1 //===- CodeGenDAGPatterns.h - Read DAG patterns from .td file ---*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file declares the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #ifndef LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 16 #define LLVM_UTILS_TABLEGEN_CODEGENDAGPATTERNS_H 17 18 #include "CodeGenHwModes.h" 19 #include "CodeGenIntrinsics.h" 20 #include "CodeGenTarget.h" 21 #include "SDNodeProperties.h" 22 #include "llvm/ADT/MapVector.h" 23 #include "llvm/ADT/SmallVector.h" 24 #include "llvm/ADT/StringMap.h" 25 #include "llvm/ADT/StringSet.h" 26 #include "llvm/Support/ErrorHandling.h" 27 #include "llvm/Support/MathExtras.h" 28 #include <algorithm> 29 #include <array> 30 #include <functional> 31 #include <map> 32 #include <numeric> 33 #include <set> 34 #include <vector> 35 36 namespace llvm { 37 38 class Record; 39 class Init; 40 class ListInit; 41 class DagInit; 42 class SDNodeInfo; 43 class TreePattern; 44 class TreePatternNode; 45 class CodeGenDAGPatterns; 46 class ComplexPattern; 47 48 /// Shared pointer for TreePatternNode. 49 using TreePatternNodePtr = std::shared_ptr<TreePatternNode>; 50 51 /// This represents a set of MVTs. Since the underlying type for the MVT 52 /// is uint8_t, there are at most 256 values. To reduce the number of memory 53 /// allocations and deallocations, represent the set as a sequence of bits. 54 /// To reduce the allocations even further, make MachineValueTypeSet own 55 /// the storage and use std::array as the bit container. 56 struct MachineValueTypeSet { 57 static_assert(std::is_same<std::underlying_type<MVT::SimpleValueType>::type, 58 uint8_t>::value, 59 "Change uint8_t here to the SimpleValueType's type"); 60 static unsigned constexpr Capacity = std::numeric_limits<uint8_t>::max()+1; 61 using WordType = uint64_t; 62 static unsigned constexpr WordWidth = CHAR_BIT*sizeof(WordType); 63 static unsigned constexpr NumWords = Capacity/WordWidth; 64 static_assert(NumWords*WordWidth == Capacity, 65 "Capacity should be a multiple of WordWidth"); 66 67 LLVM_ATTRIBUTE_ALWAYS_INLINE 68 MachineValueTypeSet() { 69 clear(); 70 } 71 72 LLVM_ATTRIBUTE_ALWAYS_INLINE 73 unsigned size() const { 74 unsigned Count = 0; 75 for (WordType W : Words) 76 Count += countPopulation(W); 77 return Count; 78 } 79 LLVM_ATTRIBUTE_ALWAYS_INLINE 80 void clear() { 81 std::memset(Words.data(), 0, NumWords*sizeof(WordType)); 82 } 83 LLVM_ATTRIBUTE_ALWAYS_INLINE 84 bool empty() const { 85 for (WordType W : Words) 86 if (W != 0) 87 return false; 88 return true; 89 } 90 LLVM_ATTRIBUTE_ALWAYS_INLINE 91 unsigned count(MVT T) const { 92 return (Words[T.SimpleTy / WordWidth] >> (T.SimpleTy % WordWidth)) & 1; 93 } 94 std::pair<MachineValueTypeSet&,bool> insert(MVT T) { 95 bool V = count(T.SimpleTy); 96 Words[T.SimpleTy / WordWidth] |= WordType(1) << (T.SimpleTy % WordWidth); 97 return {*this, V}; 98 } 99 MachineValueTypeSet &insert(const MachineValueTypeSet &S) { 100 for (unsigned i = 0; i != NumWords; ++i) 101 Words[i] |= S.Words[i]; 102 return *this; 103 } 104 LLVM_ATTRIBUTE_ALWAYS_INLINE 105 void erase(MVT T) { 106 Words[T.SimpleTy / WordWidth] &= ~(WordType(1) << (T.SimpleTy % WordWidth)); 107 } 108 109 struct const_iterator { 110 // Some implementations of the C++ library require these traits to be 111 // defined. 112 using iterator_category = std::forward_iterator_tag; 113 using value_type = MVT; 114 using difference_type = ptrdiff_t; 115 using pointer = const MVT*; 116 using reference = const MVT&; 117 118 LLVM_ATTRIBUTE_ALWAYS_INLINE 119 MVT operator*() const { 120 assert(Pos != Capacity); 121 return MVT::SimpleValueType(Pos); 122 } 123 LLVM_ATTRIBUTE_ALWAYS_INLINE 124 const_iterator(const MachineValueTypeSet *S, bool End) : Set(S) { 125 Pos = End ? Capacity : find_from_pos(0); 126 } 127 LLVM_ATTRIBUTE_ALWAYS_INLINE 128 const_iterator &operator++() { 129 assert(Pos != Capacity); 130 Pos = find_from_pos(Pos+1); 131 return *this; 132 } 133 134 LLVM_ATTRIBUTE_ALWAYS_INLINE 135 bool operator==(const const_iterator &It) const { 136 return Set == It.Set && Pos == It.Pos; 137 } 138 LLVM_ATTRIBUTE_ALWAYS_INLINE 139 bool operator!=(const const_iterator &It) const { 140 return !operator==(It); 141 } 142 143 private: 144 unsigned find_from_pos(unsigned P) const { 145 unsigned SkipWords = P / WordWidth; 146 unsigned SkipBits = P % WordWidth; 147 unsigned Count = SkipWords * WordWidth; 148 149 // If P is in the middle of a word, process it manually here, because 150 // the trailing bits need to be masked off to use findFirstSet. 151 if (SkipBits != 0) { 152 WordType W = Set->Words[SkipWords]; 153 W &= maskLeadingOnes<WordType>(WordWidth-SkipBits); 154 if (W != 0) 155 return Count + findFirstSet(W); 156 Count += WordWidth; 157 SkipWords++; 158 } 159 160 for (unsigned i = SkipWords; i != NumWords; ++i) { 161 WordType W = Set->Words[i]; 162 if (W != 0) 163 return Count + findFirstSet(W); 164 Count += WordWidth; 165 } 166 return Capacity; 167 } 168 169 const MachineValueTypeSet *Set; 170 unsigned Pos; 171 }; 172 173 LLVM_ATTRIBUTE_ALWAYS_INLINE 174 const_iterator begin() const { return const_iterator(this, false); } 175 LLVM_ATTRIBUTE_ALWAYS_INLINE 176 const_iterator end() const { return const_iterator(this, true); } 177 178 LLVM_ATTRIBUTE_ALWAYS_INLINE 179 bool operator==(const MachineValueTypeSet &S) const { 180 return Words == S.Words; 181 } 182 LLVM_ATTRIBUTE_ALWAYS_INLINE 183 bool operator!