1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // It contains the tablegen backend that emits the decoder functions for 11 // targets with fixed length instruction set. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenInstruction.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/CachedHashString.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/MC/MCFixedLenDisassembler.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/FormattedStream.h" 30 #include "llvm/Support/LEB128.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Error.h" 33 #include "llvm/TableGen/Record.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <map> 39 #include <memory> 40 #include <set> 41 #include <string> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "decoder-emitter" 48 49 namespace { 50 51 struct EncodingField { 52 unsigned Base, Width, Offset; 53 EncodingField(unsigned B, unsigned W, unsigned O) 54 : Base(B), Width(W), Offset(O) { } 55 }; 56 57 struct OperandInfo { 58 std::vector<EncodingField> Fields; 59 std::string Decoder; 60 bool HasCompleteDecoder; 61 62 OperandInfo(std::string D, bool HCD) 63 : Decoder(std::move(D)), HasCompleteDecoder(HCD) {} 64 65 void addField(unsigned Base, unsigned Width, unsigned Offset) { 66 Fields.push_back(EncodingField(Base, Width, Offset)); 67 } 68 69 unsigned numFields() const { return Fields.size(); } 70 71 typedef std::vector<EncodingField>::const_iterator const_iterator; 72 73 const_iterator begin() const { return Fields.begin(); } 74 const_iterator end() const { return Fields.end(); } 75 }; 76 77 typedef std::vector<uint8_t> DecoderTable; 78 typedef uint32_t DecoderFixup; 79 typedef std::vector<DecoderFixup> FixupList; 80 typedef std::vector<FixupList> FixupScopeList; 81 typedef SmallSetVector<CachedHashString, 16> PredicateSet; 82 typedef SmallSetVector<CachedHashString, 16> DecoderSet; 83 struct DecoderTableInfo { 84 DecoderTable Table; 85 FixupScopeList FixupStack; 86 PredicateSet Predicates; 87 DecoderSet Decoders; 88 }; 89 90 class FixedLenDecoderEmitter { 91 ArrayRef<const CodeGenInstruction *> NumberedInstructions; 92 93 public: 94 // Defaults preserved here for documentation, even though they aren't 95 // strictly necessary given the way that this is currently being called. 96 FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, 97 std::string GPrefix = "if (", 98 std::string GPostfix = " == MCDisassembler::Fail)", 99 std::string ROK = "MCDisassembler::Success", 100 std::string RFail = "MCDisassembler::Fail", 101 std::string L = "") 102 : Target(R), PredicateNamespace(std::move(PredicateNamespace)), 103 GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)), 104 ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)), 105 Locals(std::move(L)) {} 106 107 // Emit the decoder state machine table. 108 void emitTable(formatted_raw_ostream &o, DecoderTable &Table, 109 unsigned Indentation, unsigned BitWidth, 110 StringRef Namespace) const; 111 void emitPredicateFunction(formatted_raw_ostream &OS, 112 PredicateSet &Predicates, 113 unsigned Indentation) const; 114 void emitDecoderFunction(formatted_raw_ostream &OS, 115 DecoderSet &Decoders, 116 unsigned Indentation) const; 117 118 // run - Output the code emitter 119 void run(raw_ostream &o); 120 121 private: 122 CodeGenTarget Target; 123 124 public: 125 std::string PredicateNamespace; 126 std::string GuardPrefix, GuardPostfix; 127 std::string ReturnOK, ReturnFail; 128 std::string Locals; 129 }; 130 131 } // end anonymous namespace 132 133 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system 134 // for a bit value. 135 // 136 // BIT_UNFILTERED is used as the init value for a filter position. It is used 137 // only for filter processings. 138 typedef enum { 139 BIT_TRUE, // '1' 140 BIT_FALSE, // '0' 141 BIT_UNSET, // '?' 142 BIT_UNFILTERED // unfiltered 143 } bit_value_t; 144 145 static bool ValueSet(bit_value_t V) { 146 return (V == BIT_TRUE || V == BIT_FALSE); 147 } 148 149 static bool ValueNotSet(bit_value_t V) { 150 return (V == BIT_UNSET); 151 } 152 153 static int Value(bit_value_t V) { 154 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); 155 } 156 157 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { 158 if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) 159 return bit->getValue() ? BIT_TRUE : BIT_FALSE; 160 161 // The bit is uninitialized. 162 return BIT_UNSET; 163 } 164 165 // Prints the bit value for each position. 166 static void dumpBits(raw_ostream &o, const BitsInit &bits) { 167 for (unsigned index = bits.getNumBits(); index > 0; --index) { 168 switch (bitFromBits(bits, index - 1)) { 169 case BIT_TRUE: 170 o << "1"; 171 break; 172 case BIT_FALSE: 173 o << "0"; 174 break; 175 case BIT_UNSET: 176 o << "_"; 177 break; 178 default: 179 llvm_unreachable("unexpected return value from bitFromBits"); 180 } 181 } 182 } 183 184 static BitsInit &getBitsField(const Record &def, StringRef str) { 185 BitsInit *bits = def.getValueAsBitsInit(str); 186 return *bits; 187 } 188 189 // Representation of the instruction to work on. 190 typedef std::vector<bit_value_t> insn_t; 191 192 namespace { 193 194 class FilterChooser; 195 196 /// Filter - Filter works with FilterChooser to produce the decoding tree for 197 /// the ISA. 198 /// 199 /// It is useful to think of a Filter as governing the switch stmts of the 200 /// decoding tree in a certain level. Each case stmt delegates to an inferior 201 /// FilterChooser to decide what further decoding logic to employ, or in another 202 /// words, what other remaining bits to look at. The FilterChooser eventually 203 /// chooses a best Filter to do its job. 204 /// 205 /// This recursive scheme ends when the number of Opcodes assigned to the 206 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when 207 /// the Filter/FilterChooser combo does not know how to distinguish among the 208 /// Opcodes assigned. 209 /// 210 /// An example of a conflict is 211 /// 212 /// Conflict: 213 /// 111101000.00........00010000.... 214 /// 111101000.00........0001........ 215 /// 1111010...00........0001........ 216 /// 1111010...00.................... 217 /// 1111010......................... 218 /// 1111............................ 219 /// ................................ 220 /// VST4q8a 111101000_00________00010000____ 221 /// VST4q8b 111101000_00________00010000____ 222 /// 223 /// The Debug output shows the path that the decoding tree follows to reach the 224 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced 225 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. 226 /// 227 /// The encoding info in the .td files does not specify this meta information, 228 /// which could have been used by the decoder to resolve the conflict. The 229 /// decoder could try to decode the even/odd register numbering and assign to 230 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" 231 /// version and return the Opcode since the two have the same Asm format string. 232 class Filter { 233 protected: 234 const FilterChooser *Owner;// points to the FilterChooser who owns this filter 235 unsigned StartBit; // the starting bit position 236 unsigned NumBits; // number of bits to filter 237 bool Mixed; // a mixed region contains both set and unset bits 238 239 // Map of well-known segment value to the set of uid's with that value. 240 std::map<uint64_t, std::vector<unsigned>> FilteredInstructions; 241 242 // Set of uid's with non-constant segment values. 243 std::vector<unsigned> VariableInstructions; 244 245 // Map of well-known segment value to its delegate. 246 std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap; 247 248 // Number of instructions which fall under FilteredInstructions category. 249 unsigned NumFiltered; 250 251 // Keeps track of the last opcode in the filtered bucket. 252 unsigned LastOpcFiltered; 253 254 public: 255 Filter(Filter &&f); 256 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); 257 258 ~Filter() = default; 259 260 unsigned getNumFiltered() const { return NumFiltered; } 261 262 unsigned getSingletonOpc() const { 263 assert(NumFiltered == 1); 264 return LastOpcFiltered; 265 } 266 267 // Return the filter chooser for the group of instructions without constant 268 // segment values. 269 const FilterChooser &getVariableFC() const { 270 assert(NumFiltered == 1); 271 assert(FilterChooserMap.size() == 1); 272 return *(FilterChooserMap.find((unsigned)-1)->second); 273 } 274 275 // Divides the decoding task into sub tasks and delegates them to the 276 // inferior FilterChooser's. 277 // 278 // A special case arises when there's only one entry in the filtered 279 // instructions. In order to unambiguously decode the singleton, we need to 280 // match the remaining undecoded encoding bits against the singleton. 281 void recurse(); 282 283 // Emit table entries to decode instructions given a segment or segments of 284 // bits. 285 void emitTableEntry(DecoderTableInfo &TableInfo) const; 286 287 // Returns the number of fanout produced by the filter. More fanout implies 288 // the filter distinguishes more categories of instructions. 289 unsigned usefulness() const; 290 }; // end class Filter 291 292 } // end anonymous namespace 293 294 // These are states of our finite state machines used in FilterChooser's 295 // filterProcessor() which produces the filter candidates to use. 296 typedef enum { 297 ATTR_NONE, 298 ATTR_FILTERED, 299 ATTR_ALL_SET, 300 ATTR_ALL_UNSET, 301 ATTR_MIXED 302 } bitAttr_t; 303 304 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters 305 /// in order to perform the decoding of instructions at the current level. 306 /// 307 /// Decoding proceeds from the top down. Based on the well-known encoding bits 308 /// of instructions available, FilterChooser builds up the possible Filters that 309 /// can further the task of decoding by distinguishing among the remaining 310 /// candidate instructions. 311 /// 312 /// Once a filter has been chosen, it is called upon to divide the decoding task 313 /// into sub-tasks and delegates them to its inferior FilterChoosers for further 314 /// processings. 