1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/Record.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/ADT/Twine.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/ErrorHandling.h" 23 #include <algorithm> 24 #include <cstdio> 25 #include <set> 26 using namespace llvm; 27 28 //===----------------------------------------------------------------------===// 29 // EEVT::TypeSet Implementation 30 //===----------------------------------------------------------------------===// 31 32 static inline bool isInteger(MVT::SimpleValueType VT) { 33 return EVT(VT).isInteger(); 34 } 35 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 36 return EVT(VT).isFloatingPoint(); 37 } 38 static inline bool isVector(MVT::SimpleValueType VT) { 39 return EVT(VT).isVector(); 40 } 41 static inline bool isScalar(MVT::SimpleValueType VT) { 42 return !EVT(VT).isVector(); 43 } 44 45 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 46 if (VT == MVT::iAny) 47 EnforceInteger(TP); 48 else if (VT == MVT::fAny) 49 EnforceFloatingPoint(TP); 50 else if (VT == MVT::vAny) 51 EnforceVector(TP); 52 else { 53 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 54 VT == MVT::iPTRAny) && "Not a concrete type!"); 55 TypeVec.push_back(VT); 56 } 57 } 58 59 60 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 61 assert(!VTList.empty() && "empty list?"); 62 TypeVec.append(VTList.begin(), VTList.end()); 63 64 if (!VTList.empty()) 65 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 66 VTList[0] != MVT::fAny); 67 68 // Verify no duplicates. 69 array_pod_sort(TypeVec.begin(), TypeVec.end()); 70 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 71 } 72 73 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 74 /// on completely unknown type sets. 75 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 76 bool (*Pred)(MVT::SimpleValueType), 77 const char *PredicateName) { 78 assert(isCompletelyUnknown()); 79 const std::vector<MVT::SimpleValueType> &LegalTypes = 80 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 81 82 if (TP.hasError()) 83 return false; 84 85 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 86 if (Pred == 0 || Pred(LegalTypes[i])) 87 TypeVec.push_back(LegalTypes[i]); 88 89 // If we have nothing that matches the predicate, bail out. 90 if (TypeVec.empty()) { 91 TP.error("Type inference contradiction found, no " + 92 std::string(PredicateName) + " types found"); 93 return false; 94 } 95 // No need to sort with one element. 96 if (TypeVec.size() == 1) return true; 97 98 // Remove duplicates. 99 array_pod_sort(TypeVec.begin(), TypeVec.end()); 100 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 101 102 return true; 103 } 104 105 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 106 /// integer value type. 107 bool EEVT::TypeSet::hasIntegerTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isInteger(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 115 /// a floating point value type. 116 bool EEVT::TypeSet::hasFloatingPointTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isFloatingPoint(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 124 /// value type. 125 bool EEVT::TypeSet::hasVectorTypes() const { 126 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 127 if (isVector(TypeVec[i])) 128 return true; 129 return false; 130 } 131 132 133 std::string EEVT::TypeSet::getName() const { 134 if (TypeVec.empty()) return "<empty>"; 135 136 std::string Result; 137 138 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 139 std::string VTName = llvm::getEnumName(TypeVec[i]); 140 // Strip off MVT:: prefix if present. 141 if (VTName.substr(0,5) == "MVT::") 142 VTName = VTName.substr(5); 143 if (i) Result += ':'; 144 Result += VTName; 145 } 146 147 if (TypeVec.size() == 1) 148 return Result; 149 return "{" + Result + "}"; 150 } 151 152 /// MergeInTypeInfo - This merges in type information from the specified 153 /// argument. If 'this' changes, it returns true. If the two types are 154 /// contradictory (e.g. merge f32 into i32) then this flags an error. 155 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 156 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 157 return false; 158 159 if (isCompletelyUnknown()) { 160 *this = InVT; 161 return true; 162 } 163 164 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 165 166 // Handle the abstract cases, seeing if we can resolve them better. 167 switch (TypeVec[0]) { 168 default: break; 169 case MVT::iPTR: 170 case MVT::iPTRAny: 171 if (InVT.hasIntegerTypes()) { 172 EEVT::TypeSet InCopy(InVT); 173 InCopy.EnforceInteger(TP); 174 InCopy.EnforceScalar(TP); 175 176 if (InCopy.isConcrete()) { 177 // If the RHS has one integer type, upgrade iPTR to i32. 178 TypeVec[0] = InVT.TypeVec[0]; 179 return true; 180 } 181 182 // If the input has multiple scalar integers, this doesn't add any info. 183 if (!InCopy.isCompletelyUnknown()) 184 return false; 185 } 186 break; 187 } 188 189 // If the input constraint is iAny/iPTR and this is an integer type list, 190 // remove non-integer types from the list. 191 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 192 hasIntegerTypes()) { 193 bool MadeChange = EnforceInteger(TP); 194 195 // If we're merging in iPTR/iPTRAny and the node currently has a list of 196 // multiple different integer types, replace them with a single iPTR. 197 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 198 TypeVec.size() != 1) { 199 TypeVec.resize(1); 200 TypeVec[0] = InVT.TypeVec[0]; 201 MadeChange = true; 202 } 203 204 return MadeChange; 205 } 206 207 // If this is a type list and the RHS is a typelist as well, eliminate entries 208 // from this list that aren't in the other one. 209 bool MadeChange = false; 210 TypeSet InputSet(*this); 211 212 for (unsigned i = 0; i != TypeVec.size(); ++i) { 213 bool InInVT = false; 214 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 215 if (TypeVec[i] == InVT.TypeVec[j]) { 216 InInVT = true; 217 break; 218 } 219 220 if (InInVT) continue; 221 TypeVec.erase(TypeVec.begin()+i--); 222 MadeChange = true; 223 } 224 225 // If we removed all of our types, we have a type contradiction. 226 if (!TypeVec.empty()) 227 return MadeChange; 228 229 // FIXME: Really want an SMLoc here! 230 TP.error("Type inference contradiction found, merging '" + 231 InVT.getName() + "' into '" + InputSet.getName() + "'"); 232 return false; 233 } 234 235 /// EnforceInteger - Remove all non-integer types from this set. 236 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 237 if (TP.hasError()) 238 return false; 239 // If we know nothing, then get the full set. 240 if (TypeVec.empty()) 241 return FillWithPossibleTypes(TP, isInteger, "integer"); 242 if (!hasFloatingPointTypes()) 243 return false; 244 245 TypeSet InputSet(*this); 246 247 // Filter out all the fp types. 248 for (unsigned i = 0; i != TypeVec.size(); ++i) 249 if (!isInteger(TypeVec[i])) 250 TypeVec.erase(TypeVec.begin()+i--); 251 252 if (TypeVec.empty()) { 253 TP.error("Type inference contradiction found, '" + 254 InputSet.getName() + "' needs to be integer"); 255 return false; 256 } 257 return true; 258 } 259 260 /// EnforceFloatingPoint - Remove all integer types from this set. 261 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 262 if (TP.hasError()) 263 return false; 264 // If we know nothing, then get the full set. 265 if (TypeVec.empty()) 266 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 267 268 if (!hasIntegerTypes()) 269 return false; 270 271 TypeSet InputSet(*this); 272 273 // Filter out all the fp types. 274 for (unsigned i = 0; i != TypeVec.size(); ++i) 275 if (!isFloatingPoint(TypeVec[i])) 276 TypeVec.erase(TypeVec.begin()+i--); 277 278 if (TypeVec.empty()) { 279 TP.error("Type inference contradiction found, '" + 280 InputSet.getName() + "' needs to be floating point"); 281 return false; 282 } 283 return true; 284 } 285 286 /// EnforceScalar - Remove all vector types from this. 287 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 288 if (TP.hasError()) 289 return false; 290 291 // If we know nothing, then get the full set. 292 if (TypeVec.empty()) 293 return FillWithPossibleTypes(TP, isScalar, "scalar"); 294 295 if (!hasVectorTypes()) 296 return false; 297 298 TypeSet InputSet(*this); 299 300 // Filter out all the vector types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isScalar(TypeVec[i])) 303 TypeVec.erase(TypeVec.begin()+i--); 304 305 if (TypeVec.empty()) { 306 TP.error("Type inference contradiction found, '" + 307 InputSet.getName() + "' needs to be scalar"); 308 return false; 309 } 310 return true; 311 } 312 313 /// EnforceVector - Remove all vector types from this. 314 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 315 if (TP.hasError()) 316 return false; 317 318 // If we know nothing, then get the full set. 319 if (TypeVec.empty()) 320 return FillWithPossibleTypes(TP, isVector, "vector"); 321 322 TypeSet InputSet(*this); 323 bool MadeChange = false; 324 325 // Filter out all the scalar types. 326 for (unsigned i = 0; i != TypeVec.size(); ++i) 327 if (!isVector(TypeVec[i])) { 328 TypeVec.erase(TypeVec.begin()+i--); 329 MadeChange = true; 330 } 331 332 if (TypeVec.empty()) { 333 TP.error("Type inference contradiction found, '" + 334 InputSet.getName() + "' needs to be a vector"); 335 return false; 336 } 337 return MadeChange; 338 } 339 340 341 342 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 343 /// this an other based on this information. 344 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 345 if (TP.hasError()) 346 return false; 347 348 // Both operands must be integer or FP, but we don't care which. 349 bool MadeChange = false; 350 351 if (isCompletelyUnknown()) 352 MadeChange = FillWithPossibleTypes(TP); 353 354 if (Other.isCompletelyUnknown()) 355 MadeChange = Other.FillWithPossibleTypes(TP); 356 357 // If one side is known to be integer or known to be FP but the other side has 358 // no information, get at least the type integrality info in there. 359 if (!hasFloatingPointTypes()) 360 MadeChange |= Other.EnforceInteger(TP); 361 else if (!hasIntegerTypes()) 362 MadeChange |= Other.EnforceFloatingPoint(TP); 363 if (!Other.hasFloatingPointTypes()) 364 MadeChange |= EnforceInteger(TP); 365 else if (!Other.hasIntegerTypes()) 366 MadeChange |= EnforceFloatingPoint(TP); 367 368 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 369 "Should have a type list now"); 370 371 // If one contains vectors but the other doesn't pull vectors out. 372 if (!hasVectorTypes()) 373 MadeChange |= Other.EnforceScalar(TP); 374 if (!hasVectorTypes()) 375 MadeChange |= EnforceScalar(TP); 376 377 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 378 // If we are down to concrete types, this code does not currently 379 // handle nodes which have multiple types, where some types are 380 // integer, and some are fp. Assert that this is not the case. 381 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 382 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 383 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 384 385 // Otherwise, if these are both vector types, either this vector 386 // must have a larger bitsize than the other, or this element type 387 // must be larger than the other. 388 EVT Type(TypeVec[0]); 389 EVT OtherType(Other.TypeVec[0]); 390 391 if (hasVectorTypes() && Other.hasVectorTypes()) { 392 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 393 if (Type.getVectorElementType().getSizeInBits() 394 >= OtherType.getVectorElementType().getSizeInBits()) { 395 TP.error("Type inference contradiction found, '" + 396 getName() + "' element type not smaller than '" + 397 Other.getName() +"'!"); 398 return false; 399 } 400 } 401 else 402 // For scalar types, the bitsize of this type must be larger 403 // than that of the other. 404 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) { 405 TP.error("Type inference contradiction found, '" + 406 getName() + "' is not smaller than '" + 407 Other.getName() +"'!"); 408 return false; 409 } 410 } 411 412 413 // Handle int and fp as disjoint sets. This won't work for patterns 414 // that have mixed fp/int types but those are likely rare and would 415 // not have been accepted by this code previously. 416 417 // Okay, find the smallest type from the current set and remove it from the 418 // largest set. 419 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 420 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 421 if (isInteger(TypeVec[i])) { 422 SmallestInt = TypeVec[i]; 423 break; 424 } 425 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 426 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 427 SmallestInt = TypeVec[i]; 428 429 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 430 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 431 if (isFloatingPoint(TypeVec[i])) { 432 SmallestFP = TypeVec[i]; 433 break; 434 } 435 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 436 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 437 SmallestFP = TypeVec[i]; 438 439 int OtherIntSize = 0; 440 int OtherFPSize = 0; 441 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 442 Other.TypeVec.begin(); 443 TVI != Other.TypeVec.end(); 444 /* NULL */) { 445 if (isInteger(*TVI)) { 446 ++OtherIntSize; 447 if (*TVI == SmallestInt) { 448 TVI = Other.TypeVec.erase(TVI); 449 --OtherIntSize; 450 MadeChange = true; 451 continue; 452 } 453 } 454 else if (isFloatingPoint(*TVI)) { 455 ++OtherFPSize; 456 if (*TVI == SmallestFP) { 457 TVI = Other.TypeVec.erase(TVI); 458 --OtherFPSize; 459 MadeChange = true; 460 continue; 461 } 462 } 463 ++TVI; 464 } 465 466 // If this is the only type in the large set, the constraint can never be 467 // satisfied. 468 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 469 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) { 470 TP.error("Type inference contradiction found, '" + 471 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 472 return false; 473 } 474 475 // Okay, find the largest type in the Other set and remove it from the 476 // current set. 477 MVT::SimpleValueType LargestInt = MVT::Other; 478 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 479 if (isInteger(Other.TypeVec[i])) { 480 LargestInt = Other.TypeVec[i]; 481 break; 482 } 483 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 484 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 485 LargestInt = Other.TypeVec[i]; 486 487 MVT::SimpleValueType LargestFP = MVT::Other; 488 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 489 if (isFloatingPoint(Other.TypeVec[i])) { 490 LargestFP = Other.TypeVec[i]; 491 break; 492 } 493 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 494 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 495 LargestFP = Other.TypeVec[i]; 496 497 int IntSize = 0; 498 int FPSize = 0; 499 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 500 TypeVec.begin(); 501 TVI != TypeVec.end(); 502 /* NULL */) { 503 if (isInteger(*TVI)) { 504 ++IntSize; 505 if (*TVI == LargestInt) { 506 TVI = TypeVec.erase(TVI); 507 --IntSize; 508 MadeChange = true; 509 continue; 510 } 511 } 512 else if (isFloatingPoint(*TVI)) { 513 ++FPSize; 514 if (*TVI == LargestFP) { 515 TVI = TypeVec.erase(TVI); 516 --FPSize; 517 MadeChange = true; 518 continue; 519 } 520 } 521 ++TVI; 522 } 523 524 // If this is the only type in the small set, the constraint can never be 525 // satisfied. 526 if ((hasIntegerTypes() && IntSize == 0) 527 || (hasFloatingPointTypes() && FPSize == 0)) { 528 TP.error("Type inference contradiction found, '" + 529 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 530 return false; 531 } 532 533 return MadeChange; 534 } 535 536 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 537 /// whose element is specified by VTOperand. 