=(const MachineValueTypeSet &S) const { 184 return !operator==(S); 185 } 186 187 private: 188 friend struct const_iterator; 189 std::array<WordType,NumWords> Words; 190 }; 191 192 struct TypeSetByHwMode : public InfoByHwMode<MachineValueTypeSet> { 193 using SetType = MachineValueTypeSet; 194 195 TypeSetByHwMode() = default; 196 TypeSetByHwMode(const TypeSetByHwMode &VTS) = default; 197 TypeSetByHwMode(MVT::SimpleValueType VT) 198 : TypeSetByHwMode(ValueTypeByHwMode(VT)) {} 199 TypeSetByHwMode(ValueTypeByHwMode VT) 200 : TypeSetByHwMode(ArrayRef<ValueTypeByHwMode>(&VT, 1)) {} 201 TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList); 202 203 SetType &getOrCreate(unsigned Mode) { 204 if (hasMode(Mode)) 205 return get(Mode); 206 return Map.insert({Mode,SetType()}).first->second; 207 } 208 209 bool isValueTypeByHwMode(bool AllowEmpty) const; 210 ValueTypeByHwMode getValueTypeByHwMode() const; 211 212 LLVM_ATTRIBUTE_ALWAYS_INLINE 213 bool isMachineValueType() const { 214 return isDefaultOnly() && Map.begin()->second.size() == 1; 215 } 216 217 LLVM_ATTRIBUTE_ALWAYS_INLINE 218 MVT getMachineValueType() const { 219 assert(isMachineValueType()); 220 return *Map.begin()->second.begin(); 221 } 222 223 bool isPossible() const; 224 225 LLVM_ATTRIBUTE_ALWAYS_INLINE 226 bool isDefaultOnly() const { 227 return Map.size() == 1 && Map.begin()->first == DefaultMode; 228 } 229 230 bool insert(const ValueTypeByHwMode &VVT); 231 bool constrain(const TypeSetByHwMode &VTS); 232 template <typename Predicate> bool constrain(Predicate P); 233 template <typename Predicate> 234 bool assign_if(const TypeSetByHwMode &VTS, Predicate P); 235 236 void writeToStream(raw_ostream &OS) const; 237 static void writeToStream(const SetType &S, raw_ostream &OS); 238 239 bool operator==(const TypeSetByHwMode &VTS) const; 240 bool operator!=(const TypeSetByHwMode &VTS) const { return !(*this == VTS); } 241 242 void dump() const; 243 bool validate() const; 244 245 private: 246 /// Intersect two sets. Return true if anything has changed. 247 bool intersect(SetType &Out, const SetType &In); 248 }; 249 250 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T); 251 252 struct TypeInfer { 253 TypeInfer(TreePattern &T) : TP(T), ForceMode(0) {} 254 255 bool isConcrete(const TypeSetByHwMode &VTS, bool AllowEmpty) const { 256 return VTS.isValueTypeByHwMode(AllowEmpty); 257 } 258 ValueTypeByHwMode getConcrete(const TypeSetByHwMode &VTS, 259 bool AllowEmpty) const { 260 assert(VTS.isValueTypeByHwMode(AllowEmpty)); 261 return VTS.getValueTypeByHwMode(); 262 } 263 264 /// The protocol in the following functions (Merge*, force*, Enforce*, 265 /// expand*) is to return "true" if a change has been made, "false" 266 /// otherwise. 267 268 bool MergeInTypeInfo(TypeSetByHwMode &Out, const TypeSetByHwMode &In); 269 bool MergeInTypeInfo(TypeSetByHwMode &Out, MVT::SimpleValueType InVT) { 270 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 271 } 272 bool MergeInTypeInfo(TypeSetByHwMode &Out, ValueTypeByHwMode InVT) { 273 return MergeInTypeInfo(Out, TypeSetByHwMode(InVT)); 274 } 275 276 /// Reduce the set \p Out to have at most one element for each mode. 277 bool forceArbitrary(TypeSetByHwMode &Out); 278 279 /// The following four functions ensure that upon return the set \p Out 280 /// will only contain types of the specified kind: integer, floating-point, 281 /// scalar, or vector. 282 /// If \p Out is empty, all legal types of the specified kind will be added 283 /// to it. Otherwise, all types that are not of the specified kind will be 284 /// removed from \p Out. 285 bool EnforceInteger(TypeSetByHwMode &Out); 286 bool EnforceFloatingPoint(TypeSetByHwMode &Out); 287 bool EnforceScalar(TypeSetByHwMode &Out); 288 bool EnforceVector(TypeSetByHwMode &Out); 289 290 /// If \p Out is empty, fill it with all legal types. Otherwise, leave it 291 /// unchanged. 292 bool EnforceAny(TypeSetByHwMode &Out); 293 /// Make sure that for each type in \p Small, there exists a larger type 294 /// in \p Big. 295 bool EnforceSmallerThan(TypeSetByHwMode &Small, TypeSetByHwMode &Big); 296 /// 1. Ensure that for each type T in \p Vec, T is a vector type, and that 297 /// for each type U in \p Elem, U is a scalar type. 298 /// 2. Ensure that for each (scalar) type U in \p Elem, there exists a 299 /// (vector) type T in \p Vec, such that U is the element type of T. 300 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, TypeSetByHwMode &Elem); 301 bool EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 302 const ValueTypeByHwMode &VVT); 303 /// Ensure that for each type T in \p Sub, T is a vector type, and there 304 /// exists a type U in \p Vec such that U is a vector type with the same 305 /// element type as T and at least as many elements as T. 306 bool EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 307 TypeSetByHwMode &Sub); 308 /// 1. Ensure that \p V has a scalar type iff \p W has a scalar type. 309 /// 2. Ensure that for each vector type T in \p V, there exists a vector 310 /// type U in \p W, such that T and U have the same number of elements. 311 /// 3. Ensure that for each vector type U in \p W, there exists a vector 312 /// type T in \p V, such that T and U have the same number of elements 313 /// (reverse of 2). 314 bool EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W); 315 /// 1. Ensure that for each type T in \p A, there exists a type U in \p B, 316 /// such that T and U have equal size in bits. 317 /// 2. Ensure that for each type U in \p B, there exists a type T in \p A 318 /// such that T and U have equal size in bits (reverse of 1). 319 bool EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B); 320 321 /// For each overloaded type (i.e. of form *Any), replace it with the 322 /// corresponding subset of legal, specific types. 323 void expandOverloads(TypeSetByHwMode &VTS); 324 void expandOverloads(TypeSetByHwMode::SetType &Out, 325 const TypeSetByHwMode::SetType &Legal); 326 327 struct ValidateOnExit { 328 ValidateOnExit(TypeSetByHwMode &T, TypeInfer &TI) : Infer(TI), VTS(T) {} 329 #ifndef NDEBUG 330 ~ValidateOnExit(); 331 #else 332 ~ValidateOnExit() {} // Empty destructor with NDEBUG. 333 #endif 334 TypeInfer &Infer; 335 TypeSetByHwMode &VTS; 336 }; 337 338 struct SuppressValidation { 339 SuppressValidation(TypeInfer &TI) : Infer(TI), SavedValidate(TI.Validate) { 340 Infer.Validate = false; 341 } 342 ~SuppressValidation() { 343 Infer.Validate = SavedValidate; 344 } 345 TypeInfer &Infer; 346 bool SavedValidate; 347 }; 348 349 TreePattern &TP; 350 unsigned ForceMode; // Mode to use when set. 351 bool CodeGen = false; // Set during generation of matcher code. 352 bool Validate = true; // Indicate whether to validate types. 353 354 private: 355 const TypeSetByHwMode &getLegalTypes(); 356 357 /// Cached legal types (in default mode). 