1 /** @file kmp_stats_timing.cpp 2 * Timing functions 3 */ 4 5 //===----------------------------------------------------------------------===// 6 // 7 // The LLVM Compiler Infrastructure 8 // 9 // This file is dual licensed under the MIT and the University of Illinois Open 10 // Source Licenses. See LICENSE.txt for details. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include <stdlib.h> 15 #include <unistd.h> 16 17 #include <iomanip> 18 #include <iostream> 19 #include <sstream> 20 21 #include "kmp.h" 22 #include "kmp_stats_timing.h" 23 24 using namespace std; 25 26 #if KMP_HAVE_TICK_TIME 27 #if KMP_MIC 28 double tsc_tick_count::tick_time() { 29 // pretty bad assumption of 1GHz clock for MIC 30 return 1 / ((double)1000 * 1.e6); 31 } 32 #elif KMP_ARCH_X86 || KMP_ARCH_X86_64 33 #include <string.h> 34 // Extract the value from the CPUID information 35 double tsc_tick_count::tick_time() { 36 static double result = 0.0; 37 38 if (result == 0.0) { 39 kmp_cpuid_t cpuinfo; 40 char brand[256]; 41 42 __kmp_x86_cpuid(0x80000000, 0, &cpuinfo); 43 memset(brand, 0, sizeof(brand)); 44 int ids = cpuinfo.eax; 45 46 for (unsigned int i = 2; i < (ids ^ 0x80000000) + 2; i++) 47 __kmp_x86_cpuid(i | 0x80000000, 0, 48 (kmp_cpuid_t *)(brand + (i - 2) * sizeof(kmp_cpuid_t))); 49 50 char *start = &brand[0]; 51 for (; *start == ' '; start++) 52 ; 53 54 char *end = brand + KMP_STRLEN(brand) - 3; 55 uint64_t multiplier; 56 57 if (*end == 'M') 58 multiplier = 1000LL * 1000LL; 59 else if (*end == 'G') 60 multiplier = 1000LL * 1000LL * 1000LL; 61 else if (*end == 'T') 62 multiplier = 1000LL * 1000LL * 1000LL * 1000LL; 63 else { 64 cout << "Error determining multiplier '" << *end << "'\n"; 65 exit(-1); 66 } 67 *end = 0; 68 while (*end != ' ') 69 end--; 70 end++; 71 72 double freq = strtod(end, &start); 73 if (freq == 0.0) { 74 cout << "Error calculating frequency " << end << "\n"; 75 exit(-1); 76 } 77 78 result = ((double)1.0) / (freq * multiplier); 79 } 80 return result; 81 } 82 #endif 83 #endif 84 85 static bool useSI = true; 86 87 // Return a formatted string after normalising the value into 88 // engineering style and using a suitable unit prefix (e.g. ms, us, ns). 89 std::string formatSI(double interval, int width, char unit) { 90 std::stringstream os; 91 92 if (useSI) { 93 // Preserve accuracy for small numbers, since we only multiply and the 94 // positive powers of ten are precisely representable. 95 static struct { 96 double scale; 97 char prefix; 98 } ranges[] = {{1.e21, 'y'}, {1.e18, 'z'}, {1.e15, 'a'}, {1.e12, 'f'}, 99 {1.e9, 'p'}, {1.e6, 'n'}, {1.e3, 'u'}, {1.0, 'm'}, 100 {1.e-3, ' '}, {1.e-6, 'k'}, {1.e-9, 'M'}, {1.e-12, 'G'}, 101 {1.e-15, 'T'}, {1.e-18, 'P'}, {1.e-21, 'E'}, {1.e-24, 'Z'}, 102 {1.e-27, 'Y'}}; 103 104 if (interval == 0.0) { 105 os << std::setw(width - 3) << std::right << "0.00" << std::setw(3) 106 << unit; 107 return os.str(); 108 } 109 110 bool negative = false; 111 if (interval < 0.0) { 112 negative = true; 113 interval = -interval; 114 } 115 116 for (int i = 0; i < (int)(sizeof(ranges) / sizeof(ranges[0])); i++) { 117 if (interval * ranges[i].scale < 1.e0) { 118 interval = interval * 1000.e0 * ranges[i].scale; 119 os << std::fixed << std::setprecision(2) << std::setw(width - 3) 120 << std::right << (negative ? -interval : interval) << std::setw(2) 121 << ranges[i].prefix << std::setw(1) << unit; 122 123 return os.str(); 124 } 125 } 126 } 127 os << std::setprecision(2) << std::fixed << std::right << std::setw(width - 3) 128 << interval << std::setw(3) << unit; 129 130 return os.str(); 131 } 132