 if (ctx.reg_ctx->ReadRegister(reg, reg_val)) 371 arg.value = reg_val.GetAsUInt64(0, &success); 372 } 373 // arguments passed on the stack 374 else { 375 // get the argument type size 376 const size_t arg_size = sizeof(uint64_t); 377 // clear all 64bits 378 arg.value = 0; 379 // read this argument from memory 380 size_t bytes_read = 381 ctx.process->ReadMemory(sp, &arg.value, arg_size, err); 382 success = (err.Success() && bytes_read == arg_size); 383 // advance the stack pointer 384 sp += arg_size; 385 } 386 // fail if we couldn't read this argument 387 if (!success) { 388 if (log) 389 log->Printf("%s - error reading argument: %" PRIu64 ", reason: %s", 390 __FUNCTION__, uint64_t(i), err.AsCString("n/a")); 391 return false; 392 } 393 } 394 return true; 395 } 396 397 bool GetArgs(ExecutionContext &exe_ctx, ArgItem *arg_list, size_t num_args) { 398 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 399 400 // verify that we have a target 401 if (!exe_ctx.GetTargetPtr()) { 402 if (log) 403 log->Printf("%s - invalid target", __FUNCTION__); 404 return false; 405 } 406 407 GetArgsCtx ctx = {exe_ctx.GetRegisterContext(), exe_ctx.GetProcessPtr()}; 408 assert(ctx.reg_ctx && ctx.process); 409 410 // dispatch based on architecture 411 switch (exe_ctx.GetTargetPtr()->GetArchitecture().GetMachine()) { 412 case llvm::Triple::ArchType::x86: 413 return GetArgsX86(ctx, arg_list, num_args); 414 415 case llvm::Triple::ArchType::x86_64: 416 return GetArgsX86_64(ctx, arg_list, num_args); 417 418 case llvm::Triple::ArchType::arm: 419 return GetArgsArm(ctx, arg_list, num_args); 420 421 case llvm::Triple::ArchType::aarch64: 422 return GetArgsAarch64(ctx, arg_list, num_args); 423 424 case llvm::Triple::ArchType::mipsel: 425 return GetArgsMipsel(ctx, arg_list, num_args); 426 427 case llvm::Triple::ArchType::mips64el: 428 return GetArgsMips64el(ctx, arg_list, num_args); 429 430 default: 431 // unsupported architecture 432 if (log) { 433 log->Printf( 434 "%s - architecture not supported: '%s'", __FUNCTION__, 435 exe_ctx.GetTargetRef().GetArchitecture().GetArchitectureName()); 436 } 437 return false; 438 } 439 } 440 441 bool IsRenderScriptScriptModule(ModuleSP module) { 442 if (!module) 443 return false; 444 return module->FindFirstSymbolWithNameAndType(ConstString(".rs.info"), 445 eSymbolTypeData) != nullptr; 446 } 447 448 bool ParseCoordinate(llvm::StringRef coord_s, RSCoordinate &coord) { 449 // takes an argument of the form 'num[,num][,num]'. Where 'coord_s' is a 450 // comma separated 1,2 or 3-dimensional coordinate with the whitespace 451 // trimmed. Missing coordinates are defaulted to zero. If parsing of any 452 // elements fails the contents of &coord are undefined and `false` is 453 // returned, `true` otherwise 454 455 RegularExpression regex; 456 RegularExpression::Match regex_match(3); 457 458 bool matched = false; 459 if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+),([0-9]+)$")) && 460 regex.Execute(coord_s, ®ex_match)) 461 matched = true; 462 else if (regex.Compile(llvm::StringRef("^([0-9]+),([0-9]+)$")) && 463 regex.Execute(coord_s, ®ex_match)) 464 matched = true; 465 else if (regex.Compile(llvm::StringRef("^([0-9]+)$")) && 466 regex.Execute(coord_s, ®ex_match)) 467 matched = true; 468 469 if (!matched) 470 return false; 471 472 auto get_index = [&](int idx, uint32_t &i) -> bool { 473 std::string group; 474 errno = 0; 475 if (regex_match.GetMatchAtIndex(coord_s.str().c_str(), idx + 1, group)) 476 return !llvm::StringRef(group).getAsInteger<uint32_t>(10, i); 477 return true; 478 }; 479 480 return get_index(0, coord.x) && get_index(1, coord.y) && 481 get_index(2, coord.z); 482 } 483 484 bool SkipPrologue(lldb::ModuleSP &module, Address &addr) { 485 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 486 SymbolContext sc; 487 uint32_t resolved_flags = 488 module->ResolveSymbolContextForAddress(addr, eSymbolContextFunction, sc); 489 if (resolved_flags & eSymbolContextFunction) { 490 if (sc.function) { 491 const uint32_t offset = sc.function->GetPrologueByteSize(); 492 ConstString name = sc.GetFunctionName(); 493 if (offset) 494 addr.Slide(offset); 495 if (log) 496 log->Printf("%s: Prologue offset for %s is %" PRIu32, __FUNCTION__, 497 name.AsCString(), offset); 498 } 499 return true; 500 } else 501 return false; 502 } 503 } // anonymous namespace 504 505 // The ScriptDetails class collects data associated with a single script 506 // instance. 507 struct RenderScriptRuntime::ScriptDetails { 508 ~ScriptDetails() = default; 509 510 enum ScriptType { eScript, eScriptC }; 511 512 // The derived type of the script. 513 empirical_type<ScriptType> type; 514 // The name of the original source file. 515 empirical_type<std::string> res_name; 516 // Path to script .so file on the device. 517 empirical_type<std::string> shared_lib; 518 // Directory where kernel objects are cached on device. 519 empirical_type<std::string> cache_dir; 520 // Pointer to the context which owns this script. 521 empirical_type<lldb::addr_t> context; 522 // Pointer to the script object itself. 523 empirical_type<lldb::addr_t> script; 524 }; 525 526 // This Element class represents the Element object in RS, defining the type 527 // associated with an Allocation. 528 struct RenderScriptRuntime::Element { 529 // Taken from rsDefines.h 530 enum DataKind { 531 RS_KIND_USER, 532 RS_KIND_PIXEL_L = 7, 533 RS_KIND_PIXEL_A, 534 RS_KIND_PIXEL_LA, 535 RS_KIND_PIXEL_RGB, 536 RS_KIND_PIXEL_RGBA, 537 RS_KIND_PIXEL_DEPTH, 538 RS_KIND_PIXEL_YUV, 539 RS_KIND_INVALID = 100 540 }; 541 542 // Taken from rsDefines.h 543 enum DataType { 544 RS_TYPE_NONE = 0, 545 RS_TYPE_FLOAT_16, 546 RS_TYPE_FLOAT_32, 547 RS_TYPE_FLOAT_64, 548 RS_TYPE_SIGNED_8, 549 RS_TYPE_SIGNED_16, 550 RS_TYPE_SIGNED_32, 551 RS_TYPE_SIGNED_64, 552 RS_TYPE_UNSIGNED_8, 553 RS_TYPE_UNSIGNED_16, 554 RS_TYPE_UNSIGNED_32, 555 RS_TYPE_UNSIGNED_64, 556 RS_TYPE_BOOLEAN, 557 558 RS_TYPE_UNSIGNED_5_6_5, 559 RS_TYPE_UNSIGNED_5_5_5_1, 560 RS_TYPE_UNSIGNED_4_4_4_4, 561 562 RS_TYPE_MATRIX_4X4, 563 RS_TYPE_MATRIX_3X3, 564 RS_TYPE_MATRIX_2X2, 565 566 RS_TYPE_ELEMENT = 1000, 567 RS_TYPE_TYPE, 568 RS_TYPE_ALLOCATION, 569 RS_TYPE_SAMPLER, 570 RS_TYPE_SCRIPT, 571 RS_TYPE_MESH, 572 RS_TYPE_PROGRAM_FRAGMENT, 573 RS_TYPE_PROGRAM_VERTEX, 574 RS_TYPE_PROGRAM_RASTER, 575 RS_TYPE_PROGRAM_STORE, 576 RS_TYPE_FONT, 577 578 RS_TYPE_INVALID = 10000 579 }; 580 581 std::vector<Element> children; // Child Element fields for structs 582 empirical_type<lldb::addr_t> 583 element_ptr; // Pointer to the RS Element of the Type 584 empirical_type<DataType> 585 type; // Type of each data pointer stored by the allocation 586 empirical_type<DataKind> 587 type_kind; // Defines pixel type if Allocation is created from an image 588 empirical_type<uint32_t> 589 type_vec_size; // Vector size of each data point, e.g '4' for uchar4 590 empirical_type<uint32_t> field_count; // Number of Subelements 591 empirical_type<uint32_t> datum_size; // Size of a single Element with padding 592 empirical_type<uint32_t> padding; // Number of padding bytes 593 empirical_type<uint32_t> 594 array_size; // Number of items in array, only needed for structs 595 ConstString type_name; // Name of type, only needed for structs 596 597 static ConstString 598 GetFallbackStructName(); // Print this as the type name of a struct Element 599 // If we can't resolve the actual struct name 600 601 bool ShouldRefresh() const { 602 const bool valid_ptr = element_ptr.isValid() && *element_ptr.get() != 0x0; 603 const bool valid_type = 604 type.isValid() && type_vec_size.isValid() && type_kind.isValid(); 605 return !valid_ptr || !valid_type || !datum_size.isValid(); 606 } 607 }; 608 609 // This AllocationDetails class collects data associated with a single 610 // allocation instance. 611 struct RenderScriptRuntime::AllocationDetails { 612 struct Dimension { 613 uint32_t dim_1; 614 uint32_t dim_2; 615 uint32_t dim_3; 616 uint32_t cube_map; 617 618 Dimension() { 619 dim_1 = 0; 620 dim_2 = 0; 621 dim_3 = 0; 622 cube_map = 0; 623 } 624 }; 625 626 // The FileHeader struct specifies the header we use for writing allocations 627 // to a binary file. Our format begins with the ASCII characters "RSAD", 628 // identifying the file as an allocation dump. Member variables dims and 629 // hdr_size are then written consecutively, immediately followed by an 630 // instance of the ElementHeader struct. Because Elements can contain 631 // subelements, there may be more than one instance of the ElementHeader 632 // struct. With this first instance being the root element, and the other 633 // instances being the root's descendants. To identify which instances are an 634 // ElementHeader's children, each struct is immediately followed by a 635 // sequence of consecutive offsets to the start of its child structs. These 636 // offsets are 637 // 4 bytes in size, and the 0 offset signifies no more children. 638 struct FileHeader { 639 uint8_t ident[4]; // ASCII 'RSAD' identifying the file 640 uint32_t dims[3]; // Dimensions 641 uint16_t hdr_size; // Header size in bytes, including all element headers 642 }; 643 644 struct ElementHeader { 645 uint16_t type; // DataType enum 646 uint32_t kind; // DataKind enum 647 uint32_t element_size; // Size of a single element, including padding 648 uint16_t vector_size; // Vector width 649 uint32_t array_size; // Number of elements in array 650 }; 651 652 // Monotonically increasing from 1 653 static uint32_t ID; 654 655 // Maps Allocation DataType enum and vector size to printable strings using 656 // mapping from RenderScript numerical types summary documentation 657 static const char *RsDataTypeToString[][4]; 658 659 // Maps Allocation DataKind enum to printable strings 660 static const char *RsDataKindToString[]; 661 662 // Maps allocation types to format sizes for printing. 663 static const uint32_t RSTypeToFormat[][3]; 664 665 // Give each allocation an ID as a way 666 // for commands to reference it. 667 const uint32_t id; 668 669 // Allocation Element type 670 RenderScriptRuntime::Element element; 671 // Dimensions of the Allocation 672 empirical_type<Dimension> dimension; 673 // Pointer to address of the RS Allocation 674 empirical_type<lldb::addr_t> address; 675 // Pointer to the data held by the Allocation 676 empirical_type<lldb::addr_t> data_ptr; 677 // Pointer to the RS Type of the Allocation 678 empirical_type<lldb::addr_t> type_ptr; 679 // Pointer to the RS Context of the Allocation 680 empirical_type<lldb::addr_t> context; 681 // Size of the allocation 682 empirical_type<uint32_t> size; 683 // Stride between rows of the allocation 684 empirical_type<uint32_t> stride; 685 686 // Give each allocation an id, so we can reference it in user commands. 687 AllocationDetails() : id(ID++) {} 688 689 bool ShouldRefresh() const { 690 bool valid_ptrs = data_ptr.isValid() && *data_ptr.get() != 0x0; 691 valid_ptrs = valid_ptrs && type_ptr.isValid() && *type_ptr.get() != 0x0; 692 return !valid_ptrs || !dimension.isValid() || !size.isValid() || 693 element.ShouldRefresh(); 694 } 695 }; 696 697 ConstString RenderScriptRuntime::Element::GetFallbackStructName() { 698 static const ConstString FallbackStructName("struct"); 699 return FallbackStructName; 700 } 701 702 uint32_t RenderScriptRuntime::AllocationDetails::ID = 1; 703 704 const char *RenderScriptRuntime::AllocationDetails::RsDataKindToString[] = { 705 "User", "Undefined", "Undefined", "Undefined", 706 "Undefined", "Undefined", "Undefined", // Enum jumps from 0 to 7 707 "L Pixel", "A Pixel", "LA Pixel", "RGB Pixel", 708 "RGBA Pixel", "Pixel Depth", "YUV Pixel"}; 709 710 const char *RenderScriptRuntime::AllocationDetails::RsDataTypeToString[][4] = { 711 {"None", "None", "None", "None"}, 712 {"half", "half2", "half3", "half4"}, 713 {"float", "float2", "float3", "float4"}, 714 {"double", "double2", "double3", "double4"}, 715 {"char", "char2", "char3", "char4"}, 716 {"short", "short2", "short3", "short4"}, 717 {"int", "int2", "int3", "int4"}, 718 {"long", "long2", "long3", "long4"}, 719 {"uchar", "uchar2", "uchar3", "uchar4"}, 720 {"ushort", "ushort2", "ushort3", "ushort4"}, 721 {"uint", "uint2", "uint3", "uint4"}, 722 {"ulong", "ulong2", "ulong3", "ulong4"}, 723 {"bool", "bool2", "bool3", "bool4"}, 724 {"packed_565", "packed_565", "packed_565", "packed_565"}, 725 {"packed_5551", "packed_5551", "packed_5551", "packed_5551"}, 726 {"packed_4444", "packed_4444", "packed_4444", "packed_4444"}, 727 {"rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4", "rs_matrix4x4"}, 728 {"rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3", "rs_matrix3x3"}, 729 {"rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2", "rs_matrix2x2"}, 730 731 // Handlers 732 {"RS Element", "RS Element", "RS Element", "RS Element"}, 733 {"RS Type", "RS Type", "RS Type", "RS Type"}, 734 {"RS Allocation", "RS Allocation", "RS Allocation", "RS Allocation"}, 735 {"RS Sampler", "RS Sampler", "RS Sampler", "RS Sampler"}, 736 {"RS Script", "RS Script", "RS Script", "RS Script"}, 737 738 // Deprecated 739 {"RS Mesh", "RS Mesh", "RS Mesh", "RS Mesh"}, 740 {"RS Program Fragment", "RS Program Fragment", "RS Program Fragment", 741 "RS Program Fragment"}, 742 {"RS Program Vertex", "RS Program Vertex", "RS Program Vertex", 743 "RS Program Vertex"}, 744 {"RS Program Raster", "RS Program Raster", "RS Program Raster", 745 "RS Program Raster"}, 746 {"RS Program Store", "RS Program Store", "RS Program Store", 747 "RS Program Store"}, 748 {"RS Font", "RS Font", "RS Font", "RS Font"}}; 749 750 // Used as an index into the RSTypeToFormat array elements 751 enum TypeToFormatIndex { eFormatSingle = 0, eFormatVector, eElementSize }; 752 753 // { format enum of single element, format enum of element vector, size of 754 // element} 755 const uint32_t RenderScriptRuntime::AllocationDetails::RSTypeToFormat[][3] = { 756 // RS_TYPE_NONE 757 {eFormatHex, eFormatHex, 1}, 758 // RS_TYPE_FLOAT_16 759 {eFormatFloat, eFormatVectorOfFloat16, 2}, 760 // RS_TYPE_FLOAT_32 761 {eFormatFloat, eFormatVectorOfFloat32, sizeof(float)}, 762 // RS_TYPE_FLOAT_64 763 {eFormatFloat, eFormatVectorOfFloat64, sizeof(double)}, 764 // RS_TYPE_SIGNED_8 765 {eFormatDecimal, eFormatVectorOfSInt8, sizeof(int8_t)}, 766 // RS_TYPE_SIGNED_16 767 {eFormatDecimal, eFormatVectorOfSInt16, sizeof(int16_t)}, 768 // RS_TYPE_SIGNED_32 769 {eFormatDecimal, eFormatVectorOfSInt32, sizeof(int32_t)}, 770 // RS_TYPE_SIGNED_64 771 {eFormatDecimal, eFormatVectorOfSInt64, sizeof(int64_t)}, 772 // RS_TYPE_UNSIGNED_8 773 {eFormatDecimal, eFormatVectorOfUInt8, sizeof(uint8_t)}, 774 // RS_TYPE_UNSIGNED_16 775 {eFormatDecimal, eFormatVectorOfUInt16, sizeof(uint16_t)}, 776 // RS_TYPE_UNSIGNED_32 777 {eFormatDecimal, eFormatVectorOfUInt32, sizeof(uint32_t)}, 778 // RS_TYPE_UNSIGNED_64 779 {eFormatDecimal, eFormatVectorOfUInt64, sizeof(uint64_t)}, 780 // RS_TYPE_BOOL 781 {eFormatBoolean, eFormatBoolean, 1}, 782 // RS_TYPE_UNSIGNED_5_6_5 783 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 784 // RS_TYPE_UNSIGNED_5_5_5_1 785 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 786 // RS_TYPE_UNSIGNED_4_4_4_4 787 {eFormatHex, eFormatHex, sizeof(uint16_t)}, 788 // RS_TYPE_MATRIX_4X4 789 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 16}, 790 // RS_TYPE_MATRIX_3X3 791 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 9}, 792 // RS_TYPE_MATRIX_2X2 793 {eFormatVectorOfFloat32, eFormatVectorOfFloat32, sizeof(float) * 4}}; 794 795 // Static Functions 796 LanguageRuntime * 797 RenderScriptRuntime::CreateInstance(Process *process, 798 lldb::LanguageType language) { 799 800 if (language == eLanguageTypeExtRenderScript) 801 return new RenderScriptRuntime(process); 802 else 803 return nullptr; 804 } 805 806 // Callback with a module to search for matching symbols. We first check that 807 // the module contains RS kernels. Then look for a symbol which matches our 808 // kernel name. The breakpoint address is finally set using the address of this 809 // symbol. 810 Searcher::CallbackReturn 811 RSBreakpointResolver::SearchCallback(SearchFilter &filter, 812 SymbolContext &context, Address *, bool) { 813 ModuleSP module = context.module_sp; 814 815 if (!module || !IsRenderScriptScriptModule(module)) 816 return Searcher::eCallbackReturnContinue; 817 818 // Attempt to set a breakpoint on the kernel name symbol within the module 819 // library. If it's not found, it's likely debug info is unavailable - try to 820 // set a breakpoint on <name>.expand. 821 const Symbol *kernel_sym = 822 module->FindFirstSymbolWithNameAndType(m_kernel_name, eSymbolTypeCode); 823 if (!kernel_sym) { 824 std::string kernel_name_expanded(m_kernel_name.AsCString()); 825 kernel_name_expanded.append(".expand"); 826 kernel_sym = module->FindFirstSymbolWithNameAndType( 827 ConstString(kernel_name_expanded.c_str()), eSymbolTypeCode); 828 } 829 830 if (kernel_sym) { 831 Address bp_addr = kernel_sym->GetAddress(); 832 if (filter.AddressPasses(bp_addr)) 833 m_breakpoint->AddLocation(bp_addr); 834 } 835 836 return Searcher::eCallbackReturnContinue; 837 } 838 839 Searcher::CallbackReturn 840 RSReduceBreakpointResolver::SearchCallback(lldb_private::SearchFilter &filter, 841 lldb_private::SymbolContext &context, 842 Address *, bool) { 843 // We need to have access to the list of reductions currently parsed, as 844 // reduce names don't actually exist as symbols in a module. They are only 845 // identifiable by parsing the .rs.info packet, or finding the expand symbol. 846 // We therefore need access to the list of parsed rs modules to properly 847 // resolve reduction names. 848 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 849 ModuleSP module = context.module_sp; 850 851 if (!module || !IsRenderScriptScriptModule(module)) 852 return Searcher::eCallbackReturnContinue; 853 854 if (!m_rsmodules) 855 return Searcher::eCallbackReturnContinue; 856 857 for (const auto &module_desc : *m_rsmodules) { 858 if (module_desc->m_module != module) 859 continue; 860 861 for (const auto &reduction : module_desc->m_reductions) { 862 if (reduction.m_reduce_name != m_reduce_name) 863 continue; 864 865 std::array<std::pair<ConstString, int>, 5> funcs{ 866 {{reduction.m_init_name, eKernelTypeInit}, 867 {reduction.m_accum_name, eKernelTypeAccum}, 868 {reduction.m_comb_name, eKernelTypeComb}, 869 {reduction.m_outc_name, eKernelTypeOutC}, 870 {reduction.m_halter_name, eKernelTypeHalter}}}; 871 872 for (const auto &kernel : funcs) { 873 // Skip constituent functions that don't match our spec 874 if (!