538 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 539 TreePattern &TP) { 540 if (TP.hasError()) 541 return false; 542 543 // "This" must be a vector and "VTOperand" must be a scalar. 544 bool MadeChange = false; 545 MadeChange |= EnforceVector(TP); 546 MadeChange |= VTOperand.EnforceScalar(TP); 547 548 // If we know the vector type, it forces the scalar to agree. 549 if (isConcrete()) { 550 EVT IVT = getConcrete(); 551 IVT = IVT.getVectorElementType(); 552 return MadeChange | 553 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 554 } 555 556 // If the scalar type is known, filter out vector types whose element types 557 // disagree. 558 if (!VTOperand.isConcrete()) 559 return MadeChange; 560 561 MVT::SimpleValueType VT = VTOperand.getConcrete(); 562 563 TypeSet InputSet(*this); 564 565 // Filter out all the types which don't have the right element type. 566 for (unsigned i = 0; i != TypeVec.size(); ++i) { 567 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 568 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 569 TypeVec.erase(TypeVec.begin()+i--); 570 MadeChange = true; 571 } 572 } 573 574 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 575 TP.error("Type inference contradiction found, forcing '" + 576 InputSet.getName() + "' to have a vector element"); 577 return false; 578 } 579 return MadeChange; 580 } 581 582 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 583 /// vector type specified by VTOperand. 584 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 585 TreePattern &TP) { 586 // "This" must be a vector and "VTOperand" must be a vector. 587 bool MadeChange = false; 588 MadeChange |= EnforceVector(TP); 589 MadeChange |= VTOperand.EnforceVector(TP); 590 591 // "This" must be larger than "VTOperand." 592 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 593 594 // If we know the vector type, it forces the scalar types to agree. 595 if (isConcrete()) { 596 EVT IVT = getConcrete(); 597 IVT = IVT.getVectorElementType(); 598 599 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 600 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 601 } else if (VTOperand.isConcrete()) { 602 EVT IVT = VTOperand.getConcrete(); 603 IVT = IVT.getVectorElementType(); 604 605 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 606 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 607 } 608 609 return MadeChange; 610 } 611 612 //===----------------------------------------------------------------------===// 613 // Helpers for working with extended types. 614 615 /// Dependent variable map for CodeGenDAGPattern variant generation 616 typedef std::map<std::string, int> DepVarMap; 617 618 /// Const iterator shorthand for DepVarMap 619 typedef DepVarMap::const_iterator DepVarMap_citer; 620 621 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 622 if (N->isLeaf()) { 623 if (isa<DefInit>(N->getLeafValue())) 624 DepMap[N->getName()]++; 625 } else { 626 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 627 FindDepVarsOf(N->getChild(i), DepMap); 628 } 629 } 630 631 /// Find dependent variables within child patterns 632 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 633 DepVarMap depcounts; 634 FindDepVarsOf(N, depcounts); 635 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 636 if (i->second > 1) // std::pair<std::string, int> 637 DepVars.insert(i->first); 638 } 639 } 640 641 #ifndef NDEBUG 642 /// Dump the dependent variable set: 643 static void DumpDepVars(MultipleUseVarSet &DepVars) { 644 if (DepVars.empty()) { 645 DEBUG(errs() << "<empty set>"); 646 } else { 647 DEBUG(errs() << "[ "); 648 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 649 e = DepVars.end(); i != e; ++i) { 650 DEBUG(errs() << (*i) << " "); 651 } 652 DEBUG(errs() << "]"); 653 } 654 } 655 #endif 656 657 658 //===----------------------------------------------------------------------===// 659 // TreePredicateFn Implementation 660 //===----------------------------------------------------------------------===// 661 662 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 663 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 664 assert((getPredCode().empty() || getImmCode().empty()) && 665 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 666 } 667 668 std::string TreePredicateFn::getPredCode() const { 669 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 670 } 671 672 std::string TreePredicateFn::getImmCode() const { 673 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 674 } 675 676 677 /// isAlwaysTrue - Return true if this is a noop predicate. 678 bool TreePredicateFn::isAlwaysTrue() const { 679 return getPredCode().empty() && getImmCode().empty(); 680 } 681 682 /// Return the name to use in the generated code to reference this, this is 683 /// "Predicate_foo" if from a pattern fragment "foo". 684 std::string TreePredicateFn::getFnName() const { 685 return "Predicate_" + PatFragRec->getRecord()->getName(); 686 } 687 688 /// getCodeToRunOnSDNode - Return the code for the function body that 689 /// evaluates this predicate. The argument is expected to be in "Node", 690 /// not N. This handles casting and conversion to a concrete node type as 691 /// appropriate. 692 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 693 // Handle immediate predicates first. 694 std::string ImmCode = getImmCode(); 695 if (!ImmCode.empty()) { 696 std::string Result = 697 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 698 return Result + ImmCode; 699 } 700 701 // Handle arbitrary node predicates. 702 assert(!getPredCode().empty() && "Don't have any predicate code!"); 703 std::string ClassName; 704 if (PatFragRec->getOnlyTree()->isLeaf()) 705 ClassName = "SDNode"; 706 else { 707 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 708 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 709 } 710 std::string Result; 711 if (ClassName == "SDNode") 712 Result = " SDNode *N = Node;\n"; 713 else 714 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 715 716 return Result + getPredCode(); 717 } 718 719 //===----------------------------------------------------------------------===// 720 // PatternToMatch implementation 721 // 722 723 724 /// getPatternSize - Return the 'size' of this pattern. We want to match large 725 /// patterns before small ones. This is used to determine the size of a 726 /// pattern. 727 static unsigned getPatternSize(const TreePatternNode *P, 728 const CodeGenDAGPatterns &CGP) { 729 unsigned Size = 3; // The node itself. 730 // If the root node is a ConstantSDNode, increases its size. 731 // e.g. (set R32:$dst, 0). 732 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 733 Size += 2; 734 735 // FIXME: This is a hack to statically increase the priority of patterns 736 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 737 // Later we can allow complexity / cost for each pattern to be (optionally) 738 // specified. To get best possible pattern match we'll need to dynamically 739 // calculate the complexity of all patterns a dag can potentially map to. 740 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 741 if (AM) 742 Size += AM->getNumOperands() * 3; 743 744 // If this node has some predicate function that must match, it adds to the 745 // complexity of this node. 746 if (!P->getPredicateFns().empty()) 747 ++Size; 748 749 // Count children in the count if they are also nodes. 750 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 751 TreePatternNode *Child = P->getChild(i); 752 if (!Child->isLeaf() && Child->getNumTypes() && 753 Child->getType(0) != MVT::Other) 754 Size += getPatternSize(Child, CGP); 755 else if (Child->isLeaf()) { 756 if (isa<IntInit>(Child->getLeafValue())) 757 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 758 else if (Child->getComplexPatternInfo(CGP)) 759 Size += getPatternSize(Child, CGP); 760 else if (!Child->getPredicateFns().empty()) 761 ++Size; 762 } 763 } 764 765 return Size; 766 } 767 768 /// Compute the complexity metric for the input pattern. This roughly 769 /// corresponds to the number of nodes that are covered. 770 unsigned PatternToMatch:: 771 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 772 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 773 } 774 775 776 /// getPredicateCheck - Return a single string containing all of this 777 /// pattern's predicates concatenated with "&&" operators. 778 /// 779 std::string PatternToMatch::getPredicateCheck() const { 780 std::string PredicateCheck; 781 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 782 if (DefInit *Pred = dyn_cast<DefInit>(Predicates->getElement(i))) { 783 Record *Def = Pred->getDef(); 784 if (!Def->isSubClassOf("Predicate")) { 785 #ifndef NDEBUG 786 Def->dump(); 787 #endif 788 llvm_unreachable("Unknown predicate type!"); 789 } 790 if (!PredicateCheck.empty()) 791 PredicateCheck += " && "; 792 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 793 } 794 } 795 796 return PredicateCheck; 797 } 798 799 //===----------------------------------------------------------------------===// 800 // SDTypeConstraint implementation 801 // 802 803 SDTypeConstraint::SDTypeConstraint(Record *R) { 804 OperandNo = R->getValueAsInt("OperandNum"); 805 806 if (R->isSubClassOf("SDTCisVT")) { 807 ConstraintType = SDTCisVT; 808 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 809 if (x.SDTCisVT_Info.VT == MVT::isVoid) 810 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 811 812 } else if (R->isSubClassOf("SDTCisPtrTy")) { 813 ConstraintType = SDTCisPtrTy; 814 } else if (R->isSubClassOf("SDTCisInt")) { 815 ConstraintType = SDTCisInt; 816 } else if (R->isSubClassOf("SDTCisFP")) { 817 ConstraintType = SDTCisFP; 818 } else if (R->isSubClassOf("SDTCisVec")) { 819 ConstraintType = SDTCisVec; 820 } else if (R->isSubClassOf("SDTCisSameAs")) { 821 ConstraintType = SDTCisSameAs; 822 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 823 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 824 ConstraintType = SDTCisVTSmallerThanOp; 825 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 826 R->getValueAsInt("OtherOperandNum"); 827 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 828 ConstraintType = SDTCisOpSmallerThanOp; 829 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 830 R->getValueAsInt("BigOperandNum"); 831 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 832 ConstraintType = SDTCisEltOfVec; 833 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 834 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 835 ConstraintType = SDTCisSubVecOfVec; 836 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 837 R->getValueAsInt("OtherOpNum"); 838 } else { 839 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 840 exit(1); 841 } 842 } 843 844 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 845 /// N, and the result number in ResNo. 846 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 847 const SDNodeInfo &NodeInfo, 848 unsigned &ResNo) { 849 unsigned NumResults = NodeInfo.getNumResults(); 850 if (OpNo < NumResults) { 851 ResNo = OpNo; 852 return N; 853 } 854 855 OpNo -= NumResults; 856 857 if (OpNo >= N->getNumChildren()) { 858 errs() << "Invalid operand number in type constraint " 859 << (OpNo+NumResults) << " "; 860 N->dump(); 861 errs() << '\n'; 862 exit(1); 863 } 864 865 return N->getChild(OpNo); 866 } 867 868 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 869 /// constraint to the nodes operands. This returns true if it makes a 870 /// change, false otherwise. If a type contradiction is found, flag an error. 871 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 872 const SDNodeInfo &NodeInfo, 873 TreePattern &TP) const { 874 if (TP.hasError()) 875 return false; 876 877 unsigned ResNo = 0; // The result number being referenced. 878 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 879 880 switch (ConstraintType) { 881 case SDTCisVT: 882 // Operand must be a particular type. 883 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 884 case SDTCisPtrTy: 885 // Operand must be same as target pointer type. 886 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 887 case SDTCisInt: 888 // Require it to be one of the legal integer VTs. 889 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 890 case SDTCisFP: 891 // Require it to be one of the legal fp VTs. 892 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 893 case SDTCisVec: 894 // Require it to be one of the legal vector VTs. 895 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 896 case SDTCisSameAs: { 897 unsigned OResNo = 0; 898 TreePatternNode *OtherNode = 899 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 900 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 901 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 902 } 903 case SDTCisVTSmallerThanOp: { 904 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 905 // have an integer type that is smaller than the VT. 906 if (!NodeToApply->isLeaf() || 907 !isa<DefInit>(NodeToApply->getLeafValue()) || 908 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 909 ->isSubClassOf("ValueType")) { 910 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 911 return false; 912 } 913 MVT::SimpleValueType VT = 914 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 915 916 EEVT::TypeSet TypeListTmp(VT, TP); 917 918 unsigned OResNo = 0; 919 TreePatternNode *OtherNode = 920 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 921 OResNo); 922 923 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 924 } 925 case SDTCisOpSmallerThanOp: { 926 unsigned BResNo = 0; 927 TreePatternNode *BigOperand = 928 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 929 BResNo); 930 return NodeToApply->getExtType(ResNo). 931 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 932 } 933 case SDTCisEltOfVec: { 934 unsigned VResNo = 0; 935 TreePatternNode *VecOperand = 936 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 937 VResNo); 938 939 // Filter vector types out of VecOperand that don't have the right element 940 // type. 941 return VecOperand->getExtType(VResNo). 942 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 943 } 944 case SDTCisSubVecOfVec: { 945 unsigned VResNo = 0; 946 TreePatternNode *BigVecOperand = 947 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 948 VResNo); 949 950 // Filter vector types out of BigVecOperand that don't have the 951 // right subvector type. 952 return BigVecOperand->getExtType(VResNo). 953 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 954 } 955 } 956 llvm_unreachable("Invalid ConstraintType!"); 957 } 958 959 //===----------------------------------------------------------------------===// 960 // SDNodeInfo implementation 961 // 962 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 963 EnumName = R->getValueAsString("Opcode"); 964 SDClassName = R->getValueAsString("SDClass"); 965 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 966 NumResults = TypeProfile->getValueAsInt("NumResults"); 967 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 968 969 // Parse the properties. 