1 /* 2 * z_Windows_NT_util.cpp -- platform specific routines. 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "kmp.h" 15 #include "kmp_affinity.h" 16 #include "kmp_i18n.h" 17 #include "kmp_io.h" 18 #include "kmp_itt.h" 19 #include "kmp_wait_release.h" 20 21 /* This code is related to NtQuerySystemInformation() function. This function 22 is used in the Load balance algorithm for OMP_DYNAMIC=true to find the 23 number of running threads in the system. */ 24 25 #include <ntsecapi.h> // UNICODE_STRING 26 #include <ntstatus.h> 27 28 enum SYSTEM_INFORMATION_CLASS { 29 SystemProcessInformation = 5 30 }; // SYSTEM_INFORMATION_CLASS 31 32 struct CLIENT_ID { 33 HANDLE UniqueProcess; 34 HANDLE UniqueThread; 35 }; // struct CLIENT_ID 36 37 enum THREAD_STATE { 38 StateInitialized, 39 StateReady, 40 StateRunning, 41 StateStandby, 42 StateTerminated, 43 StateWait, 44 StateTransition, 45 StateUnknown 46 }; // enum THREAD_STATE 47 48 struct VM_COUNTERS { 49 SIZE_T PeakVirtualSize; 50 SIZE_T VirtualSize; 51 ULONG PageFaultCount; 52 SIZE_T PeakWorkingSetSize; 53 SIZE_T WorkingSetSize; 54 SIZE_T QuotaPeakPagedPoolUsage; 55 SIZE_T QuotaPagedPoolUsage; 56 SIZE_T QuotaPeakNonPagedPoolUsage; 57 SIZE_T QuotaNonPagedPoolUsage; 58 SIZE_T PagefileUsage; 59 SIZE_T PeakPagefileUsage; 60 SIZE_T PrivatePageCount; 61 }; // struct VM_COUNTERS 62 63 struct SYSTEM_THREAD { 64 LARGE_INTEGER KernelTime; 65 LARGE_INTEGER UserTime; 66 LARGE_INTEGER CreateTime; 67 ULONG WaitTime; 68 LPVOID StartAddress; 69 CLIENT_ID ClientId; 70 DWORD Priority; 71 LONG BasePriority; 72 ULONG ContextSwitchCount; 73 THREAD_STATE State; 74 ULONG WaitReason; 75 }; // SYSTEM_THREAD 76 77 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, KernelTime) == 0); 78 #if KMP_ARCH_X86 79 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 28); 80 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 52); 81 #else 82 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, StartAddress) == 32); 83 KMP_BUILD_ASSERT(offsetof(SYSTEM_THREAD, State) == 68); 84 #endif 85 86 struct SYSTEM_PROCESS_INFORMATION { 87 ULONG NextEntryOffset; 88 ULONG NumberOfThreads; 89 LARGE_INTEGER Reserved[3]; 90 LARGE_INTEGER CreateTime; 91 LARGE_INTEGER UserTime; 92 LARGE_INTEGER KernelTime; 93 UNICODE_STRING ImageName; 94 DWORD BasePriority; 95 HANDLE ProcessId; 96 HANDLE ParentProcessId; 97 ULONG HandleCount; 98 ULONG Reserved2[2]; 99 VM_COUNTERS VMCounters; 100 IO_COUNTERS IOCounters; 101 SYSTEM_THREAD Threads[1]; 102 }; // SYSTEM_PROCESS_INFORMATION 103 typedef SYSTEM_PROCESS_INFORMATION *PSYSTEM_PROCESS_INFORMATION; 104 105 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, NextEntryOffset) == 0); 106 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, CreateTime) == 32); 107 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ImageName) == 56); 108 #if KMP_ARCH_X86 109 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 68); 110 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 76); 111 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 88); 112 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 136); 113 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 184); 114 #else 115 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, ProcessId) == 80); 116 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, HandleCount) == 96); 117 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, VMCounters) == 112); 118 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, IOCounters) == 208); 119 KMP_BUILD_ASSERT(offsetof(SYSTEM_PROCESS_INFORMATION, Threads) == 256); 120 #endif 121 122 typedef NTSTATUS(NTAPI *NtQuerySystemInformation_t)(SYSTEM_INFORMATION_CLASS, 123 PVOID, ULONG, PULONG); 124 NtQuerySystemInformation_t NtQuerySystemInformation = NULL; 125 126 HMODULE ntdll = NULL; 127 128 /* End of NtQuerySystemInformation()-related code */ 129 130 static HMODULE kernel32 = NULL; 131 132 #if KMP_HANDLE_SIGNALS 133 typedef void (*sig_func_t)(int); 134 static sig_func_t __kmp_sighldrs[NSIG]; 135 static int __kmp_siginstalled[NSIG]; 136 #endif 137 138 #if KMP_USE_MONITOR 139 static HANDLE __kmp_monitor_ev; 140 #endif 141 static kmp_int64 __kmp_win32_time; 142 double __kmp_win32_tick; 143 144 int __kmp_init_runtime = FALSE; 145 CRITICAL_SECTION __kmp_win32_section; 146 147 void __kmp_win32_mutex_init(kmp_win32_mutex_t *mx) { 148 InitializeCriticalSection(&mx->cs); 149 #if USE_ITT_BUILD 150 __kmp_itt_system_object_created(&mx->cs, "Critical Section"); 151 #endif /* USE_ITT_BUILD */ 152 } 153 154 void __kmp_win32_mutex_destroy(kmp_win32_mutex_t *mx) { 155 DeleteCriticalSection(&mx->cs); 156 } 157 158 void __kmp_win32_mutex_lock(kmp_win32_mutex_t *mx) { 159 EnterCriticalSection(&mx->cs); 160 } 161 162 void __kmp_win32_mutex_unlock(kmp_win32_mutex_t *mx) { 163 LeaveCriticalSection(&mx->cs); 164 } 165 166 void __kmp_win32_cond_init(kmp_win32_cond_t *cv) { 167 cv->waiters_count_ = 0; 168 cv->wait_generation_count_ = 0; 169 cv->release_count_ = 0; 170 171 /* Initialize the critical section */ 172 __kmp_win32_mutex_init(&cv->waiters_count_lock_); 173 174 /* Create a manual-reset event. */ 175 cv->event_ = CreateEvent(NULL, // no security 176 TRUE, // manual-reset 177 FALSE, // non-signaled initially 178 NULL); // unnamed 179 #if USE_ITT_BUILD 180 __kmp_itt_system_object_created(cv->event_, "Event"); 181 #endif /* USE_ITT_BUILD */ 182 } 183 184 void __kmp_win32_cond_destroy(kmp_win32_cond_t *cv) { 185 __kmp_win32_mutex_destroy(&cv->waiters_count_lock_); 186 __kmp_free_handle(cv->event_); 187 memset(cv, '\0', sizeof(*cv)); 188 } 189 190 /* TODO associate cv with a team instead of a thread so as to optimize 191 the case where we wake up a whole team */ 192 193 void __kmp_win32_cond_wait(kmp_win32_cond_t *cv, kmp_win32_mutex_t *mx, 194 kmp_info_t *th, int need_decrease_load) { 195 int my_generation; 196 int last_waiter; 197 198 /* Avoid race conditions */ 199 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 200 201 /* Increment count of waiters */ 202 cv->waiters_count_++; 203 204 /* Store current generation in our activation record. */ 205 my_generation = cv->wait_generation_count_; 206 207 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 208 __kmp_win32_mutex_unlock(mx); 209 210 for (;;) { 211 int wait_done; 212 213 /* Wait until the event is signaled */ 214 WaitForSingleObject(cv->event_, INFINITE); 215 216 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 217 218 /* Exit the loop when the <cv->event_> is