(m_kernel_types & kernel.second)) 875 continue; 876 877 const auto kernel_name = kernel.first; 878 const auto symbol = module->FindFirstSymbolWithNameAndType( 879 kernel_name, eSymbolTypeCode); 880 if (!symbol) 881 continue; 882 883 auto address = symbol->GetAddress(); 884 if (filter.AddressPasses(address)) { 885 bool new_bp; 886 if (!SkipPrologue(module, address)) { 887 if (log) 888 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 889 } 890 m_breakpoint->AddLocation(address, &new_bp); 891 if (log) 892 log->Printf("%s: %s reduction breakpoint on %s in %s", __FUNCTION__, 893 new_bp ? "new" : "existing", kernel_name.GetCString(), 894 address.GetModule()->GetFileSpec().GetCString()); 895 } 896 } 897 } 898 } 899 return eCallbackReturnContinue; 900 } 901 902 Searcher::CallbackReturn RSScriptGroupBreakpointResolver::SearchCallback( 903 SearchFilter &filter, SymbolContext &context, Address *addr, 904 bool containing) { 905 906 if (!m_breakpoint) 907 return eCallbackReturnContinue; 908 909 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_BREAKPOINTS)); 910 ModuleSP &module = context.module_sp; 911 912 if (!module || !IsRenderScriptScriptModule(module)) 913 return Searcher::eCallbackReturnContinue; 914 915 std::vector<std::string> names; 916 m_breakpoint->GetNames(names); 917 if (names.empty()) 918 return eCallbackReturnContinue; 919 920 for (auto &name : names) { 921 const RSScriptGroupDescriptorSP sg = FindScriptGroup(ConstString(name)); 922 if (!sg) { 923 if (log) 924 log->Printf("%s: could not find script group for %s", __FUNCTION__, 925 name.c_str()); 926 continue; 927 } 928 929 if (log) 930 log->Printf("%s: Found ScriptGroup for %s", __FUNCTION__, name.c_str()); 931 932 for (const RSScriptGroupDescriptor::Kernel &k : sg->m_kernels) { 933 if (log) { 934 log->Printf("%s: Adding breakpoint for %s", __FUNCTION__, 935 k.m_name.AsCString()); 936 log->Printf("%s: Kernel address 0x%" PRIx64, __FUNCTION__, k.m_addr); 937 } 938 939 const lldb_private::Symbol *sym = 940 module->FindFirstSymbolWithNameAndType(k.m_name, eSymbolTypeCode); 941 if (!sym) { 942 if (log) 943 log->Printf("%s: Unable to find symbol for %s", __FUNCTION__, 944 k.m_name.AsCString()); 945 continue; 946 } 947 948 if (log) { 949 log->Printf("%s: Found symbol name is %s", __FUNCTION__, 950 sym->GetName().AsCString()); 951 } 952 953 auto address = sym->GetAddress(); 954 if (!SkipPrologue(module, address)) { 955 if (log) 956 log->Printf("%s: Error trying to skip prologue", __FUNCTION__); 957 } 958 959 bool new_bp; 960 m_breakpoint->AddLocation(address, &new_bp); 961 962 if (log) 963 log->Printf("%s: Placed %sbreakpoint on %s", __FUNCTION__, 964 new_bp ? "new " : "", k.m_name.AsCString()); 965 966 // exit after placing the first breakpoint if we do not intend to stop on 967 // all kernels making up this script group 968 if (!m_stop_on_all) 969 break; 970 } 971 } 972 973 return eCallbackReturnContinue; 974 } 975 976 void RenderScriptRuntime::Initialize() { 977 PluginManager::RegisterPlugin(GetPluginNameStatic(), 978 "RenderScript language support", CreateInstance, 979 GetCommandObject); 980 } 981 982 void RenderScriptRuntime::Terminate() { 983 PluginManager::UnregisterPlugin(CreateInstance); 984 } 985 986 lldb_private::ConstString RenderScriptRuntime::GetPluginNameStatic() { 987 static ConstString plugin_name("renderscript"); 988 return plugin_name; 989 } 990 991 RenderScriptRuntime::ModuleKind 992 RenderScriptRuntime::GetModuleKind(const lldb::ModuleSP &module_sp) { 993 if (module_sp) { 994 if (IsRenderScriptScriptModule(module_sp)) 995 return eModuleKindKernelObj; 996 997 // Is this the main RS runtime library 998 const ConstString rs_lib("libRS.so"); 999 if (module_sp->GetFileSpec().GetFilename() == rs_lib) { 1000 return eModuleKindLibRS; 1001 } 1002 1003 const ConstString rs_driverlib("libRSDriver.so"); 1004 if (module_sp->GetFileSpec().GetFilename() == rs_driverlib) { 1005 return eModuleKindDriver; 1006 } 1007 1008 const ConstString rs_cpureflib("libRSCpuRef.so"); 1009 if (module_sp->GetFileSpec().GetFilename() == rs_cpureflib) { 1010 return eModuleKindImpl; 1011 } 1012 } 1013 return eModuleKindIgnored; 1014 } 1015 1016 bool RenderScriptRuntime::IsRenderScriptModule( 1017 const lldb::ModuleSP &module_sp) { 1018 return GetModuleKind(module_sp) != eModuleKindIgnored; 1019 } 1020 1021 void RenderScriptRuntime::ModulesDidLoad(const ModuleList &module_list) { 1022 std::lock_guard<std::recursive_mutex> guard(module_list.GetMutex()); 1023 1024 size_t num_modules = module_list.GetSize(); 1025 for (size_t i = 0; i < num_modules; i++) { 1026 auto mod = module_list.GetModuleAtIndex(i); 1027 if (IsRenderScriptModule(mod)) { 1028 LoadModule(mod); 1029 } 1030 } 1031 } 1032 1033 // PluginInterface protocol 1034 lldb_private::ConstString RenderScriptRuntime::GetPluginName() { 1035 return GetPluginNameStatic(); 1036 } 1037 1038 uint32_t RenderScriptRuntime::GetPluginVersion() { return 1; } 1039 1040 bool RenderScriptRuntime::GetDynamicTypeAndAddress( 1041 ValueObject &in_value, lldb::DynamicValueType use_dynamic, 1042 TypeAndOrName &class_type_or_name, Address &address, 1043 Value::ValueType &value_type) { 1044 return false; 1045 } 1046 1047 TypeAndOrName 1048 RenderScriptRuntime::FixUpDynamicType(const TypeAndOrName &type_and_or_name, 1049 ValueObject &static_value) { 1050 return type_and_or_name; 1051 } 1052 1053 bool RenderScriptRuntime::CouldHaveDynamicValue(ValueObject &in_value) { 1054 return false; 1055 } 1056 1057 lldb::BreakpointResolverSP 1058 RenderScriptRuntime::CreateExceptionResolver(Breakpoint *bp, bool catch_bp, 1059 bool throw_bp) { 1060 BreakpointResolverSP resolver_sp; 1061 return resolver_sp; 1062 } 1063 1064 const RenderScriptRuntime::HookDefn RenderScriptRuntime::s_runtimeHookDefns[] = 1065 { 1066 // rsdScript 1067 {"rsdScriptInit", "_Z13rsdScriptInitPKN7android12renderscript7ContextEP" 1068 "NS0_7ScriptCEPKcS7_PKhjj", 1069 "_Z13rsdScriptInitPKN7android12renderscript7ContextEPNS0_" 1070 "7ScriptCEPKcS7_PKhmj", 1071 0, RenderScriptRuntime::eModuleKindDriver, 1072 &lldb_private::RenderScriptRuntime::CaptureScriptInit}, 1073 {"rsdScriptInvokeForEachMulti", 1074 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1075 "_6ScriptEjPPKNS0_10AllocationEjPS6_PKvjPK12RsScriptCall", 1076 "_Z27rsdScriptInvokeForEachMultiPKN7android12renderscript7ContextEPNS0" 1077 "_6ScriptEjPPKNS0_10AllocationEmPS6_PKvmPK12RsScriptCall", 1078 0, RenderScriptRuntime::eModuleKindDriver, 1079 &lldb_private::RenderScriptRuntime::CaptureScriptInvokeForEachMulti}, 1080 {"rsdScriptSetGlobalVar", "_Z21rsdScriptSetGlobalVarPKN7android12render" 1081 "script7ContextEPKNS0_6ScriptEjPvj", 1082 "_Z21rsdScriptSetGlobalVarPKN7android12renderscript7ContextEPKNS0_" 1083 "6ScriptEjPvm", 1084 0, RenderScriptRuntime::eModuleKindDriver, 1085 &lldb_private::RenderScriptRuntime::CaptureSetGlobalVar}, 1086 1087 // rsdAllocation 1088 {"rsdAllocationInit", "_Z17rsdAllocationInitPKN7android12renderscript7C" 1089 "ontextEPNS0_10AllocationEb", 1090 "_Z17rsdAllocationInitPKN7android12renderscript7ContextEPNS0_" 1091 "10AllocationEb", 1092 0, RenderScriptRuntime::eModuleKindDriver, 1093 &lldb_private::RenderScriptRuntime::CaptureAllocationInit}, 1094 {"rsdAllocationRead2D", 1095 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1096 "10AllocationEjjj23RsAllocationCubemapFacejjPvjj", 1097 "_Z19rsdAllocationRead2DPKN7android12renderscript7ContextEPKNS0_" 1098 "10AllocationEjjj23RsAllocationCubemapFacejjPvmm", 1099 0, RenderScriptRuntime::eModuleKindDriver, nullptr}, 1100 {"rsdAllocationDestroy", "_Z20rsdAllocationDestroyPKN7android12rendersc" 1101 "ript7ContextEPNS0_10AllocationE", 1102 "_Z20rsdAllocationDestroyPKN7android12renderscript7ContextEPNS0_" 1103 "10AllocationE", 1104 0, RenderScriptRuntime::eModuleKindDriver, 1105 &lldb_private::RenderScriptRuntime::CaptureAllocationDestroy}, 1106 1107 // renderscript script groups 1108 {"rsdDebugHintScriptGroup2", "_ZN7android12renderscript21debugHintScrip" 1109 "tGroup2EPKcjPKPFvPK24RsExpandKernelDriver" 1110 "InfojjjEj", 1111 "_ZN7android12renderscript21debugHintScriptGroup2EPKcjPKPFvPK24RsExpan" 1112 "dKernelDriverInfojjjEj", 1113 0, RenderScriptRuntime::eModuleKindImpl, 1114 &lldb_private::RenderScriptRuntime::CaptureDebugHintScriptGroup2}}; 1115 1116 const size_t RenderScriptRuntime::s_runtimeHookCount = 1117 sizeof(s_runtimeHookDefns) / sizeof(s_runtimeHookDefns[0]); 1118 1119 bool RenderScriptRuntime::HookCallback(void *baton, 1120 StoppointCallbackContext *ctx, 1121 lldb::user_id_t break_id, 1122 lldb::user_id_t break_loc_id) { 1123 RuntimeHook *hook = (RuntimeHook *)baton; 1124 ExecutionContext exe_ctx(ctx->exe_ctx_ref); 1125 1126 RenderScriptRuntime *lang_rt = llvm::cast<RenderScriptRuntime>( 1127 exe_ctx.GetProcessPtr()->GetLanguageRuntime( 1128 eLanguageTypeExtRenderScript)); 1129 1130 lang_rt->HookCallback(hook, exe_ctx); 1131 1132 return false; 1133 } 1134 1135 void RenderScriptRuntime::HookCallback(RuntimeHook *hook, 1136 ExecutionContext &exe_ctx) { 1137 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1138 1139 if (log) 1140 log->Printf("%s - '%s'", __FUNCTION__, hook->defn->name); 1141 1142 if (hook->defn->grabber) { 1143 (this->*(hook->defn->grabber))(hook, exe_ctx); 1144 } 1145 } 1146 1147 void RenderScriptRuntime::CaptureDebugHintScriptGroup2( 1148 RuntimeHook *hook_info, ExecutionContext &context) { 1149 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1150 1151 enum { 1152 eGroupName = 0, 1153 eGroupNameSize, 1154 eKernel, 1155 eKernelCount, 1156 }; 1157 1158 std::array<ArgItem, 4> args{{ 1159 {ArgItem::ePointer, 0}, // const char *groupName 1160 {ArgItem::eInt32, 0}, // const uint32_t groupNameSize 1161 {ArgItem::ePointer, 0}, // const ExpandFuncTy *kernel 1162 {ArgItem::eInt32, 0}, // const uint32_t kernelCount 1163 }}; 1164 1165 if (!GetArgs(context, args.data(), args.size())) { 1166 if (log) 1167 log->Printf("%s - Error while reading the function parameters", 1168 __FUNCTION__); 1169 return; 1170 } else if (log) { 1171 log->Printf("%s - groupName : 0x%" PRIx64, __FUNCTION__, 1172 addr_t(args[eGroupName])); 1173 log->Printf("%s - groupNameSize: %" PRIu64, __FUNCTION__, 1174 uint64_t(args[eGroupNameSize])); 1175 log->Printf("%s - kernel : 0x%" PRIx64, __FUNCTION__, 1176 addr_t(args[eKernel])); 1177 log->Printf("%s - kernelCount : %" PRIu64, __FUNCTION__, 1178 uint64_t(args[eKernelCount])); 1179 } 1180 1181 // parse script group name 1182 ConstString group_name; 1183 { 1184 Status err; 1185 const uint64_t len = uint64_t(args[eGroupNameSize]); 1186 std::unique_ptr<char[]> buffer(new char[uint32_t(len + 1)]); 1187 m_process->ReadMemory(addr_t(args[eGroupName]), buffer.get(), len, err); 1188 buffer.get()[len] = '\0'; 1189 if (!err.Success()) { 1190 if (log) 1191 log->Printf("Error reading scriptgroup name from target"); 1192 return; 1193 } else { 1194 if (log) 1195 log->Printf("Extracted scriptgroup name %s", buffer.get()); 1196 } 1197 // write back the script group name 1198 group_name.SetCString(buffer.get()); 1199 } 1200 1201 // create or access existing script group 1202 RSScriptGroupDescriptorSP group; 1203 { 1204 // search for existing script group 1205 for (auto sg : m_scriptGroups) { 1206 if (sg->m_name == group_name) { 1207 group = sg; 1208 break; 1209 } 1210 } 1211 if (!group) { 1212 group = std::make_shared<RSScriptGroupDescriptor>(); 1213 group->m_name = group_name; 1214 m_scriptGroups.push_back(group); 1215 } else { 1216 // already have this script group 1217 if (log) 1218 log->Printf("Attempt to add duplicate script group %s", 1219 group_name.AsCString()); 1220 return; 1221 } 1222 } 1223 assert(group); 1224 1225 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1226 std::vector<addr_t> kernels; 1227 // parse kernel addresses in script group 1228 for (uint64_t i = 0; i < uint64_t(args[eKernelCount]); ++i) { 1229 RSScriptGroupDescriptor::Kernel kernel; 1230 // extract script group kernel addresses from the target 1231 const addr_t ptr_addr = addr_t(args[eKernel]) + i * target_ptr_size; 1232 uint64_t kernel_addr = 0; 1233 Status err; 1234 size_t read = 1235 m_process->ReadMemory(ptr_addr, &kernel_addr, target_ptr_size, err); 1236 if (!err.Success() || read != target_ptr_size) { 1237 if (log) 1238 log->Printf("Error parsing kernel address %" PRIu64 " in script group", 1239 i); 1240 return; 1241 } 1242 if (log) 1243 log->Printf("Extracted scriptgroup kernel address - 0x%" PRIx64, 1244 kernel_addr); 1245 kernel.m_addr = kernel_addr; 1246 1247 // try to resolve the associated kernel name 1248 if (!ResolveKernelName(kernel.m_addr, kernel.m_name)) { 1249 if (log) 1250 log->Printf("Parsed scriptgroup kernel %" PRIu64 " - 0x%" PRIx64, i, 1251 kernel_addr); 1252 return; 1253 } 1254 1255 // try to find the non '.expand' function 1256 { 1257 const llvm::StringRef expand(".expand"); 1258 const llvm::StringRef name_ref = kernel.m_name.GetStringRef(); 1259 if (name_ref.endswith(expand)) { 1260 const ConstString base_kernel(name_ref.drop_back(expand.size())); 1261 // verify this function is a valid kernel 1262 if (IsKnownKernel(base_kernel)) { 1263 kernel.m_name = base_kernel; 1264 if (log) 1265 log->Printf("%s - found non expand version '%s'", __FUNCTION__, 1266 base_kernel.GetCString()); 1267 } 1268 } 1269 } 1270 // add to a list of script group kernels we know about 1271 group->m_kernels.push_back(kernel); 1272 } 1273 1274 // Resolve any pending scriptgroup breakpoints 1275 { 1276 Target &target = m_process->GetTarget(); 1277 const BreakpointList &list = target.GetBreakpointList(); 1278 const size_t num_breakpoints = list.GetSize(); 1279 if (log) 1280 log->Printf("Resolving %zu breakpoints", num_breakpoints); 1281 for (size_t i = 0; i < num_breakpoints; ++i) { 1282 const BreakpointSP bp = list.GetBreakpointAtIndex(i); 1283 if (bp) { 1284 if (bp->MatchesName(group_name.AsCString())) { 1285 if (log) 1286 log->Printf("Found breakpoint with name %s", 1287 group_name.AsCString()); 1288 bp->ResolveBreakpoint(); 1289 } 1290 } 1291 } 1292 } 1293 } 1294 1295 void RenderScriptRuntime::CaptureScriptInvokeForEachMulti( 1296 RuntimeHook *hook, ExecutionContext &exe_ctx) { 1297 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1298 1299 enum { 1300 eRsContext = 0, 1301 eRsScript, 1302 eRsSlot, 1303 eRsAIns, 1304 eRsInLen, 1305 eRsAOut, 1306 eRsUsr, 1307 eRsUsrLen, 1308 eRsSc, 1309 }; 1310 1311 std::array<ArgItem, 9> args{{ 1312 ArgItem{ArgItem::ePointer, 0}, // const Context *rsc 1313 ArgItem{ArgItem::ePointer, 0}, // Script *s 1314 ArgItem{ArgItem::eInt32, 0}, // uint32_t slot 1315 ArgItem{ArgItem::ePointer, 0}, // const Allocation **aIns 1316 ArgItem{ArgItem::eInt32, 0}, // size_t inLen 1317 ArgItem{ArgItem::ePointer, 0}, // Allocation *aout 1318 ArgItem{ArgItem::ePointer, 0}, // const void *usr 1319 ArgItem{ArgItem::eInt32, 0}, // size_t usrLen 1320 ArgItem{ArgItem::ePointer, 0}, // const RsScriptCall *sc 1321 }}; 1322 1323 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1324 if (!success) { 1325 if (log) 1326 log->Printf("%s - Error while reading the function parameters", 1327 __FUNCTION__); 1328 return; 1329 } 1330 1331 const uint32_t target_ptr_size = m_process->GetAddressByteSize(); 1332 Status err; 1333 std::vector<uint64_t> allocs; 1334 1335 // traverse allocation list 1336 for (uint64_t i = 0; i < uint64_t(args[eRsInLen]); ++i) { 1337 // calculate offest to allocation pointer 1338 const addr_t addr = addr_t(args[eRsAIns]) + i * target_ptr_size; 1339 1340 // Note: due to little endian layout, reading 32bits or 64bits into res 1341 // will give the correct results. 1342 uint64_t result = 0; 1343 size_t read = m_process->ReadMemory(addr, &result, target_ptr_size, err); 1344 if (read != target_ptr_size || !err.Success()) { 1345 if (log) 1346 log->Printf( 1347 "%s - Error while reading allocation list argument %" PRIu64, 1348 __FUNCTION__, i); 1349 } else { 1350 allocs.push_back(result); 1351 } 1352 } 1353 1354 // if there is an output allocation track it 1355 if (uint64_t alloc_out = uint64_t(args[eRsAOut])) { 1356 allocs.push_back(alloc_out); 1357 } 1358 1359 // for all allocations we have found 1360 for (const uint64_t alloc_addr : allocs) { 1361 AllocationDetails *alloc = LookUpAllocation(alloc_addr); 1362 if (!alloc) 1363 alloc = CreateAllocation(alloc_addr); 1364 1365 if (alloc) { 1366 // save the allocation address 1367 if (alloc->address.isValid()) { 1368 // check the allocation address we already have matches 1369 assert(*alloc->address.get() == alloc_addr); 1370 } else { 1371 alloc->address = alloc_addr; 1372 } 1373 1374 // save the context 1375 if (log) { 1376 if (alloc->context.isValid() && 1377 *alloc->context.get() != addr_t(args[eRsContext])) 1378 log->Printf("%s - Allocation used by multiple contexts", 1379 __FUNCTION__); 1380 } 1381 alloc->context = addr_t(args[eRsContext]); 1382 } 1383 } 1384 1385 // make sure we track this script object 1386 if (lldb_private::RenderScriptRuntime::ScriptDetails *script = 1387 LookUpScript(addr_t(args[eRsScript]), true)) { 1388 if (log) { 1389 if (script->context.isValid() && 1390 *script->context.get() != addr_t(args[eRsContext])) 1391 log->Printf("%s - Script used by multiple contexts", __FUNCTION__); 1392 } 1393 script->context = addr_t(args[eRsContext]); 1394 } 1395 } 1396 1397 void RenderScriptRuntime::CaptureSetGlobalVar(RuntimeHook *hook, 1398 ExecutionContext &context) { 1399 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1400 1401 enum { 1402 eRsContext, 1403 eRsScript, 1404 eRsId, 1405 eRsData, 1406 eRsLength, 1407 }; 1408 1409 std::array<ArgItem, 5> args{{ 1410 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1411 ArgItem{ArgItem::ePointer, 0}, // eRsScript 1412 ArgItem{ArgItem::eInt32, 0}, // eRsId 1413 ArgItem{ArgItem::ePointer, 0}, // eRsData 1414 ArgItem{ArgItem::eInt32, 0}, // eRsLength 1415 }}; 1416 1417 bool success = GetArgs(context, &args[0], args.size()); 1418 if (!success) { 1419 if (log) 1420 log->Printf("%s - error reading the function parameters.", __FUNCTION__); 1421 return; 1422 } 1423 1424 if (log) { 1425 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " slot %" PRIu64 " = 0x%" PRIx64 1426 ":%" PRIu64 "bytes.", 1427 __FUNCTION__, uint64_t(args[eRsContext]), 1428 uint64_t(args[eRsScript]), uint64_t(args[eRsId]), 1429 uint64_t(args[eRsData]), uint64_t(args[eRsLength])); 1430 1431 addr_t script_addr = addr_t(args[eRsScript]); 1432 if (m_scriptMappings.find(script_addr) != m_scriptMappings.end()) { 1433 auto rsm = m_scriptMappings[script_addr]; 1434 if (uint64_t(args[eRsId]) < rsm->m_globals.size()) { 1435 auto rsg = rsm->m_globals[uint64_t(args[eRsId])]; 1436 log->Printf("%s - Setting of '%s' within '%s' inferred", __FUNCTION__, 1437 rsg.m_name.AsCString(), 1438 rsm->m_module->GetFileSpec().GetFilename().AsCString()); 1439 } 1440 } 1441 } 1442 } 1443 1444 void RenderScriptRuntime::CaptureAllocationInit(RuntimeHook *hook, 1445 ExecutionContext &exe_ctx) { 1446 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1447 1448 enum { eRsContext, eRsAlloc, eRsForceZero }; 1449 1450 std::array<ArgItem, 3> args{{ 1451 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1452 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1453 ArgItem{ArgItem::eBool, 0}, // eRsForceZero 1454 }}; 1455 1456 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1457 if (!success) { 1458 if (log) 1459 log->Printf("%s - error while reading the function parameters", 1460 __FUNCTION__); 1461 return; 1462 } 1463 1464 if (log) 1465 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 ",0x%" PRIx64 " .", 1466 __FUNCTION__, uint64_t(args[eRsContext]), 1467 uint64_t(args[eRsAlloc]), uint64_t(args[eRsForceZero])); 1468 1469 AllocationDetails *alloc = CreateAllocation(uint64_t(args[eRsAlloc])); 1470 if (alloc) 1471 alloc->context = uint64_t(args[eRsContext]); 1472 } 1473 1474 void RenderScriptRuntime::CaptureAllocationDestroy(RuntimeHook *hook, 1475 ExecutionContext &exe_ctx) { 1476 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1477 1478 enum { 1479 eRsContext, 1480 eRsAlloc, 1481 }; 1482 1483 std::array<ArgItem, 2> args{{ 1484 ArgItem{ArgItem::ePointer, 0}, // eRsContext 1485 ArgItem{ArgItem::ePointer, 0}, // eRsAlloc 1486 }}; 1487 1488 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1489 if (!success) { 1490 if (log) 1491 log->Printf("%s - error while reading the function parameters.", 1492 __FUNCTION__); 1493 return; 1494 } 1495 1496 if (log) 1497 log->Printf("%s - 0x%" PRIx64 ", 0x%" PRIx64 ".", __FUNCTION__, 1498 uint64_t(args[eRsContext]), uint64_t(args[eRsAlloc])); 1499 1500 for (auto iter = m_allocations.begin(); iter != m_allocations.end(); ++iter) { 1501 auto &allocation_up = *iter; // get the unique pointer 1502 if (allocation_up->address.isValid() && 1503 *allocation_up->address.get() == addr_t(args[eRsAlloc])) { 1504 m_allocations.erase(iter); 1505 if (log) 1506 log->Printf("%s - deleted allocation entry.", __FUNCTION__); 1507 return; 1508 } 1509 } 1510 1511 if (log) 1512 log->Printf("%s - couldn't find destroyed allocation.", __FUNCTION__); 1513 } 1514 1515 void RenderScriptRuntime::CaptureScriptInit(RuntimeHook *hook, 1516 ExecutionContext &exe_ctx) { 1517 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1518 1519 Status err; 1520 Process *process = exe_ctx.GetProcessPtr(); 1521 1522 enum { eRsContext, eRsScript, eRsResNamePtr, eRsCachedDirPtr }; 1523 1524 std::array<ArgItem, 4> args{ 1525 {ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}, 1526 ArgItem{ArgItem::ePointer, 0}, ArgItem{ArgItem::ePointer, 0}}}; 1527 bool success = GetArgs(exe_ctx, &args[0], args.size()); 1528 if (!success) { 1529 if (log) 1530 log->Printf("%s - error while reading the function parameters.", 1531 __FUNCTION__); 1532 return; 1533 } 1534 1535 std::string res_name; 1536 process->ReadCStringFromMemory(addr_t(args[eRsResNamePtr]), res_name, err); 1537 if (err.Fail()) { 1538 if (log) 1539 log->Printf("%s - error reading res_name: %s.", __FUNCTION__, 1540 err.AsCString()); 1541 } 1542 1543 std::string cache_dir; 1544 process->ReadCStringFromMemory(addr_t(args[eRsCachedDirPtr]), cache_dir, err); 1545 if (err.Fail()) { 1546 if (log) 1547 log->Printf("%s - error reading cache_dir: %s.", __FUNCTION__, 1548 err.AsCString()); 1549 } 1550 1551 if (log) 1552 log->Printf("%s - 0x%" PRIx64 ",0x%" PRIx64 " => '%s' at '%s' .", 1553 __FUNCTION__, uint64_t(args[eRsContext]), 1554 uint64_t(args[eRsScript]), res_name.c_str(), cache_dir.c_str()); 1555 1556 if (res_name.size() > 0) { 1557 StreamString strm; 1558 strm.Printf("librs.