1 /*- 2 * Copyright (c) 2009 Adrian Chadd 3 * Copyright (c) 2012 Spectra Logic Corporation 4 * All rights reserved. 5 * 6 * Redistribution and use in source and binary forms, with or without 7 * modification, are permitted provided that the following conditions 8 * are met: 9 * 1. Redistributions of source code must retain the above copyright 10 * notice, this list of conditions and the following disclaimer. 11 * 2. Redistributions in binary form must reproduce the above copyright 12 * notice, this list of conditions and the following disclaimer in the 13 * documentation and/or other materials provided with the distribution. 14 * 15 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 16 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 17 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 18 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 19 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 20 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 21 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 22 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 23 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 24 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 25 * SUCH DAMAGE. 26 * 27 */ 28 29 /** 30 * \file dev/xen/timer/timer.c 31 * \brief A timer driver for the Xen hypervisor's PV clock. 32 */ 33 34 #include <sys/cdefs.h> 35 __FBSDID("$FreeBSD$"); 36 37 #include <sys/param.h> 38 #include <sys/systm.h> 39 #include <sys/bus.h> 40 #include <sys/kernel.h> 41 #include <sys/module.h> 42 #include <sys/time.h> 43 #include <sys/timetc.h> 44 #include <sys/timeet.h> 45 #include <sys/smp.h> 46 #include <sys/limits.h> 47 #include <sys/clock.h> 48 49 #include <xen/xen-os.h> 50 #include <xen/features.h> 51 #include <xen/xen_intr.h> 52 #include <xen/hypervisor.h> 53 #include <xen/interface/io/xenbus.h> 54 #include <xen/interface/vcpu.h> 55 56 #include <machine/cpu.h> 57 #include <machine/cpufunc.h> 58 #include <machine/clock.h> 59 #include <machine/_inttypes.h> 60 #include <machine/smp.h> 61 62 #include "clock_if.h" 63 64 static devclass_t xentimer_devclass; 65 66 #define NSEC_IN_SEC 1000000000ULL 67 #define NSEC_IN_USEC 1000ULL 68 /* 18446744073 = int(2^64 / NSEC_IN_SC) = 1 ns in 64-bit fractions */ 69 #define FRAC_IN_NSEC 18446744073LL 70 71 /* Xen timers may fire up to 100us off */ 72 #define XENTIMER_MIN_PERIOD_IN_NSEC 100*NSEC_IN_USEC 73 #define XENCLOCK_RESOLUTION 10000000 74 75 #define ETIME 62 /* Xen "bad time" error */ 76 77 #define XENTIMER_QUALITY 950 78 79 struct xentimer_pcpu_data { 80 uint64_t timer; 81 uint64_t last_processed; 82 void *irq_handle; 83 }; 84 85 DPCPU_DEFINE(struct xentimer_pcpu_data, xentimer_pcpu); 86 87 DPCPU_DECLARE(struct vcpu_info *, vcpu_info); 88 89 struct xentimer_softc { 90 device_t dev; 91 struct timecounter tc; 92 struct eventtimer et; 93 }; 94 95 /* Last time; this guarantees a monotonically increasing clock. */ 96 volatile uint64_t xen_timer_last_time = 0; 97 98 static void 99 xentimer_identify(driver_t *driver, device_t parent) 100 { 101 if (!xen_domain()) 102 return; 103 104 /* Handle all Xen PV timers in one device instance. */ 105 if (devclass_get_device(xentimer_devclass, 0)) 106 return; 107 108 BUS_ADD_CHILD(parent, 0, "xen_et", 0); 109 } 110 111 static int 112 xentimer_probe(device_t dev) 113 { 114 KASSERT((xen_domain()), ("Trying to use Xen timer on bare metal")); 115 /* 116 * In order to attach, this driver requires the following: 117 * - Vector callback support by the hypervisor, in order to deliver 118 * timer interrupts to the correct CPU for CPUs other than 0. 