1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/SmallString.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/Twine.h" 20 #include "llvm/Support/Debug.h" 21 #include "llvm/Support/ErrorHandling.h" 22 #include "llvm/TableGen/Error.h" 23 #include "llvm/TableGen/Record.h" 24 #include <algorithm> 25 #include <cstdio> 26 #include <set> 27 using namespace llvm; 28 29 #define DEBUG_TYPE "dag-patterns" 30 31 //===----------------------------------------------------------------------===// 32 // EEVT::TypeSet Implementation 33 //===----------------------------------------------------------------------===// 34 35 static inline bool isInteger(MVT::SimpleValueType VT) { 36 return MVT(VT).isInteger(); 37 } 38 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 39 return MVT(VT).isFloatingPoint(); 40 } 41 static inline bool isVector(MVT::SimpleValueType VT) { 42 return MVT(VT).isVector(); 43 } 44 static inline bool isScalar(MVT::SimpleValueType VT) { 45 return !MVT(VT).isVector(); 46 } 47 48 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 49 if (VT == MVT::iAny) 50 EnforceInteger(TP); 51 else if (VT == MVT::fAny) 52 EnforceFloatingPoint(TP); 53 else if (VT == MVT::vAny) 54 EnforceVector(TP); 55 else { 56 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 57 VT == MVT::iPTRAny || VT == MVT::Any) && "Not a concrete type!"); 58 TypeVec.push_back(VT); 59 } 60 } 61 62 63 EEVT::TypeSet::TypeSet(ArrayRef<MVT::SimpleValueType> VTList) { 64 assert(!VTList.empty() && "empty list?"); 65 TypeVec.append(VTList.begin(), VTList.end()); 66 67 if (!VTList.empty()) 68 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 69 VTList[0] != MVT::fAny); 70 71 // Verify no duplicates. 72 array_pod_sort(TypeVec.begin(), TypeVec.end()); 73 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 74 } 75 76 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 77 /// on completely unknown type sets. 78 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 79 bool (*Pred)(MVT::SimpleValueType), 80 const char *PredicateName) { 81 assert(isCompletelyUnknown()); 82 ArrayRef<MVT::SimpleValueType> LegalTypes = 83 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 84 85 if (TP.hasError()) 86 return false; 87 88 for (MVT::SimpleValueType VT : LegalTypes) 89 if (!Pred || Pred(VT)) 90 TypeVec.push_back(VT); 91 92 // If we have nothing that matches the predicate, bail out. 93 if (TypeVec.empty()) { 94 TP.error("Type inference contradiction found, no " + 95 std::string(PredicateName) + " types found"); 96 return false; 97 } 98 // No need to sort with one element. 99 if (TypeVec.size() == 1) return true; 100 101 // Remove duplicates. 102 array_pod_sort(TypeVec.begin(), TypeVec.end()); 103 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 104 105 return true; 106 } 107 108 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 109 /// integer value type. 110 bool EEVT::TypeSet::hasIntegerTypes() const { 111 return any_of(TypeVec, isInteger); 112 } 113 114 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 115 /// a floating point value type. 116 bool EEVT::TypeSet::hasFloatingPointTypes() const { 117 return any_of(TypeVec, isFloatingPoint); 118 } 119 120 /// hasScalarTypes - Return true if this TypeSet contains a scalar value type. 121 bool EEVT::TypeSet::hasScalarTypes() const { 122 return any_of(TypeVec, isScalar); 123 } 124 125 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 126 /// value type. 127 bool EEVT::TypeSet::hasVectorTypes() const { 128 return any_of(TypeVec, isVector); 129 } 130 131 132 std::string EEVT::TypeSet::getName() const { 133 if (TypeVec.empty()) return "<empty>"; 134 135 std::string Result; 136 137 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 138 std::string VTName = llvm::getEnumName(TypeVec[i]); 139 // Strip off MVT:: prefix if present. 140 if (VTName.substr(0,5) == "MVT::") 141 VTName = VTName.substr(5); 142 if (i) Result += ':'; 143 Result += VTName; 144 } 145 146 if (TypeVec.size() == 1) 147 return Result; 148 return "{" + Result + "}"; 149 } 150 151 /// MergeInTypeInfo - This merges in type information from the specified 152 /// argument. If 'this' changes, it returns true. If the two types are 153 /// contradictory (e.g. merge f32 into i32) then this flags an error. 154 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 155 if (InVT.isCompletelyUnknown() || *this == InVT || TP.hasError()) 156 return false; 157 158 if (isCompletelyUnknown()) { 159 *this = InVT; 160 return true; 161 } 162 163 assert(!TypeVec.empty() && !InVT.TypeVec.empty() && "No unknowns"); 164 165 // Handle the abstract cases, seeing if we can resolve them better. 166 switch (TypeVec[0]) { 167 default: break; 168 case MVT::iPTR: 169 case MVT::iPTRAny: 170 if (InVT.hasIntegerTypes()) { 171 EEVT::TypeSet InCopy(InVT); 172 InCopy.EnforceInteger(TP); 173 InCopy.EnforceScalar(TP); 174 175 if (InCopy.isConcrete()) { 176 // If the RHS has one integer type, upgrade iPTR to i32. 177 TypeVec[0] = InVT.TypeVec[0]; 178 return true; 179 } 180 181 // If the input has multiple scalar integers, this doesn't add any info. 182 if (!InCopy.isCompletelyUnknown()) 183 return false; 184 } 185 break; 186 } 187 188 // If the input constraint is iAny/iPTR and this is an integer type list, 189 // remove non-integer types from the list. 190 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 191 hasIntegerTypes()) { 192 bool MadeChange = EnforceInteger(TP); 193 194 // If we're merging in iPTR/iPTRAny and the node currently has a list of 195 // multiple different integer types, replace them with a single iPTR. 196 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 197 TypeVec.size() != 1) { 198 TypeVec.assign(1, InVT.TypeVec[0]); 199 MadeChange = true; 200 } 201 202 return MadeChange; 203 } 204 205 // If this is a type list and the RHS is a typelist as well, eliminate entries 206 // from this list that aren't in the other one. 207 TypeSet InputSet(*this); 208 209 TypeVec.clear(); 210 std::set_intersection(InputSet.TypeVec.begin(), InputSet.TypeVec.end(), 211 InVT.TypeVec.begin(), InVT.TypeVec.end(), 212 std::back_inserter(TypeVec)); 213 214 // If the intersection is the same size as the original set then we're done. 215 if (TypeVec.size() == InputSet.TypeVec.size()) 216 return false; 217 218 // If we removed all of our types, we have a type contradiction. 219 if (!TypeVec.empty()) 220 return true; 221 222 // FIXME: Really want an SMLoc here! 223 TP.error("Type inference contradiction found, merging '" + 224 InVT.getName() + "' into '" + InputSet.getName() + "'"); 225 return false; 226 } 227 228 /// EnforceInteger - Remove all non-integer types from this set. 229 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 230 if (TP.hasError()) 231 return false; 232 // If we know nothing, then get the full set. 233 if (TypeVec.empty()) 234 return FillWithPossibleTypes(TP, isInteger, "integer"); 235 236 if (!hasFloatingPointTypes()) 237 return false; 238 239 TypeSet InputSet(*this); 240 241 // Filter out all the fp types. 242 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isInteger))), 243 TypeVec.end()); 244 245 if (TypeVec.empty()) { 246 TP.error("Type inference contradiction found, '" + 247 InputSet.getName() + "' needs to be integer"); 248 return false; 249 } 250 return true; 251 } 252 253 /// EnforceFloatingPoint - Remove all integer types from this set. 254 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 255 if (TP.hasError()) 256 return false; 257 // If we know nothing, then get the full set. 258 if (TypeVec.empty()) 259 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 260 261 if (!hasIntegerTypes()) 262 return false; 263 264 TypeSet InputSet(*this); 265 266 // Filter out all the integer types. 267 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isFloatingPoint))), 268 TypeVec.end()); 269 270 if (TypeVec.empty()) { 271 TP.error("Type inference contradiction found, '" + 272 InputSet.getName() + "' needs to be floating point"); 273 return false; 274 } 275 return true; 276 } 277 278 /// EnforceScalar - Remove all vector types from this. 279 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 280 if (TP.hasError()) 281 return false; 282 283 // If we know nothing, then get the full set. 284 if (TypeVec.empty()) 285 return FillWithPossibleTypes(TP, isScalar, "scalar"); 286 287 if (!hasVectorTypes()) 288 return false; 289 290 TypeSet InputSet(*this); 291 292 // Filter out all the vector types. 293 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isScalar))), 294 TypeVec.end()); 295 296 if (TypeVec.empty()) { 297 TP.error("Type inference contradiction found, '" + 298 InputSet.getName() + "' needs to be scalar"); 299 return false; 300 } 301 return true; 302 } 303 304 /// EnforceVector - Remove all vector types from this. 305 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 306 if (TP.hasError()) 307 return false; 308 309 // If we know nothing, then get the full set. 310 if (TypeVec.empty()) 311 return FillWithPossibleTypes(TP, isVector, "vector"); 312 313 TypeSet InputSet(*this); 314 bool MadeChange = false; 315 316 // Filter out all the scalar types. 317 TypeVec.erase(remove_if(TypeVec, std::not1(std::ptr_fun(isVector))), 318 TypeVec.end()); 319 320 if (TypeVec.empty()) { 321 TP.error("Type inference contradiction found, '" + 322 InputSet.getName() + "' needs to be a vector"); 323 return false; 324 } 325 return MadeChange; 326 } 327 328 329 330 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. For vectors 331 /// this should be based on the element type. Update this and other based on 332 /// this information. 333 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 334 if (TP.hasError()) 335 return false; 336 337 // Both operands must be integer or FP, but we don't care which. 338 bool MadeChange = false; 339 340 if (isCompletelyUnknown()) 341 MadeChange = FillWithPossibleTypes(TP); 342 343 if (Other.isCompletelyUnknown()) 344 MadeChange = Other.FillWithPossibleTypes(TP); 345 346 // If one side is known to be integer or known to be FP but the other side has 347 // no information, get at least the type integrality info in there. 348 if (!hasFloatingPointTypes()) 349 MadeChange |= Other.EnforceInteger(TP); 350 else if (!hasIntegerTypes()) 351 MadeChange |= Other.EnforceFloatingPoint(TP); 352 if (!Other.hasFloatingPointTypes()) 353 MadeChange |= EnforceInteger(TP); 354 else if (!Other.hasIntegerTypes()) 355 MadeChange |= EnforceFloatingPoint(TP); 356 357 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 358 "Should have a type list now"); 359 360 // If one contains vectors but the other doesn't pull vectors out. 361 if (!hasVectorTypes()) 362 MadeChange |= Other.EnforceScalar(TP); 363 else if (!hasScalarTypes()) 364 MadeChange |= Other.EnforceVector(TP); 365 if (!Other.hasVectorTypes()) 366 MadeChange |= EnforceScalar(TP); 367 else if (!Other.hasScalarTypes()) 368 MadeChange |= EnforceVector(TP); 369 370 // This code does not currently handle nodes which have multiple types, 371 // where some types are integer, and some are fp. Assert that this is not 372 // the case. 373 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 374 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 375 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 376 377 if (TP.hasError()) 378 return false; 379 380 // Okay, find the smallest type from current set and remove anything the 381 // same or smaller from the other set. We need to ensure that the scalar 382 // type size is smaller than the scalar size of the smallest type. For 383 // vectors, we also need to make sure that the total size is no larger than 384 // the size of the smallest type. 385 { 386 TypeSet InputSet(Other); 387 MVT Smallest = *std::min_element(TypeVec.begin(), TypeVec.end(), 388 [](MVT A, MVT B) { 389 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 390 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 391 A.getSizeInBits() < B.getSizeInBits()); 392 }); 393 394 auto I = remove_if(Other.TypeVec, [Smallest](MVT OtherVT) { 395 // Don't compare vector and non-vector types. 396 if (OtherVT.isVector() != Smallest.isVector()) 397 return false; 398 // The getSizeInBits() check here is only needed for vectors, but is 399 // a subset of the scalar check for scalars so no need to qualify. 400 return OtherVT.getScalarSizeInBits() <= Smallest.getScalarSizeInBits() || 401 OtherVT.getSizeInBits() < Smallest.getSizeInBits(); 402 }); 403 MadeChange |= I != Other.TypeVec.end(); // If we're about to remove types. 404 Other.TypeVec.erase(I, Other.TypeVec.end()); 405 406 if (Other.TypeVec.empty()) { 407 TP.error("Type inference contradiction found, '" + InputSet.getName() + 408 "' has nothing larger than '" + getName() +"'!"); 409 return false; 410 } 411 } 412 413 // Okay, find the largest type from the other set and remove anything the 414 // same or smaller from the current set. We need to ensure that the scalar 415 // type size is larger than the scalar size of the largest type. For 416 // vectors, we also need to make sure that the total size is no smaller than 417 // the size of the largest type. 418 { 419 TypeSet InputSet(*this); 420 MVT Largest = *std::max_element(Other.TypeVec.begin(), Other.TypeVec.end(), 421 [](MVT A, MVT B) { 422 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 423 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 424 A.getSizeInBits() < B.getSizeInBits()); 425 }); 426 auto I = remove_if(TypeVec, [Largest](MVT OtherVT) { 427 // Don't compare vector and non-vector types. 428 if (OtherVT.isVector() != Largest.isVector()) 429 return false; 430 return OtherVT.getScalarSizeInBits() >= Largest.getScalarSizeInBits() || 431 OtherVT.getSizeInBits() > Largest.getSizeInBits(); 432 }); 433 MadeChange |= I != TypeVec.end(); // If we're about to remove types. 434 TypeVec.erase(I, TypeVec.end()); 435 436 if (TypeVec.empty()) { 437 TP.error("Type inference contradiction found, '" + InputSet.getName() + 438 "' has nothing smaller than '" + Other.getName() +"'!"); 439 return false; 440 } 441 } 442 443 return MadeChange; 444 } 445 446 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 447 /// whose element is specified by VTOperand. 448 bool EEVT::TypeSet::EnforceVectorEltTypeIs(MVT::SimpleValueType VT, 449 TreePattern &TP) { 450 bool MadeChange = false; 451 452 MadeChange |= EnforceVector(TP); 453 454 TypeSet InputSet(*this); 455 456 // Filter out all the types which don't have the right element type. 457 auto I = remove_if(TypeVec, [VT](MVT VVT) { 458 return VVT.getVectorElementType().SimpleTy != VT; 459 }); 460 MadeChange |= I != TypeVec.end(); 461 TypeVec.erase(I, TypeVec.end()); 462 463 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 464 TP.error("Type inference contradiction found, forcing '" + 465 InputSet.getName() + "' to have a vector element of type " + 466 getEnumName(VT)); 467 return false; 468 } 469 470 return MadeChange; 471 } 472 473 /// EnforceVectorEltTypeIs - 'this' is now constrained to be a vector type 474 /// whose element is specified by VTOperand. 475 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 476 TreePattern &TP) { 477 if (TP.hasError()) 478 return false; 479 480 // "This" must be a vector and "VTOperand" must be a scalar. 481 bool MadeChange = false; 482 MadeChange |= EnforceVector(TP); 483 MadeChange |= VTOperand.EnforceScalar(TP); 484 485 // If we know the vector type, it forces the scalar to agree. 486 if (isConcrete()) { 487 MVT IVT = getConcrete(); 488 IVT = IVT.getVectorElementType(); 489 return MadeChange || VTOperand.MergeInTypeInfo(IVT.SimpleTy, TP); 490 } 491 492 // If the scalar type is known, filter out vector types whose element types 493 // disagree. 494 if (!VTOperand.isConcrete()) 495 return MadeChange; 496 497 MVT::SimpleValueType VT = VTOperand.getConcrete(); 498 499 MadeChange |= EnforceVectorEltTypeIs(VT, TP); 500 501 return MadeChange; 502 } 503 504 /// EnforceVectorSubVectorTypeIs - 'this' is now constrained to be a 505 /// vector type specified by VTOperand. 506 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 507 TreePattern &TP) { 508 if (TP.hasError()) 509 return false; 510 511 // "This" must be a vector and "VTOperand" must be a vector. 512 bool MadeChange = false; 513 MadeChange |= EnforceVector(TP); 514 MadeChange |= VTOperand.EnforceVector(TP); 515 516 // If one side is known to be integer or known to be FP but the other side has 517 // no information, get at least the type integrality info in there. 518 if (!hasFloatingPointTypes()) 519 MadeChange |= VTOperand.EnforceInteger(TP); 520 else if (!hasIntegerTypes()) 521 MadeChange |= VTOperand.EnforceFloatingPoint(TP); 522 if (!VTOperand.hasFloatingPointTypes()) 523 MadeChange |= EnforceInteger(TP); 524 else if (!VTOperand.hasIntegerTypes()) 525 MadeChange |= EnforceFloatingPoint(TP); 526 527 assert(!isCompletelyUnknown() && !VTOperand.isCompletelyUnknown() && 528 "Should have a type list now"); 529 530 // If we know the vector type, it forces the scalar types to agree. 531 // Also force one vector to have more elements than the other. 