1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "llvm/ADT/DenseSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallSet.h" 19 #include "llvm/ADT/SmallString.h" 20 #include "llvm/ADT/StringExtras.h" 21 #include "llvm/ADT/StringMap.h" 22 #include "llvm/ADT/Twine.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/ErrorHandling.h" 25 #include "llvm/TableGen/Error.h" 26 #include "llvm/TableGen/Record.h" 27 #include <algorithm> 28 #include <cstdio> 29 #include <set> 30 using namespace llvm; 31 32 #define DEBUG_TYPE "dag-patterns" 33 34 static inline bool isIntegerOrPtr(MVT VT) { 35 return VT.isInteger() || VT == MVT::iPTR; 36 } 37 static inline bool isFloatingPoint(MVT VT) { 38 return VT.isFloatingPoint(); 39 } 40 static inline bool isVector(MVT VT) { 41 return VT.isVector(); 42 } 43 static inline bool isScalar(MVT VT) { 44 return !VT.isVector(); 45 } 46 47 template <typename Predicate> 48 static bool berase_if(MachineValueTypeSet &S, Predicate P) { 49 bool Erased = false; 50 // It is ok to iterate over MachineValueTypeSet and remove elements from it 51 // at the same time. 52 for (MVT T : S) { 53 if (!P(T)) 54 continue; 55 Erased = true; 56 S.erase(T); 57 } 58 return Erased; 59 } 60 61 // --- TypeSetByHwMode 62 63 // This is a parameterized type-set class. For each mode there is a list 64 // of types that are currently possible for a given tree node. Type 65 // inference will apply to each mode separately. 66 67 TypeSetByHwMode::TypeSetByHwMode(ArrayRef<ValueTypeByHwMode> VTList) { 68 for (const ValueTypeByHwMode &VVT : VTList) 69 insert(VVT); 70 } 71 72 bool TypeSetByHwMode::isValueTypeByHwMode(bool AllowEmpty) const { 73 for (const auto &I : *this) { 74 if (I.second.size() > 1) 75 return false; 76 if (!AllowEmpty && I.second.empty()) 77 return false; 78 } 79 return true; 80 } 81 82 ValueTypeByHwMode TypeSetByHwMode::getValueTypeByHwMode() const { 83 assert(isValueTypeByHwMode(true) && 84 "The type set has multiple types for at least one HW mode"); 85 ValueTypeByHwMode VVT; 86 for (const auto &I : *this) { 87 MVT T = I.second.empty() ? MVT::Other : *I.second.begin(); 88 VVT.getOrCreateTypeForMode(I.first, T); 89 } 90 return VVT; 91 } 92 93 bool TypeSetByHwMode::isPossible() const { 94 for (const auto &I : *this) 95 if (!I.second.empty()) 96 return true; 97 return false; 98 } 99 100 bool TypeSetByHwMode::insert(const ValueTypeByHwMode &VVT) { 101 bool Changed = false; 102 SmallDenseSet<unsigned, 4> Modes; 103 for (const auto &P : VVT) { 104 unsigned M = P.first; 105 Modes.insert(M); 106 // Make sure there exists a set for each specific mode from VVT. 107 Changed |= getOrCreate(M).insert(P.second).second; 108 } 109 110 // If VVT has a default mode, add the corresponding type to all 111 // modes in "this" that do not exist in VVT. 112 if (Modes.count(DefaultMode)) { 113 MVT DT = VVT.getType(DefaultMode); 114 for (auto &I : *this) 115 if (!Modes.count(I.first)) 116 Changed |= I.second.insert(DT).second; 117 } 118 return Changed; 119 } 120 121 // Constrain the type set to be the intersection with VTS. 122 bool TypeSetByHwMode::constrain(const TypeSetByHwMode &VTS) { 123 bool Changed = false; 124 if (hasDefault()) { 125 for (const auto &I : VTS) { 126 unsigned M = I.first; 127 if (M == DefaultMode || hasMode(M)) 128 continue; 129 Map.insert({M, Map.at(DefaultMode)}); 130 Changed = true; 131 } 132 } 133 134 for (auto &I : *this) { 135 unsigned M = I.first; 136 SetType &S = I.second; 137 if (VTS.hasMode(M) || VTS.hasDefault()) { 138 Changed |= intersect(I.second, VTS.get(M)); 139 } else if (!S.empty()) { 140 S.clear(); 141 Changed = true; 142 } 143 } 144 return Changed; 145 } 146 147 template <typename Predicate> 148 bool TypeSetByHwMode::constrain(Predicate P) { 149 bool Changed = false; 150 for (auto &I : *this) 151 Changed |= berase_if(I.second, [&P](MVT VT) { return !P(VT); }); 152 return Changed; 153 } 154 155 template <typename Predicate> 156 bool TypeSetByHwMode::assign_if(const TypeSetByHwMode &VTS, Predicate P) { 157 assert(empty()); 158 for (const auto &I : VTS) { 159 SetType &S = getOrCreate(I.first); 160 for (auto J : I.second) 161 if (P(J)) 162 S.insert(J); 163 } 164 return !empty(); 165 } 166 167 void TypeSetByHwMode::writeToStream(raw_ostream &OS) const { 168 SmallVector<unsigned, 4> Modes; 169 Modes.reserve(Map.size()); 170 171 for (const auto &I : *this) 172 Modes.push_back(I.first); 173 if (Modes.empty()) { 174 OS << "{}"; 175 return; 176 } 177 array_pod_sort(Modes.begin(), Modes.end()); 178 179 OS << '{'; 180 for (unsigned M : Modes) { 181 OS << ' ' << getModeName(M) << ':'; 182 writeToStream(get(M), OS); 183 } 184 OS << " }"; 185 } 186 187 void TypeSetByHwMode::writeToStream(const SetType &S, raw_ostream &OS) { 188 SmallVector<MVT, 4> Types(S.begin(), S.end()); 189 array_pod_sort(Types.begin(), Types.end()); 190 191 OS << '['; 192 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 193 OS << ValueTypeByHwMode::getMVTName(Types[i]); 194 if (i != e-1) 195 OS << ' '; 196 } 197 OS << ']'; 198 } 199 200 bool TypeSetByHwMode::operator==(const TypeSetByHwMode &VTS) const { 201 bool HaveDefault = hasDefault(); 202 if (HaveDefault != VTS.hasDefault()) 203 return false; 204 205 if (isSimple()) { 206 if (VTS.isSimple()) 207 return *begin() == *VTS.begin(); 208 return false; 209 } 210 211 SmallDenseSet<unsigned, 4> Modes; 212 for (auto &I : *this) 213 Modes.insert(I.first); 214 for (const auto &I : VTS) 215 Modes.insert(I.first); 216 217 if (HaveDefault) { 218 // Both sets have default mode. 219 for (unsigned M : Modes) { 220 if (get(M) != VTS.get(M)) 221 return false; 222 } 223 } else { 224 // Neither set has default mode. 225 for (unsigned M : Modes) { 226 // If there is no default mode, an empty set is equivalent to not having 227 // the corresponding mode. 228 bool NoModeThis = !hasMode(M) || get(M).empty(); 229 bool NoModeVTS = !VTS.hasMode(M) || VTS.get(M).empty(); 230 if (NoModeThis != NoModeVTS) 231 return false; 232 if (!NoModeThis) 233 if (get(M) != VTS.get(M)) 234 return false; 235 } 236 } 237 238 return true; 239 } 240 241 namespace llvm { 242 raw_ostream &operator<<(raw_ostream &OS, const TypeSetByHwMode &T) { 243 T.writeToStream(OS); 244 return OS; 245 } 246 } 247 248 LLVM_DUMP_METHOD 249 void TypeSetByHwMode::dump() const { 250 dbgs() << *this << '\n'; 251 } 252 253 bool TypeSetByHwMode::intersect(SetType &Out, const SetType &In) { 254 bool OutP = Out.count(MVT::iPTR), InP = In.count(MVT::iPTR); 255 auto Int = [&In](MVT T) -> bool { return !In.count(T); }; 256 257 if (OutP == InP) 258 return berase_if(Out, Int); 259 260 // Compute the intersection of scalars separately to account for only 261 // one set containing iPTR. 262 // The itersection of iPTR with a set of integer scalar types that does not 263 // include iPTR will result in the most specific scalar type: 264 // - iPTR is more specific than any set with two elements or more 265 // - iPTR is less specific than any single integer scalar type. 266 // For example 267 // { iPTR } * { i32 } -> { i32 } 268 // { iPTR } * { i32 i64 } -> { iPTR } 269 // and 270 // { iPTR i32 } * { i32 } -> { i32 } 271 // { iPTR i32 } * { i32 i64 } -> { i32 i64 } 272 // { iPTR i32 } * { i32 i64 i128 } -> { iPTR i32 } 273 274 // Compute the difference between the two sets in such a way that the 275 // iPTR is in the set that is being subtracted. This is to see if there 276 // are any extra scalars in the set without iPTR that are not in the 277 // set containing iPTR. Then the iPTR could be considered a "wildcard" 278 // matching these scalars. If there is only one such scalar, it would 279 // replace the iPTR, if there are more, the iPTR would be retained. 280 SetType Diff; 281 if (InP) { 282 Diff = Out; 283 berase_if(Diff, [&In](MVT T) { return In.count(T); }); 284 // Pre-remove these elements and rely only on InP/OutP to determine 285 // whether a change has been made. 286 berase_if(Out, [&Diff](MVT T) { return Diff.count(T); }); 287 } else { 288 Diff = In; 289 berase_if(Diff, [&Out](MVT T) { return Out.count(T); }); 290 Out.erase(MVT::iPTR); 291 } 292 293 // The actual intersection. 294 bool Changed = berase_if(Out, Int); 295 unsigned NumD = Diff.size(); 296 if (NumD == 0) 297 return Changed; 298 299 if (NumD == 1) { 300 Out.insert(*Diff.begin()); 301 // This is a change only if Out was the one with iPTR (which is now 302 // being replaced). 303 Changed |= OutP; 304 } else { 305 // Multiple elements from Out are now replaced with iPTR. 306 Out.insert(MVT::iPTR); 307 Changed |= !OutP; 308 } 309 return Changed; 310 } 311 312 bool TypeSetByHwMode::validate() const { 313 #ifndef NDEBUG 314 if (empty()) 315 return true; 316 bool AllEmpty = true; 317 for (const auto &I : *this) 318 AllEmpty &= I.second.empty(); 319 return !AllEmpty; 320 #endif 321 return true; 322 } 323 324 // --- TypeInfer 325 326 bool TypeInfer::MergeInTypeInfo(TypeSetByHwMode &Out, 327 const TypeSetByHwMode &In) { 328 ValidateOnExit _1(Out, *this); 329 In.validate(); 330 if (In.empty() || Out == In || TP.hasError()) 331 return false; 332 if (Out.empty()) { 333 Out = In; 334 return true; 335 } 336 337 bool Changed = Out.constrain(In); 338 if (Changed && Out.empty()) 339 TP.error("Type contradiction"); 340 341 return Changed; 342 } 343 344 bool TypeInfer::forceArbitrary(TypeSetByHwMode &Out) { 345 ValidateOnExit _1(Out, *this); 346 if (TP.hasError()) 347 return false; 348 assert(!Out.empty() && "cannot pick from an empty set"); 349 350 bool Changed = false; 351 for (auto &I : Out) { 352 TypeSetByHwMode::SetType &S = I.second; 353 if (S.size() <= 1) 354 continue; 355 MVT T = *S.begin(); // Pick the first element. 