1 //===- CodeGenTarget.cpp - CodeGen Target Class Wrapper -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This class wraps target description classes used by the various code 11 // generation TableGen backends. This makes it easier to access the data and 12 // provides a single place that needs to check it for validity. All of these 13 // classes abort on error conditions. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "CodeGenTarget.h" 18 #include "CodeGenIntrinsics.h" 19 #include "CodeGenSchedule.h" 20 #include "llvm/ADT/STLExtras.h" 21 #include "llvm/ADT/StringExtras.h" 22 #include "llvm/Support/CommandLine.h" 23 #include "llvm/TableGen/Error.h" 24 #include "llvm/TableGen/Record.h" 25 #include <algorithm> 26 using namespace llvm; 27 28 cl::OptionCategory AsmParserCat("Options for -gen-asm-parser"); 29 cl::OptionCategory AsmWriterCat("Options for -gen-asm-writer"); 30 31 static cl::opt<unsigned> 32 AsmParserNum("asmparsernum", cl::init(0), 33 cl::desc("Make -gen-asm-parser emit assembly parser #N"), 34 cl::cat(AsmParserCat)); 35 36 static cl::opt<unsigned> 37 AsmWriterNum("asmwriternum", cl::init(0), 38 cl::desc("Make -gen-asm-writer emit assembly writer #N"), 39 cl::cat(AsmWriterCat)); 40 41 /// getValueType - Return the MVT::SimpleValueType that the specified TableGen 42 /// record corresponds to. 43 MVT::SimpleValueType llvm::getValueType(Record *Rec) { 44 return (MVT::SimpleValueType)Rec->getValueAsInt("Value"); 45 } 46 47 StringRef llvm::getName(MVT::SimpleValueType T) { 48 switch (T) { 49 case MVT::Other: return "UNKNOWN"; 50 case MVT::iPTR: return "TLI.getPointerTy()"; 51 case MVT::iPTRAny: return "TLI.getPointerTy()"; 52 default: return getEnumName(T); 53 } 54 } 55 56 StringRef llvm::getEnumName(MVT::SimpleValueType T) { 57 switch (T) { 58 case MVT::Other: return "MVT::Other"; 59 case MVT::i1: return "MVT::i1"; 60 case MVT::i8: return "MVT::i8"; 61 case MVT::i16: return "MVT::i16"; 62 case MVT::i32: return "MVT::i32"; 63 case MVT::i64: return "MVT::i64"; 64 case MVT::i128: return "MVT::i128"; 65 case MVT::Any: return "MVT::Any"; 66 case MVT::iAny: return "MVT::iAny"; 67 case MVT::fAny: return "MVT::fAny"; 68 case MVT::vAny: return "MVT::vAny"; 69 case MVT::f16: return "MVT::f16"; 70 case MVT::f32: return "MVT::f32"; 71 case MVT::f64: return "MVT::f64"; 72 case MVT::f80: return "MVT::f80"; 73 case MVT::f128: return "MVT::f128"; 74 case MVT::ppcf128: return "MVT::ppcf128"; 75 case MVT::x86mmx: return "MVT::x86mmx"; 76 case MVT::Glue: return "MVT::Glue"; 77 case MVT::isVoid: return "MVT::isVoid"; 78 case MVT::v1i1: return "MVT::v1i1"; 79 case MVT::v2i1: return "MVT::v2i1"; 80 case MVT::v4i1: return "MVT::v4i1"; 81 case MVT::v8i1: return "MVT::v8i1"; 82 case MVT::v16i1: return "MVT::v16i1"; 83 case MVT::v32i1: return "MVT::v32i1"; 84 case MVT::v64i1: return "MVT::v64i1"; 85 case MVT::v512i1: return "MVT::v512i1"; 86 case MVT::v1024i1: return "MVT::v1024i1"; 87 case MVT::v1i8: return "MVT::v1i8"; 88 case MVT::v2i8: return "MVT::v2i8"; 89 case MVT::v4i8: return "MVT::v4i8"; 90 case MVT::v8i8: return "MVT::v8i8"; 91 case MVT::v16i8: return "MVT::v16i8"; 92 case MVT::v32i8: return "MVT::v32i8"; 93 case MVT::v64i8: return "MVT::v64i8"; 94 case MVT::v128i8: return "MVT::v128i8"; 95 case MVT::v256i8: return "MVT::v256i8"; 