532 if (isConcrete()) { 533 MVT IVT = getConcrete(); 534 unsigned NumElems = IVT.getVectorNumElements(); 535 IVT = IVT.getVectorElementType(); 536 537 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 538 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 539 540 // Only keep types that have less elements than VTOperand. 541 TypeSet InputSet(VTOperand); 542 543 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 544 return VVT.getVectorNumElements() >= NumElems; 545 }); 546 MadeChange |= I != VTOperand.TypeVec.end(); 547 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 548 549 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 550 TP.error("Type inference contradiction found, forcing '" + 551 InputSet.getName() + "' to have less vector elements than '" + 552 getName() + "'"); 553 return false; 554 } 555 } else if (VTOperand.isConcrete()) { 556 MVT IVT = VTOperand.getConcrete(); 557 unsigned NumElems = IVT.getVectorNumElements(); 558 IVT = IVT.getVectorElementType(); 559 560 EEVT::TypeSet EltTypeSet(IVT.SimpleTy, TP); 561 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 562 563 // Only keep types that have more elements than 'this'. 564 TypeSet InputSet(*this); 565 566 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 567 return VVT.getVectorNumElements() <= NumElems; 568 }); 569 MadeChange |= I != TypeVec.end(); 570 TypeVec.erase(I, TypeVec.end()); 571 572 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 573 TP.error("Type inference contradiction found, forcing '" + 574 InputSet.getName() + "' to have more vector elements than '" + 575 VTOperand.getName() + "'"); 576 return false; 577 } 578 } 579 580 return MadeChange; 581 } 582 583 /// EnforceameNumElts - If VTOperand is a scalar, then 'this' is a scalar. If 584 /// VTOperand is a vector, then 'this' must have the same number of elements. 585 bool EEVT::TypeSet::EnforceSameNumElts(EEVT::TypeSet &VTOperand, 586 TreePattern &TP) { 587 if (TP.hasError()) 588 return false; 589 590 bool MadeChange = false; 591 592 if (isCompletelyUnknown()) 593 MadeChange = FillWithPossibleTypes(TP); 594 595 if (VTOperand.isCompletelyUnknown()) 596 MadeChange = VTOperand.FillWithPossibleTypes(TP); 597 598 // If one contains vectors but the other doesn't pull vectors out. 599 if (!hasVectorTypes()) 600 MadeChange |= VTOperand.EnforceScalar(TP); 601 else if (!hasScalarTypes()) 602 MadeChange |= VTOperand.EnforceVector(TP); 603 if (!VTOperand.hasVectorTypes()) 604 MadeChange |= EnforceScalar(TP); 605 else if (!VTOperand.hasScalarTypes()) 606 MadeChange |= EnforceVector(TP); 607 608 // If one type is a vector, make sure the other has the same element count. 609 // If this a scalar, then we are already done with the above. 610 if (isConcrete()) { 611 MVT IVT = getConcrete(); 612 if (IVT.isVector()) { 613 unsigned NumElems = IVT.getVectorNumElements(); 614 615 // Only keep types that have same elements as 'this'. 616 TypeSet InputSet(VTOperand); 617 618 auto I = remove_if(VTOperand.TypeVec, [NumElems](MVT VVT) { 619 return VVT.getVectorNumElements() != NumElems; 620 }); 621 MadeChange |= I != VTOperand.TypeVec.end(); 622 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 623 624 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 625 TP.error("Type inference contradiction found, forcing '" + 626 InputSet.getName() + "' to have same number elements as '" + 627 getName() + "'"); 628 return false; 629 } 630 } 631 } else if (VTOperand.isConcrete()) { 632 MVT IVT = VTOperand.getConcrete(); 633 if (IVT.isVector()) { 634 unsigned NumElems = IVT.getVectorNumElements(); 635 636 // Only keep types that have same elements as VTOperand. 637 TypeSet InputSet(*this); 638 639 auto I = remove_if(TypeVec, [NumElems](MVT VVT) { 640 return VVT.getVectorNumElements() != NumElems; 641 }); 642 MadeChange |= I != TypeVec.end(); 643 TypeVec.erase(I, TypeVec.end()); 644 645 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 646 TP.error("Type inference contradiction found, forcing '" + 647 InputSet.getName() + "' to have same number elements than '" + 648 VTOperand.getName() + "'"); 649 return false; 650 } 651 } 652 } 653 654 return MadeChange; 655 } 656 657 /// EnforceSameSize - 'this' is now constrained to be same size as VTOperand. 658 bool EEVT::TypeSet::EnforceSameSize(EEVT::TypeSet &VTOperand, 659 TreePattern &TP) { 660 if (TP.hasError()) 661 return false; 662 663 bool MadeChange = false; 664 665 if (isCompletelyUnknown()) 666 MadeChange = FillWithPossibleTypes(TP); 667 668 if (VTOperand.isCompletelyUnknown()) 669 MadeChange = VTOperand.FillWithPossibleTypes(TP); 670 671 // If we know one of the types, it forces the other type agree. 672 if (isConcrete()) { 673 MVT IVT = getConcrete(); 674 unsigned Size = IVT.getSizeInBits(); 675 676 // Only keep types that have the same size as 'this'. 677 TypeSet InputSet(VTOperand); 678 679 auto I = remove_if(VTOperand.TypeVec, 680 [&](MVT VT) { return VT.getSizeInBits() != Size; }); 681 MadeChange |= I != VTOperand.TypeVec.end(); 682 VTOperand.TypeVec.erase(I, VTOperand.TypeVec.end()); 683 684 if (VTOperand.TypeVec.empty()) { // FIXME: Really want an SMLoc here! 685 TP.error("Type inference contradiction found, forcing '" + 686 InputSet.getName() + "' to have same size as '" + 687 getName() + "'"); 688 return false; 689 } 690 } else if (VTOperand.isConcrete()) { 691 MVT IVT = VTOperand.getConcrete(); 692 unsigned Size = IVT.getSizeInBits(); 693 694 // Only keep types that have the same size as VTOperand. 695 TypeSet InputSet(*this); 696 697 auto I = 698 remove_if(TypeVec, [&](MVT VT) { return VT.getSizeInBits() != Size; }); 699 MadeChange |= I != TypeVec.end(); 700 TypeVec.erase(I, TypeVec.end()); 701 702 if (TypeVec.empty()) { // FIXME: Really want an SMLoc here! 703 TP.error("Type inference contradiction found, forcing '" + 704 InputSet.getName() + "' to have same size as '" + 705 VTOperand.getName() + "'"); 706 return false; 707 } 708 } 709 710 return MadeChange; 711 } 712 713 //===----------------------------------------------------------------------===// 714 // Helpers for working with extended types. 715 716 /// Dependent variable map for CodeGenDAGPattern variant generation 717 typedef std::map<std::string, int> DepVarMap; 718 719 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 720 if (N->isLeaf()) { 721 if (isa<DefInit>(N->getLeafValue())) 722 DepMap[N->getName()]++; 723 } else { 724 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 725 FindDepVarsOf(N->getChild(i), DepMap); 726 } 727 } 728 729 /// Find dependent variables within child patterns 730 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 731 DepVarMap depcounts; 732 FindDepVarsOf(N, depcounts); 733 for (const std::pair<std::string, int> &Pair : depcounts) { 734 if (Pair.second > 1) 735 DepVars.insert(Pair.first); 736 } 737 } 738 739 #ifndef NDEBUG 740 /// Dump the dependent variable set: 741 static void DumpDepVars(MultipleUseVarSet &DepVars) { 742 if (DepVars.empty()) { 743 DEBUG(errs() << "<empty set>"); 744 } else { 745 DEBUG(errs() << "[ "); 746 for (const std::string &DepVar : DepVars) { 747 DEBUG(errs() << DepVar << " "); 748 } 749 DEBUG(errs() << "]"); 750 } 751 } 752 #endif 753 754 755 //===----------------------------------------------------------------------===// 756 // TreePredicateFn Implementation 757 //===----------------------------------------------------------------------===// 758 759 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 760 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 761 assert((getPredCode().empty() || getImmCode().empty()) && 762 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 763 } 764 765 std::string TreePredicateFn::getPredCode() const { 766 return PatFragRec->getRecord()->getValueAsString("PredicateCode"); 767 } 768 769 std::string TreePredicateFn::getImmCode() const { 770 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 771 } 772 773 774 /// isAlwaysTrue - Return true if this is a noop predicate. 775 bool TreePredicateFn::isAlwaysTrue() const { 776 return getPredCode().empty() && getImmCode().empty(); 777 } 778 779 /// Return the name to use in the generated code to reference this, this is 780 /// "Predicate_foo" if from a pattern fragment "foo". 781 std::string TreePredicateFn::getFnName() const { 782 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 783 } 784 785 /// getCodeToRunOnSDNode - Return the code for the function body that 786 /// evaluates this predicate. The argument is expected to be in "Node", 787 /// not N. This handles casting and conversion to a concrete node type as 788 /// appropriate. 789 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 790 // Handle immediate predicates first. 791 std::string ImmCode = getImmCode(); 792 if (!ImmCode.empty()) { 793 std::string Result = 794 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 795 return Result + ImmCode; 796 } 797 798 // Handle arbitrary node predicates. 799 assert(!getPredCode().empty() && "Don't have any predicate code!"); 800 std::string ClassName; 801 if (PatFragRec->getOnlyTree()->isLeaf()) 802 ClassName = "SDNode"; 803 else { 804 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 805 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 806 } 807 std::string Result; 808 if (ClassName == "SDNode") 809 Result = " SDNode *N = Node;\n"; 810 else 811 Result = " auto *N = cast<" + ClassName + ">(Node);\n"; 812 813 return Result + getPredCode(); 814 } 815 816 //===----------------------------------------------------------------------===// 817 // PatternToMatch implementation 818 // 819 820 821 /// getPatternSize - Return the 'size' of this pattern. We want to match large 822 /// patterns before small ones. This is used to determine the size of a 823 /// pattern. 824 static unsigned getPatternSize(const TreePatternNode *P, 825 const CodeGenDAGPatterns &CGP) { 826 unsigned Size = 3; // The node itself. 827 // If the root node is a ConstantSDNode, increases its size. 828 // e.g. (set R32:$dst, 0). 829 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 830 Size += 2; 831 832 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 833 if (AM) { 834 Size += AM->getComplexity(); 835 836 // We don't want to count any children twice, so return early. 837 return Size; 838 } 839 840 // If this node has some predicate function that must match, it adds to the 841 // complexity of this node. 842 if (!P->getPredicateFns().empty()) 843 ++Size; 844 845 // Count children in the count if they are also nodes. 846 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 847 TreePatternNode *Child = P->getChild(i); 848 if (!Child->isLeaf() && Child->getNumTypes() && 849 Child->getType(0) != MVT::Other) 850 Size += getPatternSize(Child, CGP); 851 else if (Child->isLeaf()) { 852 if (isa<IntInit>(Child->getLeafValue())) 853 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 854 else if (Child->getComplexPatternInfo(CGP)) 855 Size += getPatternSize(Child, CGP); 856 else if (!Child->getPredicateFns().empty()) 857 ++Size; 858 } 859 } 860 861 return Size; 862 } 863 864 /// Compute the complexity metric for the input pattern. This roughly 865 /// corresponds to the number of nodes that are covered. 866 int PatternToMatch:: 867 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 868 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 869 } 870 871 872 /// getPredicateCheck - Return a single string containing all of this 873 /// pattern's predicates concatenated with "&&" operators. 874 /// 875 std::string PatternToMatch::getPredicateCheck() const { 876 SmallVector<Record *, 4> PredicateRecs; 877 for (Init *I : Predicates->getValues()) { 878 if (DefInit *Pred = dyn_cast<DefInit>(I)) { 879 Record *Def = Pred->getDef(); 880 if (!Def->isSubClassOf("Predicate")) { 881 #ifndef NDEBUG 882 Def->dump(); 883 #endif 884 llvm_unreachable("Unknown predicate type!"); 885 } 886 PredicateRecs.push_back(Def); 887 } 888 } 889 // Sort so that different orders get canonicalized to the same string. 890 std::sort(PredicateRecs.begin(), PredicateRecs.end(), LessRecord()); 891 892 SmallString<128> PredicateCheck; 893 for (Record *Pred : PredicateRecs) { 894 if (!PredicateCheck.empty()) 895 PredicateCheck += " && "; 896 PredicateCheck += "("; 897 PredicateCheck += Pred->getValueAsString("CondString"); 898 PredicateCheck += ")"; 899 } 900 901 return PredicateCheck.str(); 902 } 903 904 //===----------------------------------------------------------------------===// 905 // SDTypeConstraint implementation 906 // 907 908 SDTypeConstraint::SDTypeConstraint(Record *R) { 909 OperandNo = R->getValueAsInt("OperandNum"); 910 911 if (R->isSubClassOf("SDTCisVT")) { 912 ConstraintType = SDTCisVT; 913 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 914 if (x.SDTCisVT_Info.VT == MVT::isVoid) 915 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 916 917 } else if (R->isSubClassOf("SDTCisPtrTy")) { 918 ConstraintType = SDTCisPtrTy; 919 } else if (R->isSubClassOf("SDTCisInt")) { 920 ConstraintType = SDTCisInt; 921 } else if (R->isSubClassOf("SDTCisFP")) { 922 ConstraintType = SDTCisFP; 923 } else if (R->isSubClassOf("SDTCisVec")) { 924 ConstraintType = SDTCisVec; 925 } else if (R->isSubClassOf("SDTCisSameAs")) { 926 ConstraintType = SDTCisSameAs; 927 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 928 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 929 ConstraintType = SDTCisVTSmallerThanOp; 930 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 931 R->getValueAsInt("OtherOperandNum"); 932 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 933 ConstraintType = SDTCisOpSmallerThanOp; 934 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 935 R->getValueAsInt("BigOperandNum"); 936 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 937 ConstraintType = SDTCisEltOfVec; 938 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 939 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 940 ConstraintType = SDTCisSubVecOfVec; 941 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 942 R->getValueAsInt("OtherOpNum"); 943 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 944 ConstraintType = SDTCVecEltisVT; 945 x.SDTCVecEltisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 946 if (MVT(x.SDTCVecEltisVT_Info.VT).isVector()) 947 PrintFatalError(R->getLoc(), "Cannot use vector type as SDTCVecEltisVT"); 948 if (!MVT(x.SDTCVecEltisVT_Info.VT).isInteger() && 949 !MVT(x.SDTCVecEltisVT_Info.VT).isFloatingPoint()) 950 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 951 "as SDTCVecEltisVT"); 952 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 953 ConstraintType = SDTCisSameNumEltsAs; 954 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 955 R->getValueAsInt("OtherOperandNum"); 956 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 957 ConstraintType = SDTCisSameSizeAs; 958 x.SDTCisSameSizeAs_Info.OtherOperandNum = 959 R->getValueAsInt("OtherOperandNum"); 960 } else { 961 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 962 } 963 } 964 965 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 966 /// N, and the result number in ResNo. 967 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 968 const SDNodeInfo &NodeInfo, 969 unsigned &ResNo) { 970 unsigned NumResults = NodeInfo.getNumResults(); 971 if (OpNo < NumResults) { 972 ResNo = OpNo; 973 return N; 974 } 975 976 OpNo -= NumResults; 977 978 if (OpNo >= N->getNumChildren()) { 979 std::string S; 980 raw_string_ostream OS(S); 981 OS << "Invalid operand number in type constraint " 982 << (OpNo+NumResults) << " "; 983 N->print(OS); 984 PrintFatalError(OS.str()); 985 } 986 987 return N->getChild(OpNo); 988 } 989 990 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 991 /// constraint to the nodes operands. This returns true if it makes a 992 /// change, false otherwise. If a type contradiction is found, flag an error. 993 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 994 const SDNodeInfo &NodeInfo, 995 TreePattern &TP) const { 996 if (TP.hasError()) 997 return false; 998 999 unsigned ResNo = 0; // The result number being referenced. 1000 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1001 1002 switch (ConstraintType) { 1003 case SDTCisVT: 1004 // Operand must be a particular type. 1005 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 1006 case SDTCisPtrTy: 1007 // Operand must be same as target pointer type. 1008 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1009 case SDTCisInt: 1010 // Require it to be one of the legal integer VTs. 1011 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 1012 case SDTCisFP: 1013 // Require it to be one of the legal fp VTs. 1014 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 1015 case SDTCisVec: 1016 // Require it to be one of the legal vector VTs. 1017 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 1018 case SDTCisSameAs: { 1019 unsigned OResNo = 0; 1020 TreePatternNode *OtherNode = 1021 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1022 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1023 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1024 } 1025 case SDTCisVTSmallerThanOp: { 1026 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1027 // have an integer type that is smaller than the VT. 1028 if (!NodeToApply->isLeaf() || 1029 !isa<DefInit>(NodeToApply->getLeafValue()) || 1030 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1031 ->isSubClassOf("ValueType")) { 1032 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1033 return false; 1034 } 1035 MVT::SimpleValueType VT = 1036 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 1037 1038 EEVT::TypeSet TypeListTmp(VT, TP); 1039 1040 unsigned OResNo = 0; 1041 TreePatternNode *OtherNode = 1042 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1043 OResNo); 1044 1045 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 1046 } 1047 case SDTCisOpSmallerThanOp: { 1048 unsigned BResNo = 0; 1049 TreePatternNode *BigOperand = 1050 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1051 BResNo); 1052 return NodeToApply->getExtType(ResNo). 