356 S.clear(); 357 S.insert(T); 358 Changed = true; 359 } 360 return Changed; 361 } 362 363 bool TypeInfer::EnforceInteger(TypeSetByHwMode &Out) { 364 ValidateOnExit _1(Out, *this); 365 if (TP.hasError()) 366 return false; 367 if (!Out.empty()) 368 return Out.constrain(isIntegerOrPtr); 369 370 return Out.assign_if(getLegalTypes(), isIntegerOrPtr); 371 } 372 373 bool TypeInfer::EnforceFloatingPoint(TypeSetByHwMode &Out) { 374 ValidateOnExit _1(Out, *this); 375 if (TP.hasError()) 376 return false; 377 if (!Out.empty()) 378 return Out.constrain(isFloatingPoint); 379 380 return Out.assign_if(getLegalTypes(), isFloatingPoint); 381 } 382 383 bool TypeInfer::EnforceScalar(TypeSetByHwMode &Out) { 384 ValidateOnExit _1(Out, *this); 385 if (TP.hasError()) 386 return false; 387 if (!Out.empty()) 388 return Out.constrain(isScalar); 389 390 return Out.assign_if(getLegalTypes(), isScalar); 391 } 392 393 bool TypeInfer::EnforceVector(TypeSetByHwMode &Out) { 394 ValidateOnExit _1(Out, *this); 395 if (TP.hasError()) 396 return false; 397 if (!Out.empty()) 398 return Out.constrain(isVector); 399 400 return Out.assign_if(getLegalTypes(), isVector); 401 } 402 403 bool TypeInfer::EnforceAny(TypeSetByHwMode &Out) { 404 ValidateOnExit _1(Out, *this); 405 if (TP.hasError() || !Out.empty()) 406 return false; 407 408 Out = getLegalTypes(); 409 return true; 410 } 411 412 template <typename Iter, typename Pred, typename Less> 413 static Iter min_if(Iter B, Iter E, Pred P, Less L) { 414 if (B == E) 415 return E; 416 Iter Min = E; 417 for (Iter I = B; I != E; ++I) { 418 if (!P(*I)) 419 continue; 420 if (Min == E || L(*I, *Min)) 421 Min = I; 422 } 423 return Min; 424 } 425 426 template <typename Iter, typename Pred, typename Less> 427 static Iter max_if(Iter B, Iter E, Pred P, Less L) { 428 if (B == E) 429 return E; 430 Iter Max = E; 431 for (Iter I = B; I != E; ++I) { 432 if (!P(*I)) 433 continue; 434 if (Max == E || L(*Max, *I)) 435 Max = I; 436 } 437 return Max; 438 } 439 440 /// Make sure that for each type in Small, there exists a larger type in Big. 441 bool TypeInfer::EnforceSmallerThan(TypeSetByHwMode &Small, 442 TypeSetByHwMode &Big) { 443 ValidateOnExit _1(Small, *this), _2(Big, *this); 444 if (TP.hasError()) 445 return false; 446 bool Changed = false; 447 448 if (Small.empty()) 449 Changed |= EnforceAny(Small); 450 if (Big.empty()) 451 Changed |= EnforceAny(Big); 452 453 assert(Small.hasDefault() && Big.hasDefault()); 454 455 std::vector<unsigned> Modes = union_modes(Small, Big); 456 457 // 1. Only allow integer or floating point types and make sure that 458 // both sides are both integer or both floating point. 459 // 2. Make sure that either both sides have vector types, or neither 460 // of them does. 461 for (unsigned M : Modes) { 462 TypeSetByHwMode::SetType &S = Small.get(M); 463 TypeSetByHwMode::SetType &B = Big.get(M); 464 465 if (any_of(S, isIntegerOrPtr) && any_of(S, isIntegerOrPtr)) { 466 auto NotInt = [](MVT VT) { return !isIntegerOrPtr(VT); }; 467 Changed |= berase_if(S, NotInt) | 468 berase_if(B, NotInt); 469 } else if (any_of(S, isFloatingPoint) && any_of(B, isFloatingPoint)) { 470 auto NotFP = [](MVT VT) { return !isFloatingPoint(VT); }; 471 Changed |= berase_if(S, NotFP) | 472 berase_if(B, NotFP); 473 } else if (S.empty() || B.empty()) { 474 Changed = !S.empty() || !B.empty(); 475 S.clear(); 476 B.clear(); 477 } else { 478 TP.error("Incompatible types"); 479 return Changed; 480 } 481 482 if (none_of(S, isVector) || none_of(B, isVector)) { 483 Changed |= berase_if(S, isVector) | 484 berase_if(B, isVector); 485 } 486 } 487 488 auto LT = [](MVT A, MVT B) -> bool { 489 return A.getScalarSizeInBits() < B.getScalarSizeInBits() || 490 (A.getScalarSizeInBits() == B.getScalarSizeInBits() && 491 A.getSizeInBits() < B.getSizeInBits()); 492 }; 493 auto LE = [](MVT A, MVT B) -> bool { 494 // This function is used when removing elements: when a vector is compared 495 // to a non-vector, it should return false (to avoid removal). 496 if (A.isVector() != B.isVector()) 497 return false; 498 499 // Note on the < comparison below: 500 // X86 has patterns like 501 // (set VR128X:$dst, (v16i8 (X86vtrunc (v4i32 VR128X:$src1)))), 502 // where the truncated vector is given a type v16i8, while the source 503 // vector has type v4i32. They both have the same size in bits. 504 // The minimal type in the result is obviously v16i8, and when we remove 505 // all types from the source that are smaller-or-equal than v8i16, the 506 // only source type would also be removed (since it's equal in size). 507 return A.getScalarSizeInBits() <= B.getScalarSizeInBits() || 508 A.getSizeInBits() < B.getSizeInBits(); 509 }; 510 511 for (unsigned M : Modes) { 512 TypeSetByHwMode::SetType &S = Small.get(M); 513 TypeSetByHwMode::SetType &B = Big.get(M); 514 // MinS = min scalar in Small, remove all scalars from Big that are 515 // smaller-or-equal than MinS. 516 auto MinS = min_if(S.begin(), S.end(), isScalar, LT); 517 if (MinS != S.end()) 518 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinS)); 519 520 // MaxS = max scalar in Big, remove all scalars from Small that are 521 // larger than MaxS. 522 auto MaxS = max_if(B.begin(), B.end(), isScalar, LT); 523 if (MaxS != B.end()) 524 Changed |= berase_if(S, std::bind(LE, *MaxS, std::placeholders::_1)); 525 526 // MinV = min vector in Small, remove all vectors from Big that are 527 // smaller-or-equal than MinV. 528 auto MinV = min_if(S.begin(), S.end(), isVector, LT); 529 if (MinV != S.end()) 530 Changed |= berase_if(B, std::bind(LE, std::placeholders::_1, *MinV)); 531 532 // MaxV = max vector in Big, remove all vectors from Small that are 533 // larger than MaxV. 534 auto MaxV = max_if(B.begin(), B.end(), isVector, LT); 535 if (MaxV != B.end()) 536 Changed |= berase_if(S, std::bind(LE, *MaxV, std::placeholders::_1)); 537 } 538 539 return Changed; 540 } 541 542 /// 1. Ensure that for each type T in Vec, T is a vector type, and that 543 /// for each type U in Elem, U is a scalar type. 544 /// 2. Ensure that for each (scalar) type U in Elem, there exists a (vector) 545 /// type T in Vec, such that U is the element type of T. 546 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 547 TypeSetByHwMode &Elem) { 548 ValidateOnExit _1(Vec, *this), _2(Elem, *this); 549 if (TP.hasError()) 550 return false; 551 bool Changed = false; 552 553 if (Vec.empty()) 554 Changed |= EnforceVector(Vec); 555 if (Elem.empty()) 556 Changed |= EnforceScalar(Elem); 557 558 for (unsigned M : union_modes(Vec, Elem)) { 559 TypeSetByHwMode::SetType &V = Vec.get(M); 560 TypeSetByHwMode::SetType &E = Elem.get(M); 561 562 Changed |= berase_if(V, isScalar); // Scalar = !vector 563 Changed |= berase_if(E, isVector); // Vector = !scalar 564 assert(!V.empty() && !E.empty()); 565 566 SmallSet<MVT,4> VT, ST; 567 // Collect element types from the "vector" set. 568 for (MVT T : V) 569 VT.insert(T.getVectorElementType()); 570 // Collect scalar types from the "element" set. 571 for (MVT T : E) 572 ST.insert(T); 573 574 // Remove from V all (vector) types whose element type is not in S. 575 Changed |= berase_if(V, [&ST](MVT T) -> bool { 576 return !ST.count(T.getVectorElementType()); 577 }); 578 // Remove from E all (scalar) types, for which there is no corresponding 579 // type in V. 580 Changed |= berase_if(E, [&VT](MVT T) -> bool { return !VT.count(T); }); 581 } 582 583 return Changed; 584 } 585 586 bool TypeInfer::EnforceVectorEltTypeIs(TypeSetByHwMode &Vec, 587 const ValueTypeByHwMode &VVT) { 588 TypeSetByHwMode Tmp(VVT); 589 ValidateOnExit _1(Vec, *this), _2(Tmp, *this); 590 return EnforceVectorEltTypeIs(Vec, Tmp); 591 } 592 593 /// Ensure that for each type T in Sub, T is a vector type, and there 594 /// exists a type U in Vec such that U is a vector type with the same 595 /// element type as T and at least as many elements as T. 596 bool TypeInfer::EnforceVectorSubVectorTypeIs(TypeSetByHwMode &Vec, 597 TypeSetByHwMode &Sub) { 598 ValidateOnExit _1(Vec, *this), _2(Sub, *this); 599 if (TP.hasError()) 600 return false; 601 602 /// Return true if B is a suB-vector of P, i.e. P is a suPer-vector of B. 603 auto IsSubVec = [](MVT B, MVT P) -> bool { 604 if (!B.isVector() || !P.isVector()) 605 return false; 606 // Logically a <4 x i32> is a valid subvector of <n x 4 x i32> 607 // but until there are obvious use-cases for this, keep the 608 // types separate. 609 if (B.isScalableVector() != P.isScalableVector()) 610 return false; 611 if (B.getVectorElementType() != P.getVectorElementType()) 612 return false; 613 return B.getVectorNumElements() < P.getVectorNumElements(); 614 }; 615 616 /// Return true if S has no element (vector type) that T is a sub-vector of, 617 /// i.e. has the same element type as T and more elements. 618 auto NoSubV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 619 for (const auto &I : S) 620 if (IsSubVec(T, I)) 621 return false; 622 return true; 623 }; 624 625 /// Return true if S has no element (vector type) that T is a super-vector 626 /// of, i.e. has the same element type as T and fewer elements. 627 auto NoSupV = [&IsSubVec](const TypeSetByHwMode::SetType &S, MVT T) -> bool { 628 for (const auto &I : S) 629 if (IsSubVec(I, T)) 630 return false; 631 return true; 632 }; 633 634 bool Changed = false; 635 636 if (Vec.empty()) 637 Changed |= EnforceVector(Vec); 638 if (Sub.empty()) 639 Changed |= EnforceVector(Sub); 640 641 for (unsigned M : union_modes(Vec, Sub)) { 642 TypeSetByHwMode::SetType &S = Sub.get(M); 643 TypeSetByHwMode::SetType &V = Vec.get(M); 644 645 Changed |= berase_if(S, isScalar); 646 647 // Erase all types from S that are not sub-vectors of a type in V. 648 Changed |= berase_if(S, std::bind(NoSubV, V, std::placeholders::_1)); 649 650 // Erase all types from V that are not super-vectors of a type in S. 651 Changed |= berase_if(V, std::bind(NoSupV, S, std::placeholders::_1)); 652 } 653 654 return Changed; 655 } 656 657 /// 1. Ensure that V has a scalar type iff W has a scalar type. 658 /// 2. Ensure that for each vector type T in V, there exists a vector 659 /// type U in W, such that T and U have the same number of elements. 660 /// 3. Ensure that for each vector type U in W, there exists a vector 661 /// type T in V, such that T and U have the same number of elements 662 /// (reverse of 2). 