xref: /freebsd-12.1/sys/dev/netmap/netmap_kern.h (revision 847bf383)
1 /*
2  * Copyright (C) 2011-2014 Matteo Landi, Luigi Rizzo. All rights reserved.
3  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
4  *
5  * Redistribution and use in source and binary forms, with or without
6  * modification, are permitted provided that the following conditions
7  * are met:
8  *   1. Redistributions of source code must retain the above copyright
9  *      notice, this list of conditions and the following disclaimer.
10  *   2. Redistributions in binary form must reproduce the above copyright
11  *      notice, this list of conditions and the following disclaimer in the
12  *    documentation and/or other materials provided with the distribution.
13  *
14  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
15  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
16  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
17  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
18  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
19  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
20  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
21  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
22  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
23  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
24  * SUCH DAMAGE.
25  */
26 
27 /*
28  * $FreeBSD$
29  *
30  * The header contains the definitions of constants and function
31  * prototypes used only in kernelspace.
32  */
33 
34 #ifndef _NET_NETMAP_KERN_H_
35 #define _NET_NETMAP_KERN_H_
36 
37 #if defined(linux)
38 
39 #if  defined(CONFIG_NETMAP_VALE)
40 #define WITH_VALE
41 #endif
42 #if defined(CONFIG_NETMAP_PIPE)
43 #define WITH_PIPES
44 #endif
45 #if defined(CONFIG_NETMAP_MONITOR)
46 #define WITH_MONITOR
47 #endif
48 #if defined(CONFIG_NETMAP_GENERIC)
49 #define WITH_GENERIC
50 #endif
51 #if defined(CONFIG_NETMAP_V1000)
52 #define WITH_V1000
53 #endif
54 
55 #else /* not linux */
56 
57 #define WITH_VALE	// comment out to disable VALE support
58 #define WITH_PIPES
59 #define WITH_MONITOR
60 #define WITH_GENERIC
61 
62 #endif
63 
64 #if defined(__FreeBSD__)
65 
66 #define likely(x)	__builtin_expect((long)!!(x), 1L)
67 #define unlikely(x)	__builtin_expect((long)!!(x), 0L)
68 
69 #define	NM_LOCK_T	struct mtx	/* low level spinlock, used to protect queues */
70 
71 #define NM_MTX_T	struct sx	/* OS-specific mutex (sleepable) */
72 #define NM_MTX_INIT(m)		sx_init(&(m), #m)
73 #define NM_MTX_DESTROY(m)	sx_destroy(&(m))
74 #define NM_MTX_LOCK(m)		sx_xlock(&(m))
75 #define NM_MTX_UNLOCK(m)	sx_xunlock(&(m))
76 #define NM_MTX_ASSERT(m)	sx_assert(&(m), SA_XLOCKED)
77 
78 #define	NM_SELINFO_T	struct nm_selinfo
79 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
80 #define	MBUF_IFP(m)	((m)->m_pkthdr.rcvif)
81 #define	NM_SEND_UP(ifp, m)	((NA(ifp))->if_input)(ifp, m)
82 
83 #define NM_ATOMIC_T	volatile int	// XXX ?
84 /* atomic operations */
85 #include <machine/atomic.h>
86 #define NM_ATOMIC_TEST_AND_SET(p)       (!atomic_cmpset_acq_int((p), 0, 1))
87 #define NM_ATOMIC_CLEAR(p)              atomic_store_rel_int((p), 0)
88 
89 #if __FreeBSD_version >= 1100030
90 #define	WNA(_ifp)	(_ifp)->if_netmap
91 #else /* older FreeBSD */
92 #define	WNA(_ifp)	(_ifp)->if_pspare[0]
93 #endif /* older FreeBSD */
94 
95 #if __FreeBSD_version >= 1100005
96 struct netmap_adapter *netmap_getna(if_t ifp);
97 #endif
98 
99 #if __FreeBSD_version >= 1100027
100 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt ? *((m)->m_ext.ext_cnt) : -1)
101 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ext_cnt) = x
102 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ext_cnt)
103 #else
104 #define GET_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt ? *((m)->m_ext.ref_cnt) : -1)
105 #define SET_MBUF_REFCNT(m, x)   *((m)->m_ext.ref_cnt) = x
106 #define PNT_MBUF_REFCNT(m)      ((m)->m_ext.ref_cnt)
107 #endif
108 
109 MALLOC_DECLARE(M_NETMAP);
110 
111 struct nm_selinfo {
112 	struct selinfo si;
113 	struct mtx m;
114 };
115 
116 void freebsd_selwakeup(struct nm_selinfo *si, int pri);
117 
118 // XXX linux struct, not used in FreeBSD
119 struct net_device_ops {
120 };
121 struct ethtool_ops {
122 };
123 struct hrtimer {
124 };
125 #define NM_BNS_GET(b)
126 #define NM_BNS_PUT(b)
127 
128 #elif defined (linux)
129 
130 #define	NM_LOCK_T	safe_spinlock_t	// see bsd_glue.h
131 #define	NM_SELINFO_T	wait_queue_head_t
132 #define	MBUF_LEN(m)	((m)->len)
133 #define	MBUF_IFP(m)	((m)->dev)
134 #define	NM_SEND_UP(ifp, m)  \
135                         do { \
136                             m->priority = NM_MAGIC_PRIORITY_RX; \
137                             netif_rx(m); \
138                         } while (0)
139 
140 #define NM_ATOMIC_T	volatile long unsigned int
141 
142 #define NM_MTX_T	struct mutex	/* OS-specific sleepable lock */
143 #define NM_MTX_INIT(m)	mutex_init(&(m))
144 #define NM_MTX_DESTROY(m)	do { (void)(m); } while (0)
145 #define NM_MTX_LOCK(m)		mutex_lock(&(m))
146 #define NM_MTX_UNLOCK(m)	mutex_unlock(&(m))
147 #define NM_MTX_ASSERT(m)	mutex_is_locked(&(m))
148 
149 #ifndef DEV_NETMAP
150 #define DEV_NETMAP
151 #endif /* DEV_NETMAP */
152 
153 #elif defined (__APPLE__)
154 
155 #warning apple support is incomplete.
156 #define likely(x)	__builtin_expect(!!(x), 1)
157 #define unlikely(x)	__builtin_expect(!!(x), 0)
158 #define	NM_LOCK_T	IOLock *
159 #define	NM_SELINFO_T	struct selinfo
160 #define	MBUF_LEN(m)	((m)->m_pkthdr.len)
161 #define	NM_SEND_UP(ifp, m)	((ifp)->if_input)(ifp, m)
162 
163 #else
164 
165 #error unsupported platform
166 
167 #endif /* end - platform-specific code */
168 
169 #define	NMG_LOCK_T		NM_MTX_T
170 #define	NMG_LOCK_INIT()		NM_MTX_INIT(netmap_global_lock)
171 #define	NMG_LOCK_DESTROY()	NM_MTX_DESTROY(netmap_global_lock)
172 #define	NMG_LOCK()		NM_MTX_LOCK(netmap_global_lock)
173 #define	NMG_UNLOCK()		NM_MTX_UNLOCK(netmap_global_lock)
174 #define	NMG_LOCK_ASSERT()	NM_MTX_ASSERT(netmap_global_lock)
175 
176 #define ND(format, ...)
177 #define D(format, ...)						\
178 	do {							\
179 		struct timeval __xxts;				\
180 		microtime(&__xxts);				\
181 		printf("%03d.%06d [%4d] %-25s " format "\n",	\
182 		(int)__xxts.tv_sec % 1000, (int)__xxts.tv_usec,	\
183 		__LINE__, __FUNCTION__, ##__VA_ARGS__);		\
184 	} while (0)
185 
186 /* rate limited, lps indicates how many per second */
187 #define RD(lps, format, ...)					\
188 	do {							\
189 		static int t0, __cnt;				\
190 		if (t0 != time_second) {			\
191 			t0 = time_second;			\
192 			__cnt = 0;				\
193 		}						\
194 		if (__cnt++ < lps)				\
195 			D(format, ##__VA_ARGS__);		\
196 	} while (0)
197 
198 struct netmap_adapter;
199 struct nm_bdg_fwd;
200 struct nm_bridge;
201 struct netmap_priv_d;
202 
203 const char *nm_dump_buf(char *p, int len, int lim, char *dst);
204 
205 #include "netmap_mbq.h"
206 
207 extern NMG_LOCK_T	netmap_global_lock;
208 
209 enum txrx { NR_RX = 0, NR_TX = 1, NR_TXRX };
210 
211 static __inline const char*
212 nm_txrx2str(enum txrx t)
213 {
214 	return (t== NR_RX ? "RX" : "TX");
215 }
216 
217 static __inline enum txrx
218 nm_txrx_swap(enum txrx t)
219 {
220 	return (t== NR_RX ? NR_TX : NR_RX);
221 }
222 
223 #define for_rx_tx(t)	for ((t) = 0; (t) < NR_TXRX; (t)++)
224 
225 
226 /*
227  * private, kernel view of a ring. Keeps track of the status of
228  * a ring across system calls.
