1 //===------------ FixedLenDecoderEmitter.cpp - Decoder Generator ----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // It contains the tablegen backend that emits the decoder functions for 11 // targets with fixed length instruction set. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenInstruction.h" 16 #include "CodeGenTarget.h" 17 #include "llvm/ADT/APInt.h" 18 #include "llvm/ADT/ArrayRef.h" 19 #include "llvm/ADT/CachedHashString.h" 20 #include "llvm/ADT/SmallString.h" 21 #include "llvm/ADT/SetVector.h" 22 #include "llvm/ADT/STLExtras.h" 23 #include "llvm/ADT/StringExtras.h" 24 #include "llvm/ADT/StringRef.h" 25 #include "llvm/MC/MCFixedLenDisassembler.h" 26 #include "llvm/Support/Casting.h" 27 #include "llvm/Support/Debug.h" 28 #include "llvm/Support/ErrorHandling.h" 29 #include "llvm/Support/FormattedStream.h" 30 #include "llvm/Support/LEB128.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include "llvm/TableGen/Error.h" 33 #include "llvm/TableGen/Record.h" 34 #include <algorithm> 35 #include <cassert> 36 #include <cstddef> 37 #include <cstdint> 38 #include <map> 39 #include <memory> 40 #include <set> 41 #include <string> 42 #include <utility> 43 #include <vector> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "decoder-emitter" 48 49 namespace { 50 51 struct EncodingField { 52 unsigned Base, Width, Offset; 53 EncodingField(unsigned B, unsigned W, unsigned O) 54 : Base(B), Width(W), Offset(O) { } 55 }; 56 57 struct OperandInfo { 58 std::vector<EncodingField> Fields; 59 std::string Decoder; 60 bool HasCompleteDecoder; 61 62 OperandInfo(std::string D, bool HCD) 63 : Decoder(std::move(D)), HasCompleteDecoder(HCD) {} 64 65 void addField(unsigned Base, unsigned Width, unsigned Offset) { 66 Fields.push_back(EncodingField(Base, Width, Offset)); 67 } 68 69 unsigned numFields() const { return Fields.size(); } 70 71 typedef std::vector<EncodingField>::const_iterator const_iterator; 72 73 const_iterator begin() const { return Fields.begin(); } 74 const_iterator end() const { return Fields.end(); } 75 }; 76 77 typedef std::vector<uint8_t> DecoderTable; 78 typedef uint32_t DecoderFixup; 79 typedef std::vector<DecoderFixup> FixupList; 80 typedef std::vector<FixupList> FixupScopeList; 81 typedef SmallSetVector<CachedHashString, 16> PredicateSet; 82 typedef SmallSetVector<CachedHashString, 16> DecoderSet; 83 struct DecoderTableInfo { 84 DecoderTable Table; 85 FixupScopeList FixupStack; 86 PredicateSet Predicates; 87 DecoderSet Decoders; 88 }; 89 90 class FixedLenDecoderEmitter { 91 ArrayRef<const CodeGenInstruction *> NumberedInstructions; 92 93 public: 94 // Defaults preserved here for documentation, even though they aren't 95 // strictly necessary given the way that this is currently being called. 96 FixedLenDecoderEmitter(RecordKeeper &R, std::string PredicateNamespace, 97 std::string GPrefix = "if (", 98 std::string GPostfix = " == MCDisassembler::Fail)", 99 std::string ROK = "MCDisassembler::Success", 100 std::string RFail = "MCDisassembler::Fail", 101 std::string L = "") 102 : Target(R), PredicateNamespace(std::move(PredicateNamespace)), 103 GuardPrefix(std::move(GPrefix)), GuardPostfix(std::move(GPostfix)), 104 ReturnOK(std::move(ROK)), ReturnFail(std::move(RFail)), 105 Locals(std::move(L)) {} 106 107 // Emit the decoder state machine table. 108 void emitTable(formatted_raw_ostream &o, DecoderTable &Table, 109 unsigned Indentation, unsigned BitWidth, 110 StringRef Namespace) const; 111 void emitPredicateFunction(formatted_raw_ostream &OS, 112 PredicateSet &Predicates, 113 unsigned Indentation) const; 114 void emitDecoderFunction(formatted_raw_ostream &OS, 115 DecoderSet &Decoders, 116 unsigned Indentation) const; 117 118 // run - Output the code emitter 119 void run(raw_ostream &o); 120 121 private: 122 CodeGenTarget Target; 123 124 public: 125 std::string PredicateNamespace; 126 std::string GuardPrefix, GuardPostfix; 127 std::string ReturnOK, ReturnFail; 128 std::string Locals; 129 }; 130 131 } // end anonymous namespace 132 133 // The set (BIT_TRUE, BIT_FALSE, BIT_UNSET) represents a ternary logic system 134 // for a bit value. 135 // 136 // BIT_UNFILTERED is used as the init value for a filter position. It is used 137 // only for filter processings. 138 typedef enum { 139 BIT_TRUE, // '1' 140 BIT_FALSE, // '0' 141 BIT_UNSET, // '?' 142 BIT_UNFILTERED // unfiltered 143 } bit_value_t; 144 145 static bool ValueSet(bit_value_t V) { 146 return (V == BIT_TRUE || V == BIT_FALSE); 147 } 148 149 static bool ValueNotSet(bit_value_t V) { 150 return (V == BIT_UNSET); 151 } 152 153 static int Value(bit_value_t V) { 154 return ValueNotSet(V) ? -1 : (V == BIT_FALSE ? 0 : 1); 155 } 156 157 static bit_value_t bitFromBits(const BitsInit &bits, unsigned index) { 158 if (BitInit *bit = dyn_cast<BitInit>(bits.getBit(index))) 159 return bit->getValue() ? BIT_TRUE : BIT_FALSE; 160 161 // The bit is uninitialized. 162 return BIT_UNSET; 163 } 164 165 // Prints the bit value for each position. 166 static void dumpBits(raw_ostream &o, const BitsInit &bits) { 167 for (unsigned index = bits.getNumBits(); index > 0; --index) { 168 switch (bitFromBits(bits, index - 1)) { 169 case BIT_TRUE: 170 o << "1"; 171 break; 172 case BIT_FALSE: 173 o << "0"; 174 break; 175 case BIT_UNSET: 176 o << "_"; 177 break; 178 default: 179 llvm_unreachable("unexpected return value from bitFromBits"); 180 } 181 } 182 } 183 184 static BitsInit &getBitsField(const Record &def, StringRef str) { 185 BitsInit *bits = def.getValueAsBitsInit(str); 186 return *bits; 187 } 188 189 // Representation of the instruction to work on. 190 typedef std::vector<bit_value_t> insn_t; 191 192 namespace { 193 194 class FilterChooser; 195 196 /// Filter - Filter works with FilterChooser to produce the decoding tree for 197 /// the ISA. 198 /// 199 /// It is useful to think of a Filter as governing the switch stmts of the 200 /// decoding tree in a certain level. Each case stmt delegates to an inferior 201 /// FilterChooser to decide what further decoding logic to employ, or in another 202 /// words, what other remaining bits to look at. The FilterChooser eventually 203 /// chooses a best Filter to do its job. 204 /// 205 /// This recursive scheme ends when the number of Opcodes assigned to the 206 /// FilterChooser becomes 1 or if there is a conflict. A conflict happens when 207 /// the Filter/FilterChooser combo does not know how to distinguish among the 208 /// Opcodes assigned. 209 /// 210 /// An example of a conflict is 211 /// 212 /// Conflict: 213 /// 111101000.00........00010000.... 214 /// 111101000.00........0001........ 215 /// 1111010...00........0001........ 216 /// 1111010...00.................... 217 /// 1111010......................... 218 /// 1111............................ 219 /// ................................ 220 /// VST4q8a 111101000_00________00010000____ 221 /// VST4q8b 111101000_00________00010000____ 222 /// 223 /// The Debug output shows the path that the decoding tree follows to reach the 224 /// the conclusion that there is a conflict. VST4q8a is a vst4 to double-spaced 225 /// even registers, while VST4q8b is a vst4 to double-spaced odd registers. 226 /// 227 /// The encoding info in the .td files does not specify this meta information, 228 /// which could have been used by the decoder to resolve the conflict. The 229 /// decoder could try to decode the even/odd register numbering and assign to 230 /// VST4q8a or VST4q8b, but for the time being, the decoder chooses the "a" 231 /// version and return the Opcode since the two have the same Asm format string. 232 class Filter { 233 protected: 234 const FilterChooser *Owner;// points to the FilterChooser who owns this filter 235 unsigned StartBit; // the starting bit position 236 unsigned NumBits; // number of bits to filter 237 bool Mixed; // a mixed region contains both set and unset bits 238 239 // Map of well-known segment value to the set of uid's with that value. 240 std::map<uint64_t, std::vector<unsigned>> FilteredInstructions; 241 242 // Set of uid's with non-constant segment values. 243 std::vector<unsigned> VariableInstructions; 244 245 // Map of well-known segment value to its delegate. 246 std::map<unsigned, std::unique_ptr<const FilterChooser>> FilterChooserMap; 247 248 // Number of instructions which fall under FilteredInstructions category. 249 unsigned NumFiltered; 250 251 // Keeps track of the last opcode in the filtered bucket. 252 unsigned LastOpcFiltered; 253 254 public: 255 Filter(Filter &&f); 256 Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, bool mixed); 257 258 ~Filter() = default; 259 260 unsigned getNumFiltered() const { return NumFiltered; } 261 262 unsigned getSingletonOpc() const { 263 assert(NumFiltered == 1); 264 return LastOpcFiltered; 265 } 266 267 // Return the filter chooser for the group of instructions without constant 268 // segment values. 269 const FilterChooser &getVariableFC() const { 270 assert(NumFiltered == 1); 271 assert(FilterChooserMap.size() == 1); 272 return *(FilterChooserMap.find((unsigned)-1)->second); 273 } 274 275 // Divides the decoding task into sub tasks and delegates them to the 276 // inferior FilterChooser's. 277 // 278 // A special case arises when there's only one entry in the filtered 279 // instructions. In order to unambiguously decode the singleton, we need to 280 // match the remaining undecoded encoding bits against the singleton. 281 void recurse(); 282 283 // Emit table entries to decode instructions given a segment or segments of 284 // bits. 285 void emitTableEntry(DecoderTableInfo &TableInfo) const; 286 287 // Returns the number of fanout produced by the filter. More fanout implies 288 // the filter distinguishes more categories of instructions. 289 unsigned usefulness() const; 290 }; // end class Filter 291 292 } // end anonymous namespace 293 294 // These are states of our finite state machines used in FilterChooser's 295 // filterProcessor() which produces the filter candidates to use. 296 typedef enum { 297 ATTR_NONE, 298 ATTR_FILTERED, 299 ATTR_ALL_SET, 300 ATTR_ALL_UNSET, 301 ATTR_MIXED 302 } bitAttr_t; 303 304 /// FilterChooser - FilterChooser chooses the best filter among a set of Filters 305 /// in order to perform the decoding of instructions at the current level. 