signaled and there are still 219 waiting threads from this <wait_generation> that haven't been released 220 from this wait yet. */ 221 wait_done = (cv->release_count_ > 0) && 222 (cv->wait_generation_count_ != my_generation); 223 224 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 225 226 /* there used to be a semicolon after the if statement, it looked like a 227 bug, so i removed it */ 228 if (wait_done) 229 break; 230 } 231 232 __kmp_win32_mutex_lock(mx); 233 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 234 235 cv->waiters_count_--; 236 cv->release_count_--; 237 238 last_waiter = (cv->release_count_ == 0); 239 240 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 241 242 if (last_waiter) { 243 /* We're the last waiter to be notified, so reset the manual event. */ 244 ResetEvent(cv->event_); 245 } 246 } 247 248 void __kmp_win32_cond_broadcast(kmp_win32_cond_t *cv) { 249 __kmp_win32_mutex_lock(&cv->waiters_count_lock_); 250 251 if (cv->waiters_count_ > 0) { 252 SetEvent(cv->event_); 253 /* Release all the threads in this generation. */ 254 255 cv->release_count_ = cv->waiters_count_; 256 257 /* Start a new generation. */ 258 cv->wait_generation_count_++; 259 } 260 261 __kmp_win32_mutex_unlock(&cv->waiters_count_lock_); 262 } 263 264 void __kmp_win32_cond_signal(kmp_win32_cond_t *cv) { 265 __kmp_win32_cond_broadcast(cv); 266 } 267 268 void __kmp_enable(int new_state) { 269 if (__kmp_init_runtime) 270 LeaveCriticalSection(&__kmp_win32_section); 271 } 272 273 void __kmp_disable(int *old_state) { 274 *old_state = 0; 275 276 if (__kmp_init_runtime) 277 EnterCriticalSection(&__kmp_win32_section); 278 } 279 280 void __kmp_suspend_initialize(void) { /* do nothing */ 281 } 282 283 static void __kmp_suspend_initialize_thread(kmp_info_t *th) { 284 if (!TCR_4(th->th.th_suspend_init)) { 285 /* this means we haven't initialized the suspension pthread objects for this 286 thread in this instance of the process */ 287 __kmp_win32_cond_init(&th->th.th_suspend_cv); 288 __kmp_win32_mutex_init(&th->th.th_suspend_mx); 289 TCW_4(th->th.th_suspend_init, TRUE); 290 } 291 } 292 293 void __kmp_suspend_uninitialize_thread(kmp_info_t *th) { 294 if (TCR_4(th->th.th_suspend_init)) { 295 /* this means we have initialize the suspension pthread objects for this 296 thread in this instance of the process */ 297 __kmp_win32_cond_destroy(&th->th.th_suspend_cv); 298 __kmp_win32_mutex_destroy(&th->th.th_suspend_mx); 299 TCW_4(th->th.th_suspend_init, FALSE); 300 } 301 } 302 303 /* This routine puts the calling thread to sleep after setting the 304 sleep bit for the indicated flag variable to true. */ 305 template <class C> 306 static inline void __kmp_suspend_template(int th_gtid, C *flag) { 307 kmp_info_t *th = __kmp_threads[th_gtid]; 308 int status; 309 typename C::flag_t old_spin; 310 311 KF_TRACE(30, ("__kmp_suspend_template: T#%d enter for flag's loc(%p)\n", 312 th_gtid, flag->get())); 313 314 __kmp_suspend_initialize_thread(th); 315 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 316 317 KF_TRACE(10, ("__kmp_suspend_template: T#%d setting sleep bit for flag's" 318 " loc(%p)\n", 319 th_gtid, flag->get())); 320 321 /* TODO: shouldn't this use release semantics to ensure that 322 __kmp_suspend_initialize_thread gets called first? */ 323 old_spin = flag->set_sleeping(); 324 325 KF_TRACE(5, ("__kmp_suspend_template: T#%d set sleep bit for flag's" 326 " loc(%p)==%d\n", 327 th_gtid, flag->get(), *(flag->get()))); 328 329 if (flag->done_check_val(old_spin)) { 330 old_spin = flag->unset_sleeping(); 331 KF_TRACE(5, ("__kmp_suspend_template: T#%d false alarm, reset sleep bit " 332 "for flag's loc(%p)\n", 333 th_gtid, flag->get())); 334 } else { 335 #ifdef DEBUG_SUSPEND 336 __kmp_suspend_count++; 337 #endif 338 /* Encapsulate in a loop as the documentation states that this may "with 339 low probability" return when the condition variable has not been signaled 340 or broadcast */ 341 int deactivated = FALSE; 342 TCW_PTR(th->th.th_sleep_loc, (void *)flag); 343 while (flag->is_sleeping()) { 344 KF_TRACE(15, ("__kmp_suspend_template: T#%d about to perform " 345 "kmp_win32_cond_wait()\n", 346 th_gtid)); 347 // Mark the thread as no longer active (only in the first iteration of the 348 // loop). 349 if (!deactivated) { 350 th->th.th_active = FALSE; 351 if (th->th.th_active_in_pool) { 352 th->th.th_active_in_pool = FALSE; 353 KMP_ATOMIC_DEC(&__kmp_thread_pool_active_nth); 354 KMP_DEBUG_ASSERT(TCR_4(__kmp_thread_pool_active_nth) >= 0); 355 } 356 deactivated = TRUE; 357 358 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 359 0); 360 } else { 361 __kmp_win32_cond_wait(&th->th.th_suspend_cv, &th->th.th_suspend_mx, 0, 362 0); 363 } 364 365 #ifdef KMP_DEBUG 366 if (flag->is_sleeping()) { 367 KF_TRACE(100, 368 ("__kmp_suspend_template: T#%d spurious wakeup\n", th_gtid)); 369 } 370 #endif /* KMP_DEBUG */ 371 372 } // while 373 374 // Mark the thread as active again (if it was previous marked as inactive) 375 if (deactivated) { 376 th->th.th_active = TRUE; 377 if (TCR_4(th->th.th_in_pool)) { 378 KMP_ATOMIC_INC(&__kmp_thread_pool_active_nth); 379 th->th.th_active_in_pool = TRUE; 380 } 381 } 382 } 383 384 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 385 386 KF_TRACE(30, ("__kmp_suspend_template: T#%d exit\n", th_gtid)); 387 } 388 389 void __kmp_suspend_32(int th_gtid, kmp_flag_32 *flag) { 390 __kmp_suspend_template(th_gtid, flag); 391 } 392 void __kmp_suspend_64(int th_gtid, kmp_flag_64 *flag) { 393 __kmp_suspend_template(th_gtid, flag); 394 } 395 void __kmp_suspend_oncore(int th_gtid, kmp_flag_oncore *flag) { 396 __kmp_suspend_template(th_gtid, flag); 397 } 398 399 /* This routine signals the thread specified by target_gtid to wake up 400 after setting the sleep bit indicated by the flag argument to FALSE */ 401 template <class C> 402 static inline void __kmp_resume_template(int target_gtid, C *flag) { 403 kmp_info_t *th = __kmp_threads[target_gtid]; 404 int status; 405 406 #ifdef KMP_DEBUG 407 int gtid = TCR_4(__kmp_init_gtid) ? __kmp_get_gtid() : -1; 408 #endif 409 410 KF_TRACE(30, ("__kmp_resume_template: T#%d wants to wakeup T#%d enter\n", 411 gtid, target_gtid)); 412 413 __kmp_suspend_initialize_thread(th); 414 __kmp_win32_mutex_lock(&th->th.th_suspend_mx); 415 416 if (!flag) { // coming from __kmp_null_resume_wrapper 417 flag = (C *)th->th.th_sleep_loc; 418 } 419 420 // First, check if the flag is null or its type has changed. If so, someone 421 // else woke