229  *
230  *	nr_hwcur	index of the next buffer to refill.
231  *			It corresponds to ring->head
232  *			at the time the system call returns.
233  *
234  *	nr_hwtail	index of the first buffer owned by the kernel.
235  *			On RX, hwcur->hwtail are receive buffers
236  *			not yet released. hwcur is advanced following
237  *			ring->head, hwtail is advanced on incoming packets,
238  *			and a wakeup is generated when hwtail passes ring->cur
239  *			    On TX, hwcur->rcur have been filled by the sender
240  *			but not sent yet to the NIC; rcur->hwtail are available
241  *			for new transmissions, and hwtail->hwcur-1 are pending
242  *			transmissions not yet acknowledged.
243  *
244  * The indexes in the NIC and netmap rings are offset by nkr_hwofs slots.
245  * This is so that, on a reset, buffers owned by userspace are not
246  * modified by the kernel. In particular:
247  * RX rings: the next empty buffer (hwtail + hwofs) coincides with
248  * 	the next empty buffer as known by the hardware (next_to_check or so).
249  * TX rings: hwcur + hwofs coincides with next_to_send
250  *
251  * For received packets, slot->flags is set to nkr_slot_flags
252  * so we can provide a proper initial value (e.g. set NS_FORWARD
253  * when operating in 'transparent' mode).
254  *
255  * The following fields are used to implement lock-free copy of packets
256  * from input to output ports in VALE switch:
257  *	nkr_hwlease	buffer after the last one being copied.
258  *			A writer in nm_bdg_flush reserves N buffers
259  *			from nr_hwlease, advances it, then does the
260  *			copy outside the lock.
261  *			In RX rings (used for VALE ports),
262  *			nkr_hwtail <= nkr_hwlease < nkr_hwcur+N-1
263  *			In TX rings (used for NIC or host stack ports)
264  *			nkr_hwcur <= nkr_hwlease < nkr_hwtail
265  *	nkr_leases	array of nkr_num_slots where writers can report
266  *			completion of their block. NR_NOSLOT (~0) indicates
267  *			that the writer has not finished yet
268  *	nkr_lease_idx	index of next free slot in nr_leases, to be assigned
269  *
270  * The kring is manipulated by txsync/rxsync and generic netmap function.
271  *
272  * Concurrent rxsync or txsync on the same ring are prevented through
273  * by nm_kr_(try)lock() which in turn uses nr_busy. This is all we need
274  * for NIC rings, and for TX rings attached to the host stack.
275  *
276  * RX rings attached to the host stack use an mbq (rx_queue) on both
277  * rxsync_from_host() and netmap_transmit(). The mbq is protected
278  * by its internal lock.
279  *
280  * RX rings attached to the VALE switch are accessed by both senders
281  * and receiver. They are protected through the q_lock on the RX ring.
282  */
283 struct netmap_kring {
284 	struct netmap_ring	*ring;
285 
286 	uint32_t	nr_hwcur;
287 	uint32_t	nr_hwtail;
288 
289 	/*
290 	 * Copies of values in user rings, so we do not need to look
291 	 * at the ring (which could be modified). These are set in the
292 	 * *sync_prologue()/finalize() routines.
293 	 */
294 	uint32_t	rhead;
295 	uint32_t	rcur;
296 	uint32_t	rtail;
297 
298 	uint32_t	nr_kflags;	/* private driver flags */
299 #define NKR_PENDINTR	0x1		// Pending interrupt.
300 #define NKR_EXCLUSIVE	0x2		/* exclusive binding */
301 	uint32_t	nkr_num_slots;
302 
303 	/*
304 	 * On a NIC reset, the NIC ring indexes may be reset but the
305 	 * indexes in the netmap rings remain the same. nkr_hwofs
306 	 * keeps track of the offset between the two.
307 	 */
308 	int32_t		nkr_hwofs;
309 
310 	uint16_t	nkr_slot_flags;	/* initial value for flags */
311 
312 	/* last_reclaim is opaque marker to help reduce the frequency
313 	 * of operations such as reclaiming tx buffers. A possible use
314 	 * is set it to ticks and do the reclaim only once per tick.
315 	 */
316 	uint64_t	last_reclaim;
317 
318 
319 	NM_SELINFO_T	si;		/* poll/select wait queue */
320 	NM_LOCK_T	q_lock;		/* protects kring and ring. */
321 	NM_ATOMIC_T	nr_busy;	/* prevent concurrent syscalls */
322 
323 	struct netmap_adapter *na;
324 
325 	/* The following fields are for VALE switch support */
326 	struct nm_bdg_fwd *nkr_ft;
327 	uint32_t	*nkr_leases;
328 #define NR_NOSLOT	((uint32_t)~0)	/* used in nkr_*lease* */
329 	uint32_t	nkr_hwlease;
330 	uint32_t	nkr_lease_idx;
331 
332 	/* while nkr_stopped is set, no new [tr]xsync operations can
333 	 * be started on this kring.
334 	 * This is used by netmap_disable_all_rings()
335 	 * to find a synchronization point where critical data
336 	 * structures pointed to by the kring can be added or removed
337 	 */
338 	volatile int nkr_stopped;
339 
340 	/* Support for adapters without native netmap support.
341 	 * On tx rings we preallocate an array of tx buffers
342 	 * (same size as the netmap ring), on rx rings we
343 	 * store incoming mbufs in a queue that is drained by
344 	 * a rxsync.
345 	 */
346 	struct mbuf **tx_pool;
347 	// u_int nr_ntc;		/* Emulation of a next-to-clean RX ring pointer. */
348 	struct mbq rx_queue;            /* intercepted rx mbufs. */
349 
350 	uint32_t	users;		/* existing bindings for this ring */
351 
352 	uint32_t	ring_id;	/* debugging */
353 	enum txrx	tx;		/* kind of ring (tx or rx) */
354 	char name[64];			/* diagnostic */
355 
356 	/* [tx]sync callback for this kring.
357 	 * The default nm_kring_create callback (netmap_krings_create)
358 	 * sets the nm_sync callback of each hardware tx(rx) kring to
359 	 * the corresponding nm_txsync(nm_rxsync) taken from the
360 	 * netmap_adapter; moreover, it sets the sync callback
361 	 * of the host tx(rx) ring to netmap_txsync_to_host
362 	 * (netmap_rxsync_from_host).
363 	 *
364 	 * Overrides: the above configuration is not changed by
365 	 * any of the nm_krings_create callbacks.
366 	 */
367 	int (*nm_sync)(struct netmap_kring *kring, int flags);
368 	int (*nm_notify)(struct netmap_kring *kring, int flags);
369 
370 #ifdef WITH_PIPES
371 	struct netmap_kring *pipe;	/* if this is a pipe ring,
372 					 * pointer to the other end
373 					 */
374 	struct netmap_ring *save_ring;	/* pointer to hidden rings
375        					 * (see netmap_pipe.c for details)
376 					 */
377 #endif /* WITH_PIPES */
378 
379 #ifdef WITH_VALE
380 	int (*save_notify)(struct netmap_kring *kring, int flags);
381 #endif
382 
383 #ifdef WITH_MONITOR
384 	/* array of krings that are monitoring this kring */
385 	struct netmap_kring **monitors;
386 	uint32_t max_monitors; /* current size of the monitors array */
387 	uint32_t n_monitors;	/* next unused entry in the monitor array */
388 	/*
389 	 * Monitors work by intercepting the sync and notify callbacks of the
390 	 * monitored krings. This is implemented by replacing the pointers
391 	 * above and saving the previous ones in mon_* pointers below
392 	 */
393 	int (*mon_sync)(struct netmap_kring *kring, int flags);
394 	int (*mon_notify)(struct netmap_kring *kring, int flags);
395 
396 	uint32_t mon_tail;  /* last seen slot on rx */
397 	uint32_t mon_pos;   /* index of this ring in the monitored ring array */
398 #endif
399 } __attribute__((__aligned__(64)));
400 
401 
402 /* return the next index, with wraparound */
403 static inline uint32_t
404 nm_next(uint32_t i, uint32_t lim)
405 {
406 	return unlikely (i == lim) ? 0 : i + 1;
407 }
408 
409 
410 /* return the previous index, with wraparound */
411 static inline uint32_t
412 nm_prev(uint32_t i, uint32_t lim)
413 {
414 	return unlikely (i == 0) ? lim : i - 1;
415 }
416 
417 
418 /*
419  *
420  * Here is the layout for the Rx and Tx rings.
421 
422        RxRING                            TxRING
423 
424       +-----------------+            +-----------------+
425       |                 |            |                 |
426       |XXX free slot XXX|            |XXX free slot XXX|
427       +-----------------+            +-----------------+
428 head->| owned by user   |<-hwcur     | not sent to nic |<-hwcur
429       |                 |            | yet             |
430       +-----------------+            |                 |
431  cur->| available to    |            |                 |
432       | user, not read  |            +-----------------+
433       | yet             |       cur->| (being          |
434       |                 |            |  prepared)      |
435       |                 |            |                 |
436       +-----------------+            +     ------      +
437 tail->|                 |<-hwtail    |                 |<-hwlease
438       | (being          | ...        |                 | ...
