1 /*
2  * Copyright (C) 2013-2014 Universita` di Pisa. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  *   1. Redistributions of source code must retain the above copyright
8  *      notice, this list of conditions and the following disclaimer.
9  *   2. Redistributions in binary form must reproduce the above copyright
10  *      notice, this list of conditions and the following disclaimer in the
11  *      documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
14  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
16  * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
17  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
18  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
19  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
20  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
21  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
22  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
23  * SUCH DAMAGE.
24  */
25 
26 /*
27  * This module implements netmap support on top of standard,
28  * unmodified device drivers.
29  *
30  * A NIOCREGIF request is handled here if the device does not
31  * have native support. TX and RX rings are emulated as follows:
32  *
33  * NIOCREGIF
34  *	We preallocate a block of TX mbufs (roughly as many as
35  *	tx descriptors; the number is not critical) to speed up
36  *	operation during transmissions. The refcount on most of
37  *	these buffers is artificially bumped up so we can recycle
38  *	them more easily. Also, the destructor is intercepted
39  *	so we use it as an interrupt notification to wake up
40  *	processes blocked on a poll().
41  *
42  *	For each receive ring we allocate one "struct mbq"
43  *	(an mbuf tailq plus a spinlock). We intercept packets
44  *	(through if_input)
45  *	on the receive path and put them in the mbq from which
46  *	netmap receive routines can grab them.
47  *
48  * TX:
49  *	in the generic_txsync() routine, netmap buffers are copied
50  *	(or linked, in a future) to the preallocated mbufs
51  *	and pushed to the transmit queue. Some of these mbufs
52  *	(those with NS_REPORT, or otherwise every half ring)
53  *	have the refcount=1, others have refcount=2.
54  *	When the destructor is invoked, we take that as
55  *	a notification that all mbufs up to that one in
56  *	the specific ring have been completed, and generate
57  *	the equivalent of a transmit interrupt.
58  *
59  * RX:
60  *
61  */
62 
63 #ifdef __FreeBSD__
64 
65 #include <sys/cdefs.h> /* prerequisite */
66 __FBSDID("$FreeBSD$");
67 
68 #include <sys/types.h>
69 #include <sys/errno.h>
70 #include <sys/malloc.h>
71 #include <sys/lock.h>   /* PROT_EXEC */
72 #include <sys/rwlock.h>
73 #include <sys/socket.h> /* sockaddrs */
74 #include <sys/selinfo.h>
75 #include <net/if.h>
76 #include <net/if_var.h>
77 #include <machine/bus.h>        /* bus_dmamap_* in netmap_kern.h */
78 
79 // XXX temporary - D() defined here
80 #include <net/netmap.h>
81 #include <dev/netmap/netmap_kern.h>
82 #include <dev/netmap/netmap_mem2.h>
83 
84 #define rtnl_lock()	ND("rtnl_lock called");
85 #define rtnl_unlock()	ND("rtnl_unlock called");
86 #define MBUF_TXQ(m)	((m)->m_pkthdr.flowid)
87 #define MBUF_RXQ(m)	((m)->m_pkthdr.flowid)
88 #define smp_mb()
89 
90 /*
91  * FreeBSD mbuf allocator/deallocator in emulation mode:
92  *
93  * We allocate EXT_PACKET mbuf+clusters, but need to set M_NOFREE
94  * so that the destructor, if invoked, will not free the packet.
95  *    In principle we should set the destructor only on demand,
96  * but since there might be a race we better do it on allocation.
97  * As a consequence, we also need to set the destructor or we
98  * would leak buffers.
99  */
100 
101 /*
102  * mbuf wrappers
103  */
104 #define netmap_get_mbuf(len) m_getcl(M_NOWAIT, MT_DATA, M_PKTHDR|M_NOFREE)
105 
106 /* mbuf destructor, also need to change the type to EXT_EXTREF,
107  * add an M_NOFREE flag, and then clear the flag and
108  * chain into uma_zfree(zone_pack, mf)
109  * (or reinstall the buffer ?)