96 case MVT::v1i16: return "MVT::v1i16"; 97 case MVT::v2i16: return "MVT::v2i16"; 98 case MVT::v4i16: return "MVT::v4i16"; 99 case MVT::v8i16: return "MVT::v8i16"; 100 case MVT::v16i16: return "MVT::v16i16"; 101 case MVT::v32i16: return "MVT::v32i16"; 102 case MVT::v64i16: return "MVT::v64i16"; 103 case MVT::v128i16: return "MVT::v128i16"; 104 case MVT::v1i32: return "MVT::v1i32"; 105 case MVT::v2i32: return "MVT::v2i32"; 106 case MVT::v4i32: return "MVT::v4i32"; 107 case MVT::v8i32: return "MVT::v8i32"; 108 case MVT::v16i32: return "MVT::v16i32"; 109 case MVT::v32i32: return "MVT::v32i32"; 110 case MVT::v64i32: return "MVT::v64i32"; 111 case MVT::v1i64: return "MVT::v1i64"; 112 case MVT::v2i64: return "MVT::v2i64"; 113 case MVT::v4i64: return "MVT::v4i64"; 114 case MVT::v8i64: return "MVT::v8i64"; 115 case MVT::v16i64: return "MVT::v16i64"; 116 case MVT::v32i64: return "MVT::v32i64"; 117 case MVT::v1i128: return "MVT::v1i128"; 118 case MVT::v2f16: return "MVT::v2f16"; 119 case MVT::v4f16: return "MVT::v4f16"; 120 case MVT::v8f16: return "MVT::v8f16"; 121 case MVT::v1f32: return "MVT::v1f32"; 122 case MVT::v2f32: return "MVT::v2f32"; 123 case MVT::v4f32: return "MVT::v4f32"; 124 case MVT::v8f32: return "MVT::v8f32"; 125 case MVT::v16f32: return "MVT::v16f32"; 126 case MVT::v1f64: return "MVT::v1f64"; 127 case MVT::v2f64: return "MVT::v2f64"; 128 case MVT::v4f64: return "MVT::v4f64"; 129 case MVT::v8f64: return "MVT::v8f64"; 130 case MVT::nxv1i1: return "MVT::nxv1i1"; 131 case MVT::nxv2i1: return "MVT::nxv2i1"; 132 case MVT::nxv4i1: return "MVT::nxv4i1"; 133 case MVT::nxv8i1: return "MVT::nxv8i1"; 134 case MVT::nxv16i1: return "MVT::nxv16i1"; 135 case MVT::nxv32i1: return "MVT::nxv32i1"; 136 case MVT::nxv1i8: return "MVT::nxv1i8"; 137 case MVT::nxv2i8: return "MVT::nxv2i8"; 138 case MVT::nxv4i8: return "MVT::nxv4i8"; 139 case MVT::nxv8i8: return "MVT::nxv8i8"; 140 case MVT::nxv16i8: return "MVT::nxv16i8"; 141 case MVT::nxv32i8: return "MVT::nxv32i8"; 142 case MVT::nxv1i16: return "MVT::nxv1i16"; 143 case MVT::nxv2i16: return "MVT::nxv2i16"; 144 case MVT::nxv4i16: return "MVT::nxv4i16"; 145 case MVT::nxv8i16: return "MVT::nxv8i16"; 146 case MVT::nxv16i16: return "MVT::nxv16i16"; 147 case MVT::nxv32i16: return "MVT::nxv32i16"; 148 case MVT::nxv1i32: return "MVT::nxv1i32"; 149 case MVT::nxv2i32: return "MVT::nxv2i32"; 150 case MVT::nxv4i32: return "MVT::nxv4i32"; 151 case MVT::nxv8i32: return "MVT::nxv8i32"; 152 case MVT::nxv16i32: return "MVT::nxv16i32"; 153 case MVT::nxv1i64: return "MVT::nxv1i64"; 154 case MVT::nxv2i64: return "MVT::nxv2i64"; 155 case MVT::nxv4i64: return "MVT::nxv4i64"; 156 case MVT::nxv8i64: return "MVT::nxv8i64"; 157 case MVT::nxv16i64: return "MVT::nxv16i64"; 158 case MVT::nxv2f16: return "MVT::nxv2f16"; 159 case MVT::nxv4f16: return "MVT::nxv4f16"; 160 case MVT::nxv8f16: return "MVT::nxv8f16"; 161 case MVT::nxv1f32: return "MVT::nxv1f32"; 162 case MVT::nxv2f32: return "MVT::nxv2f32"; 163 case MVT::nxv4f32: return "MVT::nxv4f32"; 164 case MVT::nxv8f32: return "MVT::nxv8f32"; 165 case MVT::nxv16f32: return "MVT::nxv16f32"; 166 case MVT::nxv1f64: return "MVT::nxv1f64"; 167 case MVT::nxv2f64: return "MVT::nxv2f64"; 168 case MVT::nxv4f64: return "MVT::nxv4f64"; 169 case MVT::nxv8f64: return "MVT::nxv8f64"; 