1053 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 1054 } 1055 case SDTCisEltOfVec: { 1056 unsigned VResNo = 0; 1057 TreePatternNode *VecOperand = 1058 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1059 VResNo); 1060 1061 // Filter vector types out of VecOperand that don't have the right element 1062 // type. 1063 return VecOperand->getExtType(VResNo). 1064 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 1065 } 1066 case SDTCisSubVecOfVec: { 1067 unsigned VResNo = 0; 1068 TreePatternNode *BigVecOperand = 1069 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1070 VResNo); 1071 1072 // Filter vector types out of BigVecOperand that don't have the 1073 // right subvector type. 1074 return BigVecOperand->getExtType(VResNo). 1075 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 1076 } 1077 case SDTCVecEltisVT: { 1078 return NodeToApply->getExtType(ResNo). 1079 EnforceVectorEltTypeIs(x.SDTCVecEltisVT_Info.VT, TP); 1080 } 1081 case SDTCisSameNumEltsAs: { 1082 unsigned OResNo = 0; 1083 TreePatternNode *OtherNode = 1084 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1085 N, NodeInfo, OResNo); 1086 return OtherNode->getExtType(OResNo). 1087 EnforceSameNumElts(NodeToApply->getExtType(ResNo), TP); 1088 } 1089 case SDTCisSameSizeAs: { 1090 unsigned OResNo = 0; 1091 TreePatternNode *OtherNode = 1092 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1093 N, NodeInfo, OResNo); 1094 return OtherNode->getExtType(OResNo). 1095 EnforceSameSize(NodeToApply->getExtType(ResNo), TP); 1096 } 1097 } 1098 llvm_unreachable("Invalid ConstraintType!"); 1099 } 1100 1101 // Update the node type to match an instruction operand or result as specified 1102 // in the ins or outs lists on the instruction definition. Return true if the 1103 // type was actually changed. 1104 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1105 Record *Operand, 1106 TreePattern &TP) { 1107 // The 'unknown' operand indicates that types should be inferred from the 1108 // context. 1109 if (Operand->isSubClassOf("unknown_class")) 1110 return false; 1111 1112 // The Operand class specifies a type directly. 1113 if (Operand->isSubClassOf("Operand")) 1114 return UpdateNodeType(ResNo, getValueType(Operand->getValueAsDef("Type")), 1115 TP); 1116 1117 // PointerLikeRegClass has a type that is determined at runtime. 1118 if (Operand->isSubClassOf("PointerLikeRegClass")) 1119 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1120 1121 // Both RegisterClass and RegisterOperand operands derive their types from a 1122 // register class def. 1123 Record *RC = nullptr; 1124 if (Operand->isSubClassOf("RegisterClass")) 1125 RC = Operand; 1126 else if (Operand->isSubClassOf("RegisterOperand")) 1127 RC = Operand->getValueAsDef("RegClass"); 1128 1129 assert(RC && "Unknown operand type"); 1130 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1131 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1132 } 1133 1134 1135 //===----------------------------------------------------------------------===// 1136 // SDNodeInfo implementation 1137 // 1138 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 1139 EnumName = R->getValueAsString("Opcode"); 1140 SDClassName = R->getValueAsString("SDClass"); 1141 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1142 NumResults = TypeProfile->getValueAsInt("NumResults"); 1143 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1144 1145 // Parse the properties. 1146 Properties = 0; 1147 for (Record *Property : R->getValueAsListOfDefs("Properties")) { 1148 if (Property->getName() == "SDNPCommutative") { 1149 Properties |= 1 << SDNPCommutative; 1150 } else if (Property->getName() == "SDNPAssociative") { 1151 Properties |= 1 << SDNPAssociative; 1152 } else if (Property->getName() == "SDNPHasChain") { 1153 Properties |= 1 << SDNPHasChain; 1154 } else if (Property->getName() == "SDNPOutGlue") { 1155 Properties |= 1 << SDNPOutGlue; 1156 } else if (Property->getName() == "SDNPInGlue") { 1157 Properties |= 1 << SDNPInGlue; 1158 } else if (Property->getName() == "SDNPOptInGlue") { 1159 Properties |= 1 << SDNPOptInGlue; 1160 } else if (Property->getName() == "SDNPMayStore") { 1161 Properties |= 1 << SDNPMayStore; 1162 } else if (Property->getName() == "SDNPMayLoad") { 1163 Properties |= 1 << SDNPMayLoad; 1164 } else if (Property->getName() == "SDNPSideEffect") { 1165 Properties |= 1 << SDNPSideEffect; 1166 } else if (Property->getName() == "SDNPMemOperand") { 1167 Properties |= 1 << SDNPMemOperand; 1168 } else if (Property->getName() == "SDNPVariadic") { 1169 Properties |= 1 << SDNPVariadic; 1170 } else { 1171 PrintFatalError("Unknown SD Node property '" + 1172 Property->getName() + "' on node '" + 1173 R->getName() + "'!"); 1174 } 1175 } 1176 1177 1178 // Parse the type constraints. 1179 std::vector<Record*> ConstraintList = 1180 TypeProfile->getValueAsListOfDefs("Constraints"); 1181 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 1182 } 1183 1184 /// getKnownType - If the type constraints on this node imply a fixed type 1185 /// (e.g. all stores return void, etc), then return it as an 1186 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1187 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1188 unsigned NumResults = getNumResults(); 1189 assert(NumResults <= 1 && 1190 "We only work with nodes with zero or one result so far!"); 1191 assert(ResNo == 0 && "Only handles single result nodes so far"); 1192 1193 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1194 // Make sure that this applies to the correct node result. 1195 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1196 continue; 1197 1198 switch (Constraint.ConstraintType) { 1199 default: break; 1200 case SDTypeConstraint::SDTCisVT: 1201 return Constraint.x.SDTCisVT_Info.VT; 1202 case SDTypeConstraint::SDTCisPtrTy: 1203 return MVT::iPTR; 1204 } 1205 } 1206 return MVT::Other; 1207 } 1208 1209 //===----------------------------------------------------------------------===// 1210 // TreePatternNode implementation 1211 // 1212 1213 TreePatternNode::~TreePatternNode() { 1214 #if 0 // FIXME: implement refcounted tree nodes! 1215 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1216 delete getChild(i); 1217 #endif 1218 } 1219 1220 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1221 if (Operator->getName() == "set" || 1222 Operator->getName() == "implicit") 1223 return 0; // All return nothing. 1224 1225 if (Operator->isSubClassOf("Intrinsic")) 1226 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1227 1228 if (Operator->isSubClassOf("SDNode")) 1229 return CDP.getSDNodeInfo(Operator).getNumResults(); 1230 1231 if (Operator->isSubClassOf("PatFrag")) { 1232 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1233 // the forward reference case where one pattern fragment references another 1234 // before it is processed. 1235 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1236 return PFRec->getOnlyTree()->getNumTypes(); 1237 1238 // Get the result tree. 1239 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1240 Record *Op = nullptr; 1241 if (Tree) 1242 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1243 Op = DI->getDef(); 1244 assert(Op && "Invalid Fragment"); 1245 return GetNumNodeResults(Op, CDP); 1246 } 1247 1248 if (Operator->isSubClassOf("Instruction")) { 1249 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1250 1251 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1252 1253 // Subtract any defaulted outputs. 1254 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1255 Record *OperandNode = InstInfo.Operands[i].Rec; 1256 1257 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1258 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1259 --NumDefsToAdd; 1260 } 1261 1262 // Add on one implicit def if it has a resolvable type. 1263 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1264 ++NumDefsToAdd; 1265 return NumDefsToAdd; 1266 } 1267 1268 if (Operator->isSubClassOf("SDNodeXForm")) 1269 return 1; // FIXME: Generalize SDNodeXForm 1270 1271 if (Operator->isSubClassOf("ValueType")) 1272 return 1; // A type-cast of one result. 1273 1274 if (Operator->isSubClassOf("ComplexPattern")) 1275 return 1; 1276 1277 errs() << *Operator; 1278 PrintFatalError("Unhandled node in GetNumNodeResults"); 1279 } 1280 1281 void TreePatternNode::print(raw_ostream &OS) const { 1282 if (isLeaf()) 1283 OS << *getLeafValue(); 1284 else 1285 OS << '(' << getOperator()->getName(); 1286 1287 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1288 OS << ':' << getExtType(i).getName(); 1289 1290 if (!isLeaf()) { 1291 if (getNumChildren() != 0) { 1292 OS << " "; 1293 getChild(0)->print(OS); 1294 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1295 OS << ", "; 1296 getChild(i)->print(OS); 1297 } 1298 } 1299 OS << ")"; 1300 } 1301 1302 for (const TreePredicateFn &Pred : PredicateFns) 1303 OS << "<<P:" << Pred.getFnName() << ">>"; 1304 if (TransformFn) 1305 OS << "<<X:" << TransformFn->getName() << ">>"; 1306 if (!getName().empty()) 1307 OS << ":$" << getName(); 1308 1309 } 1310 void TreePatternNode::dump() const { 1311 print(errs()); 1312 } 1313 1314 /// isIsomorphicTo - Return true if this node is recursively 1315 /// isomorphic to the specified node. For this comparison, the node's 1316 /// entire state is considered. The assigned name is ignored, since 1317 /// nodes with differing names are considered isomorphic. However, if 1318 /// the assigned name is present in the dependent variable set, then 1319 /// the assigned name is considered significant and the node is 1320 /// isomorphic if the names match. 1321 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1322 const MultipleUseVarSet &DepVars) const { 1323 if (N == this) return true; 1324 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1325 getPredicateFns() != N->getPredicateFns() || 1326 getTransformFn() != N->getTransformFn()) 1327 return false; 1328 1329 if (isLeaf()) { 1330 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1331 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1332 return ((DI->getDef() == NDI->getDef()) 1333 && (DepVars.find(getName()) == DepVars.end() 1334 || getName() == N->getName())); 1335 } 1336 } 1337 return getLeafValue() == N->getLeafValue(); 1338 } 1339 1340 if (N->getOperator() != getOperator() || 1341 N->getNumChildren() != getNumChildren()) return false; 1342 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1343 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1344 return false; 1345 return true; 1346 } 1347 1348 /// clone - Make a copy of this tree and all of its children. 1349 /// 1350 TreePatternNode *TreePatternNode::clone() const { 1351 TreePatternNode *New; 1352 if (isLeaf()) { 1353 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1354 } else { 1355 std::vector<TreePatternNode*> CChildren; 1356 CChildren.reserve(Children.size()); 1357 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1358 CChildren.push_back(getChild(i)->clone()); 1359 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1360 } 1361 New->setName(getName()); 1362 New->Types = Types; 1363 New->setPredicateFns(getPredicateFns()); 1364 New->setTransformFn(getTransformFn()); 1365 return New; 1366 } 1367 1368 /// RemoveAllTypes - Recursively strip all the types of this tree. 1369 void TreePatternNode::RemoveAllTypes() { 1370 // Reset to unknown type. 1371 std::fill(Types.begin(), Types.end(), EEVT::TypeSet()); 1372 if (isLeaf()) return; 1373 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1374 getChild(i)->RemoveAllTypes(); 1375 } 1376 1377 1378 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1379 /// with actual values specified by ArgMap. 1380 void TreePatternNode:: 1381 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1382 if (isLeaf()) return; 1383 1384 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1385 TreePatternNode *Child = getChild(i); 1386 if (Child->isLeaf()) { 1387 Init *Val = Child->getLeafValue(); 1388 // Note that, when substituting into an output pattern, Val might be an 1389 // UnsetInit. 1390 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1391 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1392 // We found a use of a formal argument, replace it with its value. 1393 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1394 assert(NewChild && "Couldn't find formal argument!"); 1395 assert((Child->getPredicateFns().empty() || 1396 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1397 "Non-empty child predicate clobbered!"); 1398 setChild(i, NewChild); 1399 } 1400 } else { 1401 getChild(i)->SubstituteFormalArguments(ArgMap); 1402 } 1403 } 1404 } 1405 1406 1407 /// InlinePatternFragments - If this pattern refers to any pattern 1408 /// fragments, inline them into place, giving us a pattern without any 1409 /// PatFrag references. 1410 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1411 if (TP.hasError()) 1412 return nullptr; 1413 1414 if (isLeaf()) 1415 return this; // nothing to do. 1416 Record *Op = getOperator(); 1417 1418 if (!Op->isSubClassOf("PatFrag")) { 1419 // Just recursively inline children nodes. 1420 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1421 TreePatternNode *Child = getChild(i); 1422 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1423 1424 assert((Child->getPredicateFns().empty() || 1425 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1426 "Non-empty child predicate clobbered!"); 1427 1428 setChild(i, NewChild); 1429 } 1430 return this; 1431 } 1432 1433 // Otherwise, we found a reference to a fragment. First, look up its 1434 // TreePattern record. 1435 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1436 1437 // Verify that we are passing the right number of operands. 1438 if (Frag->getNumArgs() != Children.size()) { 1439 TP.error("'" + Op->getName() + "' fragment requires " + 1440 utostr(Frag->getNumArgs()) + " operands!"); 1441 return nullptr; 1442 } 1443 1444 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1445 1446 TreePredicateFn PredFn(Frag); 1447 if (!PredFn.isAlwaysTrue()) 1448 FragTree->addPredicateFn(PredFn); 1449 1450 // Resolve formal arguments to their actual value. 1451 if (Frag->getNumArgs()) { 1452 // Compute the map of formal to actual arguments. 1453 std::map<std::string, TreePatternNode*> ArgMap; 1454 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1455 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1456 1457 FragTree->SubstituteFormalArguments(ArgMap); 1458 } 1459 1460 FragTree->setName(getName()); 1461 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1462 FragTree->UpdateNodeType(i, getExtType(i), TP); 1463 1464 // Transfer in the old predicates. 1465 for (const TreePredicateFn &Pred : getPredicateFns()) 1466 FragTree->addPredicateFn(Pred); 1467 1468 // Get a new copy of this fragment to stitch into here. 1469 //delete this; // FIXME: implement refcounting! 1470 1471 // The fragment we inlined could have recursive inlining that is needed. See 1472 // if there are any pattern fragments in it and inline them as needed. 1473 return FragTree->InlinePatternFragments(TP); 1474 } 1475 1476 /// getImplicitType - Check to see if the specified record has an implicit 1477 /// type which should be applied to it. This will infer the type of register 1478 /// references from the register file information, for example. 1479 /// 1480 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1481 /// the F8RC register class argument in: 1482 /// 1483 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1484 /// 1485 /// When Unnamed is false, return the type of a named DAG operand such as the 1486 /// GPR:$src operand above. 1487 /// 1488 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1489 bool NotRegisters, 1490 bool Unnamed, 1491 TreePattern &TP) { 1492 // Check to see if this is a register operand. 1493 if (R->isSubClassOf("RegisterOperand")) { 1494 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1495 if (NotRegisters) 1496 return EEVT::TypeSet(); // Unknown. 1497 Record *RegClass = R->getValueAsDef("RegClass"); 1498 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1499 return EEVT::TypeSet(T.getRegisterClass(RegClass).getValueTypes()); 1500 } 1501 1502 // Check to see if this is a register or a register class. 