it up. 422 if (!flag || flag->get_type() != flag->get_ptr_type()) { // get_ptr_type 423 // simply shows what 424 // flag was cast to 425 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 426 "awake: flag's loc(%p)\n", 427 gtid, target_gtid, NULL)); 428 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 429 return; 430 } else { 431 typename C::flag_t old_spin = flag->unset_sleeping(); 432 if (!flag->is_sleeping_val(old_spin)) { 433 KF_TRACE(5, ("__kmp_resume_template: T#%d exiting, thread T#%d already " 434 "awake: flag's loc(%p): %u => %u\n", 435 gtid, target_gtid, flag->get(), old_spin, *(flag->get()))); 436 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 437 return; 438 } 439 } 440 TCW_PTR(th->th.th_sleep_loc, NULL); 441 KF_TRACE(5, ("__kmp_resume_template: T#%d about to wakeup T#%d, reset sleep " 442 "bit for flag's loc(%p)\n", 443 gtid, target_gtid, flag->get())); 444 445 __kmp_win32_cond_signal(&th->th.th_suspend_cv); 446 __kmp_win32_mutex_unlock(&th->th.th_suspend_mx); 447 448 KF_TRACE(30, ("__kmp_resume_template: T#%d exiting after signaling wake up" 449 " for T#%d\n", 450 gtid, target_gtid)); 451 } 452 453 void __kmp_resume_32(int target_gtid, kmp_flag_32 *flag) { 454 __kmp_resume_template(target_gtid, flag); 455 } 456 void __kmp_resume_64(int target_gtid, kmp_flag_64 *flag) { 457 __kmp_resume_template(target_gtid, flag); 458 } 459 void __kmp_resume_oncore(int target_gtid, kmp_flag_oncore *flag) { 460 __kmp_resume_template(target_gtid, flag); 461 } 462 463 void __kmp_yield(int cond) { 464 if (cond) 465 Sleep(0); 466 } 467 468 void __kmp_gtid_set_specific(int gtid) { 469 if (__kmp_init_gtid) { 470 KA_TRACE(50, ("__kmp_gtid_set_specific: T#%d key:%d\n", gtid, 471 __kmp_gtid_threadprivate_key)); 472 if (!TlsSetValue(__kmp_gtid_threadprivate_key, (LPVOID)(gtid + 1))) 473 KMP_FATAL(TLSSetValueFailed); 474 } else { 475 KA_TRACE(50, ("__kmp_gtid_set_specific: runtime shutdown, returning\n")); 476 } 477 } 478 479 int __kmp_gtid_get_specific() { 480 int gtid; 481 if (!__kmp_init_gtid) { 482 KA_TRACE(50, ("__kmp_gtid_get_specific: runtime shutdown, returning " 483 "KMP_GTID_SHUTDOWN\n")); 484 return KMP_GTID_SHUTDOWN; 485 } 486 gtid = (int)(kmp_intptr_t)TlsGetValue(__kmp_gtid_threadprivate_key); 487 if (gtid == 0) { 488 gtid = KMP_GTID_DNE; 489 } else { 490 gtid--; 491 } 492 KA_TRACE(50, ("__kmp_gtid_get_specific: key:%d gtid:%d\n", 493 __kmp_gtid_threadprivate_key, gtid)); 494 return gtid; 495 } 496 497 void __kmp_affinity_bind_thread(int proc) { 498 if (__kmp_num_proc_groups > 1) { 499 // Form the GROUP_AFFINITY struct directly, rather than filling 500 // out a bit vector and calling __kmp_set_system_affinity(). 501 GROUP_AFFINITY ga; 502 KMP_DEBUG_ASSERT((proc >= 0) && (proc < (__kmp_num_proc_groups * CHAR_BIT * 503 sizeof(DWORD_PTR)))); 504 ga.Group = proc / (CHAR_BIT * sizeof(DWORD_PTR)); 505 ga.Mask = (unsigned long long)1 << (proc % (CHAR_BIT * sizeof(DWORD_PTR))); 506 ga.Reserved[0] = ga.Reserved[1] = ga.Reserved[2] = 0; 507 508 KMP_DEBUG_ASSERT(__kmp_SetThreadGroupAffinity != NULL); 509 if (__kmp_SetThreadGroupAffinity(GetCurrentThread(), &ga, NULL) == 0) { 510 DWORD error = GetLastError(); 511 if (__kmp_affinity_verbose) { // AC: continue silently if not verbose 512 kmp_msg_t err_code = KMP_ERR(error); 513 __kmp_msg(kmp_ms_warning, KMP_MSG(CantSetThreadAffMask), err_code, 514 __kmp_msg_null); 515 if (__kmp_generate_warnings == kmp_warnings_off) { 516 __kmp_str_free(&err_code.str); 517 } 518 } 519 } 520 } else { 521 kmp_affin_mask_t *mask; 522 KMP_CPU_ALLOC_ON_STACK(mask); 523 KMP_CPU_ZERO(mask); 524 KMP_CPU_SET(proc, mask); 525 __kmp_set_system_affinity(mask, TRUE); 526 KMP_CPU_FREE_FROM_STACK(mask); 527 } 528 } 529 530 void __kmp_affinity_determine_capable(const char *env_var) { 531 // All versions of Windows* OS (since Win '95) support SetThreadAffinityMask(). 532 533 #if KMP_GROUP_AFFINITY 534 KMP_AFFINITY_ENABLE(__kmp_num_proc_groups * sizeof(DWORD_PTR)); 535 #else 536 KMP_AFFINITY_ENABLE(sizeof(DWORD_PTR)); 537 #endif 538 539 KA_TRACE(10, ("__kmp_affinity_determine_capable: " 540 "Windows* OS affinity interface functional (mask size = " 541 "%" KMP_SIZE_T_SPEC ").\n", 542 __kmp_affin_mask_size)); 543 } 544 545 double __kmp_read_cpu_time(void) { 546 FILETIME CreationTime, ExitTime, KernelTime, UserTime; 547 int status; 548 double cpu_time; 549 550 cpu_time = 0; 551 552 status = GetProcessTimes(GetCurrentProcess(), &CreationTime, &ExitTime, 553 &KernelTime, &UserTime); 554 555 if (status) { 556 double sec = 0; 557 558 sec += KernelTime.dwHighDateTime; 559 sec += UserTime.dwHighDateTime; 560 561 /* Shift left by 32 bits */ 562 sec *= (double)(1 << 16) * (double)(1 << 16); 563 564 sec += KernelTime.dwLowDateTime; 565 sec += UserTime.dwLowDateTime; 566 567 cpu_time += (sec * 100.0) / KMP_NSEC_PER_SEC; 568 } 569 570 return cpu_time; 571 } 572 573 int __kmp_read_system_info(struct kmp_sys_info *info) { 574 info->maxrss = 0; /* the maximum resident set size utilized (in kilobytes) */ 575 info->minflt = 0; /* the number of page faults serviced without any I/O */ 576 info->majflt = 0; /* the number of page faults serviced that required I/O */ 577 info->nswap = 0; // the number of times a process was "swapped" out of memory 578 info->inblock = 0; // the number of times the file system had to perform input 579 info->oublock = 0; // number of times the file system had to perform output 580 info->nvcsw = 0; /* the number of times a context switch was voluntarily */ 581 info->nivcsw = 0; /* the number of times a context switch was forced */ 582 583 return 1; 584 } 585 586 void __kmp_runtime_initialize(void) { 587 SYSTEM_INFO info; 588 kmp_str_buf_t path; 589 UINT path_size; 590 591 if (__kmp_init_runtime) { 592 return; 593 } 594 595 #if KMP_DYNAMIC_LIB 596 /* Pin dynamic library for the lifetime of application */ 597 { 598 // First, turn off error message boxes 599 UINT err_mode = SetErrorMode(SEM_FAILCRITICALERRORS); 600 HMODULE h; 601 BOOL ret = GetModuleHandleEx(GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS | 602 GET_MODULE_HANDLE_EX_FLAG_PIN, 603 (LPCTSTR)&__kmp_serial_initialize, &h); 604 KMP_DEBUG_ASSERT2(h && ret, "OpenMP RTL cannot find itself loaded"); 605 SetErrorMode(err_mode); // Restore error mode 606 KA_TRACE(10, ("__kmp_runtime_initialize: dynamic library pinned\n")); 607 } 608 #endif 609 610 InitializeCriticalSection(&__kmp_win32_section); 611 #if USE_ITT_BUILD 612 __kmp_itt_system_object_created(&__kmp_win32_section, "Critical Section"); 613 #endif /* USE_ITT_BUILD */ 614 __kmp_initialize_system_tick(); 615 616 #if (KMP_ARCH_X86 || KMP_ARCH_X86_64) 617 if (!