170 case MVT::token: return "MVT::token"; 171 case MVT::Metadata: return "MVT::Metadata"; 172 case MVT::iPTR: return "MVT::iPTR"; 173 case MVT::iPTRAny: return "MVT::iPTRAny"; 174 case MVT::Untyped: return "MVT::Untyped"; 175 default: llvm_unreachable("ILLEGAL VALUE TYPE!"); 176 } 177 } 178 179 /// getQualifiedName - Return the name of the specified record, with a 180 /// namespace qualifier if the record contains one. 181 /// 182 std::string llvm::getQualifiedName(const Record *R) { 183 std::string Namespace; 184 if (R->getValue("Namespace")) 185 Namespace = R->getValueAsString("Namespace"); 186 if (Namespace.empty()) return R->getName(); 187 return Namespace + "::" + R->getName().str(); 188 } 189 190 191 /// getTarget - Return the current instance of the Target class. 192 /// 193 CodeGenTarget::CodeGenTarget(RecordKeeper &records) 194 : Records(records) { 195 std::vector<Record*> Targets = Records.getAllDerivedDefinitions("Target"); 196 if (Targets.size() == 0) 197 PrintFatalError("ERROR: No 'Target' subclasses defined!"); 198 if (Targets.size() != 1) 199 PrintFatalError("ERROR: Multiple subclasses of Target defined!"); 200 TargetRec = Targets[0]; 201 } 202 203 CodeGenTarget::~CodeGenTarget() { 204 } 205 206 const StringRef CodeGenTarget::getName() const { 207 return TargetRec->getName(); 208 } 209 210 StringRef CodeGenTarget::getInstNamespace() const { 211 for (const CodeGenInstruction *Inst : getInstructionsByEnumValue()) { 212 // Make sure not to pick up "TargetOpcode" by accidentally getting 213 // the namespace off the PHI instruction or something. 214 if (Inst->Namespace != "TargetOpcode") 215 return Inst->Namespace; 216 } 217 218 return ""; 219 } 220 221 Record *CodeGenTarget::getInstructionSet() const { 222 return TargetRec->getValueAsDef("InstructionSet"); 223 } 224 225 226 /// getAsmParser - Return the AssemblyParser definition for this target. 227 /// 228 Record *CodeGenTarget::getAsmParser() const { 229 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyParsers"); 230 if (AsmParserNum >= LI.size()) 231 PrintFatalError("Target does not have an AsmParser #" + 232 Twine(AsmParserNum) + "!"); 233 return LI[AsmParserNum]; 234 } 235 236 /// getAsmParserVariant - Return the AssmblyParserVariant definition for 237 /// this target. 238 /// 239 Record *CodeGenTarget::getAsmParserVariant(unsigned i) const { 240 std::vector<Record*> LI = 241 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 242 if (i >= LI.size()) 243 PrintFatalError("Target does not have an AsmParserVariant #" + Twine(i) + 244 "!"); 245 return LI[i]; 246 } 247 248 /// getAsmParserVariantCount - Return the AssmblyParserVariant definition 249 /// available for this target. 250 /// 251 unsigned CodeGenTarget::getAsmParserVariantCount() const { 252 std::vector<Record*> LI = 253 TargetRec->getValueAsListOfDefs("AssemblyParserVariants"); 254 return LI.size(); 255 } 256 257 /// getAsmWriter - Return the AssemblyWriter definition for this target. 