970 Properties = 0; 971 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 972 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 973 if (PropList[i]->getName() == "SDNPCommutative") { 974 Properties |= 1 << SDNPCommutative; 975 } else if (PropList[i]->getName() == "SDNPAssociative") { 976 Properties |= 1 << SDNPAssociative; 977 } else if (PropList[i]->getName() == "SDNPHasChain") { 978 Properties |= 1 << SDNPHasChain; 979 } else if (PropList[i]->getName() == "SDNPOutGlue") { 980 Properties |= 1 << SDNPOutGlue; 981 } else if (PropList[i]->getName() == "SDNPInGlue") { 982 Properties |= 1 << SDNPInGlue; 983 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 984 Properties |= 1 << SDNPOptInGlue; 985 } else if (PropList[i]->getName() == "SDNPMayStore") { 986 Properties |= 1 << SDNPMayStore; 987 } else if (PropList[i]->getName() == "SDNPMayLoad") { 988 Properties |= 1 << SDNPMayLoad; 989 } else if (PropList[i]->getName() == "SDNPSideEffect") { 990 Properties |= 1 << SDNPSideEffect; 991 } else if (PropList[i]->getName() == "SDNPMemOperand") { 992 Properties |= 1 << SDNPMemOperand; 993 } else if (PropList[i]->getName() == "SDNPVariadic") { 994 Properties |= 1 << SDNPVariadic; 995 } else { 996 errs() << "Unknown SD Node property '" << PropList[i]->getName() 997 << "' on node '" << R->getName() << "'!\n"; 998 exit(1); 999 } 1000 } 1001 1002 1003 // Parse the type constraints. 1004 std::vector<Record*> ConstraintList = 1005 TypeProfile->getValueAsListOfDefs("Constraints"); 1006 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1007 } 1008 1009 /// getKnownType - If the type constraints on this node imply a fixed type 1010 /// (e.g. all stores return void, etc), then return it as an 1011 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1012 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1013 unsigned NumResults = getNumResults(); 1014 assert(NumResults <= 1 && 1015 "We only work with nodes with zero or one result so far!"); 1016 assert(ResNo == 0 && "Only handles single result nodes so far"); 1017 1018 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 1019 // Make sure that this applies to the correct node result. 1020 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 1021 continue; 1022 1023 switch (TypeConstraints[i].ConstraintType) { 1024 default: break; 1025 case SDTypeConstraint::SDTCisVT: 1026 return TypeConstraints[i].x.SDTCisVT_Info.VT; 1027 case SDTypeConstraint::SDTCisPtrTy: 1028 return MVT::iPTR; 1029 } 1030 } 1031 return MVT::Other; 1032 } 1033 1034 //===----------------------------------------------------------------------===// 1035 // TreePatternNode implementation 1036 // 1037 1038 TreePatternNode::~TreePatternNode() { 1039 #if 0 // FIXME: implement refcounted tree nodes! 1040 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1041 delete getChild(i); 1042 #endif 1043 } 1044 1045 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1046 if (Operator->getName() == "set" || 1047 Operator->getName() == "implicit") 1048 return 0; // All return nothing. 1049 1050 if (Operator->isSubClassOf("Intrinsic")) 1051 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1052 1053 if (Operator->isSubClassOf("SDNode")) 1054 return CDP.getSDNodeInfo(Operator).getNumResults(); 1055 1056 if (Operator->isSubClassOf("PatFrag")) { 1057 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1058 // the forward reference case where one pattern fragment references another 1059 // before it is processed. 1060 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1061 return PFRec->getOnlyTree()->getNumTypes(); 1062 1063 // Get the result tree. 1064 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1065 Record *Op = 0; 1066 if (Tree) 1067 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1068 Op = DI->getDef(); 1069 assert(Op && "Invalid Fragment"); 1070 return GetNumNodeResults(Op, CDP); 1071 } 1072 1073 if (Operator->isSubClassOf("Instruction")) { 1074 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1075 1076 // FIXME: Should allow access to all the results here. 1077 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1078 1079 // Add on one implicit def if it has a resolvable type. 1080 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1081 ++NumDefsToAdd; 1082 return NumDefsToAdd; 1083 } 1084 1085 if (Operator->isSubClassOf("SDNodeXForm")) 1086 return 1; // FIXME: Generalize SDNodeXForm 1087 1088 Operator->dump(); 1089 errs() << "Unhandled node in GetNumNodeResults\n"; 1090 exit(1); 1091 } 1092 1093 void TreePatternNode::print(raw_ostream &OS) const { 1094 if (isLeaf()) 1095 OS << *getLeafValue(); 1096 else 1097 OS << '(' << getOperator()->getName(); 1098 1099 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1100 OS << ':' << getExtType(i).getName(); 1101 1102 if (!isLeaf()) { 1103 if (getNumChildren() != 0) { 1104 OS << " "; 1105 getChild(0)->print(OS); 1106 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1107 OS << ", "; 1108 getChild(i)->print(OS); 1109 } 1110 } 1111 OS << ")"; 1112 } 1113 1114 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1115 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1116 if (TransformFn) 1117 OS << "<<X:" << TransformFn->getName() << ">>"; 1118 if (!getName().empty()) 1119 OS << ":$" << getName(); 1120 1121 } 1122 void TreePatternNode::dump() const { 1123 print(errs()); 1124 } 1125 1126 /// isIsomorphicTo - Return true if this node is recursively 1127 /// isomorphic to the specified node. For this comparison, the node's 1128 /// entire state is considered. The assigned name is ignored, since 1129 /// nodes with differing names are considered isomorphic. However, if 1130 /// the assigned name is present in the dependent variable set, then 1131 /// the assigned name is considered significant and the node is 1132 /// isomorphic if the names match. 1133 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1134 const MultipleUseVarSet &DepVars) const { 1135 if (N == this) return true; 1136 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1137 getPredicateFns() != N->getPredicateFns() || 1138 getTransformFn() != N->getTransformFn()) 1139 return false; 1140 1141 if (isLeaf()) { 1142 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1143 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1144 return ((DI->getDef() == NDI->getDef()) 1145 && (DepVars.find(getName()) == DepVars.end() 1146 || getName() == N->getName())); 1147 } 1148 } 1149 return getLeafValue() == N->getLeafValue(); 1150 } 1151 1152 if (N->getOperator() != getOperator() || 1153 N->getNumChildren() != getNumChildren()) return false; 1154 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1155 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1156 return false; 1157 return true; 1158 } 1159 1160 /// clone - Make a copy of this tree and all of its children. 1161 /// 1162 TreePatternNode *TreePatternNode::clone() const { 1163 TreePatternNode *New; 1164 if (isLeaf()) { 1165 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1166 } else { 1167 std::vector<TreePatternNode*> CChildren; 1168 CChildren.reserve(Children.size()); 1169 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1170 CChildren.push_back(getChild(i)->clone()); 1171 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1172 } 1173 New->setName(getName()); 1174 New->Types = Types; 1175 New->setPredicateFns(getPredicateFns()); 1176 New->setTransformFn(getTransformFn()); 1177 return New; 1178 } 1179 1180 /// RemoveAllTypes - Recursively strip all the types of this tree. 1181 void TreePatternNode::RemoveAllTypes() { 1182 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1183 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1184 if (isLeaf()) return; 1185 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1186 getChild(i)->RemoveAllTypes(); 1187 } 1188 1189 1190 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1191 /// with actual values specified by ArgMap. 1192 void TreePatternNode:: 1193 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1194 if (isLeaf()) return; 1195 1196 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1197 TreePatternNode *Child = getChild(i); 1198 if (Child->isLeaf()) { 1199 Init *Val = Child->getLeafValue(); 1200 if (isa<DefInit>(Val) && 1201 cast<DefInit>(Val)->getDef()->getName() == "node") { 1202 // We found a use of a formal argument, replace it with its value. 1203 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1204 assert(NewChild && "Couldn't find formal argument!"); 1205 assert((Child->getPredicateFns().empty() || 1206 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1207 "Non-empty child predicate clobbered!"); 1208 setChild(i, NewChild); 1209 } 1210 } else { 1211 getChild(i)->SubstituteFormalArguments(ArgMap); 1212 } 1213 } 1214 } 1215 1216 1217 /// InlinePatternFragments - If this pattern refers to any pattern 1218 /// fragments, inline them into place, giving us a pattern without any 1219 /// PatFrag references. 1220 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1221 if (TP.hasError()) 1222 return 0; 1223 1224 if (isLeaf()) 1225 return this; // nothing to do. 1226 Record *Op = getOperator(); 1227 1228 if (!Op->isSubClassOf("PatFrag")) { 1229 // Just recursively inline children nodes. 1230 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1231 TreePatternNode *Child = getChild(i); 1232 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1233 1234 assert((Child->getPredicateFns().empty() || 1235 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1236 "Non-empty child predicate clobbered!"); 1237 1238 setChild(i, NewChild); 1239 } 1240 return this; 1241 } 1242 1243 // Otherwise, we found a reference to a fragment. First, look up its 1244 // TreePattern record. 1245 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1246 1247 // Verify that we are passing the right number of operands. 1248 if (Frag->getNumArgs() != Children.size()) { 1249 TP.error("'" + Op->getName() + "' fragment requires " + 1250 utostr(Frag->getNumArgs()) + " operands!"); 1251 return 0; 1252 } 1253 1254 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1255 1256 TreePredicateFn PredFn(Frag); 1257 if (!PredFn.isAlwaysTrue()) 1258 FragTree->addPredicateFn(PredFn); 1259 1260 // Resolve formal arguments to their actual value. 1261 if (Frag->getNumArgs()) { 1262 // Compute the map of formal to actual arguments. 1263 std::map<std::string, TreePatternNode*> ArgMap; 1264 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1265 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1266 1267 FragTree->SubstituteFormalArguments(ArgMap); 1268 } 1269 1270 FragTree->setName(getName()); 1271 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1272 FragTree->UpdateNodeType(i, getExtType(i), TP); 1273 1274 // Transfer in the old predicates. 1275 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1276 FragTree->addPredicateFn(getPredicateFns()[i]); 1277 1278 // Get a new copy of this fragment to stitch into here. 1279 //delete this; // FIXME: implement refcounting! 1280 1281 // The fragment we inlined could have recursive inlining that is needed. See 1282 // if there are any pattern fragments in it and inline them as needed. 1283 return FragTree->InlinePatternFragments(TP); 1284 } 1285 1286 /// getImplicitType - Check to see if the specified record has an implicit 1287 /// type which should be applied to it. This will infer the type of register 1288 /// references from the register file information, for example. 1289 /// 1290 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1291 bool NotRegisters, TreePattern &TP) { 1292 // Check to see if this is a register operand. 1293 if (R->isSubClassOf("RegisterOperand")) { 1294 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1295 if (NotRegisters) 1296 return EEVT::TypeSet(); // Unknown. 1297 Record *RegClass = R->getValueAsDef("RegClass"); 1298 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1299 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1300 } 1301 1302 // Check to see if this is a register or a register class. 1303 if (R->isSubClassOf("RegisterClass")) { 1304 assert(ResNo == 0 && "Regclass ref only has one result!"); 1305 if (NotRegisters) 1306 return EEVT::TypeSet(); // Unknown. 1307 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1308 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1309 } 1310 1311 if (R->isSubClassOf("PatFrag")) { 1312 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1313 // Pattern fragment types will be resolved when they are inlined. 1314 return EEVT::TypeSet(); // Unknown. 1315 } 1316 1317 if (R->isSubClassOf("Register")) { 1318 assert(ResNo == 0 && "Registers only produce one result!"); 1319 if (NotRegisters) 1320 return EEVT::TypeSet(); // Unknown. 1321 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1322 return EEVT::TypeSet(T.getRegisterVTs(R)); 1323 } 1324 1325 if (R->isSubClassOf("SubRegIndex")) { 1326 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1327 return EEVT::TypeSet(); 1328 } 1329 1330 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1331 assert(ResNo == 0 && "This node only has one result!"); 1332 // Using a VTSDNode or CondCodeSDNode. 1333 return EEVT::TypeSet(MVT::Other, TP); 1334 } 1335 1336 if (R->isSubClassOf("ComplexPattern")) { 1337 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1338 if (NotRegisters) 1339 return EEVT::TypeSet(); // Unknown. 1340 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1341 TP); 1342 } 1343 if (R->isSubClassOf("PointerLikeRegClass")) { 1344 assert(ResNo == 0 && "Regclass can only have one result!"); 1345 return EEVT::TypeSet(MVT::iPTR, TP); 1346 } 1347 1348 if (R->getName() == "node" || R->getName() == "srcvalue" || 1349 R->getName() == "zero_reg") { 1350 // Placeholder. 1351 return EEVT::TypeSet(); // Unknown. 1352 } 1353 1354 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1355 return EEVT::TypeSet(MVT::Other, TP); 1356 } 1357 1358 1359 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1360 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1361 const CodeGenIntrinsic *TreePatternNode:: 1362 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1363 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1364 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1365 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1366 return 0; 1367 1368 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1369 return &CDP.getIntrinsicInfo(IID); 1370 } 1371 1372 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1373 /// return the ComplexPattern information, otherwise return null. 1374 const ComplexPattern * 1375 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1376 if (!isLeaf()) return 0; 1377 1378 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1379 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1380 return &CGP.getComplexPattern(DI->getDef()); 1381 return 0; 1382 } 1383 1384 /// NodeHasProperty - Return true if this node has the specified property. 1385 bool TreePatternNode::NodeHasProperty(SDNP Property, 1386 const CodeGenDAGPatterns &CGP) const { 1387 if (isLeaf()) { 1388 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1389 return CP->hasProperty(Property); 1390 return false; 1391 } 1392 1393 Record *Operator = getOperator(); 1394 if (!Operator->isSubClassOf("SDNode")) return false; 1395 1396 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1397 } 1398 1399 1400 1401 1402 /// TreeHasProperty - Return true if any node in this tree has the specified 1403 /// property. 1404 bool TreePatternNode::TreeHasProperty(SDNP Property, 1405 const CodeGenDAGPatterns &CGP) const { 1406 if (NodeHasProperty(Property, CGP)) 1407 return true; 1408 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1409 if (getChild(i)->TreeHasProperty(Property, CGP)) 1410 return true; 1411 return false; 1412 } 1413 1414 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1415 /// commutative intrinsic. 