1 /* 2 * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved. 3 * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved. 4 * 5 * Redistribution and use in source and binary forms, with or without 6 * modification, are permitted provided that the following conditions 7 * are met: 8 * 1. Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * 2. Redistributions in binary form must reproduce the above copyright 11 * notice, this list of conditions and the following disclaimer in the 12 * documentation and/or other materials provided with the distribution. 13 * 14 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND 15 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 17 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE 18 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS 20 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) 21 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 22 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY 23 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF 24 * SUCH DAMAGE. 25 */ 26 27 /* 28 * $FreeBSD$ 29 * 30 * The header contains the definitions of constants and function 31 * prototypes used only in kernelspace. 32 */ 33 34 #ifndef _NET_NETMAP_KERN_H_ 35 #define _NET_NETMAP_KERN_H_ 36 37 #if defined(linux) 38 39 #if defined(CONFIG_NETMAP_VALE) 40 #define WITH_VALE 41 #endif 42 #if defined(CONFIG_NETMAP_PIPE) 43 #define WITH_PIPES 44 #endif 45 #if defined(CONFIG_NETMAP_MONITOR) 46 #define WITH_MONITOR 47 #endif 48 #if defined(CONFIG_NETMAP_GENERIC) 49 #define WITH_GENERIC 50 #endif 51 #if defined(CONFIG_NETMAP_V1000) 52 #define WITH_V1000 53 #endif 54 55 #else /* not linux */ 56 57 #define WITH_VALE // comment out to disable VALE support 58 #define WITH_PIPES 59 #define WITH_MONITOR 60 #define WITH_GENERIC 61 62 #endif 63 64 #if defined(__FreeBSD__) 65 66 #define likely(x) __builtin_expect((long)!!(x), 1L) 67 #define unlikely(x) __builtin_expect((long)!!(x), 0L) 68 69 #define NM_LOCK_T struct mtx /* low level spinlock, used to protect queues */ 70 71 #define NM_MTX_T struct sx /* OS-specific mutex (sleepable) */ 72 #define NM_MTX_INIT(m) sx_init(&(m), #m) 73 #define NM_MTX_DESTROY(m) sx_destroy(&(m)) 74 #define NM_MTX_LOCK(m) sx_xlock(&(m)) 75 #define NM_MTX_UNLOCK(m) sx_xunlock(&(m)) 76 #define NM_MTX_ASSERT(m) sx_assert(&(m), SA_XLOCKED) 77 78 #define NM_SELINFO_T struct nm_selinfo 79 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 80 #define MBUF_IFP(m) ((m)->m_pkthdr.rcvif) 81 #define NM_SEND_UP(ifp, m) ((NA(ifp))->if_input)(ifp, m) 82 83 #define NM_ATOMIC_T volatile int // XXX ? 84 /* atomic operations */ 85 #include <machine/atomic.h> 86 #define NM_ATOMIC_TEST_AND_SET(p) (!atomic_cmpset_acq_int((p), 0, 1)) 87 #define NM_ATOMIC_CLEAR(p) atomic_store_rel_int((p), 0) 88 89 #if __FreeBSD_version >= 1100030 90 #define WNA(_ifp) (_ifp)->if_netmap 91 #else /* older FreeBSD */ 92 #define WNA(_ifp) (_ifp)->if_pspare[0] 93 #endif /* older FreeBSD */ 94 95 #if __FreeBSD_version >= 1100005 96 struct netmap_adapter *netmap_getna(if_t ifp); 97 #endif 98 99 #if __FreeBSD_version >= 1100027 100 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1) 101 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ext_cnt) = x 102 #define PNT_MBUF_REFCNT(m) ((m)->m_ext.ext_cnt) 103 #else 104 #define GET_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1) 105 #define SET_MBUF_REFCNT(m, x) *((m)->m_ext.ref_cnt) = x 106 #define PNT_MBUF_REFCNT(m) ((m)->m_ext.ref_cnt) 107 #endif 108 109 MALLOC_DECLARE(M_NETMAP); 110 111 struct nm_selinfo { 112 struct selinfo si; 113 struct mtx m; 114 }; 115 116 void freebsd_selwakeup(struct nm_selinfo *si, int pri); 117 118 // XXX linux struct, not used in FreeBSD 119 struct net_device_ops { 120 }; 121 struct ethtool_ops { 122 }; 123 struct hrtimer { 124 }; 125 #define NM_BNS_GET(b) 126 #define NM_BNS_PUT(b) 127 128 #elif defined (linux) 129 130 #define NM_LOCK_T safe_spinlock_t // see bsd_glue.h 131 #define NM_SELINFO_T wait_queue_head_t 132 #define MBUF_LEN(m) ((m)->len) 133 #define MBUF_IFP(m) ((m)->dev) 134 #define NM_SEND_UP(ifp, m) \ 135 do { \ 136 m->priority = NM_MAGIC_PRIORITY_RX; \ 137 netif_rx(m); \ 138 } while (0) 139 140 #define NM_ATOMIC_T volatile long unsigned int 141 142 #define NM_MTX_T struct mutex /* OS-specific sleepable lock */ 143 #define NM_MTX_INIT(m) mutex_init(&(m)) 144 #define NM_MTX_DESTROY(m) do { (void)(m); } while (0) 145 #define NM_MTX_LOCK(m) mutex_lock(&(m)) 146 #define NM_MTX_UNLOCK(m) mutex_unlock(&(m)) 147 #define NM_MTX_ASSERT(m) mutex_is_locked(&(m)) 148 149 #ifndef DEV_NETMAP 150 #define DEV_NETMAP 151 #endif /* DEV_NETMAP */ 152 153 #elif defined (__APPLE__) 154 155 #warning apple support is incomplete. 156 #define likely(x) __builtin_expect(!!(x), 1) 157 #define unlikely(x) __builtin_expect(!!(x), 0) 158 #define NM_LOCK_T IOLock * 159 #define NM_SELINFO_T struct selinfo 160 #define MBUF_LEN(m) ((m)->m_pkthdr.len) 161 #define NM_SEND_UP(ifp, m) ((ifp)->if_input)(ifp, m) 162 163 #else 164 165 #error unsupported platform 166 167 #endif /* end - platform-specific code */ 168 169 #define NMG_LOCK_T NM_MTX_T 170 #define NMG_LOCK_INIT() NM_MTX_INIT(netmap_global_lock) 171 #define NMG_LOCK_DESTROY() NM_MTX_DESTROY(netmap_global_lock) 172 #define NMG_LOCK() NM_MTX_LOCK(netmap_global_lock) 173 #define NMG_UNLOCK() NM_MTX_UNLOCK(netmap_global_lock) 174 #define NMG_LOCK_ASSERT() NM_MTX_ASSERT(netmap_global_lock) 175 176 #define ND(format, ...) 177 #define D(format, ...) \ 178 do { \ 179 struct timeval __xxts; \ 180 microtime(&__xxts); \ 181 printf("%03d.%06d [%4d] %-25s " format "\n", \ 182 (int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec, \ 183 __LINE__, __FUNCTION__, ##__VA_ARGS__); \ 184 } while (0) 185 186 /* rate limited, lps indicates how many per second */ 187 #define RD(lps, format, ...) \ 188 do { \ 189 static int t0, __cnt; \ 190 if (t0 != time_second) { \ 191 t0 = time_second; \ 192 __cnt = 0; \ 193 } \ 194 if (__cnt++ < lps) \ 195 D(format, ##__VA_ARGS__); \ 196 } while (0) 197 198 struct netmap_adapter; 199 struct nm_bdg_fwd; 200 struct nm_bridge; 201 struct netmap_priv_d; 202 203 const char *nm_dump_buf(char *p, int len, int lim, char *dst); 204 205 #include "netmap_mbq.h" 206 207 extern NMG_LOCK_T netmap_global_lock; 208 209 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX }; 210 211 static __inline const char* 212 nm_txrx2str(enum txrx t) 213 { 214 return (t== NR_RX ? "RX" : "TX"); 215 } 216 217 static __inline enum txrx 218 nm_txrx_swap(enum txrx t) 219 { 220 return (t== NR_RX ? NR_TX : NR_RX); 221 } 222 223 #define for_rx_tx(t) for ((t) = 0; (t) < NR_TXRX; (t)++) 224 225 226 /* 227 * private, kernel view of a ring. Keeps track of the status of 228 * a ring across system calls. 229 * 230 * nr_hwcur index of the next buffer to refill. 231 * It corresponds to ring->head 232 * at the time the system call returns. 233 * 234 * nr_hwtail index of the first buffer owned by the kernel. 