358 bool LegalTypesCached = false; 359 TypeSetByHwMode LegalCache; 360 }; 361 362 /// Set type used to track multiply used variables in patterns 363 typedef StringSet<> MultipleUseVarSet; 364 365 /// SDTypeConstraint - This is a discriminated union of constraints, 366 /// corresponding to the SDTypeConstraint tablegen class in Target.td. 367 struct SDTypeConstraint { 368 SDTypeConstraint(Record *R, const CodeGenHwModes &CGH); 369 370 unsigned OperandNo; // The operand # this constraint applies to. 371 enum { 372 SDTCisVT, SDTCisPtrTy, SDTCisInt, SDTCisFP, SDTCisVec, SDTCisSameAs, 373 SDTCisVTSmallerThanOp, SDTCisOpSmallerThanOp, SDTCisEltOfVec, 374 SDTCisSubVecOfVec, SDTCVecEltisVT, SDTCisSameNumEltsAs, SDTCisSameSizeAs 375 } ConstraintType; 376 377 union { // The discriminated union. 378 struct { 379 unsigned OtherOperandNum; 380 } SDTCisSameAs_Info; 381 struct { 382 unsigned OtherOperandNum; 383 } SDTCisVTSmallerThanOp_Info; 384 struct { 385 unsigned BigOperandNum; 386 } SDTCisOpSmallerThanOp_Info; 387 struct { 388 unsigned OtherOperandNum; 389 } SDTCisEltOfVec_Info; 390 struct { 391 unsigned OtherOperandNum; 392 } SDTCisSubVecOfVec_Info; 393 struct { 394 unsigned OtherOperandNum; 395 } SDTCisSameNumEltsAs_Info; 396 struct { 397 unsigned OtherOperandNum; 398 } SDTCisSameSizeAs_Info; 399 } x; 400 401 // The VT for SDTCisVT and SDTCVecEltisVT. 402 // Must not be in the union because it has a non-trivial destructor. 403 ValueTypeByHwMode VVT; 404 405 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 406 /// constraint to the nodes operands. This returns true if it makes a 407 /// change, false otherwise. If a type contradiction is found, an error 408 /// is flagged. 409 bool ApplyTypeConstraint(TreePatternNode *N, const SDNodeInfo &NodeInfo, 410 TreePattern &TP) const; 411 }; 412 413 /// ScopedName - A name of a node associated with a "scope" that indicates 414 /// the context (e.g. instance of Pattern or PatFrag) in which the name was 415 /// used. This enables substitution of pattern fragments while keeping track 416 /// of what name(s) were originally given to various nodes in the tree. 417 class ScopedName { 418 unsigned Scope; 419 std::string Identifier; 420 public: 421 ScopedName(unsigned Scope, StringRef Identifier) 422 : Scope(Scope), Identifier(Identifier) { 423 assert(Scope != 0 && 424 "Scope == 0 is used to indicate predicates without arguments"); 425 } 426 427 unsigned getScope() const { return Scope; } 428 const std::string &getIdentifier() const { return Identifier; } 429 430 std::string getFullName() const; 431 432 bool operator==(const ScopedName &o) const; 433 bool operator!=(const ScopedName &o) const; 434 }; 435 436 /// SDNodeInfo - One of these records is created for each SDNode instance in 437 /// the target .td file. This represents the various dag nodes we will be 438 /// processing. 439 class SDNodeInfo { 440 Record *Def; 441 StringRef EnumName; 442 StringRef SDClassName; 443 unsigned Properties; 444 unsigned NumResults; 445 int NumOperands; 446 std::vector<SDTypeConstraint> TypeConstraints; 447 public: 448 // Parse the specified record. 449 SDNodeInfo(Record *R, const CodeGenHwModes &CGH); 450 451 unsigned getNumResults() const { return NumResults; } 452 453 /// getNumOperands - This is the number of operands required or -1 if 454 /// variadic. 455 int getNumOperands() const { return NumOperands; } 456 Record *getRecord() const { return Def; } 457 StringRef getEnumName() const { return EnumName; } 458 StringRef getSDClassName() const { return SDClassName; } 459 460 const std::vector<SDTypeConstraint> &getTypeConstraints() const { 461 return TypeConstraints; 462 } 463 464 /// getKnownType - If the type constraints on this node imply a fixed type 465 /// (e.g. all stores return void, etc), then return it as an 466 /// MVT::SimpleValueType. Otherwise, return MVT::Other. 467 MVT::SimpleValueType getKnownType(unsigned ResNo) const; 468 469 /// hasProperty - Return true if this node has the specified property. 470 /// 471 bool hasProperty(enum SDNP Prop) const { return Properties & (1 << Prop); } 472 473 /// ApplyTypeConstraints - Given a node in a pattern, apply the type 474 /// constraints for this node to the operands of the node. This returns 475 /// true if it makes a change, false otherwise. If a type contradiction is 476 /// found, an error is flagged. 477 bool ApplyTypeConstraints(TreePatternNode *N, TreePattern &TP) const; 478 }; 479 480 /// TreePredicateFn - This is an abstraction that represents the predicates on 481 /// a PatFrag node. This is a simple one-word wrapper around a pointer to 482 /// provide nice accessors. 483 class TreePredicateFn { 484 /// PatFragRec - This is the TreePattern for the PatFrag that we 485 /// originally came from. 486 TreePattern *PatFragRec; 487 public: 488 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 489 TreePredicateFn(TreePattern *N); 490 491 492 TreePattern *getOrigPatFragRecord() const { return PatFragRec; } 493 494 /// isAlwaysTrue - Return true if this is a noop predicate. 495 bool isAlwaysTrue() const; 496 497 bool isImmediatePattern() const { return hasImmCode(); } 498 499 /// getImmediatePredicateCode - Return the code that evaluates this pattern if 500 /// this is an immediate predicate. It is an error to call this on a 501 /// non-immediate pattern. 502 std::string getImmediatePredicateCode() const { 503 std::string Result = getImmCode(); 504 assert(!Result.empty() && "Isn't an immediate pattern!"); 505 return Result; 506 } 507 508 bool operator==(const TreePredicateFn &RHS) const { 509 return PatFragRec == RHS.PatFragRec; 510 } 511 512 bool operator!=(const TreePredicateFn &RHS) const { return !(*this == RHS); } 513 514 /// Return the name to use in the generated code to reference this, this is 515 /// "Predicate_foo" if from a pattern fragment "foo". 516 std::string getFnName() const; 517 518 /// getCodeToRunOnSDNode - Return the code for the function body that 519 /// evaluates this predicate. The argument is expected to be in "Node", 520 /// not N. This handles casting and conversion to a concrete node type as 521 /// appropriate. 522 std::string getCodeToRunOnSDNode() const; 523 524 /// Get the data type of the argument to getImmediatePredicateCode(). 525 StringRef getImmType() const; 526 527 /// Get a string that describes the type returned by getImmType() but is 528 /// usable as part of an identifier. 