1503 if (R->isSubClassOf("RegisterClass")) { 1504 assert(ResNo == 0 && "Regclass ref only has one result!"); 1505 // An unnamed register class represents itself as an i32 immediate, for 1506 // example on a COPY_TO_REGCLASS instruction. 1507 if (Unnamed) 1508 return EEVT::TypeSet(MVT::i32, TP); 1509 1510 // In a named operand, the register class provides the possible set of 1511 // types. 1512 if (NotRegisters) 1513 return EEVT::TypeSet(); // Unknown. 1514 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1515 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1516 } 1517 1518 if (R->isSubClassOf("PatFrag")) { 1519 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1520 // Pattern fragment types will be resolved when they are inlined. 1521 return EEVT::TypeSet(); // Unknown. 1522 } 1523 1524 if (R->isSubClassOf("Register")) { 1525 assert(ResNo == 0 && "Registers only produce one result!"); 1526 if (NotRegisters) 1527 return EEVT::TypeSet(); // Unknown. 1528 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1529 return EEVT::TypeSet(T.getRegisterVTs(R)); 1530 } 1531 1532 if (R->isSubClassOf("SubRegIndex")) { 1533 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1534 return EEVT::TypeSet(MVT::i32, TP); 1535 } 1536 1537 if (R->isSubClassOf("ValueType")) { 1538 assert(ResNo == 0 && "This node only has one result!"); 1539 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1540 // 1541 // (sext_inreg GPR:$src, i16) 1542 // ~~~ 1543 if (Unnamed) 1544 return EEVT::TypeSet(MVT::Other, TP); 1545 // With a name, the ValueType simply provides the type of the named 1546 // variable. 1547 // 1548 // (sext_inreg i32:$src, i16) 1549 // ~~~~~~~~ 1550 if (NotRegisters) 1551 return EEVT::TypeSet(); // Unknown. 1552 return EEVT::TypeSet(getValueType(R), TP); 1553 } 1554 1555 if (R->isSubClassOf("CondCode")) { 1556 assert(ResNo == 0 && "This node only has one result!"); 1557 // Using a CondCodeSDNode. 1558 return EEVT::TypeSet(MVT::Other, TP); 1559 } 1560 1561 if (R->isSubClassOf("ComplexPattern")) { 1562 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1563 if (NotRegisters) 1564 return EEVT::TypeSet(); // Unknown. 1565 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1566 TP); 1567 } 1568 if (R->isSubClassOf("PointerLikeRegClass")) { 1569 assert(ResNo == 0 && "Regclass can only have one result!"); 1570 return EEVT::TypeSet(MVT::iPTR, TP); 1571 } 1572 1573 if (R->getName() == "node" || R->getName() == "srcvalue" || 1574 R->getName() == "zero_reg") { 1575 // Placeholder. 1576 return EEVT::TypeSet(); // Unknown. 1577 } 1578 1579 if (R->isSubClassOf("Operand")) 1580 return EEVT::TypeSet(getValueType(R->getValueAsDef("Type"))); 1581 1582 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1583 return EEVT::TypeSet(MVT::Other, TP); 1584 } 1585 1586 1587 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1588 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1589 const CodeGenIntrinsic *TreePatternNode:: 1590 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1591 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1592 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1593 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1594 return nullptr; 1595 1596 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 1597 return &CDP.getIntrinsicInfo(IID); 1598 } 1599 1600 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1601 /// return the ComplexPattern information, otherwise return null. 1602 const ComplexPattern * 1603 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1604 Record *Rec; 1605 if (isLeaf()) { 1606 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1607 if (!DI) 1608 return nullptr; 1609 Rec = DI->getDef(); 1610 } else 1611 Rec = getOperator(); 1612 1613 if (!Rec->isSubClassOf("ComplexPattern")) 1614 return nullptr; 1615 return &CGP.getComplexPattern(Rec); 1616 } 1617 1618 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 1619 // A ComplexPattern specifically declares how many results it fills in. 1620 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1621 return CP->getNumOperands(); 1622 1623 // If MIOperandInfo is specified, that gives the count. 1624 if (isLeaf()) { 1625 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 1626 if (DI && DI->getDef()->isSubClassOf("Operand")) { 1627 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 1628 if (MIOps->getNumArgs()) 1629 return MIOps->getNumArgs(); 1630 } 1631 } 1632 1633 // Otherwise there is just one result. 1634 return 1; 1635 } 1636 1637 /// NodeHasProperty - Return true if this node has the specified property. 1638 bool TreePatternNode::NodeHasProperty(SDNP Property, 1639 const CodeGenDAGPatterns &CGP) const { 1640 if (isLeaf()) { 1641 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1642 return CP->hasProperty(Property); 1643 return false; 1644 } 1645 1646 Record *Operator = getOperator(); 1647 if (!Operator->isSubClassOf("SDNode")) return false; 1648 1649 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1650 } 1651 1652 1653 1654 1655 /// TreeHasProperty - Return true if any node in this tree has the specified 1656 /// property. 1657 bool TreePatternNode::TreeHasProperty(SDNP Property, 1658 const CodeGenDAGPatterns &CGP) const { 1659 if (NodeHasProperty(Property, CGP)) 1660 return true; 1661 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1662 if (getChild(i)->TreeHasProperty(Property, CGP)) 1663 return true; 1664 return false; 1665 } 1666 1667 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1668 /// commutative intrinsic. 1669 bool 1670 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1671 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1672 return Int->isCommutative; 1673 return false; 1674 } 1675 1676 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 1677 if (!N->isLeaf()) 1678 return N->getOperator()->isSubClassOf(Class); 1679 1680 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 1681 if (DI && DI->getDef()->isSubClassOf(Class)) 1682 return true; 1683 1684 return false; 1685 } 1686 1687 static void emitTooManyOperandsError(TreePattern &TP, 1688 StringRef InstName, 1689 unsigned Expected, 1690 unsigned Actual) { 1691 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 1692 " operands but expected only " + Twine(Expected) + "!"); 1693 } 1694 1695 static void emitTooFewOperandsError(TreePattern &TP, 1696 StringRef InstName, 1697 unsigned Actual) { 1698 TP.error("Instruction '" + InstName + 1699 "' expects more than the provided " + Twine(Actual) + " operands!"); 1700 } 1701 1702 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1703 /// this node and its children in the tree. This returns true if it makes a 1704 /// change, false otherwise. If a type contradiction is found, flag an error. 1705 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1706 if (TP.hasError()) 1707 return false; 1708 1709 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1710 if (isLeaf()) { 1711 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1712 // If it's a regclass or something else known, include the type. 1713 bool MadeChange = false; 1714 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1715 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1716 NotRegisters, 1717 !hasName(), TP), TP); 1718 return MadeChange; 1719 } 1720 1721 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 1722 assert(Types.size() == 1 && "Invalid IntInit"); 1723 1724 // Int inits are always integers. :) 1725 bool MadeChange = Types[0].EnforceInteger(TP); 1726 1727 if (!Types[0].isConcrete()) 1728 return MadeChange; 1729 1730 MVT::SimpleValueType VT = getType(0); 1731 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1732 return MadeChange; 1733 1734 unsigned Size = MVT(VT).getSizeInBits(); 1735 // Make sure that the value is representable for this type. 1736 if (Size >= 32) return MadeChange; 1737 1738 // Check that the value doesn't use more bits than we have. It must either 1739 // be a sign- or zero-extended equivalent of the original. 1740 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 1741 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || SignBitAndAbove == 1) 1742 return MadeChange; 1743 1744 TP.error("Integer value '" + itostr(II->getValue()) + 1745 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1746 return false; 1747 } 1748 return false; 1749 } 1750 1751 // special handling for set, which isn't really an SDNode. 1752 if (getOperator()->getName() == "set") { 1753 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1754 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1755 unsigned NC = getNumChildren(); 1756 1757 TreePatternNode *SetVal = getChild(NC-1); 1758 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1759 1760 for (unsigned i = 0; i < NC-1; ++i) { 1761 TreePatternNode *Child = getChild(i); 1762 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1763 1764 // Types of operands must match. 1765 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1766 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1767 } 1768 return MadeChange; 1769 } 1770 1771 if (getOperator()->getName() == "implicit") { 1772 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1773 1774 bool MadeChange = false; 1775 for (unsigned i = 0; i < getNumChildren(); ++i) 1776 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1777 return MadeChange; 1778 } 1779 1780 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1781 bool MadeChange = false; 1782 1783 // Apply the result type to the node. 1784 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1785 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1786 1787 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1788 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1789 1790 if (getNumChildren() != NumParamVTs + 1) { 1791 TP.error("Intrinsic '" + Int->Name + "' expects " + 1792 utostr(NumParamVTs) + " operands, not " + 1793 utostr(getNumChildren() - 1) + " operands!"); 1794 return false; 1795 } 1796 1797 // Apply type info to the intrinsic ID. 1798 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1799 1800 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1801 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1802 1803 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1804 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1805 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1806 } 1807 return MadeChange; 1808 } 1809 1810 if (getOperator()->isSubClassOf("SDNode")) { 1811 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1812 1813 // Check that the number of operands is sane. Negative operands -> varargs. 1814 if (NI.getNumOperands() >= 0 && 1815 getNumChildren() != (unsigned)NI.getNumOperands()) { 1816 TP.error(getOperator()->getName() + " node requires exactly " + 1817 itostr(NI.getNumOperands()) + " operands!"); 1818 return false; 1819 } 1820 1821 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1822 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1823 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1824 return MadeChange; 1825 } 1826 1827 if (getOperator()->isSubClassOf("Instruction")) { 1828 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1829 CodeGenInstruction &InstInfo = 1830 CDP.getTargetInfo().getInstruction(getOperator()); 1831 1832 bool MadeChange = false; 1833 1834 // Apply the result types to the node, these come from the things in the 1835 // (outs) list of the instruction. 1836 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 1837 Inst.getNumResults()); 1838 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 1839 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 1840 1841 // If the instruction has implicit defs, we apply the first one as a result. 1842 // FIXME: This sucks, it should apply all implicit defs. 1843 if (!InstInfo.ImplicitDefs.empty()) { 1844 unsigned ResNo = NumResultsToAdd; 1845 1846 // FIXME: Generalize to multiple possible types and multiple possible 1847 // ImplicitDefs. 1848 MVT::SimpleValueType VT = 1849 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1850 1851 if (VT != MVT::Other) 1852 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1853 } 1854 1855 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1856 // be the same. 1857 if (getOperator()->getName() == "INSERT_SUBREG") { 1858 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1859 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1860 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1861 } else if (getOperator()->getName() == "REG_SEQUENCE") { 1862 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 1863 // variadic. 1864 1865 unsigned NChild = getNumChildren(); 1866 if (NChild < 3) { 1867 TP.error("REG_SEQUENCE requires at least 3 operands!"); 1868 return false; 1869 } 1870 1871 if (NChild % 2 == 0) { 1872 TP.error("REG_SEQUENCE requires an odd number of operands!"); 1873 return false; 1874 } 1875 1876 if (!isOperandClass(getChild(0), "RegisterClass")) { 1877 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 1878 return false; 1879 } 1880 1881 for (unsigned I = 1; I < NChild; I += 2) { 1882 TreePatternNode *SubIdxChild = getChild(I + 1); 1883 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 1884 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 1885 itostr(I + 1) + "!"); 1886 return false; 1887 } 1888 } 1889 } 1890 1891 unsigned ChildNo = 0; 1892 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1893 Record *OperandNode = Inst.getOperand(i); 1894 1895 // If the instruction expects a predicate or optional def operand, we 1896 // codegen this by setting the operand to it's default value if it has a 1897 // non-empty DefaultOps field. 1898 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1899 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1900 continue; 1901 1902 // Verify that we didn't run out of provided operands. 1903 if (ChildNo >= getNumChildren()) { 1904 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 1905 return false; 1906 } 1907 1908 TreePatternNode *Child = getChild(ChildNo++); 1909 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1910 1911 // If the operand has sub-operands, they may be provided by distinct 1912 // child patterns, so attempt to match each sub-operand separately. 1913 if (OperandNode->isSubClassOf("Operand")) { 1914 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 1915 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 1916 // But don't do that if the whole operand is being provided by 1917 // a single ComplexPattern-related Operand. 1918 1919 if (Child->getNumMIResults(CDP) < NumArgs) { 1920 // Match first sub-operand against the child we already have. 1921 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 1922 MadeChange |= 1923 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1924 1925 // And the remaining sub-operands against subsequent children. 1926 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 1927 if (ChildNo >= getNumChildren()) { 1928 emitTooFewOperandsError(TP, getOperator()->getName(), 1929 getNumChildren()); 1930 return false; 1931 } 1932 Child = getChild(ChildNo++); 1933 1934 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 1935 MadeChange |= 1936 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 1937 } 1938 continue; 1939 } 1940 } 1941 } 1942 1943 // If we didn't match by pieces above, attempt to match the whole 1944 // operand now. 1945 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 1946 } 1947 1948 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 1949 emitTooManyOperandsError(TP, getOperator()->getName(), 1950 ChildNo, getNumChildren()); 1951 return false; 1952 } 1953 1954 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1955 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1956 return MadeChange; 1957 } 1958 1959 if (getOperator()->isSubClassOf("ComplexPattern")) { 1960 bool MadeChange = false; 1961 1962 for (unsigned i = 0; i < getNumChildren(); ++i) 1963 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1964 1965 return MadeChange; 1966 } 1967 1968 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1969 1970 // Node transforms always take one operand. 1971 if (getNumChildren() != 1) { 1972 TP.error("Node transform '" + getOperator()->getName() + 1973 "' requires one operand!"); 1974 return false; 1975 } 1976 1977 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1978 1979 1980 // If either the output or input of the xform does not have exact 1981 // type info. We assume they must be the same. Otherwise, it is perfectly 1982 // legal to transform from one type to a completely different type. 1983 #if 0 1984 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1985 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1986 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1987 return MadeChange; 1988 } 1989 #endif 1990 return MadeChange; 1991 } 1992 1993 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1994 /// RHS of a commutative operation, not the on LHS. 1995 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1996 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1997 return true; 1998 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 1999 return true; 2000 return false; 2001 } 2002 2003 2004 /// canPatternMatch - If it is impossible for this pattern to match on this 2005 /// target, fill in Reason and return false. Otherwise, return true. This is 2006 /// used as a sanity check for .td files (to prevent people from writing stuff 2007 /// that can never possibly work), and to prevent the pattern permuter from 2008 /// generating stuff that is useless. 