119 * - Access to the hypervisor shared info page, in order to look up 120 * each VCPU's timer information and the Xen wallclock time. 121 * - The hypervisor must say its PV clock is "safe" to use. 122 * - The hypervisor must support VCPUOP hypercalls. 123 * - The maximum number of CPUs supported by FreeBSD must not exceed 124 * the number of VCPUs supported by the hypervisor. 125 */ 126 #define XTREQUIRES(condition, reason...) \ 127 if (!(condition)) { \ 128 device_printf(dev, ## reason); \ 129 device_detach(dev); \ 130 return (ENXIO); \ 131 } 132 133 if (xen_hvm_domain()) { 134 XTREQUIRES(xen_vector_callback_enabled, 135 "vector callbacks unavailable\n"); 136 XTREQUIRES(xen_feature(XENFEAT_hvm_safe_pvclock), 137 "HVM safe pvclock unavailable\n"); 138 } 139 XTREQUIRES(HYPERVISOR_shared_info != NULL, 140 "shared info page unavailable\n"); 141 XTREQUIRES(HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, 0, NULL) == 0, 142 "VCPUOPs interface unavailable\n"); 143 #undef XTREQUIRES 144 device_set_desc(dev, "Xen PV Clock"); 145 return (BUS_PROBE_NOWILDCARD); 146 } 147 148 /* 149 * Scale a 64-bit delta by scaling and multiplying by a 32-bit fraction, 150 * yielding a 64-bit result. 151 */ 152 static inline uint64_t 153 scale_delta(uint64_t delta, uint32_t mul_frac, int shift) 154 { 155 uint64_t product; 156 157 if (shift < 0) 158 delta >>= -shift; 159 else 160 delta <<= shift; 161 162 #if defined(__i386__) 163 { 164 uint32_t tmp1, tmp2; 165 166 /** 167 * For i386, the formula looks like: 168 * 169 * lower = (mul_frac * (delta & UINT_MAX)) >> 32 170 * upper = mul_frac * (delta >> 32) 171 * product = lower + upper 172 */ 173 __asm__ ( 174 "mul %5 ; " 175 "mov %4,%%eax ; " 176 "mov %%edx,%4 ; " 177 "mul %5 ; " 178 "xor %5,%5 ; " 179 "add %4,%%eax ; " 180 "adc %5,%%edx ; " 181 : "=A" (product), "=r" (tmp1), "=r" (tmp2) 182 : "a" ((uint32_t)delta), "1" ((uint32_t)(delta >> 32)), 183 "2" (mul_frac) ); 184 } 185 #elif defined(__amd64__) 186 { 187 unsigned long tmp; 188 189 __asm__ ( 190 "mulq %[mul_frac] ; shrd $32, %[hi], %[lo]" 191 : [lo]"=a" (product), [hi]"=d" (tmp) 192 : "0" (delta), [mul_frac]"rm"((uint64_t)mul_frac)); 193 } 194 #else 195 #error "xentimer: unsupported architecture" 196 #endif 197 198 return (product); 199 } 200 201 static uint64_t 202 get_nsec_offset(struct vcpu_time_info *tinfo) 203 { 204 205 return (scale_delta(rdtsc() - tinfo->tsc_timestamp, 206 tinfo->tsc_to_system_mul, tinfo->tsc_shift)); 207 } 208 209 /* 210 * Read the current hypervisor system uptime value from Xen. 211 * See <xen/interface/xen.h> for a description of how this works. 212 */ 213 static uint32_t 214 xen_fetch_vcpu_tinfo(struct vcpu_time_info *dst, struct vcpu_time_info *src) 215 { 216 217 do { 218 dst->version = src->version; 219 rmb(); 220 dst->tsc_timestamp = src->tsc_timestamp; 221 dst->system_time = src->system_time; 222 dst->tsc_to_system_mul = src->tsc_to_system_mul; 223 dst->tsc_shift = src->tsc_shift; 224 rmb(); 225 } while ((src->version & 1) | (dst->version ^ src->version)); 226 227 return (dst->version); 228 } 229 230 /** 231 * \brief Get the current time, in nanoseconds, since the hypervisor booted. 