110  */
111 #define SET_MBUF_DESTRUCTOR(m, fn)	do {		\
112 	(m)->m_ext.ext_free = (void *)fn;	\
113 	(m)->m_ext.ext_type = EXT_EXTREF;	\
114 } while (0)
115 
116 
117 #define GET_MBUF_REFCNT(m)	((m)->m_ext.ref_cnt ? *(m)->m_ext.ref_cnt : -1)
118 
119 
120 
121 #else /* linux */
122 
123 #include "bsd_glue.h"
124 
125 #include <linux/rtnetlink.h>    /* rtnl_[un]lock() */
126 #include <linux/ethtool.h>      /* struct ethtool_ops, get_ringparam */
127 #include <linux/hrtimer.h>
128 
129 //#define RATE  /* Enables communication statistics. */
130 
131 //#define REG_RESET
132 
133 #endif /* linux */
134 
135 
136 /* Common headers. */
137 #include <net/netmap.h>
138 #include <dev/netmap/netmap_kern.h>
139 #include <dev/netmap/netmap_mem2.h>
140 
141 
142 
143 /* ======================== usage stats =========================== */
144 
145 #ifdef RATE
146 #define IFRATE(x) x
147 struct rate_stats {
148 	unsigned long txpkt;
149 	unsigned long txsync;
150 	unsigned long txirq;
151 	unsigned long rxpkt;
152 	unsigned long rxirq;
153 	unsigned long rxsync;
154 };
155 
156 struct rate_context {
157 	unsigned refcount;
158 	struct timer_list timer;
159 	struct rate_stats new;
160 	struct rate_stats old;
161 };
162 
163 #define RATE_PRINTK(_NAME_) \
164 	printk( #_NAME_ " = %lu Hz\n", (cur._NAME_ - ctx->old._NAME_)/RATE_PERIOD);
165 #define RATE_PERIOD  2
166 static void rate_callback(unsigned long arg)
167 {
168 	struct rate_context * ctx = (struct rate_context *)arg;
169 	struct rate_stats cur = ctx->new;
170 	int r;
171 
172 	RATE_PRINTK(txpkt);
173 	RATE_PRINTK(txsync);
174 	RATE_PRINTK(txirq);
175 	RATE_PRINTK(rxpkt);
176 	RATE_PRINTK(rxsync);
177 	RATE_PRINTK(rxirq);
178 	printk("\n");
179 
180 	ctx->old = cur;
181 	r = mod_timer(&ctx->timer, jiffies +
182 			msecs_to_jiffies(RATE_PERIOD * 1000));
183 	if (unlikely(r))
184 		D("[v1000] Error: mod_timer()");
185 }
186 
187 static struct rate_context rate_ctx;
188 
189 #else /* !RATE */
190 #define IFRATE(x)
191 #endif /* !RATE */
192 
193 
194 /* =============== GENERIC NETMAP ADAPTER SUPPORT ================= */
195 #define GENERIC_BUF_SIZE        netmap_buf_size    /* Size of the mbufs in the Tx pool. */
196 
197 /*
198  * Wrapper used by the generic adapter layer to notify
199  * the poller threads. Differently from netmap_rx_irq(), we check
200  * only IFCAP_NETMAP instead of NAF_NATIVE_ON to enable the irq.