529 StringRef getImmTypeIdentifier() const; 530 531 // Predicate code uses the PatFrag's captured operands. 532 bool usesOperands() const; 533 534 // Is the desired predefined predicate for a load? 535 bool isLoad() const; 536 // Is the desired predefined predicate for a store? 537 bool isStore() const; 538 // Is the desired predefined predicate for an atomic? 539 bool isAtomic() const; 540 541 /// Is this predicate the predefined unindexed load predicate? 542 /// Is this predicate the predefined unindexed store predicate? 543 bool isUnindexed() const; 544 /// Is this predicate the predefined non-extending load predicate? 545 bool isNonExtLoad() const; 546 /// Is this predicate the predefined any-extend load predicate? 547 bool isAnyExtLoad() const; 548 /// Is this predicate the predefined sign-extend load predicate? 549 bool isSignExtLoad() const; 550 /// Is this predicate the predefined zero-extend load predicate? 551 bool isZeroExtLoad() const; 552 /// Is this predicate the predefined non-truncating store predicate? 553 bool isNonTruncStore() const; 554 /// Is this predicate the predefined truncating store predicate? 555 bool isTruncStore() const; 556 557 /// Is this predicate the predefined monotonic atomic predicate? 558 bool isAtomicOrderingMonotonic() const; 559 /// Is this predicate the predefined acquire atomic predicate? 560 bool isAtomicOrderingAcquire() const; 561 /// Is this predicate the predefined release atomic predicate? 562 bool isAtomicOrderingRelease() const; 563 /// Is this predicate the predefined acquire-release atomic predicate? 564 bool isAtomicOrderingAcquireRelease() const; 565 /// Is this predicate the predefined sequentially consistent atomic predicate? 566 bool isAtomicOrderingSequentiallyConsistent() const; 567 568 /// Is this predicate the predefined acquire-or-stronger atomic predicate? 569 bool isAtomicOrderingAcquireOrStronger() const; 570 /// Is this predicate the predefined weaker-than-acquire atomic predicate? 571 bool isAtomicOrderingWeakerThanAcquire() const; 572 573 /// Is this predicate the predefined release-or-stronger atomic predicate? 574 bool isAtomicOrderingReleaseOrStronger() const; 575 /// Is this predicate the predefined weaker-than-release atomic predicate? 576 bool isAtomicOrderingWeakerThanRelease() const; 577 578 /// If non-null, indicates that this predicate is a predefined memory VT 579 /// predicate for a load/store and returns the ValueType record for the memory VT. 580 Record *getMemoryVT() const; 581 /// If non-null, indicates that this predicate is a predefined memory VT 582 /// predicate (checking only the scalar type) for load/store and returns the 583 /// ValueType record for the memory VT. 584 Record *getScalarMemoryVT() const; 585 586 // If true, indicates that GlobalISel-based C++ code was supplied. 587 bool hasGISelPredicateCode() const; 588 std::string getGISelPredicateCode() const; 589 590 private: 591 bool hasPredCode() const; 592 bool hasImmCode() const; 593 std::string getPredCode() const; 594 std::string getImmCode() const; 595 bool immCodeUsesAPInt() const; 596 bool immCodeUsesAPFloat() const; 597 598 bool isPredefinedPredicateEqualTo(StringRef Field, bool Value) const; 599 }; 600 601 struct TreePredicateCall { 602 TreePredicateFn Fn; 603 604 // Scope -- unique identifier for retrieving named arguments. 0 is used when 605 // the predicate does not use named arguments. 606 unsigned Scope; 607 608 TreePredicateCall(const TreePredicateFn &Fn, unsigned Scope) 609 : Fn(Fn), Scope(Scope) {} 610 611 bool operator==(const TreePredicateCall &o) const { 612 return Fn == o.Fn && Scope == o.Scope; 613 } 614 bool operator!=(const TreePredicateCall &o) const { 615 return !(*this == o); 616 } 617 }; 618 619 class TreePatternNode { 620 /// The type of each node result. Before and during type inference, each 621 /// result may be a set of possible types. After (successful) type inference, 622 /// each is a single concrete type. 623 std::vector<TypeSetByHwMode> Types; 624 625 /// The index of each result in results of the pattern. 626 std::vector<unsigned> ResultPerm; 627 628 /// Operator - The Record for the operator if this is an interior node (not 629 /// a leaf). 630 Record *Operator; 631 632 /// Val - The init value (e.g. the "GPRC" record, or "7") for a leaf. 633 /// 634 Init *Val; 635 636 /// Name - The name given to this node with the :$foo notation. 637 /// 638 std::string Name; 639 640 std::vector<ScopedName> NamesAsPredicateArg; 641 642 /// PredicateCalls - The predicate functions to execute on this node to check 643 /// for a match. If this list is empty, no predicate is involved. 644 std::vector<TreePredicateCall> PredicateCalls; 645 646 /// TransformFn - The transformation function to execute on this node before 647 /// it can be substituted into the resulting instruction on a pattern match. 648 Record *TransformFn; 649 650 std::vector<TreePatternNodePtr> Children; 651 652 public: 653 TreePatternNode(Record *Op, std::vector<TreePatternNodePtr> Ch, 654 unsigned NumResults) 655 : Operator(Op), Val(nullptr), TransformFn(nullptr), 656 Children(std::move(Ch)) { 657 Types.resize(NumResults); 658 ResultPerm.resize(NumResults); 659 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 660 } 661 TreePatternNode(Init *val, unsigned NumResults) // leaf ctor 662 : Operator(nullptr), Val(val), TransformFn(nullptr) { 663 Types.resize(NumResults); 664 ResultPerm.resize(NumResults); 665 std::iota(ResultPerm.begin(), ResultPerm.end(), 0); 666 } 667 668 bool hasName() const { return !Name.empty(); } 669 const std::string &getName() const { return Name; } 670 void setName(StringRef N) { Name.assign(N.begin(), N.end()); } 671 672 const std::vector<ScopedName> &getNamesAsPredicateArg() const { 673 return NamesAsPredicateArg; 674 } 675 void setNamesAsPredicateArg(const std::vector<ScopedName>& Names) { 676 NamesAsPredicateArg = Names; 677 } 678 void addNameAsPredicateArg(const ScopedName &N) { 679 NamesAsPredicateArg.push_back(N); 680 } 681 682 bool isLeaf() const { return Val != nullptr; } 683 684 // Type accessors. 