235 * On RX, hwcur->hwtail are receive buffers 236 * not yet released. hwcur is advanced following 237 * ring->head, hwtail is advanced on incoming packets, 238 * and a wakeup is generated when hwtail passes ring->cur 239 * On TX, hwcur->rcur have been filled by the sender 240 * but not sent yet to the NIC; rcur->hwtail are available 241 * for new transmissions, and hwtail->hwcur-1 are pending 242 * transmissions not yet acknowledged. 243 * 244 * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots. 245 * This is so that, on a reset, buffers owned by userspace are not 246 * modified by the kernel. In particular: 247 * RX rings: the next empty buffer (hwtail + hwofs) coincides with 248 * the next empty buffer as known by the hardware (next_to_check or so). 249 * TX rings: hwcur + hwofs coincides with next_to_send 250 * 251 * For received packets, slot->flags is set to nkr_slot_flags 252 * so we can provide a proper initial value (e.g. set NS_FORWARD 253 * when operating in 'transparent' mode). 254 * 255 * The following fields are used to implement lock-free copy of packets 256 * from input to output ports in VALE switch: 257 * nkr_hwlease buffer after the last one being copied. 258 * A writer in nm_bdg_flush reserves N buffers 259 * from nr_hwlease, advances it, then does the 260 * copy outside the lock. 261 * In RX rings (used for VALE ports), 262 * nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1 263 * In TX rings (used for NIC or host stack ports) 264 * nkr_hwcur <= nkr_hwlease < nkr_hwtail 265 * nkr_leases array of nkr_num_slots where writers can report 266 * completion of their block. NR_NOSLOT (~0) indicates 267 * that the writer has not finished yet 268 * nkr_lease_idx index of next free slot in nr_leases, to be assigned 269 * 270 * The kring is manipulated by txsync/rxsync and generic netmap function. 271 * 272 * Concurrent rxsync or txsync on the same ring are prevented through 273 * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need 274 * for NIC rings, and for TX rings attached to the host stack. 275 * 276 * RX rings attached to the host stack use an mbq (rx_queue) on both 277 * rxsync_from_host() and netmap_transmit(). The mbq is protected 278 * by its internal lock. 279 * 280 * RX rings attached to the VALE switch are accessed by both senders 281 * and receiver. They are protected through the q_lock on the RX ring. 282 */ 283 struct netmap_kring { 284 struct netmap_ring *ring; 285 286 uint32_t nr_hwcur; 287 uint32_t nr_hwtail; 288 289 /* 290 * Copies of values in user rings, so we do not need to look 291 * at the ring (which could be modified). These are set in the 292 * *sync_prologue()/finalize() routines. 293 */ 294 uint32_t rhead; 295 uint32_t rcur; 296 uint32_t rtail; 297 298 uint32_t nr_kflags; /* private driver flags */ 299 #define NKR_PENDINTR 0x1 // Pending interrupt. 300 #define NKR_EXCLUSIVE 0x2 /* exclusive binding */ 301 uint32_t nkr_num_slots; 302 303 /* 304 * On a NIC reset, the NIC ring indexes may be reset but the 305 * indexes in the netmap rings remain the same. nkr_hwofs 306 * keeps track of the offset between the two. 307 */ 308 int32_t nkr_hwofs; 309 310 uint16_t nkr_slot_flags; /* initial value for flags */ 311 312 /* last_reclaim is opaque marker to help reduce the frequency 313 * of operations such as reclaiming tx buffers. A possible use 314 * is set it to ticks and do the reclaim only once per tick. 315 */ 316 uint64_t last_reclaim; 317 318 319 NM_SELINFO_T si; /* poll/select wait queue */ 320 NM_LOCK_T q_lock; /* protects kring and ring. */ 321 NM_ATOMIC_T nr_busy; /* prevent concurrent syscalls */ 322 323 struct netmap_adapter *na; 324 325 /* The following fields are for VALE switch support */ 326 struct nm_bdg_fwd *nkr_ft; 327 uint32_t *nkr_leases; 328 #define NR_NOSLOT ((uint32_t)~0) /* used in nkr_*lease* */ 329 uint32_t nkr_hwlease; 330 uint32_t nkr_lease_idx; 331 332 /* while nkr_stopped is set, no new [tr]xsync operations can 333 * be started on this kring. 334 * This is used by netmap_disable_all_rings() 335 * to find a synchronization point where critical data 336 * structures pointed to by the kring can be added or removed 337 */ 338 volatile int nkr_stopped; 339 340 /* Support for adapters without native netmap support. 341 * On tx rings we preallocate an array of tx buffers 342 * (same size as the netmap ring), on rx rings we 343 * store incoming mbufs in a queue that is drained by 344 * a rxsync. 345 */ 346 struct mbuf **tx_pool; 347 // u_int nr_ntc; /* Emulation of a next-to-clean RX ring pointer. */ 348 struct mbq rx_queue; /* intercepted rx mbufs. */ 349 350 uint32_t users; /* existing bindings for this ring */ 351 352 uint32_t ring_id; /* debugging */ 353 enum txrx tx; /* kind of ring (tx or rx) */ 354 char name[64]; /* diagnostic */ 355 356 /* [tx]sync callback for this kring. 357 * The default nm_kring_create callback (netmap_krings_create) 358 * sets the nm_sync callback of each hardware tx(rx) kring to 359 * the corresponding nm_txsync(nm_rxsync) taken from the 360 * netmap_adapter; moreover, it sets the sync callback 361 * of the host tx(rx) ring to netmap_txsync_to_host 362 * (netmap_rxsync_from_host). 363 * 364 * Overrides: the above configuration is not changed by 365 * any of the nm_krings_create callbacks. 366 */ 367 int (*nm_sync)(struct netmap_kring *kring, int flags); 368 int (*nm_notify)(struct netmap_kring *kring, int flags); 369 370 #ifdef WITH_PIPES 371 struct netmap_kring *pipe; /* if this is a pipe ring, 372 * pointer to the other end 373 */ 374 struct netmap_ring *save_ring; /* pointer to hidden rings 375 * (see netmap_pipe.c for details) 376 */ 377 #endif /* WITH_PIPES */ 378 379 #ifdef WITH_VALE 380 int (*save_notify)(struct netmap_kring *kring, int flags); 381 #endif 382 383 #ifdef WITH_MONITOR 384 /* array of krings that are monitoring this kring */ 385 struct netmap_kring **monitors; 386 uint32_t max_monitors; /* current size of the monitors array */ 387 uint32_t n_monitors; /* next unused entry in the monitor array */ 388 /* 389 * Monitors work by intercepting the sync and notify callbacks of the 390 * monitored krings. This is implemented by replacing the pointers 391 * above and saving the previous ones in mon_* pointers below 392 */ 393 int (*mon_sync)(struct netmap_kring *kring, int flags); 394 int (*mon_notify)(struct netmap_kring *kring, int flags); 395 396 uint32_t mon_tail; /* last seen slot on rx */ 397 uint32_t mon_pos; /* index of this ring in the monitored ring array */ 398 #endif 399 } __attribute__((__aligned__(64))); 400 401 402 /* return the next index, with wraparound */ 403 static inline uint32_t 404 nm_next(uint32_t i, uint32_t lim) 405 { 406 return unlikely (i == lim) ? 0 : i + 1; 407 } 408 409 410 /* return the previous index, with wraparound */ 411 static inline uint32_t 412 nm_prev(uint32_t i, uint32_t lim) 413 { 414 return unlikely (i == 0) ? lim : i - 1; 415 } 416 417 418 /* 419 * 420 * Here is the layout for the Rx and Tx rings. 