201  */
202 static void
203 netmap_generic_irq(struct ifnet *ifp, u_int q, u_int *work_done)
204 {
205 	if (unlikely(!(ifp->if_capenable & IFCAP_NETMAP)))
206 		return;
207 
208 	netmap_common_irq(ifp, q, work_done);
209 }
210 
211 
212 /* Enable/disable netmap mode for a generic network interface. */
213 static int
214 generic_netmap_register(struct netmap_adapter *na, int enable)
215 {
216 	struct ifnet *ifp = na->ifp;
217 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
218 	struct mbuf *m;
219 	int error;
220 	int i, r;
221 
222 	if (!na)
223 		return EINVAL;
224 
225 #ifdef REG_RESET
226 	error = ifp->netdev_ops->ndo_stop(ifp);
227 	if (error) {
228 		return error;
229 	}
230 #endif /* REG_RESET */
231 
232 	if (enable) { /* Enable netmap mode. */
233 		/* Init the mitigation support. */
234 		gna->mit = malloc(na->num_rx_rings * sizeof(struct nm_generic_mit),
235 					M_DEVBUF, M_NOWAIT | M_ZERO);
236 		if (!gna->mit) {
237 			D("mitigation allocation failed");
238 			error = ENOMEM;
239 			goto out;
240 		}
241 		for (r=0; r<na->num_rx_rings; r++)
242 			netmap_mitigation_init(&gna->mit[r], na);
243 
244 		/* Initialize the rx queue, as generic_rx_handler() can
245 		 * be called as soon as netmap_catch_rx() returns.
246 		 */
247 		for (r=0; r<na->num_rx_rings; r++) {
248 			mbq_safe_init(&na->rx_rings[r].rx_queue);
249 		}
250 
251 		/*
252 		 * Preallocate packet buffers for the tx rings.
253 		 */
254 		for (r=0; r<na->num_tx_rings; r++)
255 			na->tx_rings[r].tx_pool = NULL;
256 		for (r=0; r<na->num_tx_rings; r++) {
257 			na->tx_rings[r].tx_pool = malloc(na->num_tx_desc * sizeof(struct mbuf *),
258 					M_DEVBUF, M_NOWAIT | M_ZERO);
259 			if (!na->tx_rings[r].tx_pool) {
260 				D("tx_pool allocation failed");
261 				error = ENOMEM;
262 				goto free_tx_pools;
263 			}
264 			for (i=0; i<na->num_tx_desc; i++)
265 				na->tx_rings[r].tx_pool[i] = NULL;
266 			for (i=0; i<na->num_tx_desc; i++) {
267 				m = netmap_get_mbuf(GENERIC_BUF_SIZE);
268 				if (!m) {
269 					D("tx_pool[%d] allocation failed", i);
270 					error = ENOMEM;
271 					goto free_tx_pools;
272 				}
273 				na->tx_rings[r].tx_pool[i] = m;
274 			}
275 		}
276 		rtnl_lock();
277 		/* Prepare to intercept incoming traffic. */
278 		error = netmap_catch_rx(na, 1);
279 		if (error) {
280 			D("netdev_rx_handler_register() failed (%d)", error);
281 			goto register_handler;
282 		}
283 		ifp->if_capenable |= IFCAP_NETMAP;
284 
285 		/* Make netmap control the packet steering. */
286 		netmap_catch_tx(gna, 1);
287 
288 		rtnl_unlock();
289 
290 #ifdef RATE
291 		if (rate_ctx.refcount == 0) {
292 			D("setup_timer()");
293 			memset(&rate_ctx, 0, sizeof(rate_ctx));
294 			setup_timer(&rate_ctx.timer, &rate_callback, (unsigned long)&rate_ctx);
295 			if (mod_timer(&rate_ctx.timer, jiffies + msecs_to_jiffies(1500))) {
296 				D("Error: mod_timer()");
297 			}
298 		}
299 		rate_ctx.refcount++;
300 #endif /* RATE */
301 
302 	} else if (na->tx_rings[0].tx_pool) {
303 		/* Disable netmap mode. We enter here only if the previous
304 		   generic_netmap_register(na, 1) was successfull.