663 bool TypeInfer::EnforceSameNumElts(TypeSetByHwMode &V, TypeSetByHwMode &W) { 664 ValidateOnExit _1(V, *this), _2(W, *this); 665 if (TP.hasError()) 666 return false; 667 668 bool Changed = false; 669 if (V.empty()) 670 Changed |= EnforceAny(V); 671 if (W.empty()) 672 Changed |= EnforceAny(W); 673 674 // An actual vector type cannot have 0 elements, so we can treat scalars 675 // as zero-length vectors. This way both vectors and scalars can be 676 // processed identically. 677 auto NoLength = [](const SmallSet<unsigned,2> &Lengths, MVT T) -> bool { 678 return !Lengths.count(T.isVector() ? T.getVectorNumElements() : 0); 679 }; 680 681 for (unsigned M : union_modes(V, W)) { 682 TypeSetByHwMode::SetType &VS = V.get(M); 683 TypeSetByHwMode::SetType &WS = W.get(M); 684 685 SmallSet<unsigned,2> VN, WN; 686 for (MVT T : VS) 687 VN.insert(T.isVector() ? T.getVectorNumElements() : 0); 688 for (MVT T : WS) 689 WN.insert(T.isVector() ? T.getVectorNumElements() : 0); 690 691 Changed |= berase_if(VS, std::bind(NoLength, WN, std::placeholders::_1)); 692 Changed |= berase_if(WS, std::bind(NoLength, VN, std::placeholders::_1)); 693 } 694 return Changed; 695 } 696 697 /// 1. Ensure that for each type T in A, there exists a type U in B, 698 /// such that T and U have equal size in bits. 699 /// 2. Ensure that for each type U in B, there exists a type T in A 700 /// such that T and U have equal size in bits (reverse of 1). 701 bool TypeInfer::EnforceSameSize(TypeSetByHwMode &A, TypeSetByHwMode &B) { 702 ValidateOnExit _1(A, *this), _2(B, *this); 703 if (TP.hasError()) 704 return false; 705 bool Changed = false; 706 if (A.empty()) 707 Changed |= EnforceAny(A); 708 if (B.empty()) 709 Changed |= EnforceAny(B); 710 711 auto NoSize = [](const SmallSet<unsigned,2> &Sizes, MVT T) -> bool { 712 return !Sizes.count(T.getSizeInBits()); 713 }; 714 715 for (unsigned M : union_modes(A, B)) { 716 TypeSetByHwMode::SetType &AS = A.get(M); 717 TypeSetByHwMode::SetType &BS = B.get(M); 718 SmallSet<unsigned,2> AN, BN; 719 720 for (MVT T : AS) 721 AN.insert(T.getSizeInBits()); 722 for (MVT T : BS) 723 BN.insert(T.getSizeInBits()); 724 725 Changed |= berase_if(AS, std::bind(NoSize, BN, std::placeholders::_1)); 726 Changed |= berase_if(BS, std::bind(NoSize, AN, std::placeholders::_1)); 727 } 728 729 return Changed; 730 } 731 732 void TypeInfer::expandOverloads(TypeSetByHwMode &VTS) { 733 ValidateOnExit _1(VTS, *this); 734 TypeSetByHwMode Legal = getLegalTypes(); 735 bool HaveLegalDef = Legal.hasDefault(); 736 737 for (auto &I : VTS) { 738 unsigned M = I.first; 739 if (!Legal.hasMode(M) && !HaveLegalDef) { 740 TP.error("Invalid mode " + Twine(M)); 741 return; 742 } 743 expandOverloads(I.second, Legal.get(M)); 744 } 745 } 746 747 void TypeInfer::expandOverloads(TypeSetByHwMode::SetType &Out, 748 const TypeSetByHwMode::SetType &Legal) { 749 std::set<MVT> Ovs; 750 for (MVT T : Out) { 751 if (!T.isOverloaded()) 752 continue; 753 754 Ovs.insert(T); 755 // MachineValueTypeSet allows iteration and erasing. 756 Out.erase(T); 757 } 758 759 for (MVT Ov : Ovs) { 760 switch (Ov.SimpleTy) { 761 case MVT::iPTRAny: 762 Out.insert(MVT::iPTR); 763 return; 764 case MVT::iAny: 765 for (MVT T : MVT::integer_valuetypes()) 766 if (Legal.count(T)) 767 Out.insert(T); 768 for (MVT T : MVT::integer_vector_valuetypes()) 769 if (Legal.count(T)) 770 Out.insert(T); 771 return; 772 case MVT::fAny: 773 for (MVT T : MVT::fp_valuetypes()) 774 if (Legal.count(T)) 775 Out.insert(T); 776 for (MVT T : MVT::fp_vector_valuetypes()) 777 if (Legal.count(T)) 778 Out.insert(T); 779 return; 780 case MVT::vAny: 781 for (MVT T : MVT::vector_valuetypes()) 782 if (Legal.count(T)) 783 Out.insert(T); 784 return; 785 case MVT::Any: 786 for (MVT T : MVT::all_valuetypes()) 787 if (Legal.count(T)) 788 Out.insert(T); 789 return; 790 default: 791 break; 792 } 793 } 794 } 795 796 TypeSetByHwMode TypeInfer::getLegalTypes() { 797 if (!LegalTypesCached) { 798 // Stuff all types from all modes into the default mode. 799 const TypeSetByHwMode <S = TP.getDAGPatterns().getLegalTypes(); 800 for (const auto &I : LTS) 801 LegalCache.insert(I.second); 802 LegalTypesCached = true; 803 } 804 TypeSetByHwMode VTS; 805 VTS.getOrCreate(DefaultMode) = LegalCache; 806 return VTS; 807 } 808 809 #ifndef NDEBUG 810 TypeInfer::ValidateOnExit::~ValidateOnExit() { 811 if (!VTS.validate()) { 812 dbgs() << "Type set is empty for each HW mode:\n" 813 "possible type contradiction in the pattern below " 814 "(use -print-records with llvm-tblgen to see all " 815 "expanded records).\n"; 816 Infer.TP.dump(); 817 llvm_unreachable(nullptr); 818 } 819 } 820 #endif 821 822 //===----------------------------------------------------------------------===// 823 // TreePredicateFn Implementation 824 //===----------------------------------------------------------------------===// 825 826 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 827 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 828 assert( 829 (!hasPredCode() || !hasImmCode()) && 830 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 831 } 832 833 bool TreePredicateFn::hasPredCode() const { 834 return isLoad() || isStore() || isAtomic() || 835 !PatFragRec->getRecord()->getValueAsString("PredicateCode").empty(); 836 } 837 838 std::string TreePredicateFn::getPredCode() const { 839 std::string Code = ""; 840 841 if (!isLoad() && !isStore() && !isAtomic()) { 842 Record *MemoryVT = getMemoryVT(); 843 844 if (MemoryVT) 845 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 846 "MemoryVT requires IsLoad or IsStore"); 847 } 848 849 if (!isLoad() && !isStore()) { 850 if (isUnindexed()) 851 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 852 "IsUnindexed requires IsLoad or IsStore"); 853 854 Record *ScalarMemoryVT = getScalarMemoryVT(); 855 856 if (ScalarMemoryVT) 857 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 858 "ScalarMemoryVT requires IsLoad or IsStore"); 859 } 860 861 if (isLoad() + isStore() + isAtomic() > 1) 862 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 863 "IsLoad, IsStore, and IsAtomic are mutually exclusive"); 864 865 if (isLoad()) { 866 if (!isUnindexed() && !isNonExtLoad() && !isAnyExtLoad() && 867 !isSignExtLoad() && !isZeroExtLoad() && getMemoryVT() == nullptr && 868 getScalarMemoryVT() == nullptr) 869 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 870 "IsLoad cannot be used by itself"); 871 } else { 872 if (isNonExtLoad()) 873 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 874 "IsNonExtLoad requires IsLoad"); 875 if (isAnyExtLoad()) 876 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 877 "IsAnyExtLoad requires IsLoad"); 878 if (isSignExtLoad()) 879 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 880 "IsSignExtLoad requires IsLoad"); 881 if (isZeroExtLoad()) 882 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 883 "IsZeroExtLoad requires IsLoad"); 884 } 885 886 if (isStore()) { 887 if (!isUnindexed() && !isTruncStore() && !isNonTruncStore() && 888 getMemoryVT() == nullptr && getScalarMemoryVT() == nullptr) 889 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 890 "IsStore cannot be used by itself"); 891 } else { 892 if (isNonTruncStore()) 893 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 894 "IsNonTruncStore requires IsStore"); 895 if (isTruncStore()) 896 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 897 "IsTruncStore requires IsStore"); 898 } 899 900 if (isAtomic()) { 901 if (getMemoryVT() == nullptr && !isAtomicOrderingMonotonic() && 902 !isAtomicOrderingAcquire() && !isAtomicOrderingRelease() && 903 !isAtomicOrderingAcquireRelease() && 904 !isAtomicOrderingSequentiallyConsistent() && 905 !isAtomicOrderingAcquireOrStronger() && 906 !isAtomicOrderingReleaseOrStronger() && 907 !isAtomicOrderingWeakerThanAcquire() && 908 !isAtomicOrderingWeakerThanRelease()) 909 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 910 "IsAtomic cannot be used by itself"); 911 } else { 912 if (isAtomicOrderingMonotonic()) 913 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 914 "IsAtomicOrderingMonotonic requires IsAtomic"); 915 if (isAtomicOrderingAcquire()) 916 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 917 "IsAtomicOrderingAcquire requires IsAtomic"); 918 if (isAtomicOrderingRelease()) 919 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 920 "IsAtomicOrderingRelease requires IsAtomic"); 921 if (isAtomicOrderingAcquireRelease()) 922 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 923 "IsAtomicOrderingAcquireRelease requires IsAtomic"); 924 if (isAtomicOrderingSequentiallyConsistent()) 925 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 926 "IsAtomicOrderingSequentiallyConsistent requires IsAtomic"); 927 if (isAtomicOrderingAcquireOrStronger()) 928 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 929 "IsAtomicOrderingAcquireOrStronger requires IsAtomic"); 930 if (isAtomicOrderingReleaseOrStronger()) 931 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 932 "IsAtomicOrderingReleaseOrStronger requires IsAtomic"); 933 if (isAtomicOrderingWeakerThanAcquire()) 934 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 935 "IsAtomicOrderingWeakerThanAcquire requires IsAtomic"); 936 } 937 938 if (isLoad() || isStore() || isAtomic()) { 939 StringRef SDNodeName = 940 isLoad() ? "LoadSDNode" : isStore() ? "StoreSDNode" : "AtomicSDNode"; 941 942 Record *MemoryVT = getMemoryVT(); 943 944 if (MemoryVT) 945 Code += ("if (cast<" + SDNodeName + ">(N)->getMemoryVT() != MVT::" + 946 MemoryVT->getName() + ") return false;\n") 947 .str(); 948 } 949 950 if (isAtomic() && isAtomicOrderingMonotonic()) 951 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 952 "AtomicOrdering::Monotonic) return false;\n"; 953 if (isAtomic() && isAtomicOrderingAcquire()) 954 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 955 "AtomicOrdering::Acquire) return false;\n"; 956 if (isAtomic() && isAtomicOrderingRelease()) 957 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 958 "AtomicOrdering::Release) return false;\n"; 959 if (isAtomic() && isAtomicOrderingAcquireRelease()) 960 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 961 "AtomicOrdering::AcquireRelease) return false;\n"; 962 if (isAtomic() && isAtomicOrderingSequentiallyConsistent()) 963 Code += "if (cast<AtomicSDNode>(N)->getOrdering() != " 964 "AtomicOrdering::SequentiallyConsistent) return false;\n"; 965 966 if (isAtomic() && isAtomicOrderingAcquireOrStronger()) 967 Code += "if (!isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 968 "return false;\n"; 969 if (isAtomic() && isAtomicOrderingWeakerThanAcquire()) 970 Code += "if (isAcquireOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 971 "return false;\n"; 972 973 if (isAtomic() && isAtomicOrderingReleaseOrStronger()) 974 Code += "if (!isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 975 "return false;\n"; 976 if (isAtomic() && isAtomicOrderingWeakerThanRelease()) 977 Code += "if (isReleaseOrStronger(cast<AtomicSDNode>(N)->getOrdering())) " 978 "return false;\n"; 979 980 if (isLoad() || isStore()) { 981 StringRef SDNodeName = isLoad() ? "LoadSDNode" : "StoreSDNode"; 982 983 if (isUnindexed()) 984 Code += ("if (cast<" + SDNodeName + 985 ">(N)->getAddressingMode() != ISD::UNINDEXED) " 986 "return false;\n") 987 .str(); 988 989 if (isLoad()) { 990 if ((isNonExtLoad() + isAnyExtLoad() + isSignExtLoad() + 991 isZeroExtLoad()) > 1) 992 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 993 "IsNonExtLoad, IsAnyExtLoad, IsSignExtLoad, and " 994 "IsZeroExtLoad are mutually exclusive"); 995 if (isNonExtLoad()) 996 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != " 997 "ISD::NON_EXTLOAD) return false;\n"; 998 if (isAnyExtLoad()) 999 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::EXTLOAD) " 1000 "return false;\n"; 1001 if (isSignExtLoad()) 1002 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::SEXTLOAD) " 1003 "return false;\n"; 1004 if (isZeroExtLoad()) 1005 Code += "if (cast<LoadSDNode>(N)->getExtensionType() != ISD::ZEXTLOAD) " 1006 "return false;\n"; 1007 } else { 1008 if ((isNonTruncStore() + isTruncStore()) > 1) 1009 PrintFatalError( 1010 getOrigPatFragRecord()->getRecord()->getLoc(), 1011 "IsNonTruncStore, and IsTruncStore are mutually exclusive"); 1012 if (isNonTruncStore()) 1013 Code += 1014 " if (cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1015 if (isTruncStore()) 1016 Code += 1017 " if (!cast<StoreSDNode>(N)->isTruncatingStore()) return false;\n"; 1018 } 1019 1020 Record *ScalarMemoryVT = getScalarMemoryVT(); 1021 1022 if (ScalarMemoryVT) 1023 Code += ("if (cast<" + SDNodeName + 1024 ">(N)->getMemoryVT().getScalarType() != MVT::" + 1025 ScalarMemoryVT->getName() + ") return false;\n") 1026 .str(); 1027 } 1028 1029 std::string PredicateCode = PatFragRec->getRecord()->getValueAsString("PredicateCode"); 1030 1031 Code += PredicateCode; 1032 1033 if (PredicateCode.empty() && !Code.empty()) 1034 Code += "return true;\n"; 1035 1036 return Code; 1037 } 1038 1039 bool TreePredicateFn::hasImmCode() const { 1040 return !PatFragRec->getRecord()->getValueAsString("ImmediateCode").empty(); 1041 } 1042 1043 std::string TreePredicateFn::getImmCode() const { 1044 return PatFragRec->getRecord()->getValueAsString("ImmediateCode"); 1045 } 1046 1047 bool TreePredicateFn::immCodeUsesAPInt() const { 1048 return getOrigPatFragRecord()->getRecord()->getValueAsBit("IsAPInt"); 1049 } 1050 1051 bool TreePredicateFn::immCodeUsesAPFloat() const { 1052 bool Unset; 1053 // The return value will be false when IsAPFloat is unset. 1054 return getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset("IsAPFloat", 1055 Unset); 1056 } 1057 1058 bool TreePredicateFn::isPredefinedPredicateEqualTo(StringRef Field, 1059 bool Value) const { 1060 bool Unset; 1061 bool Result = 1062 getOrigPatFragRecord()->getRecord()->getValueAsBitOrUnset(Field, Unset); 1063 if (Unset) 1064 return false; 1065 return Result == Value; 1066 } 1067 bool TreePredicateFn::isLoad() const { 1068 return isPredefinedPredicateEqualTo("IsLoad", true); 1069 } 1070 bool TreePredicateFn::isStore() const { 1071 return isPredefinedPredicateEqualTo("IsStore", true); 1072 } 1073 bool TreePredicateFn::isAtomic() const { 1074 return isPredefinedPredicateEqualTo("IsAtomic", true); 1075 } 1076 bool TreePredicateFn::isUnindexed() const { 1077 return isPredefinedPredicateEqualTo("IsUnindexed", true); 1078 } 1079 bool TreePredicateFn::isNonExtLoad() const { 1080 return isPredefinedPredicateEqualTo("IsNonExtLoad", true); 1081 } 1082 bool TreePredicateFn::isAnyExtLoad() const { 1083 return isPredefinedPredicateEqualTo("IsAnyExtLoad", true); 1084 } 1085 bool TreePredicateFn::isSignExtLoad() const { 1086 return isPredefinedPredicateEqualTo("IsSignExtLoad", true); 1087 } 1088 bool TreePredicateFn::isZeroExtLoad() const { 1089 return isPredefinedPredicateEqualTo("IsZeroExtLoad", true); 1090 } 1091 bool TreePredicateFn::isNonTruncStore() const { 1092 return isPredefinedPredicateEqualTo("IsTruncStore", false); 1093 } 1094 bool TreePredicateFn::isTruncStore() const { 1095 return isPredefinedPredicateEqualTo("IsTruncStore", true); 1096 } 1097 bool TreePredicateFn::isAtomicOrderingMonotonic() const { 1098 return isPredefinedPredicateEqualTo("IsAtomicOrderingMonotonic", true); 1099 } 1100 bool TreePredicateFn::isAtomicOrderingAcquire() const { 1101 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquire", true); 1102 } 1103 bool TreePredicateFn::isAtomicOrderingRelease() const { 1104 return isPredefinedPredicateEqualTo("IsAtomicOrderingRelease", true); 1105 } 1106 bool TreePredicateFn::isAtomicOrderingAcquireRelease() const { 1107 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireRelease", true); 1108 } 1109 bool TreePredicateFn::isAtomicOrderingSequentiallyConsistent() const { 1110 return isPredefinedPredicateEqualTo("IsAtomicOrderingSequentiallyConsistent", 1111 true); 1112 } 1113 bool TreePredicateFn::isAtomicOrderingAcquireOrStronger() const { 1114 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", true); 1115 } 1116 bool TreePredicateFn::isAtomicOrderingWeakerThanAcquire() const { 1117 return isPredefinedPredicateEqualTo("IsAtomicOrderingAcquireOrStronger", false); 1118 } 1119 bool TreePredicateFn::isAtomicOrderingReleaseOrStronger() const { 1120 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", true); 1121 } 1122 bool TreePredicateFn::isAtomicOrderingWeakerThanRelease() const { 1123 return isPredefinedPredicateEqualTo("IsAtomicOrderingReleaseOrStronger", false); 1124 } 1125 Record *TreePredicateFn::getMemoryVT() const { 1126 Record *R = getOrigPatFragRecord()->getRecord(); 1127 if (R->isValueUnset("MemoryVT")) 1128 return nullptr; 1129 return R->getValueAsDef("MemoryVT"); 1130 } 1131 Record *TreePredicateFn::getScalarMemoryVT() const { 1132 Record *R = getOrigPatFragRecord()->getRecord(); 1133 if (R->isValueUnset("ScalarMemoryVT")) 1134 return nullptr; 1135 return R->getValueAsDef("ScalarMemoryVT"); 1136 } 1137 1138 StringRef TreePredicateFn::getImmType() const { 1139 if (immCodeUsesAPInt()) 1140 return "const APInt &"; 1141 if (immCodeUsesAPFloat()) 1142 return "const APFloat &"; 1143 return "int64_t"; 1144 } 1145 1146 StringRef TreePredicateFn::getImmTypeIdentifier() const { 1147 if (immCodeUsesAPInt()) 1148 return "APInt"; 1149 else if (immCodeUsesAPFloat()) 1150 return "APFloat"; 1151 return "I64"; 1152 } 1153 1154 /// isAlwaysTrue - Return true if this is a noop predicate. 1155 bool TreePredicateFn::isAlwaysTrue() const { 1156 return !hasPredCode() && !hasImmCode(); 1157 } 1158 1159 /// Return the name to use in the generated code to reference this, this is 1160 /// "Predicate_foo" if from a pattern fragment "foo". 1161 std::string TreePredicateFn::getFnName() const { 1162 return "Predicate_" + PatFragRec->getRecord()->getName().str(); 1163 } 1164 1165 /// getCodeToRunOnSDNode - Return the code for the function body that 1166 /// evaluates this predicate. The argument is expected to be in "Node", 1167 /// not N. This handles casting and conversion to a concrete node type as 1168 /// appropriate. 1169 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 1170 // Handle immediate predicates first. 1171 std::string ImmCode = getImmCode(); 1172 if (!ImmCode.empty()) { 1173 if (isLoad()) 1174 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1175 "IsLoad cannot be used with ImmLeaf or its subclasses"); 1176 if (isStore()) 1177 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1178 "IsStore cannot be used with ImmLeaf or its subclasses"); 1179 if (isUnindexed()) 1180 PrintFatalError( 1181 getOrigPatFragRecord()->getRecord()->getLoc(), 1182 "IsUnindexed cannot be used with ImmLeaf or its subclasses"); 1183 if (isNonExtLoad()) 1184 PrintFatalError( 1185 getOrigPatFragRecord()->getRecord()->getLoc(), 1186 "IsNonExtLoad cannot be used with ImmLeaf or its subclasses"); 1187 if (isAnyExtLoad()) 1188 PrintFatalError( 1189 getOrigPatFragRecord()->getRecord()->getLoc(), 1190 "IsAnyExtLoad cannot be used with ImmLeaf or its subclasses"); 1191 if (isSignExtLoad()) 1192 PrintFatalError( 1193 getOrigPatFragRecord()->getRecord()->getLoc(), 1194 "IsSignExtLoad cannot be used with ImmLeaf or its subclasses"); 1195 if (isZeroExtLoad()) 1196 PrintFatalError( 1197 getOrigPatFragRecord()->getRecord()->getLoc(), 1198 "IsZeroExtLoad cannot be used with ImmLeaf or its subclasses"); 1199 if (isNonTruncStore()) 1200 PrintFatalError( 1201 getOrigPatFragRecord()->getRecord()->getLoc(), 1202 "IsNonTruncStore cannot be used with ImmLeaf or its subclasses"); 1203 if (isTruncStore()) 1204 PrintFatalError( 1205 getOrigPatFragRecord()->getRecord()->getLoc(), 1206 "IsTruncStore cannot be used with ImmLeaf or its subclasses"); 1207 if (getMemoryVT()) 1208 PrintFatalError(getOrigPatFragRecord()->getRecord()->getLoc(), 1209 "MemoryVT cannot be used with ImmLeaf or its subclasses"); 1210 if (getScalarMemoryVT()) 1211 PrintFatalError( 1212 getOrigPatFragRecord()->getRecord()->getLoc(), 1213 "ScalarMemoryVT cannot be used with ImmLeaf or its subclasses"); 1214 1215 std::string Result = (" " + getImmType() + " Imm = ").str(); 1216 if (immCodeUsesAPFloat()) 1217 Result += "cast<ConstantFPSDNode>(Node)->getValueAPF();\n"; 1218 else if (immCodeUsesAPInt()) 1219 Result += "cast<ConstantSDNode>(Node)->getAPIntValue();\n"; 1220 else 1221 Result += "cast<ConstantSDNode>(Node)->getSExtValue();\n"; 1222 return Result + ImmCode; 1223 } 1224 1225 // Handle arbitrary node predicates. 