306 /// 307 /// Decoding proceeds from the top down. Based on the well-known encoding bits 308 /// of instructions available, FilterChooser builds up the possible Filters that 309 /// can further the task of decoding by distinguishing among the remaining 310 /// candidate instructions. 311 /// 312 /// Once a filter has been chosen, it is called upon to divide the decoding task 313 /// into sub-tasks and delegates them to its inferior FilterChoosers for further 314 /// processings. 315 /// 316 /// It is useful to think of a Filter as governing the switch stmts of the 317 /// decoding tree. And each case is delegated to an inferior FilterChooser to 318 /// decide what further remaining bits to look at. 319 namespace { 320 321 class FilterChooser { 322 protected: 323 friend class Filter; 324 325 // Vector of codegen instructions to choose our filter. 326 ArrayRef<const CodeGenInstruction *> AllInstructions; 327 328 // Vector of uid's for this filter chooser to work on. 329 const std::vector<unsigned> &Opcodes; 330 331 // Lookup table for the operand decoding of instructions. 332 const std::map<unsigned, std::vector<OperandInfo>> &Operands; 333 334 // Vector of candidate filters. 335 std::vector<Filter> Filters; 336 337 // Array of bit values passed down from our parent. 338 // Set to all BIT_UNFILTERED's for Parent == NULL. 339 std::vector<bit_value_t> FilterBitValues; 340 341 // Links to the FilterChooser above us in the decoding tree. 342 const FilterChooser *Parent; 343 344 // Index of the best filter from Filters. 345 int BestIndex; 346 347 // Width of instructions 348 unsigned BitWidth; 349 350 // Parent emitter 351 const FixedLenDecoderEmitter *Emitter; 352 353 public: 354 FilterChooser(ArrayRef<const CodeGenInstruction *> Insts, 355 const std::vector<unsigned> &IDs, 356 const std::map<unsigned, std::vector<OperandInfo>> &Ops, 357 unsigned BW, 358 const FixedLenDecoderEmitter *E) 359 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 360 FilterBitValues(BW, BIT_UNFILTERED), Parent(nullptr), BestIndex(-1), 361 BitWidth(BW), Emitter(E) { 362 doFilter(); 363 } 364 365 FilterChooser(ArrayRef<const CodeGenInstruction *> Insts, 366 const std::vector<unsigned> &IDs, 367 const std::map<unsigned, std::vector<OperandInfo>> &Ops, 368 const std::vector<bit_value_t> &ParentFilterBitValues, 369 const FilterChooser &parent) 370 : AllInstructions(Insts), Opcodes(IDs), Operands(Ops), 371 FilterBitValues(ParentFilterBitValues), Parent(&parent), BestIndex(-1), 372 BitWidth(parent.BitWidth), Emitter(parent.Emitter) { 373 doFilter(); 374 } 375 376 FilterChooser(const FilterChooser &) = delete; 377 void operator=(const FilterChooser &) = delete; 378 379 unsigned getBitWidth() const { return BitWidth; } 380 381 protected: 382 // Populates the insn given the uid. 383 void insnWithID(insn_t &Insn, unsigned Opcode) const { 384 BitsInit &Bits = getBitsField(*AllInstructions[Opcode]->TheDef, "Inst"); 385 386 // We may have a SoftFail bitmask, which specifies a mask where an encoding 387 // may differ from the value in "Inst" and yet still be valid, but the 388 // disassembler should return SoftFail instead of Success. 389 // 390 // This is used for marking UNPREDICTABLE instructions in the ARM world. 391 BitsInit *SFBits = 392 AllInstructions[Opcode]->TheDef->getValueAsBitsInit("SoftFail"); 393 394 for (unsigned i = 0; i < BitWidth; ++i) { 395 if (SFBits && bitFromBits(*SFBits, i) == BIT_TRUE) 396 Insn.push_back(BIT_UNSET); 397 else 398 Insn.push_back(bitFromBits(Bits, i)); 399 } 400 } 401 402 // Returns the record name. 403 const StringRef nameWithID(unsigned Opcode) const { 404 return AllInstructions[Opcode]->TheDef->getName(); 405 } 406 407 // Populates the field of the insn given the start position and the number of 408 // consecutive bits to scan for. 409 // 410 // Returns false if there exists any uninitialized bit value in the range. 411 // Returns true, otherwise. 412 bool fieldFromInsn(uint64_t &Field, insn_t &Insn, unsigned StartBit, 413 unsigned NumBits) const; 414 415 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 416 /// filter array as a series of chars. 417 void dumpFilterArray(raw_ostream &o, 418 const std::vector<bit_value_t> & filter) const; 419 420 /// dumpStack - dumpStack traverses the filter chooser chain and calls 421 /// dumpFilterArray on each filter chooser up to the top level one. 422 void dumpStack(raw_ostream &o, const char *prefix) const; 423 424 Filter &bestFilter() { 425 assert(BestIndex != -1 && "BestIndex not set"); 426 return Filters[BestIndex]; 427 } 428 429 bool PositionFiltered(unsigned i) const { 430 return ValueSet(FilterBitValues[i]); 431 } 432 433 // Calculates the island(s) needed to decode the instruction. 434 // This returns a lit of undecoded bits of an instructions, for example, 435 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 436 // decoded bits in order to verify that the instruction matches the Opcode. 437 unsigned getIslands(std::vector<unsigned> &StartBits, 438 std::vector<unsigned> &EndBits, 439 std::vector<uint64_t> &FieldVals, 440 const insn_t &Insn) const; 441 442 // Emits code to check the Predicates member of an instruction are true. 443 // Returns true if predicate matches were emitted, false otherwise. 444 bool emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 445 unsigned Opc) const; 446 447 bool doesOpcodeNeedPredicate(unsigned Opc) const; 448 unsigned getPredicateIndex(DecoderTableInfo &TableInfo, StringRef P) const; 449 void emitPredicateTableEntry(DecoderTableInfo &TableInfo, 450 unsigned Opc) const; 451 452 void emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 453 unsigned Opc) const; 454 455 // Emits table entries to decode the singleton. 456 void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 457 unsigned Opc) const; 458 459 // Emits code to decode the singleton, and then to decode the rest. 460 void emitSingletonTableEntry(DecoderTableInfo &TableInfo, 461 const Filter &Best) const; 462 463 void emitBinaryParser(raw_ostream &o, unsigned &Indentation, 464 const OperandInfo &OpInfo, 465 bool &OpHasCompleteDecoder) const; 466 467 void emitDecoder(raw_ostream &OS, unsigned Indentation, unsigned Opc, 468 bool &HasCompleteDecoder) const; 469 unsigned getDecoderIndex(DecoderSet &Decoders, unsigned Opc, 470 bool &HasCompleteDecoder) const; 471 472 // Assign a single filter and run with it. 473 void runSingleFilter(unsigned startBit, unsigned numBit, bool mixed); 474 475 // reportRegion is a helper function for filterProcessor to mark a region as 476 // eligible for use as a filter region. 477 void reportRegion(bitAttr_t RA, unsigned StartBit, unsigned BitIndex, 478 bool AllowMixed); 479 480 // FilterProcessor scans the well-known encoding bits of the instructions and 481 // builds up a list of candidate filters. It chooses the best filter and 482 // recursively descends down the decoding tree. 483 bool filterProcessor(bool AllowMixed, bool Greedy = true); 484 485 // Decides on the best configuration of filter(s) to use in order to decode 486 // the instructions. A conflict of instructions may occur, in which case we 487 // dump the conflict set to the standard error. 488 void doFilter(); 489 490 public: 491 // emitTableEntries - Emit state machine entries to decode our share of 492 // instructions. 493 void emitTableEntries(DecoderTableInfo &TableInfo) const; 494 }; 495 496 } // end anonymous namespace 497 498 /////////////////////////// 499 // // 500 // Filter Implementation // 501 // // 502 /////////////////////////// 503 504 Filter::Filter(Filter &&f) 505 : Owner(f.Owner), StartBit(f.StartBit), NumBits(f.NumBits), Mixed(f.Mixed), 506 FilteredInstructions(std::move(f.FilteredInstructions)), 507 VariableInstructions(std::move(f.VariableInstructions)), 508 FilterChooserMap(std::move(f.FilterChooserMap)), NumFiltered(f.NumFiltered), 509 LastOpcFiltered(f.LastOpcFiltered) { 510 } 511 512 Filter::Filter(FilterChooser &owner, unsigned startBit, unsigned numBits, 513 bool mixed) 514 : Owner(&owner), StartBit(startBit), NumBits(numBits), Mixed(mixed) { 515 assert(StartBit + NumBits - 1 < Owner->BitWidth); 516 517 NumFiltered = 0; 518 LastOpcFiltered = 0; 519 520 for (unsigned i = 0, e = Owner->Opcodes.size(); i != e; ++i) { 521 insn_t Insn; 522 523 // Populates the insn given the uid. 524 Owner->insnWithID(Insn, Owner->Opcodes[i]); 525 526 uint64_t Field; 527 // Scans the segment for possibly well-specified encoding bits. 528 bool ok = Owner->fieldFromInsn(Field, Insn, StartBit, NumBits); 529 530 if (ok) { 531 // The encoding bits are well-known. Lets add the uid of the 532 // instruction into the bucket keyed off the constant field value. 533 LastOpcFiltered = Owner->Opcodes[i]; 534 FilteredInstructions[Field].push_back(LastOpcFiltered); 535 ++NumFiltered; 536 } else { 537 // Some of the encoding bit(s) are unspecified. This contributes to 538 // one additional member of "Variable" instructions. 539 VariableInstructions.push_back(Owner->Opcodes[i]); 540 } 541 } 542 543 assert((FilteredInstructions.size() + VariableInstructions.size() > 0) 544 && "Filter returns no instruction categories"); 545 } 546 547 // Divides the decoding task into sub tasks and delegates them to the 548 // inferior FilterChooser's. 549 // 550 // A special case arises when there's only one entry in the filtered 551 // instructions. In order to unambiguously decode the singleton, we need to 552 // match the remaining undecoded encoding bits against the singleton. 553 void Filter::recurse() { 554 // Starts by inheriting our parent filter chooser's filter bit values. 555 std::vector<bit_value_t> BitValueArray(Owner->FilterBitValues); 556 557 if (!VariableInstructions.empty()) { 558 // Conservatively marks each segment position as BIT_UNSET. 559 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) 560 BitValueArray[StartBit + bitIndex] = BIT_UNSET; 561 562 // Delegates to an inferior filter chooser for further processing on this 563 // group of instructions whose segment values are variable. 564 FilterChooserMap.insert( 565 std::make_pair(-1U, llvm::make_unique<FilterChooser>( 566 Owner->AllInstructions, VariableInstructions, 567 Owner->Operands, BitValueArray, *Owner))); 568 } 569 570 // No need to recurse for a singleton filtered instruction. 