%s.so", res_name.c_str()); 1559 1560 ScriptDetails *script = LookUpScript(addr_t(args[eRsScript]), true); 1561 if (script) { 1562 script->type = ScriptDetails::eScriptC; 1563 script->cache_dir = cache_dir; 1564 script->res_name = res_name; 1565 script->shared_lib = strm.GetString(); 1566 script->context = addr_t(args[eRsContext]); 1567 } 1568 1569 if (log) 1570 log->Printf("%s - '%s' tagged with context 0x%" PRIx64 1571 " and script 0x%" PRIx64 ".", 1572 __FUNCTION__, strm.GetData(), uint64_t(args[eRsContext]), 1573 uint64_t(args[eRsScript])); 1574 } else if (log) { 1575 log->Printf("%s - resource name invalid, Script not tagged.", __FUNCTION__); 1576 } 1577 } 1578 1579 void RenderScriptRuntime::LoadRuntimeHooks(lldb::ModuleSP module, 1580 ModuleKind kind) { 1581 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1582 1583 if (!module) { 1584 return; 1585 } 1586 1587 Target &target = GetProcess()->GetTarget(); 1588 const llvm::Triple::ArchType machine = target.GetArchitecture().GetMachine(); 1589 1590 if (machine != llvm::Triple::ArchType::x86 && 1591 machine != llvm::Triple::ArchType::arm && 1592 machine != llvm::Triple::ArchType::aarch64 && 1593 machine != llvm::Triple::ArchType::mipsel && 1594 machine != llvm::Triple::ArchType::mips64el && 1595 machine != llvm::Triple::ArchType::x86_64) { 1596 if (log) 1597 log->Printf("%s - unable to hook runtime functions.", __FUNCTION__); 1598 return; 1599 } 1600 1601 const uint32_t target_ptr_size = 1602 target.GetArchitecture().GetAddressByteSize(); 1603 1604 std::array<bool, s_runtimeHookCount> hook_placed; 1605 hook_placed.fill(false); 1606 1607 for (size_t idx = 0; idx < s_runtimeHookCount; idx++) { 1608 const HookDefn *hook_defn = &s_runtimeHookDefns[idx]; 1609 if (hook_defn->kind != kind) { 1610 continue; 1611 } 1612 1613 const char *symbol_name = (target_ptr_size == 4) 1614 ? hook_defn->symbol_name_m32 1615 : hook_defn->symbol_name_m64; 1616 1617 const Symbol *sym = module->FindFirstSymbolWithNameAndType( 1618 ConstString(symbol_name), eSymbolTypeCode); 1619 if (!sym) { 1620 if (log) { 1621 log->Printf("%s - symbol '%s' related to the function %s not found", 1622 __FUNCTION__, symbol_name, hook_defn->name); 1623 } 1624 continue; 1625 } 1626 1627 addr_t addr = sym->GetLoadAddress(&target); 1628 if (addr == LLDB_INVALID_ADDRESS) { 1629 if (log) 1630 log->Printf("%s - unable to resolve the address of hook function '%s' " 1631 "with symbol '%s'.", 1632 __FUNCTION__, hook_defn->name, symbol_name); 1633 continue; 1634 } else { 1635 if (log) 1636 log->Printf("%s - function %s, address resolved at 0x%" PRIx64, 1637 __FUNCTION__, hook_defn->name, addr); 1638 } 1639 1640 RuntimeHookSP hook(new RuntimeHook()); 1641 hook->address = addr; 1642 hook->defn = hook_defn; 1643 hook->bp_sp = target.CreateBreakpoint(addr, true, false); 1644 hook->bp_sp->SetCallback(HookCallback, hook.get(), true); 1645 m_runtimeHooks[addr] = hook; 1646 if (log) { 1647 log->Printf("%s - successfully hooked '%s' in '%s' version %" PRIu64 1648 " at 0x%" PRIx64 ".", 1649 __FUNCTION__, hook_defn->name, 1650 module->GetFileSpec().GetFilename().AsCString(), 1651 (uint64_t)hook_defn->version, (uint64_t)addr); 1652 } 1653 hook_placed[idx] = true; 1654 } 1655 1656 // log any unhooked function 1657 if (log) { 1658 for (size_t i = 0; i < hook_placed.size(); ++i) { 1659 if (hook_placed[i]) 1660 continue; 1661 const HookDefn &hook_defn = s_runtimeHookDefns[i]; 1662 if (hook_defn.kind != kind) 1663 continue; 1664 log->Printf("%s - function %s was not hooked", __FUNCTION__, 1665 hook_defn.name); 1666 } 1667 } 1668 } 1669 1670 void RenderScriptRuntime::FixupScriptDetails(RSModuleDescriptorSP rsmodule_sp) { 1671 if (!rsmodule_sp) 1672 return; 1673 1674 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1675 1676 const ModuleSP module = rsmodule_sp->m_module; 1677 const FileSpec &file = module->GetPlatformFileSpec(); 1678 1679 // Iterate over all of the scripts that we currently know of. Note: We cant 1680 // push or pop to m_scripts here or it may invalidate rs_script. 1681 for (const auto &rs_script : m_scripts) { 1682 // Extract the expected .so file path for this script. 1683 std::string shared_lib; 1684 if (!rs_script->shared_lib.get(shared_lib)) 1685 continue; 1686 1687 // Only proceed if the module that has loaded corresponds to this script. 1688 if (file.GetFilename() != ConstString(shared_lib.c_str())) 1689 continue; 1690 1691 // Obtain the script address which we use as a key. 1692 lldb::addr_t script; 1693 if (!rs_script->script.get(script)) 1694 continue; 1695 1696 // If we have a script mapping for the current script. 1697 if (m_scriptMappings.find(script) != m_scriptMappings.end()) { 1698 // if the module we have stored is different to the one we just received. 1699 if (m_scriptMappings[script] != rsmodule_sp) { 1700 if (log) 1701 log->Printf( 1702 "%s - script %" PRIx64 " wants reassigned to new rsmodule '%s'.", 1703 __FUNCTION__, (uint64_t)script, 1704 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1705 } 1706 } 1707 // We don't have a script mapping for the current script. 1708 else { 1709 // Obtain the script resource name. 1710 std::string res_name; 1711 if (rs_script->res_name.get(res_name)) 1712 // Set the modules resource name. 1713 rsmodule_sp->m_resname = res_name; 1714 // Add Script/Module pair to map. 1715 m_scriptMappings[script] = rsmodule_sp; 1716 if (log) 1717 log->Printf( 1718 "%s - script %" PRIx64 " associated with rsmodule '%s'.", 1719 __FUNCTION__, (uint64_t)script, 1720 rsmodule_sp->m_module->GetFileSpec().GetFilename().AsCString()); 1721 } 1722 } 1723 } 1724 1725 // Uses the Target API to evaluate the expression passed as a parameter to the 1726 // function The result of that expression is returned an unsigned 64 bit int, 1727 // via the result* parameter. Function returns true on success, and false on 1728 // failure 1729 bool RenderScriptRuntime::EvalRSExpression(const char *expr, 1730 StackFrame *frame_ptr, 1731 uint64_t *result) { 1732 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1733 if (log) 1734 log->Printf("%s(%s)", __FUNCTION__, expr); 1735 1736 ValueObjectSP expr_result; 1737 EvaluateExpressionOptions options; 1738 options.SetLanguage(lldb::eLanguageTypeC_plus_plus); 1739 // Perform the actual expression evaluation 1740 auto &target = GetProcess()->GetTarget(); 1741 target.EvaluateExpression(expr, frame_ptr, expr_result, options); 1742 1743 if (!expr_result) { 1744 if (log) 1745 log->Printf("%s: couldn't evaluate expression.", __FUNCTION__); 1746 return false; 1747 } 1748 1749 // The result of the expression is invalid 1750 if (!expr_result->GetError().Success()) { 1751 Status err = expr_result->GetError(); 1752 // Expression returned is void, so this is actually a success 1753 if (err.GetError() == UserExpression::kNoResult) { 1754 if (log) 1755 log->Printf("%s - expression returned void.", __FUNCTION__); 1756 1757 result = nullptr; 1758 return true; 1759 } 1760 1761 if (log) 1762 log->Printf("%s - error evaluating expression result: %s", __FUNCTION__, 1763 err.AsCString()); 1764 return false; 1765 } 1766 1767 bool success = false; 1768 // We only read the result as an uint32_t. 1769 *result = expr_result->GetValueAsUnsigned(0, &success); 1770 1771 if (!success) { 1772 if (log) 1773 log->Printf("%s - couldn't convert expression result to uint32_t", 1774 __FUNCTION__); 1775 return false; 1776 } 1777 1778 return true; 1779 } 1780 1781 namespace { 1782 // Used to index expression format strings 1783 enum ExpressionStrings { 1784 eExprGetOffsetPtr = 0, 1785 eExprAllocGetType, 1786 eExprTypeDimX, 1787 eExprTypeDimY, 1788 eExprTypeDimZ, 1789 eExprTypeElemPtr, 1790 eExprElementType, 1791 eExprElementKind, 1792 eExprElementVec, 1793 eExprElementFieldCount, 1794 eExprSubelementsId, 1795 eExprSubelementsName, 1796 eExprSubelementsArrSize, 1797 1798 _eExprLast // keep at the end, implicit size of the array runtime_expressions 1799 }; 1800 1801 // max length of an expanded expression 1802 const int jit_max_expr_size = 512; 1803 1804 // Retrieve the string to JIT for the given expression 1805 #define JIT_TEMPLATE_CONTEXT "void* ctxt = (void*)rsDebugGetContextWrapper(0x%" PRIx64 "); " 1806 const char *JITTemplate(ExpressionStrings e) { 1807 // Format strings containing the expressions we may need to evaluate. 1808 static std::array<const char *, _eExprLast> runtime_expressions = { 1809 {// Mangled GetOffsetPointer(Allocation*, xoff, yoff, zoff, lod, cubemap) 1810 "(int*)_" 1811 "Z12GetOffsetPtrPKN7android12renderscript10AllocationEjjjj23RsAllocation" 1812 "CubemapFace" 1813 "(0x%" PRIx64 ", %" PRIu32 ", %" PRIu32 ", %" PRIu32 ", 0, 0)", // eExprGetOffsetPtr 1814 1815 // Type* rsaAllocationGetType(Context*, Allocation*) 1816 JIT_TEMPLATE_CONTEXT "(void*)rsaAllocationGetType(ctxt, 0x%" PRIx64 ")", // eExprAllocGetType 1817 1818 // rsaTypeGetNativeData(Context*, Type*, void* typeData, size) Pack the 1819 // data in the following way mHal.state.dimX; mHal.state.dimY; 1820 // mHal.state.dimZ; mHal.state.lodCount; mHal.state.faces; mElement; 1821 // into typeData Need to specify 32 or 64 bit for uint_t since this 1822 // differs between devices 1823 JIT_TEMPLATE_CONTEXT 1824 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1825 ", 0x%" PRIx64 ", data, 6); data[0]", // eExprTypeDimX 1826 JIT_TEMPLATE_CONTEXT 1827 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1828 ", 0x%" PRIx64 ", data, 6); data[1]", // eExprTypeDimY 1829 JIT_TEMPLATE_CONTEXT 1830 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1831 ", 0x%" PRIx64 ", data, 6); data[2]", // eExprTypeDimZ 1832 JIT_TEMPLATE_CONTEXT 1833 "uint%" PRIu32 "_t data[6]; (void*)rsaTypeGetNativeData(ctxt" 1834 ", 0x%" PRIx64 ", data, 6); data[5]", // eExprTypeElemPtr 1835 1836 // rsaElementGetNativeData(Context*, Element*, uint32_t* elemData,size) 1837 // Pack mType; mKind; mNormalized; mVectorSize; NumSubElements into 1838 // elemData 1839 JIT_TEMPLATE_CONTEXT 1840 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1841 ", 0x%" PRIx64 ", data, 5); data[0]", // eExprElementType 1842 JIT_TEMPLATE_CONTEXT 1843 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1844 ", 0x%" PRIx64 ", data, 5); data[1]", // eExprElementKind 1845 JIT_TEMPLATE_CONTEXT 1846 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1847 ", 0x%" PRIx64 ", data, 5); data[3]", // eExprElementVec 1848 JIT_TEMPLATE_CONTEXT 1849 "uint32_t data[5]; (void*)rsaElementGetNativeData(ctxt" 1850 ", 0x%" PRIx64 ", data, 5); data[4]", // eExprElementFieldCount 1851 1852 // rsaElementGetSubElements(RsContext con, RsElement elem, uintptr_t 1853 // *ids, const char **names, size_t *arraySizes, uint32_t dataSize) 1854 // Needed for Allocations of structs to gather details about 1855 // fields/Subelements Element* of field 1856 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1857 "]; size_t arr_size[%" PRIu32 "];" 1858 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1859 ", ids, names, arr_size, %" PRIu32 "); ids[%" PRIu32 "]", // eExprSubelementsId 1860 1861 // Name of field 1862 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1863 "]; size_t arr_size[%" PRIu32 "];" 1864 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1865 ", ids, names, arr_size, %" PRIu32 "); names[%" PRIu32 "]", // eExprSubelementsName 1866 1867 // Array size of field 1868 JIT_TEMPLATE_CONTEXT "void* ids[%" PRIu32 "]; const char* names[%" PRIu32 1869 "]; size_t arr_size[%" PRIu32 "];" 1870 "(void*)rsaElementGetSubElements(ctxt, 0x%" PRIx64 1871 ", ids, names, arr_size, %" PRIu32 "); arr_size[%" PRIu32 "]"}}; // eExprSubelementsArrSize 1872 1873 return runtime_expressions[e]; 1874 } 1875 } // end of the anonymous namespace 1876 1877 // JITs the RS runtime for the internal data pointer of an allocation. Is 1878 // passed x,y,z coordinates for the pointer to a specific element. Then sets 1879 // the data_ptr member in Allocation with the result. Returns true on success, 1880 // false otherwise 1881 bool RenderScriptRuntime::JITDataPointer(AllocationDetails *alloc, 1882 StackFrame *frame_ptr, uint32_t x, 1883 uint32_t y, uint32_t z) { 1884 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1885 1886 if (!alloc->address.isValid()) { 1887 if (log) 1888 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1889 return false; 1890 } 1891 1892 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 1893 char expr_buf[jit_max_expr_size]; 1894 1895 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1896 *alloc->address.get(), x, y, z); 1897 if (written < 0) { 1898 if (log) 1899 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1900 return false; 1901 } else if (written >= jit_max_expr_size) { 1902 if (log) 1903 log->Printf("%s - expression too long.", __FUNCTION__); 1904 return false; 1905 } 1906 1907 uint64_t result = 0; 1908 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1909 return false; 1910 1911 addr_t data_ptr = static_cast<lldb::addr_t>(result); 1912 alloc->data_ptr = data_ptr; 1913 1914 return true; 1915 } 1916 1917 // JITs the RS runtime for the internal pointer to the RS Type of an allocation 1918 // Then sets the type_ptr member in Allocation with the result. Returns true on 1919 // success, false otherwise 1920 bool RenderScriptRuntime::JITTypePointer(AllocationDetails *alloc, 1921 StackFrame *frame_ptr) { 1922 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1923 1924 if (!alloc->address.isValid() || !alloc->context.isValid()) { 1925 if (log) 1926 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 1927 return false; 1928 } 1929 1930 const char *fmt_str = JITTemplate(eExprAllocGetType); 1931 char expr_buf[jit_max_expr_size]; 1932 1933 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 1934 *alloc->context.get(), *alloc->address.get()); 1935 if (written < 0) { 1936 if (log) 1937 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1938 return false; 1939 } else if (written >= jit_max_expr_size) { 1940 if (log) 1941 log->Printf("%s - expression too long.", __FUNCTION__); 1942 return false; 1943 } 1944 1945 uint64_t result = 0; 1946 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 1947 return false; 1948 1949 addr_t type_ptr = static_cast<lldb::addr_t>(result); 1950 alloc->type_ptr = type_ptr; 1951 1952 return true; 1953 } 1954 1955 // JITs the RS runtime for information about the dimensions and type of an 1956 // allocation Then sets dimension and element_ptr members in Allocation with 1957 // the result. Returns true on success, false otherwise 1958 bool RenderScriptRuntime::JITTypePacked(AllocationDetails *alloc, 1959 StackFrame *frame_ptr) { 1960 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 1961 1962 if (!alloc->type_ptr.isValid() || !alloc->context.isValid()) { 1963 if (log) 1964 log->Printf("%s - Failed to find allocation details.", __FUNCTION__); 1965 return false; 1966 } 1967 1968 // Expression is different depending on if device is 32 or 64 bit 1969 uint32_t target_ptr_size = 1970 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 1971 const uint32_t bits = target_ptr_size == 4 ? 32 : 64; 1972 1973 // We want 4 elements from packed data 1974 const uint32_t num_exprs = 4; 1975 static_assert(num_exprs == (eExprTypeElemPtr - eExprTypeDimX + 1), 1976 "Invalid number of expressions"); 1977 1978 char expr_bufs[num_exprs][jit_max_expr_size]; 1979 uint64_t results[num_exprs]; 1980 1981 for (uint32_t i = 0; i < num_exprs; ++i) { 1982 const char *fmt_str = JITTemplate(ExpressionStrings(eExprTypeDimX + i)); 1983 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, 1984 *alloc->context.get(), bits, *alloc->type_ptr.get()); 1985 if (written < 0) { 1986 if (log) 1987 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 1988 return false; 1989 } else if (written >= jit_max_expr_size) { 1990 if (log) 1991 log->Printf("%s - expression too long.", __FUNCTION__); 1992 return false; 1993 } 1994 1995 // Perform expression evaluation 1996 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 1997 return false; 1998 } 1999 2000 // Assign results to allocation members 2001 AllocationDetails::Dimension dims; 2002 dims.dim_1 = static_cast<uint32_t>(results[0]); 2003 dims.dim_2 = static_cast<uint32_t>(results[1]); 2004 dims.dim_3 = static_cast<uint32_t>(results[2]); 2005 alloc->dimension = dims; 2006 2007 addr_t element_ptr = static_cast<lldb::addr_t>(results[3]); 2008 alloc->element.element_ptr = element_ptr; 2009 2010 if (log) 2011 log->Printf("%s - dims (%" PRIu32 ", %" PRIu32 ", %" PRIu32 2012 ") Element*: 0x%" PRIx64 ".", 2013 __FUNCTION__, dims.dim_1, dims.dim_2, dims.dim_3, element_ptr); 2014 2015 return true; 2016 } 2017 2018 // JITs the RS runtime for information about the Element of an allocation Then 2019 // sets type, type_vec_size, field_count and type_kind members in Element with 2020 // the result. Returns true on success, false otherwise 2021 bool RenderScriptRuntime::JITElementPacked(Element &elem, 2022 const lldb::addr_t context, 2023 StackFrame *frame_ptr) { 2024 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2025 2026 if (!elem.element_ptr.isValid()) { 2027 if (log) 2028 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2029 return false; 2030 } 2031 2032 // We want 4 elements from packed data 2033 const uint32_t num_exprs = 4; 2034 static_assert(num_exprs == (eExprElementFieldCount - eExprElementType + 1), 2035 "Invalid number of expressions"); 2036 2037 char expr_bufs[num_exprs][jit_max_expr_size]; 2038 uint64_t results[num_exprs]; 2039 2040 for (uint32_t i = 0; i < num_exprs; i++) { 2041 const char *fmt_str = JITTemplate(ExpressionStrings(eExprElementType + i)); 2042 int written = snprintf(expr_bufs[i], jit_max_expr_size, fmt_str, context, 2043 *elem.element_ptr.get()); 2044 if (written < 0) { 2045 if (log) 2046 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2047 return false; 2048 } else if (written >= jit_max_expr_size) { 2049 if (log) 2050 log->Printf("%s - expression too long.", __FUNCTION__); 2051 return false; 2052 } 2053 2054 // Perform expression evaluation 2055 if (!EvalRSExpression(expr_bufs[i], frame_ptr, &results[i])) 2056 return false; 2057 } 2058 2059 // Assign results to allocation members 2060 elem.type = static_cast<RenderScriptRuntime::Element::DataType>(results[0]); 2061 elem.type_kind = 2062 static_cast<RenderScriptRuntime::Element::DataKind>(results[1]); 2063 elem.type_vec_size = static_cast<uint32_t>(results[2]); 2064 elem.field_count = static_cast<uint32_t>(results[3]); 2065 2066 if (log) 2067 log->Printf("%s - data type %" PRIu32 ", pixel type %" PRIu32 2068 ", vector size %" PRIu32 ", field count %" PRIu32, 2069 __FUNCTION__, *elem.type.get(), *elem.type_kind.get(), 2070 *elem.type_vec_size.get(), *elem.field_count.get()); 2071 2072 // If this Element has subelements then JIT rsaElementGetSubElements() for 2073 // details about its fields 2074 return !(*elem.field_count.get() > 0 && 2075 !JITSubelements(elem, context, frame_ptr)); 2076 } 2077 2078 // JITs the RS runtime for information about the subelements/fields of a struct 2079 // allocation This is necessary for infering the struct type so we can pretty 2080 // print the allocation's contents. Returns true on success, false otherwise 2081 bool RenderScriptRuntime::JITSubelements(Element &elem, 2082 const lldb::addr_t context, 2083 StackFrame *frame_ptr) { 2084 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2085 2086 if (!elem.element_ptr.isValid() || !elem.field_count.isValid()) { 2087 if (log) 2088 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2089 return false; 2090 } 2091 2092 const short num_exprs = 3; 2093 static_assert(num_exprs == (eExprSubelementsArrSize - eExprSubelementsId + 1), 2094 "Invalid number of expressions"); 2095 2096 char expr_buffer[jit_max_expr_size]; 2097 uint64_t results; 2098 2099 // Iterate over struct fields. 