1416 bool 1417 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1418 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1419 return Int->isCommutative; 1420 return false; 1421 } 1422 1423 1424 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1425 /// this node and its children in the tree. This returns true if it makes a 1426 /// change, false otherwise. If a type contradiction is found, flag an error. 1427 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1428 if (TP.hasError()) 1429 return false; 1430 1431 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1432 if (isLeaf()) { 1433 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1434 // If it's a regclass or something else known, include the type. 1435 bool MadeChange = false; 1436 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1437 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1438 NotRegisters, TP), TP); 1439 return MadeChange; 1440 } 1441 1442 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1443 assert(Types.size() == 1 && "Invalid IntInit"); 1444 1445 // Int inits are always integers. :) 1446 bool MadeChange = Types[0].EnforceInteger(TP); 1447 1448 if (!Types[0].isConcrete()) 1449 return MadeChange; 1450 1451 MVT::SimpleValueType VT = getType(0); 1452 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1453 return MadeChange; 1454 1455 unsigned Size = EVT(VT).getSizeInBits(); 1456 // Make sure that the value is representable for this type. 1457 if (Size >= 32) return MadeChange; 1458 1459 // Check that the value doesn't use more bits than we have. It must either 1460 // be a sign- or zero-extended equivalent of the original. 1461 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1462 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1463 return MadeChange; 1464 1465 TP.error("Integer value '" + itostr(II->getValue()) + 1466 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1467 return false; 1468 } 1469 return false; 1470 } 1471 1472 // special handling for set, which isn't really an SDNode. 1473 if (getOperator()->getName() == "set") { 1474 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1475 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1476 unsigned NC = getNumChildren(); 1477 1478 TreePatternNode *SetVal = getChild(NC-1); 1479 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1480 1481 for (unsigned i = 0; i < NC-1; ++i) { 1482 TreePatternNode *Child = getChild(i); 1483 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1484 1485 // Types of operands must match. 1486 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1487 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1488 } 1489 return MadeChange; 1490 } 1491 1492 if (getOperator()->getName() == "implicit") { 1493 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1494 1495 bool MadeChange = false; 1496 for (unsigned i = 0; i < getNumChildren(); ++i) 1497 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1498 return MadeChange; 1499 } 1500 1501 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1502 bool MadeChange = false; 1503 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1504 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1505 1506 assert(getChild(0)->getNumTypes() == 1 && 1507 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1508 1509 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1510 // what type it gets, so if it didn't get a concrete type just give it the 1511 // first viable type from the reg class. 1512 if (!getChild(1)->hasTypeSet(0) && 1513 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1514 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1515 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1516 } 1517 return MadeChange; 1518 } 1519 1520 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1521 bool MadeChange = false; 1522 1523 // Apply the result type to the node. 1524 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1525 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1526 1527 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1528 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1529 1530 if (getNumChildren() != NumParamVTs + 1) { 1531 TP.error("Intrinsic '" + Int->Name + "' expects " + 1532 utostr(NumParamVTs) + " operands, not " + 1533 utostr(getNumChildren() - 1) + " operands!"); 1534 return false; 1535 } 1536 1537 // Apply type info to the intrinsic ID. 1538 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1539 1540 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1541 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1542 1543 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1544 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1545 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1546 } 1547 return MadeChange; 1548 } 1549 1550 if (getOperator()->isSubClassOf("SDNode")) { 1551 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1552 1553 // Check that the number of operands is sane. Negative operands -> varargs. 1554 if (NI.getNumOperands() >= 0 && 1555 getNumChildren() != (unsigned)NI.getNumOperands()) { 1556 TP.error(getOperator()->getName() + " node requires exactly " + 1557 itostr(NI.getNumOperands()) + " operands!"); 1558 return false; 1559 } 1560 1561 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1562 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1563 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1564 return MadeChange; 1565 } 1566 1567 if (getOperator()->isSubClassOf("Instruction")) { 1568 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1569 CodeGenInstruction &InstInfo = 1570 CDP.getTargetInfo().getInstruction(getOperator()); 1571 1572 bool MadeChange = false; 1573 1574 // Apply the result types to the node, these come from the things in the 1575 // (outs) list of the instruction. 1576 // FIXME: Cap at one result so far. 1577 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1578 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1579 Record *ResultNode = Inst.getResult(ResNo); 1580 1581 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1582 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1583 } else if (ResultNode->isSubClassOf("RegisterOperand")) { 1584 Record *RegClass = ResultNode->getValueAsDef("RegClass"); 1585 const CodeGenRegisterClass &RC = 1586 CDP.getTargetInfo().getRegisterClass(RegClass); 1587 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1588 } else if (ResultNode->isSubClassOf("unknown_class")) { 1589 // Nothing to do. 1590 } else { 1591 assert(ResultNode->isSubClassOf("RegisterClass") && 1592 "Operands should be register classes!"); 1593 const CodeGenRegisterClass &RC = 1594 CDP.getTargetInfo().getRegisterClass(ResultNode); 1595 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1596 } 1597 } 1598 1599 // If the instruction has implicit defs, we apply the first one as a result. 1600 // FIXME: This sucks, it should apply all implicit defs. 1601 if (!InstInfo.ImplicitDefs.empty()) { 1602 unsigned ResNo = NumResultsToAdd; 1603 1604 // FIXME: Generalize to multiple possible types and multiple possible 1605 // ImplicitDefs. 1606 MVT::SimpleValueType VT = 1607 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1608 1609 if (VT != MVT::Other) 1610 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1611 } 1612 1613 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1614 // be the same. 1615 if (getOperator()->getName() == "INSERT_SUBREG") { 1616 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1617 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1618 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1619 } 1620 1621 unsigned ChildNo = 0; 1622 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1623 Record *OperandNode = Inst.getOperand(i); 1624 1625 // If the instruction expects a predicate or optional def operand, we 1626 // codegen this by setting the operand to it's default value if it has a 1627 // non-empty DefaultOps field. 1628 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1629 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1630 continue; 1631 1632 // Verify that we didn't run out of provided operands. 1633 if (ChildNo >= getNumChildren()) { 1634 TP.error("Instruction '" + getOperator()->getName() + 1635 "' expects more operands than were provided."); 1636 return false; 1637 } 1638 1639 MVT::SimpleValueType VT; 1640 TreePatternNode *Child = getChild(ChildNo++); 1641 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1642 1643 if (OperandNode->isSubClassOf("RegisterClass")) { 1644 const CodeGenRegisterClass &RC = 1645 CDP.getTargetInfo().getRegisterClass(OperandNode); 1646 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1647 } else if (OperandNode->isSubClassOf("RegisterOperand")) { 1648 Record *RegClass = OperandNode->getValueAsDef("RegClass"); 1649 const CodeGenRegisterClass &RC = 1650 CDP.getTargetInfo().getRegisterClass(RegClass); 1651 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1652 } else if (OperandNode->isSubClassOf("Operand")) { 1653 VT = getValueType(OperandNode->getValueAsDef("Type")); 1654 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1655 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1656 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1657 } else if (OperandNode->isSubClassOf("unknown_class")) { 1658 // Nothing to do. 1659 } else 1660 llvm_unreachable("Unknown operand type!"); 1661 1662 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1663 } 1664 1665 if (ChildNo != getNumChildren()) { 1666 TP.error("Instruction '" + getOperator()->getName() + 1667 "' was provided too many operands!"); 1668 return false; 1669 } 1670 1671 return MadeChange; 1672 } 1673 1674 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1675 1676 // Node transforms always take one operand. 1677 if (getNumChildren() != 1) { 1678 TP.error("Node transform '" + getOperator()->getName() + 1679 "' requires one operand!"); 1680 return false; 1681 } 1682 1683 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1684 1685 1686 // If either the output or input of the xform does not have exact 1687 // type info. We assume they must be the same. Otherwise, it is perfectly 1688 // legal to transform from one type to a completely different type. 1689 #if 0 1690 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1691 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1692 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1693 return MadeChange; 1694 } 1695 #endif 1696 return MadeChange; 1697 } 1698 1699 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1700 /// RHS of a commutative operation, not the on LHS. 1701 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1702 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1703 return true; 1704 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1705 return true; 1706 return false; 1707 } 1708 1709 1710 /// canPatternMatch - If it is impossible for this pattern to match on this 1711 /// target, fill in Reason and return false. Otherwise, return true. This is 1712 /// used as a sanity check for .td files (to prevent people from writing stuff 1713 /// that can never possibly work), and to prevent the pattern permuter from 1714 /// generating stuff that is useless. 1715 bool TreePatternNode::canPatternMatch(std::string &Reason, 1716 const CodeGenDAGPatterns &CDP) { 1717 if (isLeaf()) return true; 1718 1719 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1720 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1721 return false; 1722 1723 // If this is an intrinsic, handle cases that would make it not match. For 1724 // example, if an operand is required to be an immediate. 1725 if (getOperator()->isSubClassOf("Intrinsic")) { 1726 // TODO: 1727 return true; 1728 } 1729 1730 // If this node is a commutative operator, check that the LHS isn't an 1731 // immediate. 1732 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1733 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1734 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1735 // Scan all of the operands of the node and make sure that only the last one 1736 // is a constant node, unless the RHS also is. 1737 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1738 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1739 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1740 if (OnlyOnRHSOfCommutative(getChild(i))) { 1741 Reason="Immediate value must be on the RHS of commutative operators!"; 1742 return false; 1743 } 1744 } 1745 } 1746 1747 return true; 1748 } 1749 1750 //===----------------------------------------------------------------------===// 1751 // TreePattern implementation 1752 // 1753 1754 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1755 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1756 isInputPattern(isInput), HasError(false) { 1757 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1758 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1759 } 1760 1761 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1762 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1763 isInputPattern(isInput), HasError(false) { 1764 Trees.push_back(ParseTreePattern(Pat, "")); 1765 } 1766 1767 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1768 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 1769 isInputPattern(isInput), HasError(false) { 1770 Trees.push_back(Pat); 1771 } 1772 1773 void TreePattern::error(const std::string &Msg) { 1774 if (HasError) 1775 return; 1776 dump(); 1777 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1778 HasError = true; 1779 } 1780 1781 void TreePattern::ComputeNamedNodes() { 1782 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1783 ComputeNamedNodes(Trees[i]); 1784 } 1785 1786 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1787 if (!N->getName().empty()) 1788 NamedNodes[N->getName()].push_back(N); 1789 1790 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1791 ComputeNamedNodes(N->getChild(i)); 1792 } 1793 1794 1795 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1796 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 1797 Record *R = DI->getDef(); 1798 1799 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1800 // TreePatternNode of its own. For example: 1801 /// (foo GPR, imm) -> (foo GPR, (imm)) 1802 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1803 return ParseTreePattern( 1804 DagInit::get(DI, "", 1805 std::vector<std::pair<Init*, std::string> >()), 1806 OpName); 1807 1808 // Input argument? 1809 TreePatternNode *Res = new TreePatternNode(DI, 1); 1810 if (R->getName() == "node" && !OpName.empty()) { 1811 if (OpName.empty()) 1812 error("'node' argument requires a name to match with operand list"); 1813 Args.push_back(OpName); 1814 } 1815 1816 Res->setName(OpName); 1817 return Res; 1818 } 1819 1820 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 1821 if (!OpName.empty()) 1822 error("Constant int argument should not have a name!"); 1823 return new TreePatternNode(II, 1); 1824 } 1825 1826 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 1827 // Turn this into an IntInit. 