2009 bool TreePatternNode::canPatternMatch(std::string &Reason, 2010 const CodeGenDAGPatterns &CDP) { 2011 if (isLeaf()) return true; 2012 2013 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2014 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2015 return false; 2016 2017 // If this is an intrinsic, handle cases that would make it not match. For 2018 // example, if an operand is required to be an immediate. 2019 if (getOperator()->isSubClassOf("Intrinsic")) { 2020 // TODO: 2021 return true; 2022 } 2023 2024 if (getOperator()->isSubClassOf("ComplexPattern")) 2025 return true; 2026 2027 // If this node is a commutative operator, check that the LHS isn't an 2028 // immediate. 2029 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2030 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2031 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2032 // Scan all of the operands of the node and make sure that only the last one 2033 // is a constant node, unless the RHS also is. 2034 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2035 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2036 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2037 if (OnlyOnRHSOfCommutative(getChild(i))) { 2038 Reason="Immediate value must be on the RHS of commutative operators!"; 2039 return false; 2040 } 2041 } 2042 } 2043 2044 return true; 2045 } 2046 2047 //===----------------------------------------------------------------------===// 2048 // TreePattern implementation 2049 // 2050 2051 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2052 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2053 isInputPattern(isInput), HasError(false) { 2054 for (Init *I : RawPat->getValues()) 2055 Trees.push_back(ParseTreePattern(I, "")); 2056 } 2057 2058 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2059 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2060 isInputPattern(isInput), HasError(false) { 2061 Trees.push_back(ParseTreePattern(Pat, "")); 2062 } 2063 2064 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2065 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2066 isInputPattern(isInput), HasError(false) { 2067 Trees.push_back(Pat); 2068 } 2069 2070 void TreePattern::error(const Twine &Msg) { 2071 if (HasError) 2072 return; 2073 dump(); 2074 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2075 HasError = true; 2076 } 2077 2078 void TreePattern::ComputeNamedNodes() { 2079 for (TreePatternNode *Tree : Trees) 2080 ComputeNamedNodes(Tree); 2081 } 2082 2083 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2084 if (!N->getName().empty()) 2085 NamedNodes[N->getName()].push_back(N); 2086 2087 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2088 ComputeNamedNodes(N->getChild(i)); 2089 } 2090 2091 2092 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2093 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2094 Record *R = DI->getDef(); 2095 2096 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2097 // TreePatternNode of its own. For example: 2098 /// (foo GPR, imm) -> (foo GPR, (imm)) 2099 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2100 return ParseTreePattern( 2101 DagInit::get(DI, nullptr, 2102 std::vector<std::pair<Init*, StringInit*> >()), 2103 OpName); 2104 2105 // Input argument? 2106 TreePatternNode *Res = new TreePatternNode(DI, 1); 2107 if (R->getName() == "node" && !OpName.empty()) { 2108 if (OpName.empty()) 2109 error("'node' argument requires a name to match with operand list"); 2110 Args.push_back(OpName); 2111 } 2112 2113 Res->setName(OpName); 2114 return Res; 2115 } 2116 2117 // ?:$name or just $name. 2118 if (isa<UnsetInit>(TheInit)) { 2119 if (OpName.empty()) 2120 error("'?' argument requires a name to match with operand list"); 2121 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2122 Args.push_back(OpName); 2123 Res->setName(OpName); 2124 return Res; 2125 } 2126 2127 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2128 if (!OpName.empty()) 2129 error("Constant int argument should not have a name!"); 2130 return new TreePatternNode(II, 1); 2131 } 2132 2133 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2134 // Turn this into an IntInit. 2135 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2136 if (!II || !isa<IntInit>(II)) 2137 error("Bits value must be constants!"); 2138 return ParseTreePattern(II, OpName); 2139 } 2140 2141 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2142 if (!Dag) { 2143 TheInit->print(errs()); 2144 error("Pattern has unexpected init kind!"); 2145 } 2146 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2147 if (!OpDef) error("Pattern has unexpected operator type!"); 2148 Record *Operator = OpDef->getDef(); 2149 2150 if (Operator->isSubClassOf("ValueType")) { 2151 // If the operator is a ValueType, then this must be "type cast" of a leaf 2152 // node. 2153 if (Dag->getNumArgs() != 1) 2154 error("Type cast only takes one operand!"); 2155 2156 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), 2157 Dag->getArgNameStr(0)); 2158 2159 // Apply the type cast. 2160 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2161 New->UpdateNodeType(0, getValueType(Operator), *this); 2162 2163 if (!OpName.empty()) 2164 error("ValueType cast should not have a name!"); 2165 return New; 2166 } 2167 2168 // Verify that this is something that makes sense for an operator. 2169 if (!Operator->isSubClassOf("PatFrag") && 2170 !Operator->isSubClassOf("SDNode") && 2171 !Operator->isSubClassOf("Instruction") && 2172 !Operator->isSubClassOf("SDNodeXForm") && 2173 !Operator->isSubClassOf("Intrinsic") && 2174 !Operator->isSubClassOf("ComplexPattern") && 2175 Operator->getName() != "set" && 2176 Operator->getName() != "implicit") 2177 error("Unrecognized node '" + Operator->getName() + "'!"); 2178 2179 // Check to see if this is something that is illegal in an input pattern. 2180 if (isInputPattern) { 2181 if (Operator->isSubClassOf("Instruction") || 2182 Operator->isSubClassOf("SDNodeXForm")) 2183 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2184 } else { 2185 if (Operator->isSubClassOf("Intrinsic")) 2186 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2187 2188 if (Operator->isSubClassOf("SDNode") && 2189 Operator->getName() != "imm" && 2190 Operator->getName() != "fpimm" && 2191 Operator->getName() != "tglobaltlsaddr" && 2192 Operator->getName() != "tconstpool" && 2193 Operator->getName() != "tjumptable" && 2194 Operator->getName() != "tframeindex" && 2195 Operator->getName() != "texternalsym" && 2196 Operator->getName() != "tblockaddress" && 2197 Operator->getName() != "tglobaladdr" && 2198 Operator->getName() != "bb" && 2199 Operator->getName() != "vt" && 2200 Operator->getName() != "mcsym") 2201 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2202 } 2203 2204 std::vector<TreePatternNode*> Children; 2205 2206 // Parse all the operands. 2207 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2208 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2209 2210 // If the operator is an intrinsic, then this is just syntactic sugar for for 2211 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2212 // convert the intrinsic name to a number. 2213 if (Operator->isSubClassOf("Intrinsic")) { 2214 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2215 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2216 2217 // If this intrinsic returns void, it must have side-effects and thus a 2218 // chain. 2219 if (Int.IS.RetVTs.empty()) 2220 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2221 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2222 // Has side-effects, requires chain. 2223 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2224 else // Otherwise, no chain. 2225 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2226 2227 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2228 Children.insert(Children.begin(), IIDNode); 2229 } 2230 2231 if (Operator->isSubClassOf("ComplexPattern")) { 2232 for (unsigned i = 0; i < Children.size(); ++i) { 2233 TreePatternNode *Child = Children[i]; 2234 2235 if (Child->getName().empty()) 2236 error("All arguments to a ComplexPattern must be named"); 2237 2238 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2239 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2240 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2241 auto OperandId = std::make_pair(Operator, i); 2242 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2243 if (PrevOp != ComplexPatternOperands.end()) { 2244 if (PrevOp->getValue() != OperandId) 2245 error("All ComplexPattern operands must appear consistently: " 2246 "in the same order in just one ComplexPattern instance."); 2247 } else 2248 ComplexPatternOperands[Child->getName()] = OperandId; 2249 } 2250 } 2251 2252 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2253 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2254 Result->setName(OpName); 2255 2256 if (Dag->getName()) { 2257 assert(Result->getName().empty()); 2258 Result->setName(Dag->getNameStr()); 2259 } 2260 return Result; 2261 } 2262 2263 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2264 /// will never match in favor of something obvious that will. This is here 2265 /// strictly as a convenience to target authors because it allows them to write 2266 /// more type generic things and have useless type casts fold away. 2267 /// 2268 /// This returns true if any change is made. 2269 static bool SimplifyTree(TreePatternNode *&N) { 2270 if (N->isLeaf()) 2271 return false; 2272 2273 // If we have a bitconvert with a resolved type and if the source and 2274 // destination types are the same, then the bitconvert is useless, remove it. 2275 if (N->getOperator()->getName() == "bitconvert" && 2276 N->getExtType(0).isConcrete() && 2277 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2278 N->getName().empty()) { 2279 N = N->getChild(0); 2280 SimplifyTree(N); 2281 return true; 2282 } 2283 2284 // Walk all children. 2285 bool MadeChange = false; 2286 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2287 TreePatternNode *Child = N->getChild(i); 2288 MadeChange |= SimplifyTree(Child); 2289 N->setChild(i, Child); 2290 } 2291 return MadeChange; 2292 } 2293 2294 2295 2296 /// InferAllTypes - Infer/propagate as many types throughout the expression 2297 /// patterns as possible. Return true if all types are inferred, false 2298 /// otherwise. Flags an error if a type contradiction is found. 2299 bool TreePattern:: 2300 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2301 if (NamedNodes.empty()) 2302 ComputeNamedNodes(); 2303 2304 bool MadeChange = true; 2305 while (MadeChange) { 2306 MadeChange = false; 2307 for (TreePatternNode *Tree : Trees) { 2308 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2309 MadeChange |= SimplifyTree(Tree); 2310 } 2311 2312 // If there are constraints on our named nodes, apply them. 2313 for (auto &Entry : NamedNodes) { 2314 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2315 2316 // If we have input named node types, propagate their types to the named 2317 // values here. 2318 if (InNamedTypes) { 2319 if (!InNamedTypes->count(Entry.getKey())) { 2320 error("Node '" + std::string(Entry.getKey()) + 2321 "' in output pattern but not input pattern"); 2322 return true; 2323 } 2324 2325 const SmallVectorImpl<TreePatternNode*> &InNodes = 2326 InNamedTypes->find(Entry.getKey())->second; 2327 2328 // The input types should be fully resolved by now. 2329 for (TreePatternNode *Node : Nodes) { 2330 // If this node is a register class, and it is the root of the pattern 2331 // then we're mapping something onto an input register. We allow 2332 // changing the type of the input register in this case. This allows 2333 // us to match things like: 2334 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2335 if (Node == Trees[0] && Node->isLeaf()) { 2336 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2337 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2338 DI->getDef()->isSubClassOf("RegisterOperand"))) 2339 continue; 2340 } 2341 2342 assert(Node->getNumTypes() == 1 && 2343 InNodes[0]->getNumTypes() == 1 && 2344 "FIXME: cannot name multiple result nodes yet"); 2345 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2346 *this); 2347 } 2348 } 2349 2350 // If there are multiple nodes with the same name, they must all have the 2351 // same type. 2352 if (Entry.second.size() > 1) { 2353 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2354 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2355 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2356 "FIXME: cannot name multiple result nodes yet"); 2357 2358 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2359 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2360 } 2361 } 2362 } 2363 } 2364 2365 bool HasUnresolvedTypes = false; 2366 for (const TreePatternNode *Tree : Trees) 2367 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(); 2368 return !HasUnresolvedTypes; 2369 } 2370 2371 void TreePattern::print(raw_ostream &OS) const { 2372 OS << getRecord()->getName(); 2373 if (!Args.empty()) { 2374 OS << "(" << Args[0]; 2375 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2376 OS << ", " << Args[i]; 2377 OS << ")"; 2378 } 2379 OS << ": "; 2380 2381 if (Trees.size() > 1) 2382 OS << "[\n"; 2383 for (const TreePatternNode *Tree : Trees) { 2384 OS << "\t"; 2385 Tree->print(OS); 2386 OS << "\n"; 2387 } 2388 2389 if (Trees.size() > 1) 2390 OS << "]\n"; 2391 } 2392 2393 void TreePattern::dump() const { print(errs()); } 2394 2395 //===----------------------------------------------------------------------===// 2396 // CodeGenDAGPatterns implementation 2397 // 2398 2399 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 2400 Records(R), Target(R) { 2401 2402 Intrinsics = CodeGenIntrinsicTable(Records, false); 2403 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2404 ParseNodeInfo(); 2405 ParseNodeTransforms(); 2406 ParseComplexPatterns(); 2407 ParsePatternFragments(); 2408 ParseDefaultOperands(); 2409 ParseInstructions(); 2410 ParsePatternFragments(/*OutFrags*/true); 2411 ParsePatterns(); 2412 2413 // Generate variants. For example, commutative patterns can match 2414 // multiple ways. Add them to PatternsToMatch as well. 2415 GenerateVariants(); 2416 2417 // Infer instruction flags. For example, we can detect loads, 2418 // stores, and side effects in many cases by examining an 2419 // instruction's pattern. 2420 InferInstructionFlags(); 2421 2422 // Verify that instruction flags match the patterns. 2423 VerifyInstructionFlags(); 2424 } 2425 2426 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2427 Record *N = Records.getDef(Name); 2428 if (!N || !N->isSubClassOf("SDNode")) 2429 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2430 2431 return N; 2432 } 2433 2434 // Parse all of the SDNode definitions for the target, populating SDNodes. 2435 void CodeGenDAGPatterns::ParseNodeInfo() { 2436 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2437 while (!Nodes.empty()) { 2438 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2439 Nodes.pop_back(); 2440 } 2441 2442 // Get the builtin intrinsic nodes. 2443 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2444 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2445 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2446 } 2447 2448 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2449 /// map, and emit them to the file as functions. 2450 void CodeGenDAGPatterns::ParseNodeTransforms() { 2451 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2452 while (!Xforms.empty()) { 2453 Record *XFormNode = Xforms.back(); 2454 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2455 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2456 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2457 2458 Xforms.pop_back(); 2459 } 2460 } 2461 2462 void CodeGenDAGPatterns::ParseComplexPatterns() { 2463 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2464 while (!AMs.empty()) { 2465 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2466 AMs.pop_back(); 2467 } 2468 } 2469 2470 2471 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2472 /// file, building up the PatternFragments map. After we've collected them all, 2473 /// inline fragments together as necessary, so that there are no references left 2474 /// inside a pattern fragment to a pattern fragment. 2475 /// 2476 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2477 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2478 2479 // First step, parse all of the fragments. 