571 // See also Filter::emit*(). 572 if (getNumFiltered() == 1) { 573 assert(FilterChooserMap.size() == 1); 574 return; 575 } 576 577 // Otherwise, create sub choosers. 578 for (const auto &Inst : FilteredInstructions) { 579 580 // Marks all the segment positions with either BIT_TRUE or BIT_FALSE. 581 for (unsigned bitIndex = 0; bitIndex < NumBits; ++bitIndex) { 582 if (Inst.first & (1ULL << bitIndex)) 583 BitValueArray[StartBit + bitIndex] = BIT_TRUE; 584 else 585 BitValueArray[StartBit + bitIndex] = BIT_FALSE; 586 } 587 588 // Delegates to an inferior filter chooser for further processing on this 589 // category of instructions. 590 FilterChooserMap.insert(std::make_pair( 591 Inst.first, llvm::make_unique<FilterChooser>( 592 Owner->AllInstructions, Inst.second, 593 Owner->Operands, BitValueArray, *Owner))); 594 } 595 } 596 597 static void resolveTableFixups(DecoderTable &Table, const FixupList &Fixups, 598 uint32_t DestIdx) { 599 // Any NumToSkip fixups in the current scope can resolve to the 600 // current location. 601 for (FixupList::const_reverse_iterator I = Fixups.rbegin(), 602 E = Fixups.rend(); 603 I != E; ++I) { 604 // Calculate the distance from the byte following the fixup entry byte 605 // to the destination. The Target is calculated from after the 16-bit 606 // NumToSkip entry itself, so subtract two from the displacement here 607 // to account for that. 608 uint32_t FixupIdx = *I; 609 uint32_t Delta = DestIdx - FixupIdx - 2; 610 // Our NumToSkip entries are 16-bits. Make sure our table isn't too 611 // big. 612 assert(Delta < 65536U && "disassembler decoding table too large!"); 613 Table[FixupIdx] = (uint8_t)Delta; 614 Table[FixupIdx + 1] = (uint8_t)(Delta >> 8); 615 } 616 } 617 618 // Emit table entries to decode instructions given a segment or segments 619 // of bits. 620 void Filter::emitTableEntry(DecoderTableInfo &TableInfo) const { 621 TableInfo.Table.push_back(MCD::OPC_ExtractField); 622 TableInfo.Table.push_back(StartBit); 623 TableInfo.Table.push_back(NumBits); 624 625 // A new filter entry begins a new scope for fixup resolution. 626 TableInfo.FixupStack.emplace_back(); 627 628 DecoderTable &Table = TableInfo.Table; 629 630 size_t PrevFilter = 0; 631 bool HasFallthrough = false; 632 for (auto &Filter : FilterChooserMap) { 633 // Field value -1 implies a non-empty set of variable instructions. 634 // See also recurse(). 635 if (Filter.first == (unsigned)-1) { 636 HasFallthrough = true; 637 638 // Each scope should always have at least one filter value to check 639 // for. 640 assert(PrevFilter != 0 && "empty filter set!"); 641 FixupList &CurScope = TableInfo.FixupStack.back(); 642 // Resolve any NumToSkip fixups in the current scope. 643 resolveTableFixups(Table, CurScope, Table.size()); 644 CurScope.clear(); 645 PrevFilter = 0; // Don't re-process the filter's fallthrough. 646 } else { 647 Table.push_back(MCD::OPC_FilterValue); 648 // Encode and emit the value to filter against. 649 uint8_t Buffer[8]; 650 unsigned Len = encodeULEB128(Filter.first, Buffer); 651 Table.insert(Table.end(), Buffer, Buffer + Len); 652 // Reserve space for the NumToSkip entry. We'll backpatch the value 653 // later. 654 PrevFilter = Table.size(); 655 Table.push_back(0); 656 Table.push_back(0); 657 } 658 659 // We arrive at a category of instructions with the same segment value. 660 // Now delegate to the sub filter chooser for further decodings. 661 // The case may fallthrough, which happens if the remaining well-known 662 // encoding bits do not match exactly. 663 Filter.second->emitTableEntries(TableInfo); 664 665 // Now that we've emitted the body of the handler, update the NumToSkip 666 // of the filter itself to be able to skip forward when false. Subtract 667 // two as to account for the width of the NumToSkip field itself. 668 if (PrevFilter) { 669 uint32_t NumToSkip = Table.size() - PrevFilter - 2; 670 assert(NumToSkip < 65536U && "disassembler decoding table too large!"); 671 Table[PrevFilter] = (uint8_t)NumToSkip; 672 Table[PrevFilter + 1] = (uint8_t)(NumToSkip >> 8); 673 } 674 } 675 676 // Any remaining unresolved fixups bubble up to the parent fixup scope. 677 assert(TableInfo.FixupStack.size() > 1 && "fixup stack underflow!"); 678 FixupScopeList::iterator Source = TableInfo.FixupStack.end() - 1; 679 FixupScopeList::iterator Dest = Source - 1; 680 Dest->insert(Dest->end(), Source->begin(), Source->end()); 681 TableInfo.FixupStack.pop_back(); 682 683 // If there is no fallthrough, then the final filter should get fixed 684 // up according to the enclosing scope rather than the current position. 685 if (!HasFallthrough) 686 TableInfo.FixupStack.back().push_back(PrevFilter); 687 } 688 689 // Returns the number of fanout produced by the filter. More fanout implies 690 // the filter distinguishes more categories of instructions. 691 unsigned Filter::usefulness() const { 692 if (!VariableInstructions.empty()) 693 return FilteredInstructions.size(); 694 else 695 return FilteredInstructions.size() + 1; 696 } 697 698 ////////////////////////////////// 699 // // 700 // Filterchooser Implementation // 701 // // 702 ////////////////////////////////// 703 704 // Emit the decoder state machine table. 705 void FixedLenDecoderEmitter::emitTable(formatted_raw_ostream &OS, 706 DecoderTable &Table, 707 unsigned Indentation, 708 unsigned BitWidth, 709 StringRef Namespace) const { 710 OS.indent(Indentation) << "static const uint8_t DecoderTable" << Namespace 711 << BitWidth << "[] = {\n"; 712 713 Indentation += 2; 714 715 // FIXME: We may be able to use the NumToSkip values to recover 716 // appropriate indentation levels. 717 DecoderTable::const_iterator I = Table.begin(); 718 DecoderTable::const_iterator E = Table.end(); 719 while (I != E) { 720 assert (I < E && "incomplete decode table entry!"); 721 722 uint64_t Pos = I - Table.begin(); 723 OS << "/* " << Pos << " */"; 724 OS.PadToColumn(12); 725 726 switch (*I) { 727 default: 728 PrintFatalError("invalid decode table opcode"); 729 case MCD::OPC_ExtractField: { 730 ++I; 731 unsigned Start = *I++; 732 unsigned Len = *I++; 733 OS.indent(Indentation) << "MCD::OPC_ExtractField, " << Start << ", " 734 << Len << ", // Inst{"; 735 if (Len > 1) 736 OS << (Start + Len - 1) << "-"; 737 OS << Start << "} ...\n"; 738 break; 739 } 740 case MCD::OPC_FilterValue: { 741 ++I; 742 OS.indent(Indentation) << "MCD::OPC_FilterValue, "; 743 // The filter value is ULEB128 encoded. 744 while (*I >= 128) 745 OS << (unsigned)*I++ << ", "; 746 OS << (unsigned)*I++ << ", "; 747 748 // 16-bit numtoskip value. 749 uint8_t Byte = *I++; 750 uint32_t NumToSkip = Byte; 751 OS << (unsigned)Byte << ", "; 752 Byte = *I++; 753 OS << (unsigned)Byte << ", "; 754 NumToSkip |= Byte << 8; 755 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 756 break; 757 } 758 case MCD::OPC_CheckField: { 759 ++I; 760 unsigned Start = *I++; 761 unsigned Len = *I++; 762 OS.indent(Indentation) << "MCD::OPC_CheckField, " << Start << ", " 763 << Len << ", ";// << Val << ", " << NumToSkip << ",\n"; 764 // ULEB128 encoded field value. 765 for (; *I >= 128; ++I) 766 OS << (unsigned)*I << ", "; 767 OS << (unsigned)*I++ << ", "; 768 // 16-bit numtoskip value. 769 uint8_t Byte = *I++; 770 uint32_t NumToSkip = Byte; 771 OS << (unsigned)Byte << ", "; 772 Byte = *I++; 773 OS << (unsigned)Byte << ", "; 774 NumToSkip |= Byte << 8; 775 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 776 break; 777 } 778 case MCD::OPC_CheckPredicate: { 779 ++I; 780 OS.indent(Indentation) << "MCD::OPC_CheckPredicate, "; 781 for (; *I >= 128; ++I) 782 OS << (unsigned)*I << ", "; 783 OS << (unsigned)*I++ << ", "; 784 785 // 16-bit numtoskip value. 786 uint8_t Byte = *I++; 787 uint32_t NumToSkip = Byte; 788 OS << (unsigned)Byte << ", "; 789 Byte = *I++; 790 OS << (unsigned)Byte << ", "; 791 NumToSkip |= Byte << 8; 792 OS << "// Skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 793 break; 794 } 795 case MCD::OPC_Decode: 796 case MCD::OPC_TryDecode: { 797 bool IsTry = *I == MCD::OPC_TryDecode; 798 ++I; 799 // Extract the ULEB128 encoded Opcode to a buffer. 800 uint8_t Buffer[8], *p = Buffer; 801 while ((*p++ = *I++) >= 128) 802 assert((p - Buffer) <= (ptrdiff_t)sizeof(Buffer) 803 && "ULEB128 value too large!"); 804 // Decode the Opcode value. 805 unsigned Opc = decodeULEB128(Buffer); 806 OS.indent(Indentation) << "MCD::OPC_" << (IsTry ? "Try" : "") 807 << "Decode, "; 808 for (p = Buffer; *p >= 128; ++p) 809 OS << (unsigned)*p << ", "; 810 OS << (unsigned)*p << ", "; 811 812 // Decoder index. 813 for (; *I >= 128; ++I) 814 OS << (unsigned)*I << ", "; 815 OS << (unsigned)*I++ << ", "; 816 817 if (!IsTry) { 818 OS << "// Opcode: " 819 << NumberedInstructions[Opc]->TheDef->getName() << "\n"; 820 break; 821 } 822 823 // Fallthrough for OPC_TryDecode. 824 825 // 16-bit numtoskip value. 826 uint8_t Byte = *I++; 827 uint32_t NumToSkip = Byte; 828 OS << (unsigned)Byte << ", "; 829 Byte = *I++; 830 OS << (unsigned)Byte << ", "; 831 NumToSkip |= Byte << 8; 832 833 OS << "// Opcode: " 834 << NumberedInstructions[Opc]->TheDef->getName() 835 << ", skip to: " << ((I - Table.begin()) + NumToSkip) << "\n"; 836 break; 837 } 838 case MCD::OPC_SoftFail: { 839 ++I; 840 OS.indent(Indentation) << "MCD::OPC_SoftFail"; 841 // Positive mask 842 uint64_t Value = 0; 843 unsigned Shift = 0; 844 do { 845 OS << ", " << (unsigned)*I; 846 Value += (*I & 0x7f) << Shift; 847 Shift += 7; 848 } while (*I++ >= 128); 849 if (Value > 127) { 850 OS << " /* 0x"; 851 OS.write_hex(Value); 852 OS << " */"; 853 } 854 // Negative mask 855 Value = 0; 856 Shift = 0; 857 do { 858 OS << ", " << (unsigned)*I; 859 Value += (*I & 0x7f) << Shift; 860 Shift += 7; 861 } while (*I++ >= 128); 862 if (Value > 127) { 863 OS << " /* 0x"; 864 OS.write_hex(Value); 865 OS << " */"; 866 } 867 OS << ",\n"; 868 break; 869 } 870 case MCD::OPC_Fail: { 871 ++I; 872 OS.indent(Indentation) << "MCD::OPC_Fail,\n"; 873 break; 874 } 875 } 876 } 877 OS.indent(Indentation) << "0\n"; 878 879 Indentation -= 2; 880 881 OS.indent(Indentation) << "};\n\n"; 882 } 883 884 void FixedLenDecoderEmitter:: 885 emitPredicateFunction(formatted_raw_ostream &OS, PredicateSet &Predicates, 886 unsigned Indentation) const { 887 // The predicate function is just a big switch statement based on the 888 // input predicate index. 