__kmp_cpuinfo.initialized) { 618 __kmp_query_cpuid(&__kmp_cpuinfo); 619 } 620 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 621 622 /* Set up minimum number of threads to switch to TLS gtid */ 623 #if KMP_OS_WINDOWS && !KMP_DYNAMIC_LIB 624 // Windows* OS, static library. 625 /* New thread may use stack space previously used by another thread, 626 currently terminated. On Windows* OS, in case of static linking, we do not 627 know the moment of thread termination, and our structures (__kmp_threads 628 and __kmp_root arrays) are still keep info about dead threads. This leads 629 to problem in __kmp_get_global_thread_id() function: it wrongly finds gtid 630 (by searching through stack addresses of all known threads) for 631 unregistered foreign tread. 632 633 Setting __kmp_tls_gtid_min to 0 workarounds this problem: 634 __kmp_get_global_thread_id() does not search through stacks, but get gtid 635 from TLS immediately. 636 --ln 637 */ 638 __kmp_tls_gtid_min = 0; 639 #else 640 __kmp_tls_gtid_min = KMP_TLS_GTID_MIN; 641 #endif 642 643 /* for the static library */ 644 if (!__kmp_gtid_threadprivate_key) { 645 __kmp_gtid_threadprivate_key = TlsAlloc(); 646 if (__kmp_gtid_threadprivate_key == TLS_OUT_OF_INDEXES) { 647 KMP_FATAL(TLSOutOfIndexes); 648 } 649 } 650 651 // Load ntdll.dll. 652 /* Simple GetModuleHandle( "ntdll.dl" ) is not suitable due to security issue 653 (see http://www.microsoft.com/technet/security/advisory/2269637.mspx). We 654 have to specify full path to the library. */ 655 __kmp_str_buf_init(&path); 656 path_size = GetSystemDirectory(path.str, path.size); 657 KMP_DEBUG_ASSERT(path_size > 0); 658 if (path_size >= path.size) { 659 // Buffer is too short. Expand the buffer and try again. 660 __kmp_str_buf_reserve(&path, path_size); 661 path_size = GetSystemDirectory(path.str, path.size); 662 KMP_DEBUG_ASSERT(path_size > 0); 663 } 664 if (path_size > 0 && path_size < path.size) { 665 // Now we have system directory name in the buffer. 666 // Append backslash and name of dll to form full path, 667 path.used = path_size; 668 __kmp_str_buf_print(&path, "\\%s", "ntdll.dll"); 669 670 // Now load ntdll using full path. 671 ntdll = GetModuleHandle(path.str); 672 } 673 674 KMP_DEBUG_ASSERT(ntdll != NULL); 675 if (ntdll != NULL) { 676 NtQuerySystemInformation = (NtQuerySystemInformation_t)GetProcAddress( 677 ntdll, "NtQuerySystemInformation"); 678 } 679 KMP_DEBUG_ASSERT(NtQuerySystemInformation != NULL); 680 681 #if KMP_GROUP_AFFINITY 682 // Load kernel32.dll. 683 // Same caveat - must use full system path name. 684 if (path_size > 0 && path_size < path.size) { 685 // Truncate the buffer back to just the system path length, 686 // discarding "\\ntdll.dll", and replacing it with "kernel32.dll". 687 path.used = path_size; 688 __kmp_str_buf_print(&path, "\\%s", "kernel32.dll"); 689 690 // Load kernel32.dll using full path. 691 kernel32 = GetModuleHandle(path.str); 692 KA_TRACE(10, ("__kmp_runtime_initialize: kernel32.dll = %s\n", path.str)); 693 694 // Load the function pointers to kernel32.dll routines 695 // that may or may not exist on this system. 696 if (kernel32 != NULL) { 697 __kmp_GetActiveProcessorCount = 698 (kmp_GetActiveProcessorCount_t)GetProcAddress( 699 kernel32, "GetActiveProcessorCount"); 700 __kmp_GetActiveProcessorGroupCount = 701 (kmp_GetActiveProcessorGroupCount_t)GetProcAddress( 702 kernel32, "GetActiveProcessorGroupCount"); 703 __kmp_GetThreadGroupAffinity = 704 (kmp_GetThreadGroupAffinity_t)GetProcAddress( 705 kernel32, "GetThreadGroupAffinity"); 706 __kmp_SetThreadGroupAffinity = 707 (kmp_SetThreadGroupAffinity_t)GetProcAddress( 708 kernel32, "SetThreadGroupAffinity"); 709 710 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_GetActiveProcessorCount" 711 " = %p\n", 712 __kmp_GetActiveProcessorCount)); 713 KA_TRACE(10, ("__kmp_runtime_initialize: " 714 "__kmp_GetActiveProcessorGroupCount = %p\n", 715 __kmp_GetActiveProcessorGroupCount)); 716 KA_TRACE(10, ("__kmp_runtime_initialize:__kmp_GetThreadGroupAffinity" 717 " = %p\n", 718 __kmp_GetThreadGroupAffinity)); 719 KA_TRACE(10, ("__kmp_runtime_initialize: __kmp_SetThreadGroupAffinity" 720 " = %p\n", 721 __kmp_SetThreadGroupAffinity)); 722 KA_TRACE(10, ("__kmp_runtime_initialize: sizeof(kmp_affin_mask_t) = %d\n", 723 sizeof(kmp_affin_mask_t))); 724 725 // See if group affinity is supported on this system. 726 // If so, calculate the #groups and #procs. 727 // 728 // Group affinity was introduced with Windows* 7 OS and 729 // Windows* Server 2008 R2 OS. 730 if ((__kmp_GetActiveProcessorCount != NULL) && 731 (__kmp_GetActiveProcessorGroupCount != NULL) && 732 (__kmp_GetThreadGroupAffinity != NULL) && 733 (__kmp_SetThreadGroupAffinity != NULL) && 734 ((__kmp_num_proc_groups = __kmp_GetActiveProcessorGroupCount()) > 735 1)) { 736 // Calculate the total number of active OS procs. 737 int i; 738 739 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 740 " detected\n", 741 __kmp_num_proc_groups)); 742 743 __kmp_xproc = 0; 744 745 for (i = 0; i < __kmp_num_proc_groups; i++) { 746 DWORD size = __kmp_GetActiveProcessorCount(i); 747 __kmp_xproc += size; 748 KA_TRACE(10, ("__kmp_runtime_initialize: proc group %d size = %d\n", 749 i, size)); 750 } 751 } else { 752 KA_TRACE(10, ("__kmp_runtime_initialize: %d processor groups" 753 " detected\n", 754 __kmp_num_proc_groups)); 755 } 756 } 757 } 758 if (__kmp_num_proc_groups <= 1) { 759 GetSystemInfo(&info); 760 __kmp_xproc = info.dwNumberOfProcessors; 761 } 762 #else 763 GetSystemInfo(&info); 764 __kmp_xproc = info.dwNumberOfProcessors; 765 #endif /* KMP_GROUP_AFFINITY */ 766 767 // If the OS said there were 0 procs, take a guess and use a value of 2. 768 // This is done for Linux* OS, also. Do we need error / warning? 769 if (__kmp_xproc <= 0) { 770 __kmp_xproc = 2; 771 } 772 773 KA_TRACE(5, 774 ("__kmp_runtime_initialize: total processors = %d\n", __kmp_xproc)); 775 776 __kmp_str_buf_free(&path); 777 778 #if USE_ITT_BUILD 779 __kmp_itt_initialize(); 780 #endif /* USE_ITT_BUILD */ 781 782 __kmp_init_runtime = TRUE; 783 } // __kmp_runtime_initialize 784 785 void __kmp_runtime_destroy(void) { 786 if (!