421 422 RxRING TxRING 423 424 +-----------------+ +-----------------+ 425 | | | | 426 |XXX free slot XXX| |XXX free slot XXX| 427 +-----------------+ +-----------------+ 428 head->| owned by user |<-hwcur | not sent to nic |<-hwcur 429 | | | yet | 430 +-----------------+ | | 431 cur->| available to | | | 432 | user, not read | +-----------------+ 433 | yet | cur->| (being | 434 | | | prepared) | 435 | | | | 436 +-----------------+ + ------ + 437 tail->| |<-hwtail | |<-hwlease 438 | (being | ... | | ... 439 | prepared) | ... | | ... 440 +-----------------+ ... | | ... 441 | |<-hwlease +-----------------+ 442 | | tail->| |<-hwtail 443 | | | | 444 | | | | 445 | | | | 446 +-----------------+ +-----------------+ 447 448 * The cur/tail (user view) and hwcur/hwtail (kernel view) 449 * are used in the normal operation of the card. 450 * 451 * When a ring is the output of a switch port (Rx ring for 452 * a VALE port, Tx ring for the host stack or NIC), slots 453 * are reserved in blocks through 'hwlease' which points 454 * to the next unused slot. 455 * On an Rx ring, hwlease is always after hwtail, 456 * and completions cause hwtail to advance. 457 * On a Tx ring, hwlease is always between cur and hwtail, 458 * and completions cause cur to advance. 459 * 460 * nm_kr_space() returns the maximum number of slots that 461 * can be assigned. 462 * nm_kr_lease() reserves the required number of buffers, 463 * advances nkr_hwlease and also returns an entry in 464 * a circular array where completions should be reported. 465 */ 466 467 468 struct netmap_lut { 469 struct lut_entry *lut; 470 uint32_t objtotal; /* max buffer index */ 471 uint32_t objsize; /* buffer size */ 472 }; 473 474 struct netmap_vp_adapter; // forward 475 476 /* 477 * The "struct netmap_adapter" extends the "struct adapter" 478 * (or equivalent) device descriptor. 479 * It contains all base fields needed to support netmap operation. 480 * There are in fact different types of netmap adapters 481 * (native, generic, VALE switch...) so a netmap_adapter is 482 * just the first field in the derived type. 483 */ 484 struct netmap_adapter { 485 /* 486 * On linux we do not have a good way to tell if an interface 487 * is netmap-capable. So we always use the following trick: 488 * NA(ifp) points here, and the first entry (which hopefully 489 * always exists and is at least 32 bits) contains a magic 490 * value which we can use to detect that the interface is good. 491 */ 492 uint32_t magic; 493 uint32_t na_flags; /* enabled, and other flags */ 494 #define NAF_SKIP_INTR 1 /* use the regular interrupt handler. 495 * useful during initialization 496 */ 497 #define NAF_SW_ONLY 2 /* forward packets only to sw adapter */ 498 #define NAF_BDG_MAYSLEEP 4 /* the bridge is allowed to sleep when 499 * forwarding packets coming from this 500 * interface 501 */ 502 #define NAF_MEM_OWNER 8 /* the adapter uses its own memory area 503 * that cannot be changed 504 */ 505 #define NAF_NATIVE 16 /* the adapter is native. 506 * Virtual ports (vale, pipe, monitor...) 507 * should never use this flag. 508 */ 509 #define NAF_NETMAP_ON 32 /* netmap is active (either native or 510 * emulated). Where possible (e.g. FreeBSD) 511 * IFCAP_NETMAP also mirrors this flag. 512 */ 513 #define NAF_HOST_RINGS 64 /* the adapter supports the host rings */ 514 #define NAF_FORCE_NATIVE 128 /* the adapter is always NATIVE */ 515 #define NAF_BUSY (1U<<31) /* the adapter is used internally and 516 * cannot be registered from userspace 517 */ 518 int active_fds; /* number of user-space descriptors using this 519 interface, which is equal to the number of 520 struct netmap_if objs in the mapped region. */ 521 522 u_int num_rx_rings; /* number of adapter receive rings */ 523 u_int num_tx_rings; /* number of adapter transmit rings */ 524 525 u_int num_tx_desc; /* number of descriptor in each queue */ 526 u_int num_rx_desc; 527 528 /* tx_rings and rx_rings are private but allocated 529 * as a contiguous chunk of memory. Each array has 530 * N+1 entries, for the adapter queues and for the host queue. 531 */ 532 struct netmap_kring *tx_rings; /* array of TX rings. */ 533 struct netmap_kring *rx_rings; /* array of RX rings. */ 534 535 void *tailroom; /* space below the rings array */ 536 /* (used for leases) */ 537 538 539 NM_SELINFO_T si[NR_TXRX]; /* global wait queues */ 540 541 /* count users of the global wait queues */ 542 int si_users[NR_TXRX]; 543 544 void *pdev; /* used to store pci device */ 545 546 /* copy of if_qflush and if_transmit pointers, to intercept 547 * packets from the network stack when netmap is active. 548 */ 549 int (*if_transmit)(struct ifnet *, struct mbuf *); 550 551 /* copy of if_input for netmap_send_up() */ 552 void (*if_input)(struct ifnet *, struct mbuf *); 553 554 /* references to the ifnet and device routines, used by 555 * the generic netmap functions. 556 */ 557 struct ifnet *ifp; /* adapter is ifp->if_softc */ 558 559 /*---- callbacks for this netmap adapter -----*/ 560 /* 561 * nm_dtor() is the cleanup routine called when destroying 562 * the adapter. 563 * Called with NMG_LOCK held. 564 * 565 * nm_register() is called on NIOCREGIF and close() to enter 566 * or exit netmap mode on the NIC 567 * Called with NNG_LOCK held. 568 * 569 * nm_txsync() pushes packets to the underlying hw/switch 570 * 571 * nm_rxsync() collects packets from the underlying hw/switch 572 * 573 * nm_config() returns configuration information from the OS 574 * Called with NMG_LOCK held. 575 * 576 * nm_krings_create() create and init the tx_rings and 577 * rx_rings arrays of kring structures. In particular, 578 * set the nm_sync callbacks for each ring. 579 * There is no need to also allocate the corresponding 580 * netmap_rings, since netmap_mem_rings_create() will always 581 * be called to provide the missing ones. 582 * Called with NNG_LOCK held. 583 * 584 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings 585 * arrays 586 * Called with NMG_LOCK held. 587 * 588 * nm_notify() is used to act after data have become available 589 * (or the stopped state of the ring has changed) 590 * For hw devices this is typically a selwakeup(), 591 * but for NIC/host ports attached to a switch (or vice-versa) 592 * we also need to invoke the 'txsync' code downstream. 593 */ 594 void (*nm_dtor)(struct netmap_adapter *); 595 596 int (*nm_register)(struct netmap_adapter *, int onoff); 597 598 int (*nm_txsync)(struct netmap_kring *kring, int flags); 599 int (*nm_rxsync)(struct netmap_kring *kring, int flags); 600 int (*nm_notify)(struct netmap_kring *kring, int flags); 601 #define NAF_FORCE_READ 1 602 #define NAF_FORCE_RECLAIM 2 603 /* return configuration information */ 604 int (*nm_config)(struct netmap_adapter *, 605 u_int *txr, u_int *txd, u_int *rxr, u_int *rxd); 606 int (*nm_krings_create)(struct netmap_adapter *); 607 void (*nm_krings_delete)(struct netmap_adapter *); 608 #ifdef WITH_VALE 609 /* 610 * nm_bdg_attach() initializes the na_vp field to point 611 * to an adapter that can be attached to a VALE switch. If the 612 * current adapter is already a VALE port, na_vp is simply a cast; 613 * otherwise, na_vp points to a netmap_bwrap_adapter. 