1226 assert(hasPredCode() && "Don't have any predicate code!"); 1227 StringRef ClassName; 1228 if (PatFragRec->getOnlyTree()->isLeaf()) 1229 ClassName = "SDNode"; 1230 else { 1231 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 1232 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 1233 } 1234 std::string Result; 1235 if (ClassName == "SDNode") 1236 Result = " SDNode *N = Node;\n"; 1237 else 1238 Result = " auto *N = cast<" + ClassName.str() + ">(Node);\n"; 1239 1240 return Result + getPredCode(); 1241 } 1242 1243 //===----------------------------------------------------------------------===// 1244 // PatternToMatch implementation 1245 // 1246 1247 /// getPatternSize - Return the 'size' of this pattern. We want to match large 1248 /// patterns before small ones. This is used to determine the size of a 1249 /// pattern. 1250 static unsigned getPatternSize(const TreePatternNode *P, 1251 const CodeGenDAGPatterns &CGP) { 1252 unsigned Size = 3; // The node itself. 1253 // If the root node is a ConstantSDNode, increases its size. 1254 // e.g. (set R32:$dst, 0). 1255 if (P->isLeaf() && isa<IntInit>(P->getLeafValue())) 1256 Size += 2; 1257 1258 if (const ComplexPattern *AM = P->getComplexPatternInfo(CGP)) { 1259 Size += AM->getComplexity(); 1260 // We don't want to count any children twice, so return early. 1261 return Size; 1262 } 1263 1264 // If this node has some predicate function that must match, it adds to the 1265 // complexity of this node. 1266 if (!P->getPredicateFns().empty()) 1267 ++Size; 1268 1269 // Count children in the count if they are also nodes. 1270 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 1271 const TreePatternNode *Child = P->getChild(i); 1272 if (!Child->isLeaf() && Child->getNumTypes()) { 1273 const TypeSetByHwMode &T0 = Child->getType(0); 1274 // At this point, all variable type sets should be simple, i.e. only 1275 // have a default mode. 1276 if (T0.getMachineValueType() != MVT::Other) { 1277 Size += getPatternSize(Child, CGP); 1278 continue; 1279 } 1280 } 1281 if (Child->isLeaf()) { 1282 if (isa<IntInit>(Child->getLeafValue())) 1283 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 1284 else if (Child->getComplexPatternInfo(CGP)) 1285 Size += getPatternSize(Child, CGP); 1286 else if (!Child->getPredicateFns().empty()) 1287 ++Size; 1288 } 1289 } 1290 1291 return Size; 1292 } 1293 1294 /// Compute the complexity metric for the input pattern. This roughly 1295 /// corresponds to the number of nodes that are covered. 1296 int PatternToMatch:: 1297 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 1298 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 1299 } 1300 1301 /// getPredicateCheck - Return a single string containing all of this 1302 /// pattern's predicates concatenated with "&&" operators. 1303 /// 1304 std::string PatternToMatch::getPredicateCheck() const { 1305 SmallVector<const Predicate*,4> PredList; 1306 for (const Predicate &P : Predicates) 1307 PredList.push_back(&P); 1308 std::sort(PredList.begin(), PredList.end(), deref<llvm::less>()); 1309 1310 std::string Check; 1311 for (unsigned i = 0, e = PredList.size(); i != e; ++i) { 1312 if (i != 0) 1313 Check += " && "; 1314 Check += '(' + PredList[i]->getCondString() + ')'; 1315 } 1316 return Check; 1317 } 1318 1319 //===----------------------------------------------------------------------===// 1320 // SDTypeConstraint implementation 1321 // 1322 1323 SDTypeConstraint::SDTypeConstraint(Record *R, const CodeGenHwModes &CGH) { 1324 OperandNo = R->getValueAsInt("OperandNum"); 1325 1326 if (R->isSubClassOf("SDTCisVT")) { 1327 ConstraintType = SDTCisVT; 1328 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1329 for (const auto &P : VVT) 1330 if (P.second == MVT::isVoid) 1331 PrintFatalError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 1332 } else if (R->isSubClassOf("SDTCisPtrTy")) { 1333 ConstraintType = SDTCisPtrTy; 1334 } else if (R->isSubClassOf("SDTCisInt")) { 1335 ConstraintType = SDTCisInt; 1336 } else if (R->isSubClassOf("SDTCisFP")) { 1337 ConstraintType = SDTCisFP; 1338 } else if (R->isSubClassOf("SDTCisVec")) { 1339 ConstraintType = SDTCisVec; 1340 } else if (R->isSubClassOf("SDTCisSameAs")) { 1341 ConstraintType = SDTCisSameAs; 1342 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 1343 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 1344 ConstraintType = SDTCisVTSmallerThanOp; 1345 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 1346 R->getValueAsInt("OtherOperandNum"); 1347 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 1348 ConstraintType = SDTCisOpSmallerThanOp; 1349 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 1350 R->getValueAsInt("BigOperandNum"); 1351 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 1352 ConstraintType = SDTCisEltOfVec; 1353 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 1354 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 1355 ConstraintType = SDTCisSubVecOfVec; 1356 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 1357 R->getValueAsInt("OtherOpNum"); 1358 } else if (R->isSubClassOf("SDTCVecEltisVT")) { 1359 ConstraintType = SDTCVecEltisVT; 1360 VVT = getValueTypeByHwMode(R->getValueAsDef("VT"), CGH); 1361 for (const auto &P : VVT) { 1362 MVT T = P.second; 1363 if (T.isVector()) 1364 PrintFatalError(R->getLoc(), 1365 "Cannot use vector type as SDTCVecEltisVT"); 1366 if (!T.isInteger() && !T.isFloatingPoint()) 1367 PrintFatalError(R->getLoc(), "Must use integer or floating point type " 1368 "as SDTCVecEltisVT"); 1369 } 1370 } else if (R->isSubClassOf("SDTCisSameNumEltsAs")) { 1371 ConstraintType = SDTCisSameNumEltsAs; 1372 x.SDTCisSameNumEltsAs_Info.OtherOperandNum = 1373 R->getValueAsInt("OtherOperandNum"); 1374 } else if (R->isSubClassOf("SDTCisSameSizeAs")) { 1375 ConstraintType = SDTCisSameSizeAs; 1376 x.SDTCisSameSizeAs_Info.OtherOperandNum = 1377 R->getValueAsInt("OtherOperandNum"); 1378 } else { 1379 PrintFatalError("Unrecognized SDTypeConstraint '" + R->getName() + "'!\n"); 1380 } 1381 } 1382 1383 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 1384 /// N, and the result number in ResNo. 1385 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 1386 const SDNodeInfo &NodeInfo, 1387 unsigned &ResNo) { 1388 unsigned NumResults = NodeInfo.getNumResults(); 1389 if (OpNo < NumResults) { 1390 ResNo = OpNo; 1391 return N; 1392 } 1393 1394 OpNo -= NumResults; 1395 1396 if (OpNo >= N->getNumChildren()) { 1397 std::string S; 1398 raw_string_ostream OS(S); 1399 OS << "Invalid operand number in type constraint " 1400 << (OpNo+NumResults) << " "; 1401 N->print(OS); 1402 PrintFatalError(OS.str()); 1403 } 1404 1405 return N->getChild(OpNo); 1406 } 1407 1408 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 1409 /// constraint to the nodes operands. This returns true if it makes a 1410 /// change, false otherwise. If a type contradiction is found, flag an error. 1411 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 1412 const SDNodeInfo &NodeInfo, 1413 TreePattern &TP) const { 1414 if (TP.hasError()) 1415 return false; 1416 1417 unsigned ResNo = 0; // The result number being referenced. 1418 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 1419 TypeInfer &TI = TP.getInfer(); 1420 1421 switch (ConstraintType) { 1422 case SDTCisVT: 1423 // Operand must be a particular type. 1424 return NodeToApply->UpdateNodeType(ResNo, VVT, TP); 1425 case SDTCisPtrTy: 1426 // Operand must be same as target pointer type. 1427 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 1428 case SDTCisInt: 1429 // Require it to be one of the legal integer VTs. 1430 return TI.EnforceInteger(NodeToApply->getExtType(ResNo)); 1431 case SDTCisFP: 1432 // Require it to be one of the legal fp VTs. 1433 return TI.EnforceFloatingPoint(NodeToApply->getExtType(ResNo)); 1434 case SDTCisVec: 1435 // Require it to be one of the legal vector VTs. 1436 return TI.EnforceVector(NodeToApply->getExtType(ResNo)); 1437 case SDTCisSameAs: { 1438 unsigned OResNo = 0; 1439 TreePatternNode *OtherNode = 1440 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 1441 return NodeToApply->UpdateNodeType(ResNo, OtherNode->getExtType(OResNo),TP)| 1442 OtherNode->UpdateNodeType(OResNo,NodeToApply->getExtType(ResNo),TP); 1443 } 1444 case SDTCisVTSmallerThanOp: { 1445 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 1446 // have an integer type that is smaller than the VT. 1447 if (!NodeToApply->isLeaf() || 1448 !isa<DefInit>(NodeToApply->getLeafValue()) || 1449 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 1450 ->isSubClassOf("ValueType")) { 1451 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 1452 return false; 1453 } 1454 DefInit *DI = static_cast<DefInit*>(NodeToApply->getLeafValue()); 1455 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1456 auto VVT = getValueTypeByHwMode(DI->getDef(), T.getHwModes()); 1457 TypeSetByHwMode TypeListTmp(VVT); 1458 1459 unsigned OResNo = 0; 1460 TreePatternNode *OtherNode = 1461 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 1462 OResNo); 1463 1464 return TI.EnforceSmallerThan(TypeListTmp, OtherNode->getExtType(OResNo)); 1465 } 1466 case SDTCisOpSmallerThanOp: { 1467 unsigned BResNo = 0; 1468 TreePatternNode *BigOperand = 1469 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 1470 BResNo); 1471 return TI.EnforceSmallerThan(NodeToApply->getExtType(ResNo), 1472 BigOperand->getExtType(BResNo)); 1473 } 1474 case SDTCisEltOfVec: { 1475 unsigned VResNo = 0; 1476 TreePatternNode *VecOperand = 1477 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 1478 VResNo); 1479 // Filter vector types out of VecOperand that don't have the right element 1480 // type. 1481 return TI.EnforceVectorEltTypeIs(VecOperand->getExtType(VResNo), 1482 NodeToApply->getExtType(ResNo)); 1483 } 1484 case SDTCisSubVecOfVec: { 1485 unsigned VResNo = 0; 1486 TreePatternNode *BigVecOperand = 1487 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 1488 VResNo); 1489 1490 // Filter vector types out of BigVecOperand that don't have the 1491 // right subvector type. 1492 return TI.EnforceVectorSubVectorTypeIs(BigVecOperand->getExtType(VResNo), 1493 NodeToApply->getExtType(ResNo)); 1494 } 1495 case SDTCVecEltisVT: { 1496 return TI.EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), VVT); 1497 } 1498 case SDTCisSameNumEltsAs: { 1499 unsigned OResNo = 0; 1500 TreePatternNode *OtherNode = 1501 getOperandNum(x.SDTCisSameNumEltsAs_Info.OtherOperandNum, 1502 N, NodeInfo, OResNo); 1503 return TI.EnforceSameNumElts(OtherNode->getExtType(OResNo), 1504 NodeToApply->getExtType(ResNo)); 1505 } 1506 case SDTCisSameSizeAs: { 1507 unsigned OResNo = 0; 1508 TreePatternNode *OtherNode = 1509 getOperandNum(x.SDTCisSameSizeAs_Info.OtherOperandNum, 1510 N, NodeInfo, OResNo); 1511 return TI.EnforceSameSize(OtherNode->getExtType(OResNo), 1512 NodeToApply->getExtType(ResNo)); 1513 } 1514 } 1515 llvm_unreachable("Invalid ConstraintType!"); 1516 } 1517 1518 // Update the node type to match an instruction operand or result as specified 1519 // in the ins or outs lists on the instruction definition. Return true if the 1520 // type was actually changed. 