__kmp_init_runtime) { 787 return; 788 } 789 790 #if USE_ITT_BUILD 791 __kmp_itt_destroy(); 792 #endif /* USE_ITT_BUILD */ 793 794 /* we can't DeleteCriticalsection( & __kmp_win32_section ); */ 795 /* due to the KX_TRACE() commands */ 796 KA_TRACE(40, ("__kmp_runtime_destroy\n")); 797 798 if (__kmp_gtid_threadprivate_key) { 799 TlsFree(__kmp_gtid_threadprivate_key); 800 __kmp_gtid_threadprivate_key = 0; 801 } 802 803 __kmp_affinity_uninitialize(); 804 DeleteCriticalSection(&__kmp_win32_section); 805 806 ntdll = NULL; 807 NtQuerySystemInformation = NULL; 808 809 #if KMP_ARCH_X86_64 810 kernel32 = NULL; 811 __kmp_GetActiveProcessorCount = NULL; 812 __kmp_GetActiveProcessorGroupCount = NULL; 813 __kmp_GetThreadGroupAffinity = NULL; 814 __kmp_SetThreadGroupAffinity = NULL; 815 #endif // KMP_ARCH_X86_64 816 817 __kmp_init_runtime = FALSE; 818 } 819 820 void __kmp_terminate_thread(int gtid) { 821 kmp_info_t *th = __kmp_threads[gtid]; 822 823 if (!th) 824 return; 825 826 KA_TRACE(10, ("__kmp_terminate_thread: kill (%d)\n", gtid)); 827 828 if (TerminateThread(th->th.th_info.ds.ds_thread, (DWORD)-1) == FALSE) { 829 /* It's OK, the thread may have exited already */ 830 } 831 __kmp_free_handle(th->th.th_info.ds.ds_thread); 832 } 833 834 void __kmp_clear_system_time(void) { 835 BOOL status; 836 LARGE_INTEGER time; 837 status = QueryPerformanceCounter(&time); 838 __kmp_win32_time = (kmp_int64)time.QuadPart; 839 } 840 841 void __kmp_initialize_system_tick(void) { 842 { 843 BOOL status; 844 LARGE_INTEGER freq; 845 846 status = QueryPerformanceFrequency(&freq); 847 if (!status) { 848 DWORD error = GetLastError(); 849 __kmp_fatal(KMP_MSG(FunctionError, "QueryPerformanceFrequency()"), 850 KMP_ERR(error), __kmp_msg_null); 851 852 } else { 853 __kmp_win32_tick = ((double)1.0) / (double)freq.QuadPart; 854 } 855 } 856 } 857 858 /* Calculate the elapsed wall clock time for the user */ 859 860 void __kmp_elapsed(double *t) { 861 BOOL status; 862 LARGE_INTEGER now; 863 status = QueryPerformanceCounter(&now); 864 *t = ((double)now.QuadPart) * __kmp_win32_tick; 865 } 866 867 /* Calculate the elapsed wall clock tick for the user */ 868 869 void __kmp_elapsed_tick(double *t) { *t = __kmp_win32_tick; } 870 871 void __kmp_read_system_time(double *delta) { 872 if (delta != NULL) { 873 BOOL status; 874 LARGE_INTEGER now; 875 876 status = QueryPerformanceCounter(&now); 877 878 *delta = ((double)(((kmp_int64)now.QuadPart) - __kmp_win32_time)) * 879 __kmp_win32_tick; 880 } 881 } 882 883 /* Return the current time stamp in nsec */ 884 kmp_uint64 __kmp_now_nsec() { 885 LARGE_INTEGER now; 886 QueryPerformanceCounter(&now); 887 return 1e9 * __kmp_win32_tick * now.QuadPart; 888 } 889 890 extern "C" 891 void *__stdcall __kmp_launch_worker(void *arg) { 892 volatile void *stack_data; 893 void *exit_val; 894 void *padding = 0; 895 kmp_info_t *this_thr = (kmp_info_t *)arg; 896 int gtid; 897 898 gtid = this_thr->th.th_info.ds.ds_gtid; 899 __kmp_gtid_set_specific(gtid); 900 #ifdef KMP_TDATA_GTID 901 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 902 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 903 "reference: http://support.microsoft.com/kb/118816" 904 //__kmp_gtid = gtid; 905 #endif 906 907 #if USE_ITT_BUILD 908 __kmp_itt_thread_name(gtid); 909 #endif /* USE_ITT_BUILD */ 910 911 __kmp_affinity_set_init_mask(gtid, FALSE); 912 913 #if KMP_ARCH_X86 || KMP_ARCH_X86_64 914 // Set FP control regs to be a copy of the parallel initialization thread's. 915 __kmp_clear_x87_fpu_status_word(); 916 __kmp_load_x87_fpu_control_word(&__kmp_init_x87_fpu_control_word); 917 __kmp_load_mxcsr(&__kmp_init_mxcsr); 918 #endif /* KMP_ARCH_X86 || KMP_ARCH_X86_64 */ 919 920 if (__kmp_stkoffset > 0 && gtid > 0) { 921 padding = KMP_ALLOCA(gtid * __kmp_stkoffset); 922 } 923 924 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 925 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 926 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 927 928 if (TCR_4(__kmp_gtid_mode) < 929 2) { // check stack only if it is used to get gtid 930 TCW_PTR(this_thr->th.th_info.ds.ds_stackbase, &stack_data); 931 KMP_ASSERT(this_thr->th.th_info.ds.ds_stackgrow == FALSE); 932 __kmp_check_stack_overlap(this_thr); 933 } 934 KMP_MB(); 935 exit_val = __kmp_launch_thread(this_thr); 936 KMP_FSYNC_RELEASING(&this_thr->th.th_info.ds.ds_alive); 937 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 938 KMP_MB(); 939 return exit_val; 940 } 941 942 #if KMP_USE_MONITOR 943 /* The monitor thread controls all of the threads in the complex */ 944 945 void *__stdcall __kmp_launch_monitor(void *arg) { 946 DWORD wait_status; 947 kmp_thread_t monitor; 948 int status; 949 int interval; 950 kmp_info_t *this_thr = (kmp_info_t *)arg; 951 952 KMP_DEBUG_ASSERT(__kmp_init_monitor); 953 TCW_4(__kmp_init_monitor, 2); // AC: Signal library that monitor has started 954 // TODO: hide "2" in enum (like {true,false,started}) 955 this_thr->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 956 TCW_4(this_thr->th.th_info.ds.ds_alive, TRUE); 957 958 KMP_MB(); /* Flush all pending memory write invalidates. */ 959 KA_TRACE(10, ("__kmp_launch_monitor: launched\n")); 960 961 monitor = GetCurrentThread(); 962 963 /* set thread priority */ 964 status = SetThreadPriority(monitor, THREAD_PRIORITY_HIGHEST); 965 if (!status) { 966 DWORD error = GetLastError(); 967 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 968 } 969 970 /* register us as monitor */ 971 __kmp_gtid_set_specific(KMP_GTID_MONITOR); 972 #ifdef KMP_TDATA_GTID 973 #error "This define causes problems with LoadLibrary() + declspec(thread) " \ 974 "on Windows* OS. See CQ50564, tests kmp_load_library*.c and this MSDN " \ 975 "reference: http://support.microsoft.com/kb/118816" 976 //__kmp_gtid = KMP_GTID_MONITOR; 977 #endif 978 979 #if USE_ITT_BUILD 980 __kmp_itt_thread_ignore(); // Instruct Intel(R) Threading Tools to ignore 981 // monitor thread. 982 #endif /* USE_ITT_BUILD */ 983 984 KMP_MB(); /* Flush all pending memory write invalidates. */ 985 986 interval = (1000 / __kmp_monitor_wakeups); /* in milliseconds */ 987 988 while (!TCR_4(__kmp_global.g.g_done)) { 989 /* This thread monitors the state of the system */ 990 991 KA_TRACE(15, ("__kmp_launch_monitor: update\n")); 992 993 wait_status = WaitForSingleObject(__kmp_monitor_ev, interval); 994 995 if (wait_status == WAIT_TIMEOUT) { 996 TCW_4(__kmp_global.g.g_time.dt.t_value, 997 TCR_4(__kmp_global.g.g_time.dt.t_value) + 1); 998 } 999 1000 KMP_MB(); /* Flush all pending memory write invalidates. */ 1001 } 1002 1003 KA_TRACE(10, ("__kmp_launch_monitor: finished\n")); 1004 1005 status = SetThreadPriority(monitor, THREAD_PRIORITY_NORMAL); 1006 if (!status) { 1007 DWORD error = GetLastError(); 1008 __kmp_fatal(KMP_MSG(CantSetThreadPriority), KMP_ERR(error), __kmp_msg_null); 1009 } 1010 1011 if (__kmp_global.g.g_abort != 0) { 1012 /* now we need to terminate the worker threads */ 1013 /* the value of t_abort is the signal we caught */ 1014 int gtid; 1015 1016 KA_TRACE(10, ("__kmp_launch_monitor: terminate sig=%d\n", 1017 (__kmp_global.g.g_abort))); 1018 1019 /* terminate the OpenMP worker threads */ 1020 /* TODO this is not valid for sibling threads!! 