685 unsigned getNumTypes() const { return Types.size(); } 686 ValueTypeByHwMode getType(unsigned ResNo) const { 687 return Types[ResNo].getValueTypeByHwMode(); 688 } 689 const std::vector<TypeSetByHwMode> &getExtTypes() const { return Types; } 690 const TypeSetByHwMode &getExtType(unsigned ResNo) const { 691 return Types[ResNo]; 692 } 693 TypeSetByHwMode &getExtType(unsigned ResNo) { return Types[ResNo]; } 694 void setType(unsigned ResNo, const TypeSetByHwMode &T) { Types[ResNo] = T; } 695 MVT::SimpleValueType getSimpleType(unsigned ResNo) const { 696 return Types[ResNo].getMachineValueType().SimpleTy; 697 } 698 699 bool hasConcreteType(unsigned ResNo) const { 700 return Types[ResNo].isValueTypeByHwMode(false); 701 } 702 bool isTypeCompletelyUnknown(unsigned ResNo, TreePattern &TP) const { 703 return Types[ResNo].empty(); 704 } 705 706 unsigned getNumResults() const { return ResultPerm.size(); } 707 unsigned getResultIndex(unsigned ResNo) const { return ResultPerm[ResNo]; } 708 void setResultIndex(unsigned ResNo, unsigned RI) { ResultPerm[ResNo] = RI; } 709 710 Init *getLeafValue() const { assert(isLeaf()); return Val; } 711 Record *getOperator() const { assert(!isLeaf()); return Operator; } 712 713 unsigned getNumChildren() const { return Children.size(); } 714 TreePatternNode *getChild(unsigned N) const { return Children[N].get(); } 715 const TreePatternNodePtr &getChildShared(unsigned N) const { 716 return Children[N]; 717 } 718 void setChild(unsigned i, TreePatternNodePtr N) { Children[i] = N; } 719 720 /// hasChild - Return true if N is any of our children. 721 bool hasChild(const TreePatternNode *N) const { 722 for (unsigned i = 0, e = Children.size(); i != e; ++i) 723 if (Children[i].get() == N) 724 return true; 725 return false; 726 } 727 728 bool hasProperTypeByHwMode() const; 729 bool hasPossibleType() const; 730 bool setDefaultMode(unsigned Mode); 731 732 bool hasAnyPredicate() const { return !PredicateCalls.empty(); } 733 734 const std::vector<TreePredicateCall> &getPredicateCalls() const { 735 return PredicateCalls; 736 } 737 void clearPredicateCalls() { PredicateCalls.clear(); } 738 void setPredicateCalls(const std::vector<TreePredicateCall> &Calls) { 739 assert(PredicateCalls.empty() && "Overwriting non-empty predicate list!"); 740 PredicateCalls = Calls; 741 } 742 void addPredicateCall(const TreePredicateCall &Call) { 743 assert(!Call.Fn.isAlwaysTrue() && "Empty predicate string!"); 744 assert(!is_contained(PredicateCalls, Call) && "predicate applied recursively"); 745 PredicateCalls.push_back(Call); 746 } 747 void addPredicateCall(const TreePredicateFn &Fn, unsigned Scope) { 748 assert((Scope != 0) == Fn.usesOperands()); 749 addPredicateCall(TreePredicateCall(Fn, Scope)); 750 } 751 752 Record *getTransformFn() const { return TransformFn; } 753 void setTransformFn(Record *Fn) { TransformFn = Fn; } 754 755 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 756 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 757 const CodeGenIntrinsic *getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const; 758 759 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 760 /// return the ComplexPattern information, otherwise return null. 761 const ComplexPattern * 762 getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const; 763 764 /// Returns the number of MachineInstr operands that would be produced by this 765 /// node if it mapped directly to an output Instruction's 766 /// operand. ComplexPattern specifies this explicitly; MIOperandInfo gives it 767 /// for Operands; otherwise 1. 768 unsigned getNumMIResults(const CodeGenDAGPatterns &CGP) const; 769 770 /// NodeHasProperty - Return true if this node has the specified property. 771 bool NodeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 772 773 /// TreeHasProperty - Return true if any node in this tree has the specified 774 /// property. 775 bool TreeHasProperty(SDNP Property, const CodeGenDAGPatterns &CGP) const; 776 777 /// isCommutativeIntrinsic - Return true if the node is an intrinsic which is 778 /// marked isCommutative. 779 bool isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const; 780 781 void print(raw_ostream &OS) const; 782 void dump() const; 783 784 public: // Higher level manipulation routines. 785 786 /// clone - Return a new copy of this tree. 787 /// 788 TreePatternNodePtr clone() const; 789 790 /// RemoveAllTypes - Recursively strip all the types of this tree. 791 void RemoveAllTypes(); 792 793 /// isIsomorphicTo - Return true if this node is recursively isomorphic to 794 /// the specified node. For this comparison, all of the state of the node 795 /// is considered, except for the assigned name. Nodes with differing names 796 /// that are otherwise identical are considered isomorphic. 797 bool isIsomorphicTo(const TreePatternNode *N, 798 const MultipleUseVarSet &DepVars) const; 799 800 /// SubstituteFormalArguments - Replace the formal arguments in this tree 801 /// with actual values specified by ArgMap. 802 void 803 SubstituteFormalArguments(std::map<std::string, TreePatternNodePtr> &ArgMap); 804 805 /// InlinePatternFragments - If this pattern refers to any pattern 806 /// fragments, return the set of inlined versions (this can be more than 807 /// one if a PatFrags record has multiple alternatives). 808 void InlinePatternFragments(TreePatternNodePtr T, 809 TreePattern &TP, 810 std::vector<TreePatternNodePtr> &OutAlternatives); 811 812 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 813 /// this node and its children in the tree. This returns true if it makes a 814 /// change, false otherwise. If a type contradiction is found, flag an error. 815 bool ApplyTypeConstraints(TreePattern &TP, bool NotRegisters); 816 817 /// UpdateNodeType - Set the node type of N to VT if VT contains 818 /// information. If N already contains a conflicting type, then flag an 819 /// error. This returns true if any information was updated. 820 /// 821 bool UpdateNodeType(unsigned ResNo, const TypeSetByHwMode &InTy, 822 TreePattern &TP); 823 bool UpdateNodeType(unsigned ResNo, MVT::SimpleValueType InTy, 824 TreePattern &TP); 825 bool UpdateNodeType(unsigned ResNo, ValueTypeByHwMode InTy, 826 TreePattern &TP); 827 828 // Update node type with types inferred from an instruction operand or result 829 // def from the ins/outs lists. 830 // Return true if the type changed. 