439       |  prepared)      | ...        |                 | ...
440       +-----------------+ ...        |                 | ...
441       |                 |<-hwlease   +-----------------+
442       |                 |      tail->|                 |<-hwtail
443       |                 |            |                 |
444       |                 |            |                 |
445       |                 |            |                 |
446       +-----------------+            +-----------------+
447 
448  * The cur/tail (user view) and hwcur/hwtail (kernel view)
449  * are used in the normal operation of the card.
450  *
451  * When a ring is the output of a switch port (Rx ring for
452  * a VALE port, Tx ring for the host stack or NIC), slots
453  * are reserved in blocks through 'hwlease' which points
454  * to the next unused slot.
455  * On an Rx ring, hwlease is always after hwtail,
456  * and completions cause hwtail to advance.
457  * On a Tx ring, hwlease is always between cur and hwtail,
458  * and completions cause cur to advance.
459  *
460  * nm_kr_space() returns the maximum number of slots that
461  * can be assigned.
462  * nm_kr_lease() reserves the required number of buffers,
463  *    advances nkr_hwlease and also returns an entry in
464  *    a circular array where completions should be reported.
465  */
466 
467 
468 struct netmap_lut {
469 	struct lut_entry *lut;
470 	uint32_t objtotal;	/* max buffer index */
471 	uint32_t objsize;	/* buffer size */
472 };
473 
474 struct netmap_vp_adapter; // forward
475 
476 /*
477  * The "struct netmap_adapter" extends the "struct adapter"
478  * (or equivalent) device descriptor.
479  * It contains all base fields needed to support netmap operation.
480  * There are in fact different types of netmap adapters
481  * (native, generic, VALE switch...) so a netmap_adapter is
482  * just the first field in the derived type.
483  */
484 struct netmap_adapter {
485 	/*
486 	 * On linux we do not have a good way to tell if an interface
487 	 * is netmap-capable. So we always use the following trick:
488 	 * NA(ifp) points here, and the first entry (which hopefully
489 	 * always exists and is at least 32 bits) contains a magic
490 	 * value which we can use to detect that the interface is good.
491 	 */
492 	uint32_t magic;
493 	uint32_t na_flags;	/* enabled, and other flags */
494 #define NAF_SKIP_INTR	1	/* use the regular interrupt handler.
495 				 * useful during initialization
496 				 */
497 #define NAF_SW_ONLY	2	/* forward packets only to sw adapter */
498 #define NAF_BDG_MAYSLEEP 4	/* the bridge is allowed to sleep when
499 				 * forwarding packets coming from this
500 				 * interface
501 				 */
502 #define NAF_MEM_OWNER	8	/* the adapter uses its own memory area
503 				 * that cannot be changed
504 				 */
505 #define NAF_NATIVE      16      /* the adapter is native.
506 				 * Virtual ports (vale, pipe, monitor...)
507 				 * should never use this flag.
508 				 */
509 #define	NAF_NETMAP_ON	32	/* netmap is active (either native or
510 				 * emulated). Where possible (e.g. FreeBSD)
511 				 * IFCAP_NETMAP also mirrors this flag.
512 				 */
513 #define NAF_HOST_RINGS  64	/* the adapter supports the host rings */
514 #define NAF_FORCE_NATIVE 128	/* the adapter is always NATIVE */
515 #define	NAF_BUSY	(1U<<31) /* the adapter is used internally and
516 				  * cannot be registered from userspace
517 				  */
518 	int active_fds; /* number of user-space descriptors using this
519 			 interface, which is equal to the number of
520 			 struct netmap_if objs in the mapped region. */
521 
522 	u_int num_rx_rings; /* number of adapter receive rings */
523 	u_int num_tx_rings; /* number of adapter transmit rings */
524 
525 	u_int num_tx_desc;  /* number of descriptor in each queue */
526 	u_int num_rx_desc;
527 
528 	/* tx_rings and rx_rings are private but allocated
529 	 * as a contiguous chunk of memory. Each array has
530 	 * N+1 entries, for the adapter queues and for the host queue.
531 	 */
532 	struct netmap_kring *tx_rings; /* array of TX rings. */
533 	struct netmap_kring *rx_rings; /* array of RX rings. */
534 
535 	void *tailroom;		       /* space below the rings array */
536 				       /* (used for leases) */
537 
538 
539 	NM_SELINFO_T si[NR_TXRX];	/* global wait queues */
540 
541 	/* count users of the global wait queues */
542 	int si_users[NR_TXRX];
543 
544 	void *pdev; /* used to store pci device */
545 
546 	/* copy of if_qflush and if_transmit pointers, to intercept
547 	 * packets from the network stack when netmap is active.
548 	 */
549 	int     (*if_transmit)(struct ifnet *, struct mbuf *);
550 
551 	/* copy of if_input for netmap_send_up() */
552 	void     (*if_input)(struct ifnet *, struct mbuf *);
553 
554 	/* references to the ifnet and device routines, used by
555 	 * the generic netmap functions.
556 	 */
557 	struct ifnet *ifp; /* adapter is ifp->if_softc */
558 
559 	/*---- callbacks for this netmap adapter -----*/
560 	/*
561 	 * nm_dtor() is the cleanup routine called when destroying
562 	 *	the adapter.
563 	 *	Called with NMG_LOCK held.
564 	 *
565 	 * nm_register() is called on NIOCREGIF and close() to enter
566 	 *	or exit netmap mode on the NIC
567 	 *	Called with NNG_LOCK held.
568 	 *
569 	 * nm_txsync() pushes packets to the underlying hw/switch
570 	 *
571 	 * nm_rxsync() collects packets from the underlying hw/switch
572 	 *
573 	 * nm_config() returns configuration information from the OS
574 	 *	Called with NMG_LOCK held.
575 	 *
576 	 * nm_krings_create() create and init the tx_rings and
577 	 * 	rx_rings arrays of kring structures. In particular,
578 	 * 	set the nm_sync callbacks for each ring.
579 	 * 	There is no need to also allocate the corresponding
580 	 * 	netmap_rings, since netmap_mem_rings_create() will always
581 	 * 	be called to provide the missing ones.
582 	 *	Called with NNG_LOCK held.
583 	 *
584 	 * nm_krings_delete() cleanup and delete the tx_rings and rx_rings
585 	 * 	arrays
586 	 *	Called with NMG_LOCK held.
587 	 *
588 	 * nm_notify() is used to act after data have become available
589 	 * 	(or the stopped state of the ring has changed)
590 	 *	For hw devices this is typically a selwakeup(),
591 	 *	but for NIC/host ports attached to a switch (or vice-versa)
592 	 *	we also need to invoke the 'txsync' code downstream.
593 	 */
594 	void (*nm_dtor)(struct netmap_adapter *);
595 
596 	int (*nm_register)(struct netmap_adapter *, int onoff);
597 
598 	int (*nm_txsync)(struct netmap_kring *kring, int flags);
599 	int (*nm_rxsync)(struct netmap_kring *kring, int flags);
600 	int (*nm_notify)(struct netmap_kring *kring, int flags);
601 #define NAF_FORCE_READ    1
602 #define NAF_FORCE_RECLAIM 2
603 	/* return configuration information */
604 	int (*nm_config)(struct netmap_adapter *,
605 		u_int *txr, u_int *txd, u_int *rxr, u_int *rxd);
606 	int (*nm_krings_create)(struct netmap_adapter *);
607 	void (*nm_krings_delete)(struct netmap_adapter *);
608 #ifdef WITH_VALE
609 	/*
610 	 * nm_bdg_attach() initializes the na_vp field to point
611 	 *      to an adapter that can be attached to a VALE switch. If the
612 	 *      current adapter is already a VALE port, na_vp is simply a cast;
613 	 *      otherwise, na_vp points to a netmap_bwrap_adapter.
614 	 *      If applicable, this callback also initializes na_hostvp,
615 	 *      that can be used to connect the adapter host rings to the
616 	 *      switch.
617 	 *      Called with NMG_LOCK held.
618 	 *
619 	 * nm_bdg_ctl() is called on the actual attach/detach to/from
620 	 *      to/from the switch, to perform adapter-specific
621 	 *      initializations
622 	 *      Called with NMG_LOCK held.
623 	 */
624 	int (*nm_bdg_attach)(const char *bdg_name, struct netmap_adapter *);
625 	int (*nm_bdg_ctl)(struct netmap_adapter *, struct nmreq *, int);
626 
627 	/* adapter used to attach this adapter to a VALE switch (if any) */
628 	struct netmap_vp_adapter *na_vp;
629 	/* adapter used to attach the host rings of this adapter
630 	 * to a VALE switch (if any) */
631 	struct netmap_vp_adapter *na_hostvp;
632 #endif
633 
634 	/* standard refcount to control the lifetime of the adapter
635 	 * (it should be equal to the lifetime of the corresponding ifp)
636 	 */
637 	int na_refcount;
638 
639 	/* memory allocator (opaque)
640 	 * We also cache a pointer to the lut_entry for translating
641 	 * buffer addresses, and the total number of buffers.