315 /// 316 /// It is useful to think of a Filter as governing the switch stmts of the 317 /// decoding tree. And each case is delegated to an inferior FilterChooser to 318 /// decide what further remaining bits to look at. 319 namespace { 320 321 class FilterChooser { 322 protected: 323 friend class Filter; 324 325 // Vector of codegen instructions to choose our filter. 326 ArrayRef<const CodeGenInstruction *> AllInstructions; 327 328 // Vector of uid's for this filter chooser to work on. 329 const std::vector<unsigned> &Opcodes; 330 331 // Lookup table for the operand decoding of instructions. 332 const std::map<unsigned, std::vector<OperandInfo>> &Operands; 333 334 // Vector of candidate filters. 335 std::vector<Filter> Filters; 336 337 // Array of bit values passed down from our parent. 338 // Set to all BIT_UNFILTERED's for Parent == NULL. 339 std::vector<bit_value_t> FilterBitValues; 340 341 // Links to the FilterChooser above us in the decoding tree. 342 const FilterChooser *Parent; 343 344 // Index of the best filter from Filters. 345 int BestIndex; 346 347 // Width of instructions 348 unsigned BitWidth; 349 350 // Parent emitter 351 const FixedLenDecoderEmitter *Emitter; 352 353 public: 354 FilterChooser(ArrayRef<const CodeGenInstruction *> Insts, 355 const std::vector<unsigned> &IDs, 356 const std::map<unsigned, std::vector<OperandInfo>> &Ops, 357 unsigned BW, 358 const FixedLenDecoderEmitter *E) 359 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 360 FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), 361 BitWidth(BW), Emitter(E) { 362 doFilter(); 363 } 364 365 FilterChooser(ArrayRef<const CodeGenInstruction *> Insts, 366 const std::vector<unsigned> &IDs, 367 const std::map<unsigned, std::vector<OperandInfo>> &Ops, 368 const std::vector<bit_value_t> &ParentFilterBitValues, 369 const FilterChooser &parent) 370 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 371 FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), 372 BitWidth(parent.BitWidth), Emitter(parent.Emitter) { 373 doFilter(); 374 } 375 376 FilterChooser(const FilterChooser &) = delete; 377 void operator=(const FilterChooser &) = delete; 378 379 unsigned getBitWidth() const { return BitWidth; } 380 381 protected: 382 // Populates the insn given the uid. 383 void insnWithID(insn_t &Insn, unsigned Opcode) const { 384 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); 385 386 // We may have a SoftFail bitmask, which specifies a mask where an encoding 387 // may differ from the value in "Inst" and yet still be valid, but the 388 // disassembler should return SoftFail instead of Success. 389 // 390 // This is used for marking UNPREDICTABLE instructions in the ARM world. 391 BitsInit *SFBits = 392 AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail"); 393 394 for (unsigned i = 0; i < BitWidth; ++i) { 395 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) 396 Insn.push_back(BIT_UNSET); 397 else 398 Insn.push_back(bitFromBits(Bits, i)); 399 } 400 } 401 402 // Returns the record name. 403 const StringRef nameWithID(unsigned Opcode) const { 404 return AllInstructions[Opcode]->TheDef->getName(); 405 } 406 407 // Populates the field of the insn given the start position and the number of 408 // consecutive bits to scan for. 409 // 410 // Returns false if there exists any uninitialized bit value in the range. 411 // Returns true, otherwise. 412 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, 413 unsigned NumBits) const; 414 415 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 416 /// filter array as a series of chars. 417 void dumpFilterArray(raw_ostream &o, 418 const std::vector<bit_value_t> & filter) const; 419 420 /// dumpStack - dumpStack traverses the filter chooser chain and calls 421 /// dumpFilterArray on each filter chooser up to the top level one. 422 void dumpStack(raw_ostream &o, const char *prefix) const; 423 424 Filter &bestFilter() { 425 assert(BestIndex != -1 && "BestIndex not set"); 426 return Filters[BestIndex]; 427 } 428 429 bool PositionFiltered(unsigned i) const { 430 return ValueSet(FilterBitValues[i]); 431 } 432 433 // Calculates the island(s) needed to decode the instruction. 434 // This returns a lit of undecoded bits of an instructions, for example, 435 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 436 // decoded bits in order to verify that the instruction matches the Opcode. 437 unsigned getIslands(std::vector<unsigned> &StartBits, 438 std::vector<unsigned> &EndBits, 439 std::vector<uint64_t> &FieldVals, 440 const insn_t &Insn) const; 441 442 // Emits code to check the Predicates member of an instruction are true. 443 // Returns true if predicate matches were emitted, false otherwise. 444 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 445 unsigned Opc) const; 446 447 bool doesOpcodeNeedPredicate(unsigned Opc) const; 448 unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; 449 void emitPredicateTableEntry(DecoderTableInfo &TableInfo, 450 unsigned Opc) const; 451 452 void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 453 unsigned Opc) const; 454 455 // Emits table entries to decode the singleton. 456 void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 457 unsigned Opc) const; 458 459 // Emits code to decode the singleton, and then to decode the rest. 460 void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 461 const Filter &Best) const; 462 463 void emitBinaryParser(raw_ostream &o, unsigned &Indentation, 464 const OperandInfo &OpInfo, 465 bool &OpHasCompleteDecoder) const; 466 467 void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc, 468 bool &HasCompleteDecoder) const; 469 unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc, 470 bool &HasCompleteDecoder) const; 471 472 // Assign a single filter and run with it. 473 void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); 474 475 // reportRegion is a helper function for filterProcessor to mark a region as 476 // eligible for use as a filter region. 477 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, 478 bool AllowMixed); 479 480 // FilterProcessor scans the well-known encoding bits of the instructions and 481 // builds up a list of candidate filters. It chooses the best filter and 482 // recursively descends down the decoding tree. 483 bool filterProcessor(bool AllowMixed, bool Greedy = true); 484 485 // Decides on the best configuration of filter(s) to use in order to decode 486 // the instructions. A conflict of instructions may occur, in which case we 487 // dump the conflict set to the standard error. 488 void doFilter(); 489 490 public: 491 // emitTableEntries - Emit state machine entries to decode our share of 492 // instructions. 493 void emitTableEntries(DecoderTableInfo &TableInfo) const; 494 }; 495 496 } // end anonymous namespace 497 498 /////////////////////////// 499 // // 500 // Filter Implementation // 501 // // 502 /////////////////////////// 503 504 Filter::Filter(Filter &&f) 505 : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), 506 FilteredInstructions(std::move(f.FilteredInstructions)), 507 VariableInstructions(std::move(f.VariableInstructions)), 508 FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), 509 LastOpcFiltered(f.LastOpcFiltered) { 510 } 511 512 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, 513 bool mixed) 514 : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { 515 assert(StartBit + NumBits - 1 < Owner->BitWidth); 516 517 NumFiltered = 0; 518 LastOpcFiltered = 0; 519 520 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { 521 insn_t Insn; 522 523 // Populates the insn given the uid. 524 Owner->insnWithID(Insn, Owner->Opcodes[i]); 525 526 uint64_t Field; 527 // Scans the segment for possibly well-specified encoding bits. 528 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); 529 530 if (ok) { 531 // The encoding bits are well-known. Lets add the uid of the 532 // instruction into the bucket keyed off the constant field value. 533 LastOpcFiltered = Owner->Opcodes[i]; 534 FilteredInstructions[Field].push_back(LastOpcFiltered); 535 ++NumFiltered; 536 } else { 537 // Some of the encoding bit(s) are unspecified. This contributes to 538 // one additional member of "Variable" instructions. 539 VariableInstructions.push_back(Owner->Opcodes[i]); 540 } 541 } 542 543 assert((FilteredInstructions.size() + VariableInstructions.size() > 0) 544 && "Filter returns no instruction categories"); 545 } 546 547 // Divides the decoding task into sub tasks and delegates them to the 548 // inferior FilterChooser's. 549 // 550 // A special case arises when there's only one entry in the filtered 551 // instructions. In order to unambiguously decode the singleton, we need to 552 // match the remaining undecoded encoding bits against the singleton. 553 void Filter::recurse() { 554 // Starts by inheriting our parent filter chooser's filter bit values. 555 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); 556 557 if (!VariableInstructions.empty()) { 558 // Conservatively marks each segment position as BIT_UNSET. 559 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) 560 BitValueArray[StartBit + bitIndex] = BIT_UNSET; 561 562 // Delegates to an inferior filter chooser for further processing on this 563 // group of instructions whose segment values are variable. 564 FilterChooserMap.insert( 565 std::make_pair(-1U, llvm::make_unique<FilterChooser>( 566 Owner->AllInstructions, VariableInstructions, 567 Owner->Operands, BitValueArray, *Owner))); 568 } 569 570 // No need to recurse for a singleton filtered instruction. 571 // See also Filter::emit*(). 572 if (getNumFiltered() == 1) { 573 assert(FilterChooserMap.size() == 1); 574 return; 575 } 576 577 // Otherwise, create sub choosers. 578 for (const auto &Inst : FilteredInstructions) { 579 580 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. 