831 bool UpdateNodeTypeFromInst(unsigned ResNo, Record *Operand, TreePattern &TP); 832 833 /// ContainsUnresolvedType - Return true if this tree contains any 834 /// unresolved types. 835 bool ContainsUnresolvedType(TreePattern &TP) const; 836 837 /// canPatternMatch - If it is impossible for this pattern to match on this 838 /// target, fill in Reason and return false. Otherwise, return true. 839 bool canPatternMatch(std::string &Reason, const CodeGenDAGPatterns &CDP); 840 }; 841 842 inline raw_ostream &operator<<(raw_ostream &OS, const TreePatternNode &TPN) { 843 TPN.print(OS); 844 return OS; 845 } 846 847 848 /// TreePattern - Represent a pattern, used for instructions, pattern 849 /// fragments, etc. 850 /// 851 class TreePattern { 852 /// Trees - The list of pattern trees which corresponds to this pattern. 853 /// Note that PatFrag's only have a single tree. 854 /// 855 std::vector<TreePatternNodePtr> Trees; 856 857 /// NamedNodes - This is all of the nodes that have names in the trees in this 858 /// pattern. 859 StringMap<SmallVector<TreePatternNode *, 1>> NamedNodes; 860 861 /// TheRecord - The actual TableGen record corresponding to this pattern. 862 /// 863 Record *TheRecord; 864 865 /// Args - This is a list of all of the arguments to this pattern (for 866 /// PatFrag patterns), which are the 'node' markers in this pattern. 867 std::vector<std::string> Args; 868 869 /// CDP - the top-level object coordinating this madness. 870 /// 871 CodeGenDAGPatterns &CDP; 872 873 /// isInputPattern - True if this is an input pattern, something to match. 874 /// False if this is an output pattern, something to emit. 875 bool isInputPattern; 876 877 /// hasError - True if the currently processed nodes have unresolvable types 878 /// or other non-fatal errors 879 bool HasError; 880 881 /// It's important that the usage of operands in ComplexPatterns is 882 /// consistent: each named operand can be defined by at most one 883 /// ComplexPattern. This records the ComplexPattern instance and the operand 884 /// number for each operand encountered in a ComplexPattern to aid in that 885 /// check. 886 StringMap<std::pair<Record *, unsigned>> ComplexPatternOperands; 887 888 TypeInfer Infer; 889 890 public: 891 892 /// TreePattern constructor - Parse the specified DagInits into the 893 /// current record. 894 TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 895 CodeGenDAGPatterns &ise); 896 TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 897 CodeGenDAGPatterns &ise); 898 TreePattern(Record *TheRec, TreePatternNodePtr Pat, bool isInput, 899 CodeGenDAGPatterns &ise); 900 901 /// getTrees - Return the tree patterns which corresponds to this pattern. 902 /// 903 const std::vector<TreePatternNodePtr> &getTrees() const { return Trees; } 904 unsigned getNumTrees() const { return Trees.size(); } 905 const TreePatternNodePtr &getTree(unsigned i) const { return Trees[i]; } 906 void setTree(unsigned i, TreePatternNodePtr Tree) { Trees[i] = Tree; } 907 const TreePatternNodePtr &getOnlyTree() const { 908 assert(Trees.size() == 1 && "Doesn't have exactly one pattern!"); 909 return Trees[0]; 910 } 911 912 const StringMap<SmallVector<TreePatternNode *, 1>> &getNamedNodesMap() { 913 if (NamedNodes.empty()) 914 ComputeNamedNodes(); 915 return NamedNodes; 916 } 917 918 /// getRecord - Return the actual TableGen record corresponding to this 919 /// pattern. 920 /// 921 Record *getRecord() const { return TheRecord; } 922 923 unsigned getNumArgs() const { return Args.size(); } 924 const std::string &getArgName(unsigned i) const { 925 assert(i < Args.size() && "Argument reference out of range!"); 926 return Args[i]; 927 } 928 std::vector<std::string> &getArgList() { return Args; } 929 930 CodeGenDAGPatterns &getDAGPatterns() const { return CDP; } 931 932 /// InlinePatternFragments - If this pattern refers to any pattern 933 /// fragments, inline them into place, giving us a pattern without any 934 /// PatFrags references. This may increase the number of trees in the 935 /// pattern if a PatFrags has multiple alternatives. 936 void InlinePatternFragments() { 937 std::vector<TreePatternNodePtr> Copy = Trees; 938 Trees.clear(); 939 for (unsigned i = 0, e = Copy.size(); i != e; ++i) 940 Copy[i]->InlinePatternFragments(Copy[i], *this, Trees); 941 } 942 943 /// InferAllTypes - Infer/propagate as many types throughout the expression 944 /// patterns as possible. Return true if all types are inferred, false 945 /// otherwise. Bail out if a type contradiction is found. 946 bool InferAllTypes( 947 const StringMap<SmallVector<TreePatternNode *, 1>> *NamedTypes = nullptr); 948 949 /// error - If this is the first error in the current resolution step, 950 /// print it and set the error flag. Otherwise, continue silently. 951 void error(const Twine &Msg); 952 bool hasError() const { 953 return HasError; 954 } 955 void resetError() { 956 HasError = false; 957 } 958 959 TypeInfer &getInfer() { return Infer; } 960 961 void print(raw_ostream &OS) const; 962 void dump() const; 963 964 private: 965 TreePatternNodePtr ParseTreePattern(Init *DI, StringRef OpName); 966 void ComputeNamedNodes(); 967 void ComputeNamedNodes(TreePatternNode *N); 968 }; 969 970 971 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 972 const TypeSetByHwMode &InTy, 973 TreePattern &TP) { 974 TypeSetByHwMode VTS(InTy); 975 TP.getInfer().expandOverloads(VTS); 976 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 977 } 978 979 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 980 MVT::SimpleValueType InTy, 981 TreePattern &TP) { 982 TypeSetByHwMode VTS(InTy); 983 TP.getInfer().expandOverloads(VTS); 984 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 985 } 986 987 inline bool TreePatternNode::UpdateNodeType(unsigned ResNo, 988 ValueTypeByHwMode InTy, 989 TreePattern &TP) { 990 TypeSetByHwMode VTS(InTy); 991 TP.getInfer().expandOverloads(VTS); 992 return TP.getInfer().MergeInTypeInfo(Types[ResNo], VTS); 993 } 994 995 996 /// DAGDefaultOperand - One of these is created for each OperandWithDefaultOps 997 /// that has a set ExecuteAlways / DefaultOps field. 