258 /// 259 Record *CodeGenTarget::getAsmWriter() const { 260 std::vector<Record*> LI = TargetRec->getValueAsListOfDefs("AssemblyWriters"); 261 if (AsmWriterNum >= LI.size()) 262 PrintFatalError("Target does not have an AsmWriter #" + 263 Twine(AsmWriterNum) + "!"); 264 return LI[AsmWriterNum]; 265 } 266 267 CodeGenRegBank &CodeGenTarget::getRegBank() const { 268 if (!RegBank) 269 RegBank = llvm::make_unique<CodeGenRegBank>(Records); 270 return *RegBank; 271 } 272 273 void CodeGenTarget::ReadRegAltNameIndices() const { 274 RegAltNameIndices = Records.getAllDerivedDefinitions("RegAltNameIndex"); 275 std::sort(RegAltNameIndices.begin(), RegAltNameIndices.end(), LessRecord()); 276 } 277 278 /// getRegisterByName - If there is a register with the specific AsmName, 279 /// return it. 280 const CodeGenRegister *CodeGenTarget::getRegisterByName(StringRef Name) const { 281 const StringMap<CodeGenRegister*> &Regs = getRegBank().getRegistersByName(); 282 StringMap<CodeGenRegister*>::const_iterator I = Regs.find(Name); 283 if (I == Regs.end()) 284 return nullptr; 285 return I->second; 286 } 287 288 std::vector<MVT::SimpleValueType> CodeGenTarget:: 289 getRegisterVTs(Record *R) const { 290 const CodeGenRegister *Reg = getRegBank().getReg(R); 291 std::vector<MVT::SimpleValueType> Result; 292 for (const auto &RC : getRegBank().getRegClasses()) { 293 if (RC.contains(Reg)) { 294 ArrayRef<MVT::SimpleValueType> InVTs = RC.getValueTypes(); 295 Result.insert(Result.end(), InVTs.begin(), InVTs.end()); 296 } 297 } 298 299 // Remove duplicates. 300 array_pod_sort(Result.begin(), Result.end()); 301 Result.erase(std::unique(Result.begin(), Result.end()), Result.end()); 302 return Result; 303 } 304 305 306 void CodeGenTarget::ReadLegalValueTypes() const { 307 for (const auto &RC : getRegBank().getRegClasses()) 308 LegalValueTypes.insert(LegalValueTypes.end(), RC.VTs.begin(), RC.VTs.end()); 309 310 // Remove duplicates. 311 array_pod_sort(LegalValueTypes.begin(), LegalValueTypes.end()); 312 LegalValueTypes.erase(std::unique(LegalValueTypes.begin(), 313 LegalValueTypes.end()), 314 LegalValueTypes.end()); 315 } 316 317 CodeGenSchedModels &CodeGenTarget::getSchedModels() const { 318 if (!SchedModels) 319 SchedModels = llvm::make_unique<CodeGenSchedModels>(Records, *this); 320 return *SchedModels; 321 } 322 323 void CodeGenTarget::ReadInstructions() const { 324 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 325 if (Insts.size() <= 2) 326 PrintFatalError("No 'Instruction' subclasses defined!"); 327 328 // Parse the instructions defined in the .td file. 329 for (unsigned i = 0, e = Insts.size(); i != e; ++i) 330 Instructions[Insts[i]] = llvm::make_unique<CodeGenInstruction>(Insts[i]); 331 } 332 333 static const CodeGenInstruction * 334 GetInstByName(const char *Name, 335 const DenseMap<const Record*, 336 std::unique_ptr<CodeGenInstruction>> &Insts, 337 RecordKeeper &Records) { 338 const Record *Rec = Records.getDef(Name); 339 340 const auto I = Insts.find(Rec); 341 if (!Rec || I == Insts.end()) 342 PrintFatalError(Twine("Could not find '") + Name + "' instruction!"); 343 return I->second.get(); 344 } 345 346 /// \brief Return all of the instructions defined by the target, ordered by 347 /// their enum value. 