581 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { 582 if (Inst.first & (1ULL << bitIndex)) 583 BitValueArray[StartBit + bitIndex] = BIT_TRUE; 584 else 585 BitValueArray[StartBit + bitIndex] = BIT_FALSE; 586 } 587 588 // Delegates to an inferior filter chooser for further processing on this 589 // category of instructions. 590 FilterChooserMap.insert(std::make_pair( 591 Inst.first, llvm::make_unique<FilterChooser>( 592 Owner->AllInstructions, Inst.second, 593 Owner->Operands, BitValueArray, *Owner))); 594 } 595 } 596 597 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, 598 uint32_t DestIdx) { 599 // Any NumToSkip fixups in the current scope can resolve to the 600 // current location. 601 for (FixupList::const_reverse_iterator I = Fixups.rbegin(), 602 E = Fixups.rend(); 603 I != E; ++I) { 604 // Calculate the distance from the byte following the fixup entry byte 605 // to the destination. The Target is calculated from after the 16-bit 606 // NumToSkip entry itself, so subtract two from the displacement here 607 // to account for that. 608 uint32_t FixupIdx = *I; 609 uint32_t Delta = DestIdx - FixupIdx - 2; 610 // Our NumToSkip entries are 16-bits. Make sure our table isn't too 611 // big. 612 assert(Delta < 65536U && "disassembler decoding table too large!"); 613 Table[FixupIdx] = (uint8_t)Delta; 614 Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); 615 } 616 } 617 618 // Emit table entries to decode instructions given a segment or segments 619 // of bits. 620 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { 621 TableInfo.Table.push_back(MCD::OPC_ExtractField); 622 TableInfo.Table.push_back(StartBit); 623 TableInfo.Table.push_back(NumBits); 624 625 // A new filter entry begins a new scope for fixup resolution. 626 TableInfo.FixupStack.emplace_back(); 627 628 DecoderTable &Table = TableInfo.Table; 629 630 size_t PrevFilter = 0; 631 bool HasFallthrough = false; 632 for (auto &Filter : FilterChooserMap) { 633 // Field value -1 implies a non-empty set of variable instructions. 634 // See also recurse(). 635 if (Filter.first == (unsigned)-1) { 636 HasFallthrough = true; 637 638 // Each scope should always have at least one filter value to check 639 // for. 640 assert(PrevFilter != 0 && "empty filter set!"); 641 FixupList &CurScope = TableInfo.FixupStack.back(); 642 // Resolve any NumToSkip fixups in the current scope. 643 resolveTableFixups(Table, CurScope, Table.size()); 644 CurScope.clear(); 645 PrevFilter = 0; // Don't re-process the filter's fallthrough. 646 } else { 647 Table.push_back(MCD::OPC_FilterValue); 648 // Encode and emit the value to filter against. 649 uint8_t Buffer[8]; 650 unsigned Len = encodeULEB128(Filter.first, Buffer); 651 Table.insert(Table.end(), Buffer, Buffer + Len); 652 // Reserve space for the NumToSkip entry. We'll backpatch the value 653 // later. 654 PrevFilter = Table.size(); 655 Table.push_back(0); 656 Table.push_back(0); 657 } 658 659 // We arrive at a category of instructions with the same segment value. 660 // Now delegate to the sub filter chooser for further decodings. 661 // The case may fallthrough, which happens if the remaining well-known 662 // encoding bits do not match exactly. 663 Filter.second->emitTableEntries(TableInfo); 664 665 // Now that we've emitted the body of the handler, update the NumToSkip 666 // of the filter itself to be able to skip forward when false. Subtract 667 // two as to account for the width of the NumToSkip field itself. 668 if (PrevFilter) { 669 uint32_t NumToSkip = Table.size() - PrevFilter - 2; 670 assert(NumToSkip < 65536U && "disassembler decoding table too large!"); 671 Table[PrevFilter] = (uint8_t)NumToSkip; 672 Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); 673 } 674 } 675 676 // Any remaining unresolved fixups bubble up to the parent fixup scope. 677 assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); 678 FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; 679 FixupScopeList::iterator Dest = Source - 1; 680 Dest->insert(Dest->end(), Source->begin(), Source->end()); 681 TableInfo.FixupStack.pop_back(); 682 683 // If there is no fallthrough, then the final filter should get fixed 684 // up according to the enclosing scope rather than the current position. 685 if (!HasFallthrough) 686 TableInfo.FixupStack.back().push_back(PrevFilter); 687 } 688 689 // Returns the number of fanout produced by the filter. More fanout implies 690 // the filter distinguishes more categories of instructions. 691 unsigned Filter::usefulness() const { 692 if (!VariableInstructions.empty()) 693 return FilteredInstructions.size(); 694 else 695 return FilteredInstructions.size() + 1; 696 } 697 698 ////////////////////////////////// 699 // // 700 // Filterchooser Implementation // 701 // // 702 ////////////////////////////////// 703 704 // Emit the decoder state machine table. 705 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS, 706 DecoderTable &Table, 707 unsigned Indentation, 708 unsigned BitWidth, 709 StringRef Namespace) const { 710 OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace 711 << BitWidth << "[] = {\n"; 712 713 Indentation += 2; 714 715 // FIXME: We may be able to use the NumToSkip values to recover 716 // appropriate indentation levels. 717 DecoderTable::const_iterator I = Table.begin(); 718 DecoderTable::const_iterator E = Table.end(); 719 while (I != E) { 720 assert (I < E && "incomplete decode table entry!"); 721 722 uint64_t Pos = I - Table.begin(); 723 OS << "/* " << Pos << " */"; 724 OS.PadToColumn(12); 725 726 switch (*I) { 727 default: 728 PrintFatalError("invalid decode table opcode"); 729 case MCD::OPC_ExtractField: { 730 ++I; 731 unsigned Start = *I++; 732 unsigned Len = *I++; 733 OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " 734 << Len << ", // Inst{"; 735 if (Len > 1) 736 OS << (Start + Len - 1) << "-"; 737 OS << Start << "} ...\n"; 738 break; 739 } 740 case MCD::OPC_FilterValue: { 741 ++I; 742 OS.indent(Indentation) << "MCD::OPC_FilterValue, "; 743 // The filter value is ULEB128 encoded. 744 while (*I >= 128) 745 OS << (unsigned)*I++ << ", "; 746 OS << (unsigned)*I++ << ", "; 747 748 // 16-bit numtoskip value. 749 uint8_t Byte = *I++; 750 uint32_t NumToSkip = Byte; 751 OS << (unsigned)Byte << ", "; 752 Byte = *I++; 753 OS << (unsigned)Byte << ", "; 754 NumToSkip |= Byte << 8; 755 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 756 break; 757 } 758 case MCD::OPC_CheckField: { 759 ++I; 760 unsigned Start = *I++; 761 unsigned Len = *I++; 762 OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " 763 << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; 764 // ULEB128 encoded field value. 765 for (; *I >= 128; ++I) 766 OS << (unsigned)*I << ", "; 767 OS << (unsigned)*I++ << ", "; 768 // 16-bit numtoskip value. 769 uint8_t Byte = *I++; 770 uint32_t NumToSkip = Byte; 771 OS << (unsigned)Byte << ", "; 772 Byte = *I++; 773 OS << (unsigned)Byte << ", "; 774 NumToSkip |= Byte << 8; 775 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 776 break; 777 } 778 case MCD::OPC_CheckPredicate: { 779 ++I; 780 OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; 781 for (; *I >= 128; ++I) 782 OS << (unsigned)*I << ", "; 783 OS << (unsigned)*I++ << ", "; 784 785 // 16-bit numtoskip value. 786 uint8_t Byte = *I++; 787 uint32_t NumToSkip = Byte; 788 OS << (unsigned)Byte << ", "; 789 Byte = *I++; 790 OS << (unsigned)Byte << ", "; 791 NumToSkip |= Byte << 8; 792 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 793 break; 794 } 795 case MCD::OPC_Decode: 796 case MCD::OPC_TryDecode: { 797 bool IsTry = *I == MCD::OPC_TryDecode; 798 ++I; 799 // Extract the ULEB128 encoded Opcode to a buffer. 800 uint8_t Buffer[8], *p = Buffer; 801 while ((*p++ = *I++) >= 128) 802 assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) 803 && "ULEB128 value too large!"); 804 // Decode the Opcode value. 805 unsigned Opc = decodeULEB128(Buffer); 806 OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "") 807 << "Decode, "; 808 for (p = Buffer; *p >= 128; ++p) 809 OS << (unsigned)*p << ", "; 810 OS << (unsigned)*p << ", "; 811 812 // Decoder index. 813 for (; *I >= 128; ++I) 814 OS << (unsigned)*I << ", "; 815 OS << (unsigned)*I++ << ", "; 816 817 if (!IsTry) { 818 OS << "// Opcode: " 819 << NumberedInstructions[Opc]->TheDef->getName() << "\n"; 820 break; 821 } 822 823 // Fallthrough for OPC_TryDecode. 824 825 // 16-bit numtoskip value. 826 uint8_t Byte = *I++; 827 uint32_t NumToSkip = Byte; 828 OS << (unsigned)Byte << ", "; 829 Byte = *I++; 830 OS << (unsigned)Byte << ", "; 831 NumToSkip |= Byte << 8; 832 833 OS << "// Opcode: " 834 << NumberedInstructions[Opc]->TheDef->getName() 835 << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 836 break; 837 } 838 case MCD::OPC_SoftFail: { 839 ++I; 840 OS.indent(Indentation) << "MCD::OPC_SoftFail"; 841 // Positive mask 842 uint64_t Value = 0; 843 unsigned Shift = 0; 844 do { 845 OS << ", " << (unsigned)*I; 846 Value += (*I & 0x7f) << Shift; 847 Shift += 7; 848 } while (*I++ >= 128); 849 if (Value > 127) { 850 OS << " /* 0x"; 851 OS.write_hex(Value); 852 OS << " */"; 853 } 854 // Negative mask 855 Value = 0; 856 Shift = 0; 857 do { 858 OS << ", " << (unsigned)*I; 859 Value += (*I & 0x7f) << Shift; 860 Shift += 7; 861 } while (*I++ >= 128); 862 if (Value > 127) { 863 OS << " /* 0x"; 864 OS.write_hex(Value); 865 OS << " */"; 866 } 867 OS << ",\n"; 868 break; 869 } 870 case MCD::OPC_Fail: { 871 ++I; 872 OS.indent(Indentation) << "MCD::OPC_Fail,\n"; 873 break; 874 } 875 } 876 } 877 OS.indent(Indentation) << "0\n"; 878 879 Indentation -= 2; 880 881 OS.indent(Indentation) << "};\n\n"; 882 } 883 884 void FixedLenDecoderEmitter:: 885 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, 886 unsigned Indentation) const { 887 // The predicate function is just a big switch statement based on the 888 // input predicate index. 