2100 const uint32_t field_count = *elem.field_count.get(); 2101 for (uint32_t field_index = 0; field_index < field_count; ++field_index) { 2102 Element child; 2103 for (uint32_t expr_index = 0; expr_index < num_exprs; ++expr_index) { 2104 const char *fmt_str = 2105 JITTemplate(ExpressionStrings(eExprSubelementsId + expr_index)); 2106 int written = snprintf(expr_buffer, jit_max_expr_size, fmt_str, 2107 context, field_count, field_count, field_count, 2108 *elem.element_ptr.get(), field_count, field_index); 2109 if (written < 0) { 2110 if (log) 2111 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2112 return false; 2113 } else if (written >= jit_max_expr_size) { 2114 if (log) 2115 log->Printf("%s - expression too long.", __FUNCTION__); 2116 return false; 2117 } 2118 2119 // Perform expression evaluation 2120 if (!EvalRSExpression(expr_buffer, frame_ptr, &results)) 2121 return false; 2122 2123 if (log) 2124 log->Printf("%s - expr result 0x%" PRIx64 ".", __FUNCTION__, results); 2125 2126 switch (expr_index) { 2127 case 0: // Element* of child 2128 child.element_ptr = static_cast<addr_t>(results); 2129 break; 2130 case 1: // Name of child 2131 { 2132 lldb::addr_t address = static_cast<addr_t>(results); 2133 Status err; 2134 std::string name; 2135 GetProcess()->ReadCStringFromMemory(address, name, err); 2136 if (!err.Fail()) 2137 child.type_name = ConstString(name); 2138 else { 2139 if (log) 2140 log->Printf("%s - warning: Couldn't read field name.", 2141 __FUNCTION__); 2142 } 2143 break; 2144 } 2145 case 2: // Array size of child 2146 child.array_size = static_cast<uint32_t>(results); 2147 break; 2148 } 2149 } 2150 2151 // We need to recursively JIT each Element field of the struct since 2152 // structs can be nested inside structs. 2153 if (!JITElementPacked(child, context, frame_ptr)) 2154 return false; 2155 elem.children.push_back(child); 2156 } 2157 2158 // Try to infer the name of the struct type so we can pretty print the 2159 // allocation contents. 2160 FindStructTypeName(elem, frame_ptr); 2161 2162 return true; 2163 } 2164 2165 // JITs the RS runtime for the address of the last element in the allocation. 2166 // The `elem_size` parameter represents the size of a single element, including 2167 // padding. Which is needed as an offset from the last element pointer. Using 2168 // this offset minus the starting address we can calculate the size of the 2169 // allocation. Returns true on success, false otherwise 2170 bool RenderScriptRuntime::JITAllocationSize(AllocationDetails *alloc, 2171 StackFrame *frame_ptr) { 2172 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2173 2174 if (!alloc->address.isValid() || !alloc->dimension.isValid() || 2175 !alloc->data_ptr.isValid() || !alloc->element.datum_size.isValid()) { 2176 if (log) 2177 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2178 return false; 2179 } 2180 2181 // Find dimensions 2182 uint32_t dim_x = alloc->dimension.get()->dim_1; 2183 uint32_t dim_y = alloc->dimension.get()->dim_2; 2184 uint32_t dim_z = alloc->dimension.get()->dim_3; 2185 2186 // Our plan of jitting the last element address doesn't seem to work for 2187 // struct Allocations` Instead try to infer the size ourselves without any 2188 // inter element padding. 2189 if (alloc->element.children.size() > 0) { 2190 if (dim_x == 0) 2191 dim_x = 1; 2192 if (dim_y == 0) 2193 dim_y = 1; 2194 if (dim_z == 0) 2195 dim_z = 1; 2196 2197 alloc->size = dim_x * dim_y * dim_z * *alloc->element.datum_size.get(); 2198 2199 if (log) 2200 log->Printf("%s - inferred size of struct allocation %" PRIu32 ".", 2201 __FUNCTION__, *alloc->size.get()); 2202 return true; 2203 } 2204 2205 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2206 char expr_buf[jit_max_expr_size]; 2207 2208 // Calculate last element 2209 dim_x = dim_x == 0 ? 0 : dim_x - 1; 2210 dim_y = dim_y == 0 ? 0 : dim_y - 1; 2211 dim_z = dim_z == 0 ? 0 : dim_z - 1; 2212 2213 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2214 *alloc->address.get(), dim_x, dim_y, dim_z); 2215 if (written < 0) { 2216 if (log) 2217 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2218 return false; 2219 } else if (written >= jit_max_expr_size) { 2220 if (log) 2221 log->Printf("%s - expression too long.", __FUNCTION__); 2222 return false; 2223 } 2224 2225 uint64_t result = 0; 2226 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2227 return false; 2228 2229 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2230 // Find pointer to last element and add on size of an element 2231 alloc->size = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()) + 2232 *alloc->element.datum_size.get(); 2233 2234 return true; 2235 } 2236 2237 // JITs the RS runtime for information about the stride between rows in the 2238 // allocation. This is done to detect padding, since allocated memory is 2239 // 16-byte aligned. Returns true on success, false otherwise 2240 bool RenderScriptRuntime::JITAllocationStride(AllocationDetails *alloc, 2241 StackFrame *frame_ptr) { 2242 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2243 2244 if (!alloc->address.isValid() || !alloc->data_ptr.isValid()) { 2245 if (log) 2246 log->Printf("%s - failed to find allocation details.", __FUNCTION__); 2247 return false; 2248 } 2249 2250 const char *fmt_str = JITTemplate(eExprGetOffsetPtr); 2251 char expr_buf[jit_max_expr_size]; 2252 2253 int written = snprintf(expr_buf, jit_max_expr_size, fmt_str, 2254 *alloc->address.get(), 0, 1, 0); 2255 if (written < 0) { 2256 if (log) 2257 log->Printf("%s - encoding error in snprintf().", __FUNCTION__); 2258 return false; 2259 } else if (written >= jit_max_expr_size) { 2260 if (log) 2261 log->Printf("%s - expression too long.", __FUNCTION__); 2262 return false; 2263 } 2264 2265 uint64_t result = 0; 2266 if (!EvalRSExpression(expr_buf, frame_ptr, &result)) 2267 return false; 2268 2269 addr_t mem_ptr = static_cast<lldb::addr_t>(result); 2270 alloc->stride = static_cast<uint32_t>(mem_ptr - *alloc->data_ptr.get()); 2271 2272 return true; 2273 } 2274 2275 // JIT all the current runtime info regarding an allocation 2276 bool RenderScriptRuntime::RefreshAllocation(AllocationDetails *alloc, 2277 StackFrame *frame_ptr) { 2278 // GetOffsetPointer() 2279 if (!JITDataPointer(alloc, frame_ptr)) 2280 return false; 2281 2282 // rsaAllocationGetType() 2283 if (!JITTypePointer(alloc, frame_ptr)) 2284 return false; 2285 2286 // rsaTypeGetNativeData() 2287 if (!JITTypePacked(alloc, frame_ptr)) 2288 return false; 2289 2290 // rsaElementGetNativeData() 2291 if (!JITElementPacked(alloc->element, *alloc->context.get(), frame_ptr)) 2292 return false; 2293 2294 // Sets the datum_size member in Element 2295 SetElementSize(alloc->element); 2296 2297 // Use GetOffsetPointer() to infer size of the allocation 2298 return JITAllocationSize(alloc, frame_ptr); 2299 } 2300 2301 // Function attempts to set the type_name member of the paramaterised Element 2302 // object. This string should be the name of the struct type the Element 2303 // represents. We need this string for pretty printing the Element to users. 2304 void RenderScriptRuntime::FindStructTypeName(Element &elem, 2305 StackFrame *frame_ptr) { 2306 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2307 2308 if (!elem.type_name.IsEmpty()) // Name already set 2309 return; 2310 else 2311 elem.type_name = Element::GetFallbackStructName(); // Default type name if 2312 // we don't succeed 2313 2314 // Find all the global variables from the script rs modules 2315 VariableList var_list; 2316 for (auto module_sp : m_rsmodules) 2317 module_sp->m_module->FindGlobalVariables( 2318 RegularExpression(llvm::StringRef(".")), UINT32_MAX, var_list); 2319 2320 // Iterate over all the global variables looking for one with a matching type 2321 // to the Element. We make the assumption a match exists since there needs to 2322 // be a global variable to reflect the struct type back into java host code. 2323 for (uint32_t i = 0; i < var_list.GetSize(); ++i) { 2324 const VariableSP var_sp(var_list.GetVariableAtIndex(i)); 2325 if (!var_sp) 2326 continue; 2327 2328 ValueObjectSP valobj_sp = ValueObjectVariable::Create(frame_ptr, var_sp); 2329 if (!valobj_sp) 2330 continue; 2331 2332 // Find the number of variable fields. 2333 // If it has no fields, or more fields than our Element, then it can't be 2334 // the struct we're looking for. Don't check for equality since RS can add 2335 // extra struct members for padding. 2336 size_t num_children = valobj_sp->GetNumChildren(); 2337 if (num_children > elem.children.size() || num_children == 0) 2338 continue; 2339 2340 // Iterate over children looking for members with matching field names. If 2341 // all the field names match, this is likely the struct we want. 2342 // TODO: This could be made more robust by also checking children data 2343 // sizes, or array size 2344 bool found = true; 2345 for (size_t i = 0; i < num_children; ++i) { 2346 ValueObjectSP child = valobj_sp->GetChildAtIndex(i, true); 2347 if (!child || (child->GetName() != elem.children[i].type_name)) { 2348 found = false; 2349 break; 2350 } 2351 } 2352 2353 // RS can add extra struct members for padding in the format 2354 // '#rs_padding_[0-9]+' 2355 if (found && num_children < elem.children.size()) { 2356 const uint32_t size_diff = elem.children.size() - num_children; 2357 if (log) 2358 log->Printf("%s - %" PRIu32 " padding struct entries", __FUNCTION__, 2359 size_diff); 2360 2361 for (uint32_t i = 0; i < size_diff; ++i) { 2362 ConstString name = elem.children[num_children + i].type_name; 2363 if (strcmp(name.AsCString(), "#rs_padding") < 0) 2364 found = false; 2365 } 2366 } 2367 2368 // We've found a global variable with matching type 2369 if (found) { 2370 // Dereference since our Element type isn't a pointer. 2371 if (valobj_sp->IsPointerType()) { 2372 Status err; 2373 ValueObjectSP deref_valobj = valobj_sp->Dereference(err); 2374 if (!err.Fail()) 2375 valobj_sp = deref_valobj; 2376 } 2377 2378 // Save name of variable in Element. 2379 elem.type_name = valobj_sp->GetTypeName(); 2380 if (log) 2381 log->Printf("%s - element name set to %s", __FUNCTION__, 2382 elem.type_name.AsCString()); 2383 2384 return; 2385 } 2386 } 2387 } 2388 2389 // Function sets the datum_size member of Element. Representing the size of a 2390 // single instance including padding. Assumes the relevant allocation 2391 // information has already been jitted. 2392 void RenderScriptRuntime::SetElementSize(Element &elem) { 2393 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2394 const Element::DataType type = *elem.type.get(); 2395 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 2396 "Invalid allocation type"); 2397 2398 const uint32_t vec_size = *elem.type_vec_size.get(); 2399 uint32_t data_size = 0; 2400 uint32_t padding = 0; 2401 2402 // Element is of a struct type, calculate size recursively. 2403 if ((type == Element::RS_TYPE_NONE) && (elem.children.size() > 0)) { 2404 for (Element &child : elem.children) { 2405 SetElementSize(child); 2406 const uint32_t array_size = 2407 child.array_size.isValid() ? *child.array_size.get() : 1; 2408 data_size += *child.datum_size.get() * array_size; 2409 } 2410 } 2411 // These have been packed already 2412 else if (type == Element::RS_TYPE_UNSIGNED_5_6_5 || 2413 type == Element::RS_TYPE_UNSIGNED_5_5_5_1 || 2414 type == Element::RS_TYPE_UNSIGNED_4_4_4_4) { 2415 data_size = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2416 } else if (type < Element::RS_TYPE_ELEMENT) { 2417 data_size = 2418 vec_size * AllocationDetails::RSTypeToFormat[type][eElementSize]; 2419 if (vec_size == 3) 2420 padding = AllocationDetails::RSTypeToFormat[type][eElementSize]; 2421 } else 2422 data_size = 2423 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 2424 2425 elem.padding = padding; 2426 elem.datum_size = data_size + padding; 2427 if (log) 2428 log->Printf("%s - element size set to %" PRIu32, __FUNCTION__, 2429 data_size + padding); 2430 } 2431 2432 // Given an allocation, this function copies the allocation contents from 2433 // device into a buffer on the heap. Returning a shared pointer to the buffer 2434 // containing the data. 2435 std::shared_ptr<uint8_t> 2436 RenderScriptRuntime::GetAllocationData(AllocationDetails *alloc, 2437 StackFrame *frame_ptr) { 2438 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2439 2440 // JIT all the allocation details 2441 if (alloc->ShouldRefresh()) { 2442 if (log) 2443 log->Printf("%s - allocation details not calculated yet, jitting info", 2444 __FUNCTION__); 2445 2446 if (!RefreshAllocation(alloc, frame_ptr)) { 2447 if (log) 2448 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2449 return nullptr; 2450 } 2451 } 2452 2453 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2454 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2455 "Allocation information not available"); 2456 2457 // Allocate a buffer to copy data into 2458 const uint32_t size = *alloc->size.get(); 2459 std::shared_ptr<uint8_t> buffer(new uint8_t[size]); 2460 if (!buffer) { 2461 if (log) 2462 log->Printf("%s - couldn't allocate a %" PRIu32 " byte buffer", 2463 __FUNCTION__, size); 2464 return nullptr; 2465 } 2466 2467 // Read the inferior memory 2468 Status err; 2469 lldb::addr_t data_ptr = *alloc->data_ptr.get(); 2470 GetProcess()->ReadMemory(data_ptr, buffer.get(), size, err); 2471 if (err.Fail()) { 2472 if (log) 2473 log->Printf("%s - '%s' Couldn't read %" PRIu32 2474 " bytes of allocation data from 0x%" PRIx64, 2475 __FUNCTION__, err.AsCString(), size, data_ptr); 2476 return nullptr; 2477 } 2478 2479 return buffer; 2480 } 2481 2482 // Function copies data from a binary file into an allocation. There is a 2483 // header at the start of the file, FileHeader, before the data content itself. 2484 // Information from this header is used to display warnings to the user about 2485 // incompatibilities 2486 bool RenderScriptRuntime::LoadAllocation(Stream &strm, const uint32_t alloc_id, 2487 const char *path, 2488 StackFrame *frame_ptr) { 2489 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2490 2491 // Find allocation with the given id 2492 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2493 if (!alloc) 2494 return false; 2495 2496 if (log) 2497 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 2498 *alloc->address.get()); 2499 2500 // JIT all the allocation details 2501 if (alloc->ShouldRefresh()) { 2502 if (log) 2503 log->Printf("%s - allocation details not calculated yet, jitting info.", 2504 __FUNCTION__); 2505 2506 if (!RefreshAllocation(alloc, frame_ptr)) { 2507 if (log) 2508 log->Printf("%s - couldn't JIT allocation details", __FUNCTION__); 2509 return false; 2510 } 2511 } 2512 2513 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2514 alloc->element.type_vec_size.isValid() && alloc->size.isValid() && 2515 alloc->element.datum_size.isValid() && 2516 "Allocation information not available"); 2517 2518 // Check we can read from file 2519 FileSpec file(path); 2520 FileSystem::Instance().Resolve(file); 2521 if (!FileSystem::Instance().Exists(file)) { 2522 strm.Printf("Error: File %s does not exist", path); 2523 strm.EOL(); 2524 return false; 2525 } 2526 2527 if (!FileSystem::Instance().Readable(file)) { 2528 strm.Printf("Error: File %s does not have readable permissions", path); 2529 strm.EOL(); 2530 return false; 2531 } 2532 2533 // Read file into data buffer 2534 auto data_sp = FileSystem::Instance().CreateDataBuffer(file.GetPath()); 2535 2536 // Cast start of buffer to FileHeader and use pointer to read metadata 2537 void *file_buf = data_sp->GetBytes(); 2538 if (file_buf == nullptr || 2539 data_sp->GetByteSize() < (sizeof(AllocationDetails::FileHeader) + 2540 sizeof(AllocationDetails::ElementHeader))) { 2541 strm.Printf("Error: File %s does not contain enough data for header", path); 2542 strm.EOL(); 2543 return false; 2544 } 2545 const AllocationDetails::FileHeader *file_header = 2546 static_cast<AllocationDetails::FileHeader *>(file_buf); 2547 2548 // Check file starts with ascii characters "RSAD" 2549 if (memcmp(file_header->ident, "RSAD", 4)) { 2550 strm.Printf("Error: File doesn't contain identifier for an RS allocation " 2551 "dump. Are you sure this is the correct file?"); 2552 strm.EOL(); 2553 return false; 2554 } 2555 2556 // Look at the type of the root element in the header 2557 AllocationDetails::ElementHeader root_el_hdr; 2558 memcpy(&root_el_hdr, static_cast<uint8_t *>(file_buf) + 2559 sizeof(AllocationDetails::FileHeader), 2560 sizeof(AllocationDetails::ElementHeader)); 2561 2562 if (log) 2563 log->Printf("%s - header type %" PRIu32 ", element size %" PRIu32, 2564 __FUNCTION__, root_el_hdr.type, root_el_hdr.element_size); 2565 2566 // Check if the target allocation and file both have the same number of bytes 2567 // for an Element 2568 if (*alloc->element.datum_size.get() != root_el_hdr.element_size) { 2569 strm.Printf("Warning: Mismatched Element sizes - file %" PRIu32 2570 " bytes, allocation %" PRIu32 " bytes", 2571 root_el_hdr.element_size, *alloc->element.datum_size.get()); 2572 strm.EOL(); 2573 } 2574 2575 // Check if the target allocation and file both have the same type 2576 const uint32_t alloc_type = static_cast<uint32_t>(*alloc->element.type.get()); 2577 const uint32_t file_type = root_el_hdr.type; 2578 2579 if (file_type > Element::RS_TYPE_FONT) { 2580 strm.Printf("Warning: File has unknown allocation type"); 2581 strm.EOL(); 2582 } else if (alloc_type != file_type) { 2583 // Enum value isn't monotonous, so doesn't always index RsDataTypeToString 2584 // array 2585 uint32_t target_type_name_idx = alloc_type; 2586 uint32_t head_type_name_idx = file_type; 2587 if (alloc_type >= Element::RS_TYPE_ELEMENT && 2588 alloc_type <= Element::RS_TYPE_FONT) 2589 target_type_name_idx = static_cast<Element::DataType>( 2590 (alloc_type - Element::RS_TYPE_ELEMENT) + 2591 Element::RS_TYPE_MATRIX_2X2 + 1); 2592 2593 if (file_type >= Element::RS_TYPE_ELEMENT && 2594 file_type <= Element::RS_TYPE_FONT) 2595 head_type_name_idx = static_cast<Element::DataType>( 2596 (file_type - Element::RS_TYPE_ELEMENT) + Element::RS_TYPE_MATRIX_2X2 + 2597 1); 2598 2599 const char *head_type_name = 2600 AllocationDetails::RsDataTypeToString[head_type_name_idx][0]; 2601 const char *target_type_name = 2602 AllocationDetails::RsDataTypeToString[target_type_name_idx][0]; 2603 2604 strm.Printf( 2605 "Warning: Mismatched Types - file '%s' type, allocation '%s' type", 2606 head_type_name, target_type_name); 2607 strm.EOL(); 2608 } 2609 2610 // Advance buffer past header 2611 file_buf = static_cast<uint8_t *>(file_buf) + file_header->hdr_size; 2612 2613 // Calculate size of allocation data in file 2614 size_t size = data_sp->GetByteSize() - file_header->hdr_size; 2615 2616 // Check if the target allocation and file both have the same total data 2617 // size. 2618 const uint32_t alloc_size = *alloc->size.get(); 2619 if (alloc_size != size) { 2620 strm.Printf("Warning: Mismatched allocation sizes - file 0x%" PRIx64 2621 " bytes, allocation 0x%" PRIx32 " bytes", 2622 (uint64_t)size, alloc_size); 2623 strm.EOL(); 2624 // Set length to copy to minimum 2625 size = alloc_size < size ? alloc_size : size; 2626 } 2627 2628 // Copy file data from our buffer into the target allocation. 2629 lldb::addr_t alloc_data = *alloc->data_ptr.get(); 2630 Status err; 2631 size_t written = GetProcess()->WriteMemory(alloc_data, file_buf, size, err); 2632 if (!err.Success() || written != size) { 2633 strm.Printf("Error: Couldn't write data to allocation %s", err.AsCString()); 2634 strm.EOL(); 2635 return false; 2636 } 2637 2638 strm.Printf("Contents of file '%s' read into allocation %" PRIu32, path, 2639 alloc->id); 2640 strm.EOL(); 2641 2642 return true; 2643 } 2644 2645 // Function takes as parameters a byte buffer, which will eventually be written 2646 // to file as the element header, an offset into that buffer, and an Element 2647 // that will be saved into the buffer at the parametrised offset. Return value 2648 // is the new offset after writing the element into the buffer. Elements are 2649 // saved to the file as the ElementHeader struct followed by offsets to the 2650 // structs of all the element's children. 2651 size_t RenderScriptRuntime::PopulateElementHeaders( 2652 const std::shared_ptr<uint8_t> header_buffer, size_t offset, 2653 const Element &elem) { 2654 // File struct for an element header with all the relevant details copied 2655 // from elem. We assume members are valid already. 