1828 Init *II = BI->convertInitializerTo(IntRecTy::get()); 1829 if (II == 0 || !isa<IntInit>(II)) 1830 error("Bits value must be constants!"); 1831 return ParseTreePattern(II, OpName); 1832 } 1833 1834 DagInit *Dag = dyn_cast<DagInit>(TheInit); 1835 if (!Dag) { 1836 TheInit->dump(); 1837 error("Pattern has unexpected init kind!"); 1838 } 1839 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 1840 if (!OpDef) error("Pattern has unexpected operator type!"); 1841 Record *Operator = OpDef->getDef(); 1842 1843 if (Operator->isSubClassOf("ValueType")) { 1844 // If the operator is a ValueType, then this must be "type cast" of a leaf 1845 // node. 1846 if (Dag->getNumArgs() != 1) 1847 error("Type cast only takes one operand!"); 1848 1849 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1850 1851 // Apply the type cast. 1852 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1853 New->UpdateNodeType(0, getValueType(Operator), *this); 1854 1855 if (!OpName.empty()) 1856 error("ValueType cast should not have a name!"); 1857 return New; 1858 } 1859 1860 // Verify that this is something that makes sense for an operator. 1861 if (!Operator->isSubClassOf("PatFrag") && 1862 !Operator->isSubClassOf("SDNode") && 1863 !Operator->isSubClassOf("Instruction") && 1864 !Operator->isSubClassOf("SDNodeXForm") && 1865 !Operator->isSubClassOf("Intrinsic") && 1866 Operator->getName() != "set" && 1867 Operator->getName() != "implicit") 1868 error("Unrecognized node '" + Operator->getName() + "'!"); 1869 1870 // Check to see if this is something that is illegal in an input pattern. 1871 if (isInputPattern) { 1872 if (Operator->isSubClassOf("Instruction") || 1873 Operator->isSubClassOf("SDNodeXForm")) 1874 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1875 } else { 1876 if (Operator->isSubClassOf("Intrinsic")) 1877 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1878 1879 if (Operator->isSubClassOf("SDNode") && 1880 Operator->getName() != "imm" && 1881 Operator->getName() != "fpimm" && 1882 Operator->getName() != "tglobaltlsaddr" && 1883 Operator->getName() != "tconstpool" && 1884 Operator->getName() != "tjumptable" && 1885 Operator->getName() != "tframeindex" && 1886 Operator->getName() != "texternalsym" && 1887 Operator->getName() != "tblockaddress" && 1888 Operator->getName() != "tglobaladdr" && 1889 Operator->getName() != "bb" && 1890 Operator->getName() != "vt") 1891 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1892 } 1893 1894 std::vector<TreePatternNode*> Children; 1895 1896 // Parse all the operands. 1897 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1898 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1899 1900 // If the operator is an intrinsic, then this is just syntactic sugar for for 1901 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1902 // convert the intrinsic name to a number. 1903 if (Operator->isSubClassOf("Intrinsic")) { 1904 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1905 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1906 1907 // If this intrinsic returns void, it must have side-effects and thus a 1908 // chain. 1909 if (Int.IS.RetVTs.empty()) 1910 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1911 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1912 // Has side-effects, requires chain. 1913 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1914 else // Otherwise, no chain. 1915 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1916 1917 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 1918 Children.insert(Children.begin(), IIDNode); 1919 } 1920 1921 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1922 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1923 Result->setName(OpName); 1924 1925 if (!Dag->getName().empty()) { 1926 assert(Result->getName().empty()); 1927 Result->setName(Dag->getName()); 1928 } 1929 return Result; 1930 } 1931 1932 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1933 /// will never match in favor of something obvious that will. This is here 1934 /// strictly as a convenience to target authors because it allows them to write 1935 /// more type generic things and have useless type casts fold away. 1936 /// 1937 /// This returns true if any change is made. 1938 static bool SimplifyTree(TreePatternNode *&N) { 1939 if (N->isLeaf()) 1940 return false; 1941 1942 // If we have a bitconvert with a resolved type and if the source and 1943 // destination types are the same, then the bitconvert is useless, remove it. 1944 if (N->getOperator()->getName() == "bitconvert" && 1945 N->getExtType(0).isConcrete() && 1946 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1947 N->getName().empty()) { 1948 N = N->getChild(0); 1949 SimplifyTree(N); 1950 return true; 1951 } 1952 1953 // Walk all children. 1954 bool MadeChange = false; 1955 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1956 TreePatternNode *Child = N->getChild(i); 1957 MadeChange |= SimplifyTree(Child); 1958 N->setChild(i, Child); 1959 } 1960 return MadeChange; 1961 } 1962 1963 1964 1965 /// InferAllTypes - Infer/propagate as many types throughout the expression 1966 /// patterns as possible. Return true if all types are inferred, false 1967 /// otherwise. Flags an error if a type contradiction is found. 1968 bool TreePattern:: 1969 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1970 if (NamedNodes.empty()) 1971 ComputeNamedNodes(); 1972 1973 bool MadeChange = true; 1974 while (MadeChange) { 1975 MadeChange = false; 1976 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1977 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1978 MadeChange |= SimplifyTree(Trees[i]); 1979 } 1980 1981 // If there are constraints on our named nodes, apply them. 1982 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1983 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1984 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1985 1986 // If we have input named node types, propagate their types to the named 1987 // values here. 1988 if (InNamedTypes) { 1989 // FIXME: Should be error? 1990 assert(InNamedTypes->count(I->getKey()) && 1991 "Named node in output pattern but not input pattern?"); 1992 1993 const SmallVectorImpl<TreePatternNode*> &InNodes = 1994 InNamedTypes->find(I->getKey())->second; 1995 1996 // The input types should be fully resolved by now. 1997 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1998 // If this node is a register class, and it is the root of the pattern 1999 // then we're mapping something onto an input register. We allow 2000 // changing the type of the input register in this case. This allows 2001 // us to match things like: 2002 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2003 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 2004 DefInit *DI = dyn_cast<DefInit>(Nodes[i]->getLeafValue()); 2005 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2006 DI->getDef()->isSubClassOf("RegisterOperand"))) 2007 continue; 2008 } 2009 2010 assert(Nodes[i]->getNumTypes() == 1 && 2011 InNodes[0]->getNumTypes() == 1 && 2012 "FIXME: cannot name multiple result nodes yet"); 2013 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 2014 *this); 2015 } 2016 } 2017 2018 // If there are multiple nodes with the same name, they must all have the 2019 // same type. 2020 if (I->second.size() > 1) { 2021 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2022 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2023 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2024 "FIXME: cannot name multiple result nodes yet"); 2025 2026 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2027 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2028 } 2029 } 2030 } 2031 } 2032 2033 bool HasUnresolvedTypes = false; 2034 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 2035 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 2036 return !HasUnresolvedTypes; 2037 } 2038 2039 void TreePattern::print(raw_ostream &OS) const { 2040 OS << getRecord()->getName(); 2041 if (!Args.empty()) { 2042 OS << "(" << Args[0]; 2043 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2044 OS << ", " << Args[i]; 2045 OS << ")"; 2046 } 2047 OS << ": "; 2048 2049 if (Trees.size() > 1) 2050 OS << "[\n"; 2051 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 2052 OS << "\t"; 2053 Trees[i]->print(OS); 2054 OS << "\n"; 2055 } 2056 2057 if (Trees.size() > 1) 2058 OS << "]\n"; 2059 } 2060 2061 void TreePattern::dump() const { print(errs()); } 2062 2063 //===----------------------------------------------------------------------===// 2064 // CodeGenDAGPatterns implementation 2065 // 2066 2067 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2068 Records(R), Target(R) { 2069 2070 Intrinsics = LoadIntrinsics(Records, false); 2071 TgtIntrinsics = LoadIntrinsics(Records, true); 2072 ParseNodeInfo(); 2073 ParseNodeTransforms(); 2074 ParseComplexPatterns(); 2075 ParsePatternFragments(); 2076 ParseDefaultOperands(); 2077 ParseInstructions(); 2078 ParsePatterns(); 2079 2080 // Generate variants. For example, commutative patterns can match 2081 // multiple ways. Add them to PatternsToMatch as well. 2082 GenerateVariants(); 2083 2084 // Infer instruction flags. For example, we can detect loads, 2085 // stores, and side effects in many cases by examining an 2086 // instruction's pattern. 2087 InferInstructionFlags(); 2088 2089 // Verify that instruction flags match the patterns. 2090 VerifyInstructionFlags(); 2091 } 2092 2093 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2094 for (pf_iterator I = PatternFragments.begin(), 2095 E = PatternFragments.end(); I != E; ++I) 2096 delete I->second; 2097 } 2098 2099 2100 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2101 Record *N = Records.getDef(Name); 2102 if (!N || !N->isSubClassOf("SDNode")) { 2103 errs() << "Error getting SDNode '" << Name << "'!\n"; 2104 exit(1); 2105 } 2106 return N; 2107 } 2108 2109 // Parse all of the SDNode definitions for the target, populating SDNodes. 2110 void CodeGenDAGPatterns::ParseNodeInfo() { 2111 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2112 while (!Nodes.empty()) { 2113 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2114 Nodes.pop_back(); 2115 } 2116 2117 // Get the builtin intrinsic nodes. 2118 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2119 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2120 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2121 } 2122 2123 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2124 /// map, and emit them to the file as functions. 2125 void CodeGenDAGPatterns::ParseNodeTransforms() { 2126 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2127 while (!Xforms.empty()) { 2128 Record *XFormNode = Xforms.back(); 2129 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2130 std::string Code = XFormNode->getValueAsString("XFormFunction"); 2131 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2132 2133 Xforms.pop_back(); 2134 } 2135 } 2136 2137 void CodeGenDAGPatterns::ParseComplexPatterns() { 2138 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2139 while (!AMs.empty()) { 2140 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2141 AMs.pop_back(); 2142 } 2143 } 2144 2145 2146 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2147 /// file, building up the PatternFragments map. After we've collected them all, 2148 /// inline fragments together as necessary, so that there are no references left 2149 /// inside a pattern fragment to a pattern fragment. 2150 /// 2151 void CodeGenDAGPatterns::ParsePatternFragments() { 2152 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2153 2154 // First step, parse all of the fragments. 2155 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2156 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2157 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2158 PatternFragments[Fragments[i]] = P; 2159 2160 // Validate the argument list, converting it to set, to discard duplicates. 2161 std::vector<std::string> &Args = P->getArgList(); 2162 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2163 2164 if (OperandsSet.count("")) 2165 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2166 2167 // Parse the operands list. 2168 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2169 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2170 // Special cases: ops == outs == ins. Different names are used to 2171 // improve readability. 2172 if (!OpsOp || 2173 (OpsOp->getDef()->getName() != "ops" && 2174 OpsOp->getDef()->getName() != "outs" && 2175 OpsOp->getDef()->getName() != "ins")) 2176 P->error("Operands list should start with '(ops ... '!"); 2177 2178 // Copy over the arguments. 2179 Args.clear(); 2180 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2181 if (!isa<DefInit>(OpsList->getArg(j)) || 2182 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2183 P->error("Operands list should all be 'node' values."); 2184 if (OpsList->getArgName(j).empty()) 2185 P->error("Operands list should have names for each operand!"); 2186 if (!OperandsSet.count(OpsList->getArgName(j))) 2187 P->error("'" + OpsList->getArgName(j) + 2188 "' does not occur in pattern or was multiply specified!"); 2189 OperandsSet.erase(OpsList->getArgName(j)); 2190 Args.push_back(OpsList->getArgName(j)); 2191 } 2192 2193 if (!OperandsSet.empty()) 2194 P->error("Operands list does not contain an entry for operand '" + 2195 *OperandsSet.begin() + "'!"); 2196 2197 // If there is a code init for this fragment, keep track of the fact that 2198 // this fragment uses it. 2199 TreePredicateFn PredFn(P); 2200 if (!PredFn.isAlwaysTrue()) 2201 P->getOnlyTree()->addPredicateFn(PredFn); 2202 2203 // If there is a node transformation corresponding to this, keep track of 2204 // it. 2205 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2206 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2207 P->getOnlyTree()->setTransformFn(Transform); 2208 } 2209 2210 // Now that we've parsed all of the tree fragments, do a closure on them so 2211 // that there are not references to PatFrags left inside of them. 2212 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2213 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2214 ThePat->InlinePatternFragments(); 2215 2216 // Infer as many types as possible. Don't worry about it if we don't infer 2217 // all of them, some may depend on the inputs of the pattern. 2218 ThePat->InferAllTypes(); 2219 ThePat->resetError(); 2220 2221 // If debugging, print out the pattern fragment result. 2222 DEBUG(ThePat->dump()); 2223 } 2224 } 2225 2226 void CodeGenDAGPatterns::ParseDefaultOperands() { 2227 std::vector<Record*> DefaultOps; 2228 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2229 2230 // Find some SDNode. 2231 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2232 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2233 2234 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2235 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2236 2237 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2238 // SomeSDnode so that we can parse this. 2239 std::vector<std::pair<Init*, std::string> > Ops; 2240 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2241 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2242 DefaultInfo->getArgName(op))); 2243 DagInit *DI = DagInit::get(SomeSDNode, "", Ops); 2244 2245 // Create a TreePattern to parse this. 2246 TreePattern P(DefaultOps[i], DI, false, *this); 2247 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2248 2249 // Copy the operands over into a DAGDefaultOperand. 2250 DAGDefaultOperand DefaultOpInfo; 2251 2252 TreePatternNode *T = P.getTree(0); 2253 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2254 TreePatternNode *TPN = T->getChild(op); 2255 while (TPN->ApplyTypeConstraints(P, false)) 2256 /* Resolve all types */; 2257 2258 if (TPN->ContainsUnresolvedType()) { 2259 PrintFatalError("Value #" + utostr(i) + " of OperandWithDefaultOps '" + 2260 DefaultOps[i]->getName() +"' doesn't have a concrete type!"); 2261 } 2262 DefaultOpInfo.DefaultOps.push_back(TPN); 2263 } 2264 2265 // Insert it into the DefaultOperands map so we can find it later. 