2480 for (Record *Frag : Fragments) { 2481 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2482 continue; 2483 2484 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2485 TreePattern *P = 2486 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2487 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2488 *this)).get(); 2489 2490 // Validate the argument list, converting it to set, to discard duplicates. 2491 std::vector<std::string> &Args = P->getArgList(); 2492 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2493 2494 if (OperandsSet.count("")) 2495 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2496 2497 // Parse the operands list. 2498 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2499 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2500 // Special cases: ops == outs == ins. Different names are used to 2501 // improve readability. 2502 if (!OpsOp || 2503 (OpsOp->getDef()->getName() != "ops" && 2504 OpsOp->getDef()->getName() != "outs" && 2505 OpsOp->getDef()->getName() != "ins")) 2506 P->error("Operands list should start with '(ops ... '!"); 2507 2508 // Copy over the arguments. 2509 Args.clear(); 2510 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2511 if (!isa<DefInit>(OpsList->getArg(j)) || 2512 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2513 P->error("Operands list should all be 'node' values."); 2514 if (!OpsList->getArgName(j)) 2515 P->error("Operands list should have names for each operand!"); 2516 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2517 if (!OperandsSet.count(ArgNameStr)) 2518 P->error("'" + ArgNameStr + 2519 "' does not occur in pattern or was multiply specified!"); 2520 OperandsSet.erase(ArgNameStr); 2521 Args.push_back(ArgNameStr); 2522 } 2523 2524 if (!OperandsSet.empty()) 2525 P->error("Operands list does not contain an entry for operand '" + 2526 *OperandsSet.begin() + "'!"); 2527 2528 // If there is a code init for this fragment, keep track of the fact that 2529 // this fragment uses it. 2530 TreePredicateFn PredFn(P); 2531 if (!PredFn.isAlwaysTrue()) 2532 P->getOnlyTree()->addPredicateFn(PredFn); 2533 2534 // If there is a node transformation corresponding to this, keep track of 2535 // it. 2536 Record *Transform = Frag->getValueAsDef("OperandTransform"); 2537 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2538 P->getOnlyTree()->setTransformFn(Transform); 2539 } 2540 2541 // Now that we've parsed all of the tree fragments, do a closure on them so 2542 // that there are not references to PatFrags left inside of them. 2543 for (Record *Frag : Fragments) { 2544 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2545 continue; 2546 2547 TreePattern &ThePat = *PatternFragments[Frag]; 2548 ThePat.InlinePatternFragments(); 2549 2550 // Infer as many types as possible. Don't worry about it if we don't infer 2551 // all of them, some may depend on the inputs of the pattern. 2552 ThePat.InferAllTypes(); 2553 ThePat.resetError(); 2554 2555 // If debugging, print out the pattern fragment result. 2556 DEBUG(ThePat.dump()); 2557 } 2558 } 2559 2560 void CodeGenDAGPatterns::ParseDefaultOperands() { 2561 std::vector<Record*> DefaultOps; 2562 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 2563 2564 // Find some SDNode. 2565 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2566 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 2567 2568 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 2569 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 2570 2571 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2572 // SomeSDnode so that we can parse this. 2573 std::vector<std::pair<Init*, StringInit*> > Ops; 2574 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2575 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2576 DefaultInfo->getArgName(op))); 2577 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 2578 2579 // Create a TreePattern to parse this. 2580 TreePattern P(DefaultOps[i], DI, false, *this); 2581 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2582 2583 // Copy the operands over into a DAGDefaultOperand. 2584 DAGDefaultOperand DefaultOpInfo; 2585 2586 TreePatternNode *T = P.getTree(0); 2587 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2588 TreePatternNode *TPN = T->getChild(op); 2589 while (TPN->ApplyTypeConstraints(P, false)) 2590 /* Resolve all types */; 2591 2592 if (TPN->ContainsUnresolvedType()) { 2593 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 2594 DefaultOps[i]->getName() + 2595 "' doesn't have a concrete type!"); 2596 } 2597 DefaultOpInfo.DefaultOps.push_back(TPN); 2598 } 2599 2600 // Insert it into the DefaultOperands map so we can find it later. 2601 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 2602 } 2603 } 2604 2605 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2606 /// instruction input. Return true if this is a real use. 2607 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2608 std::map<std::string, TreePatternNode*> &InstInputs) { 2609 // No name -> not interesting. 2610 if (Pat->getName().empty()) { 2611 if (Pat->isLeaf()) { 2612 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2613 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2614 DI->getDef()->isSubClassOf("RegisterOperand"))) 2615 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2616 } 2617 return false; 2618 } 2619 2620 Record *Rec; 2621 if (Pat->isLeaf()) { 2622 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 2623 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2624 Rec = DI->getDef(); 2625 } else { 2626 Rec = Pat->getOperator(); 2627 } 2628 2629 // SRCVALUE nodes are ignored. 2630 if (Rec->getName() == "srcvalue") 2631 return false; 2632 2633 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2634 if (!Slot) { 2635 Slot = Pat; 2636 return true; 2637 } 2638 Record *SlotRec; 2639 if (Slot->isLeaf()) { 2640 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 2641 } else { 2642 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2643 SlotRec = Slot->getOperator(); 2644 } 2645 2646 // Ensure that the inputs agree if we've already seen this input. 2647 if (Rec != SlotRec) 2648 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2649 if (Slot->getExtTypes() != Pat->getExtTypes()) 2650 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2651 return true; 2652 } 2653 2654 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2655 /// part of "I", the instruction), computing the set of inputs and outputs of 2656 /// the pattern. Report errors if we see anything naughty. 2657 void CodeGenDAGPatterns:: 2658 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2659 std::map<std::string, TreePatternNode*> &InstInputs, 2660 std::map<std::string, TreePatternNode*>&InstResults, 2661 std::vector<Record*> &InstImpResults) { 2662 if (Pat->isLeaf()) { 2663 bool isUse = HandleUse(I, Pat, InstInputs); 2664 if (!isUse && Pat->getTransformFn()) 2665 I->error("Cannot specify a transform function for a non-input value!"); 2666 return; 2667 } 2668 2669 if (Pat->getOperator()->getName() == "implicit") { 2670 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2671 TreePatternNode *Dest = Pat->getChild(i); 2672 if (!Dest->isLeaf()) 2673 I->error("implicitly defined value should be a register!"); 2674 2675 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2676 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2677 I->error("implicitly defined value should be a register!"); 2678 InstImpResults.push_back(Val->getDef()); 2679 } 2680 return; 2681 } 2682 2683 if (Pat->getOperator()->getName() != "set") { 2684 // If this is not a set, verify that the children nodes are not void typed, 2685 // and recurse. 2686 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2687 if (Pat->getChild(i)->getNumTypes() == 0) 2688 I->error("Cannot have void nodes inside of patterns!"); 2689 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2690 InstImpResults); 2691 } 2692 2693 // If this is a non-leaf node with no children, treat it basically as if 2694 // it were a leaf. This handles nodes like (imm). 2695 bool isUse = HandleUse(I, Pat, InstInputs); 2696 2697 if (!isUse && Pat->getTransformFn()) 2698 I->error("Cannot specify a transform function for a non-input value!"); 2699 return; 2700 } 2701 2702 // Otherwise, this is a set, validate and collect instruction results. 2703 if (Pat->getNumChildren() == 0) 2704 I->error("set requires operands!"); 2705 2706 if (Pat->getTransformFn()) 2707 I->error("Cannot specify a transform function on a set node!"); 2708 2709 // Check the set destinations. 2710 unsigned NumDests = Pat->getNumChildren()-1; 2711 for (unsigned i = 0; i != NumDests; ++i) { 2712 TreePatternNode *Dest = Pat->getChild(i); 2713 if (!Dest->isLeaf()) 2714 I->error("set destination should be a register!"); 2715 2716 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 2717 if (!Val) { 2718 I->error("set destination should be a register!"); 2719 continue; 2720 } 2721 2722 if (Val->getDef()->isSubClassOf("RegisterClass") || 2723 Val->getDef()->isSubClassOf("ValueType") || 2724 Val->getDef()->isSubClassOf("RegisterOperand") || 2725 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2726 if (Dest->getName().empty()) 2727 I->error("set destination must have a name!"); 2728 if (InstResults.count(Dest->getName())) 2729 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2730 InstResults[Dest->getName()] = Dest; 2731 } else if (Val->getDef()->isSubClassOf("Register")) { 2732 InstImpResults.push_back(Val->getDef()); 2733 } else { 2734 I->error("set destination should be a register!"); 2735 } 2736 } 2737 2738 // Verify and collect info from the computation. 2739 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2740 InstInputs, InstResults, InstImpResults); 2741 } 2742 2743 //===----------------------------------------------------------------------===// 2744 // Instruction Analysis 2745 //===----------------------------------------------------------------------===// 2746 2747 class InstAnalyzer { 2748 const CodeGenDAGPatterns &CDP; 2749 public: 2750 bool hasSideEffects; 2751 bool mayStore; 2752 bool mayLoad; 2753 bool isBitcast; 2754 bool isVariadic; 2755 2756 InstAnalyzer(const CodeGenDAGPatterns &cdp) 2757 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 2758 isBitcast(false), isVariadic(false) {} 2759 2760 void Analyze(const TreePattern *Pat) { 2761 // Assume only the first tree is the pattern. The others are clobber nodes. 2762 AnalyzeNode(Pat->getTree(0)); 2763 } 2764 2765 void Analyze(const PatternToMatch &Pat) { 2766 AnalyzeNode(Pat.getSrcPattern()); 2767 } 2768 2769 private: 2770 bool IsNodeBitcast(const TreePatternNode *N) const { 2771 if (hasSideEffects || mayLoad || mayStore || isVariadic) 2772 return false; 2773 2774 if (N->getNumChildren() != 2) 2775 return false; 2776 2777 const TreePatternNode *N0 = N->getChild(0); 2778 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 2779 return false; 2780 2781 const TreePatternNode *N1 = N->getChild(1); 2782 if (N1->isLeaf()) 2783 return false; 2784 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2785 return false; 2786 2787 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2788 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2789 return false; 2790 return OpInfo.getEnumName() == "ISD::BITCAST"; 2791 } 2792 2793 public: 2794 void AnalyzeNode(const TreePatternNode *N) { 2795 if (N->isLeaf()) { 2796 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 2797 Record *LeafRec = DI->getDef(); 2798 // Handle ComplexPattern leaves. 2799 if (LeafRec->isSubClassOf("ComplexPattern")) { 2800 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2801 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2802 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2803 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 2804 } 2805 } 2806 return; 2807 } 2808 2809 // Analyze children. 2810 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2811 AnalyzeNode(N->getChild(i)); 2812 2813 // Ignore set nodes, which are not SDNodes. 2814 if (N->getOperator()->getName() == "set") { 2815 isBitcast = IsNodeBitcast(N); 2816 return; 2817 } 2818 2819 // Notice properties of the node. 2820 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 2821 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 2822 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 2823 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 2824 2825 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2826 // If this is an intrinsic, analyze it. 2827 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 2828 mayLoad = true;// These may load memory. 2829 2830 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 2831 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2832 2833 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 2834 IntInfo->hasSideEffects) 2835 // ReadWriteMem intrinsics can have other strange effects. 2836 hasSideEffects = true; 2837 } 2838 } 2839 2840 }; 2841 2842 static bool InferFromPattern(CodeGenInstruction &InstInfo, 2843 const InstAnalyzer &PatInfo, 2844 Record *PatDef) { 2845 bool Error = false; 2846 2847 // Remember where InstInfo got its flags. 2848 if (InstInfo.hasUndefFlags()) 2849 InstInfo.InferredFrom = PatDef; 2850 2851 // Check explicitly set flags for consistency. 2852 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 2853 !InstInfo.hasSideEffects_Unset) { 2854 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 2855 // the pattern has no side effects. That could be useful for div/rem 2856 // instructions that may trap. 2857 if (!InstInfo.hasSideEffects) { 2858 Error = true; 2859 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 2860 Twine(InstInfo.hasSideEffects)); 2861 } 2862 } 2863 2864 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 2865 Error = true; 2866 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 2867 Twine(InstInfo.mayStore)); 2868 } 2869 2870 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 2871 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 2872 // Some targets translate immediates to loads. 2873 if (!InstInfo.mayLoad) { 2874 Error = true; 2875 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 2876 Twine(InstInfo.mayLoad)); 2877 } 2878 } 2879 2880 // Transfer inferred flags. 2881 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 2882 InstInfo.mayStore |= PatInfo.mayStore; 2883 InstInfo.mayLoad |= PatInfo.mayLoad; 2884 2885 // These flags are silently added without any verification. 2886 InstInfo.isBitcast |= PatInfo.isBitcast; 2887 2888 // Don't infer isVariadic. This flag means something different on SDNodes and 2889 // instructions. For example, a CALL SDNode is variadic because it has the 2890 // call arguments as operands, but a CALL instruction is not variadic - it 2891 // has argument registers as implicit, not explicit uses. 2892 2893 return Error; 2894 } 2895 2896 /// hasNullFragReference - Return true if the DAG has any reference to the 2897 /// null_frag operator. 2898 static bool hasNullFragReference(DagInit *DI) { 2899 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 2900 if (!OpDef) return false; 2901 Record *Operator = OpDef->getDef(); 2902 2903 // If this is the null fragment, return true. 2904 if (Operator->getName() == "null_frag") return true; 2905 // If any of the arguments reference the null fragment, return true. 2906 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 2907 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 2908 if (Arg && hasNullFragReference(Arg)) 2909 return true; 2910 } 2911 2912 return false; 2913 } 2914 2915 /// hasNullFragReference - Return true if any DAG in the list references 2916 /// the null_frag operator. 2917 static bool hasNullFragReference(ListInit *LI) { 2918 for (Init *I : LI->getValues()) { 2919 DagInit *DI = dyn_cast<DagInit>(I); 2920 assert(DI && "non-dag in an instruction Pattern list?!"); 2921 if (hasNullFragReference(DI)) 2922 return true; 2923 } 2924 return false; 2925 } 2926 2927 /// Get all the instructions in a tree. 2928 static void 2929 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 2930 if (Tree->isLeaf()) 2931 return; 2932 if (Tree->getOperator()->isSubClassOf("Instruction")) 2933 Instrs.push_back(Tree->getOperator()); 2934 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 2935 getInstructionsInTree(Tree->getChild(i), Instrs); 2936 } 2937 2938 /// Check the class of a pattern leaf node against the instruction operand it 2939 /// represents. 2940 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 2941 Record *Leaf) { 2942 if (OI.Rec == Leaf) 2943 return true; 2944 2945 // Allow direct value types to be used in instruction set patterns. 2946 // The type will be checked later. 2947 if (Leaf->isSubClassOf("ValueType")) 2948 return true; 2949 2950 // Patterns can also be ComplexPattern instances. 2951 if (Leaf->isSubClassOf("ComplexPattern")) 2952 return true; 2953 2954 return false; 2955 } 2956 2957 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 2958 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 2959 2960 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 2961 2962 // Parse the instruction. 