614 * If applicable, this callback also initializes na_hostvp, 615 * that can be used to connect the adapter host rings to the 616 * switch. 617 * Called with NMG_LOCK held. 618 * 619 * nm_bdg_ctl() is called on the actual attach/detach to/from 620 * to/from the switch, to perform adapter-specific 621 * initializations 622 * Called with NMG_LOCK held. 623 */ 624 int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *); 625 int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int); 626 627 /* adapter used to attach this adapter to a VALE switch (if any) */ 628 struct netmap_vp_adapter *na_vp; 629 /* adapter used to attach the host rings of this adapter 630 * to a VALE switch (if any) */ 631 struct netmap_vp_adapter *na_hostvp; 632 #endif 633 634 /* standard refcount to control the lifetime of the adapter 635 * (it should be equal to the lifetime of the corresponding ifp) 636 */ 637 int na_refcount; 638 639 /* memory allocator (opaque) 640 * We also cache a pointer to the lut_entry for translating 641 * buffer addresses, and the total number of buffers. 642 */ 643 struct netmap_mem_d *nm_mem; 644 struct netmap_lut na_lut; 645 646 /* additional information attached to this adapter 647 * by other netmap subsystems. Currently used by 648 * bwrap and LINUX/v1000. 649 */ 650 void *na_private; 651 652 /* array of pipes that have this adapter as a parent */ 653 struct netmap_pipe_adapter **na_pipes; 654 int na_next_pipe; /* next free slot in the array */ 655 int na_max_pipes; /* size of the array */ 656 657 char name[64]; 658 }; 659 660 static __inline u_int 661 nma_get_ndesc(struct netmap_adapter *na, enum txrx t) 662 { 663 return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc); 664 } 665 666 static __inline void 667 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v) 668 { 669 if (t == NR_TX) 670 na->num_tx_desc = v; 671 else 672 na->num_rx_desc = v; 673 } 674 675 static __inline u_int 676 nma_get_nrings(struct netmap_adapter *na, enum txrx t) 677 { 678 return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings); 679 } 680 681 static __inline void 682 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v) 683 { 684 if (t == NR_TX) 685 na->num_tx_rings = v; 686 else 687 na->num_rx_rings = v; 688 } 689 690 static __inline struct netmap_kring* 691 NMR(struct netmap_adapter *na, enum txrx t) 692 { 693 return (t == NR_TX ? na->tx_rings : na->rx_rings); 694 } 695 696 /* 697 * If the NIC is owned by the kernel 698 * (i.e., bridge), neither another bridge nor user can use it; 699 * if the NIC is owned by a user, only users can share it. 700 * Evaluation must be done under NMG_LOCK(). 701 */ 702 #define NETMAP_OWNED_BY_KERN(na) ((na)->na_flags & NAF_BUSY) 703 #define NETMAP_OWNED_BY_ANY(na) \ 704 (NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0)) 705 706 /* 707 * derived netmap adapters for various types of ports 708 */ 709 struct netmap_vp_adapter { /* VALE software port */ 710 struct netmap_adapter up; 711 712 /* 713 * Bridge support: 714 * 715 * bdg_port is the port number used in the bridge; 716 * na_bdg points to the bridge this NA is attached to. 717 */ 718 int bdg_port; 719 struct nm_bridge *na_bdg; 720 int retry; 721 722 /* Offset of ethernet header for each packet. */ 723 u_int virt_hdr_len; 724 /* Maximum Frame Size, used in bdg_mismatch_datapath() */ 725 u_int mfs; 726 /* Last source MAC on this port */ 727 uint64_t last_smac; 728 }; 729 730 731 struct netmap_hw_adapter { /* physical device */ 732 struct netmap_adapter up; 733 734 struct net_device_ops nm_ndo; // XXX linux only 735 struct ethtool_ops nm_eto; // XXX linux only 736 const struct ethtool_ops* save_ethtool; 737 738 int (*nm_hw_register)(struct netmap_adapter *, int onoff); 739 }; 740 741 #ifdef WITH_GENERIC 742 /* Mitigation support. */ 743 struct nm_generic_mit { 744 struct hrtimer mit_timer; 745 int mit_pending; 746 int mit_ring_idx; /* index of the ring being mitigated */ 747 struct netmap_adapter *mit_na; /* backpointer */ 748 }; 749 750 struct netmap_generic_adapter { /* emulated device */ 751 struct netmap_hw_adapter up; 752 753 /* Pointer to a previously used netmap adapter. */ 754 struct netmap_adapter *prev; 755 756 /* generic netmap adapters support: 757 * a net_device_ops struct overrides ndo_select_queue(), 758 * save_if_input saves the if_input hook (FreeBSD), 759 * mit implements rx interrupt mitigation, 760 */ 761 struct net_device_ops generic_ndo; 762 void (*save_if_input)(struct ifnet *, struct mbuf *); 763 764 struct nm_generic_mit *mit; 765 #ifdef linux 766 netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *); 767 #endif 768 }; 769 #endif /* WITH_GENERIC */ 770 771 static __inline int 772 netmap_real_rings(struct netmap_adapter *na, enum txrx t) 773 { 774 return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS); 775 } 776 777 #ifdef WITH_VALE 778 779 /* 780 * Bridge wrapper for non VALE ports attached to a VALE switch. 781 * 782 * The real device must already have its own netmap adapter (hwna). 783 * The bridge wrapper and the hwna adapter share the same set of 784 * netmap rings and buffers, but they have two separate sets of 785 * krings descriptors, with tx/rx meanings swapped: 786 * 787 * netmap 788 * bwrap krings rings krings hwna 789 * +------+ +------+ +-----+ +------+ +------+ 790 * |tx_rings->| |\ /| |----| |<-tx_rings| 791 * | | +------+ \ / +-----+ +------+ | | 792 * | | X | | 793 * | | / \ | | 794 * | | +------+/ \+-----+ +------+ | | 795 * |rx_rings->| | | |----| |<-rx_rings| 796 * | | +------+ +-----+ +------+ | | 797 * +------+ +------+ 798 * 799 * - packets coming from the bridge go to the brwap rx rings, 800 * which are also the hwna tx rings. The bwrap notify callback 801 * will then complete the hwna tx (see netmap_bwrap_notify). 802 * 803 * - packets coming from the outside go to the hwna rx rings, 804 * which are also the bwrap tx rings. The (overwritten) hwna 805 * notify method will then complete the bridge tx 806 * (see netmap_bwrap_intr_notify). 807 * 808 * The bridge wrapper may optionally connect the hwna 'host' rings 809 * to the bridge. This is done by using a second port in the 810 * bridge and connecting it to the 'host' netmap_vp_adapter 811 * contained in the netmap_bwrap_adapter. The brwap host adapter 812 * cross-links the hwna host rings in the same way as shown above. 813 * 814 * - packets coming from the bridge and directed to the host stack 815 * are handled by the bwrap host notify callback 816 * (see netmap_bwrap_host_notify) 817 * 818 * - packets coming from the host stack are still handled by the 819 * overwritten hwna notify callback (netmap_bwrap_intr_notify), 820 * but are diverted to the host adapter depending on the ring number. 821 * 822 */ 823 struct netmap_bwrap_adapter { 824 struct netmap_vp_adapter up; 825 struct netmap_vp_adapter host; /* for host rings */ 826 struct netmap_adapter *hwna; /* the underlying device */ 827 828 /* backup of the hwna memory allocator */ 829 struct netmap_mem_d *save_nmd; 830 831 /* 832 * When we attach a physical interface to the bridge, we 833 * allow the controlling process to terminate, so we need 834 * a place to store the n_detmap_priv_d data structure. 