1021 * the uber master might not be 0 anymore.. */ 1022 for (gtid = 1; gtid < __kmp_threads_capacity; ++gtid) 1023 __kmp_terminate_thread(gtid); 1024 1025 __kmp_cleanup(); 1026 1027 Sleep(0); 1028 1029 KA_TRACE(10, 1030 ("__kmp_launch_monitor: raise sig=%d\n", __kmp_global.g.g_abort)); 1031 1032 if (__kmp_global.g.g_abort > 0) { 1033 raise(__kmp_global.g.g_abort); 1034 } 1035 } 1036 1037 TCW_4(this_thr->th.th_info.ds.ds_alive, FALSE); 1038 1039 KMP_MB(); 1040 return arg; 1041 } 1042 #endif 1043 1044 void __kmp_create_worker(int gtid, kmp_info_t *th, size_t stack_size) { 1045 kmp_thread_t handle; 1046 DWORD idThread; 1047 1048 KA_TRACE(10, ("__kmp_create_worker: try to create thread (%d)\n", gtid)); 1049 1050 th->th.th_info.ds.ds_gtid = gtid; 1051 1052 if (KMP_UBER_GTID(gtid)) { 1053 int stack_data; 1054 1055 /* TODO: GetCurrentThread() returns a pseudo-handle that is unsuitable for 1056 other threads to use. Is it appropriate to just use GetCurrentThread? 1057 When should we close this handle? When unregistering the root? */ 1058 { 1059 BOOL rc; 1060 rc = DuplicateHandle(GetCurrentProcess(), GetCurrentThread(), 1061 GetCurrentProcess(), &th->th.th_info.ds.ds_thread, 0, 1062 FALSE, DUPLICATE_SAME_ACCESS); 1063 KMP_ASSERT(rc); 1064 KA_TRACE(10, (" __kmp_create_worker: ROOT Handle duplicated, th = %p, " 1065 "handle = %" KMP_UINTPTR_SPEC "\n", 1066 (LPVOID)th, th->th.th_info.ds.ds_thread)); 1067 th->th.th_info.ds.ds_thread_id = GetCurrentThreadId(); 1068 } 1069 if (TCR_4(__kmp_gtid_mode) < 2) { // check stack only if used to get gtid 1070 /* we will dynamically update the stack range if gtid_mode == 1 */ 1071 TCW_PTR(th->th.th_info.ds.ds_stackbase, &stack_data); 1072 TCW_PTR(th->th.th_info.ds.ds_stacksize, 0); 1073 TCW_4(th->th.th_info.ds.ds_stackgrow, TRUE); 1074 __kmp_check_stack_overlap(th); 1075 } 1076 } else { 1077 KMP_MB(); /* Flush all pending memory write invalidates. */ 1078 1079 /* Set stack size for this thread now. */ 1080 KA_TRACE(10, 1081 ("__kmp_create_worker: stack_size = %" KMP_SIZE_T_SPEC " bytes\n", 1082 stack_size)); 1083 1084 stack_size += gtid * __kmp_stkoffset; 1085 1086 TCW_PTR(th->th.th_info.ds.ds_stacksize, stack_size); 1087 TCW_4(th->th.th_info.ds.ds_stackgrow, FALSE); 1088 1089 KA_TRACE(10, 1090 ("__kmp_create_worker: (before) stack_size = %" KMP_SIZE_T_SPEC 1091 " bytes, &__kmp_launch_worker = %p, th = %p, &idThread = %p\n", 1092 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1093 (LPVOID)th, &idThread)); 1094 1095 handle = CreateThread( 1096 NULL, (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)__kmp_launch_worker, 1097 (LPVOID)th, STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1098 1099 KA_TRACE(10, 1100 ("__kmp_create_worker: (after) stack_size = %" KMP_SIZE_T_SPEC 1101 " bytes, &__kmp_launch_worker = %p, th = %p, " 1102 "idThread = %u, handle = %" KMP_UINTPTR_SPEC "\n", 1103 (SIZE_T)stack_size, (LPTHREAD_START_ROUTINE)&__kmp_launch_worker, 1104 (LPVOID)th, idThread, handle)); 1105 1106 if (handle == 0) { 1107 DWORD error = GetLastError(); 1108 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1109 } else { 1110 th->th.th_info.ds.ds_thread = handle; 1111 } 1112 1113 KMP_MB(); /* Flush all pending memory write invalidates. */ 1114 } 1115 1116 KA_TRACE(10, ("__kmp_create_worker: done creating thread (%d)\n", gtid)); 1117 } 1118 1119 int __kmp_still_running(kmp_info_t *th) { 1120 return (WAIT_TIMEOUT == WaitForSingleObject(th->th.th_info.ds.ds_thread, 0)); 1121 } 1122 1123 #if KMP_USE_MONITOR 1124 void __kmp_create_monitor(kmp_info_t *th) { 1125 kmp_thread_t handle; 1126 DWORD idThread; 1127 int ideal, new_ideal; 1128 1129 if (__kmp_dflt_blocktime == KMP_MAX_BLOCKTIME) { 1130 // We don't need monitor thread in case of MAX_BLOCKTIME 1131 KA_TRACE(10, ("__kmp_create_monitor: skipping monitor thread because of " 1132 "MAX blocktime\n")); 1133 th->th.th_info.ds.ds_tid = 0; // this makes reap_monitor no-op 1134 th->th.th_info.ds.ds_gtid = 0; 1135 TCW_4(__kmp_init_monitor, 2); // Signal to stop waiting for monitor creation 1136 return; 1137 } 1138 KA_TRACE(10, ("__kmp_create_monitor: try to create monitor\n")); 1139 1140 KMP_MB(); /* Flush all pending memory write invalidates. */ 1141 1142 __kmp_monitor_ev = CreateEvent(NULL, TRUE, FALSE, NULL); 1143 if (__kmp_monitor_ev == NULL) { 1144 DWORD error = GetLastError(); 1145 __kmp_fatal(KMP_MSG(CantCreateEvent), KMP_ERR(error), __kmp_msg_null); 1146 } 1147 #if USE_ITT_BUILD 1148 __kmp_itt_system_object_created(__kmp_monitor_ev, "Event"); 1149 #endif /* USE_ITT_BUILD */ 1150 1151 th->th.th_info.ds.ds_tid = KMP_GTID_MONITOR; 1152 th->th.th_info.ds.ds_gtid = KMP_GTID_MONITOR; 1153 1154 // FIXME - on Windows* OS, if __kmp_monitor_stksize = 0, figure out how 1155 // to automatically expand stacksize based on CreateThread error code. 1156 if (__kmp_monitor_stksize == 0) { 1157 __kmp_monitor_stksize = KMP_DEFAULT_MONITOR_STKSIZE; 1158 } 1159 if (__kmp_monitor_stksize < __kmp_sys_min_stksize) { 1160 __kmp_monitor_stksize = __kmp_sys_min_stksize; 1161 } 1162 1163 KA_TRACE(10, ("__kmp_create_monitor: requested stacksize = %d bytes\n", 1164 (int)__kmp_monitor_stksize)); 1165 1166 TCW_4(__kmp_global.g.g_time.dt.t_value, 0); 1167 1168 handle = 1169 CreateThread(NULL, (SIZE_T)__kmp_monitor_stksize, 1170 (LPTHREAD_START_ROUTINE)__kmp_launch_monitor, (LPVOID)th, 1171 STACK_SIZE_PARAM_IS_A_RESERVATION, &idThread); 1172 if (handle == 0) { 1173 DWORD error = GetLastError(); 1174 __kmp_fatal(KMP_MSG(CantCreateThread), KMP_ERR(error), __kmp_msg_null); 1175 } else 1176 th->th.th_info.ds.ds_thread = handle; 1177 1178 KMP_MB(); /* Flush all pending memory write invalidates. */ 1179 1180 KA_TRACE(10, ("__kmp_create_monitor: monitor created %p\n", 1181 (void *)th->th.th_info.ds.ds_thread)); 1182 } 1183 #endif 1184 1185 /* Check to see if thread is still alive. 