889 OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " 890 << "const FeatureBitset& Bits) {\n"; 891 Indentation += 2; 892 if (!Predicates.empty()) { 893 OS.indent(Indentation) << "switch (Idx) {\n"; 894 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 895 unsigned Index = 0; 896 for (const auto &Predicate : Predicates) { 897 OS.indent(Indentation) << "case " << Index++ << ":\n"; 898 OS.indent(Indentation+2) << "return (" << Predicate << ");\n"; 899 } 900 OS.indent(Indentation) << "}\n"; 901 } else { 902 // No case statement to emit 903 OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n"; 904 } 905 Indentation -= 2; 906 OS.indent(Indentation) << "}\n\n"; 907 } 908 909 void FixedLenDecoderEmitter:: 910 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, 911 unsigned Indentation) const { 912 // The decoder function is just a big switch statement based on the 913 // input decoder index. 914 OS.indent(Indentation) << "template<typename InsnType>\n"; 915 OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," 916 << " unsigned Idx, InsnType insn, MCInst &MI,\n"; 917 OS.indent(Indentation) << " uint64_t " 918 << "Address, const void *Decoder, bool &DecodeComplete) {\n"; 919 Indentation += 2; 920 OS.indent(Indentation) << "DecodeComplete = true;\n"; 921 OS.indent(Indentation) << "InsnType tmp;\n"; 922 OS.indent(Indentation) << "switch (Idx) {\n"; 923 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 924 unsigned Index = 0; 925 for (const auto &Decoder : Decoders) { 926 OS.indent(Indentation) << "case " << Index++ << ":\n"; 927 OS << Decoder; 928 OS.indent(Indentation+2) << "return S;\n"; 929 } 930 OS.indent(Indentation) << "}\n"; 931 Indentation -= 2; 932 OS.indent(Indentation) << "}\n\n"; 933 } 934 935 // Populates the field of the insn given the start position and the number of 936 // consecutive bits to scan for. 937 // 938 // Returns false if and on the first uninitialized bit value encountered. 939 // Returns true, otherwise. 940 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, 941 unsigned StartBit, unsigned NumBits) const { 942 Field = 0; 943 944 for (unsigned i = 0; i < NumBits; ++i) { 945 if (Insn[StartBit + i] == BIT_UNSET) 946 return false; 947 948 if (Insn[StartBit + i] == BIT_TRUE) 949 Field = Field | (1ULL << i); 950 } 951 952 return true; 953 } 954 955 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 956 /// filter array as a series of chars. 957 void FilterChooser::dumpFilterArray(raw_ostream &o, 958 const std::vector<bit_value_t> &filter) const { 959 for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { 960 switch (filter[bitIndex - 1]) { 961 case BIT_UNFILTERED: 962 o << "."; 963 break; 964 case BIT_UNSET: 965 o << "_"; 966 break; 967 case BIT_TRUE: 968 o << "1"; 969 break; 970 case BIT_FALSE: 971 o << "0"; 972 break; 973 } 974 } 975 } 976 977 /// dumpStack - dumpStack traverses the filter chooser chain and calls 978 /// dumpFilterArray on each filter chooser up to the top level one. 979 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { 980 const FilterChooser *current = this; 981 982 while (current) { 983 o << prefix; 984 dumpFilterArray(o, current->FilterBitValues); 985 o << '\n'; 986 current = current->Parent; 987 } 988 } 989 990 // Calculates the island(s) needed to decode the instruction. 991 // This returns a list of undecoded bits of an instructions, for example, 992 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 993 // decoded bits in order to verify that the instruction matches the Opcode. 994 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, 995 std::vector<unsigned> &EndBits, 996 std::vector<uint64_t> &FieldVals, 997 const insn_t &Insn) const { 998 unsigned Num, BitNo; 999 Num = BitNo = 0; 1000 1001 uint64_t FieldVal = 0; 1002 1003 // 0: Init 1004 // 1: Water (the bit value does not affect decoding) 1005 // 2: Island (well-known bit value needed for decoding) 1006 int State = 0; 1007 int Val = -1; 1008 1009 for (unsigned i = 0; i < BitWidth; ++i) { 1010 Val = Value(Insn[i]); 1011 bool Filtered = PositionFiltered(i); 1012 switch (State) { 1013 default: llvm_unreachable("Unreachable code!"); 1014 case 0: 1015 case 1: 1016 if (Filtered || Val == -1) 1017 State = 1; // Still in Water 1018 else { 1019 State = 2; // Into the Island 1020 BitNo = 0; 1021 StartBits.push_back(i); 1022 FieldVal = Val; 1023 } 1024 break; 1025 case 2: 1026 if (Filtered || Val == -1) { 1027 State = 1; // Into the Water 1028 EndBits.push_back(i - 1); 1029 FieldVals.push_back(FieldVal); 1030 ++Num; 1031 } else { 1032 State = 2; // Still in Island 1033 ++BitNo; 1034 FieldVal = FieldVal | Val << BitNo; 1035 } 1036 break; 1037 } 1038 } 1039 // If we are still in Island after the loop, do some housekeeping. 1040 if (State == 2) { 1041 EndBits.push_back(BitWidth - 1); 1042 FieldVals.push_back(FieldVal); 1043 ++Num; 1044 } 1045 1046 assert(StartBits.size() == Num && EndBits.size() == Num && 1047 FieldVals.size() == Num); 1048 return Num; 1049 } 1050 1051 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, 1052 const OperandInfo &OpInfo, 1053 bool &OpHasCompleteDecoder) const { 1054 const std::string &Decoder = OpInfo.Decoder; 1055 1056 if (OpInfo.numFields() != 1) 1057 o.indent(Indentation) << "tmp = 0;\n"; 1058 1059 for (const EncodingField &EF : OpInfo) { 1060 o.indent(Indentation) << "tmp "; 1061 if (OpInfo.numFields() != 1) o << '|'; 1062 o << "= fieldFromInstruction" 1063 << "(insn, " << EF.Base << ", " << EF.Width << ')'; 1064 if (OpInfo.numFields() != 1 || EF.Offset != 0) 1065 o << " << " << EF.Offset; 1066 o << ";\n"; 1067 } 1068 1069 if (Decoder != "") { 1070 OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; 1071 o.indent(Indentation) << Emitter->GuardPrefix << Decoder 1072 << "(MI, tmp, Address, Decoder)" 1073 << Emitter->GuardPostfix 1074 << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") 1075 << "return MCDisassembler::Fail; }\n"; 1076 } else { 1077 OpHasCompleteDecoder = true; 1078 o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n"; 1079 } 1080 } 1081 1082 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, 1083 unsigned Opc, bool &HasCompleteDecoder) const { 1084 HasCompleteDecoder = true; 1085 1086 for (const auto &Op : Operands.find(Opc)->second) { 1087 // If a custom instruction decoder was specified, use that. 1088 if (Op.numFields() == 0 && !Op.Decoder.empty()) { 1089 HasCompleteDecoder = Op.HasCompleteDecoder; 1090 OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder 1091 << "(MI, insn, Address, Decoder)" 1092 << Emitter->GuardPostfix 1093 << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") 1094 << "return MCDisassembler::Fail; }\n"; 1095 break; 1096 } 1097 1098 bool OpHasCompleteDecoder; 1099 emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder); 1100 if (!OpHasCompleteDecoder) 1101 HasCompleteDecoder = false; 1102 } 1103 } 1104 1105 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, 1106 unsigned Opc, 1107 bool &HasCompleteDecoder) const { 1108 // Build up the predicate string. 1109 SmallString<256> Decoder; 1110 // FIXME: emitDecoder() function can take a buffer directly rather than 1111 // a stream. 1112 raw_svector_ostream S(Decoder); 1113 unsigned I = 4; 1114 emitDecoder(S, I, Opc, HasCompleteDecoder); 1115 1116 // Using the full decoder string as the key value here is a bit 1117 // heavyweight, but is effective. If the string comparisons become a 1118 // performance concern, we can implement a mangling of the predicate 1119 // data easily enough with a map back to the actual string. That's 1120 // overkill for now, though. 1121 1122 // Make sure the predicate is in the table. 1123 Decoders.insert(CachedHashString(Decoder)); 1124 // Now figure out the index for when we write out the table. 1125 DecoderSet::const_iterator P = find(Decoders, Decoder.str()); 1126 return (unsigned)(P - Decoders.begin()); 1127 } 1128 1129 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, 1130 const std::string &PredicateNamespace) { 1131 if (str[0] == '!') 1132 o << "!Bits[" << PredicateNamespace << "::" 1133 << str.slice(1,str.size()) << "]"; 1134 else 1135 o << "Bits[" << PredicateNamespace << "::" << str << "]"; 1136 } 1137 1138 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 1139 unsigned Opc) const { 1140 ListInit *Predicates = 1141 AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); 1142 bool IsFirstEmission = true; 1143 for (unsigned i = 0; i < Predicates->size(); ++i) { 1144 Record *Pred = Predicates->getElementAsRecord(i); 1145 if (!Pred->getValue("AssemblerMatcherPredicate")) 1146 continue; 1147 1148 std::string P = Pred->getValueAsString("AssemblerCondString"); 1149 1150 if (!P.length()) 1151 continue; 1152 1153 if (!IsFirstEmission) 1154 o << " && "; 1155 1156 StringRef SR(P); 1157 std::pair<StringRef, StringRef> pairs = SR.split(','); 1158 while (!pairs.second.empty()) { 1159 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); 1160 o << " && "; 1161 pairs = pairs.second.split(','); 1162 } 1163 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); 1164 IsFirstEmission = false; 1165 } 1166 return !Predicates->empty(); 1167 } 1168 1169 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { 1170 ListInit *Predicates = 1171 AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); 1172 for (unsigned i = 0; i < Predicates->size(); ++i) { 1173 Record *Pred = Predicates->getElementAsRecord(i); 1174 if (!Pred->getValue("AssemblerMatcherPredicate")) 1175 continue; 1176 1177 std::string P = Pred->getValueAsString("AssemblerCondString"); 1178 1179 if (!P.length()) 1180 continue; 1181 1182 return true; 1183 } 1184 return false; 1185 } 1186 1187 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, 1188 StringRef Predicate) const { 1189 // Using the full predicate string as the key value here is a bit 1190 // heavyweight, but is effective. If the string comparisons become a 1191 // performance concern, we can implement a mangling of the predicate 1192 // data easily enough with a map back to the actual string. That's 1193 // overkill for now, though. 1194 1195 // Make sure the predicate is in the table. 1196 TableInfo.Predicates.insert(CachedHashString(Predicate)); 1197 // Now figure out the index for when we write out the table. 