1521 bool TreePatternNode::UpdateNodeTypeFromInst(unsigned ResNo, 1522 Record *Operand, 1523 TreePattern &TP) { 1524 // The 'unknown' operand indicates that types should be inferred from the 1525 // context. 1526 if (Operand->isSubClassOf("unknown_class")) 1527 return false; 1528 1529 // The Operand class specifies a type directly. 1530 if (Operand->isSubClassOf("Operand")) { 1531 Record *R = Operand->getValueAsDef("Type"); 1532 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1533 return UpdateNodeType(ResNo, getValueTypeByHwMode(R, T.getHwModes()), TP); 1534 } 1535 1536 // PointerLikeRegClass has a type that is determined at runtime. 1537 if (Operand->isSubClassOf("PointerLikeRegClass")) 1538 return UpdateNodeType(ResNo, MVT::iPTR, TP); 1539 1540 // Both RegisterClass and RegisterOperand operands derive their types from a 1541 // register class def. 1542 Record *RC = nullptr; 1543 if (Operand->isSubClassOf("RegisterClass")) 1544 RC = Operand; 1545 else if (Operand->isSubClassOf("RegisterOperand")) 1546 RC = Operand->getValueAsDef("RegClass"); 1547 1548 assert(RC && "Unknown operand type"); 1549 CodeGenTarget &Tgt = TP.getDAGPatterns().getTargetInfo(); 1550 return UpdateNodeType(ResNo, Tgt.getRegisterClass(RC).getValueTypes(), TP); 1551 } 1552 1553 bool TreePatternNode::ContainsUnresolvedType(TreePattern &TP) const { 1554 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1555 if (!TP.getInfer().isConcrete(Types[i], true)) 1556 return true; 1557 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1558 if (getChild(i)->ContainsUnresolvedType(TP)) 1559 return true; 1560 return false; 1561 } 1562 1563 bool TreePatternNode::hasProperTypeByHwMode() const { 1564 for (const TypeSetByHwMode &S : Types) 1565 if (!S.isDefaultOnly()) 1566 return true; 1567 for (TreePatternNode *C : Children) 1568 if (C->hasProperTypeByHwMode()) 1569 return true; 1570 return false; 1571 } 1572 1573 bool TreePatternNode::hasPossibleType() const { 1574 for (const TypeSetByHwMode &S : Types) 1575 if (!S.isPossible()) 1576 return false; 1577 for (TreePatternNode *C : Children) 1578 if (!C->hasPossibleType()) 1579 return false; 1580 return true; 1581 } 1582 1583 bool TreePatternNode::setDefaultMode(unsigned Mode) { 1584 for (TypeSetByHwMode &S : Types) { 1585 S.makeSimple(Mode); 1586 // Check if the selected mode had a type conflict. 1587 if (S.get(DefaultMode).empty()) 1588 return false; 1589 } 1590 for (TreePatternNode *C : Children) 1591 if (!C->setDefaultMode(Mode)) 1592 return false; 1593 return true; 1594 } 1595 1596 //===----------------------------------------------------------------------===// 1597 // SDNodeInfo implementation 1598 // 1599 SDNodeInfo::SDNodeInfo(Record *R, const CodeGenHwModes &CGH) : Def(R) { 1600 EnumName = R->getValueAsString("Opcode"); 1601 SDClassName = R->getValueAsString("SDClass"); 1602 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 1603 NumResults = TypeProfile->getValueAsInt("NumResults"); 1604 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 1605 1606 // Parse the properties. 1607 Properties = parseSDPatternOperatorProperties(R); 1608 1609 // Parse the type constraints. 1610 std::vector<Record*> ConstraintList = 1611 TypeProfile->getValueAsListOfDefs("Constraints"); 1612 for (Record *R : ConstraintList) 1613 TypeConstraints.emplace_back(R, CGH); 1614 } 1615 1616 /// getKnownType - If the type constraints on this node imply a fixed type 1617 /// (e.g. all stores return void, etc), then return it as an 1618 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 1619 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 1620 unsigned NumResults = getNumResults(); 1621 assert(NumResults <= 1 && 1622 "We only work with nodes with zero or one result so far!"); 1623 assert(ResNo == 0 && "Only handles single result nodes so far"); 1624 1625 for (const SDTypeConstraint &Constraint : TypeConstraints) { 1626 // Make sure that this applies to the correct node result. 1627 if (Constraint.OperandNo >= NumResults) // FIXME: need value # 1628 continue; 1629 1630 switch (Constraint.ConstraintType) { 1631 default: break; 1632 case SDTypeConstraint::SDTCisVT: 1633 if (Constraint.VVT.isSimple()) 1634 return Constraint.VVT.getSimple().SimpleTy; 1635 break; 1636 case SDTypeConstraint::SDTCisPtrTy: 1637 return MVT::iPTR; 1638 } 1639 } 1640 return MVT::Other; 1641 } 1642 1643 //===----------------------------------------------------------------------===// 1644 // TreePatternNode implementation 1645 // 1646 1647 TreePatternNode::~TreePatternNode() { 1648 #if 0 // FIXME: implement refcounted tree nodes! 1649 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1650 delete getChild(i); 1651 #endif 1652 } 1653 1654 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1655 if (Operator->getName() == "set" || 1656 Operator->getName() == "implicit") 1657 return 0; // All return nothing. 1658 1659 if (Operator->isSubClassOf("Intrinsic")) 1660 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1661 1662 if (Operator->isSubClassOf("SDNode")) 1663 return CDP.getSDNodeInfo(Operator).getNumResults(); 1664 1665 if (Operator->isSubClassOf("PatFrag")) { 1666 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1667 // the forward reference case where one pattern fragment references another 1668 // before it is processed. 1669 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1670 return PFRec->getOnlyTree()->getNumTypes(); 1671 1672 // Get the result tree. 1673 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1674 Record *Op = nullptr; 1675 if (Tree) 1676 if (DefInit *DI = dyn_cast<DefInit>(Tree->getOperator())) 1677 Op = DI->getDef(); 1678 assert(Op && "Invalid Fragment"); 1679 return GetNumNodeResults(Op, CDP); 1680 } 1681 1682 if (Operator->isSubClassOf("Instruction")) { 1683 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1684 1685 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs; 1686 1687 // Subtract any defaulted outputs. 1688 for (unsigned i = 0; i != InstInfo.Operands.NumDefs; ++i) { 1689 Record *OperandNode = InstInfo.Operands[i].Rec; 1690 1691 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 1692 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1693 --NumDefsToAdd; 1694 } 1695 1696 // Add on one implicit def if it has a resolvable type. 1697 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1698 ++NumDefsToAdd; 1699 return NumDefsToAdd; 1700 } 1701 1702 if (Operator->isSubClassOf("SDNodeXForm")) 1703 return 1; // FIXME: Generalize SDNodeXForm 1704 1705 if (Operator->isSubClassOf("ValueType")) 1706 return 1; // A type-cast of one result. 1707 1708 if (Operator->isSubClassOf("ComplexPattern")) 1709 return 1; 1710 1711 errs() << *Operator; 1712 PrintFatalError("Unhandled node in GetNumNodeResults"); 1713 } 1714 1715 void TreePatternNode::print(raw_ostream &OS) const { 1716 if (isLeaf()) 1717 OS << *getLeafValue(); 1718 else 1719 OS << '(' << getOperator()->getName(); 1720 1721 for (unsigned i = 0, e = Types.size(); i != e; ++i) { 1722 OS << ':'; 1723 getExtType(i).writeToStream(OS); 1724 } 1725 1726 if (!isLeaf()) { 1727 if (getNumChildren() != 0) { 1728 OS << " "; 1729 getChild(0)->print(OS); 1730 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1731 OS << ", "; 1732 getChild(i)->print(OS); 1733 } 1734 } 1735 OS << ")"; 1736 } 1737 1738 for (const TreePredicateFn &Pred : PredicateFns) 1739 OS << "<<P:" << Pred.getFnName() << ">>"; 1740 if (TransformFn) 1741 OS << "<<X:" << TransformFn->getName() << ">>"; 1742 if (!getName().empty()) 1743 OS << ":$" << getName(); 1744 1745 } 1746 void TreePatternNode::dump() const { 1747 print(errs()); 1748 } 1749 1750 /// isIsomorphicTo - Return true if this node is recursively 1751 /// isomorphic to the specified node. For this comparison, the node's 1752 /// entire state is considered. The assigned name is ignored, since 1753 /// nodes with differing names are considered isomorphic. However, if 1754 /// the assigned name is present in the dependent variable set, then 1755 /// the assigned name is considered significant and the node is 1756 /// isomorphic if the names match. 1757 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1758 const MultipleUseVarSet &DepVars) const { 1759 if (N == this) return true; 1760 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1761 getPredicateFns() != N->getPredicateFns() || 1762 getTransformFn() != N->getTransformFn()) 1763 return false; 1764 1765 if (isLeaf()) { 1766 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 1767 if (DefInit *NDI = dyn_cast<DefInit>(N->getLeafValue())) { 1768 return ((DI->getDef() == NDI->getDef()) 1769 && (DepVars.find(getName()) == DepVars.end() 1770 || getName() == N->getName())); 1771 } 1772 } 1773 return getLeafValue() == N->getLeafValue(); 1774 } 1775 1776 if (N->getOperator() != getOperator() || 1777 N->getNumChildren() != getNumChildren()) return false; 1778 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1779 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1780 return false; 1781 return true; 1782 } 1783 1784 /// clone - Make a copy of this tree and all of its children. 