2656 AllocationDetails::ElementHeader elem_header; 2657 elem_header.type = *elem.type.get(); 2658 elem_header.kind = *elem.type_kind.get(); 2659 elem_header.element_size = *elem.datum_size.get(); 2660 elem_header.vector_size = *elem.type_vec_size.get(); 2661 elem_header.array_size = 2662 elem.array_size.isValid() ? *elem.array_size.get() : 0; 2663 const size_t elem_header_size = sizeof(AllocationDetails::ElementHeader); 2664 2665 // Copy struct into buffer and advance offset We assume that header_buffer 2666 // has been checked for nullptr before this method is called 2667 memcpy(header_buffer.get() + offset, &elem_header, elem_header_size); 2668 offset += elem_header_size; 2669 2670 // Starting offset of child ElementHeader struct 2671 size_t child_offset = 2672 offset + ((elem.children.size() + 1) * sizeof(uint32_t)); 2673 for (const RenderScriptRuntime::Element &child : elem.children) { 2674 // Recursively populate the buffer with the element header structs of 2675 // children. Then save the offsets where they were set after the parent 2676 // element header. 2677 memcpy(header_buffer.get() + offset, &child_offset, sizeof(uint32_t)); 2678 offset += sizeof(uint32_t); 2679 2680 child_offset = PopulateElementHeaders(header_buffer, child_offset, child); 2681 } 2682 2683 // Zero indicates no more children 2684 memset(header_buffer.get() + offset, 0, sizeof(uint32_t)); 2685 2686 return child_offset; 2687 } 2688 2689 // Given an Element object this function returns the total size needed in the 2690 // file header to store the element's details. Taking into account the size of 2691 // the element header struct, plus the offsets to all the element's children. 2692 // Function is recursive so that the size of all ancestors is taken into 2693 // account. 2694 size_t RenderScriptRuntime::CalculateElementHeaderSize(const Element &elem) { 2695 // Offsets to children plus zero terminator 2696 size_t size = (elem.children.size() + 1) * sizeof(uint32_t); 2697 // Size of header struct with type details 2698 size += sizeof(AllocationDetails::ElementHeader); 2699 2700 // Calculate recursively for all descendants 2701 for (const Element &child : elem.children) 2702 size += CalculateElementHeaderSize(child); 2703 2704 return size; 2705 } 2706 2707 // Function copies allocation contents into a binary file. This file can then 2708 // be loaded later into a different allocation. There is a header, FileHeader, 2709 // before the allocation data containing meta-data. 2710 bool RenderScriptRuntime::SaveAllocation(Stream &strm, const uint32_t alloc_id, 2711 const char *path, 2712 StackFrame *frame_ptr) { 2713 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2714 2715 // Find allocation with the given id 2716 AllocationDetails *alloc = FindAllocByID(strm, alloc_id); 2717 if (!alloc) 2718 return false; 2719 2720 if (log) 2721 log->Printf("%s - found allocation 0x%" PRIx64 ".", __FUNCTION__, 2722 *alloc->address.get()); 2723 2724 // JIT all the allocation details 2725 if (alloc->ShouldRefresh()) { 2726 if (log) 2727 log->Printf("%s - allocation details not calculated yet, jitting info.", 2728 __FUNCTION__); 2729 2730 if (!RefreshAllocation(alloc, frame_ptr)) { 2731 if (log) 2732 log->Printf("%s - couldn't JIT allocation details.", __FUNCTION__); 2733 return false; 2734 } 2735 } 2736 2737 assert(alloc->data_ptr.isValid() && alloc->element.type.isValid() && 2738 alloc->element.type_vec_size.isValid() && 2739 alloc->element.datum_size.get() && 2740 alloc->element.type_kind.isValid() && alloc->dimension.isValid() && 2741 "Allocation information not available"); 2742 2743 // Check we can create writable file 2744 FileSpec file_spec(path); 2745 FileSystem::Instance().Resolve(file_spec); 2746 File file; 2747 FileSystem::Instance().Open(file, file_spec, 2748 File::eOpenOptionWrite | 2749 File::eOpenOptionCanCreate | 2750 File::eOpenOptionTruncate); 2751 2752 if (!file) { 2753 strm.Printf("Error: Failed to open '%s' for writing", path); 2754 strm.EOL(); 2755 return false; 2756 } 2757 2758 // Read allocation into buffer of heap memory 2759 const std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 2760 if (!buffer) { 2761 strm.Printf("Error: Couldn't read allocation data into buffer"); 2762 strm.EOL(); 2763 return false; 2764 } 2765 2766 // Create the file header 2767 AllocationDetails::FileHeader head; 2768 memcpy(head.ident, "RSAD", 4); 2769 head.dims[0] = static_cast<uint32_t>(alloc->dimension.get()->dim_1); 2770 head.dims[1] = static_cast<uint32_t>(alloc->dimension.get()->dim_2); 2771 head.dims[2] = static_cast<uint32_t>(alloc->dimension.get()->dim_3); 2772 2773 const size_t element_header_size = CalculateElementHeaderSize(alloc->element); 2774 assert((sizeof(AllocationDetails::FileHeader) + element_header_size) < 2775 UINT16_MAX && 2776 "Element header too large"); 2777 head.hdr_size = static_cast<uint16_t>(sizeof(AllocationDetails::FileHeader) + 2778 element_header_size); 2779 2780 // Write the file header 2781 size_t num_bytes = sizeof(AllocationDetails::FileHeader); 2782 if (log) 2783 log->Printf("%s - writing File Header, 0x%" PRIx64 " bytes", __FUNCTION__, 2784 (uint64_t)num_bytes); 2785 2786 Status err = file.Write(&head, num_bytes); 2787 if (!err.Success()) { 2788 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2789 strm.EOL(); 2790 return false; 2791 } 2792 2793 // Create the headers describing the element type of the allocation. 2794 std::shared_ptr<uint8_t> element_header_buffer( 2795 new uint8_t[element_header_size]); 2796 if (element_header_buffer == nullptr) { 2797 strm.Printf("Internal Error: Couldn't allocate %" PRIu64 2798 " bytes on the heap", 2799 (uint64_t)element_header_size); 2800 strm.EOL(); 2801 return false; 2802 } 2803 2804 PopulateElementHeaders(element_header_buffer, 0, alloc->element); 2805 2806 // Write headers for allocation element type to file 2807 num_bytes = element_header_size; 2808 if (log) 2809 log->Printf("%s - writing element headers, 0x%" PRIx64 " bytes.", 2810 __FUNCTION__, (uint64_t)num_bytes); 2811 2812 err = file.Write(element_header_buffer.get(), num_bytes); 2813 if (!err.Success()) { 2814 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2815 strm.EOL(); 2816 return false; 2817 } 2818 2819 // Write allocation data to file 2820 num_bytes = static_cast<size_t>(*alloc->size.get()); 2821 if (log) 2822 log->Printf("%s - writing 0x%" PRIx64 " bytes", __FUNCTION__, 2823 (uint64_t)num_bytes); 2824 2825 err = file.Write(buffer.get(), num_bytes); 2826 if (!err.Success()) { 2827 strm.Printf("Error: '%s' when writing to file '%s'", err.AsCString(), path); 2828 strm.EOL(); 2829 return false; 2830 } 2831 2832 strm.Printf("Allocation written to file '%s'", path); 2833 strm.EOL(); 2834 return true; 2835 } 2836 2837 bool RenderScriptRuntime::LoadModule(const lldb::ModuleSP &module_sp) { 2838 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 2839 2840 if (module_sp) { 2841 for (const auto &rs_module : m_rsmodules) { 2842 if (rs_module->m_module == module_sp) { 2843 // Check if the user has enabled automatically breaking on all RS 2844 // kernels. 2845 if (m_breakAllKernels) 2846 BreakOnModuleKernels(rs_module); 2847 2848 return false; 2849 } 2850 } 2851 bool module_loaded = false; 2852 switch (GetModuleKind(module_sp)) { 2853 case eModuleKindKernelObj: { 2854 RSModuleDescriptorSP module_desc; 2855 module_desc = std::make_shared<RSModuleDescriptor>(module_sp); 2856 if (module_desc->ParseRSInfo()) { 2857 m_rsmodules.push_back(module_desc); 2858 module_desc->WarnIfVersionMismatch(GetProcess() 2859 ->GetTarget() 2860 .GetDebugger() 2861 .GetAsyncOutputStream() 2862 .get()); 2863 module_loaded = true; 2864 } 2865 if (module_loaded) { 2866 FixupScriptDetails(module_desc); 2867 } 2868 break; 2869 } 2870 case eModuleKindDriver: { 2871 if (!m_libRSDriver) { 2872 m_libRSDriver = module_sp; 2873 LoadRuntimeHooks(m_libRSDriver, RenderScriptRuntime::eModuleKindDriver); 2874 } 2875 break; 2876 } 2877 case eModuleKindImpl: { 2878 if (!m_libRSCpuRef) { 2879 m_libRSCpuRef = module_sp; 2880 LoadRuntimeHooks(m_libRSCpuRef, RenderScriptRuntime::eModuleKindImpl); 2881 } 2882 break; 2883 } 2884 case eModuleKindLibRS: { 2885 if (!m_libRS) { 2886 m_libRS = module_sp; 2887 static ConstString gDbgPresentStr("gDebuggerPresent"); 2888 const Symbol *debug_present = m_libRS->FindFirstSymbolWithNameAndType( 2889 gDbgPresentStr, eSymbolTypeData); 2890 if (debug_present) { 2891 Status err; 2892 uint32_t flag = 0x00000001U; 2893 Target &target = GetProcess()->GetTarget(); 2894 addr_t addr = debug_present->GetLoadAddress(&target); 2895 GetProcess()->WriteMemory(addr, &flag, sizeof(flag), err); 2896 if (err.Success()) { 2897 if (log) 2898 log->Printf("%s - debugger present flag set on debugee.", 2899 __FUNCTION__); 2900 2901 m_debuggerPresentFlagged = true; 2902 } else if (log) { 2903 log->Printf("%s - error writing debugger present flags '%s' ", 2904 __FUNCTION__, err.AsCString()); 2905 } 2906 } else if (log) { 2907 log->Printf( 2908 "%s - error writing debugger present flags - symbol not found", 2909 __FUNCTION__); 2910 } 2911 } 2912 break; 2913 } 2914 default: 2915 break; 2916 } 2917 if (module_loaded) 2918 Update(); 2919 return module_loaded; 2920 } 2921 return false; 2922 } 2923 2924 void RenderScriptRuntime::Update() { 2925 if (m_rsmodules.size() > 0) { 2926 if (!m_initiated) { 2927 Initiate(); 2928 } 2929 } 2930 } 2931 2932 void RSModuleDescriptor::WarnIfVersionMismatch(lldb_private::Stream *s) const { 2933 if (!s) 2934 return; 2935 2936 if (m_slang_version.empty() || m_bcc_version.empty()) { 2937 s->PutCString("WARNING: Unknown bcc or slang (llvm-rs-cc) version; debug " 2938 "experience may be unreliable"); 2939 s->EOL(); 2940 } else if (m_slang_version != m_bcc_version) { 2941 s->Printf("WARNING: The debug info emitted by the slang frontend " 2942 "(llvm-rs-cc) used to build this module (%s) does not match the " 2943 "version of bcc used to generate the debug information (%s). " 2944 "This is an unsupported configuration and may result in a poor " 2945 "debugging experience; proceed with caution", 2946 m_slang_version.c_str(), m_bcc_version.c_str()); 2947 s->EOL(); 2948 } 2949 } 2950 2951 bool RSModuleDescriptor::ParsePragmaCount(llvm::StringRef *lines, 2952 size_t n_lines) { 2953 // Skip the pragma prototype line 2954 ++lines; 2955 for (; n_lines--; ++lines) { 2956 const auto kv_pair = lines->split(" - "); 2957 m_pragmas[kv_pair.first.trim().str()] = kv_pair.second.trim().str(); 2958 } 2959 return true; 2960 } 2961 2962 bool RSModuleDescriptor::ParseExportReduceCount(llvm::StringRef *lines, 2963 size_t n_lines) { 2964 // The list of reduction kernels in the `.rs.info` symbol is of the form 2965 // "signature - accumulatordatasize - reduction_name - initializer_name - 2966 // accumulator_name - combiner_name - outconverter_name - halter_name" Where 2967 // a function is not explicitly named by the user, or is not generated by the 2968 // compiler, it is named "." so the dash separated list should always be 8 2969 // items long 2970 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 2971 // Skip the exportReduceCount line 2972 ++lines; 2973 for (; n_lines--; ++lines) { 2974 llvm::SmallVector<llvm::StringRef, 8> spec; 2975 lines->split(spec, " - "); 2976 if (spec.size() != 8) { 2977 if (spec.size() < 8) { 2978 if (log) 2979 log->Error("Error parsing RenderScript reduction spec. wrong number " 2980 "of fields"); 2981 return false; 2982 } else if (log) 2983 log->Warning("Extraneous members in reduction spec: '%s'", 2984 lines->str().c_str()); 2985 } 2986 2987 const auto sig_s = spec[0]; 2988 uint32_t sig; 2989 if (sig_s.getAsInteger(10, sig)) { 2990 if (log) 2991 log->Error("Error parsing Renderscript reduction spec: invalid kernel " 2992 "signature: '%s'", 2993 sig_s.str().c_str()); 2994 return false; 2995 } 2996 2997 const auto accum_data_size_s = spec[1]; 2998 uint32_t accum_data_size; 2999 if (accum_data_size_s.getAsInteger(10, accum_data_size)) { 3000 if (log) 3001 log->Error("Error parsing Renderscript reduction spec: invalid " 3002 "accumulator data size %s", 3003 accum_data_size_s.str().c_str()); 3004 return false; 3005 } 3006 3007 if (log) 3008 log->Printf("Found RenderScript reduction '%s'", spec[2].str().c_str()); 3009 3010 m_reductions.push_back(RSReductionDescriptor(this, sig, accum_data_size, 3011 spec[2], spec[3], spec[4], 3012 spec[5], spec[6], spec[7])); 3013 } 3014 return true; 3015 } 3016 3017 bool RSModuleDescriptor::ParseVersionInfo(llvm::StringRef *lines, 3018 size_t n_lines) { 3019 // Skip the versionInfo line 3020 ++lines; 3021 for (; n_lines--; ++lines) { 3022 // We're only interested in bcc and slang versions, and ignore all other 3023 // versionInfo lines 3024 const auto kv_pair = lines->split(" - "); 3025 if (kv_pair.first == "slang") 3026 m_slang_version = kv_pair.second.str(); 3027 else if (kv_pair.first == "bcc") 3028 m_bcc_version = kv_pair.second.str(); 3029 } 3030 return true; 3031 } 3032 3033 bool RSModuleDescriptor::ParseExportForeachCount(llvm::StringRef *lines, 3034 size_t n_lines) { 3035 // Skip the exportForeachCount line 3036 ++lines; 3037 for (; n_lines--; ++lines) { 3038 uint32_t slot; 3039 // `forEach` kernels are listed in the `.rs.info` packet as a "slot - name" 3040 // pair per line 3041 const auto kv_pair = lines->split(" - "); 3042 if (kv_pair.first.getAsInteger(10, slot)) 3043 return false; 3044 m_kernels.push_back(RSKernelDescriptor(this, kv_pair.second, slot)); 3045 } 3046 return true; 3047 } 3048 3049 bool RSModuleDescriptor::ParseExportVarCount(llvm::StringRef *lines, 3050 size_t n_lines) { 3051 // Skip the ExportVarCount line 3052 ++lines; 3053 for (; n_lines--; ++lines) 3054 m_globals.push_back(RSGlobalDescriptor(this, *lines)); 3055 return true; 3056 } 3057 3058 // The .rs.info symbol in renderscript modules contains a string which needs to 3059 // be parsed. The string is basic and is parsed on a line by line basis. 3060 bool RSModuleDescriptor::ParseRSInfo() { 3061 assert(m_module); 3062 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3063 const Symbol *info_sym = m_module->FindFirstSymbolWithNameAndType( 3064 ConstString(".rs.info"), eSymbolTypeData); 3065 if (!info_sym) 3066 return false; 3067 3068 const addr_t addr = info_sym->GetAddressRef().GetFileAddress(); 3069 if (addr == LLDB_INVALID_ADDRESS) 3070 return false; 3071 3072 const addr_t size = info_sym->GetByteSize(); 3073 const FileSpec fs = m_module->GetFileSpec(); 3074 3075 auto buffer = 3076 FileSystem::Instance().CreateDataBuffer(fs.GetPath(), size, addr); 3077 if (!buffer) 3078 return false; 3079 3080 // split rs.info. contents into lines 3081 llvm::SmallVector<llvm::StringRef, 128> info_lines; 3082 { 3083 const llvm::StringRef raw_rs_info((const char *)buffer->GetBytes()); 3084 raw_rs_info.split(info_lines, '\n'); 3085 if (log) 3086 log->Printf("'.rs.info symbol for '%s':\n%s", 3087 m_module->GetFileSpec().GetCString(), 3088 raw_rs_info.str().c_str()); 3089 } 3090 3091 enum { 3092 eExportVar, 3093 eExportForEach, 3094 eExportReduce, 3095 ePragma, 3096 eBuildChecksum, 3097 eObjectSlot, 3098 eVersionInfo, 3099 }; 3100 3101 const auto rs_info_handler = [](llvm::StringRef name) -> int { 3102 return llvm::StringSwitch<int>(name) 3103 // The number of visible global variables in the script 3104 .Case("exportVarCount", eExportVar) 3105 // The number of RenderScrip `forEach` kernels __attribute__((kernel)) 3106 .Case("exportForEachCount", eExportForEach) 3107 // The number of generalreductions: This marked in the script by 3108 // `#pragma reduce()` 3109 .Case("exportReduceCount", eExportReduce) 3110 // Total count of all RenderScript specific `#pragmas` used in the 3111 // script 3112 .Case("pragmaCount", ePragma) 3113 .Case("objectSlotCount", eObjectSlot) 3114 .Case("versionInfo", eVersionInfo) 3115 .Default(-1); 3116 }; 3117 3118 // parse all text lines of .rs.info 3119 for (auto line = info_lines.begin(); line != info_lines.end(); ++line) { 3120 const auto kv_pair = line->split(": "); 3121 const auto key = kv_pair.first; 3122 const auto val = kv_pair.second.trim(); 3123 3124 const auto handler = rs_info_handler(key); 3125 if (handler == -1) 3126 continue; 3127 // getAsInteger returns `true` on an error condition - we're only 3128 // interested in numeric fields at the moment 3129 uint64_t n_lines; 3130 if (val.getAsInteger(10, n_lines)) { 3131 LLDB_LOGV(log, "Failed to parse non-numeric '.rs.info' section {0}", 3132 line->str()); 3133 continue; 3134 } 3135 if (info_lines.end() - (line + 1) < (ptrdiff_t)n_lines) 3136 return false; 3137 3138 bool success = false; 3139 switch (handler) { 3140 case eExportVar: 3141 success = ParseExportVarCount(line, n_lines); 3142 break; 3143 case eExportForEach: 3144 success = ParseExportForeachCount(line, n_lines); 3145 break; 3146 case eExportReduce: 3147 success = ParseExportReduceCount(line, n_lines); 3148 break; 3149 case ePragma: 3150 success = ParsePragmaCount(line, n_lines); 3151 break; 3152 case eVersionInfo: 3153 success = ParseVersionInfo(line, n_lines); 3154 break; 3155 default: { 3156 if (log) 3157 log->Printf("%s - skipping .rs.info field '%s'", __FUNCTION__, 3158 line->str().c_str()); 3159 continue; 3160 } 3161 } 3162 if (!success) 3163 return false; 3164 line += n_lines; 3165 } 3166 return info_lines.size() > 0; 3167 } 3168 3169 void RenderScriptRuntime::DumpStatus(Stream &strm) const { 3170 if (m_libRS) { 3171 strm.Printf("Runtime Library discovered."); 3172 strm.EOL(); 3173 } 3174 if (m_libRSDriver) { 3175 strm.Printf("Runtime Driver discovered."); 3176 strm.EOL(); 3177 } 3178 if (m_libRSCpuRef) { 3179 strm.Printf("CPU Reference Implementation discovered."); 3180 strm.EOL(); 3181 } 3182 3183 if (m_runtimeHooks.size()) { 3184 strm.Printf("Runtime functions hooked:"); 3185 strm.EOL(); 3186 for (auto b : m_runtimeHooks) { 3187 strm.Indent(b.second->defn->name); 3188 strm.EOL(); 3189 } 3190 } else { 3191 strm.Printf("Runtime is not hooked."); 3192 strm.EOL(); 3193 } 3194 } 3195 3196 void RenderScriptRuntime::DumpContexts(Stream &strm) const { 3197 strm.Printf("Inferred RenderScript Contexts:"); 3198 strm.EOL(); 3199 strm.IndentMore(); 3200 3201 std::map<addr_t, uint64_t> contextReferences; 3202 3203 // Iterate over all of the currently discovered scripts. Note: We cant push 3204 // or pop from m_scripts inside this loop or it may invalidate script. 3205 for (const auto &script : m_scripts) { 3206 if (!script->context.isValid()) 3207 continue; 3208 lldb::addr_t context = *script->context; 3209 3210 if (contextReferences.find(context) != contextReferences.end()) { 3211 contextReferences[context]++; 3212 } else { 3213 contextReferences[context] = 1; 3214 } 3215 } 3216 3217 for (const auto &cRef : contextReferences) { 3218 strm.Printf("Context 0x%" PRIx64 ": %" PRIu64 " script instances", 3219 cRef.first, cRef.second); 3220 strm.EOL(); 3221 } 3222 strm.IndentLess(); 3223 } 3224 3225 void RenderScriptRuntime::DumpKernels(Stream &strm) const { 3226 strm.Printf("RenderScript Kernels:"); 3227 strm.EOL(); 3228 strm.IndentMore(); 3229 for (const auto &module : m_rsmodules) { 3230 strm.Printf("Resource '%s':", module->m_resname.c_str()); 3231 strm.EOL(); 3232 for (const auto &kernel : module->m_kernels) { 3233 strm.Indent(kernel.m_name.AsCString()); 3234 strm.EOL(); 3235 } 3236 } 3237 strm.IndentLess(); 3238 } 3239 3240 RenderScriptRuntime::AllocationDetails * 3241 RenderScriptRuntime::FindAllocByID(Stream &strm, const uint32_t alloc_id) { 3242 AllocationDetails *alloc = nullptr; 3243 3244 // See if we can find allocation using id as an index; 3245 if (alloc_id <= m_allocations.size() && alloc_id != 0 && 3246 m_allocations[alloc_id - 1]->id == alloc_id) { 3247 alloc = m_allocations[alloc_id - 1].get(); 3248 return alloc; 3249 } 3250 3251 // Fallback to searching 3252 for (const auto &a : m_allocations) { 3253 if (a->id == alloc_id) { 3254 alloc = a.get(); 3255 break; 3256 } 3257 } 3258 3259 if (alloc == nullptr) { 3260 strm.Printf("Error: Couldn't find allocation with id matching %" PRIu32, 3261 alloc_id); 3262 strm.EOL(); 3263 } 3264 3265 return alloc; 3266 } 3267 3268 // Prints the contents of an allocation to the output stream, which may be a 3269 // file 3270 bool RenderScriptRuntime::DumpAllocation(Stream &strm, StackFrame *frame_ptr, 3271 const uint32_t id) { 3272 Log *log(GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3273 3274 // Check we can find the desired allocation 3275 AllocationDetails *alloc = FindAllocByID(strm, id); 3276 if (!alloc) 3277 return false; // FindAllocByID() will print error message for us here 3278 3279 if (log) 3280 log->Printf("%s - found allocation 0x%" PRIx64, __FUNCTION__, 3281 *alloc->address.get()); 3282 3283 // Check we have information about the allocation, if not calculate it 3284 if (alloc->ShouldRefresh()) { 3285 if (log) 3286 log->Printf("%s - allocation details not calculated yet, jitting info.", 3287 __FUNCTION__); 3288 3289 // JIT all the allocation information 3290 if (!RefreshAllocation(alloc, frame_ptr)) { 3291 strm.Printf("Error: Couldn't JIT allocation details"); 3292 strm.EOL(); 3293 return false; 3294 } 3295 } 3296 3297 // Establish format and size of each data element 3298 const uint32_t vec_size = *alloc->element.type_vec_size.get(); 3299 const Element::DataType type = *alloc->element.type.get(); 3300 3301 assert(type >= Element::RS_TYPE_NONE && type <= Element::RS_TYPE_FONT && 3302 "Invalid allocation type"); 3303 3304 lldb::Format format; 3305 if (type >= Element::RS_TYPE_ELEMENT) 3306 format = eFormatHex; 3307 else 3308 format = vec_size == 1 3309 ? static_cast<lldb::Format>( 3310 AllocationDetails::RSTypeToFormat[type][eFormatSingle]) 3311 : static_cast<lldb::Format>( 3312 AllocationDetails::RSTypeToFormat[type][eFormatVector]); 3313 3314 const uint32_t data_size = *alloc->element.datum_size.get(); 3315 3316 if (log) 3317 log->Printf("%s - element size %" PRIu32 " bytes, including padding", 3318 __FUNCTION__, data_size); 3319 3320 // Allocate a buffer to copy data into 3321 std::shared_ptr<uint8_t> buffer = GetAllocationData(alloc, frame_ptr); 3322 if (!buffer) { 3323 strm.Printf("Error: Couldn't read allocation data"); 3324 strm.EOL(); 3325 return false; 3326 } 3327 3328 // Calculate stride between rows as there may be padding at end of rows since 3329 // allocated memory is 16-byte aligned 3330 if (!alloc->stride.isValid()) { 3331 if (alloc->dimension.get()->dim_2 == 0) // We only have one dimension 3332 alloc->stride = 0; 3333 else if (!JITAllocationStride(alloc, frame_ptr)) { 3334 strm.Printf("Error: Couldn't calculate allocation row stride"); 3335 strm.EOL(); 3336 return false; 3337 } 3338 } 3339 const uint32_t stride = *alloc->stride.get(); 3340 const uint32_t size = *alloc->size.get(); // Size of whole allocation 3341 const uint32_t padding = 3342 alloc->element.padding.isValid() ? *alloc->element.padding.get() : 0; 3343 if (log) 3344 log->Printf("%s - stride %" PRIu32 " bytes, size %" PRIu32 3345 " bytes, padding %" PRIu32, 3346 __FUNCTION__, stride, size, padding); 3347 3348 // Find dimensions used to index loops, so need to be non-zero 3349 uint32_t dim_x = alloc->dimension.get()->dim_1; 3350 dim_x = dim_x == 0 ? 