305 		   If it was not, na->tx_rings[0].tx_pool was set to NULL by the
306 		   error handling code below. */
307 		rtnl_lock();
308 
309 		ifp->if_capenable &= ~IFCAP_NETMAP;
310 
311 		/* Release packet steering control. */
312 		netmap_catch_tx(gna, 0);
313 
314 		/* Do not intercept packets on the rx path. */
315 		netmap_catch_rx(na, 0);
316 
317 		rtnl_unlock();
318 
319 		/* Free the mbufs going to the netmap rings */
320 		for (r=0; r<na->num_rx_rings; r++) {
321 			mbq_safe_purge(&na->rx_rings[r].rx_queue);
322 			mbq_safe_destroy(&na->rx_rings[r].rx_queue);
323 		}
324 
325 		for (r=0; r<na->num_rx_rings; r++)
326 			netmap_mitigation_cleanup(&gna->mit[r]);
327 		free(gna->mit, M_DEVBUF);
328 
329 		for (r=0; r<na->num_tx_rings; r++) {
330 			for (i=0; i<na->num_tx_desc; i++) {
331 				m_freem(na->tx_rings[r].tx_pool[i]);
332 			}
333 			free(na->tx_rings[r].tx_pool, M_DEVBUF);
334 		}
335 
336 #ifdef RATE
337 		if (--rate_ctx.refcount == 0) {
338 			D("del_timer()");
339 			del_timer(&rate_ctx.timer);
340 		}
341 #endif
342 	}
343 
344 #ifdef REG_RESET
345 	error = ifp->netdev_ops->ndo_open(ifp);
346 	if (error) {
347 		goto free_tx_pools;
348 	}
349 #endif
350 
351 	return 0;
352 
353 register_handler:
354 	rtnl_unlock();
355 free_tx_pools:
356 	for (r=0; r<na->num_tx_rings; r++) {
357 		if (na->tx_rings[r].tx_pool == NULL)
358 			continue;
359 		for (i=0; i<na->num_tx_desc; i++)
360 			if (na->tx_rings[r].tx_pool[i])
361 				m_freem(na->tx_rings[r].tx_pool[i]);
362 		free(na->tx_rings[r].tx_pool, M_DEVBUF);
363 		na->tx_rings[r].tx_pool = NULL;
364 	}
365 	for (r=0; r<na->num_rx_rings; r++) {
366 		netmap_mitigation_cleanup(&gna->mit[r]);
367 		mbq_safe_destroy(&na->rx_rings[r].rx_queue);
368 	}
369 	free(gna->mit, M_DEVBUF);
370 out:
371 
372 	return error;
373 }
374 
375 /*
376  * Callback invoked when the device driver frees an mbuf used
377  * by netmap to transmit a packet. This usually happens when
378  * the NIC notifies the driver that transmission is completed.
379  */
380 static void
381 generic_mbuf_destructor(struct mbuf *m)
382 {
383 	if (netmap_verbose)
384 		D("Tx irq (%p) queue %d", m, MBUF_TXQ(m));
385 	netmap_generic_irq(MBUF_IFP(m), MBUF_TXQ(m), NULL);
386 #ifdef __FreeBSD__
387 	m->m_ext.ext_type = EXT_PACKET;
388 	m->m_ext.ext_free = NULL;
389 	if (*(m->m_ext.ref_cnt) == 0)
390 		*(m->m_ext.ref_cnt) = 1;
391 	uma_zfree(zone_pack, m);
392 #endif /* __FreeBSD__ */
393 	IFRATE(rate_ctx.new.txirq++);
394 }
395 
396 /* Record completed transmissions and update hwtail.
397  *
398  * The oldest tx buffer not yet completed is at nr_hwtail + 1,
399  * nr_hwcur is the first unsent buffer.
400  */
401 static u_int
402 generic_netmap_tx_clean(struct netmap_kring *kring)
403 {
404 	u_int const lim = kring->nkr_num_slots - 1;
405 	u_int nm_i = nm_next(kring->nr_hwtail, lim);
406 	u_int hwcur = kring->nr_hwcur;
407 	u_int n = 0;
408 	struct mbuf **tx_pool = kring->tx_pool;
409 
410 	while (nm_i != hwcur) { /* buffers not completed */
411 		struct mbuf *m = tx_pool[nm_i];
412 
413 		if (unlikely(m == NULL)) {
414 			/* this is done, try to replenish the entry */
415 			tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
416 			if (unlikely(m == NULL)) {
417 				D("mbuf allocation failed, XXX error");
418 				// XXX how do we proceed ? break ?