835 * This is only done when physical interfaces 836 * are attached to a bridge. 837 */ 838 struct netmap_priv_d *na_kpriv; 839 }; 840 int netmap_bwrap_attach(const char *name, struct netmap_adapter *); 841 842 843 #endif /* WITH_VALE */ 844 845 #ifdef WITH_PIPES 846 847 #define NM_MAXPIPES 64 /* max number of pipes per adapter */ 848 849 struct netmap_pipe_adapter { 850 struct netmap_adapter up; 851 852 u_int id; /* pipe identifier */ 853 int role; /* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */ 854 855 struct netmap_adapter *parent; /* adapter that owns the memory */ 856 struct netmap_pipe_adapter *peer; /* the other end of the pipe */ 857 int peer_ref; /* 1 iff we are holding a ref to the peer */ 858 859 u_int parent_slot; /* index in the parent pipe array */ 860 }; 861 862 #endif /* WITH_PIPES */ 863 864 865 /* return slots reserved to rx clients; used in drivers */ 866 static inline uint32_t 867 nm_kr_rxspace(struct netmap_kring *k) 868 { 869 int space = k->nr_hwtail - k->nr_hwcur; 870 if (space < 0) 871 space += k->nkr_num_slots; 872 ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail); 873 874 return space; 875 } 876 877 878 /* True if no space in the tx ring. only valid after txsync_prologue */ 879 static inline int 880 nm_kr_txempty(struct netmap_kring *kring) 881 { 882 return kring->rcur == kring->nr_hwtail; 883 } 884 885 886 /* 887 * protect against multiple threads using the same ring. 888 * also check that the ring has not been stopped. 889 * We only care for 0 or !=0 as a return code. 890 */ 891 #define NM_KR_BUSY 1 892 #define NM_KR_STOPPED 2 893 894 895 static __inline void nm_kr_put(struct netmap_kring *kr) 896 { 897 NM_ATOMIC_CLEAR(&kr->nr_busy); 898 } 899 900 901 static __inline int nm_kr_tryget(struct netmap_kring *kr) 902 { 903 /* check a first time without taking the lock 904 * to avoid starvation for nm_kr_get() 905 */ 906 if (unlikely(kr->nkr_stopped)) { 907 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 908 return NM_KR_STOPPED; 909 } 910 if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))) 911 return NM_KR_BUSY; 912 /* check a second time with lock held */ 913 if (unlikely(kr->nkr_stopped)) { 914 ND("ring %p stopped (%d)", kr, kr->nkr_stopped); 915 nm_kr_put(kr); 916 return NM_KR_STOPPED; 917 } 918 return 0; 919 } 920 921 static __inline void nm_kr_get(struct netmap_kring *kr) 922 { 923 while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)) 924 tsleep(kr, 0, "NM_KR_GET", 4); 925 } 926 927 928 929 930 /* 931 * The following functions are used by individual drivers to 932 * support netmap operation. 933 * 934 * netmap_attach() initializes a struct netmap_adapter, allocating the 935 * struct netmap_ring's and the struct selinfo. 936 * 937 * netmap_detach() frees the memory allocated by netmap_attach(). 938 * 939 * netmap_transmit() replaces the if_transmit routine of the interface, 940 * and is used to intercept packets coming from the stack. 941 * 942 * netmap_load_map/netmap_reload_map are helper routines to set/reset 943 * the dmamap for a packet buffer 944 * 945 * netmap_reset() is a helper routine to be called in the hw driver 946 * when reinitializing a ring. It should not be called by 947 * virtual ports (vale, pipes, monitor) 948 */ 949 int netmap_attach(struct netmap_adapter *); 950 void netmap_detach(struct ifnet *); 951 int netmap_transmit(struct ifnet *, struct mbuf *); 952 struct netmap_slot *netmap_reset(struct netmap_adapter *na, 953 enum txrx tx, u_int n, u_int new_cur); 954 int netmap_ring_reinit(struct netmap_kring *); 955 956 /* default functions to handle rx/tx interrupts */ 957 int netmap_rx_irq(struct ifnet *, u_int, u_int *); 958 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL) 959 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done); 960 961 962 #ifdef WITH_VALE 963 /* functions used by external modules to interface with VALE */ 964 #define netmap_vp_to_ifp(_vp) ((_vp)->up.ifp) 965 #define netmap_ifp_to_vp(_ifp) (NA(_ifp)->na_vp) 966 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp) 967 #define netmap_bdg_idx(_vp) ((_vp)->bdg_port) 968 const char *netmap_bdg_name(struct netmap_vp_adapter *); 969 #else /* !WITH_VALE */ 970 #define netmap_vp_to_ifp(_vp) NULL 971 #define netmap_ifp_to_vp(_ifp) NULL 972 #define netmap_ifp_to_host_vp(_ifp) NULL 973 #define netmap_bdg_idx(_vp) -1 974 #define netmap_bdg_name(_vp) NULL 975 #endif /* WITH_VALE */ 976 977 static inline int 978 nm_netmap_on(struct netmap_adapter *na) 979 { 980 return na && na->na_flags & NAF_NETMAP_ON; 981 } 982 983 static inline int 984 nm_native_on(struct netmap_adapter *na) 985 { 986 return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE); 987 } 988 989 /* set/clear native flags and if_transmit/netdev_ops */ 990 static inline void 991 nm_set_native_flags(struct netmap_adapter *na) 992 { 993 struct ifnet *ifp = na->ifp; 994 995 na->na_flags |= NAF_NETMAP_ON; 996 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 997 ifp->if_capenable |= IFCAP_NETMAP; 998 #endif 999 #ifdef __FreeBSD__ 1000 na->if_transmit = ifp->if_transmit; 1001 ifp->if_transmit = netmap_transmit; 1002 #else 1003 na->if_transmit = (void *)ifp->netdev_ops; 1004 ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo; 1005 ((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops; 1006 ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto; 1007 #endif 1008 } 1009 1010 1011 static inline void 1012 nm_clear_native_flags(struct netmap_adapter *na) 1013 { 1014 struct ifnet *ifp = na->ifp; 1015 1016 #ifdef __FreeBSD__ 1017 ifp->if_transmit = na->if_transmit; 1018 #else 1019 ifp->netdev_ops = (void *)na->if_transmit; 1020 ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool; 1021 #endif 1022 na->na_flags &= ~NAF_NETMAP_ON; 1023 #ifdef IFCAP_NETMAP /* or FreeBSD ? */ 1024 ifp->if_capenable &= ~IFCAP_NETMAP; 1025 #endif 1026 } 1027 1028 1029 /* check/fix address and len in tx rings */ 1030 #if 1 /* debug version */ 1031 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1032 if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) { \ 1033 RD(5, "bad addr/len ring %d slot %d idx %d len %d", \ 1034 kring->ring_id, nm_i, slot->buf_idx, len); \ 1035 if (_l > NETMAP_BUF_SIZE(_na)) \ 1036 _l = NETMAP_BUF_SIZE(_na); \ 1037 } } while (0) 1038 #else /* no debug version */ 1039 #define NM_CHECK_ADDR_LEN(_na, _a, _l) do { \ 1040 if (_l > NETMAP_BUF_SIZE(_na)) \ 1041 _l = NETMAP_BUF_SIZE(_na); \ 1042 } while (0) 1043 #endif 1044 1045 1046 /*---------------------------------------------------------------*/ 1047 /* 1048 * Support routines used by netmap subsystems 1049 * (native drivers, VALE, generic, pipes, monitors, ...) 