889 OS.indent(Indentation) << "static bool checkDecoderPredicate(unsigned Idx, " 890 << "const FeatureBitset& Bits) {\n"; 891 Indentation += 2; 892 if (!Predicates.empty()) { 893 OS.indent(Indentation) << "switch (Idx) {\n"; 894 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 895 unsigned Index = 0; 896 for (const auto &Predicate : Predicates) { 897 OS.indent(Indentation) << "case " << Index++ << ":\n"; 898 OS.indent(Indentation+2) << "return (" << Predicate << ");\n"; 899 } 900 OS.indent(Indentation) << "}\n"; 901 } else { 902 // No case statement to emit 903 OS.indent(Indentation) << "llvm_unreachable(\"Invalid index!\");\n"; 904 } 905 Indentation -= 2; 906 OS.indent(Indentation) << "}\n\n"; 907 } 908 909 void FixedLenDecoderEmitter:: 910 emitDecoderFunction(formatted_raw_ostream &OS, DecoderSet &Decoders, 911 unsigned Indentation) const { 912 // The decoder function is just a big switch statement based on the 913 // input decoder index. 914 OS.indent(Indentation) << "template<typename InsnType>\n"; 915 OS.indent(Indentation) << "static DecodeStatus decodeToMCInst(DecodeStatus S," 916 << " unsigned Idx, InsnType insn, MCInst &MI,\n"; 917 OS.indent(Indentation) << " uint64_t " 918 << "Address, const void *Decoder, bool &DecodeComplete) {\n"; 919 Indentation += 2; 920 OS.indent(Indentation) << "DecodeComplete = true;\n"; 921 OS.indent(Indentation) << "InsnType tmp;\n"; 922 OS.indent(Indentation) << "switch (Idx) {\n"; 923 OS.indent(Indentation) << "default: llvm_unreachable(\"Invalid index!\");\n"; 924 unsigned Index = 0; 925 for (const auto &Decoder : Decoders) { 926 OS.indent(Indentation) << "case " << Index++ << ":\n"; 927 OS << Decoder; 928 OS.indent(Indentation+2) << "return S;\n"; 929 } 930 OS.indent(Indentation) << "}\n"; 931 Indentation -= 2; 932 OS.indent(Indentation) << "}\n\n"; 933 } 934 935 // Populates the field of the insn given the start position and the number of 936 // consecutive bits to scan for. 937 // 938 // Returns false if and on the first uninitialized bit value encountered. 939 // Returns true, otherwise. 940 bool FilterChooser::fieldFromInsn(uint64_t &Field, insn_t &Insn, 941 unsigned StartBit, unsigned NumBits) const { 942 Field = 0; 943 944 for (unsigned i = 0; i < NumBits; ++i) { 945 if (Insn[StartBit + i] == BIT_UNSET) 946 return false; 947 948 if (Insn[StartBit + i] == BIT_TRUE) 949 Field = Field | (1ULL << i); 950 } 951 952 return true; 953 } 954 955 /// dumpFilterArray - dumpFilterArray prints out debugging info for the given 956 /// filter array as a series of chars. 957 void FilterChooser::dumpFilterArray(raw_ostream &o, 958 const std::vector<bit_value_t> &filter) const { 959 for (unsigned bitIndex = BitWidth; bitIndex > 0; bitIndex--) { 960 switch (filter[bitIndex - 1]) { 961 case BIT_UNFILTERED: 962 o << "."; 963 break; 964 case BIT_UNSET: 965 o << "_"; 966 break; 967 case BIT_TRUE: 968 o << "1"; 969 break; 970 case BIT_FALSE: 971 o << "0"; 972 break; 973 } 974 } 975 } 976 977 /// dumpStack - dumpStack traverses the filter chooser chain and calls 978 /// dumpFilterArray on each filter chooser up to the top level one. 979 void FilterChooser::dumpStack(raw_ostream &o, const char *prefix) const { 980 const FilterChooser *current = this; 981 982 while (current) { 983 o << prefix; 984 dumpFilterArray(o, current->FilterBitValues); 985 o << '\n'; 986 current = current->Parent; 987 } 988 } 989 990 // Calculates the island(s) needed to decode the instruction. 991 // This returns a list of undecoded bits of an instructions, for example, 992 // Inst{20} = 1 && Inst{3-0} == 0b1111 represents two islands of yet-to-be 993 // decoded bits in order to verify that the instruction matches the Opcode. 994 unsigned FilterChooser::getIslands(std::vector<unsigned> &StartBits, 995 std::vector<unsigned> &EndBits, 996 std::vector<uint64_t> &FieldVals, 997 const insn_t &Insn) const { 998 unsigned Num, BitNo; 999 Num = BitNo = 0; 1000 1001 uint64_t FieldVal = 0; 1002 1003 // 0: Init 1004 // 1: Water (the bit value does not affect decoding) 1005 // 2: Island (well-known bit value needed for decoding) 1006 int State = 0; 1007 int Val = -1; 1008 1009 for (unsigned i = 0; i < BitWidth; ++i) { 1010 Val = Value(Insn[i]); 1011 bool Filtered = PositionFiltered(i); 1012 switch (State) { 1013 default: llvm_unreachable("Unreachable code!"); 1014 case 0: 1015 case 1: 1016 if (Filtered || Val == -1) 1017 State = 1; // Still in Water 1018 else { 1019 State = 2; // Into the Island 1020 BitNo = 0; 1021 StartBits.push_back(i); 1022 FieldVal = Val; 1023 } 1024 break; 1025 case 2: 1026 if (Filtered || Val == -1) { 1027 State = 1; // Into the Water 1028 EndBits.push_back(i - 1); 1029 FieldVals.push_back(FieldVal); 1030 ++Num; 1031 } else { 1032 State = 2; // Still in Island 1033 ++BitNo; 1034 FieldVal = FieldVal | Val << BitNo; 1035 } 1036 break; 1037 } 1038 } 1039 // If we are still in Island after the loop, do some housekeeping. 1040 if (State == 2) { 1041 EndBits.push_back(BitWidth - 1); 1042 FieldVals.push_back(FieldVal); 1043 ++Num; 1044 } 1045 1046 assert(StartBits.size() == Num && EndBits.size() == Num && 1047 FieldVals.size() == Num); 1048 return Num; 1049 } 1050 1051 void FilterChooser::emitBinaryParser(raw_ostream &o, unsigned &Indentation, 1052 const OperandInfo &OpInfo, 1053 bool &OpHasCompleteDecoder) const { 1054 const std::string &Decoder = OpInfo.Decoder; 1055 1056 if (OpInfo.numFields() != 1) 1057 o.indent(Indentation) << "tmp = 0;\n"; 1058 1059 for (const EncodingField &EF : OpInfo) { 1060 o.indent(Indentation) << "tmp "; 1061 if (OpInfo.numFields() != 1) o << '|'; 1062 o << "= fieldFromInstruction" 1063 << "(insn, " << EF.Base << ", " << EF.Width << ')'; 1064 if (OpInfo.numFields() != 1 || EF.Offset != 0) 1065 o << " << " << EF.Offset; 1066 o << ";\n"; 1067 } 1068 1069 if (Decoder != "") { 1070 OpHasCompleteDecoder = OpInfo.HasCompleteDecoder; 1071 o.indent(Indentation) << Emitter->GuardPrefix << Decoder 1072 << "(MI, tmp, Address, Decoder)" 1073 << Emitter->GuardPostfix 1074 << " { " << (OpHasCompleteDecoder ? "" : "DecodeComplete = false; ") 1075 << "return MCDisassembler::Fail; }\n"; 1076 } else { 1077 OpHasCompleteDecoder = true; 1078 o.indent(Indentation) << "MI.addOperand(MCOperand::createImm(tmp));\n"; 1079 } 1080 } 1081 1082 void FilterChooser::emitDecoder(raw_ostream &OS, unsigned Indentation, 1083 unsigned Opc, bool &HasCompleteDecoder) const { 1084 HasCompleteDecoder = true; 1085 1086 for (const auto &Op : Operands.find(Opc)->second) { 1087 // If a custom instruction decoder was specified, use that. 1088 if (Op.numFields() == 0 && !Op.Decoder.empty()) { 1089 HasCompleteDecoder = Op.HasCompleteDecoder; 1090 OS.indent(Indentation) << Emitter->GuardPrefix << Op.Decoder 1091 << "(MI, insn, Address, Decoder)" 1092 << Emitter->GuardPostfix 1093 << " { " << (HasCompleteDecoder ? "" : "DecodeComplete = false; ") 1094 << "return MCDisassembler::Fail; }\n"; 1095 break; 1096 } 1097 1098 bool OpHasCompleteDecoder; 1099 emitBinaryParser(OS, Indentation, Op, OpHasCompleteDecoder); 1100 if (!OpHasCompleteDecoder) 1101 HasCompleteDecoder = false; 1102 } 1103 } 1104 1105 unsigned FilterChooser::getDecoderIndex(DecoderSet &Decoders, 1106 unsigned Opc, 1107 bool &HasCompleteDecoder) const { 1108 // Build up the predicate string. 1109 SmallString<256> Decoder; 1110 // FIXME: emitDecoder() function can take a buffer directly rather than 1111 // a stream. 1112 raw_svector_ostream S(Decoder); 1113 unsigned I = 4; 1114 emitDecoder(S, I, Opc, HasCompleteDecoder); 1115 1116 // Using the full decoder string as the key value here is a bit 1117 // heavyweight, but is effective. If the string comparisons become a 1118 // performance concern, we can implement a mangling of the predicate 1119 // data easily enough with a map back to the actual string. That's 1120 // overkill for now, though. 1121 1122 // Make sure the predicate is in the table. 1123 Decoders.insert(CachedHashString(Decoder)); 1124 // Now figure out the index for when we write out the table. 1125 DecoderSet::const_iterator P = find(Decoders, Decoder.str()); 1126 return (unsigned)(P - Decoders.begin()); 1127 } 1128 1129 static void emitSinglePredicateMatch(raw_ostream &o, StringRef str, 1130 const std::string &PredicateNamespace) { 1131 if (str[0] == '!') 1132 o << "!Bits[" << PredicateNamespace << "::" 1133 << str.slice(1,str.size()) << "]"; 1134 else 1135 o << "Bits[" << PredicateNamespace << "::" << str << "]"; 1136 } 1137 1138 bool FilterChooser::emitPredicateMatch(raw_ostream &o, unsigned &Indentation, 1139 unsigned Opc) const { 1140 ListInit *Predicates = 1141 AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); 1142 bool IsFirstEmission = true; 1143 for (unsigned i = 0; i < Predicates->size(); ++i) { 1144 Record *Pred = Predicates->getElementAsRecord(i); 1145 if (!Pred->getValue("AssemblerMatcherPredicate")) 1146 continue; 1147 1148 StringRef P = Pred->getValueAsString("AssemblerCondString"); 1149 1150 if (P.empty()) 1151 continue; 1152 1153 if (!IsFirstEmission) 1154 o << " && "; 1155 1156 std::pair<StringRef, StringRef> pairs = P.split(','); 1157 while (!pairs.second.empty()) { 1158 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); 1159 o << " && "; 1160 pairs = pairs.second.split(','); 1161 } 1162 emitSinglePredicateMatch(o, pairs.first, Emitter->PredicateNamespace); 1163 IsFirstEmission = false; 1164 } 1165 return !Predicates->empty(); 1166 } 1167 1168 bool FilterChooser::doesOpcodeNeedPredicate(unsigned Opc) const { 1169 ListInit *Predicates = 1170 AllInstructions[Opc]->TheDef->getValueAsListInit("Predicates"); 1171 for (unsigned i = 0; i < Predicates->size(); ++i) { 1172 Record *Pred = Predicates->getElementAsRecord(i); 1173 if (!Pred->getValue("AssemblerMatcherPredicate")) 1174 continue; 1175 1176 StringRef P = Pred->getValueAsString("AssemblerCondString"); 1177 1178 if (P.empty()) 1179 continue; 1180 1181 return true; 1182 } 1183 return false; 1184 } 1185 1186 unsigned FilterChooser::getPredicateIndex(DecoderTableInfo &TableInfo, 1187 StringRef Predicate) const { 1188 // Using the full predicate string as the key value here is a bit 1189 // heavyweight, but is effective. If the string comparisons become a 1190 // performance concern, we can implement a mangling of the predicate 1191 // data easily enough with a map back to the actual string. That's 1192 // overkill for now, though. 