642 	 */
643  	struct netmap_mem_d *nm_mem;
644 	struct netmap_lut na_lut;
645 
646 	/* additional information attached to this adapter
647 	 * by other netmap subsystems. Currently used by
648 	 * bwrap and LINUX/v1000.
649 	 */
650 	void *na_private;
651 
652 	/* array of pipes that have this adapter as a parent */
653 	struct netmap_pipe_adapter **na_pipes;
654 	int na_next_pipe;	/* next free slot in the array */
655 	int na_max_pipes;	/* size of the array */
656 
657 	char name[64];
658 };
659 
660 static __inline u_int
661 nma_get_ndesc(struct netmap_adapter *na, enum txrx t)
662 {
663 	return (t == NR_TX ? na->num_tx_desc : na->num_rx_desc);
664 }
665 
666 static __inline void
667 nma_set_ndesc(struct netmap_adapter *na, enum txrx t, u_int v)
668 {
669 	if (t == NR_TX)
670 		na->num_tx_desc = v;
671 	else
672 		na->num_rx_desc = v;
673 }
674 
675 static __inline u_int
676 nma_get_nrings(struct netmap_adapter *na, enum txrx t)
677 {
678 	return (t == NR_TX ? na->num_tx_rings : na->num_rx_rings);
679 }
680 
681 static __inline void
682 nma_set_nrings(struct netmap_adapter *na, enum txrx t, u_int v)
683 {
684 	if (t == NR_TX)
685 		na->num_tx_rings = v;
686 	else
687 		na->num_rx_rings = v;
688 }
689 
690 static __inline struct netmap_kring*
691 NMR(struct netmap_adapter *na, enum txrx t)
692 {
693 	return (t == NR_TX ? na->tx_rings : na->rx_rings);
694 }
695 
696 /*
697  * If the NIC is owned by the kernel
698  * (i.e., bridge), neither another bridge nor user can use it;
699  * if the NIC is owned by a user, only users can share it.
700  * Evaluation must be done under NMG_LOCK().
701  */
702 #define NETMAP_OWNED_BY_KERN(na)	((na)->na_flags & NAF_BUSY)
703 #define NETMAP_OWNED_BY_ANY(na) \
704 	(NETMAP_OWNED_BY_KERN(na) || ((na)->active_fds > 0))
705 
706 /*
707  * derived netmap adapters for various types of ports
708  */
709 struct netmap_vp_adapter {	/* VALE software port */
710 	struct netmap_adapter up;
711 
712 	/*
713 	 * Bridge support:
714 	 *
715 	 * bdg_port is the port number used in the bridge;
716 	 * na_bdg points to the bridge this NA is attached to.
717 	 */
718 	int bdg_port;
719 	struct nm_bridge *na_bdg;
720 	int retry;
721 
722 	/* Offset of ethernet header for each packet. */
723 	u_int virt_hdr_len;
724 	/* Maximum Frame Size, used in bdg_mismatch_datapath() */
725 	u_int mfs;
726 	/* Last source MAC on this port */
727 	uint64_t last_smac;
728 };
729 
730 
731 struct netmap_hw_adapter {	/* physical device */
732 	struct netmap_adapter up;
733 
734 	struct net_device_ops nm_ndo;	// XXX linux only
735 	struct ethtool_ops    nm_eto;	// XXX linux only
736 	const struct ethtool_ops*   save_ethtool;
737 
738 	int (*nm_hw_register)(struct netmap_adapter *, int onoff);
739 };
740 
741 #ifdef WITH_GENERIC
742 /* Mitigation support. */
743 struct nm_generic_mit {
744 	struct hrtimer mit_timer;
745 	int mit_pending;
746 	int mit_ring_idx;  /* index of the ring being mitigated */
747 	struct netmap_adapter *mit_na;  /* backpointer */
748 };
749 
750 struct netmap_generic_adapter {	/* emulated device */
751 	struct netmap_hw_adapter up;
752 
753 	/* Pointer to a previously used netmap adapter. */
754 	struct netmap_adapter *prev;
755 
756 	/* generic netmap adapters support:
757 	 * a net_device_ops struct overrides ndo_select_queue(),
758 	 * save_if_input saves the if_input hook (FreeBSD),
759 	 * mit implements rx interrupt mitigation,
760 	 */
761 	struct net_device_ops generic_ndo;
762 	void (*save_if_input)(struct ifnet *, struct mbuf *);
763 
764 	struct nm_generic_mit *mit;
765 #ifdef linux
766         netdev_tx_t (*save_start_xmit)(struct mbuf *, struct ifnet *);
767 #endif
768 };
769 #endif  /* WITH_GENERIC */
770 
771 static __inline int
772 netmap_real_rings(struct netmap_adapter *na, enum txrx t)
773 {
774 	return nma_get_nrings(na, t) + !!(na->na_flags & NAF_HOST_RINGS);
775 }
776 
777 #ifdef WITH_VALE
778 
779 /*
780  * Bridge wrapper for non VALE ports attached to a VALE switch.
781  *
782  * The real device must already have its own netmap adapter (hwna).
783  * The bridge wrapper and the hwna adapter share the same set of
784  * netmap rings and buffers, but they have two separate sets of
785  * krings descriptors, with tx/rx meanings swapped:
786  *
787  *                                  netmap
788  *           bwrap     krings       rings      krings      hwna
789  *         +------+   +------+     +-----+    +------+   +------+
790  *         |tx_rings->|      |\   /|     |----|      |<-tx_rings|
791  *         |      |   +------+ \ / +-----+    +------+   |      |
792  *         |      |             X                        |      |
793  *         |      |            / \                       |      |
794  *         |      |   +------+/   \+-----+    +------+   |      |
795  *         |rx_rings->|      |     |     |----|      |<-rx_rings|
796  *         |      |   +------+     +-----+    +------+   |      |
797  *         +------+                                      +------+
798  *
799  * - packets coming from the bridge go to the brwap rx rings,
800  *   which are also the hwna tx rings.  The bwrap notify callback
801  *   will then complete the hwna tx (see netmap_bwrap_notify).
802  *
803  * - packets coming from the outside go to the hwna rx rings,
804  *   which are also the bwrap tx rings.  The (overwritten) hwna
805  *   notify method will then complete the bridge tx
806  *   (see netmap_bwrap_intr_notify).
807  *
808  *   The bridge wrapper may optionally connect the hwna 'host' rings
809  *   to the bridge. This is done by using a second port in the
810  *   bridge and connecting it to the 'host' netmap_vp_adapter
811  *   contained in the netmap_bwrap_adapter. The brwap host adapter
812  *   cross-links the hwna host rings in the same way as shown above.
813  *
814  * - packets coming from the bridge and directed to the host stack
815  *   are handled by the bwrap host notify callback
816  *   (see netmap_bwrap_host_notify)
817  *
818  * - packets coming from the host stack are still handled by the
819  *   overwritten hwna notify callback (netmap_bwrap_intr_notify),
820  *   but are diverted to the host adapter depending on the ring number.
821  *
822  */
823 struct netmap_bwrap_adapter {
824 	struct netmap_vp_adapter up;
825 	struct netmap_vp_adapter host;  /* for host rings */
826 	struct netmap_adapter *hwna;	/* the underlying device */
827 
828 	/* backup of the hwna memory allocator */
829 	struct netmap_mem_d *save_nmd;
830 
831 	/*
832 	 * When we attach a physical interface to the bridge, we
833 	 * allow the controlling process to terminate, so we need
834 	 * a place to store the n_detmap_priv_d data structure.
835 	 * This is only done when physical interfaces
836 	 * are attached to a bridge.
837 	 */
838 	struct netmap_priv_d *na_kpriv;
839 };
840 int netmap_bwrap_attach(const char *name, struct netmap_adapter *);
841 
842 
843 #endif /* WITH_VALE */
844 
845 #ifdef WITH_PIPES
846 
847 #define NM_MAXPIPES 	64	/* max number of pipes per adapter */
848 
849 struct netmap_pipe_adapter {
850 	struct netmap_adapter up;
851 
852 	u_int id; 	/* pipe identifier */
853 	int role;	/* either NR_REG_PIPE_MASTER or NR_REG_PIPE_SLAVE */
854 
855 	struct netmap_adapter *parent; /* adapter that owns the memory */
856 	struct netmap_pipe_adapter *peer; /* the other end of the pipe */
857 	int peer_ref;		/* 1 iff we are holding a ref to the peer */
858 
859 	u_int parent_slot; /* index in the parent pipe array */
860 };
861 
862 #endif /* WITH_PIPES */
863 
864 
865 /* return slots reserved to rx clients; used in drivers */
866 static inline uint32_t
867 nm_kr_rxspace(struct netmap_kring *k)
868 {
869 	int space = k->nr_hwtail - k->nr_hwcur;
870 	if (space < 0)
871 		space += k->nkr_num_slots;
872 	ND("preserving %d rx slots %d -> %d", space, k->nr_hwcur, k->nr_hwtail);
873 
874 	return space;
875 }
876 
877 
878 /* True if no space in the tx ring. only valid after txsync_prologue */
879 static inline int
880 nm_kr_txempty(struct netmap_kring *kring)
881 {
882 	return kring->rcur == kring->nr_hwtail;
883 }
884 
885 
886 /*
887  * protect against multiple threads using the same ring.