1785 /// 1786 TreePatternNode *TreePatternNode::clone() const { 1787 TreePatternNode *New; 1788 if (isLeaf()) { 1789 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1790 } else { 1791 std::vector<TreePatternNode*> CChildren; 1792 CChildren.reserve(Children.size()); 1793 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1794 CChildren.push_back(getChild(i)->clone()); 1795 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1796 } 1797 New->setName(getName()); 1798 New->Types = Types; 1799 New->setPredicateFns(getPredicateFns()); 1800 New->setTransformFn(getTransformFn()); 1801 return New; 1802 } 1803 1804 /// RemoveAllTypes - Recursively strip all the types of this tree. 1805 void TreePatternNode::RemoveAllTypes() { 1806 // Reset to unknown type. 1807 std::fill(Types.begin(), Types.end(), TypeSetByHwMode()); 1808 if (isLeaf()) return; 1809 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1810 getChild(i)->RemoveAllTypes(); 1811 } 1812 1813 1814 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1815 /// with actual values specified by ArgMap. 1816 void TreePatternNode:: 1817 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1818 if (isLeaf()) return; 1819 1820 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1821 TreePatternNode *Child = getChild(i); 1822 if (Child->isLeaf()) { 1823 Init *Val = Child->getLeafValue(); 1824 // Note that, when substituting into an output pattern, Val might be an 1825 // UnsetInit. 1826 if (isa<UnsetInit>(Val) || (isa<DefInit>(Val) && 1827 cast<DefInit>(Val)->getDef()->getName() == "node")) { 1828 // We found a use of a formal argument, replace it with its value. 1829 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1830 assert(NewChild && "Couldn't find formal argument!"); 1831 assert((Child->getPredicateFns().empty() || 1832 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1833 "Non-empty child predicate clobbered!"); 1834 setChild(i, NewChild); 1835 } 1836 } else { 1837 getChild(i)->SubstituteFormalArguments(ArgMap); 1838 } 1839 } 1840 } 1841 1842 1843 /// InlinePatternFragments - If this pattern refers to any pattern 1844 /// fragments, inline them into place, giving us a pattern without any 1845 /// PatFrag references. 1846 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1847 if (TP.hasError()) 1848 return nullptr; 1849 1850 if (isLeaf()) 1851 return this; // nothing to do. 1852 Record *Op = getOperator(); 1853 1854 if (!Op->isSubClassOf("PatFrag")) { 1855 // Just recursively inline children nodes. 1856 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1857 TreePatternNode *Child = getChild(i); 1858 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1859 1860 assert((Child->getPredicateFns().empty() || 1861 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1862 "Non-empty child predicate clobbered!"); 1863 1864 setChild(i, NewChild); 1865 } 1866 return this; 1867 } 1868 1869 // Otherwise, we found a reference to a fragment. First, look up its 1870 // TreePattern record. 1871 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1872 1873 // Verify that we are passing the right number of operands. 1874 if (Frag->getNumArgs() != Children.size()) { 1875 TP.error("'" + Op->getName() + "' fragment requires " + 1876 Twine(Frag->getNumArgs()) + " operands!"); 1877 return nullptr; 1878 } 1879 1880 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1881 1882 TreePredicateFn PredFn(Frag); 1883 if (!PredFn.isAlwaysTrue()) 1884 FragTree->addPredicateFn(PredFn); 1885 1886 // Resolve formal arguments to their actual value. 1887 if (Frag->getNumArgs()) { 1888 // Compute the map of formal to actual arguments. 1889 std::map<std::string, TreePatternNode*> ArgMap; 1890 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1891 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1892 1893 FragTree->SubstituteFormalArguments(ArgMap); 1894 } 1895 1896 FragTree->setName(getName()); 1897 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1898 FragTree->UpdateNodeType(i, getExtType(i), TP); 1899 1900 // Transfer in the old predicates. 1901 for (const TreePredicateFn &Pred : getPredicateFns()) 1902 FragTree->addPredicateFn(Pred); 1903 1904 // Get a new copy of this fragment to stitch into here. 1905 //delete this; // FIXME: implement refcounting! 1906 1907 // The fragment we inlined could have recursive inlining that is needed. See 1908 // if there are any pattern fragments in it and inline them as needed. 1909 return FragTree->InlinePatternFragments(TP); 1910 } 1911 1912 /// getImplicitType - Check to see if the specified record has an implicit 1913 /// type which should be applied to it. This will infer the type of register 1914 /// references from the register file information, for example. 1915 /// 1916 /// When Unnamed is set, return the type of a DAG operand with no name, such as 1917 /// the F8RC register class argument in: 1918 /// 1919 /// (COPY_TO_REGCLASS GPR:$src, F8RC) 1920 /// 1921 /// When Unnamed is false, return the type of a named DAG operand such as the 1922 /// GPR:$src operand above. 1923 /// 1924 static TypeSetByHwMode getImplicitType(Record *R, unsigned ResNo, 1925 bool NotRegisters, 1926 bool Unnamed, 1927 TreePattern &TP) { 1928 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1929 1930 // Check to see if this is a register operand. 1931 if (R->isSubClassOf("RegisterOperand")) { 1932 assert(ResNo == 0 && "Regoperand ref only has one result!"); 1933 if (NotRegisters) 1934 return TypeSetByHwMode(); // Unknown. 1935 Record *RegClass = R->getValueAsDef("RegClass"); 1936 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1937 return TypeSetByHwMode(T.getRegisterClass(RegClass).getValueTypes()); 1938 } 1939 1940 // Check to see if this is a register or a register class. 1941 if (R->isSubClassOf("RegisterClass")) { 1942 assert(ResNo == 0 && "Regclass ref only has one result!"); 1943 // An unnamed register class represents itself as an i32 immediate, for 1944 // example on a COPY_TO_REGCLASS instruction. 1945 if (Unnamed) 1946 return TypeSetByHwMode(MVT::i32); 1947 1948 // In a named operand, the register class provides the possible set of 1949 // types. 1950 if (NotRegisters) 1951 return TypeSetByHwMode(); // Unknown. 1952 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1953 return TypeSetByHwMode(T.getRegisterClass(R).getValueTypes()); 1954 } 1955 1956 if (R->isSubClassOf("PatFrag")) { 1957 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1958 // Pattern fragment types will be resolved when they are inlined. 1959 return TypeSetByHwMode(); // Unknown. 1960 } 1961 1962 if (R->isSubClassOf("Register")) { 1963 assert(ResNo == 0 && "Registers only produce one result!"); 1964 if (NotRegisters) 1965 return TypeSetByHwMode(); // Unknown. 1966 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1967 return TypeSetByHwMode(T.getRegisterVTs(R)); 1968 } 1969 1970 if (R->isSubClassOf("SubRegIndex")) { 1971 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1972 return TypeSetByHwMode(MVT::i32); 1973 } 1974 1975 if (R->isSubClassOf("ValueType")) { 1976 assert(ResNo == 0 && "This node only has one result!"); 1977 // An unnamed VTSDNode represents itself as an MVT::Other immediate. 1978 // 1979 // (sext_inreg GPR:$src, i16) 1980 // ~~~ 1981 if (Unnamed) 1982 return TypeSetByHwMode(MVT::Other); 1983 // With a name, the ValueType simply provides the type of the named 1984 // variable. 1985 // 1986 // (sext_inreg i32:$src, i16) 1987 // ~~~~~~~~ 1988 if (NotRegisters) 1989 return TypeSetByHwMode(); // Unknown. 1990 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 1991 return TypeSetByHwMode(getValueTypeByHwMode(R, CGH)); 1992 } 1993 1994 if (R->isSubClassOf("CondCode")) { 1995 assert(ResNo == 0 && "This node only has one result!"); 1996 // Using a CondCodeSDNode. 1997 return TypeSetByHwMode(MVT::Other); 1998 } 1999 2000 if (R->isSubClassOf("ComplexPattern")) { 2001 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 2002 if (NotRegisters) 2003 return TypeSetByHwMode(); // Unknown. 2004 return TypeSetByHwMode(CDP.getComplexPattern(R).getValueType()); 2005 } 2006 if (R->isSubClassOf("PointerLikeRegClass")) { 2007 assert(ResNo == 0 && "Regclass can only have one result!"); 2008 TypeSetByHwMode VTS(MVT::iPTR); 2009 TP.getInfer().expandOverloads(VTS); 2010 return VTS; 2011 } 2012 2013 if (R->getName() == "node" || R->getName() == "srcvalue" || 2014 R->getName() == "zero_reg") { 2015 // Placeholder. 2016 return TypeSetByHwMode(); // Unknown. 2017 } 2018 2019 if (R->isSubClassOf("Operand")) { 2020 const CodeGenHwModes &CGH = CDP.getTargetInfo().getHwModes(); 2021 Record *T = R->getValueAsDef("Type"); 2022 return TypeSetByHwMode(getValueTypeByHwMode(T, CGH)); 2023 } 2024 2025 TP.error("Unknown node flavor used in pattern: " + R->getName()); 2026 return TypeSetByHwMode(MVT::Other); 2027 } 2028 2029 2030 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 2031 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 2032 const CodeGenIntrinsic *TreePatternNode:: 2033 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 2034 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 2035 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 2036 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 2037 return nullptr; 2038 2039 unsigned IID = cast<IntInit>(getChild(0)->getLeafValue())->getValue(); 2040 return &CDP.getIntrinsicInfo(IID); 2041 } 2042 2043 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 2044 /// return the ComplexPattern information, otherwise return null. 2045 const ComplexPattern * 2046 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 2047 Record *Rec; 2048 if (isLeaf()) { 2049 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2050 if (!DI) 2051 return nullptr; 2052 Rec = DI->getDef(); 2053 } else 2054 Rec = getOperator(); 2055 2056 if (!Rec->isSubClassOf("ComplexPattern")) 2057 return nullptr; 2058 return &CGP.getComplexPattern(Rec); 2059 } 2060 2061 unsigned TreePatternNode::getNumMIResults(const CodeGenDAGPatterns &CGP) const { 2062 // A ComplexPattern specifically declares how many results it fills in. 2063 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2064 return CP->getNumOperands(); 2065 2066 // If MIOperandInfo is specified, that gives the count. 