1186 NOTE: The ExitProcess(code) system call causes all threads to Terminate 1187 with a exit_val = code. Because of this we can not rely on exit_val having 1188 any particular value. So this routine may return STILL_ALIVE in exit_val 1189 even after the thread is dead. */ 1190 1191 int __kmp_is_thread_alive(kmp_info_t *th, DWORD *exit_val) { 1192 DWORD rc; 1193 rc = GetExitCodeThread(th->th.th_info.ds.ds_thread, exit_val); 1194 if (rc == 0) { 1195 DWORD error = GetLastError(); 1196 __kmp_fatal(KMP_MSG(FunctionError, "GetExitCodeThread()"), KMP_ERR(error), 1197 __kmp_msg_null); 1198 } 1199 return (*exit_val == STILL_ACTIVE); 1200 } 1201 1202 void __kmp_exit_thread(int exit_status) { 1203 ExitThread(exit_status); 1204 } // __kmp_exit_thread 1205 1206 // This is a common part for both __kmp_reap_worker() and __kmp_reap_monitor(). 1207 static void __kmp_reap_common(kmp_info_t *th) { 1208 DWORD exit_val; 1209 1210 KMP_MB(); /* Flush all pending memory write invalidates. */ 1211 1212 KA_TRACE( 1213 10, ("__kmp_reap_common: try to reap (%d)\n", th->th.th_info.ds.ds_gtid)); 1214 1215 /* 2006-10-19: 1216 There are two opposite situations: 1217 1. Windows* OS keep thread alive after it resets ds_alive flag and 1218 exits from thread function. (For example, see C70770/Q394281 "unloading of 1219 dll based on OMP is very slow".) 1220 2. Windows* OS may kill thread before it resets ds_alive flag. 1221 1222 Right solution seems to be waiting for *either* thread termination *or* 1223 ds_alive resetting. */ 1224 { 1225 // TODO: This code is very similar to KMP_WAIT_YIELD. Need to generalize 1226 // KMP_WAIT_YIELD to cover this usage also. 1227 void *obj = NULL; 1228 kmp_uint32 spins; 1229 #if USE_ITT_BUILD 1230 KMP_FSYNC_SPIN_INIT(obj, (void *)&th->th.th_info.ds.ds_alive); 1231 #endif /* USE_ITT_BUILD */ 1232 KMP_INIT_YIELD(spins); 1233 do { 1234 #if USE_ITT_BUILD 1235 KMP_FSYNC_SPIN_PREPARE(obj); 1236 #endif /* USE_ITT_BUILD */ 1237 __kmp_is_thread_alive(th, &exit_val); 1238 KMP_YIELD(TCR_4(__kmp_nth) > __kmp_avail_proc); 1239 KMP_YIELD_SPIN(spins); 1240 } while (exit_val == STILL_ACTIVE && TCR_4(th->th.th_info.ds.ds_alive)); 1241 #if USE_ITT_BUILD 1242 if (exit_val == STILL_ACTIVE) { 1243 KMP_FSYNC_CANCEL(obj); 1244 } else { 1245 KMP_FSYNC_SPIN_ACQUIRED(obj); 1246 } 1247 #endif /* USE_ITT_BUILD */ 1248 } 1249 1250 __kmp_free_handle(th->th.th_info.ds.ds_thread); 1251 1252 /* NOTE: The ExitProcess(code) system call causes all threads to Terminate 1253 with a exit_val = code. Because of this we can not rely on exit_val having 1254 any particular value. */ 1255 if (exit_val == STILL_ACTIVE) { 1256 KA_TRACE(1, ("__kmp_reap_common: thread still active.\n")); 1257 } else if ((void *)exit_val != (void *)th) { 1258 KA_TRACE(1, ("__kmp_reap_common: ExitProcess / TerminateThread used?\n")); 1259 } 1260 1261 KA_TRACE(10, 1262 ("__kmp_reap_common: done reaping (%d), handle = %" KMP_UINTPTR_SPEC 1263 "\n", 1264 th->th.th_info.ds.ds_gtid, th->th.th_info.ds.ds_thread)); 1265 1266 th->th.th_info.ds.ds_thread = 0; 1267 th->th.th_info.ds.ds_tid = KMP_GTID_DNE; 1268 th->th.th_info.ds.ds_gtid = KMP_GTID_DNE; 1269 th->th.th_info.ds.ds_thread_id = 0; 1270 1271 KMP_MB(); /* Flush all pending memory write invalidates. */ 1272 } 1273 1274 #if KMP_USE_MONITOR 1275 void __kmp_reap_monitor(kmp_info_t *th) { 1276 int status; 1277 1278 KA_TRACE(10, ("__kmp_reap_monitor: try to reap %p\n", 1279 (void *)th->th.th_info.ds.ds_thread)); 1280 1281 // If monitor has been created, its tid and gtid should be KMP_GTID_MONITOR. 1282 // If both tid and gtid are 0, it means the monitor did not ever start. 1283 // If both tid and gtid are KMP_GTID_DNE, the monitor has been shut down. 1284 KMP_DEBUG_ASSERT(th->th.th_info.ds.ds_tid == th->th.th_info.ds.ds_gtid); 1285 if (th->th.th_info.ds.ds_gtid != KMP_GTID_MONITOR) { 1286 KA_TRACE(10, ("__kmp_reap_monitor: monitor did not start, returning\n")); 1287 return; 1288 } 1289 1290 KMP_MB(); /* Flush all pending memory write invalidates. */ 1291 1292 status = SetEvent(__kmp_monitor_ev); 1293 if (status == FALSE) { 1294 DWORD error = GetLastError(); 1295 __kmp_fatal(KMP_MSG(CantSetEvent), KMP_ERR(error), __kmp_msg_null); 1296 } 1297 KA_TRACE(10, ("__kmp_reap_monitor: reaping thread (%d)\n", 1298 th->th.th_info.ds.ds_gtid)); 1299 __kmp_reap_common(th); 1300 1301 __kmp_free_handle(__kmp_monitor_ev); 1302 1303 KMP_MB(); /* Flush all pending memory write invalidates. */ 1304 } 1305 #endif 1306 1307 void __kmp_reap_worker(kmp_info_t *th) { 1308 KA_TRACE(10, ("__kmp_reap_worker: reaping thread (%d)\n", 1309 th->th.th_info.ds.ds_gtid)); 1310 __kmp_reap_common(th); 1311 } 1312 1313 #if KMP_HANDLE_SIGNALS 1314 1315 static void __kmp_team_handler(int signo) { 1316 if (__kmp_global.g.g_abort == 0) { 1317 // Stage 1 signal handler, let's shut down all of the threads. 1318 if (__kmp_debug_buf) { 1319 __kmp_dump_debug_buffer(); 1320 } 1321 KMP_MB(); // Flush all pending memory write invalidates. 1322 TCW_4(__kmp_global.g.g_abort, signo); 1323 KMP_MB(); // Flush all pending memory write invalidates. 1324 TCW_4(__kmp_global.g.g_done, TRUE); 1325 KMP_MB(); // Flush all pending memory write invalidates. 1326 } 1327 } // __kmp_team_handler 1328 1329 static sig_func_t __kmp_signal(int signum, sig_func_t handler) { 1330 sig_func_t old = signal(signum, handler); 1331 if (old == SIG_ERR) { 1332 int error = errno; 1333 __kmp_fatal(KMP_MSG(FunctionError, "signal"), KMP_ERR(error), 1334 __kmp_msg_null); 1335 } 1336 return old; 1337 } 1338 1339 static void __kmp_install_one_handler(int sig, sig_func_t handler, 1340 int parallel_init) { 1341 sig_func_t old; 1342 KMP_MB(); /* Flush all pending memory write invalidates. */ 1343 KB_TRACE(60, ("__kmp_install_one_handler: called: sig=%d\n", sig)); 1344 if (parallel_init) { 1345 old = __kmp_signal(sig, handler); 1346 // SIG_DFL on Windows* OS in NULL or 0. 1347 if (old == __kmp_sighldrs[sig]) { 1348 __kmp_siginstalled[sig] = 1; 1349 } else { // Restore/keep user's handler if one previously installed. 1350 old = __kmp_signal(sig, old); 1351 } 1352 } else { 1353 // Save initial/system signal handlers to see if user handlers installed. 1354 // 2009-09-23: It is a dead code. On Windows* OS __kmp_install_signals 1355 // called once with parallel_init == TRUE. 1356 old = __kmp_signal(sig, SIG_DFL); 1357 __kmp_sighldrs[sig] = old; 1358 __kmp_signal(sig, old); 1359 } 1360 KMP_MB(); /* Flush all pending memory write invalidates. */ 1361 } // __kmp_install_one_handler 1362 1363 static void __kmp_remove_one_handler(int sig) { 1364 if (__kmp_siginstalled[sig]) { 1365 sig_func_t old; 1366 KMP_MB(); // Flush all pending memory write invalidates. 