1198 PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); 1199 return (unsigned)(P - TableInfo.Predicates.begin()); 1200 } 1201 1202 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, 1203 unsigned Opc) const { 1204 if (!doesOpcodeNeedPredicate(Opc)) 1205 return; 1206 1207 // Build up the predicate string. 1208 SmallString<256> Predicate; 1209 // FIXME: emitPredicateMatch() functions can take a buffer directly rather 1210 // than a stream. 1211 raw_svector_ostream PS(Predicate); 1212 unsigned I = 0; 1213 emitPredicateMatch(PS, I, Opc); 1214 1215 // Figure out the index into the predicate table for the predicate just 1216 // computed. 1217 unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); 1218 SmallString<16> PBytes; 1219 raw_svector_ostream S(PBytes); 1220 encodeULEB128(PIdx, S); 1221 1222 TableInfo.Table.push_back(MCD::OPC_CheckPredicate); 1223 // Predicate index 1224 for (unsigned i = 0, e = PBytes.size(); i != e; ++i) 1225 TableInfo.Table.push_back(PBytes[i]); 1226 // Push location for NumToSkip backpatching. 1227 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1228 TableInfo.Table.push_back(0); 1229 TableInfo.Table.push_back(0); 1230 } 1231 1232 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 1233 unsigned Opc) const { 1234 BitsInit *SFBits = 1235 AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail"); 1236 if (!SFBits) return; 1237 BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst"); 1238 1239 APInt PositiveMask(BitWidth, 0ULL); 1240 APInt NegativeMask(BitWidth, 0ULL); 1241 for (unsigned i = 0; i < BitWidth; ++i) { 1242 bit_value_t B = bitFromBits(*SFBits, i); 1243 bit_value_t IB = bitFromBits(*InstBits, i); 1244 1245 if (B != BIT_TRUE) continue; 1246 1247 switch (IB) { 1248 case BIT_FALSE: 1249 // The bit is meant to be false, so emit a check to see if it is true. 1250 PositiveMask.setBit(i); 1251 break; 1252 case BIT_TRUE: 1253 // The bit is meant to be true, so emit a check to see if it is false. 1254 NegativeMask.setBit(i); 1255 break; 1256 default: 1257 // The bit is not set; this must be an error! 1258 StringRef Name = AllInstructions[Opc]->TheDef->getName(); 1259 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name 1260 << " is set but Inst{" << i << "} is unset!\n" 1261 << " - You can only mark a bit as SoftFail if it is fully defined" 1262 << " (1/0 - not '?') in Inst\n"; 1263 return; 1264 } 1265 } 1266 1267 bool NeedPositiveMask = PositiveMask.getBoolValue(); 1268 bool NeedNegativeMask = NegativeMask.getBoolValue(); 1269 1270 if (!NeedPositiveMask && !NeedNegativeMask) 1271 return; 1272 1273 TableInfo.Table.push_back(MCD::OPC_SoftFail); 1274 1275 SmallString<16> MaskBytes; 1276 raw_svector_ostream S(MaskBytes); 1277 if (NeedPositiveMask) { 1278 encodeULEB128(PositiveMask.getZExtValue(), S); 1279 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1280 TableInfo.Table.push_back(MaskBytes[i]); 1281 } else 1282 TableInfo.Table.push_back(0); 1283 if (NeedNegativeMask) { 1284 MaskBytes.clear(); 1285 encodeULEB128(NegativeMask.getZExtValue(), S); 1286 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1287 TableInfo.Table.push_back(MaskBytes[i]); 1288 } else 1289 TableInfo.Table.push_back(0); 1290 } 1291 1292 // Emits table entries to decode the singleton. 1293 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1294 unsigned Opc) const { 1295 std::vector<unsigned> StartBits; 1296 std::vector<unsigned> EndBits; 1297 std::vector<uint64_t> FieldVals; 1298 insn_t Insn; 1299 insnWithID(Insn, Opc); 1300 1301 // Look for islands of undecoded bits of the singleton. 1302 getIslands(StartBits, EndBits, FieldVals, Insn); 1303 1304 unsigned Size = StartBits.size(); 1305 1306 // Emit the predicate table entry if one is needed. 1307 emitPredicateTableEntry(TableInfo, Opc); 1308 1309 // Check any additional encoding fields needed. 1310 for (unsigned I = Size; I != 0; --I) { 1311 unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; 1312 TableInfo.Table.push_back(MCD::OPC_CheckField); 1313 TableInfo.Table.push_back(StartBits[I-1]); 1314 TableInfo.Table.push_back(NumBits); 1315 uint8_t Buffer[8], *p; 1316 encodeULEB128(FieldVals[I-1], Buffer); 1317 for (p = Buffer; *p >= 128 ; ++p) 1318 TableInfo.Table.push_back(*p); 1319 TableInfo.Table.push_back(*p); 1320 // Push location for NumToSkip backpatching. 1321 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1322 // The fixup is always 16-bits, so go ahead and allocate the space 1323 // in the table so all our relative position calculations work OK even 1324 // before we fully resolve the real value here. 1325 TableInfo.Table.push_back(0); 1326 TableInfo.Table.push_back(0); 1327 } 1328 1329 // Check for soft failure of the match. 1330 emitSoftFailTableEntry(TableInfo, Opc); 1331 1332 bool HasCompleteDecoder; 1333 unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc, HasCompleteDecoder); 1334 1335 // Produce OPC_Decode or OPC_TryDecode opcode based on the information 1336 // whether the instruction decoder is complete or not. If it is complete 1337 // then it handles all possible values of remaining variable/unfiltered bits 1338 // and for any value can determine if the bitpattern is a valid instruction 1339 // or not. This means OPC_Decode will be the final step in the decoding 1340 // process. If it is not complete, then the Fail return code from the 1341 // decoder method indicates that additional processing should be done to see 1342 // if there is any other instruction that also matches the bitpattern and 1343 // can decode it. 1344 TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode : 1345 MCD::OPC_TryDecode); 1346 uint8_t Buffer[8], *p; 1347 encodeULEB128(Opc, Buffer); 1348 for (p = Buffer; *p >= 128 ; ++p) 1349 TableInfo.Table.push_back(*p); 1350 TableInfo.Table.push_back(*p); 1351 1352 SmallString<16> Bytes; 1353 raw_svector_ostream S(Bytes); 1354 encodeULEB128(DIdx, S); 1355 1356 // Decoder index 1357 for (unsigned i = 0, e = Bytes.size(); i != e; ++i) 1358 TableInfo.Table.push_back(Bytes[i]); 1359 1360 if (!HasCompleteDecoder) { 1361 // Push location for NumToSkip backpatching. 1362 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1363 // Allocate the space for the fixup. 1364 TableInfo.Table.push_back(0); 1365 TableInfo.Table.push_back(0); 1366 } 1367 } 1368 1369 // Emits table entries to decode the singleton, and then to decode the rest. 1370 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1371 const Filter &Best) const { 1372 unsigned Opc = Best.getSingletonOpc(); 1373 1374 // complex singletons need predicate checks from the first singleton 1375 // to refer forward to the variable filterchooser that follows. 1376 TableInfo.FixupStack.emplace_back(); 1377 1378 emitSingletonTableEntry(TableInfo, Opc); 1379 1380 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 1381 TableInfo.Table.size()); 1382 TableInfo.FixupStack.pop_back(); 1383 1384 Best.getVariableFC().emitTableEntries(TableInfo); 1385 } 1386 1387 // Assign a single filter and run with it. Top level API client can initialize 1388 // with a single filter to start the filtering process. 1389 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, 1390 bool mixed) { 1391 Filters.clear(); 1392 Filters.emplace_back(*this, startBit, numBit, true); 1393 BestIndex = 0; // Sole Filter instance to choose from. 1394 bestFilter().recurse(); 1395 } 1396 1397 // reportRegion is a helper function for filterProcessor to mark a region as 1398 // eligible for use as a filter region. 1399 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, 1400 unsigned BitIndex, bool AllowMixed) { 1401 if (RA == ATTR_MIXED && AllowMixed) 1402 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); 1403 else if (RA == ATTR_ALL_SET && !AllowMixed) 1404 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); 1405 } 1406 1407 // FilterProcessor scans the well-known encoding bits of the instructions and 1408 // builds up a list of candidate filters. It chooses the best filter and 1409 // recursively descends down the decoding tree. 1410 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { 1411 Filters.clear(); 1412 BestIndex = -1; 1413 unsigned numInstructions = Opcodes.size(); 1414 1415 assert(numInstructions && "Filter created with no instructions"); 1416 1417 // No further filtering is necessary. 1418 if (numInstructions == 1) 1419 return true; 1420 1421 // Heuristics. See also doFilter()'s "Heuristics" comment when num of 1422 // instructions is 3. 1423 if (AllowMixed && !Greedy) { 1424 assert(numInstructions == 3); 1425 1426 for (unsigned i = 0; i < Opcodes.size(); ++i) { 1427 std::vector<unsigned> StartBits; 1428 std::vector<unsigned> EndBits; 1429 std::vector<uint64_t> FieldVals; 1430 insn_t Insn; 1431 1432 insnWithID(Insn, Opcodes[i]); 1433 1434 // Look for islands of undecoded bits of any instruction. 1435 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { 1436 // Found an instruction with island(s). Now just assign a filter. 1437 runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); 1438 return true; 1439 } 1440 } 1441 } 1442 1443 unsigned BitIndex; 1444 1445 // We maintain BIT_WIDTH copies of the bitAttrs automaton. 1446 // The automaton consumes the corresponding bit from each 1447 // instruction. 1448 // 1449 // Input symbols: 0, 1, and _ (unset). 1450 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. 1451 // Initial state: NONE. 1452 // 1453 // (NONE) ------- [01] -> (ALL_SET) 1454 // (NONE) ------- _ ----> (ALL_UNSET) 1455 // (ALL_SET) ---- [01] -> (ALL_SET) 1456 // (ALL_SET) ---- _ ----> (MIXED) 1457 // (ALL_UNSET) -- [01] -> (MIXED) 1458 // (ALL_UNSET) -- _ ----> (ALL_UNSET) 1459 // (MIXED) ------ . ----> (MIXED) 1460 // (FILTERED)---- . ----> (FILTERED) 1461 1462 std::vector<bitAttr_t> bitAttrs; 1463 1464 // FILTERED bit positions provide no entropy and are not worthy of pursuing. 1465 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. 