419 				return -ENOMEM;
420 			}
421 		} else if (GET_MBUF_REFCNT(m) != 1) {
422 			break; /* This mbuf is still busy: its refcnt is 2. */
423 		}
424 		n++;
425 		nm_i = nm_next(nm_i, lim);
426 	}
427 	kring->nr_hwtail = nm_prev(nm_i, lim);
428 	ND("tx completed [%d] -> hwtail %d", n, kring->nr_hwtail);
429 
430 	return n;
431 }
432 
433 
434 /*
435  * We have pending packets in the driver between nr_hwtail +1 and hwcur.
436  * Compute a position in the middle, to be used to generate
437  * a notification.
438  */
439 static inline u_int
440 generic_tx_event_middle(struct netmap_kring *kring, u_int hwcur)
441 {
442 	u_int n = kring->nkr_num_slots;
443 	u_int ntc = nm_next(kring->nr_hwtail, n-1);
444 	u_int e;
445 
446 	if (hwcur >= ntc) {
447 		e = (hwcur + ntc) / 2;
448 	} else { /* wrap around */
449 		e = (hwcur + n + ntc) / 2;
450 		if (e >= n) {
451 			e -= n;
452 		}
453 	}
454 
455 	if (unlikely(e >= n)) {
456 		D("This cannot happen");
457 		e = 0;
458 	}
459 
460 	return e;
461 }
462 
463 /*
464  * We have pending packets in the driver between nr_hwtail+1 and hwcur.
465  * Schedule a notification approximately in the middle of the two.
466  * There is a race but this is only called within txsync which does
467  * a double check.
468  */
469 static void
470 generic_set_tx_event(struct netmap_kring *kring, u_int hwcur)
471 {
472 	struct mbuf *m;
473 	u_int e;
474 
475 	if (nm_next(kring->nr_hwtail, kring->nkr_num_slots -1) == hwcur) {
476 		return; /* all buffers are free */
477 	}
478 	e = generic_tx_event_middle(kring, hwcur);
479 
480 	m = kring->tx_pool[e];
481 	if (m == NULL) {
482 		/* This can happen if there is already an event on the netmap
483 		   slot 'e': There is nothing to do. */
484 		return;
485 	}
486 	ND("Event at %d mbuf %p refcnt %d", e, m, GET_MBUF_REFCNT(m));
487 	kring->tx_pool[e] = NULL;
488 	SET_MBUF_DESTRUCTOR(m, generic_mbuf_destructor);
489 
490 	// XXX wmb() ?
491 	/* Decrement the refcount an free it if we have the last one. */
492 	m_freem(m);
493 	smp_mb();
494 }
495 
496 
497 /*
498  * generic_netmap_txsync() transforms netmap buffers into mbufs
499  * and passes them to the standard device driver
500  * (ndo_start_xmit() or ifp->if_transmit() ).
501  * On linux this is not done directly, but using dev_queue_xmit(),
502  * since it implements the TX flow control (and takes some locks).
503  */
504 static int
505 generic_netmap_txsync(struct netmap_adapter *na, u_int ring_nr, int flags)
506 {
507 	struct ifnet *ifp = na->ifp;
508 	struct netmap_kring *kring = &na->tx_rings[ring_nr];
509 	struct netmap_ring *ring = kring->ring;
510 	u_int nm_i;	/* index into the netmap ring */ // j
511 	u_int const lim = kring->nkr_num_slots - 1;
512 	u_int const head = kring->rhead;
513 
514 	IFRATE(rate_ctx.new.txsync++);
515 
516 	// TODO: handle the case of mbuf allocation failure
517 
518 	rmb();
519 
520 	/*
521 	 * First part: process new packets to send.