2963 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 2964 // Inline pattern fragments into it. 2965 I->InlinePatternFragments(); 2966 2967 // Infer as many types as possible. If we cannot infer all of them, we can 2968 // never do anything with this instruction pattern: report it to the user. 2969 if (!I->InferAllTypes()) 2970 I->error("Could not infer all types in pattern!"); 2971 2972 // InstInputs - Keep track of all of the inputs of the instruction, along 2973 // with the record they are declared as. 2974 std::map<std::string, TreePatternNode*> InstInputs; 2975 2976 // InstResults - Keep track of all the virtual registers that are 'set' 2977 // in the instruction, including what reg class they are. 2978 std::map<std::string, TreePatternNode*> InstResults; 2979 2980 std::vector<Record*> InstImpResults; 2981 2982 // Verify that the top-level forms in the instruction are of void type, and 2983 // fill in the InstResults map. 2984 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2985 TreePatternNode *Pat = I->getTree(j); 2986 if (Pat->getNumTypes() != 0) { 2987 std::string Types; 2988 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 2989 if (k > 0) 2990 Types += ", "; 2991 Types += Pat->getExtType(k).getName(); 2992 } 2993 I->error("Top-level forms in instruction pattern should have" 2994 " void types, has types " + Types); 2995 } 2996 2997 // Find inputs and outputs, and verify the structure of the uses/defs. 2998 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2999 InstImpResults); 3000 } 3001 3002 // Now that we have inputs and outputs of the pattern, inspect the operands 3003 // list for the instruction. This determines the order that operands are 3004 // added to the machine instruction the node corresponds to. 3005 unsigned NumResults = InstResults.size(); 3006 3007 // Parse the operands list from the (ops) list, validating it. 3008 assert(I->getArgList().empty() && "Args list should still be empty here!"); 3009 3010 // Check that all of the results occur first in the list. 3011 std::vector<Record*> Results; 3012 SmallVector<TreePatternNode *, 2> ResNodes; 3013 for (unsigned i = 0; i != NumResults; ++i) { 3014 if (i == CGI.Operands.size()) 3015 I->error("'" + InstResults.begin()->first + 3016 "' set but does not appear in operand list!"); 3017 const std::string &OpName = CGI.Operands[i].Name; 3018 3019 // Check that it exists in InstResults. 3020 TreePatternNode *RNode = InstResults[OpName]; 3021 if (!RNode) 3022 I->error("Operand $" + OpName + " does not exist in operand list!"); 3023 3024 ResNodes.push_back(RNode); 3025 3026 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3027 if (!R) 3028 I->error("Operand $" + OpName + " should be a set destination: all " 3029 "outputs must occur before inputs in operand list!"); 3030 3031 if (!checkOperandClass(CGI.Operands[i], R)) 3032 I->error("Operand $" + OpName + " class mismatch!"); 3033 3034 // Remember the return type. 3035 Results.push_back(CGI.Operands[i].Rec); 3036 3037 // Okay, this one checks out. 3038 InstResults.erase(OpName); 3039 } 3040 3041 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3042 // the copy while we're checking the inputs. 3043 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3044 3045 std::vector<TreePatternNode*> ResultNodeOperands; 3046 std::vector<Record*> Operands; 3047 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3048 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3049 const std::string &OpName = Op.Name; 3050 if (OpName.empty()) 3051 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 3052 3053 if (!InstInputsCheck.count(OpName)) { 3054 // If this is an operand with a DefaultOps set filled in, we can ignore 3055 // this. When we codegen it, we will do so as always executed. 3056 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3057 // Does it have a non-empty DefaultOps field? If so, ignore this 3058 // operand. 3059 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3060 continue; 3061 } 3062 I->error("Operand $" + OpName + 3063 " does not appear in the instruction pattern"); 3064 } 3065 TreePatternNode *InVal = InstInputsCheck[OpName]; 3066 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3067 3068 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3069 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3070 if (!checkOperandClass(Op, InRec)) 3071 I->error("Operand $" + OpName + "'s register class disagrees" 3072 " between the operand and pattern"); 3073 } 3074 Operands.push_back(Op.Rec); 3075 3076 // Construct the result for the dest-pattern operand list. 3077 TreePatternNode *OpNode = InVal->clone(); 3078 3079 // No predicate is useful on the result. 3080 OpNode->clearPredicateFns(); 3081 3082 // Promote the xform function to be an explicit node if set. 3083 if (Record *Xform = OpNode->getTransformFn()) { 3084 OpNode->setTransformFn(nullptr); 3085 std::vector<TreePatternNode*> Children; 3086 Children.push_back(OpNode); 3087 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3088 } 3089 3090 ResultNodeOperands.push_back(OpNode); 3091 } 3092 3093 if (!InstInputsCheck.empty()) 3094 I->error("Input operand $" + InstInputsCheck.begin()->first + 3095 " occurs in pattern but not in operands list!"); 3096 3097 TreePatternNode *ResultPattern = 3098 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3099 GetNumNodeResults(I->getRecord(), *this)); 3100 // Copy fully inferred output node types to instruction result pattern. 3101 for (unsigned i = 0; i != NumResults; ++i) { 3102 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3103 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3104 } 3105 3106 // Create and insert the instruction. 3107 // FIXME: InstImpResults should not be part of DAGInstruction. 3108 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3109 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3110 3111 // Use a temporary tree pattern to infer all types and make sure that the 3112 // constructed result is correct. This depends on the instruction already 3113 // being inserted into the DAGInsts map. 3114 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3115 Temp.InferAllTypes(&I->getNamedNodesMap()); 3116 3117 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3118 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3119 3120 return TheInsertedInst; 3121 } 3122 3123 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3124 /// any fragments involved. This populates the Instructions list with fully 3125 /// resolved instructions. 3126 void CodeGenDAGPatterns::ParseInstructions() { 3127 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3128 3129 for (Record *Instr : Instrs) { 3130 ListInit *LI = nullptr; 3131 3132 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3133 LI = Instr->getValueAsListInit("Pattern"); 3134 3135 // If there is no pattern, only collect minimal information about the 3136 // instruction for its operand list. We have to assume that there is one 3137 // result, as we have no detailed info. A pattern which references the 3138 // null_frag operator is as-if no pattern were specified. Normally this 3139 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3140 // null_frag. 3141 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3142 std::vector<Record*> Results; 3143 std::vector<Record*> Operands; 3144 3145 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3146 3147 if (InstInfo.Operands.size() != 0) { 3148 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3149 Results.push_back(InstInfo.Operands[j].Rec); 3150 3151 // The rest are inputs. 3152 for (unsigned j = InstInfo.Operands.NumDefs, 3153 e = InstInfo.Operands.size(); j < e; ++j) 3154 Operands.push_back(InstInfo.Operands[j].Rec); 3155 } 3156 3157 // Create and insert the instruction. 3158 std::vector<Record*> ImpResults; 3159 Instructions.insert(std::make_pair(Instr, 3160 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3161 continue; // no pattern. 3162 } 3163 3164 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3165 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3166 3167 (void)DI; 3168 DEBUG(DI.getPattern()->dump()); 3169 } 3170 3171 // If we can, convert the instructions to be patterns that are matched! 3172 for (auto &Entry : Instructions) { 3173 DAGInstruction &TheInst = Entry.second; 3174 TreePattern *I = TheInst.getPattern(); 3175 if (!I) continue; // No pattern. 3176 3177 // FIXME: Assume only the first tree is the pattern. The others are clobber 3178 // nodes. 3179 TreePatternNode *Pattern = I->getTree(0); 3180 TreePatternNode *SrcPattern; 3181 if (Pattern->getOperator()->getName() == "set") { 3182 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3183 } else{ 3184 // Not a set (store or something?) 3185 SrcPattern = Pattern; 3186 } 3187 3188 Record *Instr = Entry.first; 3189 AddPatternToMatch(I, 3190 PatternToMatch(Instr, 3191 Instr->getValueAsListInit("Predicates"), 3192 SrcPattern, 3193 TheInst.getResultPattern(), 3194 TheInst.getImpResults(), 3195 Instr->getValueAsInt("AddedComplexity"), 3196 Instr->getID())); 3197 } 3198 } 3199 3200 3201 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3202 3203 static void FindNames(const TreePatternNode *P, 3204 std::map<std::string, NameRecord> &Names, 3205 TreePattern *PatternTop) { 3206 if (!P->getName().empty()) { 3207 NameRecord &Rec = Names[P->getName()]; 3208 // If this is the first instance of the name, remember the node. 3209 if (Rec.second++ == 0) 3210 Rec.first = P; 3211 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3212 PatternTop->error("repetition of value: $" + P->getName() + 3213 " where different uses have different types!"); 3214 } 3215 3216 if (!P->isLeaf()) { 3217 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3218 FindNames(P->getChild(i), Names, PatternTop); 3219 } 3220 } 3221 3222 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3223 PatternToMatch &&PTM) { 3224 // Do some sanity checking on the pattern we're about to match. 3225 std::string Reason; 3226 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3227 PrintWarning(Pattern->getRecord()->getLoc(), 3228 Twine("Pattern can never match: ") + Reason); 3229 return; 3230 } 3231 3232 // If the source pattern's root is a complex pattern, that complex pattern 3233 // must specify the nodes it can potentially match. 3234 if (const ComplexPattern *CP = 3235 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3236 if (CP->getRootNodes().empty()) 3237 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3238 " could match"); 3239 3240 3241 // Find all of the named values in the input and output, ensure they have the 3242 // same type. 3243 std::map<std::string, NameRecord> SrcNames, DstNames; 3244 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3245 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3246 3247 // Scan all of the named values in the destination pattern, rejecting them if 3248 // they don't exist in the input pattern. 3249 for (const auto &Entry : DstNames) { 3250 if (SrcNames[Entry.first].first == nullptr) 3251 Pattern->error("Pattern has input without matching name in output: $" + 3252 Entry.first); 3253 } 3254 3255 // Scan all of the named values in the source pattern, rejecting them if the 3256 // name isn't used in the dest, and isn't used to tie two values together. 3257 for (const auto &Entry : SrcNames) 3258 if (DstNames[Entry.first].first == nullptr && 3259 SrcNames[Entry.first].second == 1) 3260 Pattern->error("Pattern has dead named input: $" + Entry.first); 3261 3262 PatternsToMatch.push_back(std::move(PTM)); 3263 } 3264 3265 3266 3267 void CodeGenDAGPatterns::InferInstructionFlags() { 3268 ArrayRef<const CodeGenInstruction*> Instructions = 3269 Target.getInstructionsByEnumValue(); 3270 3271 // First try to infer flags from the primary instruction pattern, if any. 3272 SmallVector<CodeGenInstruction*, 8> Revisit; 3273 unsigned Errors = 0; 3274 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3275 CodeGenInstruction &InstInfo = 3276 const_cast<CodeGenInstruction &>(*Instructions[i]); 3277 3278 // Get the primary instruction pattern. 3279 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3280 if (!Pattern) { 3281 if (InstInfo.hasUndefFlags()) 3282 Revisit.push_back(&InstInfo); 3283 continue; 3284 } 3285 InstAnalyzer PatInfo(*this); 3286 PatInfo.Analyze(Pattern); 3287 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3288 } 3289 3290 // Second, look for single-instruction patterns defined outside the 3291 // instruction. 3292 for (const PatternToMatch &PTM : ptms()) { 3293 // We can only infer from single-instruction patterns, otherwise we won't 3294 // know which instruction should get the flags. 3295 SmallVector<Record*, 8> PatInstrs; 3296 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3297 if (PatInstrs.size() != 1) 3298 continue; 3299 3300 // Get the single instruction. 3301 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3302 3303 // Only infer properties from the first pattern. We'll verify the others. 3304 if (InstInfo.InferredFrom) 3305 continue; 3306 3307 InstAnalyzer PatInfo(*this); 3308 PatInfo.Analyze(PTM); 3309 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3310 } 3311 3312 if (Errors) 3313 PrintFatalError("pattern conflicts"); 3314 3315 // Revisit instructions with undefined flags and no pattern. 3316 if (Target.guessInstructionProperties()) { 3317 for (CodeGenInstruction *InstInfo : Revisit) { 3318 if (InstInfo->InferredFrom) 3319 continue; 3320 // The mayLoad and mayStore flags default to false. 3321 // Conservatively assume hasSideEffects if it wasn't explicit. 3322 if (InstInfo->hasSideEffects_Unset) 3323 InstInfo->hasSideEffects = true; 3324 } 3325 return; 3326 } 3327 3328 // Complain about any flags that are still undefined. 3329 for (CodeGenInstruction *InstInfo : Revisit) { 3330 if (InstInfo->InferredFrom) 3331 continue; 3332 if (InstInfo->hasSideEffects_Unset) 3333 PrintError(InstInfo->TheDef->getLoc(), 3334 "Can't infer hasSideEffects from patterns"); 3335 if (InstInfo->mayStore_Unset) 3336 PrintError(InstInfo->TheDef->getLoc(), 3337 "Can't infer mayStore from patterns"); 3338 if (InstInfo->mayLoad_Unset) 3339 PrintError(InstInfo->TheDef->getLoc(), 3340 "Can't infer mayLoad from patterns"); 3341 } 3342 } 3343 3344 3345 /// Verify instruction flags against pattern node properties. 3346 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3347 unsigned Errors = 0; 3348 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3349 const PatternToMatch &PTM = *I; 3350 SmallVector<Record*, 8> Instrs; 3351 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3352 if (Instrs.empty()) 3353 continue; 3354 3355 // Count the number of instructions with each flag set. 3356 unsigned NumSideEffects = 0; 3357 unsigned NumStores = 0; 3358 unsigned NumLoads = 0; 3359 for (const Record *Instr : Instrs) { 3360 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3361 NumSideEffects += InstInfo.hasSideEffects; 3362 NumStores += InstInfo.mayStore; 3363 NumLoads += InstInfo.mayLoad; 3364 } 3365 3366 // Analyze the source pattern. 3367 InstAnalyzer PatInfo(*this); 3368 PatInfo.Analyze(PTM); 3369 3370 // Collect error messages. 3371 SmallVector<std::string, 4> Msgs; 3372 3373 // Check for missing flags in the output. 3374 // Permit extra flags for now at least. 3375 if (PatInfo.hasSideEffects && !NumSideEffects) 3376 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3377 3378 // Don't verify store flags on instructions with side effects. At least for 3379 // intrinsics, side effects implies mayStore. 3380 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3381 Msgs.push_back("pattern may store, but mayStore isn't set"); 3382 3383 // Similarly, mayStore implies mayLoad on intrinsics. 3384 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3385 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3386 3387 // Print error messages. 3388 if (Msgs.empty()) 3389 continue; 3390 ++Errors; 3391 3392 for (const std::string &Msg : Msgs) 3393 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3394 (Instrs.size() == 1 ? 3395 "instruction" : "output instructions")); 3396 // Provide the location of the relevant instruction definitions. 3397 for (const Record *Instr : Instrs) { 3398 if (Instr != PTM.getSrcRecord()) 3399 PrintError(Instr->getLoc(), "defined here"); 3400 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3401 if (InstInfo.InferredFrom && 3402 InstInfo.InferredFrom != InstInfo.TheDef && 3403 InstInfo.InferredFrom != PTM.getSrcRecord()) 3404 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3405 } 3406 } 3407 if (Errors) 3408 PrintFatalError("Errors in DAG patterns"); 3409 } 3410 3411 /// Given a pattern result with an unresolved type, see if we can find one 3412 /// instruction with an unresolved result type. Force this result type to an 3413 /// arbitrary element if it's possible types to converge results. 3414 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3415 if (N->isLeaf()) 3416 return false; 3417 3418 // Analyze children. 