998 struct DAGDefaultOperand { 999 std::vector<TreePatternNodePtr> DefaultOps; 1000 }; 1001 1002 class DAGInstruction { 1003 std::vector<Record*> Results; 1004 std::vector<Record*> Operands; 1005 std::vector<Record*> ImpResults; 1006 TreePatternNodePtr SrcPattern; 1007 TreePatternNodePtr ResultPattern; 1008 1009 public: 1010 DAGInstruction(const std::vector<Record*> &results, 1011 const std::vector<Record*> &operands, 1012 const std::vector<Record*> &impresults, 1013 TreePatternNodePtr srcpattern = nullptr, 1014 TreePatternNodePtr resultpattern = nullptr) 1015 : Results(results), Operands(operands), ImpResults(impresults), 1016 SrcPattern(srcpattern), ResultPattern(resultpattern) {} 1017 1018 unsigned getNumResults() const { return Results.size(); } 1019 unsigned getNumOperands() const { return Operands.size(); } 1020 unsigned getNumImpResults() const { return ImpResults.size(); } 1021 const std::vector<Record*>& getImpResults() const { return ImpResults; } 1022 1023 Record *getResult(unsigned RN) const { 1024 assert(RN < Results.size()); 1025 return Results[RN]; 1026 } 1027 1028 Record *getOperand(unsigned ON) const { 1029 assert(ON < Operands.size()); 1030 return Operands[ON]; 1031 } 1032 1033 Record *getImpResult(unsigned RN) const { 1034 assert(RN < ImpResults.size()); 1035 return ImpResults[RN]; 1036 } 1037 1038 TreePatternNodePtr getSrcPattern() const { return SrcPattern; } 1039 TreePatternNodePtr getResultPattern() const { return ResultPattern; } 1040 }; 1041 1042 /// This class represents a condition that has to be satisfied for a pattern 1043 /// to be tried. It is a generalization of a class "Pattern" from Target.td: 1044 /// in addition to the Target.td's predicates, this class can also represent 1045 /// conditions associated with HW modes. Both types will eventually become 1046 /// strings containing C++ code to be executed, the difference is in how 1047 /// these strings are generated. 1048 class Predicate { 1049 public: 1050 Predicate(Record *R, bool C = true) : Def(R), IfCond(C), IsHwMode(false) { 1051 assert(R->isSubClassOf("Predicate") && 1052 "Predicate objects should only be created for records derived" 1053 "from Predicate class"); 1054 } 1055 Predicate(StringRef FS, bool C = true) : Def(nullptr), Features(FS.str()), 1056 IfCond(C), IsHwMode(true) {} 1057 1058 /// Return a string which contains the C++ condition code that will serve 1059 /// as a predicate during instruction selection. 1060 std::string getCondString() const { 1061 // The string will excute in a subclass of SelectionDAGISel. 1062 // Cast to std::string explicitly to avoid ambiguity with StringRef. 1063 std::string C = IsHwMode 1064 ? std::string("MF->getSubtarget().checkFeatures(\"" + Features + "\")") 1065 : std::string(Def->getValueAsString("CondString")); 1066 return IfCond ? C : "!("+C+')'; 1067 } 1068 bool operator==(const Predicate &P) const { 1069 return IfCond == P.IfCond && IsHwMode == P.IsHwMode && Def == P.Def; 1070 } 1071 bool operator<(const Predicate &P) const { 1072 if (IsHwMode != P.IsHwMode) 1073 return IsHwMode < P.IsHwMode; 1074 assert(!Def == !P.Def && "Inconsistency between Def and IsHwMode"); 1075 if (IfCond != P.IfCond) 1076 return IfCond < P.IfCond; 1077 if (Def) 1078 return LessRecord()(Def, P.Def); 1079 return Features < P.Features; 1080 } 1081 Record *Def; ///< Predicate definition from .td file, null for 1082 ///< HW modes. 1083 std::string Features; ///< Feature string for HW mode. 1084 bool IfCond; ///< The boolean value that the condition has to 1085 ///< evaluate to for this predicate to be true. 1086 bool IsHwMode; ///< Does this predicate correspond to a HW mode? 1087 }; 1088 1089 /// PatternToMatch - Used by CodeGenDAGPatterns to keep tab of patterns 1090 /// processed to produce isel. 1091 class PatternToMatch { 1092 public: 1093 PatternToMatch(Record *srcrecord, std::vector<Predicate> preds, 1094 TreePatternNodePtr src, TreePatternNodePtr dst, 1095 std::vector<Record *> dstregs, int complexity, 1096 unsigned uid, unsigned setmode = 0) 1097 : SrcRecord(srcrecord), SrcPattern(src), DstPattern(dst), 1098 Predicates(std::move(preds)), Dstregs(std::move(dstregs)), 1099 AddedComplexity(complexity), ID(uid), ForceMode(setmode) {} 1100 1101 Record *SrcRecord; // Originating Record for the pattern. 1102 TreePatternNodePtr SrcPattern; // Source pattern to match. 1103 TreePatternNodePtr DstPattern; // Resulting pattern. 1104 std::vector<Predicate> Predicates; // Top level predicate conditions 1105 // to match. 1106 std::vector<Record*> Dstregs; // Physical register defs being matched. 1107 int AddedComplexity; // Add to matching pattern complexity. 1108 unsigned ID; // Unique ID for the record. 1109 unsigned ForceMode; // Force this mode in type inference when set. 1110 1111 Record *getSrcRecord() const { return SrcRecord; } 1112 TreePatternNode *getSrcPattern() const { return SrcPattern.get(); } 1113 TreePatternNodePtr getSrcPatternShared() const { return SrcPattern; } 1114 TreePatternNode *getDstPattern() const { return DstPattern.get(); } 1115 TreePatternNodePtr getDstPatternShared() const { return DstPattern; } 1116 const std::vector<Record*> &getDstRegs() const { return Dstregs; } 1117 int getAddedComplexity() const { return AddedComplexity; } 1118 const std::vector<Predicate> &getPredicates() const { return Predicates; } 1119 1120 std::string getPredicateCheck() const; 1121 1122 /// Compute the complexity metric for the input pattern. This roughly 1123 /// corresponds to the number of nodes that are covered. 