522 	 */
523 	nm_i = kring->nr_hwcur;
524 	if (nm_i != head) {	/* we have new packets to send */
525 		while (nm_i != head) {
526 			struct netmap_slot *slot = &ring->slot[nm_i];
527 			u_int len = slot->len;
528 			void *addr = NMB(slot);
529 
530 			/* device-specific */
531 			struct mbuf *m;
532 			int tx_ret;
533 
534 			NM_CHECK_ADDR_LEN(addr, len);
535 
536 			/* Tale a mbuf from the tx pool and copy in the user packet. */
537 			m = kring->tx_pool[nm_i];
538 			if (unlikely(!m)) {
539 				RD(5, "This should never happen");
540 				kring->tx_pool[nm_i] = m = netmap_get_mbuf(GENERIC_BUF_SIZE);
541 				if (unlikely(m == NULL)) {
542 					D("mbuf allocation failed");
543 					break;
544 				}
545 			}
546 			/* XXX we should ask notifications when NS_REPORT is set,
547 			 * or roughly every half frame. We can optimize this
548 			 * by lazily requesting notifications only when a
549 			 * transmission fails. Probably the best way is to
550 			 * break on failures and set notifications when
551 			 * ring->cur == ring->tail || nm_i != cur
552 			 */
553 			tx_ret = generic_xmit_frame(ifp, m, addr, len, ring_nr);
554 			if (unlikely(tx_ret)) {
555 				RD(5, "start_xmit failed: err %d [nm_i %u, head %u, hwtail %u]",
556 						tx_ret, nm_i, head, kring->nr_hwtail);
557 				/*
558 				 * No room for this mbuf in the device driver.
559 				 * Request a notification FOR A PREVIOUS MBUF,
560 				 * then call generic_netmap_tx_clean(kring) to do the
561 				 * double check and see if we can free more buffers.
562 				 * If there is space continue, else break;
563 				 * NOTE: the double check is necessary if the problem
564 				 * occurs in the txsync call after selrecord().
565 				 * Also, we need some way to tell the caller that not
566 				 * all buffers were queued onto the device (this was
567 				 * not a problem with native netmap driver where space
568 				 * is preallocated). The bridge has a similar problem
569 				 * and we solve it there by dropping the excess packets.
570 				 */
571 				generic_set_tx_event(kring, nm_i);
572 				if (generic_netmap_tx_clean(kring)) { /* space now available */
573 					continue;
574 				} else {
575 					break;
576 				}
577 			}
578 			slot->flags &= ~(NS_REPORT | NS_BUF_CHANGED);
579 			nm_i = nm_next(nm_i, lim);
580 			IFRATE(rate_ctx.new.txpkt ++);
581 		}
582 
583 		/* Update hwcur to the next slot to transmit. */
584 		kring->nr_hwcur = nm_i; /* not head, we could break early */
585 	}
586 
587 	/*
588 	 * Second, reclaim completed buffers
589 	 */
590 	if (flags & NAF_FORCE_RECLAIM || nm_kr_txempty(kring)) {
591 		/* No more available slots? Set a notification event
592 		 * on a netmap slot that will be cleaned in the future.
593 		 * No doublecheck is performed, since txsync() will be
594 		 * called twice by netmap_poll().
595 		 */
596 		generic_set_tx_event(kring, nm_i);
597 	}
598 	ND("tx #%d, hwtail = %d", n, kring->nr_hwtail);
599 
600 	generic_netmap_tx_clean(kring);
601 
602 	nm_txsync_finalize(kring);
603 
604 	return 0;
605 }
606 
607 
608 /*
609  * This handler is registered (through netmap_catch_rx())
610  * within the attached network interface
611  * in the RX subsystem, so that every mbuf passed up by
612  * the driver can be stolen to the network stack.
613  * Stolen packets are put in a queue where the
614  * generic_netmap_rxsync() callback can extract them.
615  */
616 void
617 generic_rx_handler(struct ifnet *ifp, struct mbuf *m)
618 {
619 	struct netmap_adapter *na = NA(ifp);
620 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter *)na;
621 	u_int work_done;
622 	u_int rr = MBUF_RXQ(m); // receive ring number
623 
624 	if (rr >= na->num_rx_rings) {
625 		rr = rr % na->num_rx_rings; // XXX expensive...