888  * also check that the ring has not been stopped.
889  * We only care for 0 or !=0 as a return code.
890  */
891 #define NM_KR_BUSY	1
892 #define NM_KR_STOPPED	2
893 
894 
895 static __inline void nm_kr_put(struct netmap_kring *kr)
896 {
897 	NM_ATOMIC_CLEAR(&kr->nr_busy);
898 }
899 
900 
901 static __inline int nm_kr_tryget(struct netmap_kring *kr)
902 {
903 	/* check a first time without taking the lock
904 	 * to avoid starvation for nm_kr_get()
905 	 */
906 	if (unlikely(kr->nkr_stopped)) {
907 		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
908 		return NM_KR_STOPPED;
909 	}
910 	if (unlikely(NM_ATOMIC_TEST_AND_SET(&kr->nr_busy)))
911 		return NM_KR_BUSY;
912 	/* check a second time with lock held */
913 	if (unlikely(kr->nkr_stopped)) {
914 		ND("ring %p stopped (%d)", kr, kr->nkr_stopped);
915 		nm_kr_put(kr);
916 		return NM_KR_STOPPED;
917 	}
918 	return 0;
919 }
920 
921 static __inline void nm_kr_get(struct netmap_kring *kr)
922 {
923 	while (NM_ATOMIC_TEST_AND_SET(&kr->nr_busy))
924 		tsleep(kr, 0, "NM_KR_GET", 4);
925 }
926 
927 
928 
929 
930 /*
931  * The following functions are used by individual drivers to
932  * support netmap operation.
933  *
934  * netmap_attach() initializes a struct netmap_adapter, allocating the
935  * 	struct netmap_ring's and the struct selinfo.
936  *
937  * netmap_detach() frees the memory allocated by netmap_attach().
938  *
939  * netmap_transmit() replaces the if_transmit routine of the interface,
940  *	and is used to intercept packets coming from the stack.
941  *
942  * netmap_load_map/netmap_reload_map are helper routines to set/reset
943  *	the dmamap for a packet buffer
944  *
945  * netmap_reset() is a helper routine to be called in the hw driver
946  *	when reinitializing a ring. It should not be called by
947  *	virtual ports (vale, pipes, monitor)
948  */
949 int netmap_attach(struct netmap_adapter *);
950 void netmap_detach(struct ifnet *);
951 int netmap_transmit(struct ifnet *, struct mbuf *);
952 struct netmap_slot *netmap_reset(struct netmap_adapter *na,
953 	enum txrx tx, u_int n, u_int new_cur);
954 int netmap_ring_reinit(struct netmap_kring *);
955 
956 /* default functions to handle rx/tx interrupts */
957 int netmap_rx_irq(struct ifnet *, u_int, u_int *);
958 #define netmap_tx_irq(_n, _q) netmap_rx_irq(_n, _q, NULL)
959 void netmap_common_irq(struct ifnet *, u_int, u_int *work_done);
960 
961 
962 #ifdef WITH_VALE
963 /* functions used by external modules to interface with VALE */
964 #define netmap_vp_to_ifp(_vp)	((_vp)->up.ifp)
965 #define netmap_ifp_to_vp(_ifp)	(NA(_ifp)->na_vp)
966 #define netmap_ifp_to_host_vp(_ifp) (NA(_ifp)->na_hostvp)
967 #define netmap_bdg_idx(_vp)	((_vp)->bdg_port)
968 const char *netmap_bdg_name(struct netmap_vp_adapter *);
969 #else /* !WITH_VALE */
970 #define netmap_vp_to_ifp(_vp)	NULL
971 #define netmap_ifp_to_vp(_ifp)	NULL
972 #define netmap_ifp_to_host_vp(_ifp) NULL
973 #define netmap_bdg_idx(_vp)	-1
974 #define netmap_bdg_name(_vp)	NULL
975 #endif /* WITH_VALE */
976 
977 static inline int
978 nm_netmap_on(struct netmap_adapter *na)
979 {
980 	return na && na->na_flags & NAF_NETMAP_ON;
981 }
982 
983 static inline int
984 nm_native_on(struct netmap_adapter *na)
985 {
986 	return nm_netmap_on(na) && (na->na_flags & NAF_NATIVE);
987 }
988 
989 /* set/clear native flags and if_transmit/netdev_ops */
990 static inline void
991 nm_set_native_flags(struct netmap_adapter *na)
992 {
993 	struct ifnet *ifp = na->ifp;
994 
995 	na->na_flags |= NAF_NETMAP_ON;
996 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
997 	ifp->if_capenable |= IFCAP_NETMAP;
998 #endif
999 #ifdef __FreeBSD__
1000 	na->if_transmit = ifp->if_transmit;
1001 	ifp->if_transmit = netmap_transmit;
1002 #else
1003 	na->if_transmit = (void *)ifp->netdev_ops;
1004 	ifp->netdev_ops = &((struct netmap_hw_adapter *)na)->nm_ndo;
1005 	((struct netmap_hw_adapter *)na)->save_ethtool = ifp->ethtool_ops;
1006 	ifp->ethtool_ops = &((struct netmap_hw_adapter*)na)->nm_eto;
1007 #endif
1008 }
1009 
1010 
1011 static inline void
1012 nm_clear_native_flags(struct netmap_adapter *na)
1013 {
1014 	struct ifnet *ifp = na->ifp;
1015 
1016 #ifdef __FreeBSD__
1017 	ifp->if_transmit = na->if_transmit;
1018 #else
1019 	ifp->netdev_ops = (void *)na->if_transmit;
1020 	ifp->ethtool_ops = ((struct netmap_hw_adapter*)na)->save_ethtool;
1021 #endif
1022 	na->na_flags &= ~NAF_NETMAP_ON;
1023 #ifdef IFCAP_NETMAP /* or FreeBSD ? */
1024 	ifp->if_capenable &= ~IFCAP_NETMAP;
1025 #endif
1026 }
1027 
1028 
1029 /* check/fix address and len in tx rings */
1030 #if 1 /* debug version */
1031 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1032 	if (_a == NETMAP_BUF_BASE(_na) || _l > NETMAP_BUF_SIZE(_na)) {	\
1033 		RD(5, "bad addr/len ring %d slot %d idx %d len %d",	\
1034 			kring->ring_id, nm_i, slot->buf_idx, len);	\
1035 		if (_l > NETMAP_BUF_SIZE(_na))				\
1036 			_l = NETMAP_BUF_SIZE(_na);			\
1037 	} } while (0)
1038 #else /* no debug version */
1039 #define	NM_CHECK_ADDR_LEN(_na, _a, _l)	do {				\
1040 		if (_l > NETMAP_BUF_SIZE(_na))				\
1041 			_l = NETMAP_BUF_SIZE(_na);			\
1042 	} while (0)
1043 #endif
1044 
1045 
1046 /*---------------------------------------------------------------*/
1047 /*
1048  * Support routines used by netmap subsystems
1049  * (native drivers, VALE, generic, pipes, monitors, ...)
1050  */
1051 
1052 
1053 /* common routine for all functions that create a netmap adapter. It performs
1054  * two main tasks:
1055  * - if the na points to an ifp, mark the ifp as netmap capable
1056  *   using na as its native adapter;
1057  * - provide defaults for the setup callbacks and the memory allocator
1058  */
1059 int netmap_attach_common(struct netmap_adapter *);
1060 /* common actions to be performed on netmap adapter destruction */
1061 void netmap_detach_common(struct netmap_adapter *);
1062 /* fill priv->np_[tr]xq{first,last} using the ringid and flags information
1063  * coming from a struct nmreq
1064  */
1065 int netmap_interp_ringid(struct netmap_priv_d *priv, uint16_t ringid, uint32_t flags);
1066 /* update the ring parameters (number and size of tx and rx rings).
1067  * It calls the nm_config callback, if available.
1068  */
1069 int netmap_update_config(struct netmap_adapter *na);
1070 /* create and initialize the common fields of the krings array.
1071  * using the information that must be already available in the na.