1367 KB_TRACE(60, ("__kmp_remove_one_handler: called: sig=%d\n", sig)); 1368 old = __kmp_signal(sig, __kmp_sighldrs[sig]); 1369 if (old != __kmp_team_handler) { 1370 KB_TRACE(10, ("__kmp_remove_one_handler: oops, not our handler, " 1371 "restoring: sig=%d\n", 1372 sig)); 1373 old = __kmp_signal(sig, old); 1374 } 1375 __kmp_sighldrs[sig] = NULL; 1376 __kmp_siginstalled[sig] = 0; 1377 KMP_MB(); // Flush all pending memory write invalidates. 1378 } 1379 } // __kmp_remove_one_handler 1380 1381 void __kmp_install_signals(int parallel_init) { 1382 KB_TRACE(10, ("__kmp_install_signals: called\n")); 1383 if (!__kmp_handle_signals) { 1384 KB_TRACE(10, ("__kmp_install_signals: KMP_HANDLE_SIGNALS is false - " 1385 "handlers not installed\n")); 1386 return; 1387 } 1388 __kmp_install_one_handler(SIGINT, __kmp_team_handler, parallel_init); 1389 __kmp_install_one_handler(SIGILL, __kmp_team_handler, parallel_init); 1390 __kmp_install_one_handler(SIGABRT, __kmp_team_handler, parallel_init); 1391 __kmp_install_one_handler(SIGFPE, __kmp_team_handler, parallel_init); 1392 __kmp_install_one_handler(SIGSEGV, __kmp_team_handler, parallel_init); 1393 __kmp_install_one_handler(SIGTERM, __kmp_team_handler, parallel_init); 1394 } // __kmp_install_signals 1395 1396 void __kmp_remove_signals(void) { 1397 int sig; 1398 KB_TRACE(10, ("__kmp_remove_signals: called\n")); 1399 for (sig = 1; sig < NSIG; ++sig) { 1400 __kmp_remove_one_handler(sig); 1401 } 1402 } // __kmp_remove_signals 1403 1404 #endif // KMP_HANDLE_SIGNALS 1405 1406 /* Put the thread to sleep for a time period */ 1407 void __kmp_thread_sleep(int millis) { 1408 DWORD status; 1409 1410 status = SleepEx((DWORD)millis, FALSE); 1411 if (status) { 1412 DWORD error = GetLastError(); 1413 __kmp_fatal(KMP_MSG(FunctionError, "SleepEx()"), KMP_ERR(error), 1414 __kmp_msg_null); 1415 } 1416 } 1417 1418 // Determine whether the given address is mapped into the current address space. 1419 int __kmp_is_address_mapped(void *addr) { 1420 DWORD status; 1421 MEMORY_BASIC_INFORMATION lpBuffer; 1422 SIZE_T dwLength; 1423 1424 dwLength = sizeof(MEMORY_BASIC_INFORMATION); 1425 1426 status = VirtualQuery(addr, &lpBuffer, dwLength); 1427 1428 return !(((lpBuffer.State == MEM_RESERVE) || (lpBuffer.State == MEM_FREE)) || 1429 ((lpBuffer.Protect == PAGE_NOACCESS) || 1430 (lpBuffer.Protect == PAGE_EXECUTE))); 1431 } 1432 1433 kmp_uint64 __kmp_hardware_timestamp(void) { 1434 kmp_uint64 r = 0; 1435 1436 QueryPerformanceCounter((LARGE_INTEGER *)&r); 1437 return r; 1438 } 1439 1440 /* Free handle and check the error code */ 1441 void __kmp_free_handle(kmp_thread_t tHandle) { 1442 /* called with parameter type HANDLE also, thus suppose kmp_thread_t defined 1443 * as HANDLE */ 1444 BOOL rc; 1445 rc = CloseHandle(tHandle); 1446 if (!rc) { 1447 DWORD error = GetLastError(); 1448 __kmp_fatal(KMP_MSG(CantCloseHandle), KMP_ERR(error), __kmp_msg_null); 1449 } 1450 } 1451 1452 int __kmp_get_load_balance(int max) { 1453 static ULONG glb_buff_size = 100 * 1024; 1454 1455 // Saved count of the running threads for the thread balance algortihm 1456 static int glb_running_threads = 0; 1457 static double glb_call_time = 0; /* Thread balance algorithm call time */ 1458 1459 int running_threads = 0; // Number of running threads in the system. 1460 NTSTATUS status = 0; 1461 ULONG buff_size = 0; 1462 ULONG info_size = 0; 1463 void *buffer = NULL; 1464 PSYSTEM_PROCESS_INFORMATION spi = NULL; 1465 int first_time = 1; 1466 1467 double call_time = 0.0; // start, finish; 1468 1469 __kmp_elapsed(&call_time); 1470 1471 if (glb_call_time && 1472 (call_time - glb_call_time < __kmp_load_balance_interval)) { 1473 running_threads = glb_running_threads; 1474 goto finish; 1475 } 1476 glb_call_time = call_time; 1477 1478 // Do not spend time on running algorithm if we have a permanent error. 1479 if (NtQuerySystemInformation == NULL) { 1480 running_threads = -1; 1481 goto finish; 1482 } 1483 1484 if (max <= 0) { 1485 max = INT_MAX; 1486 } 1487 1488 do { 1489 1490 if (first_time) { 1491 buff_size = glb_buff_size; 1492 } else { 1493 buff_size = 2 * buff_size; 1494 } 1495 1496 buffer = KMP_INTERNAL_REALLOC(buffer, buff_size); 1497 if (buffer == NULL) { 1498 running_threads = -1; 1499 goto finish; 1500 } 1501 status = NtQuerySystemInformation(SystemProcessInformation, buffer, 1502 buff_size, &info_size); 1503 first_time = 0; 1504 1505 } while (status == STATUS_INFO_LENGTH_MISMATCH); 1506 glb_buff_size = buff_size; 1507 1508 #define CHECK(cond) \ 1509 { \ 1510 KMP_DEBUG_ASSERT(cond); \ 1511 if (!(cond)) { \ 1512 running_threads = -1; \ 1513 goto finish; \ 1514 } \ 1515 } 1516 1517 CHECK(buff_size >= info_size); 1518 spi = PSYSTEM_PROCESS_INFORMATION(buffer); 1519 for (;;) { 1520 ptrdiff_t offset = uintptr_t(spi) - uintptr_t(buffer); 1521 CHECK(0 <= offset && 1522 offset + sizeof(SYSTEM_PROCESS_INFORMATION) < info_size); 1523 HANDLE pid = spi->ProcessId; 1524 ULONG num = spi->NumberOfThreads; 1525 CHECK(num >= 1); 1526 size_t spi_size = 1527 sizeof(SYSTEM_PROCESS_INFORMATION) + sizeof(SYSTEM_THREAD) * (num - 1); 1528 CHECK(offset + spi_size < 1529 info_size); // Make sure process info record fits the buffer. 1530 if (spi->NextEntryOffset != 0) { 1531 CHECK(spi_size <= 1532 spi->NextEntryOffset); // And do not overlap with the next record. 1533 } 1534 // pid == 0 corresponds to the System Idle Process. It always has running 1535 // threads on all cores. So, we don't consider the running threads of this 1536 // process. 1537 if (pid != 0) { 1538 for (int i = 0; i < num; ++i) { 1539 THREAD_STATE state = spi->Threads[i].State; 1540 // Count threads that have Ready or Running state. 1541 // !!! TODO: Why comment does not match the code??? 1542 if (state == StateRunning) { 1543 ++running_threads; 1544 // Stop counting running threads if the number is already greater than 1545 // the number of available cores 1546 if (running_threads >= max) { 1547 goto finish; 1548 } 1549 } 1550 } 1551 } 1552 if (spi->NextEntryOffset == 0) { 1553 break; 1554 } 1555 spi = PSYSTEM_PROCESS_INFORMATION(uintptr_t(spi) + spi->NextEntryOffset); 1556 } 1557 1558 #undef CHECK 1559 1560 finish: // Clean up and exit. 1561 1562 if (buffer != NULL) { 1563 KMP_INTERNAL_FREE(buffer); 1564 } 1565 1566 glb_running_threads = running_threads; 1567 1568 return running_threads; 1569 } //__kmp_get_load_balance() 1570