232 * 233 * \note This function returns the current CPU's idea of this value, unless 234 * it happens to be less than another CPU's previously determined value. 235 */ 236 static uint64_t 237 xen_fetch_vcpu_time(void) 238 { 239 struct vcpu_time_info dst; 240 struct vcpu_time_info *src; 241 uint32_t pre_version; 242 uint64_t now; 243 volatile uint64_t last; 244 struct vcpu_info *vcpu = DPCPU_GET(vcpu_info); 245 246 src = &vcpu->time; 247 248 critical_enter(); 249 do { 250 pre_version = xen_fetch_vcpu_tinfo(&dst, src); 251 barrier(); 252 now = dst.system_time + get_nsec_offset(&dst); 253 barrier(); 254 } while (pre_version != src->version); 255 256 /* 257 * Enforce a monotonically increasing clock time across all 258 * VCPUs. If our time is too old, use the last time and return. 259 * Otherwise, try to update the last time. 260 */ 261 do { 262 last = xen_timer_last_time; 263 if (last > now) { 264 now = last; 265 break; 266 } 267 } while (!atomic_cmpset_64(&xen_timer_last_time, last, now)); 268 269 critical_exit(); 270 271 return (now); 272 } 273 274 static uint32_t 275 xentimer_get_timecount(struct timecounter *tc) 276 { 277 278 return ((uint32_t)xen_fetch_vcpu_time() & UINT_MAX); 279 } 280 281 /** 282 * \brief Fetch the hypervisor boot time, known as the "Xen wallclock". 283 * 284 * \param ts Timespec to store the current stable value. 285 * \param version Pointer to store the corresponding wallclock version. 286 * 287 * \note This value is updated when Domain-0 shifts its clock to follow 288 * clock drift, e.g. as detected by NTP. 289 */ 290 static void 291 xen_fetch_wallclock(struct timespec *ts) 292 { 293 shared_info_t *src = HYPERVISOR_shared_info; 294 uint32_t version = 0; 295 296 do { 297 version = src->wc_version; 298 rmb(); 299 ts->tv_sec = src->wc_sec; 300 ts->tv_nsec = src->wc_nsec; 301 rmb(); 302 } while ((src->wc_version & 1) | (version ^ src->wc_version)); 303 } 304 305 static void 306 xen_fetch_uptime(struct timespec *ts) 307 { 308 uint64_t uptime = xen_fetch_vcpu_time(); 309 ts->tv_sec = uptime / NSEC_IN_SEC; 310 ts->tv_nsec = uptime % NSEC_IN_SEC; 311 } 312 313 static int 314 xentimer_settime(device_t dev __unused, struct timespec *ts) 315 { 316 /* 317 * Don't return EINVAL here; just silently fail if the domain isn't 318 * privileged enough to set the TOD. 319 */ 320 return (0); 321 } 322 323 /** 324 * \brief Return current time according to the Xen Hypervisor wallclock. 325 * 326 * \param dev Xentimer device. 327 * \param ts Pointer to store the wallclock time. 328 * 329 * \note The Xen time structures document the hypervisor start time and the 330 * uptime-since-hypervisor-start (in nsec.) They need to be combined 331 * in order to calculate a TOD clock. 332 */ 333 static int 334 xentimer_gettime(device_t dev, struct timespec *ts) 335 { 336 struct timespec u_ts; 337 338 timespecclear(ts); 339 xen_fetch_wallclock(ts); 340 xen_fetch_uptime(&u_ts); 341 timespecadd(ts, &u_ts); 342 343 return (0); 344 } 345 346 /** 347 * \brief Handle a timer interrupt for the Xen PV timer driver. 348 * 349 * \param arg Xen timer driver softc that is expecting the interrupt. 