1193 1194 // Make sure the predicate is in the table. 1195 TableInfo.Predicates.insert(CachedHashString(Predicate)); 1196 // Now figure out the index for when we write out the table. 1197 PredicateSet::const_iterator P = find(TableInfo.Predicates, Predicate); 1198 return (unsigned)(P - TableInfo.Predicates.begin()); 1199 } 1200 1201 void FilterChooser::emitPredicateTableEntry(DecoderTableInfo &TableInfo, 1202 unsigned Opc) const { 1203 if (!doesOpcodeNeedPredicate(Opc)) 1204 return; 1205 1206 // Build up the predicate string. 1207 SmallString<256> Predicate; 1208 // FIXME: emitPredicateMatch() functions can take a buffer directly rather 1209 // than a stream. 1210 raw_svector_ostream PS(Predicate); 1211 unsigned I = 0; 1212 emitPredicateMatch(PS, I, Opc); 1213 1214 // Figure out the index into the predicate table for the predicate just 1215 // computed. 1216 unsigned PIdx = getPredicateIndex(TableInfo, PS.str()); 1217 SmallString<16> PBytes; 1218 raw_svector_ostream S(PBytes); 1219 encodeULEB128(PIdx, S); 1220 1221 TableInfo.Table.push_back(MCD::OPC_CheckPredicate); 1222 // Predicate index 1223 for (unsigned i = 0, e = PBytes.size(); i != e; ++i) 1224 TableInfo.Table.push_back(PBytes[i]); 1225 // Push location for NumToSkip backpatching. 1226 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1227 TableInfo.Table.push_back(0); 1228 TableInfo.Table.push_back(0); 1229 } 1230 1231 void FilterChooser::emitSoftFailTableEntry(DecoderTableInfo &TableInfo, 1232 unsigned Opc) const { 1233 BitsInit *SFBits = 1234 AllInstructions[Opc]->TheDef->getValueAsBitsInit("SoftFail"); 1235 if (!SFBits) return; 1236 BitsInit *InstBits = AllInstructions[Opc]->TheDef->getValueAsBitsInit("Inst"); 1237 1238 APInt PositiveMask(BitWidth, 0ULL); 1239 APInt NegativeMask(BitWidth, 0ULL); 1240 for (unsigned i = 0; i < BitWidth; ++i) { 1241 bit_value_t B = bitFromBits(*SFBits, i); 1242 bit_value_t IB = bitFromBits(*InstBits, i); 1243 1244 if (B != BIT_TRUE) continue; 1245 1246 switch (IB) { 1247 case BIT_FALSE: 1248 // The bit is meant to be false, so emit a check to see if it is true. 1249 PositiveMask.setBit(i); 1250 break; 1251 case BIT_TRUE: 1252 // The bit is meant to be true, so emit a check to see if it is false. 1253 NegativeMask.setBit(i); 1254 break; 1255 default: 1256 // The bit is not set; this must be an error! 1257 StringRef Name = AllInstructions[Opc]->TheDef->getName(); 1258 errs() << "SoftFail Conflict: bit SoftFail{" << i << "} in " << Name 1259 << " is set but Inst{" << i << "} is unset!\n" 1260 << " - You can only mark a bit as SoftFail if it is fully defined" 1261 << " (1/0 - not '?') in Inst\n"; 1262 return; 1263 } 1264 } 1265 1266 bool NeedPositiveMask = PositiveMask.getBoolValue(); 1267 bool NeedNegativeMask = NegativeMask.getBoolValue(); 1268 1269 if (!NeedPositiveMask && !NeedNegativeMask) 1270 return; 1271 1272 TableInfo.Table.push_back(MCD::OPC_SoftFail); 1273 1274 SmallString<16> MaskBytes; 1275 raw_svector_ostream S(MaskBytes); 1276 if (NeedPositiveMask) { 1277 encodeULEB128(PositiveMask.getZExtValue(), S); 1278 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1279 TableInfo.Table.push_back(MaskBytes[i]); 1280 } else 1281 TableInfo.Table.push_back(0); 1282 if (NeedNegativeMask) { 1283 MaskBytes.clear(); 1284 encodeULEB128(NegativeMask.getZExtValue(), S); 1285 for (unsigned i = 0, e = MaskBytes.size(); i != e; ++i) 1286 TableInfo.Table.push_back(MaskBytes[i]); 1287 } else 1288 TableInfo.Table.push_back(0); 1289 } 1290 1291 // Emits table entries to decode the singleton. 1292 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1293 unsigned Opc) const { 1294 std::vector<unsigned> StartBits; 1295 std::vector<unsigned> EndBits; 1296 std::vector<uint64_t> FieldVals; 1297 insn_t Insn; 1298 insnWithID(Insn, Opc); 1299 1300 // Look for islands of undecoded bits of the singleton. 1301 getIslands(StartBits, EndBits, FieldVals, Insn); 1302 1303 unsigned Size = StartBits.size(); 1304 1305 // Emit the predicate table entry if one is needed. 1306 emitPredicateTableEntry(TableInfo, Opc); 1307 1308 // Check any additional encoding fields needed. 1309 for (unsigned I = Size; I != 0; --I) { 1310 unsigned NumBits = EndBits[I-1] - StartBits[I-1] + 1; 1311 TableInfo.Table.push_back(MCD::OPC_CheckField); 1312 TableInfo.Table.push_back(StartBits[I-1]); 1313 TableInfo.Table.push_back(NumBits); 1314 uint8_t Buffer[8], *p; 1315 encodeULEB128(FieldVals[I-1], Buffer); 1316 for (p = Buffer; *p >= 128 ; ++p) 1317 TableInfo.Table.push_back(*p); 1318 TableInfo.Table.push_back(*p); 1319 // Push location for NumToSkip backpatching. 1320 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1321 // The fixup is always 16-bits, so go ahead and allocate the space 1322 // in the table so all our relative position calculations work OK even 1323 // before we fully resolve the real value here. 1324 TableInfo.Table.push_back(0); 1325 TableInfo.Table.push_back(0); 1326 } 1327 1328 // Check for soft failure of the match. 1329 emitSoftFailTableEntry(TableInfo, Opc); 1330 1331 bool HasCompleteDecoder; 1332 unsigned DIdx = getDecoderIndex(TableInfo.Decoders, Opc, HasCompleteDecoder); 1333 1334 // Produce OPC_Decode or OPC_TryDecode opcode based on the information 1335 // whether the instruction decoder is complete or not. If it is complete 1336 // then it handles all possible values of remaining variable/unfiltered bits 1337 // and for any value can determine if the bitpattern is a valid instruction 1338 // or not. This means OPC_Decode will be the final step in the decoding 1339 // process. If it is not complete, then the Fail return code from the 1340 // decoder method indicates that additional processing should be done to see 1341 // if there is any other instruction that also matches the bitpattern and 1342 // can decode it. 1343 TableInfo.Table.push_back(HasCompleteDecoder ? MCD::OPC_Decode : 1344 MCD::OPC_TryDecode); 1345 uint8_t Buffer[8], *p; 1346 encodeULEB128(Opc, Buffer); 1347 for (p = Buffer; *p >= 128 ; ++p) 1348 TableInfo.Table.push_back(*p); 1349 TableInfo.Table.push_back(*p); 1350 1351 SmallString<16> Bytes; 1352 raw_svector_ostream S(Bytes); 1353 encodeULEB128(DIdx, S); 1354 1355 // Decoder index 1356 for (unsigned i = 0, e = Bytes.size(); i != e; ++i) 1357 TableInfo.Table.push_back(Bytes[i]); 1358 1359 if (!HasCompleteDecoder) { 1360 // Push location for NumToSkip backpatching. 1361 TableInfo.FixupStack.back().push_back(TableInfo.Table.size()); 1362 // Allocate the space for the fixup. 1363 TableInfo.Table.push_back(0); 1364 TableInfo.Table.push_back(0); 1365 } 1366 } 1367 1368 // Emits table entries to decode the singleton, and then to decode the rest. 1369 void FilterChooser::emitSingletonTableEntry(DecoderTableInfo &TableInfo, 1370 const Filter &Best) const { 1371 unsigned Opc = Best.getSingletonOpc(); 1372 1373 // complex singletons need predicate checks from the first singleton 1374 // to refer forward to the variable filterchooser that follows. 1375 TableInfo.FixupStack.emplace_back(); 1376 1377 emitSingletonTableEntry(TableInfo, Opc); 1378 1379 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 1380 TableInfo.Table.size()); 1381 TableInfo.FixupStack.pop_back(); 1382 1383 Best.getVariableFC().emitTableEntries(TableInfo); 1384 } 1385 1386 // Assign a single filter and run with it. Top level API client can initialize 1387 // with a single filter to start the filtering process. 1388 void FilterChooser::runSingleFilter(unsigned startBit, unsigned numBit, 1389 bool mixed) { 1390 Filters.clear(); 1391 Filters.emplace_back(*this, startBit, numBit, true); 1392 BestIndex = 0; // Sole Filter instance to choose from. 1393 bestFilter().recurse(); 1394 } 1395 1396 // reportRegion is a helper function for filterProcessor to mark a region as 1397 // eligible for use as a filter region. 1398 void FilterChooser::reportRegion(bitAttr_t RA, unsigned StartBit, 1399 unsigned BitIndex, bool AllowMixed) { 1400 if (RA == ATTR_MIXED && AllowMixed) 1401 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, true); 1402 else if (RA == ATTR_ALL_SET && !AllowMixed) 1403 Filters.emplace_back(*this, StartBit, BitIndex - StartBit, false); 1404 } 1405 1406 // FilterProcessor scans the well-known encoding bits of the instructions and 1407 // builds up a list of candidate filters. It chooses the best filter and 1408 // recursively descends down the decoding tree. 1409 bool FilterChooser::filterProcessor(bool AllowMixed, bool Greedy) { 1410 Filters.clear(); 1411 BestIndex = -1; 1412 unsigned numInstructions = Opcodes.size(); 1413 1414 assert(numInstructions && "Filter created with no instructions"); 1415 1416 // No further filtering is necessary. 1417 if (numInstructions == 1) 1418 return true; 1419 1420 // Heuristics. See also doFilter()'s "Heuristics" comment when num of 1421 // instructions is 3. 1422 if (AllowMixed && !Greedy) { 1423 assert(numInstructions == 3); 1424 1425 for (unsigned i = 0; i < Opcodes.size(); ++i) { 1426 std::vector<unsigned> StartBits; 1427 std::vector<unsigned> EndBits; 1428 std::vector<uint64_t> FieldVals; 1429 insn_t Insn; 1430 1431 insnWithID(Insn, Opcodes[i]); 1432 1433 // Look for islands of undecoded bits of any instruction. 1434 if (getIslands(StartBits, EndBits, FieldVals, Insn) > 0) { 1435 // Found an instruction with island(s). Now just assign a filter. 1436 runSingleFilter(StartBits[0], EndBits[0] - StartBits[0] + 1, true); 1437 return true; 1438 } 1439 } 1440 } 1441 1442 unsigned BitIndex; 1443 1444 // We maintain BIT_WIDTH copies of the bitAttrs automaton. 1445 // The automaton consumes the corresponding bit from each 1446 // instruction. 1447 // 1448 // Input symbols: 0, 1, and _ (unset). 1449 // States: NONE, FILTERED, ALL_SET, ALL_UNSET, and MIXED. 1450 // Initial state: NONE. 1451 // 1452 // (NONE) ------- [01] -> (ALL_SET) 1453 // (NONE) ------- _ ----> (ALL_UNSET) 1454 // (ALL_SET) ---- [01] -> (ALL_SET) 1455 // (ALL_SET) ---- _ ----> (MIXED) 1456 // (ALL_UNSET) -- [01] -> (MIXED) 1457 // (ALL_UNSET) -- _ ----> (ALL_UNSET) 1458 // (MIXED) ------ . ----> (MIXED) 1459 // (FILTERED)---- . ----> (FILTERED) 1460 1461 std::vector<bitAttr_t> bitAttrs; 1462 1463 // FILTERED bit positions provide no entropy and are not worthy of pursuing. 