1072  * tailroom can be used to request the allocation of additional
1073  * tailroom bytes after the krings array. This is used by
1074  * netmap_vp_adapter's (i.e., VALE ports) to make room for
1075  * leasing-related data structures
1076  */
1077 int netmap_krings_create(struct netmap_adapter *na, u_int tailroom);
1078 /* deletes the kring array of the adapter. The array must have
1079  * been created using netmap_krings_create
1080  */
1081 void netmap_krings_delete(struct netmap_adapter *na);
1082 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
1083 
1084 
1085 /* set the stopped/enabled status of ring
1086  * When stopping, they also wait for all current activity on the ring to
1087  * terminate. The status change is then notified using the na nm_notify
1088  * callback.
1089  */
1090 void netmap_set_ring(struct netmap_adapter *, u_int ring_id, enum txrx, int stopped);
1091 /* set the stopped/enabled status of all rings of the adapter. */
1092 void netmap_set_all_rings(struct netmap_adapter *, int stopped);
1093 /* convenience wrappers for netmap_set_all_rings, used in drivers */
1094 void netmap_disable_all_rings(struct ifnet *);
1095 void netmap_enable_all_rings(struct ifnet *);
1096 
1097 int netmap_rxsync_from_host(struct netmap_adapter *na, struct thread *td, void *pwait);
1098 
1099 int
1100 netmap_do_regif(struct netmap_priv_d *priv, struct netmap_adapter *na,
1101 	uint16_t ringid, uint32_t flags);
1102 
1103 
1104 
1105 u_int nm_bound_var(u_int *v, u_int dflt, u_int lo, u_int hi, const char *msg);
1106 int netmap_get_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1107 int netmap_get_hw_na(struct ifnet *ifp, struct netmap_adapter **na);
1108 
1109 
1110 #ifdef WITH_VALE
1111 /*
1112  * The following bridge-related functions are used by other
1113  * kernel modules.
1114  *
1115  * VALE only supports unicast or broadcast. The lookup
1116  * function can return 0 .. NM_BDG_MAXPORTS-1 for regular ports,
1117  * NM_BDG_MAXPORTS for broadcast, NM_BDG_MAXPORTS+1 for unknown.
1118  * XXX in practice "unknown" might be handled same as broadcast.
1119  */
1120 typedef u_int (*bdg_lookup_fn_t)(struct nm_bdg_fwd *ft, uint8_t *ring_nr,
1121 		struct netmap_vp_adapter *);
1122 typedef int (*bdg_config_fn_t)(struct nm_ifreq *);
1123 typedef void (*bdg_dtor_fn_t)(const struct netmap_vp_adapter *);
1124 struct netmap_bdg_ops {
1125 	bdg_lookup_fn_t lookup;
1126 	bdg_config_fn_t config;
1127 	bdg_dtor_fn_t	dtor;
1128 };
1129 
1130 u_int netmap_bdg_learning(struct nm_bdg_fwd *ft, uint8_t *dst_ring,
1131 		struct netmap_vp_adapter *);
1132 
1133 #define	NM_BDG_MAXPORTS		254	/* up to 254 */
1134 #define	NM_BDG_BROADCAST	NM_BDG_MAXPORTS
1135 #define	NM_BDG_NOPORT		(NM_BDG_MAXPORTS+1)
1136 
1137 #define	NM_NAME			"vale"	/* prefix for bridge port name */
1138 
1139 /* these are redefined in case of no VALE support */
1140 int netmap_get_bdg_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1141 struct nm_bridge *netmap_init_bridges2(u_int);
1142 void netmap_uninit_bridges2(struct nm_bridge *, u_int);
1143 int netmap_init_bridges(void);
1144 void netmap_uninit_bridges(void);
1145 int netmap_bdg_ctl(struct nmreq *nmr, struct netmap_bdg_ops *bdg_ops);
1146 int netmap_bdg_config(struct nmreq *nmr);
1147 
1148 #else /* !WITH_VALE */
1149 #define	netmap_get_bdg_na(_1, _2, _3)	0
1150 #define netmap_init_bridges(_1) 0
1151 #define netmap_uninit_bridges()
1152 #define	netmap_bdg_ctl(_1, _2)	EINVAL
1153 #endif /* !WITH_VALE */
1154 
1155 #ifdef WITH_PIPES
1156 /* max number of pipes per device */
1157 #define NM_MAXPIPES	64	/* XXX how many? */
1158 void netmap_pipe_dealloc(struct netmap_adapter *);
1159 int netmap_get_pipe_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1160 #else /* !WITH_PIPES */
1161 #define NM_MAXPIPES	0
1162 #define netmap_pipe_alloc(_1, _2) 	0
1163 #define netmap_pipe_dealloc(_1)
1164 #define netmap_get_pipe_na(nmr, _2, _3)	\
1165 	({ int role__ = (nmr)->nr_flags & NR_REG_MASK; \
1166 	   (role__ == NR_REG_PIPE_MASTER || 	       \
1167 	    role__ == NR_REG_PIPE_SLAVE) ? EOPNOTSUPP : 0; })
1168 #endif
1169 
1170 #ifdef WITH_MONITOR
1171 int netmap_get_monitor_na(struct nmreq *nmr, struct netmap_adapter **na, int create);
1172 void netmap_monitor_stop(struct netmap_adapter *na);
1173 #else
1174 #define netmap_get_monitor_na(nmr, _2, _3) \
1175 	((nmr)->nr_flags & (NR_MONITOR_TX | NR_MONITOR_RX) ? EOPNOTSUPP : 0)
1176 #endif
1177 
1178 #ifdef CONFIG_NET_NS
1179 struct net *netmap_bns_get(void);
1180 void netmap_bns_put(struct net *);
1181 void netmap_bns_getbridges(struct nm_bridge **, u_int *);
1182 #else
1183 #define netmap_bns_get()
1184 #define netmap_bns_put(_1)
1185 #define netmap_bns_getbridges(b, n) \
1186 	do { *b = nm_bridges; *n = NM_BRIDGES; } while (0)
1187 #endif
1188 
1189 /* Various prototypes */
1190 int netmap_poll(struct cdev *dev, int events, struct thread *td);
1191 int netmap_init(void);
1192 void netmap_fini(void);
1193 int netmap_get_memory(struct netmap_priv_d* p);
1194 void netmap_dtor(void *data);
1195 int netmap_dtor_locked(struct netmap_priv_d *priv);
1196 
1197 int netmap_ioctl(struct cdev *dev, u_long cmd, caddr_t data, int fflag, struct thread *td);
1198 
1199 /* netmap_adapter creation/destruction */
1200 
1201 // #define NM_DEBUG_PUTGET 1
1202 
1203 #ifdef NM_DEBUG_PUTGET
1204 
1205 #define NM_DBG(f) __##f
1206 
1207 void __netmap_adapter_get(struct netmap_adapter *na);
1208 
1209 #define netmap_adapter_get(na) 				\
1210 	do {						\
1211 		struct netmap_adapter *__na = na;	\
1212 		D("getting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1213 		__netmap_adapter_get(__na);		\
1214 	} while (0)
1215 
1216 int __netmap_adapter_put(struct netmap_adapter *na);
1217 
1218 #define netmap_adapter_put(na)				\
1219 	({						\
1220 		struct netmap_adapter *__na = na;	\
1221 		D("putting %p:%s (%d)", __na, (__na)->name, (__na)->na_refcount);	\
1222 		__netmap_adapter_put(__na);		\
1223 	})
1224 
1225 #else /* !NM_DEBUG_PUTGET */
1226 
1227 #define NM_DBG(f) f
1228 void netmap_adapter_get(struct netmap_adapter *na);
1229 int netmap_adapter_put(struct netmap_adapter *na);
1230 
1231 #endif /* !NM_DEBUG_PUTGET */
1232 
1233 
1234 /*
1235  * module variables
1236  */
1237 #define NETMAP_BUF_BASE(na)	((na)->na_lut.lut[0].vaddr)
1238 #define NETMAP_BUF_SIZE(na)	((na)->na_lut.objsize)
1239 extern int netmap_mitigate;	// XXX not really used
1240 extern int netmap_no_pendintr;
1241 extern int netmap_verbose;	// XXX debugging
1242 enum {                                  /* verbose flags */
1243 	NM_VERB_ON = 1,                 /* generic verbose */
1244 	NM_VERB_HOST = 0x2,             /* verbose host stack */
1245 	NM_VERB_RXSYNC = 0x10,          /* verbose on rxsync/txsync */
1246 	NM_VERB_TXSYNC = 0x20,
1247 	NM_VERB_RXINTR = 0x100,         /* verbose on rx/tx intr (driver) */
1248 	NM_VERB_TXINTR = 0x200,
1249 	NM_VERB_NIC_RXSYNC = 0x1000,    /* verbose on rx/tx intr (driver) */
1250 	NM_VERB_NIC_TXSYNC = 0x2000,
1251 };
1252 
1253 extern int netmap_txsync_retry;
1254 extern int netmap_generic_mit;
1255 extern int netmap_generic_ringsize;
1256 extern int netmap_generic_rings;
1257 
1258 /*
1259  * NA returns a pointer to the struct netmap adapter from the ifp,
1260  * WNA is used to write it.