350 */ 351 static int 352 xentimer_intr(void *arg) 353 { 354 struct xentimer_softc *sc = (struct xentimer_softc *)arg; 355 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 356 357 pcpu->last_processed = xen_fetch_vcpu_time(); 358 if (pcpu->timer != 0 && sc->et.et_active) 359 sc->et.et_event_cb(&sc->et, sc->et.et_arg); 360 361 return (FILTER_HANDLED); 362 } 363 364 static int 365 xentimer_vcpu_start_timer(int vcpu, uint64_t next_time) 366 { 367 struct vcpu_set_singleshot_timer single; 368 369 single.timeout_abs_ns = next_time; 370 single.flags = VCPU_SSHOTTMR_future; 371 return (HYPERVISOR_vcpu_op(VCPUOP_set_singleshot_timer, vcpu, &single)); 372 } 373 374 static int 375 xentimer_vcpu_stop_timer(int vcpu) 376 { 377 378 return (HYPERVISOR_vcpu_op(VCPUOP_stop_singleshot_timer, vcpu, NULL)); 379 } 380 381 /** 382 * \brief Set the next oneshot time for the current CPU. 383 * 384 * \param et Xen timer driver event timer to schedule on. 385 * \param first Delta to the next time to schedule the interrupt for. 386 * \param period Not used. 387 * 388 * \note See eventtimers(9) for more information. 389 * \note 390 * 391 * \returns 0 392 */ 393 static int 394 xentimer_et_start(struct eventtimer *et, 395 sbintime_t first, sbintime_t period) 396 { 397 int error = 0, i = 0; 398 struct xentimer_softc *sc = et->et_priv; 399 int cpu = PCPU_GET(vcpu_id); 400 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 401 uint64_t first_in_ns, next_time; 402 403 /* See sbttots() for this formula. */ 404 first_in_ns = (((first >> 32) * NSEC_IN_SEC) + 405 (((uint64_t)NSEC_IN_SEC * (uint32_t)first) >> 32)); 406 407 /* 408 * Retry any timer scheduling failures, where the hypervisor 409 * returns -ETIME. Sometimes even a 100us timer period isn't large 410 * enough, but larger period instances are relatively uncommon. 411 * 412 * XXX Remove the panics once et_start() and its consumers are 413 * equipped to deal with start failures. 414 */ 415 do { 416 if (++i == 60) 417 panic("can't schedule timer"); 418 next_time = xen_fetch_vcpu_time() + first_in_ns; 419 error = xentimer_vcpu_start_timer(cpu, next_time); 420 } while (error == -ETIME); 421 422 if (error) 423 panic("%s: Error %d setting singleshot timer to %"PRIu64"\n", 424 device_get_nameunit(sc->dev), error, next_time); 425 426 pcpu->timer = next_time; 427 return (error); 428 } 429 430 /** 431 * \brief Cancel the event timer's currently running timer, if any. 432 */ 433 static int 434 xentimer_et_stop(struct eventtimer *et) 435 { 436 int cpu = PCPU_GET(vcpu_id); 437 struct xentimer_pcpu_data *pcpu = DPCPU_PTR(xentimer_pcpu); 438 439 pcpu->timer = 0; 440 return (xentimer_vcpu_stop_timer(cpu)); 441 } 442 443 /** 444 * \brief Attach a Xen PV timer driver instance. 445 * 446 * \param dev Bus device object to attach. 447 * 448 * \note 449 * \returns EINVAL 450 */ 451 static int 452 xentimer_attach(device_t dev) 453 { 454 struct xentimer_softc *sc = device_get_softc(dev); 455 int error, i; 456 457 sc->dev = dev; 458 459 /* Bind an event channel to a VIRQ on each VCPU. */ 460 CPU_FOREACH(i) { 461 struct xentimer_pcpu_data *pcpu; 462 463 pcpu = DPCPU_ID_PTR(i, xentimer_pcpu); 464 error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, i, NULL); 465 if (error) { 466 device_printf(dev, "Error disabling Xen periodic timer " 467 "on CPU %d\n", i); 468 return (error); 469 } 470 471 error = xen_intr_bind_virq(dev, VIRQ_TIMER, i, xentimer_intr, 472 NULL, sc, INTR_TYPE_CLK, &pcpu->irq_handle); 473 if (error) { 474 device_printf(dev, "Error %d binding VIRQ_TIMER " 475 "to VCPU %d\n", error, i); 476 return (error); 477 } 478 xen_intr_describe(pcpu->irq_handle, "c%d", i); 479 } 480 481 /* Register the event timer. */ 482 sc->et.et_name = "XENTIMER"; 483 sc->et.et_quality = XENTIMER_QUALITY; 484 sc->et.et_flags = ET_FLAGS_ONESHOT | ET_FLAGS_PERCPU; 485 sc->et.et_frequency = NSEC_IN_SEC; 486 /* See tstosbt() for this formula */ 487 sc->et.et_min_period = (XENTIMER_MIN_PERIOD_IN_NSEC * 488 (((uint64_t)1 << 63) / 500000000) >> 32); 489 sc->et.et_max_period = ((sbintime_t)4 << 32); 490 sc->et.et_start = xentimer_et_start; 491 sc->et.et_stop = xentimer_et_stop; 492 sc->et.et_priv = sc; 493 et_register(&sc->et); 494 495 /* Register the timecounter. */ 496 sc->tc.tc_name = "XENTIMER"; 497 sc->tc.tc_quality = XENTIMER_QUALITY; 498 sc->tc.tc_flags = TC_FLAGS_SUSPEND_SAFE; 499 /* 500 * The underlying resolution is in nanoseconds, since the timer info 501 * scales TSC frequencies using a fraction that represents time in 502 * terms of nanoseconds. 503 */ 504 sc->tc.tc_frequency = NSEC_IN_SEC; 505 sc->tc.tc_counter_mask = ~0u; 506 sc->tc.tc_get_timecount = xentimer_get_timecount; 507 sc->tc.tc_priv = sc; 508 tc_init(&sc->tc); 509 510 /* Register the Hypervisor wall clock */ 511 clock_register(dev, XENCLOCK_RESOLUTION); 512 513 return (0); 514 } 515 516 static int 517 xentimer_detach(device_t dev) 518 { 519 520 /* Implement Xen PV clock teardown - XXX see hpet_detach ? */ 521 /* If possible: 522 * 1. need to deregister timecounter 523 * 2. need to deregister event timer 524 * 3. need to deregister virtual IRQ event channels 525 */ 526 return (EBUSY); 527 } 528 529 static void 530 xentimer_percpu_resume(void *arg) 531 { 532 device_t dev = (device_t) arg; 533 struct xentimer_softc *sc = device_get_softc(dev); 534 535 xentimer_et_start(&sc->et, sc->et.et_min_period, 0); 536 } 537 538 static int 539 xentimer_resume(device_t dev) 540 { 541 int error; 542 int i; 543 544 /* Disable the periodic timer */ 545 CPU_FOREACH(i) { 546 error = HYPERVISOR_vcpu_op(VCPUOP_stop_periodic_timer, i, NULL); 547 if (error != 0) { 548 device_printf(dev, 549 "Error disabling Xen periodic timer on CPU %d\n", 550 i); 551 return (error); 552 } 553 } 554 555 /* Reset the last uptime value */ 556 xen_timer_last_time = 0; 557 558 /* Reset the RTC clock */ 559 inittodr(time_second); 560 561 /* Kick the timers on all CPUs */ 562 smp_rendezvous(NULL, xentimer_percpu_resume, NULL, dev); 563 564 if (bootverbose) 565 device_printf(dev, "resumed operation after suspension\n"); 566 567 return (0); 568 } 569 570 static int 571 xentimer_suspend(device_t dev) 572 { 573 return (0); 574 } 575 576 static device_method_t xentimer_methods[] = { 577 DEVMETHOD(device_identify, xentimer_identify), 578 DEVMETHOD(device_probe, xentimer_probe), 579 DEVMETHOD(device_attach, xentimer_attach), 580 DEVMETHOD(device_detach, xentimer_detach), 581 DEVMETHOD(device_suspend, xentimer_suspend), 582 DEVMETHOD(device_resume, xentimer_resume), 583 /* clock interface */ 584 DEVMETHOD(clock_gettime, xentimer_gettime), 585 DEVMETHOD(clock_settime, xentimer_settime), 586 DEVMETHOD_END 587 }; 588 589 static driver_t xentimer_driver = { 590 "xen_et", 591 xentimer_methods, 592 sizeof(struct xentimer_softc), 593 }; 594 595 DRIVER_MODULE(xentimer, nexus, xentimer_driver, xentimer_devclass, 0, 0); 596 MODULE_DEPEND(xentimer, nexus, 1, 1, 1); 597