1464 // Filter::recurse() set either BIT_TRUE or BIT_FALSE for each position. 1465 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) 1466 if (FilterBitValues[BitIndex] == BIT_TRUE || 1467 FilterBitValues[BitIndex] == BIT_FALSE) 1468 bitAttrs.push_back(ATTR_FILTERED); 1469 else 1470 bitAttrs.push_back(ATTR_NONE); 1471 1472 for (unsigned InsnIndex = 0; InsnIndex < numInstructions; ++InsnIndex) { 1473 insn_t insn; 1474 1475 insnWithID(insn, Opcodes[InsnIndex]); 1476 1477 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1478 switch (bitAttrs[BitIndex]) { 1479 case ATTR_NONE: 1480 if (insn[BitIndex] == BIT_UNSET) 1481 bitAttrs[BitIndex] = ATTR_ALL_UNSET; 1482 else 1483 bitAttrs[BitIndex] = ATTR_ALL_SET; 1484 break; 1485 case ATTR_ALL_SET: 1486 if (insn[BitIndex] == BIT_UNSET) 1487 bitAttrs[BitIndex] = ATTR_MIXED; 1488 break; 1489 case ATTR_ALL_UNSET: 1490 if (insn[BitIndex] != BIT_UNSET) 1491 bitAttrs[BitIndex] = ATTR_MIXED; 1492 break; 1493 case ATTR_MIXED: 1494 case ATTR_FILTERED: 1495 break; 1496 } 1497 } 1498 } 1499 1500 // The regionAttr automaton consumes the bitAttrs automatons' state, 1501 // lowest-to-highest. 1502 // 1503 // Input symbols: F(iltered), (all_)S(et), (all_)U(nset), M(ixed) 1504 // States: NONE, ALL_SET, MIXED 1505 // Initial state: NONE 1506 // 1507 // (NONE) ----- F --> (NONE) 1508 // (NONE) ----- S --> (ALL_SET) ; and set region start 1509 // (NONE) ----- U --> (NONE) 1510 // (NONE) ----- M --> (MIXED) ; and set region start 1511 // (ALL_SET) -- F --> (NONE) ; and report an ALL_SET region 1512 // (ALL_SET) -- S --> (ALL_SET) 1513 // (ALL_SET) -- U --> (NONE) ; and report an ALL_SET region 1514 // (ALL_SET) -- M --> (MIXED) ; and report an ALL_SET region 1515 // (MIXED) ---- F --> (NONE) ; and report a MIXED region 1516 // (MIXED) ---- S --> (ALL_SET) ; and report a MIXED region 1517 // (MIXED) ---- U --> (NONE) ; and report a MIXED region 1518 // (MIXED) ---- M --> (MIXED) 1519 1520 bitAttr_t RA = ATTR_NONE; 1521 unsigned StartBit = 0; 1522 1523 for (BitIndex = 0; BitIndex < BitWidth; ++BitIndex) { 1524 bitAttr_t bitAttr = bitAttrs[BitIndex]; 1525 1526 assert(bitAttr != ATTR_NONE && "Bit without attributes"); 1527 1528 switch (RA) { 1529 case ATTR_NONE: 1530 switch (bitAttr) { 1531 case ATTR_FILTERED: 1532 break; 1533 case ATTR_ALL_SET: 1534 StartBit = BitIndex; 1535 RA = ATTR_ALL_SET; 1536 break; 1537 case ATTR_ALL_UNSET: 1538 break; 1539 case ATTR_MIXED: 1540 StartBit = BitIndex; 1541 RA = ATTR_MIXED; 1542 break; 1543 default: 1544 llvm_unreachable("Unexpected bitAttr!"); 1545 } 1546 break; 1547 case ATTR_ALL_SET: 1548 switch (bitAttr) { 1549 case ATTR_FILTERED: 1550 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1551 RA = ATTR_NONE; 1552 break; 1553 case ATTR_ALL_SET: 1554 break; 1555 case ATTR_ALL_UNSET: 1556 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1557 RA = ATTR_NONE; 1558 break; 1559 case ATTR_MIXED: 1560 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1561 StartBit = BitIndex; 1562 RA = ATTR_MIXED; 1563 break; 1564 default: 1565 llvm_unreachable("Unexpected bitAttr!"); 1566 } 1567 break; 1568 case ATTR_MIXED: 1569 switch (bitAttr) { 1570 case ATTR_FILTERED: 1571 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1572 StartBit = BitIndex; 1573 RA = ATTR_NONE; 1574 break; 1575 case ATTR_ALL_SET: 1576 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1577 StartBit = BitIndex; 1578 RA = ATTR_ALL_SET; 1579 break; 1580 case ATTR_ALL_UNSET: 1581 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1582 RA = ATTR_NONE; 1583 break; 1584 case ATTR_MIXED: 1585 break; 1586 default: 1587 llvm_unreachable("Unexpected bitAttr!"); 1588 } 1589 break; 1590 case ATTR_ALL_UNSET: 1591 llvm_unreachable("regionAttr state machine has no ATTR_UNSET state"); 1592 case ATTR_FILTERED: 1593 llvm_unreachable("regionAttr state machine has no ATTR_FILTERED state"); 1594 } 1595 } 1596 1597 // At the end, if we're still in ALL_SET or MIXED states, report a region 1598 switch (RA) { 1599 case ATTR_NONE: 1600 break; 1601 case ATTR_FILTERED: 1602 break; 1603 case ATTR_ALL_SET: 1604 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1605 break; 1606 case ATTR_ALL_UNSET: 1607 break; 1608 case ATTR_MIXED: 1609 reportRegion(RA, StartBit, BitIndex, AllowMixed); 1610 break; 1611 } 1612 1613 // We have finished with the filter processings. Now it's time to choose 1614 // the best performing filter. 1615 BestIndex = 0; 1616 bool AllUseless = true; 1617 unsigned BestScore = 0; 1618 1619 for (unsigned i = 0, e = Filters.size(); i != e; ++i) { 1620 unsigned Usefulness = Filters[i].usefulness(); 1621 1622 if (Usefulness) 1623 AllUseless = false; 1624 1625 if (Usefulness > BestScore) { 1626 BestIndex = i; 1627 BestScore = Usefulness; 1628 } 1629 } 1630 1631 if (!AllUseless) 1632 bestFilter().recurse(); 1633 1634 return !AllUseless; 1635 } // end of FilterChooser::filterProcessor(bool) 1636 1637 // Decides on the best configuration of filter(s) to use in order to decode 1638 // the instructions. A conflict of instructions may occur, in which case we 1639 // dump the conflict set to the standard error. 1640 void FilterChooser::doFilter() { 1641 unsigned Num = Opcodes.size(); 1642 assert(Num && "FilterChooser created with no instructions"); 1643 1644 // Try regions of consecutive known bit values first. 1645 if (filterProcessor(false)) 1646 return; 1647 1648 // Then regions of mixed bits (both known and unitialized bit values allowed). 1649 if (filterProcessor(true)) 1650 return; 1651 1652 // Heuristics to cope with conflict set {t2CMPrs, t2SUBSrr, t2SUBSrs} where 1653 // no single instruction for the maximum ATTR_MIXED region Inst{14-4} has a 1654 // well-known encoding pattern. In such case, we backtrack and scan for the 1655 // the very first consecutive ATTR_ALL_SET region and assign a filter to it. 1656 if (Num == 3 && filterProcessor(true, false)) 1657 return; 1658 1659 // If we come to here, the instruction decoding has failed. 1660 // Set the BestIndex to -1 to indicate so. 1661 BestIndex = -1; 1662 } 1663 1664 // emitTableEntries - Emit state machine entries to decode our share of 1665 // instructions. 1666 void FilterChooser::emitTableEntries(DecoderTableInfo &TableInfo) const { 1667 if (Opcodes.size() == 1) { 1668 // There is only one instruction in the set, which is great! 1669 // Call emitSingletonDecoder() to see whether there are any remaining 1670 // encodings bits. 1671 emitSingletonTableEntry(TableInfo, Opcodes[0]); 1672 return; 1673 } 1674 1675 // Choose the best filter to do the decodings! 1676 if (BestIndex != -1) { 1677 const Filter &Best = Filters[BestIndex]; 1678 if (Best.getNumFiltered() == 1) 1679 emitSingletonTableEntry(TableInfo, Best); 1680 else 1681 Best.emitTableEntry(TableInfo); 1682 return; 1683 } 1684 1685 // We don't know how to decode these instructions! Dump the 1686 // conflict set and bail. 1687 1688 // Print out useful conflict information for postmortem analysis. 1689 errs() << "Decoding Conflict:\n"; 1690 1691 dumpStack(errs(), "\t\t"); 1692 1693 for (unsigned i = 0; i < Opcodes.size(); ++i) { 1694 errs() << '\t' << nameWithID(Opcodes[i]) << " "; 1695 dumpBits(errs(), 1696 getBitsField(*AllInstructions[Opcodes[i]]->TheDef, "Inst")); 1697 errs() << '\n'; 1698 } 1699 } 1700 1701 static std::string findOperandDecoderMethod(TypedInit *TI) { 1702 std::string Decoder; 1703 1704 RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); 1705 Record *TypeRecord = Type->getRecord(); 1706 1707 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); 1708 StringInit *String = DecoderString ? 1709 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1710 if (String) { 1711 Decoder = String->getValue(); 1712 if (!Decoder.empty()) 1713 return Decoder; 1714 } 1715 1716 if (TypeRecord->isSubClassOf("RegisterOperand")) 1717 TypeRecord = TypeRecord->getValueAsDef("RegClass"); 1718 1719 if (TypeRecord->isSubClassOf("RegisterClass")) { 1720 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; 1721 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { 1722 Decoder = "DecodePointerLikeRegClass" + 1723 utostr(TypeRecord->getValueAsInt("RegClassKind")); 1724 } 1725 1726 return Decoder; 1727 } 1728 1729 static bool populateInstruction(CodeGenTarget &Target, 1730 const CodeGenInstruction &CGI, unsigned Opc, 1731 std::map<unsigned, std::vector<OperandInfo>> &Operands){ 1732 const Record &Def = *CGI.TheDef; 1733 // If all the bit positions are not specified; do not decode this instruction. 1734 // We are bound to fail! For proper disassembly, the well-known encoding bits 1735 // of the instruction must be fully specified. 1736 1737 BitsInit &Bits = getBitsField(Def, "Inst"); 1738 if (Bits.allInComplete()) return false; 1739 1740 std::vector<OperandInfo> InsnOperands; 1741 1742 // If the instruction has specified a custom decoding hook, use that instead 1743 // of trying to auto-generate the decoder. 1744 StringRef InstDecoder = Def.getValueAsString("DecoderMethod"); 1745 if (InstDecoder != "") { 1746 bool HasCompleteInstDecoder = Def.getValueAsBit("hasCompleteDecoder"); 1747 InsnOperands.push_back(OperandInfo(InstDecoder, HasCompleteInstDecoder)); 1748 Operands[Opc] = InsnOperands; 1749 return true; 1750 } 1751 1752 // Generate a description of the operand of the instruction that we know 1753 // how to decode automatically. 1754 // FIXME: We'll need to have a way to manually override this as needed. 1755 1756 // Gather the outputs/inputs of the instruction, so we can find their 1757 // positions in the encoding. This assumes for now that they appear in the 1758 // MCInst in the order that they're listed. 1759 std::vector<std::pair<Init*, StringRef>> InOutOperands; 1760 DagInit *Out = Def.getValueAsDag("OutOperandList"); 1761 DagInit *In = Def.getValueAsDag("InOperandList"); 1762 for (unsigned i = 0; i < Out->getNumArgs(); ++i) 1763 InOutOperands.push_back(std::make_pair(Out->getArg(i), 1764 Out->getArgNameStr(i))); 1765 for (unsigned i = 0; i < In->getNumArgs(); ++i) 1766 InOutOperands.push_back(std::make_pair(In->getArg(i), 1767 In->getArgNameStr(i))); 1768 1769 // Search for tied operands, so that we can correctly instantiate 1770 // operands that are not explicitly represented in the encoding. 