1 : dim_x; 3351 3352 uint32_t dim_y = alloc->dimension.get()->dim_2; 3353 dim_y = dim_y == 0 ? 1 : dim_y; 3354 3355 uint32_t dim_z = alloc->dimension.get()->dim_3; 3356 dim_z = dim_z == 0 ? 1 : dim_z; 3357 3358 // Use data extractor to format output 3359 const uint32_t target_ptr_size = 3360 GetProcess()->GetTarget().GetArchitecture().GetAddressByteSize(); 3361 DataExtractor alloc_data(buffer.get(), size, GetProcess()->GetByteOrder(), 3362 target_ptr_size); 3363 3364 uint32_t offset = 0; // Offset in buffer to next element to be printed 3365 uint32_t prev_row = 0; // Offset to the start of the previous row 3366 3367 // Iterate over allocation dimensions, printing results to user 3368 strm.Printf("Data (X, Y, Z):"); 3369 for (uint32_t z = 0; z < dim_z; ++z) { 3370 for (uint32_t y = 0; y < dim_y; ++y) { 3371 // Use stride to index start of next row. 3372 if (!(y == 0 && z == 0)) 3373 offset = prev_row + stride; 3374 prev_row = offset; 3375 3376 // Print each element in the row individually 3377 for (uint32_t x = 0; x < dim_x; ++x) { 3378 strm.Printf("\n(%" PRIu32 ", %" PRIu32 ", %" PRIu32 ") = ", x, y, z); 3379 if ((type == Element::RS_TYPE_NONE) && 3380 (alloc->element.children.size() > 0) && 3381 (alloc->element.type_name != Element::GetFallbackStructName())) { 3382 // Here we are dumping an Element of struct type. This is done using 3383 // expression evaluation with the name of the struct type and pointer 3384 // to element. Don't print the name of the resulting expression, 3385 // since this will be '$[0-9]+' 3386 DumpValueObjectOptions expr_options; 3387 expr_options.SetHideName(true); 3388 3389 // Setup expression as dereferencing a pointer cast to element 3390 // address. 3391 char expr_char_buffer[jit_max_expr_size]; 3392 int written = 3393 snprintf(expr_char_buffer, jit_max_expr_size, "*(%s*) 0x%" PRIx64, 3394 alloc->element.type_name.AsCString(), 3395 *alloc->data_ptr.get() + offset); 3396 3397 if (written < 0 || written >= jit_max_expr_size) { 3398 if (log) 3399 log->Printf("%s - error in snprintf().", __FUNCTION__); 3400 continue; 3401 } 3402 3403 // Evaluate expression 3404 ValueObjectSP expr_result; 3405 GetProcess()->GetTarget().EvaluateExpression(expr_char_buffer, 3406 frame_ptr, expr_result); 3407 3408 // Print the results to our stream. 3409 expr_result->Dump(strm, expr_options); 3410 } else { 3411 DumpDataExtractor(alloc_data, &strm, offset, format, 3412 data_size - padding, 1, 1, LLDB_INVALID_ADDRESS, 0, 3413 0); 3414 } 3415 offset += data_size; 3416 } 3417 } 3418 } 3419 strm.EOL(); 3420 3421 return true; 3422 } 3423 3424 // Function recalculates all our cached information about allocations by 3425 // jitting the RS runtime regarding each allocation we know about. Returns true 3426 // if all allocations could be recomputed, false otherwise. 3427 bool RenderScriptRuntime::RecomputeAllAllocations(Stream &strm, 3428 StackFrame *frame_ptr) { 3429 bool success = true; 3430 for (auto &alloc : m_allocations) { 3431 // JIT current allocation information 3432 if (!RefreshAllocation(alloc.get(), frame_ptr)) { 3433 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32 3434 "\n", 3435 alloc->id); 3436 success = false; 3437 } 3438 } 3439 3440 if (success) 3441 strm.Printf("All allocations successfully recomputed"); 3442 strm.EOL(); 3443 3444 return success; 3445 } 3446 3447 // Prints information regarding currently loaded allocations. These details are 3448 // gathered by jitting the runtime, which has as latency. Index parameter 3449 // specifies a single allocation ID to print, or a zero value to print them all 3450 void RenderScriptRuntime::ListAllocations(Stream &strm, StackFrame *frame_ptr, 3451 const uint32_t index) { 3452 strm.Printf("RenderScript Allocations:"); 3453 strm.EOL(); 3454 strm.IndentMore(); 3455 3456 for (auto &alloc : m_allocations) { 3457 // index will only be zero if we want to print all allocations 3458 if (index != 0 && index != alloc->id) 3459 continue; 3460 3461 // JIT current allocation information 3462 if (alloc->ShouldRefresh() && !RefreshAllocation(alloc.get(), frame_ptr)) { 3463 strm.Printf("Error: Couldn't evaluate details for allocation %" PRIu32, 3464 alloc->id); 3465 strm.EOL(); 3466 continue; 3467 } 3468 3469 strm.Printf("%" PRIu32 ":", alloc->id); 3470 strm.EOL(); 3471 strm.IndentMore(); 3472 3473 strm.Indent("Context: "); 3474 if (!alloc->context.isValid()) 3475 strm.Printf("unknown\n"); 3476 else 3477 strm.Printf("0x%" PRIx64 "\n", *alloc->context.get()); 3478 3479 strm.Indent("Address: "); 3480 if (!alloc->address.isValid()) 3481 strm.Printf("unknown\n"); 3482 else 3483 strm.Printf("0x%" PRIx64 "\n", *alloc->address.get()); 3484 3485 strm.Indent("Data pointer: "); 3486 if (!alloc->data_ptr.isValid()) 3487 strm.Printf("unknown\n"); 3488 else 3489 strm.Printf("0x%" PRIx64 "\n", *alloc->data_ptr.get()); 3490 3491 strm.Indent("Dimensions: "); 3492 if (!alloc->dimension.isValid()) 3493 strm.Printf("unknown\n"); 3494 else 3495 strm.Printf("(%" PRId32 ", %" PRId32 ", %" PRId32 ")\n", 3496 alloc->dimension.get()->dim_1, alloc->dimension.get()->dim_2, 3497 alloc->dimension.get()->dim_3); 3498 3499 strm.Indent("Data Type: "); 3500 if (!alloc->element.type.isValid() || 3501 !alloc->element.type_vec_size.isValid()) 3502 strm.Printf("unknown\n"); 3503 else { 3504 const int vector_size = *alloc->element.type_vec_size.get(); 3505 Element::DataType type = *alloc->element.type.get(); 3506 3507 if (!alloc->element.type_name.IsEmpty()) 3508 strm.Printf("%s\n", alloc->element.type_name.AsCString()); 3509 else { 3510 // Enum value isn't monotonous, so doesn't always index 3511 // RsDataTypeToString array 3512 if (type >= Element::RS_TYPE_ELEMENT && type <= Element::RS_TYPE_FONT) 3513 type = 3514 static_cast<Element::DataType>((type - Element::RS_TYPE_ELEMENT) + 3515 Element::RS_TYPE_MATRIX_2X2 + 1); 3516 3517 if (type >= (sizeof(AllocationDetails::RsDataTypeToString) / 3518 sizeof(AllocationDetails::RsDataTypeToString[0])) || 3519 vector_size > 4 || vector_size < 1) 3520 strm.Printf("invalid type\n"); 3521 else 3522 strm.Printf( 3523 "%s\n", 3524 AllocationDetails::RsDataTypeToString[static_cast<uint32_t>(type)] 3525 [vector_size - 1]); 3526 } 3527 } 3528 3529 strm.Indent("Data Kind: "); 3530 if (!alloc->element.type_kind.isValid()) 3531 strm.Printf("unknown\n"); 3532 else { 3533 const Element::DataKind kind = *alloc->element.type_kind.get(); 3534 if (kind < Element::RS_KIND_USER || kind > Element::RS_KIND_PIXEL_YUV) 3535 strm.Printf("invalid kind\n"); 3536 else 3537 strm.Printf( 3538 "%s\n", 3539 AllocationDetails::RsDataKindToString[static_cast<uint32_t>(kind)]); 3540 } 3541 3542 strm.EOL(); 3543 strm.IndentLess(); 3544 } 3545 strm.IndentLess(); 3546 } 3547 3548 // Set breakpoints on every kernel found in RS module 3549 void RenderScriptRuntime::BreakOnModuleKernels( 3550 const RSModuleDescriptorSP rsmodule_sp) { 3551 for (const auto &kernel : rsmodule_sp->m_kernels) { 3552 // Don't set breakpoint on 'root' kernel 3553 if (strcmp(kernel.m_name.AsCString(), "root") == 0) 3554 continue; 3555 3556 CreateKernelBreakpoint(kernel.m_name); 3557 } 3558 } 3559 3560 // Method is internally called by the 'kernel breakpoint all' command to enable 3561 // or disable breaking on all kernels. When do_break is true we want to enable 3562 // this functionality. When do_break is false we want to disable it. 3563 void RenderScriptRuntime::SetBreakAllKernels(bool do_break, TargetSP target) { 3564 Log *log( 3565 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3566 3567 InitSearchFilter(target); 3568 3569 // Set breakpoints on all the kernels 3570 if (do_break && !m_breakAllKernels) { 3571 m_breakAllKernels = true; 3572 3573 for (const auto &module : m_rsmodules) 3574 BreakOnModuleKernels(module); 3575 3576 if (log) 3577 log->Printf("%s(True) - breakpoints set on all currently loaded kernels.", 3578 __FUNCTION__); 3579 } else if (!do_break && 3580 m_breakAllKernels) // Breakpoints won't be set on any new kernels. 3581 { 3582 m_breakAllKernels = false; 3583 3584 if (log) 3585 log->Printf("%s(False) - breakpoints no longer automatically set.", 3586 __FUNCTION__); 3587 } 3588 } 3589 3590 // Given the name of a kernel this function creates a breakpoint using our own 3591 // breakpoint resolver, and returns the Breakpoint shared pointer. 3592 BreakpointSP 3593 RenderScriptRuntime::CreateKernelBreakpoint(ConstString name) { 3594 Log *log( 3595 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3596 3597 if (!m_filtersp) { 3598 if (log) 3599 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3600 return nullptr; 3601 } 3602 3603 BreakpointResolverSP resolver_sp(new RSBreakpointResolver(nullptr, name)); 3604 Target &target = GetProcess()->GetTarget(); 3605 BreakpointSP bp = target.CreateBreakpoint( 3606 m_filtersp, resolver_sp, false, false, false); 3607 3608 // Give RS breakpoints a specific name, so the user can manipulate them as a 3609 // group. 3610 Status err; 3611 target.AddNameToBreakpoint(bp, "RenderScriptKernel", err); 3612 if (err.Fail() && log) 3613 if (log) 3614 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3615 err.AsCString()); 3616 3617 return bp; 3618 } 3619 3620 BreakpointSP 3621 RenderScriptRuntime::CreateReductionBreakpoint(ConstString name, 3622 int kernel_types) { 3623 Log *log( 3624 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3625 3626 if (!m_filtersp) { 3627 if (log) 3628 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3629 return nullptr; 3630 } 3631 3632 BreakpointResolverSP resolver_sp(new RSReduceBreakpointResolver( 3633 nullptr, name, &m_rsmodules, kernel_types)); 3634 Target &target = GetProcess()->GetTarget(); 3635 BreakpointSP bp = target.CreateBreakpoint( 3636 m_filtersp, resolver_sp, false, false, false); 3637 3638 // Give RS breakpoints a specific name, so the user can manipulate them as a 3639 // group. 3640 Status err; 3641 target.AddNameToBreakpoint(bp, "RenderScriptReduction", err); 3642 if (err.Fail() && log) 3643 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3644 err.AsCString()); 3645 3646 return bp; 3647 } 3648 3649 // Given an expression for a variable this function tries to calculate the 3650 // variable's value. If this is possible it returns true and sets the uint64_t 3651 // parameter to the variables unsigned value. Otherwise function returns false. 3652 bool RenderScriptRuntime::GetFrameVarAsUnsigned(const StackFrameSP frame_sp, 3653 const char *var_name, 3654 uint64_t &val) { 3655 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3656 Status err; 3657 VariableSP var_sp; 3658 3659 // Find variable in stack frame 3660 ValueObjectSP value_sp(frame_sp->GetValueForVariableExpressionPath( 3661 var_name, eNoDynamicValues, 3662 StackFrame::eExpressionPathOptionCheckPtrVsMember | 3663 StackFrame::eExpressionPathOptionsAllowDirectIVarAccess, 3664 var_sp, err)); 3665 if (!err.Success()) { 3666 if (log) 3667 log->Printf("%s - error, couldn't find '%s' in frame", __FUNCTION__, 3668 var_name); 3669 return false; 3670 } 3671 3672 // Find the uint32_t value for the variable 3673 bool success = false; 3674 val = value_sp->GetValueAsUnsigned(0, &success); 3675 if (!success) { 3676 if (log) 3677 log->Printf("%s - error, couldn't parse '%s' as an uint32_t.", 3678 __FUNCTION__, var_name); 3679 return false; 3680 } 3681 3682 return true; 3683 } 3684 3685 // Function attempts to find the current coordinate of a kernel invocation by 3686 // investigating the values of frame variables in the .expand function. These 3687 // coordinates are returned via the coord array reference parameter. Returns 3688 // true if the coordinates could be found, and false otherwise. 3689 bool RenderScriptRuntime::GetKernelCoordinate(RSCoordinate &coord, 3690 Thread *thread_ptr) { 3691 static const char *const x_expr = "rsIndex"; 3692 static const char *const y_expr = "p->current.y"; 3693 static const char *const z_expr = "p->current.z"; 3694 3695 Log *log(GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE)); 3696 3697 if (!thread_ptr) { 3698 if (log) 3699 log->Printf("%s - Error, No thread pointer", __FUNCTION__); 3700 3701 return false; 3702 } 3703 3704 // Walk the call stack looking for a function whose name has the suffix 3705 // '.expand' and contains the variables we're looking for. 3706 for (uint32_t i = 0; i < thread_ptr->GetStackFrameCount(); ++i) { 3707 if (!thread_ptr->SetSelectedFrameByIndex(i)) 3708 continue; 3709 3710 StackFrameSP frame_sp = thread_ptr->GetSelectedFrame(); 3711 if (!frame_sp) 3712 continue; 3713 3714 // Find the function name 3715 const SymbolContext sym_ctx = 3716 frame_sp->GetSymbolContext(eSymbolContextFunction); 3717 const ConstString func_name = sym_ctx.GetFunctionName(); 3718 if (!func_name) 3719 continue; 3720 3721 if (log) 3722 log->Printf("%s - Inspecting function '%s'", __FUNCTION__, 3723 func_name.GetCString()); 3724 3725 // Check if function name has .expand suffix 3726 if (!func_name.GetStringRef().endswith(".expand")) 3727 continue; 3728 3729 if (log) 3730 log->Printf("%s - Found .expand function '%s'", __FUNCTION__, 3731 func_name.GetCString()); 3732 3733 // Get values for variables in .expand frame that tell us the current 3734 // kernel invocation 3735 uint64_t x, y, z; 3736 bool found = GetFrameVarAsUnsigned(frame_sp, x_expr, x) && 3737 GetFrameVarAsUnsigned(frame_sp, y_expr, y) && 3738 GetFrameVarAsUnsigned(frame_sp, z_expr, z); 3739 3740 if (found) { 3741 // The RenderScript runtime uses uint32_t for these vars. If they're not 3742 // within bounds, our frame parsing is garbage 3743 assert(x <= UINT32_MAX && y <= UINT32_MAX && z <= UINT32_MAX); 3744 coord.x = (uint32_t)x; 3745 coord.y = (uint32_t)y; 3746 coord.z = (uint32_t)z; 3747 return true; 3748 } 3749 } 3750 return false; 3751 } 3752 3753 // Callback when a kernel breakpoint hits and we're looking for a specific 3754 // coordinate. Baton parameter contains a pointer to the target coordinate we 3755 // want to break on. Function then checks the .expand frame for the current 3756 // coordinate and breaks to user if it matches. Parameter 'break_id' is the id 3757 // of the Breakpoint which made the callback. Parameter 'break_loc_id' is the 3758 // id for the BreakpointLocation which was hit, a single logical breakpoint can 3759 // have multiple addresses. 3760 bool RenderScriptRuntime::KernelBreakpointHit(void *baton, 3761 StoppointCallbackContext *ctx, 3762 user_id_t break_id, 3763 user_id_t break_loc_id) { 3764 Log *log( 3765 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3766 3767 assert(baton && 3768 "Error: null baton in conditional kernel breakpoint callback"); 3769 3770 // Coordinate we want to stop on 3771 RSCoordinate target_coord = *static_cast<RSCoordinate *>(baton); 3772 3773 if (log) 3774 log->Printf("%s - Break ID %" PRIu64 ", " FMT_COORD, __FUNCTION__, break_id, 3775 target_coord.x, target_coord.y, target_coord.z); 3776 3777 // Select current thread 3778 ExecutionContext context(ctx->exe_ctx_ref); 3779 Thread *thread_ptr = context.GetThreadPtr(); 3780 assert(thread_ptr && "Null thread pointer"); 3781 3782 // Find current kernel invocation from .expand frame variables 3783 RSCoordinate current_coord{}; 3784 if (!GetKernelCoordinate(current_coord, thread_ptr)) { 3785 if (log) 3786 log->Printf("%s - Error, couldn't select .expand stack frame", 3787 __FUNCTION__); 3788 return false; 3789 } 3790 3791 if (log) 3792 log->Printf("%s - " FMT_COORD, __FUNCTION__, current_coord.x, 3793 current_coord.y, current_coord.z); 3794 3795 // Check if the current kernel invocation coordinate matches our target 3796 // coordinate 3797 if (target_coord == current_coord) { 3798 if (log) 3799 log->Printf("%s, BREAKING " FMT_COORD, __FUNCTION__, current_coord.x, 3800 current_coord.y, current_coord.z); 3801 3802 BreakpointSP breakpoint_sp = 3803 context.GetTargetPtr()->GetBreakpointByID(break_id); 3804 assert(breakpoint_sp != nullptr && 3805 "Error: Couldn't find breakpoint matching break id for callback"); 3806 breakpoint_sp->SetEnabled(false); // Optimise since conditional breakpoint 3807 // should only be hit once. 3808 return true; 3809 } 3810 3811 // No match on coordinate 3812 return false; 3813 } 3814 3815 void RenderScriptRuntime::SetConditional(BreakpointSP bp, Stream &messages, 3816 const RSCoordinate &coord) { 3817 messages.Printf("Conditional kernel breakpoint on coordinate " FMT_COORD, 3818 coord.x, coord.y, coord.z); 3819 messages.EOL(); 3820 3821 // Allocate memory for the baton, and copy over coordinate 3822 RSCoordinate *baton = new RSCoordinate(coord); 3823 3824 // Create a callback that will be invoked every time the breakpoint is hit. 3825 // The baton object passed to the handler is the target coordinate we want to 3826 // break on. 3827 bp->SetCallback(KernelBreakpointHit, baton, true); 3828 3829 // Store a shared pointer to the baton, so the memory will eventually be 3830 // cleaned up after destruction 3831 m_conditional_breaks[bp->GetID()] = std::unique_ptr<RSCoordinate>(baton); 3832 } 3833 3834 // Tries to set a breakpoint on the start of a kernel, resolved using the 3835 // kernel name. Argument 'coords', represents a three dimensional coordinate 3836 // which can be used to specify a single kernel instance to break on. If this 3837 // is set then we add a callback to the breakpoint. 3838 bool RenderScriptRuntime::PlaceBreakpointOnKernel(TargetSP target, 3839 Stream &messages, 3840 const char *name, 3841 const RSCoordinate *coord) { 3842 if (!name) 3843 return false; 3844 3845 InitSearchFilter(target); 3846 3847 ConstString kernel_name(name); 3848 BreakpointSP bp = CreateKernelBreakpoint(kernel_name); 3849 if (!bp) 3850 return false; 3851 3852 // We have a conditional breakpoint on a specific coordinate 3853 if (coord) 3854 SetConditional(bp, messages, *coord); 3855 3856 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3857 3858 return true; 3859 } 3860 3861 BreakpointSP 3862 RenderScriptRuntime::CreateScriptGroupBreakpoint(ConstString name, 3863 bool stop_on_all) { 3864 Log *log( 3865 GetLogIfAnyCategoriesSet(LIBLLDB_LOG_LANGUAGE | LIBLLDB_LOG_BREAKPOINTS)); 3866 3867 if (!m_filtersp) { 3868 if (log) 3869 log->Printf("%s - error, no breakpoint search filter set.", __FUNCTION__); 3870 return nullptr; 3871 } 3872 3873 BreakpointResolverSP resolver_sp(new RSScriptGroupBreakpointResolver( 3874 nullptr, name, m_scriptGroups, stop_on_all)); 3875 Target &target = GetProcess()->GetTarget(); 3876 BreakpointSP bp = target.CreateBreakpoint( 3877 m_filtersp, resolver_sp, false, false, false); 3878 // Give RS breakpoints a specific name, so the user can manipulate them as a 3879 // group. 