2266 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2267 } 2268 } 2269 2270 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2271 /// instruction input. Return true if this is a real use. 2272 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2273 std::map<std::string, TreePatternNode*> &InstInputs) { 2274 // No name -> not interesting. 2275 if (Pat->getName().empty()) { 2276 if (Pat->isLeaf()) { 2277 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2278 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2279 DI->getDef()->isSubClassOf("RegisterOperand"))) 2280 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2281 } 2282 return false; 2283 } 2284 2285 Record *Rec; 2286 if (Pat->isLeaf()) { 2287 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2288 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2289 Rec = DI->getDef(); 2290 } else { 2291 Rec = Pat->getOperator(); 2292 } 2293 2294 // SRCVALUE nodes are ignored. 2295 if (Rec->getName() == "srcvalue") 2296 return false; 2297 2298 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2299 if (!Slot) { 2300 Slot = Pat; 2301 return true; 2302 } 2303 Record *SlotRec; 2304 if (Slot->isLeaf()) { 2305 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2306 } else { 2307 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2308 SlotRec = Slot->getOperator(); 2309 } 2310 2311 // Ensure that the inputs agree if we've already seen this input. 2312 if (Rec != SlotRec) 2313 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2314 if (Slot->getExtTypes() != Pat->getExtTypes()) 2315 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2316 return true; 2317 } 2318 2319 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2320 /// part of "I", the instruction), computing the set of inputs and outputs of 2321 /// the pattern. Report errors if we see anything naughty. 2322 void CodeGenDAGPatterns:: 2323 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2324 std::map<std::string, TreePatternNode*> &InstInputs, 2325 std::map<std::string, TreePatternNode*>&InstResults, 2326 std::vector<Record*> &InstImpResults) { 2327 if (Pat->isLeaf()) { 2328 bool isUse = HandleUse(I, Pat, InstInputs); 2329 if (!isUse && Pat->getTransformFn()) 2330 I->error("Cannot specify a transform function for a non-input value!"); 2331 return; 2332 } 2333 2334 if (Pat->getOperator()->getName() == "implicit") { 2335 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2336 TreePatternNode *Dest = Pat->getChild(i); 2337 if (!Dest->isLeaf()) 2338 I->error("implicitly defined value should be a register!"); 2339 2340 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2341 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2342 I->error("implicitly defined value should be a register!"); 2343 InstImpResults.push_back(Val->getDef()); 2344 } 2345 return; 2346 } 2347 2348 if (Pat->getOperator()->getName() != "set") { 2349 // If this is not a set, verify that the children nodes are not void typed, 2350 // and recurse. 2351 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2352 if (Pat->getChild(i)->getNumTypes() == 0) 2353 I->error("Cannot have void nodes inside of patterns!"); 2354 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2355 InstImpResults); 2356 } 2357 2358 // If this is a non-leaf node with no children, treat it basically as if 2359 // it were a leaf. This handles nodes like (imm). 2360 bool isUse = HandleUse(I, Pat, InstInputs); 2361 2362 if (!isUse && Pat->getTransformFn()) 2363 I->error("Cannot specify a transform function for a non-input value!"); 2364 return; 2365 } 2366 2367 // Otherwise, this is a set, validate and collect instruction results. 2368 if (Pat->getNumChildren() == 0) 2369 I->error("set requires operands!"); 2370 2371 if (Pat->getTransformFn()) 2372 I->error("Cannot specify a transform function on a set node!"); 2373 2374 // Check the set destinations. 2375 unsigned NumDests = Pat->getNumChildren()-1; 2376 for (unsigned i = 0; i != NumDests; ++i) { 2377 TreePatternNode *Dest = Pat->getChild(i); 2378 if (!Dest->isLeaf()) 2379 I->error("set destination should be a register!"); 2380 2381 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2382 if (!Val) 2383 I->error("set destination should be a register!"); 2384 2385 if (Val->getDef()->isSubClassOf("RegisterClass") || 2386 Val->getDef()->isSubClassOf("RegisterOperand") || 2387 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2388 if (Dest->getName().empty()) 2389 I->error("set destination must have a name!"); 2390 if (InstResults.count(Dest->getName())) 2391 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2392 InstResults[Dest->getName()] = Dest; 2393 } else if (Val->getDef()->isSubClassOf("Register")) { 2394 InstImpResults.push_back(Val->getDef()); 2395 } else { 2396 I->error("set destination should be a register!"); 2397 } 2398 } 2399 2400 // Verify and collect info from the computation. 2401 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2402 InstInputs, InstResults, InstImpResults); 2403 } 2404 2405 //===----------------------------------------------------------------------===// 2406 // Instruction Analysis 2407 //===----------------------------------------------------------------------===// 2408 2409 class InstAnalyzer { 2410 const CodeGenDAGPatterns &CDP; 2411 public: 2412 bool hasSideEffects; 2413 bool mayStore; 2414 bool mayLoad; 2415 bool isBitcast; 2416 bool isVariadic; 2417 2418 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2419 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2420 isBitcast(false), isVariadic(false) {} 2421 2422 void Analyze(const TreePattern *Pat) { 2423 // Assume only the first tree is the pattern. The others are clobber nodes. 2424 AnalyzeNode(Pat->getTree(0)); 2425 } 2426 2427 void Analyze(const PatternToMatch *Pat) { 2428 AnalyzeNode(Pat->getSrcPattern()); 2429 } 2430 2431 private: 2432 bool IsNodeBitcast(const TreePatternNode *N) const { 2433 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2434 return false; 2435 2436 if (N->getNumChildren() != 2) 2437 return false; 2438 2439 const TreePatternNode *N0 = N->getChild(0); 2440 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2441 return false; 2442 2443 const TreePatternNode *N1 = N->getChild(1); 2444 if (N1->isLeaf()) 2445 return false; 2446 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2447 return false; 2448 2449 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2450 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2451 return false; 2452 return OpInfo.getEnumName() == "ISD::BITCAST"; 2453 } 2454 2455 public: 2456 void AnalyzeNode(const TreePatternNode *N) { 2457 if (N->isLeaf()) { 2458 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2459 Record *LeafRec = DI->getDef(); 2460 // Handle ComplexPattern leaves. 2461 if (LeafRec->isSubClassOf("ComplexPattern")) { 2462 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2463 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2464 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2465 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2466 } 2467 } 2468 return; 2469 } 2470 2471 // Analyze children. 2472 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2473 AnalyzeNode(N->getChild(i)); 2474 2475 // Ignore set nodes, which are not SDNodes. 2476 if (N->getOperator()->getName() == "set") { 2477 isBitcast = IsNodeBitcast(N); 2478 return; 2479 } 2480 2481 // Get information about the SDNode for the operator. 2482 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2483 2484 // Notice properties of the node. 2485 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2486 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2487 if (OpInfo.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2488 if (OpInfo.hasProperty(SDNPVariadic)) isVariadic = true; 2489 2490 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2491 // If this is an intrinsic, analyze it. 2492 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2493 mayLoad = true;// These may load memory. 2494 2495 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2496 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2497 2498 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2499 // WriteMem intrinsics can have other strange effects. 2500 hasSideEffects = true; 2501 } 2502 } 2503 2504 }; 2505 2506 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2507 const InstAnalyzer &PatInfo, 2508 Record *PatDef) { 2509 bool Error = false; 2510 2511 // Remember where InstInfo got its flags. 2512 if (InstInfo.hasUndefFlags()) 2513 InstInfo.InferredFrom = PatDef; 2514 2515 // Check explicitly set flags for consistency. 2516 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2517 !InstInfo.hasSideEffects_Unset) { 2518 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2519 // the pattern has no side effects. That could be useful for div/rem 2520 // instructions that may trap. 2521 if (!InstInfo.hasSideEffects) { 2522 Error = true; 2523 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2524 Twine(InstInfo.hasSideEffects)); 2525 } 2526 } 2527 2528 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2529 Error = true; 2530 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2531 Twine(InstInfo.mayStore)); 2532 } 2533 2534 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2535 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2536 // Some targets translate imediates to loads. 2537 if (!InstInfo.mayLoad) { 2538 Error = true; 2539 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2540 Twine(InstInfo.mayLoad)); 2541 } 2542 } 2543 2544 // Transfer inferred flags. 2545 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2546 InstInfo.mayStore |= PatInfo.mayStore; 2547 InstInfo.mayLoad |= PatInfo.mayLoad; 2548 2549 // These flags are silently added without any verification. 2550 InstInfo.isBitcast |= PatInfo.isBitcast; 2551 2552 // Don't infer isVariadic. This flag means something different on SDNodes and 2553 // instructions. For example, a CALL SDNode is variadic because it has the 2554 // call arguments as operands, but a CALL instruction is not variadic - it 2555 // has argument registers as implicit, not explicit uses. 2556 2557 return Error; 2558 } 2559 2560 /// hasNullFragReference - Return true if the DAG has any reference to the 2561 /// null_frag operator. 2562 static bool hasNullFragReference(DagInit *DI) { 2563 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2564 if (!OpDef) return false; 2565 Record *Operator = OpDef->getDef(); 2566 2567 // If this is the null fragment, return true. 2568 if (Operator->getName() == "null_frag") return true; 2569 // If any of the arguments reference the null fragment, return true. 2570 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2571 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2572 if (Arg && hasNullFragReference(Arg)) 2573 return true; 2574 } 2575 2576 return false; 2577 } 2578 2579 /// hasNullFragReference - Return true if any DAG in the list references 2580 /// the null_frag operator. 2581 static bool hasNullFragReference(ListInit *LI) { 2582 for (unsigned i = 0, e = LI->getSize(); i != e; ++i) { 2583 DagInit *DI = dyn_cast<DagInit>(LI->getElement(i)); 2584 assert(DI && "non-dag in an instruction Pattern list?!"); 2585 if (hasNullFragReference(DI)) 2586 return true; 2587 } 2588 return false; 2589 } 2590 2591 /// Get all the instructions in a tree. 2592 static void 2593 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2594 if (Tree->isLeaf()) 2595 return; 2596 if (Tree->getOperator()->isSubClassOf("Instruction")) 2597 Instrs.push_back(Tree->getOperator()); 2598 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2599 getInstructionsInTree(Tree->getChild(i), Instrs); 2600 } 2601 2602 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2603 /// any fragments involved. This populates the Instructions list with fully 2604 /// resolved instructions. 2605 void CodeGenDAGPatterns::ParseInstructions() { 2606 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2607 2608 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2609 ListInit *LI = 0; 2610 2611 if (isa<ListInit>(Instrs[i]->getValueInit("Pattern"))) 2612 LI = Instrs[i]->getValueAsListInit("Pattern"); 2613 2614 // If there is no pattern, only collect minimal information about the 2615 // instruction for its operand list. We have to assume that there is one 2616 // result, as we have no detailed info. A pattern which references the 2617 // null_frag operator is as-if no pattern were specified. Normally this 2618 // is from a multiclass expansion w/ a SDPatternOperator passed in as 2619 // null_frag. 2620 if (!LI || LI->getSize() == 0 || hasNullFragReference(LI)) { 2621 std::vector<Record*> Results; 2622 std::vector<Record*> Operands; 2623 2624 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2625 2626 if (InstInfo.Operands.size() != 0) { 2627 if (InstInfo.Operands.NumDefs == 0) { 2628 // These produce no results 2629 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2630 Operands.push_back(InstInfo.Operands[j].Rec); 2631 } else { 2632 // Assume the first operand is the result. 2633 Results.push_back(InstInfo.Operands[0].Rec); 2634 2635 // The rest are inputs. 2636 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2637 Operands.push_back(InstInfo.Operands[j].Rec); 2638 } 2639 } 2640 2641 // Create and insert the instruction. 2642 std::vector<Record*> ImpResults; 2643 Instructions.insert(std::make_pair(Instrs[i], 2644 DAGInstruction(0, Results, Operands, ImpResults))); 2645 continue; // no pattern. 2646 } 2647 2648 // Parse the instruction. 2649 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2650 // Inline pattern fragments into it. 2651 I->InlinePatternFragments(); 2652 2653 // Infer as many types as possible. If we cannot infer all of them, we can 2654 // never do anything with this instruction pattern: report it to the user. 2655 if (!I->InferAllTypes()) 2656 I->error("Could not infer all types in pattern!"); 2657 2658 // InstInputs - Keep track of all of the inputs of the instruction, along 2659 // with the record they are declared as. 2660 std::map<std::string, TreePatternNode*> InstInputs; 2661 2662 // InstResults - Keep track of all the virtual registers that are 'set' 2663 // in the instruction, including what reg class they are. 2664 std::map<std::string, TreePatternNode*> InstResults; 2665 2666 std::vector<Record*> InstImpResults; 2667 2668 // Verify that the top-level forms in the instruction are of void type, and 2669 // fill in the InstResults map. 2670 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2671 TreePatternNode *Pat = I->getTree(j); 2672 if (Pat->getNumTypes() != 0) 2673 I->error("Top-level forms in instruction pattern should have" 2674 " void types"); 2675 2676 // Find inputs and outputs, and verify the structure of the uses/defs. 2677 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2678 InstImpResults); 2679 } 2680 2681 // Now that we have inputs and outputs of the pattern, inspect the operands 2682 // list for the instruction. This determines the order that operands are 2683 // added to the machine instruction the node corresponds to. 2684 unsigned NumResults = InstResults.size(); 2685 2686 // Parse the operands list from the (ops) list, validating it. 2687 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2688 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2689 2690 // Check that all of the results occur first in the list. 2691 std::vector<Record*> Results; 2692 TreePatternNode *Res0Node = 0; 2693 for (unsigned i = 0; i != NumResults; ++i) { 2694 if (i == CGI.Operands.size()) 2695 I->error("'" + InstResults.begin()->first + 2696 "' set but does not appear in operand list!"); 2697 const std::string &OpName = CGI.Operands[i].Name; 2698 2699 // Check that it exists in InstResults. 