1771 std::map<std::string, std::string> TiedNames; 1772 for (unsigned i = 0; i < CGI.Operands.size(); ++i) { 1773 int tiedTo = CGI.Operands[i].getTiedRegister(); 1774 if (tiedTo != -1) { 1775 std::pair<unsigned, unsigned> SO = 1776 CGI.Operands.getSubOperandNumber(tiedTo); 1777 TiedNames[InOutOperands[i].second] = InOutOperands[SO.first].second; 1778 TiedNames[InOutOperands[SO.first].second] = InOutOperands[i].second; 1779 } 1780 } 1781 1782 std::map<std::string, std::vector<OperandInfo>> NumberedInsnOperands; 1783 std::set<std::string> NumberedInsnOperandsNoTie; 1784 if (Target.getInstructionSet()-> 1785 getValueAsBit("decodePositionallyEncodedOperands")) { 1786 const std::vector<RecordVal> &Vals = Def.getValues(); 1787 unsigned NumberedOp = 0; 1788 1789 std::set<unsigned> NamedOpIndices; 1790 if (Target.getInstructionSet()-> 1791 getValueAsBit("noNamedPositionallyEncodedOperands")) 1792 // Collect the set of operand indices that might correspond to named 1793 // operand, and skip these when assigning operands based on position. 1794 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1795 unsigned OpIdx; 1796 if (!CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 1797 continue; 1798 1799 NamedOpIndices.insert(OpIdx); 1800 } 1801 1802 for (unsigned i = 0, e = Vals.size(); i != e; ++i) { 1803 // Ignore fixed fields in the record, we're looking for values like: 1804 // bits<5> RST = { ?, ?, ?, ?, ? }; 1805 if (Vals[i].getPrefix() || Vals[i].getValue()->isComplete()) 1806 continue; 1807 1808 // Determine if Vals[i] actually contributes to the Inst encoding. 1809 unsigned bi = 0; 1810 for (; bi < Bits.getNumBits(); ++bi) { 1811 VarInit *Var = nullptr; 1812 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1813 if (BI) 1814 Var = dyn_cast<VarInit>(BI->getBitVar()); 1815 else 1816 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1817 1818 if (Var && Var->getName() == Vals[i].getName()) 1819 break; 1820 } 1821 1822 if (bi == Bits.getNumBits()) 1823 continue; 1824 1825 // Skip variables that correspond to explicitly-named operands. 1826 unsigned OpIdx; 1827 if (CGI.Operands.hasOperandNamed(Vals[i].getName(), OpIdx)) 1828 continue; 1829 1830 // Get the bit range for this operand: 1831 unsigned bitStart = bi++, bitWidth = 1; 1832 for (; bi < Bits.getNumBits(); ++bi) { 1833 VarInit *Var = nullptr; 1834 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1835 if (BI) 1836 Var = dyn_cast<VarInit>(BI->getBitVar()); 1837 else 1838 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1839 1840 if (!Var) 1841 break; 1842 1843 if (Var->getName() != Vals[i].getName()) 1844 break; 1845 1846 ++bitWidth; 1847 } 1848 1849 unsigned NumberOps = CGI.Operands.size(); 1850 while (NumberedOp < NumberOps && 1851 (CGI.Operands.isFlatOperandNotEmitted(NumberedOp) || 1852 (!NamedOpIndices.empty() && NamedOpIndices.count( 1853 CGI.Operands.getSubOperandNumber(NumberedOp).first)))) 1854 ++NumberedOp; 1855 1856 OpIdx = NumberedOp++; 1857 1858 // OpIdx now holds the ordered operand number of Vals[i]. 1859 std::pair<unsigned, unsigned> SO = 1860 CGI.Operands.getSubOperandNumber(OpIdx); 1861 const std::string &Name = CGI.Operands[SO.first].Name; 1862 1863 DEBUG(dbgs() << "Numbered operand mapping for " << Def.getName() << ": " << 1864 Name << "(" << SO.first << ", " << SO.second << ") => " << 1865 Vals[i].getName() << "\n"); 1866 1867 std::string Decoder; 1868 Record *TypeRecord = CGI.Operands[SO.first].Rec; 1869 1870 RecordVal *DecoderString = TypeRecord->getValue("DecoderMethod"); 1871 StringInit *String = DecoderString ? 1872 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1873 if (String && String->getValue() != "") 1874 Decoder = String->getValue(); 1875 1876 if (Decoder == "" && 1877 CGI.Operands[SO.first].MIOperandInfo && 1878 CGI.Operands[SO.first].MIOperandInfo->getNumArgs()) { 1879 Init *Arg = CGI.Operands[SO.first].MIOperandInfo-> 1880 getArg(SO.second); 1881 if (TypedInit *TI = cast<TypedInit>(Arg)) { 1882 RecordRecTy *Type = cast<RecordRecTy>(TI->getType()); 1883 TypeRecord = Type->getRecord(); 1884 } 1885 } 1886 1887 bool isReg = false; 1888 if (TypeRecord->isSubClassOf("RegisterOperand")) 1889 TypeRecord = TypeRecord->getValueAsDef("RegClass"); 1890 if (TypeRecord->isSubClassOf("RegisterClass")) { 1891 Decoder = "Decode" + TypeRecord->getName().str() + "RegisterClass"; 1892 isReg = true; 1893 } else if (TypeRecord->isSubClassOf("PointerLikeRegClass")) { 1894 Decoder = "DecodePointerLikeRegClass" + 1895 utostr(TypeRecord->getValueAsInt("RegClassKind")); 1896 isReg = true; 1897 } 1898 1899 DecoderString = TypeRecord->getValue("DecoderMethod"); 1900 String = DecoderString ? 1901 dyn_cast<StringInit>(DecoderString->getValue()) : nullptr; 1902 if (!isReg && String && String->getValue() != "") 1903 Decoder = String->getValue(); 1904 1905 RecordVal *HasCompleteDecoderVal = 1906 TypeRecord->getValue("hasCompleteDecoder"); 1907 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? 1908 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; 1909 bool HasCompleteDecoder = HasCompleteDecoderBit ? 1910 HasCompleteDecoderBit->getValue() : true; 1911 1912 OperandInfo OpInfo(Decoder, HasCompleteDecoder); 1913 OpInfo.addField(bitStart, bitWidth, 0); 1914 1915 NumberedInsnOperands[Name].push_back(OpInfo); 1916 1917 // FIXME: For complex operands with custom decoders we can't handle tied 1918 // sub-operands automatically. Skip those here and assume that this is 1919 // fixed up elsewhere. 1920 if (CGI.Operands[SO.first].MIOperandInfo && 1921 CGI.Operands[SO.first].MIOperandInfo->getNumArgs() > 1 && 1922 String && String->getValue() != "") 1923 NumberedInsnOperandsNoTie.insert(Name); 1924 } 1925 } 1926 1927 // For each operand, see if we can figure out where it is encoded. 1928 for (const auto &Op : InOutOperands) { 1929 if (!NumberedInsnOperands[Op.second].empty()) { 1930 InsnOperands.insert(InsnOperands.end(), 1931 NumberedInsnOperands[Op.second].begin(), 1932 NumberedInsnOperands[Op.second].end()); 1933 continue; 1934 } 1935 if (!NumberedInsnOperands[TiedNames[Op.second]].empty()) { 1936 if (!NumberedInsnOperandsNoTie.count(TiedNames[Op.second])) { 1937 // Figure out to which (sub)operand we're tied. 1938 unsigned i = CGI.Operands.getOperandNamed(TiedNames[Op.second]); 1939 int tiedTo = CGI.Operands[i].getTiedRegister(); 1940 if (tiedTo == -1) { 1941 i = CGI.Operands.getOperandNamed(Op.second); 1942 tiedTo = CGI.Operands[i].getTiedRegister(); 1943 } 1944 1945 if (tiedTo != -1) { 1946 std::pair<unsigned, unsigned> SO = 1947 CGI.Operands.getSubOperandNumber(tiedTo); 1948 1949 InsnOperands.push_back(NumberedInsnOperands[TiedNames[Op.second]] 1950 [SO.second]); 1951 } 1952 } 1953 continue; 1954 } 1955 1956 TypedInit *TI = cast<TypedInit>(Op.first); 1957 1958 // At this point, we can locate the decoder field, but we need to know how 1959 // to interpret it. As a first step, require the target to provide 1960 // callbacks for decoding register classes. 1961 std::string Decoder = findOperandDecoderMethod(TI); 1962 Record *TypeRecord = cast<RecordRecTy>(TI->getType())->getRecord(); 1963 1964 RecordVal *HasCompleteDecoderVal = 1965 TypeRecord->getValue("hasCompleteDecoder"); 1966 BitInit *HasCompleteDecoderBit = HasCompleteDecoderVal ? 1967 dyn_cast<BitInit>(HasCompleteDecoderVal->getValue()) : nullptr; 1968 bool HasCompleteDecoder = HasCompleteDecoderBit ? 1969 HasCompleteDecoderBit->getValue() : true; 1970 1971 OperandInfo OpInfo(Decoder, HasCompleteDecoder); 1972 unsigned Base = ~0U; 1973 unsigned Width = 0; 1974 unsigned Offset = 0; 1975 1976 for (unsigned bi = 0; bi < Bits.getNumBits(); ++bi) { 1977 VarInit *Var = nullptr; 1978 VarBitInit *BI = dyn_cast<VarBitInit>(Bits.getBit(bi)); 1979 if (BI) 1980 Var = dyn_cast<VarInit>(BI->getBitVar()); 1981 else 1982 Var = dyn_cast<VarInit>(Bits.getBit(bi)); 1983 1984 if (!Var) { 1985 if (Base != ~0U) { 1986 OpInfo.addField(Base, Width, Offset); 1987 Base = ~0U; 1988 Width = 0; 1989 Offset = 0; 1990 } 1991 continue; 1992 } 1993 1994 if (Var->getName() != Op.second && 1995 Var->getName() != TiedNames[Op.second]) { 1996 if (Base != ~0U) { 1997 OpInfo.addField(Base, Width, Offset); 1998 Base = ~0U; 1999 Width = 0; 2000 Offset = 0; 2001 } 2002 continue; 2003 } 2004 2005 if (Base == ~0U) { 2006 Base = bi; 2007 Width = 1; 2008 Offset = BI ? BI->getBitNum() : 0; 2009 } else if (BI && BI->getBitNum() != Offset + Width) { 2010 OpInfo.addField(Base, Width, Offset); 2011 Base = bi; 2012 Width = 1; 2013 Offset = BI->getBitNum(); 2014 } else { 2015 ++Width; 2016 } 2017 } 2018 2019 if (Base != ~0U) 2020 OpInfo.addField(Base, Width, Offset); 2021 2022 if (OpInfo.numFields() > 0) 2023 InsnOperands.push_back(OpInfo); 2024 } 2025 2026 Operands[Opc] = InsnOperands; 2027 2028 #if 0 2029 DEBUG({ 2030 // Dumps the instruction encoding bits. 2031 dumpBits(errs(), Bits); 2032 2033 errs() << '\n'; 2034 2035 // Dumps the list of operand info. 2036 for (unsigned i = 0, e = CGI.Operands.size(); i != e; ++i) { 2037 const CGIOperandList::OperandInfo &Info = CGI.Operands[i]; 2038 const std::string &OperandName = Info.Name; 2039 const Record &OperandDef = *Info.Rec; 2040 2041 errs() << "\t" << OperandName << " (" << OperandDef.getName() << ")\n"; 2042 } 2043 }); 2044 #endif 2045 2046 return true; 2047 } 2048 2049 // emitFieldFromInstruction - Emit the templated helper function 2050 // fieldFromInstruction(). 2051 static void emitFieldFromInstruction(formatted_raw_ostream &OS) { 2052 OS << "// Helper function for extracting fields from encoded instructions.\n" 2053 << "template<typename InsnType>\n" 2054 << "static InsnType fieldFromInstruction(InsnType insn, unsigned startBit,\n" 2055 << " unsigned numBits) {\n" 2056 << " assert(startBit + numBits <= (sizeof(InsnType)*8) &&\n" 2057 << " \"Instruction field out of bounds!\");\n" 2058 << " InsnType fieldMask;\n" 2059 << " if (numBits == sizeof(InsnType)*8)\n" 2060 << " fieldMask = (InsnType)(-1LL);\n" 2061 << " else\n" 2062 << " fieldMask = (((InsnType)1 << numBits) - 1) << startBit;\n" 2063 << " return (insn & fieldMask) >> startBit;\n" 2064 << "}\n\n"; 2065 } 2066 2067 // emitDecodeInstruction - Emit the templated helper function 2068 // decodeInstruction(). 