1466 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) 1467 if (FilterBitValues[BitIndex] == BIT_TRUE || 1468 FilterBitValues[BitIndex] == BIT_FALSE) 1469 bitAttrs.push_back(ATTR_FILTERED); 1470 else 1471 bitAttrs.push_back(ATTR_NONE); 1472 1473 for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { 1474 insn_t insn; 1475 1476 insnWithID(insn, Opcodes[InsnIndex]); 1477 1478 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1479 switch (bitAttrs[BitIndex]) { 1480 case ATTR_NONE: 1481 if (insn[BitIndex] == BIT_UNSET) 1482 bitAttrs[BitIndex] = ATTR_ALL_UNSET; 1483 else 1484 bitAttrs[BitIndex] = ATTR_ALL_SET; 1485 break; 1486 case ATTR_ALL_SET: 1487 if (insn[BitIndex] == BIT_UNSET) 1488 bitAttrs[BitIndex] = ATTR_MIXED; 1489 break; 1490 case ATTR_ALL_UNSET: 1491 if (insn[BitIndex] != BIT_UNSET) 1492 bitAttrs[BitIndex] = ATTR_MIXED; 1493 break; 1494 case ATTR_MIXED: 1495 case ATTR_FILTERED: 1496 break; 1497 } 1498 } 1499 } 1500 1501 // The regionAttr automaton consumes the bitAttrs automatons' state, 1502 // lowest-to-highest. 1503 // 1504 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) 1505 // States: NONE, ALL_SET, MIXED 1506 // Initial state: NONE 1507 // 1508 // (NONE) ----- F --> (NONE) 1509 // (NONE) ----- S --> (ALL_SET) ; and set region start 1510 // (NONE) ----- U --> (NONE) 1511 // (NONE) ----- M --> (MIXED) ; and set region start 1512 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region 1513 // (ALL_SET) -- S --> (ALL_SET) 1514 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region 1515 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region 1516 // (MIXED) ---- F --> (NONE) ; and report a MIXED region 1517 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region 1518 // (MIXED) ---- U --> (NONE) ; and report a MIXED region 1519 // (MIXED) ---- M --> (MIXED) 1520 1521 bitAttr_t RA = ATTR_NONE; 1522 unsigned StartBit = 0; 1523 1524 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1525 bitAttr_t bitAttr = bitAttrs[BitIndex]; 1526 1527 assert(bitAttr != ATTR_NONE && "Bit without attributes"); 1528 1529 switch (RA) { 1530 case ATTR_NONE: 1531 switch (bitAttr) { 1532 case ATTR_FILTERED: 1533 break; 1534 case ATTR_ALL_SET: 1535 StartBit = BitIndex; 1536 RA = ATTR_ALL_SET; 1537 break; 1538 case ATTR_ALL_UNSET: 1539 break; 1540 case ATTR_MIXED: 1541 StartBit = BitIndex; 1542 RA = ATTR_MIXED; 1543 break; 1544 default: 1545 llvm_unreachable("Unexpected bitAttr!"); 1546 } 1547 break; 1548 case ATTR_ALL_SET: 1549 switch (bitAttr) { 1550 case ATTR_FILTERED: 1551 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1552 RA = ATTR_NONE; 1553 break; 1554 case ATTR_ALL_SET: 1555 break; 1556 case ATTR_ALL_UNSET: 1557 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1558 RA = ATTR_NONE; 1559 break; 1560 case ATTR_MIXED: 1561 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1562 StartBit = BitIndex; 1563 RA = ATTR_MIXED; 1564 break; 1565 default: 1566 llvm_unreachable("Unexpected bitAttr!"); 1567 } 1568 break; 1569 case ATTR_MIXED: 1570 switch (bitAttr) { 1571 case ATTR_FILTERED: 1572 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1573 StartBit = BitIndex; 1574 RA = ATTR_NONE; 1575 break; 1576 case ATTR_ALL_SET: 1577 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1578 StartBit = BitIndex; 1579 RA = ATTR_ALL_SET; 1580 break; 1581 case ATTR_ALL_UNSET: 1582 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1583 RA = ATTR_NONE; 1584 break; 1585 case ATTR_MIXED: 1586 break; 1587 default: 1588 llvm_unreachable("Unexpected bitAttr!"); 1589 } 1590 break; 1591 case ATTR_ALL_UNSET: 1592 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); 1593 case ATTR_FILTERED: 1594 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); 1595 } 1596 } 1597 1598 // At the end, if we're still in ALL_SET or MIXED states, report a region 1599 switch (RA) { 1600 case ATTR_NONE: 1601 break; 1602 case ATTR_FILTERED: 1603 break; 1604 case ATTR_ALL_SET: 1605 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1606 break; 1607 case ATTR_ALL_UNSET: 1608 break; 1609 case ATTR_MIXED: 1610 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1611 break; 1612 } 1613 1614 // We have finished with the filter processings. Now it's time to choose 1615 // the best performing filter. 1616 BestIndex = 0; 1617 bool AllUseless = true; 1618 unsigned BestScore = 0; 1619 1620 for (unsigned i = 0, e = Filters.size(); i != e; ++i) { 1621 unsigned Usefulness = Filters[i].usefulness(); 1622 1623 if (Usefulness) 1624 AllUseless = false; 1625 1626 if (Usefulness > BestScore) { 1627 BestIndex = i; 1628 BestScore = Usefulness; 1629 } 1630 } 1631 1632 if (!AllUseless) 1633 bestFilter().recurse(); 1634 1635 return !AllUseless; 1636 } // end of FilterChooser::filterProcessor(bool) 1637 1638 // Decides on the best configuration of filter(s) to use in order to decode 1639 // the instructions. A conflict of instructions may occur, in which case we 1640 // dump the conflict set to the standard error. 1641 void FilterChooser::doFilter() { 1642 unsigned Num = Opcodes.size(); 1643 assert(Num && "FilterChooser created with no instructions"); 1644 1645 // Try regions of consecutive known bit values first. 1646 if (filterProcessor(false)) 1647 return; 1648 1649 // Then regions of mixed bits (both known and unitialized bit values allowed). 1650 if (filterProcessor(true)) 1651 return; 1652 1653 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where 1654 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a 1655 // well-known encoding pattern. In such case, we backtrack and scan for the 1656 // the very first consecutive ATTR_ALL_SET region and assign a filter to it. 1657 if (Num == 3 && filterProcessor(true, false)) 1658 return; 1659 1660 // If we come to here, the instruction decoding has failed. 1661 // Set the BestIndex to -1 to indicate so. 1662 BestIndex = -1; 1663 } 1664 1665 // emitTableEntries - Emit state machine entries to decode our share of 1666 // instructions. 1667 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { 1668 if (Opcodes.size() == 1) { 1669 // There is only one instruction in the set, which is great! 1670 // Call emitSingletonDecoder() to see whether there are any remaining 1671 // encodings bits. 1672 emitSingletonTableEntry(TableInfo, Opcodes[0]); 1673 return; 1674 } 1675 1676 // Choose the best filter to do the decodings! 1677 if (BestIndex != -1) { 1678 const Filter &Best = Filters[BestIndex]; 1679 if (Best.getNumFiltered() == 1) 1680 emitSingletonTableEntry(TableInfo, Best); 1681 else 1682 Best.emitTableEntry(TableInfo); 1683 return; 1684 } 1685 1686 // We don't know how to decode these instructions! Dump the 1687 // conflict set and bail. 1688 1689 // Print out useful conflict information for postmortem analysis. 1690 errs() << "Decoding Conflict:\n"; 1691 1692 dumpStack(errs(), "\t\t"); 1693 1694 for (unsigned i = 0; i < Opcodes.size(); ++i) { 1695 const std::string &Name = nameWithID(Opcodes[i]); 1696 1697 errs() << '\t' << Name << " "; 1698 dumpBits(errs(), 1699 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); 1700 errs() << '\n'; 1701 } 1702 } 1703 1704 static std::string findOperandDecoderMethod(TypedInit *TI) { 1705 std::string Decoder; 1706 1707 RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); 1708 Record *TypeRecord = Type->getRecord(); 1709 1710 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); 1711 StringInit *String = DecoderString ? 1712 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1713 if (String) { 1714 Decoder = String->getValue(); 1715 if (!Decoder.empty()) 1716 return Decoder; 1717 } 1718 1719 if (TypeRecord->isSubClassOf("RegisterOperand")) 1720 TypeRecord = TypeRecord->getValueAsDef("RegClass"); 1721 1722 if (TypeRecord->isSubClassOf("RegisterClass")) { 1723 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; 1724 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { 1725 Decoder = "DecodePointerLikeRegClass" + 1726 utostr(TypeRecord->getValueAsInt("RegClassKind")); 1727 } 1728 1729 return Decoder; 1730 } 1731 1732 static bool populateInstruction(CodeGenTarget &Target, 1733 const CodeGenInstruction &CGI, unsigned Opc, 1734 std::map<unsigned, std::vector<OperandInfo>> &Operands){ 1735 const Record &Def = *CGI.TheDef; 1736 // If all the bit positions are not specified; do not decode this instruction. 1737 // We are bound to fail! For proper disassembly, the well-known encoding bits 1738 // of the instruction must be fully specified. 1739 1740 BitsInit &Bits = getBitsField(Def, "Inst"); 1741 if (Bits.allInComplete()) return false; 1742 1743 std::vector<OperandInfo> InsnOperands; 1744 1745 // If the instruction has specified a custom decoding hook, use that instead 1746 // of trying to auto-generate the decoder. 1747 std::string InstDecoder = Def.getValueAsString("DecoderMethod"); 1748 if (InstDecoder != "") { 1749 bool HasCompleteInstDecoder = Def.getValueAsBit("hasCompleteDecoder"); 1750 InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder)); 1751 Operands[Opc] = InsnOperands; 1752 return true; 1753 } 1754 1755 // Generate a description of the operand of the instruction that we know 1756 // how to decode automatically. 1757 // FIXME: We'll need to have a way to manually override this as needed. 1758 1759 // Gather the outputs/inputs of the instruction, so we can find their 1760 // positions in the encoding. This assumes for now that they appear in the 1761 // MCInst in the order that they're listed. 1762 std::vector<std::pair<Init*, StringRef>> InOutOperands; 1763 DagInit *Out = Def.getValueAsDag("OutOperandList"); 1764 DagInit *In = Def.getValueAsDag("InOperandList"); 1765 for (unsigned i = 0; i < Out->getNumArgs(); ++i) 1766 InOutOperands.push_back(std::make_pair(Out->getArg(i), 1767 Out->getArgNameStr(i))); 1768 for (unsigned i = 0; i < In->getNumArgs(); ++i) 1769 InOutOperands.push_back(std::make_pair(In->getArg(i), 1770 In->getArgNameStr(i))); 1771 1772 // Search for tied operands, so that we can correctly instantiate 1773 // operands that are not explicitly represented in the encoding. 