1050 */ 1051 1052 1053 /* common routine for all functions that create a netmap adapter. It performs 1054 * two main tasks: 1055 * - if the na points to an ifp, mark the ifp as netmap capable 1056 * using na as its native adapter; 1057 * - provide defaults for the setup callbacks and the memory allocator 1058 */ 1059 int netmap_attach_common(struct netmap_adapter *); 1060 /* common actions to be performed on netmap adapter destruction */ 1061 void netmap_detach_common(struct netmap_adapter *); 1062 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information 1063 * coming from a struct nmreq 1064 */ 1065 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags); 1066 /* update the ring parameters (number and size of tx and rx rings). 1067 * It calls the nm_config callback, if available. 1068 */ 1069 int netmap_update_config(struct netmap_adapter *na); 1070 /* create and initialize the common fields of the krings array. 1071 * using the information that must be already available in the na. 1072 * tailroom can be used to request the allocation of additional 1073 * tailroom bytes after the krings array. This is used by 1074 * netmap_vp_adapter's (i.e., VALE ports) to make room for 1075 * leasing-related data structures 1076 */ 1077 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom); 1078 /* deletes the kring array of the adapter. The array must have 1079 * been created using netmap_krings_create 1080 */ 1081 void netmap_krings_delete(struct netmap_adapter *na); 1082 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait); 1083 1084 1085 /* set the stopped/enabled status of ring 1086 * When stopping, they also wait for all current activity on the ring to 1087 * terminate. The status change is then notified using the na nm_notify 1088 * callback. 1089 */ 1090 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped); 1091 /* set the stopped/enabled status of all rings of the adapter. */ 1092 void netmap_set_all_rings(struct netmap_adapter *, int stopped); 1093 /* convenience wrappers for netmap_set_all_rings, used in drivers */ 1094 void netmap_disable_all_rings(struct ifnet *); 1095 void netmap_enable_all_rings(struct ifnet *); 1096 1097 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait); 1098 1099 int 1100 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na, 1101 uint16_t ringid, uint32_t flags); 1102 1103 1104 1105 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg); 1106 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1107 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na); 1108 1109 1110 #ifdef WITH_VALE 1111 /* 1112 * The following bridge-related functions are used by other 1113 * kernel modules. 1114 * 1115 * VALE only supports unicast or broadcast. The lookup 1116 * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports, 1117 * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown. 1118 * XXX in practice "unknown" might be handled same as broadcast. 1119 */ 1120 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr, 1121 struct netmap_vp_adapter *); 1122 typedef int (*bdg_config_fn_t)(struct nm_ifreq *); 1123 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *); 1124 struct netmap_bdg_ops { 1125 bdg_lookup_fn_t lookup; 1126 bdg_config_fn_t config; 1127 bdg_dtor_fn_t dtor; 1128 }; 1129 1130 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring, 1131 struct netmap_vp_adapter *); 1132 1133 #define NM_BDG_MAXPORTS 254 /* up to 254 */ 1134 #define NM_BDG_BROADCAST NM_BDG_MAXPORTS 1135 #define NM_BDG_NOPORT (NM_BDG_MAXPORTS+1) 1136 1137 #define NM_NAME "vale" /* prefix for bridge port name */ 1138 1139 /* these are redefined in case of no VALE support */ 1140 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1141 struct nm_bridge *netmap_init_bridges2(u_int); 1142 void netmap_uninit_bridges2(struct nm_bridge *, u_int); 1143 int netmap_init_bridges(void); 1144 void netmap_uninit_bridges(void); 1145 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops); 1146 int netmap_bdg_config(struct nmreq *nmr); 1147 1148 #else /* !WITH_VALE */ 1149 #define netmap_get_bdg_na(_1, _2, _3) 0 1150 #define netmap_init_bridges(_1) 0 1151 #define netmap_uninit_bridges() 1152 #define netmap_bdg_ctl(_1, _2) EINVAL 1153 #endif /* !WITH_VALE */ 1154 1155 #ifdef WITH_PIPES 1156 /* max number of pipes per device */ 1157 #define NM_MAXPIPES 64 /* XXX how many? */ 1158 void netmap_pipe_dealloc(struct netmap_adapter *); 1159 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1160 #else /* !WITH_PIPES */ 1161 #define NM_MAXPIPES 0 1162 #define netmap_pipe_alloc(_1, _2) 0 1163 #define netmap_pipe_dealloc(_1) 1164 #define netmap_get_pipe_na(nmr, _2, _3) \ 1165 ({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \ 1166 (role__ == NR_REG_PIPE_MASTER || \ 1167 role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; }) 1168 #endif 1169 1170 #ifdef WITH_MONITOR 1171 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create); 1172 void netmap_monitor_stop(struct netmap_adapter *na); 1173 #else 1174 #define netmap_get_monitor_na(nmr, _2, _3) \ 1175 ((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0) 1176 #endif 1177 1178 #ifdef CONFIG_NET_NS 1179 struct net *netmap_bns_get(void); 1180 void netmap_bns_put(struct net *); 1181 void netmap_bns_getbridges(struct nm_bridge **, u_int *); 1182 #else 1183 #define netmap_bns_get() 1184 #define netmap_bns_put(_1) 1185 #define netmap_bns_getbridges(b, n) \ 1186 do { *b = nm_bridges; *n = NM_BRIDGES; } while (0) 1187 #endif 1188 1189 /* Various prototypes */ 1190 int netmap_poll(struct cdev *dev, int events, struct thread *td); 1191 int netmap_init(void); 1192 void netmap_fini(void); 1193 int netmap_get_memory(struct netmap_priv_d* p); 1194 void netmap_dtor(void *data); 1195 int netmap_dtor_locked(struct netmap_priv_d *priv); 1196 1197 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td); 1198 1199 /* netmap_adapter creation/destruction */ 1200 1201 // #define NM_DEBUG_PUTGET 1 1202 1203 #ifdef NM_DEBUG_PUTGET 1204 1205 #define NM_DBG(f) __##f 1206 1207 void __netmap_adapter_get(struct netmap_adapter *na); 1208 1209 #define netmap_adapter_get(na) \ 1210 do { \ 1211 struct netmap_adapter *__na = na; \ 1212 D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1213 __netmap_adapter_get(__na); \ 1214 } while (0) 1215 1216 int __netmap_adapter_put(struct netmap_adapter *na); 1217 1218 #define netmap_adapter_put(na) \ 1219 ({ \ 1220 struct netmap_adapter *__na = na; \ 1221 D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount); \ 1222 __netmap_adapter_put(__na); \ 1223 }) 1224 1225 #else /* !NM_DEBUG_PUTGET */ 1226 1227 #define NM_DBG(f) f 1228 void netmap_adapter_get(struct netmap_adapter *na); 1229 int netmap_adapter_put(struct netmap_adapter *na); 1230 1231 #endif /* !NM_DEBUG_PUTGET */ 1232 1233 1234 /* 1235 * module variables 1236 */ 1237 #define NETMAP_BUF_BASE(na) ((na)->na_lut.lut[0].vaddr) 1238 #define NETMAP_BUF_SIZE(na) ((na)->na_lut.objsize) 1239 extern int netmap_mitigate; // XXX not really used 1240 extern int netmap_no_pendintr; 1241 extern int netmap_verbose; // XXX debugging 1242 enum { /* verbose flags */ 1243 NM_VERB_ON = 1, /* generic verbose */ 1244 NM_VERB_HOST = 0x2, /* verbose host stack */ 1245 NM_VERB_RXSYNC = 0x10, /* verbose on rxsync/txsync */ 1246 NM_VERB_TXSYNC = 0x20, 1247 NM_VERB_RXINTR = 0x100, /* verbose on rx/tx intr (driver) */ 1248 NM_VERB_TXINTR = 0x200, 1249 NM_VERB_NIC_RXSYNC = 0x1000, /* verbose on rx/tx intr (driver) */ 1250 NM_VERB_NIC_TXSYNC = 0x2000, 1251 }; 1252 1253 extern int netmap_txsync_retry; 1254 extern int netmap_generic_mit; 1255 extern int netmap_generic_ringsize; 1256 extern int netmap_generic_rings; 1257 1258 /* 1259 * NA returns a pointer to the struct netmap adapter from the ifp, 1260 * WNA is used to write it. 1261 */ 1262 #define NA(_ifp) ((struct netmap_adapter *)WNA(_ifp)) 1263 1264 /* 1265 * Macros to determine if an interface is netmap capable or netmap enabled. 