2700 TreePatternNode *RNode = InstResults[OpName]; 2701 if (RNode == 0) 2702 I->error("Operand $" + OpName + " does not exist in operand list!"); 2703 2704 if (i == 0) 2705 Res0Node = RNode; 2706 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 2707 if (R == 0) 2708 I->error("Operand $" + OpName + " should be a set destination: all " 2709 "outputs must occur before inputs in operand list!"); 2710 2711 if (CGI.Operands[i].Rec != R) 2712 I->error("Operand $" + OpName + " class mismatch!"); 2713 2714 // Remember the return type. 2715 Results.push_back(CGI.Operands[i].Rec); 2716 2717 // Okay, this one checks out. 2718 InstResults.erase(OpName); 2719 } 2720 2721 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2722 // the copy while we're checking the inputs. 2723 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2724 2725 std::vector<TreePatternNode*> ResultNodeOperands; 2726 std::vector<Record*> Operands; 2727 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2728 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2729 const std::string &OpName = Op.Name; 2730 if (OpName.empty()) 2731 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2732 2733 if (!InstInputsCheck.count(OpName)) { 2734 // If this is an operand with a DefaultOps set filled in, we can ignore 2735 // this. When we codegen it, we will do so as always executed. 2736 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 2737 // Does it have a non-empty DefaultOps field? If so, ignore this 2738 // operand. 2739 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2740 continue; 2741 } 2742 I->error("Operand $" + OpName + 2743 " does not appear in the instruction pattern"); 2744 } 2745 TreePatternNode *InVal = InstInputsCheck[OpName]; 2746 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2747 2748 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 2749 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2750 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2751 I->error("Operand $" + OpName + "'s register class disagrees" 2752 " between the operand and pattern"); 2753 } 2754 Operands.push_back(Op.Rec); 2755 2756 // Construct the result for the dest-pattern operand list. 2757 TreePatternNode *OpNode = InVal->clone(); 2758 2759 // No predicate is useful on the result. 2760 OpNode->clearPredicateFns(); 2761 2762 // Promote the xform function to be an explicit node if set. 2763 if (Record *Xform = OpNode->getTransformFn()) { 2764 OpNode->setTransformFn(0); 2765 std::vector<TreePatternNode*> Children; 2766 Children.push_back(OpNode); 2767 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2768 } 2769 2770 ResultNodeOperands.push_back(OpNode); 2771 } 2772 2773 if (!InstInputsCheck.empty()) 2774 I->error("Input operand $" + InstInputsCheck.begin()->first + 2775 " occurs in pattern but not in operands list!"); 2776 2777 TreePatternNode *ResultPattern = 2778 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2779 GetNumNodeResults(I->getRecord(), *this)); 2780 // Copy fully inferred output node type to instruction result pattern. 2781 for (unsigned i = 0; i != NumResults; ++i) 2782 ResultPattern->setType(i, Res0Node->getExtType(i)); 2783 2784 // Create and insert the instruction. 2785 // FIXME: InstImpResults should not be part of DAGInstruction. 2786 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2787 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2788 2789 // Use a temporary tree pattern to infer all types and make sure that the 2790 // constructed result is correct. This depends on the instruction already 2791 // being inserted into the Instructions map. 2792 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2793 Temp.InferAllTypes(&I->getNamedNodesMap()); 2794 2795 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2796 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2797 2798 DEBUG(I->dump()); 2799 } 2800 2801 // If we can, convert the instructions to be patterns that are matched! 2802 for (std::map<Record*, DAGInstruction, LessRecordByID>::iterator II = 2803 Instructions.begin(), 2804 E = Instructions.end(); II != E; ++II) { 2805 DAGInstruction &TheInst = II->second; 2806 TreePattern *I = TheInst.getPattern(); 2807 if (I == 0) continue; // No pattern. 2808 2809 // FIXME: Assume only the first tree is the pattern. The others are clobber 2810 // nodes. 2811 TreePatternNode *Pattern = I->getTree(0); 2812 TreePatternNode *SrcPattern; 2813 if (Pattern->getOperator()->getName() == "set") { 2814 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2815 } else{ 2816 // Not a set (store or something?) 2817 SrcPattern = Pattern; 2818 } 2819 2820 Record *Instr = II->first; 2821 AddPatternToMatch(I, 2822 PatternToMatch(Instr, 2823 Instr->getValueAsListInit("Predicates"), 2824 SrcPattern, 2825 TheInst.getResultPattern(), 2826 TheInst.getImpResults(), 2827 Instr->getValueAsInt("AddedComplexity"), 2828 Instr->getID())); 2829 } 2830 } 2831 2832 2833 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2834 2835 static void FindNames(const TreePatternNode *P, 2836 std::map<std::string, NameRecord> &Names, 2837 TreePattern *PatternTop) { 2838 if (!P->getName().empty()) { 2839 NameRecord &Rec = Names[P->getName()]; 2840 // If this is the first instance of the name, remember the node. 2841 if (Rec.second++ == 0) 2842 Rec.first = P; 2843 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2844 PatternTop->error("repetition of value: $" + P->getName() + 2845 " where different uses have different types!"); 2846 } 2847 2848 if (!P->isLeaf()) { 2849 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2850 FindNames(P->getChild(i), Names, PatternTop); 2851 } 2852 } 2853 2854 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 2855 const PatternToMatch &PTM) { 2856 // Do some sanity checking on the pattern we're about to match. 2857 std::string Reason; 2858 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 2859 PrintWarning(Pattern->getRecord()->getLoc(), 2860 Twine("Pattern can never match: ") + Reason); 2861 return; 2862 } 2863 2864 // If the source pattern's root is a complex pattern, that complex pattern 2865 // must specify the nodes it can potentially match. 2866 if (const ComplexPattern *CP = 2867 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2868 if (CP->getRootNodes().empty()) 2869 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2870 " could match"); 2871 2872 2873 // Find all of the named values in the input and output, ensure they have the 2874 // same type. 2875 std::map<std::string, NameRecord> SrcNames, DstNames; 2876 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2877 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2878 2879 // Scan all of the named values in the destination pattern, rejecting them if 2880 // they don't exist in the input pattern. 2881 for (std::map<std::string, NameRecord>::iterator 2882 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2883 if (SrcNames[I->first].first == 0) 2884 Pattern->error("Pattern has input without matching name in output: $" + 2885 I->first); 2886 } 2887 2888 // Scan all of the named values in the source pattern, rejecting them if the 2889 // name isn't used in the dest, and isn't used to tie two values together. 2890 for (std::map<std::string, NameRecord>::iterator 2891 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2892 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2893 Pattern->error("Pattern has dead named input: $" + I->first); 2894 2895 PatternsToMatch.push_back(PTM); 2896 } 2897 2898 2899 2900 void CodeGenDAGPatterns::InferInstructionFlags() { 2901 const std::vector<const CodeGenInstruction*> &Instructions = 2902 Target.getInstructionsByEnumValue(); 2903 2904 // First try to infer flags from the primary instruction pattern, if any. 2905 SmallVector<CodeGenInstruction*, 8> Revisit; 2906 unsigned Errors = 0; 2907 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2908 CodeGenInstruction &InstInfo = 2909 const_cast<CodeGenInstruction &>(*Instructions[i]); 2910 2911 // Treat neverHasSideEffects = 1 as the equivalent of hasSideEffects = 0. 2912 // This flag is obsolete and will be removed. 2913 if (InstInfo.neverHasSideEffects) { 2914 assert(!InstInfo.hasSideEffects); 2915 InstInfo.hasSideEffects_Unset = false; 2916 } 2917 2918 // Get the primary instruction pattern. 2919 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 2920 if (!Pattern) { 2921 if (InstInfo.hasUndefFlags()) 2922 Revisit.push_back(&InstInfo); 2923 continue; 2924 } 2925 InstAnalyzer PatInfo(*this); 2926 PatInfo.Analyze(Pattern); 2927 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 2928 } 2929 2930 // Second, look for single-instruction patterns defined outside the 2931 // instruction. 2932 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2933 const PatternToMatch &PTM = *I; 2934 2935 // We can only infer from single-instruction patterns, otherwise we won't 2936 // know which instruction should get the flags. 2937 SmallVector<Record*, 8> PatInstrs; 2938 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 2939 if (PatInstrs.size() != 1) 2940 continue; 2941 2942 // Get the single instruction. 2943 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 2944 2945 // Only infer properties from the first pattern. We'll verify the others. 2946 if (InstInfo.InferredFrom) 2947 continue; 2948 2949 InstAnalyzer PatInfo(*this); 2950 PatInfo.Analyze(&PTM); 2951 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 2952 } 2953 2954 if (Errors) 2955 PrintFatalError("pattern conflicts"); 2956 2957 // Revisit instructions with undefined flags and no pattern. 2958 if (Target.guessInstructionProperties()) { 2959 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2960 CodeGenInstruction &InstInfo = *Revisit[i]; 2961 if (InstInfo.InferredFrom) 2962 continue; 2963 // The mayLoad and mayStore flags default to false. 2964 // Conservatively assume hasSideEffects if it wasn't explicit. 2965 if (InstInfo.hasSideEffects_Unset) 2966 InstInfo.hasSideEffects = true; 2967 } 2968 return; 2969 } 2970 2971 // Complain about any flags that are still undefined. 2972 for (unsigned i = 0, e = Revisit.size(); i != e; ++i) { 2973 CodeGenInstruction &InstInfo = *Revisit[i]; 2974 if (InstInfo.InferredFrom) 2975 continue; 2976 if (InstInfo.hasSideEffects_Unset) 2977 PrintError(InstInfo.TheDef->getLoc(), 2978 "Can't infer hasSideEffects from patterns"); 2979 if (InstInfo.mayStore_Unset) 2980 PrintError(InstInfo.TheDef->getLoc(), 2981 "Can't infer mayStore from patterns"); 2982 if (InstInfo.mayLoad_Unset) 2983 PrintError(InstInfo.TheDef->getLoc(), 2984 "Can't infer mayLoad from patterns"); 2985 } 2986 } 2987 2988 2989 /// Verify instruction flags against pattern node properties. 2990 void CodeGenDAGPatterns::VerifyInstructionFlags() { 2991 unsigned Errors = 0; 2992 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 2993 const PatternToMatch &PTM = *I; 2994 SmallVector<Record*, 8> Instrs; 2995 getInstructionsInTree(PTM.getDstPattern(), Instrs); 2996 if (Instrs.empty()) 2997 continue; 2998 2999 // Count the number of instructions with each flag set. 3000 unsigned NumSideEffects = 0; 3001 unsigned NumStores = 0; 3002 unsigned NumLoads = 0; 3003 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3004 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3005 NumSideEffects += InstInfo.hasSideEffects; 3006 NumStores += InstInfo.mayStore; 3007 NumLoads += InstInfo.mayLoad; 3008 } 3009 3010 // Analyze the source pattern. 3011 InstAnalyzer PatInfo(*this); 3012 PatInfo.Analyze(&PTM); 3013 3014 // Collect error messages. 3015 SmallVector<std::string, 4> Msgs; 3016 3017 // Check for missing flags in the output. 3018 // Permit extra flags for now at least. 3019 if (PatInfo.hasSideEffects && !NumSideEffects) 3020 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3021 3022 // Don't verify store flags on instructions with side effects. At least for 3023 // intrinsics, side effects implies mayStore. 3024 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3025 Msgs.push_back("pattern may store, but mayStore isn't set"); 3026 3027 // Similarly, mayStore implies mayLoad on intrinsics. 3028 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3029 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3030 3031 // Print error messages. 3032 if (Msgs.empty()) 3033 continue; 3034 ++Errors; 3035 3036 for (unsigned i = 0, e = Msgs.size(); i != e; ++i) 3037 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msgs[i]) + " on the " + 3038 (Instrs.size() == 1 ? 3039 "instruction" : "output instructions")); 3040 // Provide the location of the relevant instruction definitions. 3041 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 3042 if (Instrs[i] != PTM.getSrcRecord()) 3043 PrintError(Instrs[i]->getLoc(), "defined here"); 3044 const CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 3045 if (InstInfo.InferredFrom && 3046 InstInfo.InferredFrom != InstInfo.TheDef && 3047 InstInfo.InferredFrom != PTM.getSrcRecord()) 3048 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from patttern"); 3049 } 3050 } 3051 if (Errors) 3052 PrintFatalError("Errors in DAG patterns"); 3053 } 3054 3055 /// Given a pattern result with an unresolved type, see if we can find one 3056 /// instruction with an unresolved result type. Force this result type to an 3057 /// arbitrary element if it's possible types to converge results. 3058 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3059 if (N->isLeaf()) 3060 return false; 3061 3062 // Analyze children. 3063 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3064 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3065 return true; 3066 3067 if (!N->getOperator()->isSubClassOf("Instruction")) 3068 return false; 3069 3070 // If this type is already concrete or completely unknown we can't do 3071 // anything. 3072 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3073 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3074 continue; 3075 3076 // Otherwise, force its type to the first possibility (an arbitrary choice). 3077 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3078 return true; 3079 } 3080 3081 return false; 3082 } 3083 3084 void CodeGenDAGPatterns::ParsePatterns() { 3085 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3086 3087 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 3088 Record *CurPattern = Patterns[i]; 3089 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3090 3091 // If the pattern references the null_frag, there's nothing to do. 3092 if (hasNullFragReference(Tree)) 3093 continue; 3094 3095 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3096 3097 // Inline pattern fragments into it. 3098 Pattern->InlinePatternFragments(); 3099 3100 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3101 if (LI->getSize() == 0) continue; // no pattern. 3102 3103 // Parse the instruction. 