348 void CodeGenTarget::ComputeInstrsByEnum() const { 349 static const char *const FixedInstrs[] = { 350 #define HANDLE_TARGET_OPCODE(OPC) #OPC, 351 #include "llvm/Target/TargetOpcodes.def" 352 nullptr}; 353 const auto &Insts = getInstructions(); 354 for (const char *const *p = FixedInstrs; *p; ++p) { 355 const CodeGenInstruction *Instr = GetInstByName(*p, Insts, Records); 356 assert(Instr && "Missing target independent instruction"); 357 assert(Instr->Namespace == "TargetOpcode" && "Bad namespace"); 358 InstrsByEnum.push_back(Instr); 359 } 360 unsigned EndOfPredefines = InstrsByEnum.size(); 361 362 for (const auto &I : Insts) { 363 const CodeGenInstruction *CGI = I.second.get(); 364 if (CGI->Namespace != "TargetOpcode") 365 InstrsByEnum.push_back(CGI); 366 } 367 368 assert(InstrsByEnum.size() == Insts.size() && "Missing predefined instr"); 369 370 // All of the instructions are now in random order based on the map iteration. 371 // Sort them by name. 372 std::sort(InstrsByEnum.begin() + EndOfPredefines, InstrsByEnum.end(), 373 [](const CodeGenInstruction *Rec1, const CodeGenInstruction *Rec2) { 374 return Rec1->TheDef->getName() < Rec2->TheDef->getName(); 375 }); 376 } 377 378 379 /// isLittleEndianEncoding - Return whether this target encodes its instruction 380 /// in little-endian format, i.e. bits laid out in the order [0..n] 381 /// 382 bool CodeGenTarget::isLittleEndianEncoding() const { 383 return getInstructionSet()->getValueAsBit("isLittleEndianEncoding"); 384 } 385 386 /// reverseBitsForLittleEndianEncoding - For little-endian instruction bit 387 /// encodings, reverse the bit order of all instructions. 388 void CodeGenTarget::reverseBitsForLittleEndianEncoding() { 389 if (!isLittleEndianEncoding()) 390 return; 391 392 std::vector<Record*> Insts = Records.getAllDerivedDefinitions("Instruction"); 393 for (Record *R : Insts) { 394 if (R->getValueAsString("Namespace") == "TargetOpcode" || 395 R->getValueAsBit("isPseudo")) 396 continue; 397 398 BitsInit *BI = R->getValueAsBitsInit("Inst"); 399 400 unsigned numBits = BI->getNumBits(); 401 402 SmallVector<Init *, 16> NewBits(numBits); 403 404 for (unsigned bit = 0, end = numBits / 2; bit != end; ++bit) { 405 unsigned bitSwapIdx = numBits - bit - 1; 406 Init *OrigBit = BI->getBit(bit); 407 Init *BitSwap = BI->getBit(bitSwapIdx); 408 NewBits[bit] = BitSwap; 409 NewBits[bitSwapIdx] = OrigBit; 410 } 411 if (numBits % 2) { 412 unsigned middle = (numBits + 1) / 2; 413 NewBits[middle] = BI->getBit(middle); 414 } 415 416 BitsInit *NewBI = BitsInit::get(NewBits); 417 418 // Update the bits in reversed order so that emitInstrOpBits will get the 419 // correct endianness. 420 R->getValue("Inst")->setValue(NewBI); 421 } 422 } 423 424 /// guessInstructionProperties - Return true if it's OK to guess instruction 425 /// properties instead of raising an error. 426 /// 427 /// This is configurable as a temporary migration aid. It will eventually be 428 /// permanently false. 429 bool CodeGenTarget::guessInstructionProperties() const { 430 return getInstructionSet()->getValueAsBit("guessInstructionProperties"); 431 } 432 433 //===----------------------------------------------------------------------===// 434 // ComplexPattern implementation 435 // 436 ComplexPattern::ComplexPattern(Record *R) { 437 Ty = ::getValueType(R->getValueAsDef("Ty")); 438 NumOperands = R->getValueAsInt("NumOperands"); 439 SelectFunc = R->getValueAsString("SelectFunc"); 440 RootNodes = R->getValueAsListOfDefs("RootNodes"); 441 442 // FIXME: This is a hack to statically increase the priority of patterns which 443 // maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. To get best 444 // possible pattern match we'll need to dynamically calculate the complexity 445 // of all patterns a dag can potentially map to. 446 int64_t RawComplexity = R->getValueAsInt("Complexity"); 447 if (RawComplexity == -1) 448 Complexity = NumOperands * 3; 449 else 450 Complexity = RawComplexity; 451 452 // Parse the properties. 