1261  */
1262 #define	NA(_ifp)	((struct netmap_adapter *)WNA(_ifp))
1263 
1264 /*
1265  * Macros to determine if an interface is netmap capable or netmap enabled.
1266  * See the magic field in struct netmap_adapter.
1267  */
1268 #ifdef __FreeBSD__
1269 /*
1270  * on FreeBSD just use if_capabilities and if_capenable.
1271  */
1272 #define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1273 	(ifp)->if_capabilities & IFCAP_NETMAP )
1274 
1275 #define	NETMAP_SET_CAPABLE(ifp)				\
1276 	(ifp)->if_capabilities |= IFCAP_NETMAP
1277 
1278 #else	/* linux */
1279 
1280 /*
1281  * on linux:
1282  * we check if NA(ifp) is set and its first element has a related
1283  * magic value. The capenable is within the struct netmap_adapter.
1284  */
1285 #define	NETMAP_MAGIC	0x52697a7a
1286 
1287 #define NETMAP_CAPABLE(ifp)	(NA(ifp) &&		\
1288 	((uint32_t)(uintptr_t)NA(ifp) ^ NA(ifp)->magic) == NETMAP_MAGIC )
1289 
1290 #define	NETMAP_SET_CAPABLE(ifp)				\
1291 	NA(ifp)->magic = ((uint32_t)(uintptr_t)NA(ifp)) ^ NETMAP_MAGIC
1292 
1293 #endif	/* linux */
1294 
1295 #ifdef __FreeBSD__
1296 
1297 /* Assigns the device IOMMU domain to an allocator.
1298  * Returns -ENOMEM in case the domain is different */
1299 #define nm_iommu_group_id(dev) (0)
1300 
1301 /* Callback invoked by the dma machinery after a successful dmamap_load */
1302 static void netmap_dmamap_cb(__unused void *arg,
1303     __unused bus_dma_segment_t * segs, __unused int nseg, __unused int error)
1304 {
1305 }
1306 
1307 /* bus_dmamap_load wrapper: call aforementioned function if map != NULL.
1308  * XXX can we do it without a callback ?
1309  */
1310 static inline void
1311 netmap_load_map(struct netmap_adapter *na,
1312 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1313 {
1314 	if (map)
1315 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1316 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1317 }
1318 
1319 static inline void
1320 netmap_unload_map(struct netmap_adapter *na,
1321         bus_dma_tag_t tag, bus_dmamap_t map)
1322 {
1323 	if (map)
1324 		bus_dmamap_unload(tag, map);
1325 }
1326 
1327 /* update the map when a buffer changes. */
1328 static inline void
1329 netmap_reload_map(struct netmap_adapter *na,
1330 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1331 {
1332 	if (map) {
1333 		bus_dmamap_unload(tag, map);
1334 		bus_dmamap_load(tag, map, buf, NETMAP_BUF_SIZE(na),
1335 		    netmap_dmamap_cb, NULL, BUS_DMA_NOWAIT);
1336 	}
1337 }
1338 
1339 #else /* linux */
1340 
1341 int nm_iommu_group_id(bus_dma_tag_t dev);
1342 #include <linux/dma-mapping.h>
1343 
1344 static inline void
1345 netmap_load_map(struct netmap_adapter *na,
1346 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1347 {
1348 	if (0 && map) {
1349 		*map = dma_map_single(na->pdev, buf, na->na_lut.objsize,
1350 				DMA_BIDIRECTIONAL);
1351 	}
1352 }
1353 
1354 static inline void
1355 netmap_unload_map(struct netmap_adapter *na,
1356 	bus_dma_tag_t tag, bus_dmamap_t map)
1357 {
1358 	u_int sz = na->na_lut.objsize;
1359 
1360 	if (*map) {
1361 		dma_unmap_single(na->pdev, *map, sz,
1362 				DMA_BIDIRECTIONAL);
1363 	}
1364 }
1365 
1366 static inline void
1367 netmap_reload_map(struct netmap_adapter *na,
1368 	bus_dma_tag_t tag, bus_dmamap_t map, void *buf)
1369 {
1370 	u_int sz = na->na_lut.objsize;
1371 
1372 	if (*map) {
1373 		dma_unmap_single(na->pdev, *map, sz,
1374 				DMA_BIDIRECTIONAL);
1375 	}
1376 
1377 	*map = dma_map_single(na->pdev, buf, sz,
1378 				DMA_BIDIRECTIONAL);
1379 }
1380 
1381 /*
1382  * XXX How do we redefine these functions:
1383  *
1384  * on linux we need
1385  *	dma_map_single(&pdev->dev, virt_addr, len, direction)
1386  *	dma_unmap_single(&adapter->pdev->dev, phys_addr, len, direction
1387  * The len can be implicit (on netmap it is NETMAP_BUF_SIZE)
1388  * unfortunately the direction is not, so we need to change
1389  * something to have a cross API
1390  */
1391 
1392 #if 0
1393 	struct e1000_buffer *buffer_info =  &tx_ring->buffer_info[l];
1394 	/* set time_stamp *before* dma to help avoid a possible race */
1395 	buffer_info->time_stamp = jiffies;
1396 	buffer_info->mapped_as_page = false;
1397 	buffer_info->length = len;
1398 	//buffer_info->next_to_watch = l;
1399 	/* reload dma map */
1400 	dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
1401 			NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1402 	buffer_info->dma = dma_map_single(&adapter->pdev->dev,
1403 			addr, NETMAP_BUF_SIZE, DMA_TO_DEVICE);
1404 
1405 	if (dma_mapping_error(&adapter->pdev->dev, buffer_info->dma)) {
1406 		D("dma mapping error");
1407 		/* goto dma_error; See e1000_put_txbuf() */
1408 		/* XXX reset */
1409 	}
1410 	tx_desc->buffer_addr = htole64(buffer_info->dma); //XXX
1411 
1412 #endif
1413 
1414 /*
1415  * The bus_dmamap_sync() can be one of wmb() or rmb() depending on direction.
1416  */
1417 #define bus_dmamap_sync(_a, _b, _c)
1418 
1419 #endif /* linux */
1420 
1421 
1422 /*
1423  * functions to map NIC to KRING indexes (n2k) and vice versa (k2n)
1424  */
1425 static inline int
1426 netmap_idx_n2k(struct netmap_kring *kr, int idx)
1427 {
1428 	int n = kr->nkr_num_slots;
1429 	idx += kr->nkr_hwofs;
1430 	if (idx < 0)
1431 		return idx + n;
1432 	else if (idx < n)
1433 		return idx;
1434 	else
1435 		return idx - n;
1436 }
1437 
1438 
1439 static inline int
1440 netmap_idx_k2n(struct netmap_kring *kr, int idx)
1441 {
1442 	int n = kr->nkr_num_slots;
1443 	idx -= kr->nkr_hwofs;
1444 	if (idx < 0)
1445 		return idx + n;
1446 	else if (idx < n)
1447 		return idx;
1448 	else
1449 		return idx - n;
1450 }
1451 
1452 
1453 /* Entries of the look-up table. */
1454 struct lut_entry {
1455 	void *vaddr;		/* virtual address. */
1456 	vm_paddr_t paddr;	/* physical address. */
1457 };
1458 
1459 struct netmap_obj_pool;
1460 
1461 /*
1462  * NMB return the virtual address of a buffer (buffer 0 on bad index)
1463  * PNMB also fills the physical address
1464  */
1465 static inline void *
1466 NMB(struct netmap_adapter *na, struct netmap_slot *slot)
1467 {
1468 	struct lut_entry *lut = na->na_lut.lut;
1469 	uint32_t i = slot->buf_idx;
1470 	return (unlikely(i >= na->na_lut.objtotal)) ?
1471 		lut[0].vaddr : lut[i].vaddr;
1472 }
1473 
1474 static inline void *
1475 PNMB(struct netmap_adapter *na, struct netmap_slot *slot, uint64_t *pp)
1476 {
1477 	uint32_t i = slot->buf_idx;
1478 	struct lut_entry *lut = na->na_lut.lut;
1479 	void *ret = (i >= na->na_lut.objtotal) ? lut[0].vaddr : lut[i].vaddr;
1480 
1481 	*pp = (i >= na->na_lut.objtotal) ? lut[0].paddr : lut[i].paddr;
1482 	return ret;
1483 }
1484 
1485 /* Generic version of NMB, which uses device-specific memory. */
1486 
1487 
1488 
1489 void netmap_txsync_to_host(struct netmap_adapter *na);
1490 
1491 
1492 /*
1493  * Structure associated to each thread which registered an interface.
1494  *
1495  * The first 4 fields of this structure are written by NIOCREGIF and
1496  * read by poll() and NIOC?XSYNC.
1497  *
1498  * There is low contention among writers (a correct user program
1499  * should have none) and among writers and readers, so we use a
1500  * single global lock to protect the structure initialization;
1501  * since initialization involves the allocation of memory,
1502  * we reuse the memory allocator lock.