3104 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 3105 3106 // Inline pattern fragments into it. 3107 Result->InlinePatternFragments(); 3108 3109 if (Result->getNumTrees() != 1) 3110 Result->error("Cannot handle instructions producing instructions " 3111 "with temporaries yet!"); 3112 3113 bool IterateInference; 3114 bool InferredAllPatternTypes, InferredAllResultTypes; 3115 do { 3116 // Infer as many types as possible. If we cannot infer all of them, we 3117 // can never do anything with this pattern: report it to the user. 3118 InferredAllPatternTypes = 3119 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3120 3121 // Infer as many types as possible. If we cannot infer all of them, we 3122 // can never do anything with this pattern: report it to the user. 3123 InferredAllResultTypes = 3124 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 3125 3126 IterateInference = false; 3127 3128 // Apply the type of the result to the source pattern. This helps us 3129 // resolve cases where the input type is known to be a pointer type (which 3130 // is considered resolved), but the result knows it needs to be 32- or 3131 // 64-bits. Infer the other way for good measure. 3132 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 3133 Pattern->getTree(0)->getNumTypes()); 3134 i != e; ++i) { 3135 IterateInference = Pattern->getTree(0)-> 3136 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 3137 IterateInference |= Result->getTree(0)-> 3138 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 3139 } 3140 3141 // If our iteration has converged and the input pattern's types are fully 3142 // resolved but the result pattern is not fully resolved, we may have a 3143 // situation where we have two instructions in the result pattern and 3144 // the instructions require a common register class, but don't care about 3145 // what actual MVT is used. This is actually a bug in our modelling: 3146 // output patterns should have register classes, not MVTs. 3147 // 3148 // In any case, to handle this, we just go through and disambiguate some 3149 // arbitrary types to the result pattern's nodes. 3150 if (!IterateInference && InferredAllPatternTypes && 3151 !InferredAllResultTypes) 3152 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 3153 *Result); 3154 } while (IterateInference); 3155 3156 // Verify that we inferred enough types that we can do something with the 3157 // pattern and result. If these fire the user has to add type casts. 3158 if (!InferredAllPatternTypes) 3159 Pattern->error("Could not infer all types in pattern!"); 3160 if (!InferredAllResultTypes) { 3161 Pattern->dump(); 3162 Result->error("Could not infer all types in pattern result!"); 3163 } 3164 3165 // Validate that the input pattern is correct. 3166 std::map<std::string, TreePatternNode*> InstInputs; 3167 std::map<std::string, TreePatternNode*> InstResults; 3168 std::vector<Record*> InstImpResults; 3169 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3170 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3171 InstInputs, InstResults, 3172 InstImpResults); 3173 3174 // Promote the xform function to be an explicit node if set. 3175 TreePatternNode *DstPattern = Result->getOnlyTree(); 3176 std::vector<TreePatternNode*> ResultNodeOperands; 3177 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3178 TreePatternNode *OpNode = DstPattern->getChild(ii); 3179 if (Record *Xform = OpNode->getTransformFn()) { 3180 OpNode->setTransformFn(0); 3181 std::vector<TreePatternNode*> Children; 3182 Children.push_back(OpNode); 3183 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3184 } 3185 ResultNodeOperands.push_back(OpNode); 3186 } 3187 DstPattern = Result->getOnlyTree(); 3188 if (!DstPattern->isLeaf()) 3189 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3190 ResultNodeOperands, 3191 DstPattern->getNumTypes()); 3192 3193 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 3194 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 3195 3196 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 3197 Temp.InferAllTypes(); 3198 3199 3200 AddPatternToMatch(Pattern, 3201 PatternToMatch(CurPattern, 3202 CurPattern->getValueAsListInit("Predicates"), 3203 Pattern->getTree(0), 3204 Temp.getOnlyTree(), InstImpResults, 3205 CurPattern->getValueAsInt("AddedComplexity"), 3206 CurPattern->getID())); 3207 } 3208 } 3209 3210 /// CombineChildVariants - Given a bunch of permutations of each child of the 3211 /// 'operator' node, put them together in all possible ways. 3212 static void CombineChildVariants(TreePatternNode *Orig, 3213 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3214 std::vector<TreePatternNode*> &OutVariants, 3215 CodeGenDAGPatterns &CDP, 3216 const MultipleUseVarSet &DepVars) { 3217 // Make sure that each operand has at least one variant to choose from. 3218 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3219 if (ChildVariants[i].empty()) 3220 return; 3221 3222 // The end result is an all-pairs construction of the resultant pattern. 3223 std::vector<unsigned> Idxs; 3224 Idxs.resize(ChildVariants.size()); 3225 bool NotDone; 3226 do { 3227 #ifndef NDEBUG 3228 DEBUG(if (!Idxs.empty()) { 3229 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3230 for (unsigned i = 0; i < Idxs.size(); ++i) { 3231 errs() << Idxs[i] << " "; 3232 } 3233 errs() << "]\n"; 3234 }); 3235 #endif 3236 // Create the variant and add it to the output list. 3237 std::vector<TreePatternNode*> NewChildren; 3238 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3239 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3240 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 3241 Orig->getNumTypes()); 3242 3243 // Copy over properties. 3244 R->setName(Orig->getName()); 3245 R->setPredicateFns(Orig->getPredicateFns()); 3246 R->setTransformFn(Orig->getTransformFn()); 3247 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3248 R->setType(i, Orig->getExtType(i)); 3249 3250 // If this pattern cannot match, do not include it as a variant. 3251 std::string ErrString; 3252 if (!R->canPatternMatch(ErrString, CDP)) { 3253 delete R; 3254 } else { 3255 bool AlreadyExists = false; 3256 3257 // Scan to see if this pattern has already been emitted. We can get 3258 // duplication due to things like commuting: 3259 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3260 // which are the same pattern. Ignore the dups. 3261 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3262 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3263 AlreadyExists = true; 3264 break; 3265 } 3266 3267 if (AlreadyExists) 3268 delete R; 3269 else 3270 OutVariants.push_back(R); 3271 } 3272 3273 // Increment indices to the next permutation by incrementing the 3274 // indicies from last index backward, e.g., generate the sequence 3275 // [0, 0], [0, 1], [1, 0], [1, 1]. 3276 int IdxsIdx; 3277 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3278 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3279 Idxs[IdxsIdx] = 0; 3280 else 3281 break; 3282 } 3283 NotDone = (IdxsIdx >= 0); 3284 } while (NotDone); 3285 } 3286 3287 /// CombineChildVariants - A helper function for binary operators. 3288 /// 3289 static void CombineChildVariants(TreePatternNode *Orig, 3290 const std::vector<TreePatternNode*> &LHS, 3291 const std::vector<TreePatternNode*> &RHS, 3292 std::vector<TreePatternNode*> &OutVariants, 3293 CodeGenDAGPatterns &CDP, 3294 const MultipleUseVarSet &DepVars) { 3295 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3296 ChildVariants.push_back(LHS); 3297 ChildVariants.push_back(RHS); 3298 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3299 } 3300 3301 3302 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3303 std::vector<TreePatternNode *> &Children) { 3304 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3305 Record *Operator = N->getOperator(); 3306 3307 // Only permit raw nodes. 3308 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3309 N->getTransformFn()) { 3310 Children.push_back(N); 3311 return; 3312 } 3313 3314 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3315 Children.push_back(N->getChild(0)); 3316 else 3317 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3318 3319 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3320 Children.push_back(N->getChild(1)); 3321 else 3322 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3323 } 3324 3325 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3326 /// the (potentially recursive) pattern by using algebraic laws. 3327 /// 3328 static void GenerateVariantsOf(TreePatternNode *N, 3329 std::vector<TreePatternNode*> &OutVariants, 3330 CodeGenDAGPatterns &CDP, 3331 const MultipleUseVarSet &DepVars) { 3332 // We cannot permute leaves. 3333 if (N->isLeaf()) { 3334 OutVariants.push_back(N); 3335 return; 3336 } 3337 3338 // Look up interesting info about the node. 3339 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3340 3341 // If this node is associative, re-associate. 3342 if (NodeInfo.hasProperty(SDNPAssociative)) { 3343 // Re-associate by pulling together all of the linked operators 3344 std::vector<TreePatternNode*> MaximalChildren; 3345 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3346 3347 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3348 // permutations. 3349 if (MaximalChildren.size() == 3) { 3350 // Find the variants of all of our maximal children. 3351 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3352 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3353 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3354 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3355 3356 // There are only two ways we can permute the tree: 3357 // (A op B) op C and A op (B op C) 3358 // Within these forms, we can also permute A/B/C. 3359 3360 // Generate legal pair permutations of A/B/C. 3361 std::vector<TreePatternNode*> ABVariants; 3362 std::vector<TreePatternNode*> BAVariants; 3363 std::vector<TreePatternNode*> ACVariants; 3364 std::vector<TreePatternNode*> CAVariants; 3365 std::vector<TreePatternNode*> BCVariants; 3366 std::vector<TreePatternNode*> CBVariants; 3367 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3368 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3369 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3370 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3371 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3372 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3373 3374 // Combine those into the result: (x op x) op x 3375 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3376 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3377 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3378 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3379 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3380 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3381 3382 // Combine those into the result: x op (x op x) 3383 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3384 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3385 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3386 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3387 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3388 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3389 return; 3390 } 3391 } 3392 3393 // Compute permutations of all children. 3394 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3395 ChildVariants.resize(N->getNumChildren()); 3396 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3397 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3398 3399 // Build all permutations based on how the children were formed. 3400 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3401 3402 // If this node is commutative, consider the commuted order. 3403 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3404 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3405 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3406 "Commutative but doesn't have 2 children!"); 3407 // Don't count children which are actually register references. 3408 unsigned NC = 0; 3409 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3410 TreePatternNode *Child = N->getChild(i); 3411 if (Child->isLeaf()) 3412 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3413 Record *RR = DI->getDef(); 3414 if (RR->isSubClassOf("Register")) 3415 continue; 3416 } 3417 NC++; 3418 } 3419 // Consider the commuted order. 3420 if (isCommIntrinsic) { 3421 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3422 // operands are the commutative operands, and there might be more operands 3423 // after those. 3424 assert(NC >= 3 && 3425 "Commutative intrinsic should have at least 3 childrean!"); 3426 std::vector<std::vector<TreePatternNode*> > Variants; 3427 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3428 Variants.push_back(ChildVariants[2]); 3429 Variants.push_back(ChildVariants[1]); 3430 for (unsigned i = 3; i != NC; ++i) 3431 Variants.push_back(ChildVariants[i]); 3432 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3433 } else if (NC == 2) 3434 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3435 OutVariants, CDP, DepVars); 3436 } 3437 } 3438 3439 3440 // GenerateVariants - Generate variants. For example, commutative patterns can 3441 // match multiple ways. Add them to PatternsToMatch as well. 3442 void CodeGenDAGPatterns::GenerateVariants() { 3443 DEBUG(errs() << "Generating instruction variants.\n"); 3444 3445 // Loop over all of the patterns we've collected, checking to see if we can 3446 // generate variants of the instruction, through the exploitation of 3447 // identities. This permits the target to provide aggressive matching without 3448 // the .td file having to contain tons of variants of instructions. 3449 // 3450 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3451 // intentionally do not reconsider these. Any variants of added patterns have 3452 // already been added. 3453 // 3454 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3455 MultipleUseVarSet DepVars; 3456 std::vector<TreePatternNode*> Variants; 3457 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3458 DEBUG(errs() << "Dependent/multiply used variables: "); 3459 DEBUG(DumpDepVars(DepVars)); 3460 DEBUG(errs() << "\n"); 3461 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3462 DepVars); 3463 3464 assert(!Variants.empty() && "Must create at least original variant!"); 3465 Variants.erase(Variants.begin()); // Remove the original pattern. 3466 3467 if (Variants.empty()) // No variants for this pattern. 3468 continue; 3469 3470 DEBUG(errs() << "FOUND VARIANTS OF: "; 3471 PatternsToMatch[i].getSrcPattern()->dump(); 3472 errs() << "\n"); 3473 3474 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3475 TreePatternNode *Variant = Variants[v]; 3476 3477 DEBUG(errs() << " VAR#" << v << ": "; 3478 Variant->dump(); 3479 errs() << "\n"); 3480 3481 // Scan to see if an instruction or explicit pattern already matches this. 3482 bool AlreadyExists = false; 3483 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3484 // Skip if the top level predicates do not match. 3485 if (PatternsToMatch[i].getPredicates() != 3486 PatternsToMatch[p].getPredicates()) 3487 continue; 3488 // Check to see if this variant already exists. 3489 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3490 DepVars)) { 3491 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3492 AlreadyExists = true; 3493 break; 3494 } 3495 } 3496 // If we already have it, ignore the variant. 3497 if (AlreadyExists) continue; 3498 3499 // Otherwise, add it to the list of patterns we have. 3500 PatternsToMatch. 3501 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3502 PatternsToMatch[i].getPredicates(), 3503 Variant, PatternsToMatch[i].getDstPattern(), 3504 PatternsToMatch[i].getDstRegs(), 3505 PatternsToMatch[i].getAddedComplexity(), 3506 Record::getNewUID())); 3507 } 3508 3509 DEBUG(errs() << "\n"); 3510 } 3511 } 3512