453 Properties = 0; 454 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 455 for (unsigned i = 0, e = PropList.size(); i != e; ++i) 456 if (PropList[i]->getName() == "SDNPHasChain") { 457 Properties |= 1 << SDNPHasChain; 458 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 459 Properties |= 1 << SDNPOptInGlue; 460 } else if (PropList[i]->getName() == "SDNPMayStore") { 461 Properties |= 1 << SDNPMayStore; 462 } else if (PropList[i]->getName() == "SDNPMayLoad") { 463 Properties |= 1 << SDNPMayLoad; 464 } else if (PropList[i]->getName() == "SDNPSideEffect") { 465 Properties |= 1 << SDNPSideEffect; 466 } else if (PropList[i]->getName() == "SDNPMemOperand") { 467 Properties |= 1 << SDNPMemOperand; 468 } else if (PropList[i]->getName() == "SDNPVariadic") { 469 Properties |= 1 << SDNPVariadic; 470 } else if (PropList[i]->getName() == "SDNPWantRoot") { 471 Properties |= 1 << SDNPWantRoot; 472 } else if (PropList[i]->getName() == "SDNPWantParent") { 473 Properties |= 1 << SDNPWantParent; 474 } else { 475 PrintFatalError("Unsupported SD Node property '" + 476 PropList[i]->getName() + "' on ComplexPattern '" + 477 R->getName() + "'!"); 478 } 479 } 480 481 //===----------------------------------------------------------------------===// 482 // CodeGenIntrinsic Implementation 483 //===----------------------------------------------------------------------===// 484 485 CodeGenIntrinsicTable::CodeGenIntrinsicTable(const RecordKeeper &RC, 486 bool TargetOnly) { 487 std::vector<Record*> Defs = RC.getAllDerivedDefinitions("Intrinsic"); 488 489 Intrinsics.reserve(Defs.size()); 490 491 for (unsigned I = 0, e = Defs.size(); I != e; ++I) { 492 bool isTarget = Defs[I]->getValueAsBit("isTarget"); 493 if (isTarget == TargetOnly) 494 Intrinsics.push_back(CodeGenIntrinsic(Defs[I])); 495 } 496 std::sort(Intrinsics.begin(), Intrinsics.end(), 497 [](const CodeGenIntrinsic &LHS, const CodeGenIntrinsic &RHS) { 498 return std::tie(LHS.TargetPrefix, LHS.Name) < 499 std::tie(RHS.TargetPrefix, RHS.Name); 500 }); 501 Targets.push_back({"", 0, 0}); 502 for (size_t I = 0, E = Intrinsics.size(); I < E; ++I) 503 if (Intrinsics[I].TargetPrefix != Targets.back().Name) { 504 Targets.back().Count = I - Targets.back().Offset; 505 Targets.push_back({Intrinsics[I].TargetPrefix, I, 0}); 506 } 507 Targets.back().Count = Intrinsics.size() - Targets.back().Offset; 508 } 509 510 CodeGenIntrinsic::CodeGenIntrinsic(Record *R) { 511 TheDef = R; 512 std::string DefName = R->getName(); 513 ModRef = ReadWriteMem; 514 isOverloaded = false; 515 isCommutative = false; 516 canThrow = false; 517 isNoReturn = false; 518 isNoDuplicate = false; 519 isConvergent = false; 520 isSpeculatable = false; 521 hasSideEffects = false; 522 523 if (DefName.size() <= 4 || 524 std::string(DefName.begin(), DefName.begin() + 4) != "int_") 525 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'int_'!"); 526 527 EnumName = std::string(DefName.begin()+4, DefName.end()); 528 529 if (R->getValue("GCCBuiltinName")) // Ignore a missing GCCBuiltinName field. 