1266 * See the magic field in struct netmap_adapter. 1267 */ 1268 #ifdef __FreeBSD__ 1269 /* 1270 * on FreeBSD just use if_capabilities and if_capenable. 1271 */ 1272 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1273 (ifp)->if_capabilities & IFCAP_NETMAP ) 1274 1275 #define NETMAP_SET_CAPABLE(ifp) \ 1276 (ifp)->if_capabilities |= IFCAP_NETMAP 1277 1278 #else /* linux */ 1279 1280 /* 1281 * on linux: 1282 * we check if NA(ifp) is set and its first element has a related 1283 * magic value. The capenable is within the struct netmap_adapter. 1284 */ 1285 #define NETMAP_MAGIC 0x52697a7a 1286 1287 #define NETMAP_CAPABLE(ifp) (NA(ifp) && \ 1288 ((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC ) 1289 1290 #define NETMAP_SET_CAPABLE(ifp) \ 1291 NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC 1292 1293 #endif /* linux */ 1294 1295 #ifdef __FreeBSD__ 1296 1297 /* Assigns the device IOMMU domain to an allocator. 1298 * Returns -ENOMEM in case the domain is different */ 1299 #define nm_iommu_group_id(dev) (0) 1300 1301 /* Callback invoked by the dma machinery after a successful dmamap_load */ 1302 static void netmap_dmamap_cb(__unused void *arg, 1303 __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error) 1304 { 1305 } 1306 1307 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL. 1308 * XXX can we do it without a callback ? 1309 */ 1310 static inline void 1311 netmap_load_map(struct netmap_adapter *na, 1312 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1313 { 1314 if (map) 1315 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1316 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1317 } 1318 1319 static inline void 1320 netmap_unload_map(struct netmap_adapter *na, 1321 bus_dma_tag_t tag, bus_dmamap_t map) 1322 { 1323 if (map) 1324 bus_dmamap_unload(tag, map); 1325 } 1326 1327 /* update the map when a buffer changes. */ 1328 static inline void 1329 netmap_reload_map(struct netmap_adapter *na, 1330 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1331 { 1332 if (map) { 1333 bus_dmamap_unload(tag, map); 1334 bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na), 1335 netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT); 1336 } 1337 } 1338 1339 #else /* linux */ 1340 1341 int nm_iommu_group_id(bus_dma_tag_t dev); 1342 #include <linux/dma-mapping.h> 1343 1344 static inline void 1345 netmap_load_map(struct netmap_adapter *na, 1346 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1347 { 1348 if (0 && map) { 1349 *map = dma_map_single(na->pdev, buf, na->na_lut.objsize, 1350 DMA_BIDIRECTIONAL); 1351 } 1352 } 1353 1354 static inline void 1355 netmap_unload_map(struct netmap_adapter *na, 1356 bus_dma_tag_t tag, bus_dmamap_t map) 1357 { 1358 u_int sz = na->na_lut.objsize; 1359 1360 if (*map) { 1361 dma_unmap_single(na->pdev, *map, sz, 1362 DMA_BIDIRECTIONAL); 1363 } 1364 } 1365 1366 static inline void 1367 netmap_reload_map(struct netmap_adapter *na, 1368 bus_dma_tag_t tag, bus_dmamap_t map, void *buf) 1369 { 1370 u_int sz = na->na_lut.objsize; 1371 1372 if (*map) { 1373 dma_unmap_single(na->pdev, *map, sz, 1374 DMA_BIDIRECTIONAL); 1375 } 1376 1377 *map = dma_map_single(na->pdev, buf, sz, 1378 DMA_BIDIRECTIONAL); 1379 } 1380 1381 /* 1382 * XXX How do we redefine these functions: 1383 * 1384 * on linux we need 1385 * dma_map_single(&pdev->dev, virt_addr, len, direction) 1386 * dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction 1387 * The len can be implicit (on netmap it is NETMAP_BUF_SIZE) 1388 * unfortunately the direction is not, so we need to change 1389 * something to have a cross API 1390 */ 1391 1392 #if 0 1393 struct e1000_buffer *buffer_info = &tx_ring->buffer_info[l]; 1394 /* set time_stamp *before* dma to help avoid a possible race */ 1395 buffer_info->time_stamp = jiffies; 1396 buffer_info->mapped_as_page = false; 1397 buffer_info->length = len; 1398 //buffer_info->next_to_watch = l; 1399 /* reload dma map */ 1400 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma, 1401 NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1402 buffer_info->dma = dma_map_single(&adapter->pdev->dev, 1403 addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE); 1404 1405 if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) { 1406 D("dma mapping error"); 1407 /* goto dma_error; See e1000_put_txbuf() */ 1408 /* XXX reset */ 1409 } 1410 tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX 1411 1412 #endif 1413 1414 /* 1415 * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction. 1416 */ 1417 #define bus_dmamap_sync(_a, _b, _c) 1418 1419 #endif /* linux */ 1420 1421 1422 /* 1423 * functions to map NIC to KRING indexes (n2k) and vice versa (k2n) 1424 */ 1425 static inline int 1426 netmap_idx_n2k(struct netmap_kring *kr, int idx) 1427 { 1428 int n = kr->nkr_num_slots; 1429 idx += kr->nkr_hwofs; 1430 if (idx < 0) 1431 return idx + n; 1432 else if (idx < n) 1433 return idx; 1434 else 1435 return idx - n; 1436 } 1437 1438 1439 static inline int 1440 netmap_idx_k2n(struct netmap_kring *kr, int idx) 1441 { 1442 int n = kr->nkr_num_slots; 1443 idx -= kr->nkr_hwofs; 1444 if (idx < 0) 1445 return idx + n; 1446 else if (idx < n) 1447 return idx; 1448 else 1449 return idx - n; 1450 } 1451 1452 1453 /* Entries of the look-up table. */ 1454 struct lut_entry { 1455 void *vaddr; /* virtual address. */ 1456 vm_paddr_t paddr; /* physical address. */ 1457 }; 1458 1459 struct netmap_obj_pool; 1460 1461 /* 1462 * NMB return the virtual address of a buffer (buffer 0 on bad index) 1463 * PNMB also fills the physical address 1464 */ 1465 static inline void * 1466 NMB(struct netmap_adapter *na, struct netmap_slot *slot) 1467 { 1468 struct lut_entry *lut = na->na_lut.lut; 1469 uint32_t i = slot->buf_idx; 1470 return (unlikely(i >= na->na_lut.objtotal)) ? 1471 lut[0].vaddr : lut[i].vaddr; 1472 } 1473 1474 static inline void * 1475 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp) 1476 { 1477 uint32_t i = slot->buf_idx; 1478 struct lut_entry *lut = na->na_lut.lut; 1479 void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr; 1480 1481 *pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr; 1482 return ret; 1483 } 1484 1485 /* Generic version of NMB, which uses device-specific memory. */ 1486 1487 1488 1489 void netmap_txsync_to_host(struct netmap_adapter *na); 1490 1491 1492 /* 1493 * Structure associated to each thread which registered an interface. 