2069 static void emitDecodeInstruction(formatted_raw_ostream &OS) { 2070 OS << "template<typename InsnType>\n" 2071 << "static DecodeStatus decodeInstruction(const uint8_t DecodeTable[], MCInst &MI,\n" 2072 << " InsnType insn, uint64_t Address,\n" 2073 << " const void *DisAsm,\n" 2074 << " const MCSubtargetInfo &STI) {\n" 2075 << " const FeatureBitset& Bits = STI.getFeatureBits();\n" 2076 << "\n" 2077 << " const uint8_t *Ptr = DecodeTable;\n" 2078 << " uint32_t CurFieldValue = 0;\n" 2079 << " DecodeStatus S = MCDisassembler::Success;\n" 2080 << " while (true) {\n" 2081 << " ptrdiff_t Loc = Ptr - DecodeTable;\n" 2082 << " switch (*Ptr) {\n" 2083 << " default:\n" 2084 << " errs() << Loc << \": Unexpected decode table opcode!\\n\";\n" 2085 << " return MCDisassembler::Fail;\n" 2086 << " case MCD::OPC_ExtractField: {\n" 2087 << " unsigned Start = *++Ptr;\n" 2088 << " unsigned Len = *++Ptr;\n" 2089 << " ++Ptr;\n" 2090 << " CurFieldValue = fieldFromInstruction(insn, Start, Len);\n" 2091 << " DEBUG(dbgs() << Loc << \": OPC_ExtractField(\" << Start << \", \"\n" 2092 << " << Len << \"): \" << CurFieldValue << \"\\n\");\n" 2093 << " break;\n" 2094 << " }\n" 2095 << " case MCD::OPC_FilterValue: {\n" 2096 << " // Decode the field value.\n" 2097 << " unsigned Len;\n" 2098 << " InsnType Val = decodeULEB128(++Ptr, &Len);\n" 2099 << " Ptr += Len;\n" 2100 << " // NumToSkip is a plain 16-bit integer.\n" 2101 << " unsigned NumToSkip = *Ptr++;\n" 2102 << " NumToSkip |= (*Ptr++) << 8;\n" 2103 << "\n" 2104 << " // Perform the filter operation.\n" 2105 << " if (Val != CurFieldValue)\n" 2106 << " Ptr += NumToSkip;\n" 2107 << " DEBUG(dbgs() << Loc << \": OPC_FilterValue(\" << Val << \", \" << NumToSkip\n" 2108 << " << \"): \" << ((Val != CurFieldValue) ? \"FAIL:\" : \"PASS:\")\n" 2109 << " << \" continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" 2110 << "\n" 2111 << " break;\n" 2112 << " }\n" 2113 << " case MCD::OPC_CheckField: {\n" 2114 << " unsigned Start = *++Ptr;\n" 2115 << " unsigned Len = *++Ptr;\n" 2116 << " InsnType FieldValue = fieldFromInstruction(insn, Start, Len);\n" 2117 << " // Decode the field value.\n" 2118 << " uint32_t ExpectedValue = decodeULEB128(++Ptr, &Len);\n" 2119 << " Ptr += Len;\n" 2120 << " // NumToSkip is a plain 16-bit integer.\n" 2121 << " unsigned NumToSkip = *Ptr++;\n" 2122 << " NumToSkip |= (*Ptr++) << 8;\n" 2123 << "\n" 2124 << " // If the actual and expected values don't match, skip.\n" 2125 << " if (ExpectedValue != FieldValue)\n" 2126 << " Ptr += NumToSkip;\n" 2127 << " DEBUG(dbgs() << Loc << \": OPC_CheckField(\" << Start << \", \"\n" 2128 << " << Len << \", \" << ExpectedValue << \", \" << NumToSkip\n" 2129 << " << \"): FieldValue = \" << FieldValue << \", ExpectedValue = \"\n" 2130 << " << ExpectedValue << \": \"\n" 2131 << " << ((ExpectedValue == FieldValue) ? \"PASS\\n\" : \"FAIL\\n\"));\n" 2132 << " break;\n" 2133 << " }\n" 2134 << " case MCD::OPC_CheckPredicate: {\n" 2135 << " unsigned Len;\n" 2136 << " // Decode the Predicate Index value.\n" 2137 << " unsigned PIdx = decodeULEB128(++Ptr, &Len);\n" 2138 << " Ptr += Len;\n" 2139 << " // NumToSkip is a plain 16-bit integer.\n" 2140 << " unsigned NumToSkip = *Ptr++;\n" 2141 << " NumToSkip |= (*Ptr++) << 8;\n" 2142 << " // Check the predicate.\n" 2143 << " bool Pred;\n" 2144 << " if (!(Pred = checkDecoderPredicate(PIdx, Bits)))\n" 2145 << " Ptr += NumToSkip;\n" 2146 << " (void)Pred;\n" 2147 << " DEBUG(dbgs() << Loc << \": OPC_CheckPredicate(\" << PIdx << \"): \"\n" 2148 << " << (Pred ? \"PASS\\n\" : \"FAIL\\n\"));\n" 2149 << "\n" 2150 << " break;\n" 2151 << " }\n" 2152 << " case MCD::OPC_Decode: {\n" 2153 << " unsigned Len;\n" 2154 << " // Decode the Opcode value.\n" 2155 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2156 << " Ptr += Len;\n" 2157 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2158 << " Ptr += Len;\n" 2159 << "\n" 2160 << " MI.clear();\n" 2161 << " MI.setOpcode(Opc);\n" 2162 << " bool DecodeComplete;\n" 2163 << " S = decodeToMCInst(S, DecodeIdx, insn, MI, Address, DisAsm, DecodeComplete);\n" 2164 << " assert(DecodeComplete);\n" 2165 << "\n" 2166 << " DEBUG(dbgs() << Loc << \": OPC_Decode: opcode \" << Opc\n" 2167 << " << \", using decoder \" << DecodeIdx << \": \"\n" 2168 << " << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n" 2169 << " return S;\n" 2170 << " }\n" 2171 << " case MCD::OPC_TryDecode: {\n" 2172 << " unsigned Len;\n" 2173 << " // Decode the Opcode value.\n" 2174 << " unsigned Opc = decodeULEB128(++Ptr, &Len);\n" 2175 << " Ptr += Len;\n" 2176 << " unsigned DecodeIdx = decodeULEB128(Ptr, &Len);\n" 2177 << " Ptr += Len;\n" 2178 << " // NumToSkip is a plain 16-bit integer.\n" 2179 << " unsigned NumToSkip = *Ptr++;\n" 2180 << " NumToSkip |= (*Ptr++) << 8;\n" 2181 << "\n" 2182 << " // Perform the decode operation.\n" 2183 << " MCInst TmpMI;\n" 2184 << " TmpMI.setOpcode(Opc);\n" 2185 << " bool DecodeComplete;\n" 2186 << " S = decodeToMCInst(S, DecodeIdx, insn, TmpMI, Address, DisAsm, DecodeComplete);\n" 2187 << " DEBUG(dbgs() << Loc << \": OPC_TryDecode: opcode \" << Opc\n" 2188 << " << \", using decoder \" << DecodeIdx << \": \");\n" 2189 << "\n" 2190 << " if (DecodeComplete) {\n" 2191 << " // Decoding complete.\n" 2192 << " DEBUG(dbgs() << (S != MCDisassembler::Fail ? \"PASS\" : \"FAIL\") << \"\\n\");\n" 2193 << " MI = TmpMI;\n" 2194 << " return S;\n" 2195 << " } else {\n" 2196 << " assert(S == MCDisassembler::Fail);\n" 2197 << " // If the decoding was incomplete, skip.\n" 2198 << " Ptr += NumToSkip;\n" 2199 << " DEBUG(dbgs() << \"FAIL: continuing at \" << (Ptr - DecodeTable) << \"\\n\");\n" 2200 << " // Reset decode status. This also drops a SoftFail status that could be\n" 2201 << " // set before the decode attempt.\n" 2202 << " S = MCDisassembler::Success;\n" 2203 << " }\n" 2204 << " break;\n" 2205 << " }\n" 2206 << " case MCD::OPC_SoftFail: {\n" 2207 << " // Decode the mask values.\n" 2208 << " unsigned Len;\n" 2209 << " InsnType PositiveMask = decodeULEB128(++Ptr, &Len);\n" 2210 << " Ptr += Len;\n" 2211 << " InsnType NegativeMask = decodeULEB128(Ptr, &Len);\n" 2212 << " Ptr += Len;\n" 2213 << " bool Fail = (insn & PositiveMask) || (~insn & NegativeMask);\n" 2214 << " if (Fail)\n" 2215 << " S = MCDisassembler::SoftFail;\n" 2216 << " DEBUG(dbgs() << Loc << \": OPC_SoftFail: \" << (Fail ? \"FAIL\\n\":\"PASS\\n\"));\n" 2217 << " break;\n" 2218 << " }\n" 2219 << " case MCD::OPC_Fail: {\n" 2220 << " DEBUG(dbgs() << Loc << \": OPC_Fail\\n\");\n" 2221 << " return MCDisassembler::Fail;\n" 2222 << " }\n" 2223 << " }\n" 2224 << " }\n" 2225 << " llvm_unreachable(\"bogosity detected in disassembler state machine!\");\n" 2226 << "}\n\n"; 2227 } 2228 2229 // Emits disassembler code for instruction decoding. 2230 void FixedLenDecoderEmitter::run(raw_ostream &o) { 2231 formatted_raw_ostream OS(o); 2232 OS << "#include \"llvm/MC/MCInst.h\"\n"; 2233 OS << "#include \"llvm/Support/Debug.h\"\n"; 2234 OS << "#include \"llvm/Support/DataTypes.h\"\n"; 2235 OS << "#include \"llvm/Support/LEB128.h\"\n"; 2236 OS << "#include \"llvm/Support/raw_ostream.h\"\n"; 2237 OS << "#include <assert.h>\n"; 2238 OS << '\n'; 2239 OS << "namespace llvm {\n\n"; 2240 2241 emitFieldFromInstruction(OS); 2242 2243 Target.reverseBitsForLittleEndianEncoding(); 2244 2245 // Parameterize the decoders based on namespace and instruction width. 2246 NumberedInstructions = Target.getInstructionsByEnumValue(); 2247 std::map<std::pair<std::string, unsigned>, 2248 std::vector<unsigned>> OpcMap; 2249 std::map<unsigned, std::vector<OperandInfo>> Operands; 2250 2251 for (unsigned i = 0; i < NumberedInstructions.size(); ++i) { 2252 const CodeGenInstruction *Inst = NumberedInstructions[i]; 2253 const Record *Def = Inst->TheDef; 2254 unsigned Size = Def->getValueAsInt("Size"); 2255 if (Def->getValueAsString("Namespace") == "TargetOpcode" || 2256 Def->getValueAsBit("isPseudo") || 2257 Def->getValueAsBit("isAsmParserOnly") || 2258 Def->getValueAsBit("isCodeGenOnly")) 2259 continue; 2260 2261 StringRef DecoderNamespace = Def->getValueAsString("DecoderNamespace"); 2262 2263 if (Size) { 2264 if (populateInstruction(Target, *Inst, i, Operands)) { 2265 OpcMap[std::make_pair(DecoderNamespace, Size)].push_back(i); 2266 } 2267 } 2268 } 2269 2270 DecoderTableInfo TableInfo; 2271 for (const auto &Opc : OpcMap) { 2272 // Emit the decoder for this namespace+width combination. 2273 FilterChooser FC(NumberedInstructions, Opc.second, Operands, 2274 8*Opc.first.second, this); 2275 2276 // The decode table is cleared for each top level decoder function. The 2277 // predicates and decoders themselves, however, are shared across all 2278 // decoders to give more opportunities for uniqueing. 2279 TableInfo.Table.clear(); 2280 TableInfo.FixupStack.clear(); 2281 TableInfo.Table.reserve(16384); 2282 TableInfo.FixupStack.emplace_back(); 2283 FC.emitTableEntries(TableInfo); 2284 // Any NumToSkip fixups in the top level scope can resolve to the 2285 // OPC_Fail at the end of the table. 2286 assert(TableInfo.FixupStack.size() == 1 && "fixup stack phasing error!"); 2287 // Resolve any NumToSkip fixups in the current scope. 2288 resolveTableFixups(TableInfo.Table, TableInfo.FixupStack.back(), 2289 TableInfo.Table.size()); 2290 TableInfo.FixupStack.clear(); 2291 2292 TableInfo.Table.push_back(MCD::OPC_Fail); 2293 2294 // Print the table to the output stream. 2295 emitTable(OS, TableInfo.Table, 0, FC.getBitWidth(), Opc.first.first); 2296 OS.flush(); 2297 } 2298 2299 // Emit the predicate function. 2300 emitPredicateFunction(OS, TableInfo.Predicates, 0); 2301 2302 // Emit the decoder function. 2303 emitDecoderFunction(OS, TableInfo.Decoders, 0); 2304 2305 // Emit the main entry point for the decoder, decodeInstruction(). 2306 emitDecodeInstruction(OS); 2307 2308 OS << "\n} // End llvm namespace\n"; 2309 } 2310 2311 namespace llvm { 2312 2313 void EmitFixedLenDecoder(RecordKeeper &RK, raw_ostream &OS, 2314 const std::string &PredicateNamespace, 2315 const std::string &GPrefix, 2316 const std::string &GPostfix, const std::string &ROK, 2317 const std::string &RFail, const std::string &L) { 2318 FixedLenDecoderEmitter(RK, PredicateNamespace, GPrefix, GPostfix, 2319 ROK, RFail, L).run(OS); 2320 } 2321 2322 } // end namespace llvm 2323