626 	}
627 
628 	/* limit the size of the queue */
629 	if (unlikely(mbq_len(&na->rx_rings[rr].rx_queue) > 1024)) {
630 		m_freem(m);
631 	} else {
632 		mbq_safe_enqueue(&na->rx_rings[rr].rx_queue, m);
633 	}
634 
635 	if (netmap_generic_mit < 32768) {
636 		/* no rx mitigation, pass notification up */
637 		netmap_generic_irq(na->ifp, rr, &work_done);
638 		IFRATE(rate_ctx.new.rxirq++);
639 	} else {
640 		/* same as send combining, filter notification if there is a
641 		 * pending timer, otherwise pass it up and start a timer.
642 		 */
643 		if (likely(netmap_mitigation_active(&gna->mit[rr]))) {
644 			/* Record that there is some pending work. */
645 			gna->mit[rr].mit_pending = 1;
646 		} else {
647 			netmap_generic_irq(na->ifp, rr, &work_done);
648 			IFRATE(rate_ctx.new.rxirq++);
649 			netmap_mitigation_start(&gna->mit[rr]);
650 		}
651 	}
652 }
653 
654 /*
655  * generic_netmap_rxsync() extracts mbufs from the queue filled by
656  * generic_netmap_rx_handler() and puts their content in the netmap
657  * receive ring.
658  * Access must be protected because the rx handler is asynchronous,
659  */
660 static int
661 generic_netmap_rxsync(struct netmap_adapter *na, u_int ring_nr, int flags)
662 {
663 	struct netmap_kring *kring = &na->rx_rings[ring_nr];
664 	struct netmap_ring *ring = kring->ring;
665 	u_int nm_i;	/* index into the netmap ring */ //j,
666 	u_int n;
667 	u_int const lim = kring->nkr_num_slots - 1;
668 	u_int const head = nm_rxsync_prologue(kring);
669 	int force_update = (flags & NAF_FORCE_READ) || kring->nr_kflags & NKR_PENDINTR;
670 
671 	if (head > lim)
672 		return netmap_ring_reinit(kring);
673 
674 	/*
675 	 * First part: import newly received packets.
676 	 */
677 	if (netmap_no_pendintr || force_update) {
678 		/* extract buffers from the rx queue, stop at most one
679 		 * slot before nr_hwcur (stop_i)
680 		 */
681 		uint16_t slot_flags = kring->nkr_slot_flags;
682 		u_int stop_i = nm_prev(kring->nr_hwcur, lim);
683 
684 		nm_i = kring->nr_hwtail; /* first empty slot in the receive ring */
685 		for (n = 0; nm_i != stop_i; n++) {
686 			int len;
687 			void *addr = NMB(&ring->slot[nm_i]);
688 			struct mbuf *m;
689 
690 			/* we only check the address here on generic rx rings */
691 			if (addr == netmap_buffer_base) { /* Bad buffer */
692 				return netmap_ring_reinit(kring);
693 			}
694 			/*
695 			 * Call the locked version of the function.
696 			 * XXX Ideally we could grab a batch of mbufs at once
697 			 * and save some locking overhead.
698 			 */
699 			m = mbq_safe_dequeue(&kring->rx_queue);
700 			if (!m)	/* no more data */
701 				break;
702 			len = MBUF_LEN(m);
703 			m_copydata(m, 0, len, addr);
704 			ring->slot[nm_i].len = len;
705 			ring->slot[nm_i].flags = slot_flags;
706 			m_freem(m);
707 			nm_i = nm_next(nm_i, lim);
708 		}
709 		if (n) {
710 			kring->nr_hwtail = nm_i;
711 			IFRATE(rate_ctx.new.rxpkt += n);
712 		}
713 		kring->nr_kflags &= ~NKR_PENDINTR;
714 	}
715 
716 	// XXX should we invert the order ?
717 	/*
718 	 * Second part: skip past packets that userspace has released.