3419 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3420 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3421 return true; 3422 3423 if (!N->getOperator()->isSubClassOf("Instruction")) 3424 return false; 3425 3426 // If this type is already concrete or completely unknown we can't do 3427 // anything. 3428 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3429 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 3430 continue; 3431 3432 // Otherwise, force its type to the first possibility (an arbitrary choice). 3433 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 3434 return true; 3435 } 3436 3437 return false; 3438 } 3439 3440 void CodeGenDAGPatterns::ParsePatterns() { 3441 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3442 3443 for (Record *CurPattern : Patterns) { 3444 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3445 3446 // If the pattern references the null_frag, there's nothing to do. 3447 if (hasNullFragReference(Tree)) 3448 continue; 3449 3450 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3451 3452 // Inline pattern fragments into it. 3453 Pattern->InlinePatternFragments(); 3454 3455 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3456 if (LI->empty()) continue; // no pattern. 3457 3458 // Parse the instruction. 3459 TreePattern Result(CurPattern, LI, false, *this); 3460 3461 // Inline pattern fragments into it. 3462 Result.InlinePatternFragments(); 3463 3464 if (Result.getNumTrees() != 1) 3465 Result.error("Cannot handle instructions producing instructions " 3466 "with temporaries yet!"); 3467 3468 bool IterateInference; 3469 bool InferredAllPatternTypes, InferredAllResultTypes; 3470 do { 3471 // Infer as many types as possible. If we cannot infer all of them, we 3472 // can never do anything with this pattern: report it to the user. 3473 InferredAllPatternTypes = 3474 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3475 3476 // Infer as many types as possible. If we cannot infer all of them, we 3477 // can never do anything with this pattern: report it to the user. 3478 InferredAllResultTypes = 3479 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3480 3481 IterateInference = false; 3482 3483 // Apply the type of the result to the source pattern. This helps us 3484 // resolve cases where the input type is known to be a pointer type (which 3485 // is considered resolved), but the result knows it needs to be 32- or 3486 // 64-bits. Infer the other way for good measure. 3487 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3488 Pattern->getTree(0)->getNumTypes()); 3489 i != e; ++i) { 3490 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3491 i, Result.getTree(0)->getExtType(i), Result); 3492 IterateInference |= Result.getTree(0)->UpdateNodeType( 3493 i, Pattern->getTree(0)->getExtType(i), Result); 3494 } 3495 3496 // If our iteration has converged and the input pattern's types are fully 3497 // resolved but the result pattern is not fully resolved, we may have a 3498 // situation where we have two instructions in the result pattern and 3499 // the instructions require a common register class, but don't care about 3500 // what actual MVT is used. This is actually a bug in our modelling: 3501 // output patterns should have register classes, not MVTs. 3502 // 3503 // In any case, to handle this, we just go through and disambiguate some 3504 // arbitrary types to the result pattern's nodes. 3505 if (!IterateInference && InferredAllPatternTypes && 3506 !InferredAllResultTypes) 3507 IterateInference = 3508 ForceArbitraryInstResultType(Result.getTree(0), Result); 3509 } while (IterateInference); 3510 3511 // Verify that we inferred enough types that we can do something with the 3512 // pattern and result. If these fire the user has to add type casts. 3513 if (!InferredAllPatternTypes) 3514 Pattern->error("Could not infer all types in pattern!"); 3515 if (!InferredAllResultTypes) { 3516 Pattern->dump(); 3517 Result.error("Could not infer all types in pattern result!"); 3518 } 3519 3520 // Validate that the input pattern is correct. 3521 std::map<std::string, TreePatternNode*> InstInputs; 3522 std::map<std::string, TreePatternNode*> InstResults; 3523 std::vector<Record*> InstImpResults; 3524 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 3525 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 3526 InstInputs, InstResults, 3527 InstImpResults); 3528 3529 // Promote the xform function to be an explicit node if set. 3530 TreePatternNode *DstPattern = Result.getOnlyTree(); 3531 std::vector<TreePatternNode*> ResultNodeOperands; 3532 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 3533 TreePatternNode *OpNode = DstPattern->getChild(ii); 3534 if (Record *Xform = OpNode->getTransformFn()) { 3535 OpNode->setTransformFn(nullptr); 3536 std::vector<TreePatternNode*> Children; 3537 Children.push_back(OpNode); 3538 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3539 } 3540 ResultNodeOperands.push_back(OpNode); 3541 } 3542 DstPattern = Result.getOnlyTree(); 3543 if (!DstPattern->isLeaf()) 3544 DstPattern = new TreePatternNode(DstPattern->getOperator(), 3545 ResultNodeOperands, 3546 DstPattern->getNumTypes()); 3547 3548 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 3549 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 3550 3551 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 3552 Temp.InferAllTypes(); 3553 3554 AddPatternToMatch( 3555 Pattern, 3556 PatternToMatch( 3557 CurPattern, CurPattern->getValueAsListInit("Predicates"), 3558 Pattern->getTree(0), Temp.getOnlyTree(), std::move(InstImpResults), 3559 CurPattern->getValueAsInt("AddedComplexity"), CurPattern->getID())); 3560 } 3561 } 3562 3563 /// CombineChildVariants - Given a bunch of permutations of each child of the 3564 /// 'operator' node, put them together in all possible ways. 3565 static void CombineChildVariants(TreePatternNode *Orig, 3566 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 3567 std::vector<TreePatternNode*> &OutVariants, 3568 CodeGenDAGPatterns &CDP, 3569 const MultipleUseVarSet &DepVars) { 3570 // Make sure that each operand has at least one variant to choose from. 3571 for (const auto &Variants : ChildVariants) 3572 if (Variants.empty()) 3573 return; 3574 3575 // The end result is an all-pairs construction of the resultant pattern. 3576 std::vector<unsigned> Idxs; 3577 Idxs.resize(ChildVariants.size()); 3578 bool NotDone; 3579 do { 3580 #ifndef NDEBUG 3581 DEBUG(if (!Idxs.empty()) { 3582 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 3583 for (unsigned Idx : Idxs) { 3584 errs() << Idx << " "; 3585 } 3586 errs() << "]\n"; 3587 }); 3588 #endif 3589 // Create the variant and add it to the output list. 3590 std::vector<TreePatternNode*> NewChildren; 3591 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 3592 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 3593 auto R = llvm::make_unique<TreePatternNode>( 3594 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 3595 3596 // Copy over properties. 3597 R->setName(Orig->getName()); 3598 R->setPredicateFns(Orig->getPredicateFns()); 3599 R->setTransformFn(Orig->getTransformFn()); 3600 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 3601 R->setType(i, Orig->getExtType(i)); 3602 3603 // If this pattern cannot match, do not include it as a variant. 3604 std::string ErrString; 3605 // Scan to see if this pattern has already been emitted. We can get 3606 // duplication due to things like commuting: 3607 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3608 // which are the same pattern. Ignore the dups. 3609 if (R->canPatternMatch(ErrString, CDP) && 3610 none_of(OutVariants, [&](TreePatternNode *Variant) { 3611 return R->isIsomorphicTo(Variant, DepVars); 3612 })) 3613 OutVariants.push_back(R.release()); 3614 3615 // Increment indices to the next permutation by incrementing the 3616 // indices from last index backward, e.g., generate the sequence 3617 // [0, 0], [0, 1], [1, 0], [1, 1]. 3618 int IdxsIdx; 3619 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3620 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3621 Idxs[IdxsIdx] = 0; 3622 else 3623 break; 3624 } 3625 NotDone = (IdxsIdx >= 0); 3626 } while (NotDone); 3627 } 3628 3629 /// CombineChildVariants - A helper function for binary operators. 3630 /// 3631 static void CombineChildVariants(TreePatternNode *Orig, 3632 const std::vector<TreePatternNode*> &LHS, 3633 const std::vector<TreePatternNode*> &RHS, 3634 std::vector<TreePatternNode*> &OutVariants, 3635 CodeGenDAGPatterns &CDP, 3636 const MultipleUseVarSet &DepVars) { 3637 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3638 ChildVariants.push_back(LHS); 3639 ChildVariants.push_back(RHS); 3640 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3641 } 3642 3643 3644 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3645 std::vector<TreePatternNode *> &Children) { 3646 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3647 Record *Operator = N->getOperator(); 3648 3649 // Only permit raw nodes. 3650 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3651 N->getTransformFn()) { 3652 Children.push_back(N); 3653 return; 3654 } 3655 3656 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3657 Children.push_back(N->getChild(0)); 3658 else 3659 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3660 3661 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3662 Children.push_back(N->getChild(1)); 3663 else 3664 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3665 } 3666 3667 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3668 /// the (potentially recursive) pattern by using algebraic laws. 3669 /// 3670 static void GenerateVariantsOf(TreePatternNode *N, 3671 std::vector<TreePatternNode*> &OutVariants, 3672 CodeGenDAGPatterns &CDP, 3673 const MultipleUseVarSet &DepVars) { 3674 // We cannot permute leaves or ComplexPattern uses. 3675 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 3676 OutVariants.push_back(N); 3677 return; 3678 } 3679 3680 // Look up interesting info about the node. 3681 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3682 3683 // If this node is associative, re-associate. 3684 if (NodeInfo.hasProperty(SDNPAssociative)) { 3685 // Re-associate by pulling together all of the linked operators 3686 std::vector<TreePatternNode*> MaximalChildren; 3687 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3688 3689 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3690 // permutations. 3691 if (MaximalChildren.size() == 3) { 3692 // Find the variants of all of our maximal children. 3693 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3694 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3695 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3696 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3697 3698 // There are only two ways we can permute the tree: 3699 // (A op B) op C and A op (B op C) 3700 // Within these forms, we can also permute A/B/C. 3701 3702 // Generate legal pair permutations of A/B/C. 3703 std::vector<TreePatternNode*> ABVariants; 3704 std::vector<TreePatternNode*> BAVariants; 3705 std::vector<TreePatternNode*> ACVariants; 3706 std::vector<TreePatternNode*> CAVariants; 3707 std::vector<TreePatternNode*> BCVariants; 3708 std::vector<TreePatternNode*> CBVariants; 3709 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3710 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3711 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3712 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3713 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3714 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3715 3716 // Combine those into the result: (x op x) op x 3717 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3718 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3719 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3720 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3721 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3722 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3723 3724 // Combine those into the result: x op (x op x) 3725 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3726 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3727 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3728 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3729 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3730 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3731 return; 3732 } 3733 } 3734 3735 // Compute permutations of all children. 3736 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3737 ChildVariants.resize(N->getNumChildren()); 3738 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3739 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3740 3741 // Build all permutations based on how the children were formed. 3742 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3743 3744 // If this node is commutative, consider the commuted order. 3745 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3746 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3747 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3748 "Commutative but doesn't have 2 children!"); 3749 // Don't count children which are actually register references. 3750 unsigned NC = 0; 3751 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3752 TreePatternNode *Child = N->getChild(i); 3753 if (Child->isLeaf()) 3754 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 3755 Record *RR = DI->getDef(); 3756 if (RR->isSubClassOf("Register")) 3757 continue; 3758 } 3759 NC++; 3760 } 3761 // Consider the commuted order. 3762 if (isCommIntrinsic) { 3763 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3764 // operands are the commutative operands, and there might be more operands 3765 // after those. 3766 assert(NC >= 3 && 3767 "Commutative intrinsic should have at least 3 children!"); 3768 std::vector<std::vector<TreePatternNode*> > Variants; 3769 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3770 Variants.push_back(ChildVariants[2]); 3771 Variants.push_back(ChildVariants[1]); 3772 for (unsigned i = 3; i != NC; ++i) 3773 Variants.push_back(ChildVariants[i]); 3774 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3775 } else if (NC == 2) 3776 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3777 OutVariants, CDP, DepVars); 3778 } 3779 } 3780 3781 3782 // GenerateVariants - Generate variants. For example, commutative patterns can 3783 // match multiple ways. Add them to PatternsToMatch as well. 3784 void CodeGenDAGPatterns::GenerateVariants() { 3785 DEBUG(errs() << "Generating instruction variants.\n"); 3786 3787 // Loop over all of the patterns we've collected, checking to see if we can 3788 // generate variants of the instruction, through the exploitation of 3789 // identities. This permits the target to provide aggressive matching without 3790 // the .td file having to contain tons of variants of instructions. 3791 // 3792 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3793 // intentionally do not reconsider these. Any variants of added patterns have 3794 // already been added. 3795 // 3796 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3797 MultipleUseVarSet DepVars; 3798 std::vector<TreePatternNode*> Variants; 3799 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3800 DEBUG(errs() << "Dependent/multiply used variables: "); 3801 DEBUG(DumpDepVars(DepVars)); 3802 DEBUG(errs() << "\n"); 3803 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3804 DepVars); 3805 3806 assert(!Variants.empty() && "Must create at least original variant!"); 3807 if (Variants.size() == 1) // No additional variants for this pattern. 3808 continue; 3809 3810 DEBUG(errs() << "FOUND VARIANTS OF: "; 3811 PatternsToMatch[i].getSrcPattern()->dump(); 3812 errs() << "\n"); 3813 3814 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3815 TreePatternNode *Variant = Variants[v]; 3816 3817 DEBUG(errs() << " VAR#" << v << ": "; 3818 Variant->dump(); 3819 errs() << "\n"); 3820 3821 // Scan to see if an instruction or explicit pattern already matches this. 3822 bool AlreadyExists = false; 3823 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3824 // Skip if the top level predicates do not match. 3825 if (PatternsToMatch[i].getPredicates() != 3826 PatternsToMatch[p].getPredicates()) 3827 continue; 3828 // Check to see if this variant already exists. 3829 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3830 DepVars)) { 3831 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3832 AlreadyExists = true; 3833 break; 3834 } 3835 } 3836 // If we already have it, ignore the variant. 3837 if (AlreadyExists) continue; 3838 3839 // Otherwise, add it to the list of patterns we have. 3840 PatternsToMatch.push_back(PatternToMatch( 3841 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 3842 Variant, PatternsToMatch[i].getDstPattern(), 3843 PatternsToMatch[i].getDstRegs(), 3844 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 3845 } 3846 3847 DEBUG(errs() << "\n"); 3848 } 3849 } 3850