1494 * 1495 * The first 4 fields of this structure are written by NIOCREGIF and 1496 * read by poll() and NIOC?XSYNC. 1497 * 1498 * There is low contention among writers (a correct user program 1499 * should have none) and among writers and readers, so we use a 1500 * single global lock to protect the structure initialization; 1501 * since initialization involves the allocation of memory, 1502 * we reuse the memory allocator lock. 1503 * 1504 * Read access to the structure is lock free. Readers must check that 1505 * np_nifp is not NULL before using the other fields. 1506 * If np_nifp is NULL initialization has not been performed, 1507 * so they should return an error to userspace. 1508 * 1509 * The ref_done field (XXX ?) is used to regulate access to the refcount in the 1510 * memory allocator. The refcount must be incremented at most once for 1511 * each open("/dev/netmap"). The increment is performed by the first 1512 * function that calls netmap_get_memory() (currently called by 1513 * mmap(), NIOCGINFO and NIOCREGIF). 1514 * If the refcount is incremented, it is then decremented when the 1515 * private structure is destroyed. 1516 */ 1517 struct netmap_priv_d { 1518 struct netmap_if * volatile np_nifp; /* netmap if descriptor. */ 1519 1520 struct netmap_adapter *np_na; 1521 uint32_t np_flags; /* from the ioctl */ 1522 u_int np_qfirst[NR_TXRX], 1523 np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */ 1524 uint16_t np_txpoll; /* XXX and also np_rxpoll ? */ 1525 1526 /* np_refcount is only used on FreeBSD */ 1527 int np_refcount; /* use with NMG_LOCK held */ 1528 1529 /* pointers to the selinfo to be used for selrecord. 1530 * Either the local or the global one depending on the 1531 * number of rings. 1532 */ 1533 NM_SELINFO_T *np_si[NR_TXRX]; 1534 struct thread *np_td; /* kqueue, just debugging */ 1535 }; 1536 1537 #ifdef WITH_MONITOR 1538 1539 struct netmap_monitor_adapter { 1540 struct netmap_adapter up; 1541 1542 struct netmap_priv_d priv; 1543 uint32_t flags; 1544 }; 1545 1546 #endif /* WITH_MONITOR */ 1547 1548 1549 #ifdef WITH_GENERIC 1550 /* 1551 * generic netmap emulation for devices that do not have 1552 * native netmap support. 1553 */ 1554 int generic_netmap_attach(struct ifnet *ifp); 1555 1556 int netmap_catch_rx(struct netmap_generic_adapter *na, int intercept); 1557 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);; 1558 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable); 1559 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr); 1560 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx); 1561 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq); 1562 static inline struct ifnet* 1563 netmap_generic_getifp(struct netmap_generic_adapter *gna) 1564 { 1565 if (gna->prev) 1566 return gna->prev->ifp; 1567 1568 return gna->up.up.ifp; 1569 } 1570 1571 //#define RATE_GENERIC /* Enables communication statistics for generic. */ 1572 #ifdef RATE_GENERIC 1573 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi); 1574 #else 1575 #define generic_rate(txp, txs, txi, rxp, rxs, rxi) 1576 #endif 1577 1578 /* 1579 * netmap_mitigation API. This is used by the generic adapter 1580 * to reduce the number of interrupt requests/selwakeup 1581 * to clients on incoming packets. 1582 */ 1583 void netmap_mitigation_init(struct nm_generic_mit *mit, int idx, 1584 struct netmap_adapter *na); 1585 void netmap_mitigation_start(struct nm_generic_mit *mit); 1586 void netmap_mitigation_restart(struct nm_generic_mit *mit); 1587 int netmap_mitigation_active(struct nm_generic_mit *mit); 1588 void netmap_mitigation_cleanup(struct nm_generic_mit *mit); 1589 #endif /* WITH_GENERIC */ 1590 1591 1592 1593 /* Shared declarations for the VALE switch. */ 1594 1595 /* 1596 * Each transmit queue accumulates a batch of packets into 1597 * a structure before forwarding. Packets to the same 1598 * destination are put in a list using ft_next as a link field. 1599 * ft_frags and ft_next are valid only on the first fragment. 1600 */ 1601 struct nm_bdg_fwd { /* forwarding entry for a bridge */ 1602 void *ft_buf; /* netmap or indirect buffer */ 1603 uint8_t ft_frags; /* how many fragments (only on 1st frag) */ 1604 uint8_t _ft_port; /* dst port (unused) */ 1605 uint16_t ft_flags; /* flags, e.g. indirect */ 1606 uint16_t ft_len; /* src fragment len */ 1607 uint16_t ft_next; /* next packet to same destination */ 1608 }; 1609 1610 /* struct 'virtio_net_hdr' from linux. */ 1611 struct nm_vnet_hdr { 1612 #define VIRTIO_NET_HDR_F_NEEDS_CSUM 1 /* Use csum_start, csum_offset */ 1613 #define VIRTIO_NET_HDR_F_DATA_VALID 2 /* Csum is valid */ 1614 uint8_t flags; 1615 #define VIRTIO_NET_HDR_GSO_NONE 0 /* Not a GSO frame */ 1616 #define VIRTIO_NET_HDR_GSO_TCPV4 1 /* GSO frame, IPv4 TCP (TSO) */ 1617 #define VIRTIO_NET_HDR_GSO_UDP 3 /* GSO frame, IPv4 UDP (UFO) */ 1618 #define VIRTIO_NET_HDR_GSO_TCPV6 4 /* GSO frame, IPv6 TCP */ 1619 #define VIRTIO_NET_HDR_GSO_ECN 0x80 /* TCP has ECN set */ 1620 uint8_t gso_type; 1621 uint16_t hdr_len; 1622 uint16_t gso_size; 1623 uint16_t csum_start; 1624 uint16_t csum_offset; 1625 }; 1626 1627 #define WORST_CASE_GSO_HEADER (14+40+60) /* IPv6 + TCP */ 1628 1629 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */ 1630 1631 struct nm_iphdr { 1632 uint8_t version_ihl; 1633 uint8_t tos; 1634 uint16_t tot_len; 1635 uint16_t id; 1636 uint16_t frag_off; 1637 uint8_t ttl; 1638 uint8_t protocol; 1639 uint16_t check; 1640 uint32_t saddr; 1641 uint32_t daddr; 1642 /*The options start here. */ 1643 }; 1644 1645 struct nm_tcphdr { 1646 uint16_t source; 1647 uint16_t dest; 1648 uint32_t seq; 1649 uint32_t ack_seq; 1650 uint8_t doff; /* Data offset + Reserved */ 1651 uint8_t flags; 1652 uint16_t window; 1653 uint16_t check; 1654 uint16_t urg_ptr; 1655 }; 1656 1657 struct nm_udphdr { 1658 uint16_t source; 1659 uint16_t dest; 1660 uint16_t len; 1661 uint16_t check; 1662 }; 1663 1664 struct nm_ipv6hdr { 1665 uint8_t priority_version; 1666 uint8_t flow_lbl[3]; 1667 1668 uint16_t payload_len; 1669 uint8_t nexthdr; 1670 uint8_t hop_limit; 1671 1672 uint8_t saddr[16]; 1673 uint8_t daddr[16]; 1674 }; 1675 1676 /* Type used to store a checksum (in host byte order) that hasn't been 1677 * folded yet. 1678 */ 1679 #define rawsum_t uint32_t 1680 1681 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum); 1682 uint16_t nm_csum_ipv4(struct nm_iphdr *iph); 1683 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data, 1684 size_t datalen, uint16_t *check); 1685 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data, 1686 size_t datalen, uint16_t *check); 1687 uint16_t nm_csum_fold(rawsum_t cur_sum); 1688 1689 void bdg_mismatch_datapath(struct netmap_vp_adapter *na, 1690 struct netmap_vp_adapter *dst_na, 1691 struct nm_bdg_fwd *ft_p, struct netmap_ring *ring, 1692 u_int *j, u_int lim, u_int *howmany); 1693 1694 /* persistent virtual port routines */ 1695 int nm_vi_persist(const char *, struct ifnet **); 1696 void nm_vi_detach(struct ifnet *); 1697 void nm_vi_init_index(void); 1698 1699 #endif /* _NET_NETMAP_KERN_H_ */ 1700