530 GCCBuiltinName = R->getValueAsString("GCCBuiltinName"); 531 if (R->getValue("MSBuiltinName")) // Ignore a missing MSBuiltinName field. 532 MSBuiltinName = R->getValueAsString("MSBuiltinName"); 533 534 TargetPrefix = R->getValueAsString("TargetPrefix"); 535 Name = R->getValueAsString("LLVMName"); 536 537 if (Name == "") { 538 // If an explicit name isn't specified, derive one from the DefName. 539 Name = "llvm."; 540 541 for (unsigned i = 0, e = EnumName.size(); i != e; ++i) 542 Name += (EnumName[i] == '_') ? '.' : EnumName[i]; 543 } else { 544 // Verify it starts with "llvm.". 545 if (Name.size() <= 5 || 546 std::string(Name.begin(), Name.begin() + 5) != "llvm.") 547 PrintFatalError("Intrinsic '" + DefName + "'s name does not start with 'llvm.'!"); 548 } 549 550 // If TargetPrefix is specified, make sure that Name starts with 551 // "llvm.<targetprefix>.". 552 if (!TargetPrefix.empty()) { 553 if (Name.size() < 6+TargetPrefix.size() || 554 std::string(Name.begin() + 5, Name.begin() + 6 + TargetPrefix.size()) 555 != (TargetPrefix + ".")) 556 PrintFatalError("Intrinsic '" + DefName + "' does not start with 'llvm." + 557 TargetPrefix + ".'!"); 558 } 559 560 // Parse the list of return types. 561 std::vector<MVT::SimpleValueType> OverloadedVTs; 562 ListInit *TypeList = R->getValueAsListInit("RetTypes"); 563 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 564 Record *TyEl = TypeList->getElementAsRecord(i); 565 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 566 MVT::SimpleValueType VT; 567 if (TyEl->isSubClassOf("LLVMMatchType")) { 568 unsigned MatchTy = TyEl->getValueAsInt("Number"); 569 assert(MatchTy < OverloadedVTs.size() && 570 "Invalid matching number!"); 571 VT = OverloadedVTs[MatchTy]; 572 // It only makes sense to use the extended and truncated vector element 573 // variants with iAny types; otherwise, if the intrinsic is not 574 // overloaded, all the types can be specified directly. 575 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 576 !TyEl->isSubClassOf("LLVMTruncatedType")) || 577 VT == MVT::iAny || VT == MVT::vAny) && 578 "Expected iAny or vAny type"); 579 } else { 580 VT = getValueType(TyEl->getValueAsDef("VT")); 581 } 582 if (MVT(VT).isOverloaded()) { 583 OverloadedVTs.push_back(VT); 584 isOverloaded = true; 585 } 586 587 // Reject invalid types. 588 if (VT == MVT::isVoid) 589 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 590 591 IS.RetVTs.push_back(VT); 592 IS.RetTypeDefs.push_back(TyEl); 593 } 594 595 // Parse the list of parameter types. 596 TypeList = R->getValueAsListInit("ParamTypes"); 597 for (unsigned i = 0, e = TypeList->size(); i != e; ++i) { 598 Record *TyEl = TypeList->getElementAsRecord(i); 599 assert(TyEl->isSubClassOf("LLVMType") && "Expected a type!"); 600 MVT::SimpleValueType VT; 601 if (TyEl->isSubClassOf("LLVMMatchType")) { 602 unsigned MatchTy = TyEl->getValueAsInt("Number"); 603 assert(MatchTy < OverloadedVTs.size() && 604 "Invalid matching number!"); 605 VT = OverloadedVTs[MatchTy]; 606 // It only makes sense to use the extended and truncated vector element 607 // variants with iAny types; otherwise, if the intrinsic is not 608 // overloaded, all the types can be specified directly. 