3880 Status err; 3881 target.AddNameToBreakpoint(bp, name.GetCString(), err); 3882 if (err.Fail() && log) 3883 log->Printf("%s - error setting break name, '%s'.", __FUNCTION__, 3884 err.AsCString()); 3885 // ask the breakpoint to resolve itself 3886 bp->ResolveBreakpoint(); 3887 return bp; 3888 } 3889 3890 bool RenderScriptRuntime::PlaceBreakpointOnScriptGroup(TargetSP target, 3891 Stream &strm, 3892 ConstString name, 3893 bool multi) { 3894 InitSearchFilter(target); 3895 BreakpointSP bp = CreateScriptGroupBreakpoint(name, multi); 3896 if (bp) 3897 bp->GetDescription(&strm, lldb::eDescriptionLevelInitial, false); 3898 return bool(bp); 3899 } 3900 3901 bool RenderScriptRuntime::PlaceBreakpointOnReduction(TargetSP target, 3902 Stream &messages, 3903 const char *reduce_name, 3904 const RSCoordinate *coord, 3905 int kernel_types) { 3906 if (!reduce_name) 3907 return false; 3908 3909 InitSearchFilter(target); 3910 BreakpointSP bp = 3911 CreateReductionBreakpoint(ConstString(reduce_name), kernel_types); 3912 if (!bp) 3913 return false; 3914 3915 if (coord) 3916 SetConditional(bp, messages, *coord); 3917 3918 bp->GetDescription(&messages, lldb::eDescriptionLevelInitial, false); 3919 3920 return true; 3921 } 3922 3923 void RenderScriptRuntime::DumpModules(Stream &strm) const { 3924 strm.Printf("RenderScript Modules:"); 3925 strm.EOL(); 3926 strm.IndentMore(); 3927 for (const auto &module : m_rsmodules) { 3928 module->Dump(strm); 3929 } 3930 strm.IndentLess(); 3931 } 3932 3933 RenderScriptRuntime::ScriptDetails * 3934 RenderScriptRuntime::LookUpScript(addr_t address, bool create) { 3935 for (const auto &s : m_scripts) { 3936 if (s->script.isValid()) 3937 if (*s->script == address) 3938 return s.get(); 3939 } 3940 if (create) { 3941 std::unique_ptr<ScriptDetails> s(new ScriptDetails); 3942 s->script = address; 3943 m_scripts.push_back(std::move(s)); 3944 return m_scripts.back().get(); 3945 } 3946 return nullptr; 3947 } 3948 3949 RenderScriptRuntime::AllocationDetails * 3950 RenderScriptRuntime::LookUpAllocation(addr_t address) { 3951 for (const auto &a : m_allocations) { 3952 if (a->address.isValid()) 3953 if (*a->address == address) 3954 return a.get(); 3955 } 3956 return nullptr; 3957 } 3958 3959 RenderScriptRuntime::AllocationDetails * 3960 RenderScriptRuntime::CreateAllocation(addr_t address) { 3961 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_LANGUAGE); 3962 3963 // Remove any previous allocation which contains the same address 3964 auto it = m_allocations.begin(); 3965 while (it != m_allocations.end()) { 3966 if (*((*it)->address) == address) { 3967 if (log) 3968 log->Printf("%s - Removing allocation id: %d, address: 0x%" PRIx64, 3969 __FUNCTION__, (*it)->id, address); 3970 3971 it = m_allocations.erase(it); 3972 } else { 3973 it++; 3974 } 3975 } 3976 3977 std::unique_ptr<AllocationDetails> a(new AllocationDetails); 3978 a->address = address; 3979 m_allocations.push_back(std::move(a)); 3980 return m_allocations.back().get(); 3981 } 3982 3983 bool RenderScriptRuntime::ResolveKernelName(lldb::addr_t kernel_addr, 3984 ConstString &name) { 3985 Log *log = GetLogIfAllCategoriesSet(LIBLLDB_LOG_SYMBOLS); 3986 3987 Target &target = GetProcess()->GetTarget(); 3988 Address resolved; 3989 // RenderScript module 3990 if (!target.GetSectionLoadList().ResolveLoadAddress(kernel_addr, resolved)) { 3991 if (log) 3992 log->Printf("%s: unable to resolve 0x%" PRIx64 " to a loaded symbol", 3993 __FUNCTION__, kernel_addr); 3994 return false; 3995 } 3996 3997 Symbol *sym = resolved.CalculateSymbolContextSymbol(); 3998 if (!sym) 3999 return false; 4000 4001 name = sym->GetName(); 4002 assert(IsRenderScriptModule(resolved.CalculateSymbolContextModule())); 4003 if (log) 4004 log->Printf("%s: 0x%" PRIx64 " resolved to the symbol '%s'", __FUNCTION__, 4005 kernel_addr, name.GetCString()); 4006 return true; 4007 } 4008 4009 void RSModuleDescriptor::Dump(Stream &strm) const { 4010 int indent = strm.GetIndentLevel(); 4011 4012 strm.Indent(); 4013 m_module->GetFileSpec().Dump(&strm); 4014 strm.Indent(m_module->GetNumCompileUnits() ? "Debug info loaded." 4015 : "Debug info does not exist."); 4016 strm.EOL(); 4017 strm.IndentMore(); 4018 4019 strm.Indent(); 4020 strm.Printf("Globals: %" PRIu64, static_cast<uint64_t>(m_globals.size())); 4021 strm.EOL(); 4022 strm.IndentMore(); 4023 for (const auto &global : m_globals) { 4024 global.Dump(strm); 4025 } 4026 strm.IndentLess(); 4027 4028 strm.Indent(); 4029 strm.Printf("Kernels: %" PRIu64, static_cast<uint64_t>(m_kernels.size())); 4030 strm.EOL(); 4031 strm.IndentMore(); 4032 for (const auto &kernel : m_kernels) { 4033 kernel.Dump(strm); 4034 } 4035 strm.IndentLess(); 4036 4037 strm.Indent(); 4038 strm.Printf("Pragmas: %" PRIu64, static_cast<uint64_t>(m_pragmas.size())); 4039 strm.EOL(); 4040 strm.IndentMore(); 4041 for (const auto &key_val : m_pragmas) { 4042 strm.Indent(); 4043 strm.Printf("%s: %s", key_val.first.c_str(), key_val.second.c_str()); 4044 strm.EOL(); 4045 } 4046 strm.IndentLess(); 4047 4048 strm.Indent(); 4049 strm.Printf("Reductions: %" PRIu64, 4050 static_cast<uint64_t>(m_reductions.size())); 4051 strm.EOL(); 4052 strm.IndentMore(); 4053 for (const auto &reduction : m_reductions) { 4054 reduction.Dump(strm); 4055 } 4056 4057 strm.SetIndentLevel(indent); 4058 } 4059 4060 void RSGlobalDescriptor::Dump(Stream &strm) const { 4061 strm.Indent(m_name.AsCString()); 4062 VariableList var_list; 4063 m_module->m_module->FindGlobalVariables(m_name, nullptr, 1U, var_list); 4064 if (var_list.GetSize() == 1) { 4065 auto var = var_list.GetVariableAtIndex(0); 4066 auto type = var->GetType(); 4067 if (type) { 4068 strm.Printf(" - "); 4069 type->DumpTypeName(&strm); 4070 } else { 4071 strm.Printf(" - Unknown Type"); 4072 } 4073 } else { 4074 strm.Printf(" - variable identified, but not found in binary"); 4075 const Symbol *s = m_module->m_module->FindFirstSymbolWithNameAndType( 4076 m_name, eSymbolTypeData); 4077 if (s) { 4078 strm.Printf(" (symbol exists) "); 4079 } 4080 } 4081 4082 strm.EOL(); 4083 } 4084 4085 void RSKernelDescriptor::Dump(Stream &strm) const { 4086 strm.Indent(m_name.AsCString()); 4087 strm.EOL(); 4088 } 4089 4090 void RSReductionDescriptor::Dump(lldb_private::Stream &stream) const { 4091 stream.Indent(m_reduce_name.AsCString()); 4092 stream.IndentMore(); 4093 stream.EOL(); 4094 stream.Indent(); 4095 stream.Printf("accumulator: %s", m_accum_name.AsCString()); 4096 stream.EOL(); 4097 stream.Indent(); 4098 stream.Printf("initializer: %s", m_init_name.AsCString()); 4099 stream.EOL(); 4100 stream.Indent(); 4101 stream.Printf("combiner: %s", m_comb_name.AsCString()); 4102 stream.EOL(); 4103 stream.Indent(); 4104 stream.Printf("outconverter: %s", m_outc_name.AsCString()); 4105 stream.EOL(); 4106 // XXX This is currently unspecified by RenderScript, and unused 4107 // stream.Indent(); 4108 // stream.Printf("halter: '%s'", m_init_name.AsCString()); 4109 // stream.EOL(); 4110 stream.IndentLess(); 4111 } 4112 4113 class CommandObjectRenderScriptRuntimeModuleDump : public CommandObjectParsed { 4114 public: 4115 CommandObjectRenderScriptRuntimeModuleDump(CommandInterpreter &interpreter) 4116 : CommandObjectParsed( 4117 interpreter, "renderscript module dump", 4118 "Dumps renderscript specific information for all modules.", 4119 "renderscript module dump", 4120 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4121 4122 ~CommandObjectRenderScriptRuntimeModuleDump() override = default; 4123 4124 bool DoExecute(Args &command, CommandReturnObject &result) override { 4125 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4126 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4127 eLanguageTypeExtRenderScript)); 4128 runtime->DumpModules(result.GetOutputStream()); 4129 result.SetStatus(eReturnStatusSuccessFinishResult); 4130 return true; 4131 } 4132 }; 4133 4134 class CommandObjectRenderScriptRuntimeModule : public CommandObjectMultiword { 4135 public: 4136 CommandObjectRenderScriptRuntimeModule(CommandInterpreter &interpreter) 4137 : CommandObjectMultiword(interpreter, "renderscript module", 4138 "Commands that deal with RenderScript modules.", 4139 nullptr) { 4140 LoadSubCommand( 4141 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeModuleDump( 4142 interpreter))); 4143 } 4144 4145 ~CommandObjectRenderScriptRuntimeModule() override = default; 4146 }; 4147 4148 class CommandObjectRenderScriptRuntimeKernelList : public CommandObjectParsed { 4149 public: 4150 CommandObjectRenderScriptRuntimeKernelList(CommandInterpreter &interpreter) 4151 : CommandObjectParsed( 4152 interpreter, "renderscript kernel list", 4153 "Lists renderscript kernel names and associated script resources.", 4154 "renderscript kernel list", 4155 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4156 4157 ~CommandObjectRenderScriptRuntimeKernelList() override = default; 4158 4159 bool DoExecute(Args &command, CommandReturnObject &result) override { 4160 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4161 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4162 eLanguageTypeExtRenderScript)); 4163 runtime->DumpKernels(result.GetOutputStream()); 4164 result.SetStatus(eReturnStatusSuccessFinishResult); 4165 return true; 4166 } 4167 }; 4168 4169 static constexpr OptionDefinition g_renderscript_reduction_bp_set_options[] = { 4170 {LLDB_OPT_SET_1, false, "function-role", 't', 4171 OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOneLiner, 4172 "Break on a comma separated set of reduction kernel types " 4173 "(accumulator,outcoverter,combiner,initializer"}, 4174 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4175 nullptr, {}, 0, eArgTypeValue, 4176 "Set a breakpoint on a single invocation of the kernel with specified " 4177 "coordinate.\n" 4178 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4179 "integers representing kernel dimensions. " 4180 "Any unset dimensions will be defaulted to zero."}}; 4181 4182 class CommandObjectRenderScriptRuntimeReductionBreakpointSet 4183 : public CommandObjectParsed { 4184 public: 4185 CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4186 CommandInterpreter &interpreter) 4187 : CommandObjectParsed( 4188 interpreter, "renderscript reduction breakpoint set", 4189 "Set a breakpoint on named RenderScript general reductions", 4190 "renderscript reduction breakpoint set <kernel_name> [-t " 4191 "<reduction_kernel_type,...>]", 4192 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4193 eCommandProcessMustBePaused), 4194 m_options(){}; 4195 4196 class CommandOptions : public Options { 4197 public: 4198 CommandOptions() 4199 : Options(), 4200 m_kernel_types(RSReduceBreakpointResolver::eKernelTypeAll) {} 4201 4202 ~CommandOptions() override = default; 4203 4204 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4205 ExecutionContext *exe_ctx) override { 4206 Status err; 4207 StreamString err_str; 4208 const int short_option = m_getopt_table[option_idx].val; 4209 switch (short_option) { 4210 case 't': 4211 if (!ParseReductionTypes(option_arg, err_str)) 4212 err.SetErrorStringWithFormat( 4213 "Unable to deduce reduction types for %s: %s", 4214 option_arg.str().c_str(), err_str.GetData()); 4215 break; 4216 case 'c': { 4217 auto coord = RSCoordinate{}; 4218 if (!ParseCoordinate(option_arg, coord)) 4219 err.SetErrorStringWithFormat("unable to parse coordinate for %s", 4220 option_arg.str().c_str()); 4221 else { 4222 m_have_coord = true; 4223 m_coord = coord; 4224 } 4225 break; 4226 } 4227 default: 4228 err.SetErrorStringWithFormat("Invalid option '-%c'", short_option); 4229 } 4230 return err; 4231 } 4232 4233 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4234 m_have_coord = false; 4235 } 4236 4237 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4238 return llvm::makeArrayRef(g_renderscript_reduction_bp_set_options); 4239 } 4240 4241 bool ParseReductionTypes(llvm::StringRef option_val, 4242 StreamString &err_str) { 4243 m_kernel_types = RSReduceBreakpointResolver::eKernelTypeNone; 4244 const auto reduce_name_to_type = [](llvm::StringRef name) -> int { 4245 return llvm::StringSwitch<int>(name) 4246 .Case("accumulator", RSReduceBreakpointResolver::eKernelTypeAccum) 4247 .Case("initializer", RSReduceBreakpointResolver::eKernelTypeInit) 4248 .Case("outconverter", RSReduceBreakpointResolver::eKernelTypeOutC) 4249 .Case("combiner", RSReduceBreakpointResolver::eKernelTypeComb) 4250 .Case("all", RSReduceBreakpointResolver::eKernelTypeAll) 4251 // Currently not exposed by the runtime 4252 // .Case("halter", RSReduceBreakpointResolver::eKernelTypeHalter) 4253 .Default(0); 4254 }; 4255 4256 // Matching a comma separated list of known words is fairly 4257 // straightforward with PCRE, but we're using ERE, so we end up with a 4258 // little ugliness... 4259 RegularExpression::Match match(/* max_matches */ 5); 4260 RegularExpression match_type_list( 4261 llvm::StringRef("^([[:alpha:]]+)(,[[:alpha:]]+){0,4}$")); 4262 4263 assert(match_type_list.IsValid()); 4264 4265 if (!match_type_list.Execute(option_val, &match)) { 4266 err_str.PutCString( 4267 "a comma-separated list of kernel types is required"); 4268 return false; 4269 } 4270 4271 // splitting on commas is much easier with llvm::StringRef than regex 4272 llvm::SmallVector<llvm::StringRef, 5> type_names; 4273 llvm::StringRef(option_val).split(type_names, ','); 4274 4275 for (const auto &name : type_names) { 4276 const int type = reduce_name_to_type(name); 4277 if (!type) { 4278 err_str.Printf("unknown kernel type name %s", name.str().c_str()); 4279 return false; 4280 } 4281 m_kernel_types |= type; 4282 } 4283 4284 return true; 4285 } 4286 4287 int m_kernel_types; 4288 llvm::StringRef m_reduce_name; 4289 RSCoordinate m_coord; 4290 bool m_have_coord; 4291 }; 4292 4293 Options *GetOptions() override { return &m_options; } 4294 4295 bool DoExecute(Args &command, CommandReturnObject &result) override { 4296 const size_t argc = command.GetArgumentCount(); 4297 if (argc < 1) { 4298 result.AppendErrorWithFormat("'%s' takes 1 argument of reduction name, " 4299 "and an optional kernel type list", 4300 m_cmd_name.c_str()); 4301 result.SetStatus(eReturnStatusFailed); 4302 return false; 4303 } 4304 4305 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4306 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4307 eLanguageTypeExtRenderScript)); 4308 4309 auto &outstream = result.GetOutputStream(); 4310 auto name = command.GetArgumentAtIndex(0); 4311 auto &target = m_exe_ctx.GetTargetSP(); 4312 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4313 if (!runtime->PlaceBreakpointOnReduction(target, outstream, name, coord, 4314 m_options.m_kernel_types)) { 4315 result.SetStatus(eReturnStatusFailed); 4316 result.AppendError("Error: unable to place breakpoint on reduction"); 4317 return false; 4318 } 4319 result.AppendMessage("Breakpoint(s) created"); 4320 result.SetStatus(eReturnStatusSuccessFinishResult); 4321 return true; 4322 } 4323 4324 private: 4325 CommandOptions m_options; 4326 }; 4327 4328 static constexpr OptionDefinition g_renderscript_kernel_bp_set_options[] = { 4329 {LLDB_OPT_SET_1, false, "coordinate", 'c', OptionParser::eRequiredArgument, 4330 nullptr, {}, 0, eArgTypeValue, 4331 "Set a breakpoint on a single invocation of the kernel with specified " 4332 "coordinate.\n" 4333 "Coordinate takes the form 'x[,y][,z] where x,y,z are positive " 4334 "integers representing kernel dimensions. " 4335 "Any unset dimensions will be defaulted to zero."}}; 4336 4337 class CommandObjectRenderScriptRuntimeKernelBreakpointSet 4338 : public CommandObjectParsed { 4339 public: 4340 CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4341 CommandInterpreter &interpreter) 4342 : CommandObjectParsed( 4343 interpreter, "renderscript kernel breakpoint set", 4344 "Sets a breakpoint on a renderscript kernel.", 4345 "renderscript kernel breakpoint set <kernel_name> [-c x,y,z]", 4346 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4347 eCommandProcessMustBePaused), 4348 m_options() {} 4349 4350 ~CommandObjectRenderScriptRuntimeKernelBreakpointSet() override = default; 4351 4352 Options *GetOptions() override { return &m_options; } 4353 4354 class CommandOptions : public Options { 4355 public: 4356 CommandOptions() : Options() {} 4357 4358 ~CommandOptions() override = default; 4359 4360 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4361 ExecutionContext *exe_ctx) override { 4362 Status err; 4363 const int short_option = m_getopt_table[option_idx].val; 4364 4365 switch (short_option) { 4366 case 'c': { 4367 auto coord = RSCoordinate{}; 4368 if (!ParseCoordinate(option_arg, coord)) 4369 err.SetErrorStringWithFormat( 4370 "Couldn't parse coordinate '%s', should be in format 'x,y,z'.", 4371 option_arg.str().c_str()); 4372 else { 4373 m_have_coord = true; 4374 m_coord = coord; 4375 } 4376 break; 4377 } 4378 default: 4379 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4380 break; 4381 } 4382 return err; 4383 } 4384 4385 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4386 m_have_coord = false; 4387 } 4388 4389 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4390 return llvm::makeArrayRef(g_renderscript_kernel_bp_set_options); 4391 } 4392 4393 RSCoordinate m_coord; 4394 bool m_have_coord; 4395 }; 4396 4397 bool DoExecute(Args &command, CommandReturnObject &result) override { 4398 const size_t argc = command.GetArgumentCount(); 4399 if (argc < 1) { 4400 result.AppendErrorWithFormat( 4401 "'%s' takes 1 argument of kernel name, and an optional coordinate.", 4402 m_cmd_name.c_str()); 4403 result.SetStatus(eReturnStatusFailed); 4404 return false; 4405 } 4406 4407 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4408 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4409 eLanguageTypeExtRenderScript)); 4410 4411 auto &outstream = result.GetOutputStream(); 4412 auto &target = m_exe_ctx.GetTargetSP(); 4413 auto name = command.GetArgumentAtIndex(0); 4414 auto coord = m_options.m_have_coord ? &m_options.m_coord : nullptr; 4415 if (!runtime->PlaceBreakpointOnKernel(target, outstream, name, coord)) { 4416 result.SetStatus(eReturnStatusFailed); 4417 result.AppendErrorWithFormat( 4418 "Error: unable to set breakpoint on kernel '%s'", name); 4419 return false; 4420 } 4421 4422 result.AppendMessage("Breakpoint(s) created"); 4423 result.SetStatus(eReturnStatusSuccessFinishResult); 4424 return true; 4425 } 4426 4427 private: 4428 CommandOptions m_options; 4429 }; 4430 4431 class CommandObjectRenderScriptRuntimeKernelBreakpointAll 4432 : public CommandObjectParsed { 4433 public: 4434 CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4435 CommandInterpreter &interpreter) 4436 : CommandObjectParsed( 4437 interpreter, "renderscript kernel breakpoint all", 4438 "Automatically sets a breakpoint on all renderscript kernels that " 4439 "are or will be loaded.