1774 std::map<std::string, std::string> TiedNames; 1775 for (unsigned i = 0; i < CGI.Operands.size(); ++i) { 1776 int tiedTo = CGI.Operands[i].getTiedRegister(); 1777 if (tiedTo != -1) { 1778 std::pair<unsigned, unsigned> SO = 1779 CGI.Operands.getSubOperandNumber(tiedTo); 1780 TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second; 1781 TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second; 1782 } 1783 } 1784 1785 std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands; 1786 std::set<std::string> NumberedInsnOperandsNoTie; 1787 if (Target.getInstructionSet()-> 1788 getValueAsBit("decodePositionallyEncodedOperands")) { 1789 const std::vector<RecordVal> &Vals = Def.getValues(); 1790 unsigned NumberedOp = 0; 1791 1792 std::set<unsigned> NamedOpIndices; 1793 if (Target.getInstructionSet()-> 1794 getValueAsBit("noNamedPositionallyEncodedOperands")) 1795 // Collect the set of operand indices that might correspond to named 1796 // operand, and skip these when assigning operands based on position. 1797 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1798 unsigned OpIdx; 1799 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 1800 continue; 1801 1802 NamedOpIndices.insert(OpIdx); 1803 } 1804 1805 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1806 // Ignore fixed fields in the record, we're looking for values like: 1807 // bits<5> RST = { ?, ?, ?, ?, ? }; 1808 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) 1809 continue; 1810 1811 // Determine if Vals[i] actually contributes to the Inst encoding. 1812 unsigned bi = 0; 1813 for (; bi < Bits.getNumBits(); ++bi) { 1814 VarInit *Var = nullptr; 1815 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1816 if (BI) 1817 Var = dyn_cast<VarInit>(BI->getBitVar()); 1818 else 1819 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1820 1821 if (Var && Var->getName() == Vals[i].getName()) 1822 break; 1823 } 1824 1825 if (bi == Bits.getNumBits()) 1826 continue; 1827 1828 // Skip variables that correspond to explicitly-named operands. 1829 unsigned OpIdx; 1830 if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 1831 continue; 1832 1833 // Get the bit range for this operand: 1834 unsigned bitStart = bi++, bitWidth = 1; 1835 for (; bi < Bits.getNumBits(); ++bi) { 1836 VarInit *Var = nullptr; 1837 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1838 if (BI) 1839 Var = dyn_cast<VarInit>(BI->getBitVar()); 1840 else 1841 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1842 1843 if (!Var) 1844 break; 1845 1846 if (Var->getName() != Vals[i].getName()) 1847 break; 1848 1849 ++bitWidth; 1850 } 1851 1852 unsigned NumberOps = CGI.Operands.size(); 1853 while (NumberedOp < NumberOps && 1854 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 1855 (!NamedOpIndices.empty() && NamedOpIndices.count( 1856 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) 1857 ++NumberedOp; 1858 1859 OpIdx = NumberedOp++; 1860 1861 // OpIdx now holds the ordered operand number of Vals[i]. 1862 std::pair<unsigned, unsigned> SO = 1863 CGI.Operands.getSubOperandNumber(OpIdx); 1864 const std::string &Name = CGI.Operands[SO.first].Name; 1865 1866 DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " << 1867 Name << "(" << SO.first << ", " << SO.second << ") => " << 1868 Vals[i].getName() << "\n"); 1869 1870 std::string Decoder; 1871 Record *TypeRecord = CGI.Operands[SO.first].Rec; 1872 1873 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); 1874 StringInit *String = DecoderString ? 1875 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1876 if (String && String->getValue() != "") 1877 Decoder = String->getValue(); 1878 1879 if (Decoder == "" && 1880 CGI.Operands[SO.first].MIOperandInfo && 1881 CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) { 1882 Init *Arg = CGI.Operands[SO.first].MIOperandInfo-> 1883 getArg(SO.second); 1884 if (TypedInit *TI = cast<TypedInit>(Arg)) { 1885 RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); 1886 TypeRecord = Type->getRecord(); 1887 } 1888 } 1889 1890 bool isReg = false; 1891 if (TypeRecord->isSubClassOf("RegisterOperand")) 1892 TypeRecord = TypeRecord->getValueAsDef("RegClass"); 1893 if (TypeRecord->isSubClassOf("RegisterClass")) { 1894 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; 1895 isReg = true; 1896 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { 1897 Decoder = "DecodePointerLikeRegClass" + 1898 utostr(TypeRecord->getValueAsInt("RegClassKind")); 1899 isReg = true; 1900 } 1901 1902 DecoderString = TypeRecord->getValue("DecoderMethod"); 1903 String = DecoderString ? 1904 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1905 if (!isReg && String && String->getValue() != "") 1906 Decoder = String->getValue(); 1907 1908 RecordVal *HasCompleteDecoderVal = 1909 TypeRecord->getValue("hasCompleteDecoder"); 1910 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? 1911 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; 1912 bool HasCompleteDecoder = HasCompleteDecoderBit ? 1913 HasCompleteDecoderBit->getValue() : true; 1914 1915 OperandInfo OpInfo(Decoder, HasCompleteDecoder); 1916 OpInfo.addField(bitStart, bitWidth, 0); 1917 1918 NumberedInsnOperands[Name].push_back(OpInfo); 1919 1920 // FIXME: For complex operands with custom decoders we can't handle tied 1921 // sub-operands automatically. Skip those here and assume that this is 1922 // fixed up elsewhere. 1923 if (CGI.Operands[SO.first].MIOperandInfo && 1924 CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && 1925 String && String->getValue() != "") 1926 NumberedInsnOperandsNoTie.insert(Name); 1927 } 1928 } 1929 1930 // For each operand, see if we can figure out where it is encoded. 1931 for (const auto &Op : InOutOperands) { 1932 if (!NumberedInsnOperands[Op.second].empty()) { 1933 InsnOperands.insert(InsnOperands.end(), 1934 NumberedInsnOperands[Op.second].begin(), 1935 NumberedInsnOperands[Op.second].end()); 1936 continue; 1937 } 1938 if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) { 1939 if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) { 1940 // Figure out to which (sub)operand we're tied. 1941 unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]); 1942 int tiedTo = CGI.Operands[i].getTiedRegister(); 1943 if (tiedTo == -1) { 1944 i = CGI.Operands.getOperandNamed(Op.second); 1945 tiedTo = CGI.Operands[i].getTiedRegister(); 1946 } 1947 1948 if (tiedTo != -1) { 1949 std::pair<unsigned, unsigned> SO = 1950 CGI.Operands.getSubOperandNumber(tiedTo); 1951 1952 InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]] 1953 [SO.second]); 1954 } 1955 } 1956 continue; 1957 } 1958 1959 TypedInit *TI = cast<TypedInit>(Op.first); 1960 1961 // At this point, we can locate the decoder field, but we need to know how 1962 // to interpret it. As a first step, require the target to provide 1963 // callbacks for decoding register classes. 1964 std::string Decoder = findOperandDecoderMethod(TI); 1965 Record *TypeRecord = cast<RecordRecTy>(TI->getType())->getRecord(); 1966 1967 RecordVal *HasCompleteDecoderVal = 1968 TypeRecord->getValue("hasCompleteDecoder"); 1969 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? 1970 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; 1971 bool HasCompleteDecoder = HasCompleteDecoderBit ? 1972 HasCompleteDecoderBit->getValue() : true; 1973 1974 OperandInfo OpInfo(Decoder, HasCompleteDecoder); 1975 unsigned Base = ~0U; 1976 unsigned Width = 0; 1977 unsigned Offset = 0; 1978 1979 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { 1980 VarInit *Var = nullptr; 1981 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1982 if (BI) 1983 Var = dyn_cast<VarInit>(BI->getBitVar()); 1984 else 1985 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1986 1987 if (!Var) { 1988 if (Base != ~0U) { 1989 OpInfo.addField(Base, Width, Offset); 1990 Base = ~0U; 1991 Width = 0; 1992 Offset = 0; 1993 } 1994 continue; 1995 } 1996 1997 if (Var->getName() != Op.second && 1998 Var->getName() != TiedNames[Op.second]) { 1999 if (Base != ~0U) { 2000 OpInfo.addField(Base, Width, Offset); 2001 Base = ~0U; 2002 Width = 0; 2003 Offset = 0; 2004 } 2005 continue; 2006 } 2007 2008 if (Base == ~0U) { 2009 Base = bi; 2010 Width = 1; 2011 Offset = BI ? BI->getBitNum() : 0; 2012 } else if (BI && BI->getBitNum() != Offset + Width) { 2013 OpInfo.addField(Base, Width, Offset); 2014 Base = bi; 2015 Width = 1; 2016 Offset = BI->getBitNum(); 2017 } else { 2018 ++Width; 2019 } 2020 } 2021 2022 if (Base != ~0U) 2023 OpInfo.addField(Base, Width, Offset); 2024 2025 if (OpInfo.numFields() > 0) 2026 InsnOperands.push_back(OpInfo); 2027 } 2028 2029 Operands[Opc] = InsnOperands; 2030 2031 #if 0 2032 DEBUG({ 2033 // Dumps the instruction encoding bits. 2034 dumpBits(errs(), Bits); 2035 2036 errs() << '\n'; 2037 2038 // Dumps the list of operand info. 2039 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { 2040 const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; 2041 const std::string &OperandName = Info.Name; 2042 const Record &OperandDef = *Info.Rec; 2043 2044 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; 2045 } 2046 }); 2047 #endif 2048 2049 return true; 2050 } 2051 2052 // emitFieldFromInstruction - Emit the templated helper function 2053 // fieldFromInstruction(). 2054 static void emitFieldFromInstruction(formatted_raw_ostream &OS) { 2055 OS << "// Helper function for extracting fields from encoded instructions.\n" 2056 << "template<typename InsnType>\n" 2057 << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n" 2058 << " unsigned numBits) {\n" 2059 << " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n" 2060 << " \"Instruction field out of bounds!\");\n" 2061 << " InsnType fieldMask;\n" 2062 << " if (numBits == sizeof(InsnType)*8)\n" 2063 << " fieldMask = (InsnType)(-1LL);\n" 2064 << " else\n" 2065 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" 2066 << " return (insn & fieldMask) >> startBit;\n" 2067 << "}\n\n"; 2068 } 2069 2070 // emitDecodeInstruction - Emit the templated helper function 2071 // decodeInstruction(). 