609 assert(((!TyEl->isSubClassOf("LLVMExtendedType") && 610 !TyEl->isSubClassOf("LLVMTruncatedType") && 611 !TyEl->isSubClassOf("LLVMVectorSameWidth")) || 612 VT == MVT::iAny || VT == MVT::vAny) && 613 "Expected iAny or vAny type"); 614 } else 615 VT = getValueType(TyEl->getValueAsDef("VT")); 616 617 if (MVT(VT).isOverloaded()) { 618 OverloadedVTs.push_back(VT); 619 isOverloaded = true; 620 } 621 622 // Reject invalid types. 623 if (VT == MVT::isVoid && i != e-1 /*void at end means varargs*/) 624 PrintFatalError("Intrinsic '" + DefName + " has void in result type list!"); 625 626 IS.ParamVTs.push_back(VT); 627 IS.ParamTypeDefs.push_back(TyEl); 628 } 629 630 // Parse the intrinsic properties. 631 ListInit *PropList = R->getValueAsListInit("IntrProperties"); 632 for (unsigned i = 0, e = PropList->size(); i != e; ++i) { 633 Record *Property = PropList->getElementAsRecord(i); 634 assert(Property->isSubClassOf("IntrinsicProperty") && 635 "Expected a property!"); 636 637 if (Property->getName() == "IntrNoMem") 638 ModRef = NoMem; 639 else if (Property->getName() == "IntrReadMem") 640 ModRef = ModRefBehavior(ModRef & ~MR_Mod); 641 else if (Property->getName() == "IntrWriteMem") 642 ModRef = ModRefBehavior(ModRef & ~MR_Ref); 643 else if (Property->getName() == "IntrArgMemOnly") 644 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem); 645 else if (Property->getName() == "IntrInaccessibleMemOnly") 646 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_InaccessibleMem); 647 else if (Property->getName() == "IntrInaccessibleMemOrArgMemOnly") 648 ModRef = ModRefBehavior((ModRef & ~MR_Anywhere) | MR_ArgMem | 649 MR_InaccessibleMem); 650 else if (Property->getName() == "Commutative") 651 isCommutative = true; 652 else if (Property->getName() == "Throws") 653 canThrow = true; 654 else if (Property->getName() == "IntrNoDuplicate") 655 isNoDuplicate = true; 656 else if (Property->getName() == "IntrConvergent") 657 isConvergent = true; 658 else if (Property->getName() == "IntrNoReturn") 659 isNoReturn = true; 660 else if (Property->getName() == "IntrSpeculatable") 661 isSpeculatable = true; 662 else if (Property->getName() == "IntrHasSideEffects") 663 hasSideEffects = true; 664 else if (Property->isSubClassOf("NoCapture")) { 665 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 666 ArgumentAttributes.push_back(std::make_pair(ArgNo, NoCapture)); 667 } else if (Property->isSubClassOf("Returned")) { 668 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 669 ArgumentAttributes.push_back(std::make_pair(ArgNo, Returned)); 670 } else if (Property->isSubClassOf("ReadOnly")) { 671 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 672 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadOnly)); 673 } else if (Property->isSubClassOf("WriteOnly")) { 674 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 675 ArgumentAttributes.push_back(std::make_pair(ArgNo, WriteOnly)); 676 } else if (Property->isSubClassOf("ReadNone")) { 677 unsigned ArgNo = Property->getValueAsInt("ArgNo"); 678 ArgumentAttributes.push_back(std::make_pair(ArgNo, ReadNone)); 679 } else 680 llvm_unreachable("Unknown property!"); 681 } 682 683 // Sort the argument attributes for later benefit. 684 std::sort(ArgumentAttributes.begin(), ArgumentAttributes.end()); 685 } 686