1503  *
1504  * Read access to the structure is lock free. Readers must check that
1505  * np_nifp is not NULL before using the other fields.
1506  * If np_nifp is NULL initialization has not been performed,
1507  * so they should return an error to userspace.
1508  *
1509  * The ref_done field (XXX ?) is used to regulate access to the refcount in the
1510  * memory allocator. The refcount must be incremented at most once for
1511  * each open("/dev/netmap"). The increment is performed by the first
1512  * function that calls netmap_get_memory() (currently called by
1513  * mmap(), NIOCGINFO and NIOCREGIF).
1514  * If the refcount is incremented, it is then decremented when the
1515  * private structure is destroyed.
1516  */
1517 struct netmap_priv_d {
1518 	struct netmap_if * volatile np_nifp;	/* netmap if descriptor. */
1519 
1520 	struct netmap_adapter	*np_na;
1521 	uint32_t	np_flags;	/* from the ioctl */
1522 	u_int		np_qfirst[NR_TXRX],
1523 			np_qlast[NR_TXRX]; /* range of tx/rx rings to scan */
1524 	uint16_t	np_txpoll;	/* XXX and also np_rxpoll ? */
1525 
1526 	/* np_refcount is only used on FreeBSD */
1527 	int		np_refcount;	/* use with NMG_LOCK held */
1528 
1529 	/* pointers to the selinfo to be used for selrecord.
1530 	 * Either the local or the global one depending on the
1531 	 * number of rings.
1532 	 */
1533 	NM_SELINFO_T *np_si[NR_TXRX];
1534 	struct thread	*np_td;		/* kqueue, just debugging */
1535 };
1536 
1537 #ifdef WITH_MONITOR
1538 
1539 struct netmap_monitor_adapter {
1540 	struct netmap_adapter up;
1541 
1542 	struct netmap_priv_d priv;
1543 	uint32_t flags;
1544 };
1545 
1546 #endif /* WITH_MONITOR */
1547 
1548 
1549 #ifdef WITH_GENERIC
1550 /*
1551  * generic netmap emulation for devices that do not have
1552  * native netmap support.
1553  */
1554 int generic_netmap_attach(struct ifnet *ifp);
1555 
1556 int netmap_catch_rx(struct netmap_generic_adapter *na, int intercept);
1557 void generic_rx_handler(struct ifnet *ifp, struct mbuf *m);;
1558 void netmap_catch_tx(struct netmap_generic_adapter *na, int enable);
1559 int generic_xmit_frame(struct ifnet *ifp, struct mbuf *m, void *addr, u_int len, u_int ring_nr);
1560 int generic_find_num_desc(struct ifnet *ifp, u_int *tx, u_int *rx);
1561 void generic_find_num_queues(struct ifnet *ifp, u_int *txq, u_int *rxq);
1562 static inline struct ifnet*
1563 netmap_generic_getifp(struct netmap_generic_adapter *gna)
1564 {
1565         if (gna->prev)
1566             return gna->prev->ifp;
1567 
1568         return gna->up.up.ifp;
1569 }
1570 
1571 //#define RATE_GENERIC  /* Enables communication statistics for generic. */
1572 #ifdef RATE_GENERIC
1573 void generic_rate(int txp, int txs, int txi, int rxp, int rxs, int rxi);
1574 #else
1575 #define generic_rate(txp, txs, txi, rxp, rxs, rxi)
1576 #endif
1577 
1578 /*
1579  * netmap_mitigation API. This is used by the generic adapter
1580  * to reduce the number of interrupt requests/selwakeup
1581  * to clients on incoming packets.
1582  */
1583 void netmap_mitigation_init(struct nm_generic_mit *mit, int idx,
1584                                 struct netmap_adapter *na);
1585 void netmap_mitigation_start(struct nm_generic_mit *mit);
1586 void netmap_mitigation_restart(struct nm_generic_mit *mit);
1587 int netmap_mitigation_active(struct nm_generic_mit *mit);
1588 void netmap_mitigation_cleanup(struct nm_generic_mit *mit);
1589 #endif /* WITH_GENERIC */
1590 
1591 
1592 
1593 /* Shared declarations for the VALE switch. */
1594 
1595 /*
1596  * Each transmit queue accumulates a batch of packets into
1597  * a structure before forwarding. Packets to the same
1598  * destination are put in a list using ft_next as a link field.
1599  * ft_frags and ft_next are valid only on the first fragment.
1600  */
1601 struct nm_bdg_fwd {	/* forwarding entry for a bridge */
1602 	void *ft_buf;		/* netmap or indirect buffer */
1603 	uint8_t ft_frags;	/* how many fragments (only on 1st frag) */
1604 	uint8_t _ft_port;	/* dst port (unused) */
1605 	uint16_t ft_flags;	/* flags, e.g. indirect */
1606 	uint16_t ft_len;	/* src fragment len */
1607 	uint16_t ft_next;	/* next packet to same destination */
1608 };
1609 
1610 /* struct 'virtio_net_hdr' from linux. */
1611 struct nm_vnet_hdr {
1612 #define VIRTIO_NET_HDR_F_NEEDS_CSUM     1	/* Use csum_start, csum_offset */
1613 #define VIRTIO_NET_HDR_F_DATA_VALID    2	/* Csum is valid */
1614     uint8_t flags;
1615 #define VIRTIO_NET_HDR_GSO_NONE         0       /* Not a GSO frame */
1616 #define VIRTIO_NET_HDR_GSO_TCPV4        1       /* GSO frame, IPv4 TCP (TSO) */
1617 #define VIRTIO_NET_HDR_GSO_UDP          3       /* GSO frame, IPv4 UDP (UFO) */
1618 #define VIRTIO_NET_HDR_GSO_TCPV6        4       /* GSO frame, IPv6 TCP */
1619 #define VIRTIO_NET_HDR_GSO_ECN          0x80    /* TCP has ECN set */
1620     uint8_t gso_type;
1621     uint16_t hdr_len;
1622     uint16_t gso_size;
1623     uint16_t csum_start;
1624     uint16_t csum_offset;
1625 };
1626 
1627 #define WORST_CASE_GSO_HEADER	(14+40+60)  /* IPv6 + TCP */
1628 
1629 /* Private definitions for IPv4, IPv6, UDP and TCP headers. */
1630 
1631 struct nm_iphdr {
1632 	uint8_t		version_ihl;
1633 	uint8_t		tos;
1634 	uint16_t	tot_len;
1635 	uint16_t	id;
1636 	uint16_t	frag_off;
1637 	uint8_t		ttl;
1638 	uint8_t		protocol;
1639 	uint16_t	check;
1640 	uint32_t	saddr;
1641 	uint32_t	daddr;
1642 	/*The options start here. */
1643 };
1644 
1645 struct nm_tcphdr {
1646 	uint16_t	source;
1647 	uint16_t	dest;
1648 	uint32_t	seq;
1649 	uint32_t	ack_seq;
1650 	uint8_t		doff;  /* Data offset + Reserved */
1651 	uint8_t		flags;
1652 	uint16_t	window;
1653 	uint16_t	check;
1654 	uint16_t	urg_ptr;
1655 };
1656 
1657 struct nm_udphdr {
1658 	uint16_t	source;
1659 	uint16_t	dest;
1660 	uint16_t	len;
1661 	uint16_t	check;
1662 };
1663 
1664 struct nm_ipv6hdr {
1665 	uint8_t		priority_version;
1666 	uint8_t		flow_lbl[3];
1667 
1668 	uint16_t	payload_len;
1669 	uint8_t		nexthdr;
1670 	uint8_t		hop_limit;
1671 
1672 	uint8_t		saddr[16];
1673 	uint8_t		daddr[16];
1674 };
1675 
1676 /* Type used to store a checksum (in host byte order) that hasn't been
1677  * folded yet.
1678  */
1679 #define rawsum_t uint32_t
1680 
1681 rawsum_t nm_csum_raw(uint8_t *data, size_t len, rawsum_t cur_sum);
1682 uint16_t nm_csum_ipv4(struct nm_iphdr *iph);
1683 void nm_csum_tcpudp_ipv4(struct nm_iphdr *iph, void *data,
1684 		      size_t datalen, uint16_t *check);
1685 void nm_csum_tcpudp_ipv6(struct nm_ipv6hdr *ip6h, void *data,
1686 		      size_t datalen, uint16_t *check);
1687 uint16_t nm_csum_fold(rawsum_t cur_sum);
1688 
1689 void bdg_mismatch_datapath(struct netmap_vp_adapter *na,
1690 			   struct netmap_vp_adapter *dst_na,
1691 			   struct nm_bdg_fwd *ft_p, struct netmap_ring *ring,
1692 			   u_int *j, u_int lim, u_int *howmany);
1693 
1694 /* persistent virtual port routines */
1695 int nm_vi_persist(const char *, struct ifnet **);
1696 void nm_vi_detach(struct ifnet *);
1697 void nm_vi_init_index(void);
1698 
1699 #endif /* _NET_NETMAP_KERN_H_ */
1700