\n" 4440 "Disabling option means breakpoints will no longer be set on any " 4441 "kernels loaded in the future, " 4442 "but does not remove currently set breakpoints.", 4443 "renderscript kernel breakpoint all <enable/disable>", 4444 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4445 eCommandProcessMustBePaused) {} 4446 4447 ~CommandObjectRenderScriptRuntimeKernelBreakpointAll() override = default; 4448 4449 bool DoExecute(Args &command, CommandReturnObject &result) override { 4450 const size_t argc = command.GetArgumentCount(); 4451 if (argc != 1) { 4452 result.AppendErrorWithFormat( 4453 "'%s' takes 1 argument of 'enable' or 'disable'", m_cmd_name.c_str()); 4454 result.SetStatus(eReturnStatusFailed); 4455 return false; 4456 } 4457 4458 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4459 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4460 eLanguageTypeExtRenderScript)); 4461 4462 bool do_break = false; 4463 const char *argument = command.GetArgumentAtIndex(0); 4464 if (strcmp(argument, "enable") == 0) { 4465 do_break = true; 4466 result.AppendMessage("Breakpoints will be set on all kernels."); 4467 } else if (strcmp(argument, "disable") == 0) { 4468 do_break = false; 4469 result.AppendMessage("Breakpoints will not be set on any new kernels."); 4470 } else { 4471 result.AppendErrorWithFormat( 4472 "Argument must be either 'enable' or 'disable'"); 4473 result.SetStatus(eReturnStatusFailed); 4474 return false; 4475 } 4476 4477 runtime->SetBreakAllKernels(do_break, m_exe_ctx.GetTargetSP()); 4478 4479 result.SetStatus(eReturnStatusSuccessFinishResult); 4480 return true; 4481 } 4482 }; 4483 4484 class CommandObjectRenderScriptRuntimeReductionBreakpoint 4485 : public CommandObjectMultiword { 4486 public: 4487 CommandObjectRenderScriptRuntimeReductionBreakpoint( 4488 CommandInterpreter &interpreter) 4489 : CommandObjectMultiword(interpreter, "renderscript reduction breakpoint", 4490 "Commands that manipulate breakpoints on " 4491 "renderscript general reductions.", 4492 nullptr) { 4493 LoadSubCommand( 4494 "set", CommandObjectSP( 4495 new CommandObjectRenderScriptRuntimeReductionBreakpointSet( 4496 interpreter))); 4497 } 4498 4499 ~CommandObjectRenderScriptRuntimeReductionBreakpoint() override = default; 4500 }; 4501 4502 class CommandObjectRenderScriptRuntimeKernelCoordinate 4503 : public CommandObjectParsed { 4504 public: 4505 CommandObjectRenderScriptRuntimeKernelCoordinate( 4506 CommandInterpreter &interpreter) 4507 : CommandObjectParsed( 4508 interpreter, "renderscript kernel coordinate", 4509 "Shows the (x,y,z) coordinate of the current kernel invocation.", 4510 "renderscript kernel coordinate", 4511 eCommandRequiresProcess | eCommandProcessMustBeLaunched | 4512 eCommandProcessMustBePaused) {} 4513 4514 ~CommandObjectRenderScriptRuntimeKernelCoordinate() override = default; 4515 4516 bool DoExecute(Args &command, CommandReturnObject &result) override { 4517 RSCoordinate coord{}; 4518 bool success = RenderScriptRuntime::GetKernelCoordinate( 4519 coord, m_exe_ctx.GetThreadPtr()); 4520 Stream &stream = result.GetOutputStream(); 4521 4522 if (success) { 4523 stream.Printf("Coordinate: " FMT_COORD, coord.x, coord.y, coord.z); 4524 stream.EOL(); 4525 result.SetStatus(eReturnStatusSuccessFinishResult); 4526 } else { 4527 stream.Printf("Error: Coordinate could not be found."); 4528 stream.EOL(); 4529 result.SetStatus(eReturnStatusFailed); 4530 } 4531 return true; 4532 } 4533 }; 4534 4535 class CommandObjectRenderScriptRuntimeKernelBreakpoint 4536 : public CommandObjectMultiword { 4537 public: 4538 CommandObjectRenderScriptRuntimeKernelBreakpoint( 4539 CommandInterpreter &interpreter) 4540 : CommandObjectMultiword( 4541 interpreter, "renderscript kernel", 4542 "Commands that generate breakpoints on renderscript kernels.", 4543 nullptr) { 4544 LoadSubCommand( 4545 "set", 4546 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointSet( 4547 interpreter))); 4548 LoadSubCommand( 4549 "all", 4550 CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelBreakpointAll( 4551 interpreter))); 4552 } 4553 4554 ~CommandObjectRenderScriptRuntimeKernelBreakpoint() override = default; 4555 }; 4556 4557 class CommandObjectRenderScriptRuntimeKernel : public CommandObjectMultiword { 4558 public: 4559 CommandObjectRenderScriptRuntimeKernel(CommandInterpreter &interpreter) 4560 : CommandObjectMultiword(interpreter, "renderscript kernel", 4561 "Commands that deal with RenderScript kernels.", 4562 nullptr) { 4563 LoadSubCommand( 4564 "list", CommandObjectSP(new CommandObjectRenderScriptRuntimeKernelList( 4565 interpreter))); 4566 LoadSubCommand( 4567 "coordinate", 4568 CommandObjectSP( 4569 new CommandObjectRenderScriptRuntimeKernelCoordinate(interpreter))); 4570 LoadSubCommand( 4571 "breakpoint", 4572 CommandObjectSP( 4573 new CommandObjectRenderScriptRuntimeKernelBreakpoint(interpreter))); 4574 } 4575 4576 ~CommandObjectRenderScriptRuntimeKernel() override = default; 4577 }; 4578 4579 class CommandObjectRenderScriptRuntimeContextDump : public CommandObjectParsed { 4580 public: 4581 CommandObjectRenderScriptRuntimeContextDump(CommandInterpreter &interpreter) 4582 : CommandObjectParsed(interpreter, "renderscript context dump", 4583 "Dumps renderscript context information.", 4584 "renderscript context dump", 4585 eCommandRequiresProcess | 4586 eCommandProcessMustBeLaunched) {} 4587 4588 ~CommandObjectRenderScriptRuntimeContextDump() override = default; 4589 4590 bool DoExecute(Args &command, CommandReturnObject &result) override { 4591 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4592 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4593 eLanguageTypeExtRenderScript)); 4594 runtime->DumpContexts(result.GetOutputStream()); 4595 result.SetStatus(eReturnStatusSuccessFinishResult); 4596 return true; 4597 } 4598 }; 4599 4600 static constexpr OptionDefinition g_renderscript_runtime_alloc_dump_options[] = { 4601 {LLDB_OPT_SET_1, false, "file", 'f', OptionParser::eRequiredArgument, 4602 nullptr, {}, 0, eArgTypeFilename, 4603 "Print results to specified file instead of command line."}}; 4604 4605 class CommandObjectRenderScriptRuntimeContext : public CommandObjectMultiword { 4606 public: 4607 CommandObjectRenderScriptRuntimeContext(CommandInterpreter &interpreter) 4608 : CommandObjectMultiword(interpreter, "renderscript context", 4609 "Commands that deal with RenderScript contexts.", 4610 nullptr) { 4611 LoadSubCommand( 4612 "dump", CommandObjectSP(new CommandObjectRenderScriptRuntimeContextDump( 4613 interpreter))); 4614 } 4615 4616 ~CommandObjectRenderScriptRuntimeContext() override = default; 4617 }; 4618 4619 class CommandObjectRenderScriptRuntimeAllocationDump 4620 : public CommandObjectParsed { 4621 public: 4622 CommandObjectRenderScriptRuntimeAllocationDump( 4623 CommandInterpreter &interpreter) 4624 : CommandObjectParsed(interpreter, "renderscript allocation dump", 4625 "Displays the contents of a particular allocation", 4626 "renderscript allocation dump <ID>", 4627 eCommandRequiresProcess | 4628 eCommandProcessMustBeLaunched), 4629 m_options() {} 4630 4631 ~CommandObjectRenderScriptRuntimeAllocationDump() override = default; 4632 4633 Options *GetOptions() override { return &m_options; } 4634 4635 class CommandOptions : public Options { 4636 public: 4637 CommandOptions() : Options() {} 4638 4639 ~CommandOptions() override = default; 4640 4641 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4642 ExecutionContext *exe_ctx) override { 4643 Status err; 4644 const int short_option = m_getopt_table[option_idx].val; 4645 4646 switch (short_option) { 4647 case 'f': 4648 m_outfile.SetFile(option_arg, FileSpec::Style::native); 4649 FileSystem::Instance().Resolve(m_outfile); 4650 if (FileSystem::Instance().Exists(m_outfile)) { 4651 m_outfile.Clear(); 4652 err.SetErrorStringWithFormat("file already exists: '%s'", 4653 option_arg.str().c_str()); 4654 } 4655 break; 4656 default: 4657 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4658 break; 4659 } 4660 return err; 4661 } 4662 4663 void OptionParsingStarting(ExecutionContext *exe_ctx) override { 4664 m_outfile.Clear(); 4665 } 4666 4667 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4668 return llvm::makeArrayRef(g_renderscript_runtime_alloc_dump_options); 4669 } 4670 4671 FileSpec m_outfile; 4672 }; 4673 4674 bool DoExecute(Args &command, CommandReturnObject &result) override { 4675 const size_t argc = command.GetArgumentCount(); 4676 if (argc < 1) { 4677 result.AppendErrorWithFormat("'%s' takes 1 argument, an allocation ID. " 4678 "As well as an optional -f argument", 4679 m_cmd_name.c_str()); 4680 result.SetStatus(eReturnStatusFailed); 4681 return false; 4682 } 4683 4684 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4685 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4686 eLanguageTypeExtRenderScript)); 4687 4688 const char *id_cstr = command.GetArgumentAtIndex(0); 4689 bool success = false; 4690 const uint32_t id = 4691 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4692 if (!success) { 4693 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4694 id_cstr); 4695 result.SetStatus(eReturnStatusFailed); 4696 return false; 4697 } 4698 4699 Stream *output_strm = nullptr; 4700 StreamFile outfile_stream; 4701 const FileSpec &outfile_spec = 4702 m_options.m_outfile; // Dump allocation to file instead 4703 if (outfile_spec) { 4704 // Open output file 4705 std::string path = outfile_spec.GetPath(); 4706 auto error = FileSystem::Instance().Open( 4707 outfile_stream.GetFile(), outfile_spec, 4708 File::eOpenOptionWrite | File::eOpenOptionCanCreate); 4709 if (error.Success()) { 4710 output_strm = &outfile_stream; 4711 result.GetOutputStream().Printf("Results written to '%s'", 4712 path.c_str()); 4713 result.GetOutputStream().EOL(); 4714 } else { 4715 result.AppendErrorWithFormat("Couldn't open file '%s'", path.c_str()); 4716 result.SetStatus(eReturnStatusFailed); 4717 return false; 4718 } 4719 } else 4720 output_strm = &result.GetOutputStream(); 4721 4722 assert(output_strm != nullptr); 4723 bool dumped = 4724 runtime->DumpAllocation(*output_strm, m_exe_ctx.GetFramePtr(), id); 4725 4726 if (dumped) 4727 result.SetStatus(eReturnStatusSuccessFinishResult); 4728 else 4729 result.SetStatus(eReturnStatusFailed); 4730 4731 return true; 4732 } 4733 4734 private: 4735 CommandOptions m_options; 4736 }; 4737 4738 static constexpr OptionDefinition g_renderscript_runtime_alloc_list_options[] = { 4739 {LLDB_OPT_SET_1, false, "id", 'i', OptionParser::eRequiredArgument, nullptr, 4740 {}, 0, eArgTypeIndex, 4741 "Only show details of a single allocation with specified id."}}; 4742 4743 class CommandObjectRenderScriptRuntimeAllocationList 4744 : public CommandObjectParsed { 4745 public: 4746 CommandObjectRenderScriptRuntimeAllocationList( 4747 CommandInterpreter &interpreter) 4748 : CommandObjectParsed( 4749 interpreter, "renderscript allocation list", 4750 "List renderscript allocations and their information.", 4751 "renderscript allocation list", 4752 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 4753 m_options() {} 4754 4755 ~CommandObjectRenderScriptRuntimeAllocationList() override = default; 4756 4757 Options *GetOptions() override { return &m_options; } 4758 4759 class CommandOptions : public Options { 4760 public: 4761 CommandOptions() : Options(), m_id(0) {} 4762 4763 ~CommandOptions() override = default; 4764 4765 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_arg, 4766 ExecutionContext *exe_ctx) override { 4767 Status err; 4768 const int short_option = m_getopt_table[option_idx].val; 4769 4770 switch (short_option) { 4771 case 'i': 4772 if (option_arg.getAsInteger(0, m_id)) 4773 err.SetErrorStringWithFormat("invalid integer value for option '%c'", 4774 short_option); 4775 break; 4776 default: 4777 err.SetErrorStringWithFormat("unrecognized option '%c'", short_option); 4778 break; 4779 } 4780 return err; 4781 } 4782 4783 void OptionParsingStarting(ExecutionContext *exe_ctx) override { m_id = 0; } 4784 4785 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 4786 return llvm::makeArrayRef(g_renderscript_runtime_alloc_list_options); 4787 } 4788 4789 uint32_t m_id; 4790 }; 4791 4792 bool DoExecute(Args &command, CommandReturnObject &result) override { 4793 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4794 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4795 eLanguageTypeExtRenderScript)); 4796 runtime->ListAllocations(result.GetOutputStream(), m_exe_ctx.GetFramePtr(), 4797 m_options.m_id); 4798 result.SetStatus(eReturnStatusSuccessFinishResult); 4799 return true; 4800 } 4801 4802 private: 4803 CommandOptions m_options; 4804 }; 4805 4806 class CommandObjectRenderScriptRuntimeAllocationLoad 4807 : public CommandObjectParsed { 4808 public: 4809 CommandObjectRenderScriptRuntimeAllocationLoad( 4810 CommandInterpreter &interpreter) 4811 : CommandObjectParsed( 4812 interpreter, "renderscript allocation load", 4813 "Loads renderscript allocation contents from a file.", 4814 "renderscript allocation load <ID> <filename>", 4815 eCommandRequiresProcess | eCommandProcessMustBeLaunched) {} 4816 4817 ~CommandObjectRenderScriptRuntimeAllocationLoad() override = default; 4818 4819 bool DoExecute(Args &command, CommandReturnObject &result) override { 4820 const size_t argc = command.GetArgumentCount(); 4821 if (argc != 2) { 4822 result.AppendErrorWithFormat( 4823 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4824 m_cmd_name.c_str()); 4825 result.SetStatus(eReturnStatusFailed); 4826 return false; 4827 } 4828 4829 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4830 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4831 eLanguageTypeExtRenderScript)); 4832 4833 const char *id_cstr = command.GetArgumentAtIndex(0); 4834 bool success = false; 4835 const uint32_t id = 4836 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4837 if (!success) { 4838 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4839 id_cstr); 4840 result.SetStatus(eReturnStatusFailed); 4841 return false; 4842 } 4843 4844 const char *path = command.GetArgumentAtIndex(1); 4845 bool loaded = runtime->LoadAllocation(result.GetOutputStream(), id, path, 4846 m_exe_ctx.GetFramePtr()); 4847 4848 if (loaded) 4849 result.SetStatus(eReturnStatusSuccessFinishResult); 4850 else 4851 result.SetStatus(eReturnStatusFailed); 4852 4853 return true; 4854 } 4855 }; 4856 4857 class CommandObjectRenderScriptRuntimeAllocationSave 4858 : public CommandObjectParsed { 4859 public: 4860 CommandObjectRenderScriptRuntimeAllocationSave( 4861 CommandInterpreter &interpreter) 4862 : CommandObjectParsed(interpreter, "renderscript allocation save", 4863 "Write renderscript allocation contents to a file.", 4864 "renderscript allocation save <ID> <filename>", 4865 eCommandRequiresProcess | 4866 eCommandProcessMustBeLaunched) {} 4867 4868 ~CommandObjectRenderScriptRuntimeAllocationSave() override = default; 4869 4870 bool DoExecute(Args &command, CommandReturnObject &result) override { 4871 const size_t argc = command.GetArgumentCount(); 4872 if (argc != 2) { 4873 result.AppendErrorWithFormat( 4874 "'%s' takes 2 arguments, an allocation ID and filename to read from.", 4875 m_cmd_name.c_str()); 4876 result.SetStatus(eReturnStatusFailed); 4877 return false; 4878 } 4879 4880 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4881 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4882 eLanguageTypeExtRenderScript)); 4883 4884 const char *id_cstr = command.GetArgumentAtIndex(0); 4885 bool success = false; 4886 const uint32_t id = 4887 StringConvert::ToUInt32(id_cstr, UINT32_MAX, 0, &success); 4888 if (!success) { 4889 result.AppendErrorWithFormat("invalid allocation id argument '%s'", 4890 id_cstr); 4891 result.SetStatus(eReturnStatusFailed); 4892 return false; 4893 } 4894 4895 const char *path = command.GetArgumentAtIndex(1); 4896 bool saved = runtime->SaveAllocation(result.GetOutputStream(), id, path, 4897 m_exe_ctx.GetFramePtr()); 4898 4899 if (saved) 4900 result.SetStatus(eReturnStatusSuccessFinishResult); 4901 else 4902 result.SetStatus(eReturnStatusFailed); 4903 4904 return true; 4905 } 4906 }; 4907 4908 class CommandObjectRenderScriptRuntimeAllocationRefresh 4909 : public CommandObjectParsed { 4910 public: 4911 CommandObjectRenderScriptRuntimeAllocationRefresh( 4912 CommandInterpreter &interpreter) 4913 : CommandObjectParsed(interpreter, "renderscript allocation refresh", 4914 "Recomputes the details of all allocations.", 4915 "renderscript allocation refresh", 4916 eCommandRequiresProcess | 4917 eCommandProcessMustBeLaunched) {} 4918 4919 ~CommandObjectRenderScriptRuntimeAllocationRefresh() override = default; 4920 4921 bool DoExecute(Args &command, CommandReturnObject &result) override { 4922 RenderScriptRuntime *runtime = static_cast<RenderScriptRuntime *>( 4923 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4924 eLanguageTypeExtRenderScript)); 4925 4926 bool success = runtime->RecomputeAllAllocations(result.GetOutputStream(), 4927 m_exe_ctx.GetFramePtr()); 4928 4929 if (success) { 4930 result.SetStatus(eReturnStatusSuccessFinishResult); 4931 return true; 4932 } else { 4933 result.SetStatus(eReturnStatusFailed); 4934 return false; 4935 } 4936 } 4937 }; 4938 4939 class CommandObjectRenderScriptRuntimeAllocation 4940 : public CommandObjectMultiword { 4941 public: 4942 CommandObjectRenderScriptRuntimeAllocation(CommandInterpreter &interpreter) 4943 : CommandObjectMultiword( 4944 interpreter, "renderscript allocation", 4945 "Commands that deal with RenderScript allocations.", nullptr) { 4946 LoadSubCommand( 4947 "list", 4948 CommandObjectSP( 4949 new CommandObjectRenderScriptRuntimeAllocationList(interpreter))); 4950 LoadSubCommand( 4951 "dump", 4952 CommandObjectSP( 4953 new CommandObjectRenderScriptRuntimeAllocationDump(interpreter))); 4954 LoadSubCommand( 4955 "save", 4956 CommandObjectSP( 4957 new CommandObjectRenderScriptRuntimeAllocationSave(interpreter))); 4958 LoadSubCommand( 4959 "load", 4960 CommandObjectSP( 4961 new CommandObjectRenderScriptRuntimeAllocationLoad(interpreter))); 4962 LoadSubCommand( 4963 "refresh", 4964 CommandObjectSP(new CommandObjectRenderScriptRuntimeAllocationRefresh( 4965 interpreter))); 4966 } 4967 4968 ~CommandObjectRenderScriptRuntimeAllocation() override = default; 4969 }; 4970 4971 class CommandObjectRenderScriptRuntimeStatus : public CommandObjectParsed { 4972 public: 4973 CommandObjectRenderScriptRuntimeStatus(CommandInterpreter &interpreter) 4974 : CommandObjectParsed(interpreter, "renderscript status", 4975 "Displays current RenderScript runtime status.", 4976 "renderscript status", 4977 eCommandRequiresProcess | 4978 eCommandProcessMustBeLaunched) {} 4979 4980 ~CommandObjectRenderScriptRuntimeStatus() override = default; 4981 4982 bool DoExecute(Args &command, CommandReturnObject &result) override { 4983 RenderScriptRuntime *runtime = llvm::cast<RenderScriptRuntime>( 4984 m_exe_ctx.GetProcessPtr()->GetLanguageRuntime( 4985 eLanguageTypeExtRenderScript)); 4986 runtime->DumpStatus(result.GetOutputStream()); 4987 result.SetStatus(eReturnStatusSuccessFinishResult); 4988 return true; 4989 } 4990 }; 4991 4992 class CommandObjectRenderScriptRuntimeReduction 4993 : public CommandObjectMultiword { 4994 public: 4995 CommandObjectRenderScriptRuntimeReduction(CommandInterpreter &interpreter) 4996 : CommandObjectMultiword(interpreter, "renderscript reduction", 4997 "Commands that handle general reduction kernels", 4998 nullptr) { 4999 LoadSubCommand( 5000 "breakpoint", 5001 CommandObjectSP(new CommandObjectRenderScriptRuntimeReductionBreakpoint( 5002 interpreter))); 5003 } 5004 ~CommandObjectRenderScriptRuntimeReduction() override = default; 5005 }; 5006 5007 class CommandObjectRenderScriptRuntime : public CommandObjectMultiword { 5008 public: 5009 CommandObjectRenderScriptRuntime(CommandInterpreter &interpreter) 5010 : CommandObjectMultiword( 5011 interpreter, "renderscript", 5012 "Commands for operating on the RenderScript runtime.", 5013 "renderscript <subcommand> [<subcommand-options>]") { 5014 LoadSubCommand( 5015 "module", CommandObjectSP( 5016 new CommandObjectRenderScriptRuntimeModule(interpreter))); 5017 LoadSubCommand( 5018 "status", CommandObjectSP( 5019 new CommandObjectRenderScriptRuntimeStatus(interpreter))); 5020 LoadSubCommand( 5021 "kernel", CommandObjectSP( 5022 new CommandObjectRenderScriptRuntimeKernel(interpreter))); 5023 LoadSubCommand("context", 5024 CommandObjectSP(new CommandObjectRenderScriptRuntimeContext( 5025 interpreter))); 5026 LoadSubCommand( 5027 "allocation", 5028 CommandObjectSP( 5029 new CommandObjectRenderScriptRuntimeAllocation(interpreter))); 5030 LoadSubCommand("scriptgroup", 5031 NewCommandObjectRenderScriptScriptGroup(interpreter)); 5032 LoadSubCommand( 5033 "reduction", 5034 CommandObjectSP( 5035 new CommandObjectRenderScriptRuntimeReduction(interpreter))); 5036 } 5037 5038 ~CommandObjectRenderScriptRuntime() override = default; 5039 }; 5040 5041 void RenderScriptRuntime::Initiate() { assert(!m_initiated); } 5042 5043 RenderScriptRuntime::RenderScriptRuntime(Process *process) 5044 : lldb_private::CPPLanguageRuntime(process), m_initiated(false), 5045 m_debuggerPresentFlagged(false), m_breakAllKernels(false), 5046 m_ir_passes(nullptr) { 5047 ModulesDidLoad(process->GetTarget().GetImages()); 5048 } 5049 5050 lldb::CommandObjectSP RenderScriptRuntime::GetCommandObject( 5051 lldb_private::CommandInterpreter &interpreter) { 5052 return CommandObjectSP(new CommandObjectRenderScriptRuntime(interpreter)); 5053 } 5054 5055 RenderScriptRuntime::~RenderScriptRuntime() = default; 5056