1124 int getPatternComplexity(const CodeGenDAGPatterns &CGP) const; 1125 }; 1126 1127 class CodeGenDAGPatterns { 1128 RecordKeeper &Records; 1129 CodeGenTarget Target; 1130 CodeGenIntrinsicTable Intrinsics; 1131 CodeGenIntrinsicTable TgtIntrinsics; 1132 1133 std::map<Record*, SDNodeInfo, LessRecordByID> SDNodes; 1134 std::map<Record*, std::pair<Record*, std::string>, LessRecordByID> 1135 SDNodeXForms; 1136 std::map<Record*, ComplexPattern, LessRecordByID> ComplexPatterns; 1137 std::map<Record *, std::unique_ptr<TreePattern>, LessRecordByID> 1138 PatternFragments; 1139 std::map<Record*, DAGDefaultOperand, LessRecordByID> DefaultOperands; 1140 std::map<Record*, DAGInstruction, LessRecordByID> Instructions; 1141 1142 // Specific SDNode definitions: 1143 Record *intrinsic_void_sdnode; 1144 Record *intrinsic_w_chain_sdnode, *intrinsic_wo_chain_sdnode; 1145 1146 /// PatternsToMatch - All of the things we are matching on the DAG. The first 1147 /// value is the pattern to match, the second pattern is the result to 1148 /// emit. 1149 std::vector<PatternToMatch> PatternsToMatch; 1150 1151 TypeSetByHwMode LegalVTS; 1152 1153 using PatternRewriterFn = std::function<void (TreePattern *)>; 1154 PatternRewriterFn PatternRewriter; 1155 1156 unsigned NumScopes = 0; 1157 1158 public: 1159 CodeGenDAGPatterns(RecordKeeper &R, 1160 PatternRewriterFn PatternRewriter = nullptr); 1161 1162 CodeGenTarget &getTargetInfo() { return Target; } 1163 const CodeGenTarget &getTargetInfo() const { return Target; } 1164 const TypeSetByHwMode &getLegalTypes() const { return LegalVTS; } 1165 1166 Record *getSDNodeNamed(const std::string &Name) const; 1167 1168 const SDNodeInfo &getSDNodeInfo(Record *R) const { 1169 auto F = SDNodes.find(R); 1170 assert(F != SDNodes.end() && "Unknown node!"); 1171 return F->second; 1172 } 1173 1174 // Node transformation lookups. 1175 typedef std::pair<Record*, std::string> NodeXForm; 1176 const NodeXForm &getSDNodeTransform(Record *R) const { 1177 auto F = SDNodeXForms.find(R); 1178 assert(F != SDNodeXForms.end() && "Invalid transform!"); 1179 return F->second; 1180 } 1181 1182 typedef std::map<Record*, NodeXForm, LessRecordByID>::const_iterator 1183 nx_iterator; 1184 nx_iterator nx_begin() const { return SDNodeXForms.begin(); } 1185 nx_iterator nx_end() const { return SDNodeXForms.end(); } 1186 1187 1188 const ComplexPattern &getComplexPattern(Record *R) const { 1189 auto F = ComplexPatterns.find(R); 1190 assert(F != ComplexPatterns.end() && "Unknown addressing mode!"); 1191 return F->second; 1192 } 1193 1194 const CodeGenIntrinsic &getIntrinsic(Record *R) const { 1195 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1196 if (Intrinsics[i].TheDef == R) return Intrinsics[i]; 1197 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1198 if (TgtIntrinsics[i].TheDef == R) return TgtIntrinsics[i]; 1199 llvm_unreachable("Unknown intrinsic!"); 1200 } 1201 1202 const CodeGenIntrinsic &getIntrinsicInfo(unsigned IID) const { 1203 if (IID-1 < Intrinsics.size()) 1204 return Intrinsics[IID-1]; 1205 if (IID-Intrinsics.size()-1 < TgtIntrinsics.size()) 1206 return TgtIntrinsics[IID-Intrinsics.size()-1]; 1207 llvm_unreachable("Bad intrinsic ID!"); 1208 } 1209 1210 unsigned getIntrinsicID(Record *R) const { 1211 for (unsigned i = 0, e = Intrinsics.size(); i != e; ++i) 1212 if (Intrinsics[i].TheDef == R) return i; 1213 for (unsigned i = 0, e = TgtIntrinsics.size(); i != e; ++i) 1214 if (TgtIntrinsics[i].TheDef == R) return i + Intrinsics.size(); 1215 llvm_unreachable("Unknown intrinsic!"); 1216 } 1217 1218 const DAGDefaultOperand &getDefaultOperand(Record *R) const { 1219 auto F = DefaultOperands.find(R); 1220 assert(F != DefaultOperands.end() &&"Isn't an analyzed default operand!"); 1221 return F->second; 1222 } 1223 1224 // Pattern Fragment information. 1225 TreePattern *getPatternFragment(Record *R) const { 1226 auto F = PatternFragments.find(R); 1227 assert(F != PatternFragments.end() && "Invalid pattern fragment request!"); 1228 return F->second.get(); 1229 } 1230 TreePattern *getPatternFragmentIfRead(Record *R) const { 1231 auto F = PatternFragments.find(R); 1232 if (F == PatternFragments.end()) 1233 return nullptr; 1234 return F->second.get(); 1235 } 1236 1237 typedef std::map<Record *, std::unique_ptr<TreePattern>, 1238 LessRecordByID>::const_iterator pf_iterator; 1239 pf_iterator pf_begin() const { return PatternFragments.begin(); } 1240 pf_iterator pf_end() const { return PatternFragments.end(); } 1241 iterator_range<pf_iterator> ptfs() const { return PatternFragments; } 1242 1243 // Patterns to match information. 1244 typedef std::vector<PatternToMatch>::const_iterator ptm_iterator; 1245 ptm_iterator ptm_begin() const { return PatternsToMatch.begin(); } 1246 ptm_iterator ptm_end() const { return PatternsToMatch.end(); } 1247 iterator_range<ptm_iterator> ptms() const { return PatternsToMatch; } 1248 1249 /// Parse the Pattern for an instruction, and insert the result in DAGInsts. 1250 typedef std::map<Record*, DAGInstruction, LessRecordByID> DAGInstMap; 1251 void parseInstructionPattern( 1252 CodeGenInstruction &CGI, ListInit *Pattern, 1253 DAGInstMap &DAGInsts); 1254 1255 const DAGInstruction &getInstruction(Record *R) const { 1256 auto F = Instructions.find(R); 1257 assert(F != Instructions.end() && "Unknown instruction!"); 1258 return F->second; 1259 } 1260 1261 Record *get_intrinsic_void_sdnode() const { 1262 return intrinsic_void_sdnode; 1263 } 1264 Record *get_intrinsic_w_chain_sdnode() const { 1265 return intrinsic_w_chain_sdnode; 1266 } 1267 Record *get_intrinsic_wo_chain_sdnode() const { 1268 return intrinsic_wo_chain_sdnode; 1269 } 1270 1271 bool hasTargetIntrinsics() { return !TgtIntrinsics.empty(); } 1272 1273 unsigned allocateScope() { return ++NumScopes; } 1274 1275 private: 1276 void ParseNodeInfo(); 1277 void ParseNodeTransforms(); 1278 void ParseComplexPatterns(); 1279 void ParsePatternFragments(bool OutFrags = false); 1280 void ParseDefaultOperands(); 1281 void ParseInstructions(); 1282 void ParsePatterns(); 1283 void ExpandHwModeBasedTypes(); 1284 void InferInstructionFlags(); 1285 void GenerateVariants(); 1286 void VerifyInstructionFlags(); 1287 1288 std::vector<Predicate> makePredList(ListInit *L); 1289 1290 void ParseOnePattern(Record *TheDef, 1291 TreePattern &Pattern, TreePattern &Result, 1292 const std::vector<Record *> &InstImpResults); 1293 void AddPatternToMatch(TreePattern *Pattern, PatternToMatch &&PTM); 1294 void FindPatternInputsAndOutputs( 1295 TreePattern &I, TreePatternNodePtr Pat, 1296 std::map<std::string, TreePatternNodePtr> &InstInputs, 1297 MapVector<std::string, TreePatternNodePtr, 1298 std::map<std::string, unsigned>> &InstResults, 1299 std::vector<Record *> &InstImpResults); 1300 }; 1301 1302 1303 inline bool SDNodeInfo::ApplyTypeConstraints(TreePatternNode *N, 1304 TreePattern &TP) const { 1305 bool MadeChange = false; 1306 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) 1307 MadeChange |= TypeConstraints[i].ApplyTypeConstraint(N, *this, TP); 1308 return MadeChange; 1309 } 1310 1311 } // end namespace llvm 1312 1313 #endif 1314