719 	 */
720 	nm_i = kring->nr_hwcur;
721 	if (nm_i != head) {
722 		/* Userspace has released some packets. */
723 		for (n = 0; nm_i != head; n++) {
724 			struct netmap_slot *slot = &ring->slot[nm_i];
725 
726 			slot->flags &= ~NS_BUF_CHANGED;
727 			nm_i = nm_next(nm_i, lim);
728 		}
729 		kring->nr_hwcur = head;
730 	}
731 	/* tell userspace that there might be new packets. */
732 	nm_rxsync_finalize(kring);
733 	IFRATE(rate_ctx.new.rxsync++);
734 
735 	return 0;
736 }
737 
738 static void
739 generic_netmap_dtor(struct netmap_adapter *na)
740 {
741 	struct ifnet *ifp = na->ifp;
742 	struct netmap_generic_adapter *gna = (struct netmap_generic_adapter*)na;
743 	struct netmap_adapter *prev_na = gna->prev;
744 
745 	if (prev_na != NULL) {
746 		D("Released generic NA %p", gna);
747 		if_rele(na->ifp);
748 		netmap_adapter_put(prev_na);
749 	}
750 	if (ifp != NULL) {
751 		WNA(ifp) = prev_na;
752 		D("Restored native NA %p", prev_na);
753 		na->ifp = NULL;
754 	}
755 }
756 
757 /*
758  * generic_netmap_attach() makes it possible to use netmap on
759  * a device without native netmap support.
760  * This is less performant than native support but potentially
761  * faster than raw sockets or similar schemes.
762  *
763  * In this "emulated" mode, netmap rings do not necessarily
764  * have the same size as those in the NIC. We use a default
765  * value and possibly override it if the OS has ways to fetch the
766  * actual configuration.
767  */
768 int
769 generic_netmap_attach(struct ifnet *ifp)
770 {
771 	struct netmap_adapter *na;
772 	struct netmap_generic_adapter *gna;
773 	int retval;
774 	u_int num_tx_desc, num_rx_desc;
775 
776 	num_tx_desc = num_rx_desc = netmap_generic_ringsize; /* starting point */
777 
778 	generic_find_num_desc(ifp, &num_tx_desc, &num_rx_desc);
779 	ND("Netmap ring size: TX = %d, RX = %d", num_tx_desc, num_rx_desc);
780 
781 	gna = malloc(sizeof(*gna), M_DEVBUF, M_NOWAIT | M_ZERO);
782 	if (gna == NULL) {
783 		D("no memory on attach, give up");
784 		return ENOMEM;
785 	}
786 	na = (struct netmap_adapter *)gna;
787 	na->ifp = ifp;
788 	na->num_tx_desc = num_tx_desc;
789 	na->num_rx_desc = num_rx_desc;
790 	na->nm_register = &generic_netmap_register;
791 	na->nm_txsync = &generic_netmap_txsync;
792 	na->nm_rxsync = &generic_netmap_rxsync;
793 	na->nm_dtor = &generic_netmap_dtor;
794 	/* when using generic, IFCAP_NETMAP is set so we force
795 	 * NAF_SKIP_INTR to use the regular interrupt handler
796 	 */
797 	na->na_flags = NAF_SKIP_INTR | NAF_HOST_RINGS;
798 
799 	ND("[GNA] num_tx_queues(%d), real_num_tx_queues(%d), len(%lu)",
800 			ifp->num_tx_queues, ifp->real_num_tx_queues,
801 			ifp->tx_queue_len);
802 	ND("[GNA] num_rx_queues(%d), real_num_rx_queues(%d)",
803 			ifp->num_rx_queues, ifp->real_num_rx_queues);
804 
805 	generic_find_num_queues(ifp, &na->num_tx_rings, &na->num_rx_rings);
806 
807 	retval = netmap_attach_common(na);
808 	if (retval) {
809 		free(gna, M_DEVBUF);
810 	}
811 
812 	return retval;
813 }
814