2072 static void emitDecodeInstruction(formatted_raw_ostream &OS) { 2073 OS << "template<typename InsnType>\n" 2074 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n" 2075 << " InsnType insn, uint64_t Address,\n" 2076 << " const void *DisAsm,\n" 2077 << " const MCSubtargetInfo &STI) {\n" 2078 << " const FeatureBitset& Bits = STI.getFeatureBits();\n" 2079 << "\n" 2080 << " const uint8_t *Ptr = DecodeTable;\n" 2081 << " uint32_t CurFieldValue = 0;\n" 2082 << " DecodeStatus S = MCDisassembler::Success;\n" 2083 << " while (true) {\n" 2084 << " ptrdiff_t Loc = Ptr - DecodeTable;\n" 2085 << " switch (*Ptr) {\n" 2086 << " default:\n" 2087 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" 2088 << " return MCDisassembler::Fail;\n" 2089 << " case MCD::OPC_ExtractField: {\n" 2090 << " unsigned Start = *++Ptr;\n" 2091 << " unsigned Len = *++Ptr;\n" 2092 << " ++Ptr;\n" 2093 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" 2094 << " DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n" 2095 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n" 2096 << " break;\n" 2097 << " }\n" 2098 << " case MCD::OPC_FilterValue: {\n" 2099 << " // Decode the field value.\n" 2100 << " unsigned Len;\n" 2101 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n" 2102 << " Ptr += Len;\n" 2103 << " // NumToSkip is a plain 16-bit integer.\n" 2104 << " unsigned NumToSkip = *Ptr++;\n" 2105 << " NumToSkip |= (*Ptr++) << 8;\n" 2106 << "\n" 2107 << " // Perform the filter operation.\n" 2108 << " if (Val != CurFieldValue)\n" 2109 << " Ptr += NumToSkip;\n" 2110 << " DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n" 2111 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n" 2112 << " << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" 2113 << "\n" 2114 << " break;\n" 2115 << " }\n" 2116 << " case MCD::OPC_CheckField: {\n" 2117 << " unsigned Start = *++Ptr;\n" 2118 << " unsigned Len = *++Ptr;\n" 2119 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n" 2120 << " // Decode the field value.\n" 2121 << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n" 2122 << " Ptr += Len;\n" 2123 << " // NumToSkip is a plain 16-bit integer.\n" 2124 << " unsigned NumToSkip = *Ptr++;\n" 2125 << " NumToSkip |= (*Ptr++) << 8;\n" 2126 << "\n" 2127 << " // If the actual and expected values don't match, skip.\n" 2128 << " if (ExpectedValue != FieldValue)\n" 2129 << " Ptr += NumToSkip;\n" 2130 << " DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n" 2131 << " << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n" 2132 << " << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n" 2133 << " << ExpectedValue << \": \"\n" 2134 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n" 2135 << " break;\n" 2136 << " }\n" 2137 << " case MCD::OPC_CheckPredicate: {\n" 2138 << " unsigned Len;\n" 2139 << " // Decode the Predicate Index value.\n" 2140 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" 2141 << " Ptr += Len;\n" 2142 << " // NumToSkip is a plain 16-bit integer.\n" 2143 << " unsigned NumToSkip = *Ptr++;\n" 2144 << " NumToSkip |= (*Ptr++) << 8;\n" 2145 << " // Check the predicate.\n" 2146 << " bool Pred;\n" 2147 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" 2148 << " Ptr += NumToSkip;\n" 2149 << " (void)Pred;\n" 2150 << " DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n" 2151 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" 2152 << "\n" 2153 << " break;\n" 2154 << " }\n" 2155 << " case MCD::OPC_Decode: {\n" 2156 << " unsigned Len;\n" 2157 << " // Decode the Opcode value.\n" 2158 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2159 << " Ptr += Len;\n" 2160 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2161 << " Ptr += Len;\n" 2162 << "\n" 2163 << " MI.clear();\n" 2164 << " MI.setOpcode(Opc);\n" 2165 << " bool DecodeComplete;\n" 2166 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, DecodeComplete);\n" 2167 << " assert(DecodeComplete);\n" 2168 << "\n" 2169 << " DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" 2170 << " << \", using decoder \" << DecodeIdx << \": \"\n" 2171 << " << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n" 2172 << " return S;\n" 2173 << " }\n" 2174 << " case MCD::OPC_TryDecode: {\n" 2175 << " unsigned Len;\n" 2176 << " // Decode the Opcode value.\n" 2177 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2178 << " Ptr += Len;\n" 2179 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2180 << " Ptr += Len;\n" 2181 << " // NumToSkip is a plain 16-bit integer.\n" 2182 << " unsigned NumToSkip = *Ptr++;\n" 2183 << " NumToSkip |= (*Ptr++) << 8;\n" 2184 << "\n" 2185 << " // Perform the decode operation.\n" 2186 << " MCInst TmpMI;\n" 2187 << " TmpMI.setOpcode(Opc);\n" 2188 << " bool DecodeComplete;\n" 2189 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, DecodeComplete);\n" 2190 << " DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << Opc\n" 2191 << " << \", using decoder \" << DecodeIdx << \": \");\n" 2192 << "\n" 2193 << " if (DecodeComplete) {\n" 2194 << " // Decoding complete.\n" 2195 << " DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n" 2196 << " MI = TmpMI;\n" 2197 << " return S;\n" 2198 << " } else {\n" 2199 << " assert(S == MCDisassembler::Fail);\n" 2200 << " // If the decoding was incomplete, skip.\n" 2201 << " Ptr += NumToSkip;\n" 2202 << " DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" 2203 << " // Reset decode status. This also drops a SoftFail status that could be\n" 2204 << " // set before the decode attempt.\n" 2205 << " S = MCDisassembler::Success;\n" 2206 << " }\n" 2207 << " break;\n" 2208 << " }\n" 2209 << " case MCD::OPC_SoftFail: {\n" 2210 << " // Decode the mask values.\n" 2211 << " unsigned Len;\n" 2212 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n" 2213 << " Ptr += Len;\n" 2214 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n" 2215 << " Ptr += Len;\n" 2216 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n" 2217 << " if (Fail)\n" 2218 << " S = MCDisassembler::SoftFail;\n" 2219 << " DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n" 2220 << " break;\n" 2221 << " }\n" 2222 << " case MCD::OPC_Fail: {\n" 2223 << " DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" 2224 << " return MCDisassembler::Fail;\n" 2225 << " }\n" 2226 << " }\n" 2227 << " }\n" 2228 << " llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n" 2229 << "}\n\n"; 2230 } 2231 2232 // Emits disassembler code for instruction decoding. 2233 void FixedLenDecoderEmitter::run(raw_ostream &o) { 2234 formatted_raw_ostream OS(o); 2235 OS << "#include \"llvm/MC/MCInst.h\"\n"; 2236 OS << "#include \"llvm/Support/Debug.h\"\n"; 2237 OS << "#include \"llvm/Support/DataTypes.h\"\n"; 2238 OS << "#include \"llvm/Support/LEB128.h\"\n"; 2239 OS << "#include \"llvm/Support/raw_ostream.h\"\n"; 2240 OS << "#include <assert.h>\n"; 2241 OS << '\n'; 2242 OS << "namespace llvm {\n\n"; 2243 2244 emitFieldFromInstruction(OS); 2245 2246 Target.reverseBitsForLittleEndianEncoding(); 2247 2248 // Parameterize the decoders based on namespace and instruction width. 2249 NumberedInstructions = Target.getInstructionsByEnumValue(); 2250 std::map<std::pair<std::string, unsigned>, 2251 std::vector<unsigned>> OpcMap; 2252 std::map<unsigned, std::vector<OperandInfo>> Operands; 2253 2254 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) { 2255 const CodeGenInstruction *Inst = NumberedInstructions[i]; 2256 const Record *Def = Inst->TheDef; 2257 unsigned Size = Def->getValueAsInt("Size"); 2258 if (Def->getValueAsString("Namespace") == "TargetOpcode" || 2259 Def->getValueAsBit("isPseudo") || 2260 Def->getValueAsBit("isAsmParserOnly") || 2261 Def->getValueAsBit("isCodeGenOnly")) 2262 continue; 2263 2264 std::string DecoderNamespace = Def->getValueAsString("DecoderNamespace"); 2265 2266 if (Size) { 2267 if (populateInstruction(Target, *Inst, i, Operands)) { 2268 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); 2269 } 2270 } 2271 } 2272 2273 DecoderTableInfo TableInfo; 2274 for (const auto &Opc : OpcMap) { 2275 // Emit the decoder for this namespace+width combination. 2276 FilterChooser FC(NumberedInstructions, Opc.second, Operands, 2277 8*Opc.first.second, this); 2278 2279 // The decode table is cleared for each top level decoder function. The 2280 // predicates and decoders themselves, however, are shared across all 2281 // decoders to give more opportunities for uniqueing. 2282 TableInfo.Table.clear(); 2283 TableInfo.FixupStack.clear(); 2284 TableInfo.Table.reserve(16384); 2285 TableInfo.FixupStack.emplace_back(); 2286 FC.emitTableEntries(TableInfo); 2287 // Any NumToSkip fixups in the top level scope can resolve to the 2288 // OPC_Fail at the end of the table. 2289 assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); 2290 // Resolve any NumToSkip fixups in the current scope. 2291 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 2292 TableInfo.Table.size()); 2293 TableInfo.FixupStack.clear(); 2294 2295 TableInfo.Table.push_back(MCD::OPC_Fail); 2296 2297 // Print the table to the output stream. 2298 emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first); 2299 OS.flush(); 2300 } 2301 2302 // Emit the predicate function. 2303 emitPredicateFunction(OS, TableInfo.Predicates, 0); 2304 2305 // Emit the decoder function. 2306 emitDecoderFunction(OS, TableInfo.Decoders, 0); 2307 2308 // Emit the main entry point for the decoder, decodeInstruction(). 2309 emitDecodeInstruction(OS); 2310 2311 OS << "\n} // End llvm namespace\n"; 2312 } 2313 2314 namespace llvm { 2315 2316 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, 2317 const std::string &PredicateNamespace, 2318 const std::string &GPrefix, 2319 const std::string &GPostfix, const std::string &ROK, 2320 const std::string &RFail, const std::string &L) { 2321 FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, 2322 ROK, RFail, L).run(OS); 2323 } 2324 2325 } // end namespace llvm 2326