2067 if (isLeaf()) { 2068 DefInit *DI = dyn_cast<DefInit>(getLeafValue()); 2069 if (DI && DI->getDef()->isSubClassOf("Operand")) { 2070 DagInit *MIOps = DI->getDef()->getValueAsDag("MIOperandInfo"); 2071 if (MIOps->getNumArgs()) 2072 return MIOps->getNumArgs(); 2073 } 2074 } 2075 2076 // Otherwise there is just one result. 2077 return 1; 2078 } 2079 2080 /// NodeHasProperty - Return true if this node has the specified property. 2081 bool TreePatternNode::NodeHasProperty(SDNP Property, 2082 const CodeGenDAGPatterns &CGP) const { 2083 if (isLeaf()) { 2084 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 2085 return CP->hasProperty(Property); 2086 2087 return false; 2088 } 2089 2090 if (Property != SDNPHasChain) { 2091 // The chain proprety is already present on the different intrinsic node 2092 // types (intrinsic_w_chain, intrinsic_void), and is not explicitly listed 2093 // on the intrinsic. Anything else is specific to the individual intrinsic. 2094 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CGP)) 2095 return Int->hasProperty(Property); 2096 } 2097 2098 if (!Operator->isSubClassOf("SDPatternOperator")) 2099 return false; 2100 2101 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 2102 } 2103 2104 2105 2106 2107 /// TreeHasProperty - Return true if any node in this tree has the specified 2108 /// property. 2109 bool TreePatternNode::TreeHasProperty(SDNP Property, 2110 const CodeGenDAGPatterns &CGP) const { 2111 if (NodeHasProperty(Property, CGP)) 2112 return true; 2113 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2114 if (getChild(i)->TreeHasProperty(Property, CGP)) 2115 return true; 2116 return false; 2117 } 2118 2119 /// isCommutativeIntrinsic - Return true if the node corresponds to a 2120 /// commutative intrinsic. 2121 bool 2122 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 2123 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 2124 return Int->isCommutative; 2125 return false; 2126 } 2127 2128 static bool isOperandClass(const TreePatternNode *N, StringRef Class) { 2129 if (!N->isLeaf()) 2130 return N->getOperator()->isSubClassOf(Class); 2131 2132 DefInit *DI = dyn_cast<DefInit>(N->getLeafValue()); 2133 if (DI && DI->getDef()->isSubClassOf(Class)) 2134 return true; 2135 2136 return false; 2137 } 2138 2139 static void emitTooManyOperandsError(TreePattern &TP, 2140 StringRef InstName, 2141 unsigned Expected, 2142 unsigned Actual) { 2143 TP.error("Instruction '" + InstName + "' was provided " + Twine(Actual) + 2144 " operands but expected only " + Twine(Expected) + "!"); 2145 } 2146 2147 static void emitTooFewOperandsError(TreePattern &TP, 2148 StringRef InstName, 2149 unsigned Actual) { 2150 TP.error("Instruction '" + InstName + 2151 "' expects more than the provided " + Twine(Actual) + " operands!"); 2152 } 2153 2154 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 2155 /// this node and its children in the tree. This returns true if it makes a 2156 /// change, false otherwise. If a type contradiction is found, flag an error. 2157 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 2158 if (TP.hasError()) 2159 return false; 2160 2161 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 2162 if (isLeaf()) { 2163 if (DefInit *DI = dyn_cast<DefInit>(getLeafValue())) { 2164 // If it's a regclass or something else known, include the type. 2165 bool MadeChange = false; 2166 for (unsigned i = 0, e = Types.size(); i != e; ++i) 2167 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 2168 NotRegisters, 2169 !hasName(), TP), TP); 2170 return MadeChange; 2171 } 2172 2173 if (IntInit *II = dyn_cast<IntInit>(getLeafValue())) { 2174 assert(Types.size() == 1 && "Invalid IntInit"); 2175 2176 // Int inits are always integers. :) 2177 bool MadeChange = TP.getInfer().EnforceInteger(Types[0]); 2178 2179 if (!TP.getInfer().isConcrete(Types[0], false)) 2180 return MadeChange; 2181 2182 ValueTypeByHwMode VVT = TP.getInfer().getConcrete(Types[0], false); 2183 for (auto &P : VVT) { 2184 MVT::SimpleValueType VT = P.second.SimpleTy; 2185 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 2186 continue; 2187 unsigned Size = MVT(VT).getSizeInBits(); 2188 // Make sure that the value is representable for this type. 2189 if (Size >= 32) 2190 continue; 2191 // Check that the value doesn't use more bits than we have. It must 2192 // either be a sign- or zero-extended equivalent of the original. 2193 int64_t SignBitAndAbove = II->getValue() >> (Size - 1); 2194 if (SignBitAndAbove == -1 || SignBitAndAbove == 0 || 2195 SignBitAndAbove == 1) 2196 continue; 2197 2198 TP.error("Integer value '" + Twine(II->getValue()) + 2199 "' is out of range for type '" + getEnumName(VT) + "'!"); 2200 break; 2201 } 2202 return MadeChange; 2203 } 2204 2205 return false; 2206 } 2207 2208 // special handling for set, which isn't really an SDNode. 2209 if (getOperator()->getName() == "set") { 2210 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 2211 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 2212 unsigned NC = getNumChildren(); 2213 2214 TreePatternNode *SetVal = getChild(NC-1); 2215 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 2216 2217 for (unsigned i = 0; i < NC-1; ++i) { 2218 TreePatternNode *Child = getChild(i); 2219 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 2220 2221 // Types of operands must match. 2222 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 2223 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 2224 } 2225 return MadeChange; 2226 } 2227 2228 if (getOperator()->getName() == "implicit") { 2229 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 2230 2231 bool MadeChange = false; 2232 for (unsigned i = 0; i < getNumChildren(); ++i) 2233 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2234 return MadeChange; 2235 } 2236 2237 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 2238 bool MadeChange = false; 2239 2240 // Apply the result type to the node. 2241 unsigned NumRetVTs = Int->IS.RetVTs.size(); 2242 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 2243 2244 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 2245 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 2246 2247 if (getNumChildren() != NumParamVTs + 1) { 2248 TP.error("Intrinsic '" + Int->Name + "' expects " + Twine(NumParamVTs) + 2249 " operands, not " + Twine(getNumChildren() - 1) + " operands!"); 2250 return false; 2251 } 2252 2253 // Apply type info to the intrinsic ID. 2254 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 2255 2256 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 2257 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 2258 2259 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 2260 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 2261 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 2262 } 2263 return MadeChange; 2264 } 2265 2266 if (getOperator()->isSubClassOf("SDNode")) { 2267 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 2268 2269 // Check that the number of operands is sane. Negative operands -> varargs. 2270 if (NI.getNumOperands() >= 0 && 2271 getNumChildren() != (unsigned)NI.getNumOperands()) { 2272 TP.error(getOperator()->getName() + " node requires exactly " + 2273 Twine(NI.getNumOperands()) + " operands!"); 2274 return false; 2275 } 2276 2277 bool MadeChange = false; 2278 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2279 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2280 MadeChange |= NI.ApplyTypeConstraints(this, TP); 2281 return MadeChange; 2282 } 2283 2284 if (getOperator()->isSubClassOf("Instruction")) { 2285 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 2286 CodeGenInstruction &InstInfo = 2287 CDP.getTargetInfo().getInstruction(getOperator()); 2288 2289 bool MadeChange = false; 2290 2291 // Apply the result types to the node, these come from the things in the 2292 // (outs) list of the instruction. 2293 unsigned NumResultsToAdd = std::min(InstInfo.Operands.NumDefs, 2294 Inst.getNumResults()); 2295 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) 2296 MadeChange |= UpdateNodeTypeFromInst(ResNo, Inst.getResult(ResNo), TP); 2297 2298 // If the instruction has implicit defs, we apply the first one as a result. 2299 // FIXME: This sucks, it should apply all implicit defs. 2300 if (!InstInfo.ImplicitDefs.empty()) { 2301 unsigned ResNo = NumResultsToAdd; 2302 2303 // FIXME: Generalize to multiple possible types and multiple possible 2304 // ImplicitDefs. 2305 MVT::SimpleValueType VT = 2306 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 2307 2308 if (VT != MVT::Other) 2309 MadeChange |= UpdateNodeType(ResNo, VT, TP); 2310 } 2311 2312 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 2313 // be the same. 2314 if (getOperator()->getName() == "INSERT_SUBREG") { 2315 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 2316 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 2317 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 2318 } else if (getOperator()->getName() == "REG_SEQUENCE") { 2319 // We need to do extra, custom typechecking for REG_SEQUENCE since it is 2320 // variadic. 2321 2322 unsigned NChild = getNumChildren(); 2323 if (NChild < 3) { 2324 TP.error("REG_SEQUENCE requires at least 3 operands!"); 2325 return false; 2326 } 2327 2328 if (NChild % 2 == 0) { 2329 TP.error("REG_SEQUENCE requires an odd number of operands!"); 2330 return false; 2331 } 2332 2333 if (!isOperandClass(getChild(0), "RegisterClass")) { 2334 TP.error("REG_SEQUENCE requires a RegisterClass for first operand!"); 2335 return false; 2336 } 2337 2338 for (unsigned I = 1; I < NChild; I += 2) { 2339 TreePatternNode *SubIdxChild = getChild(I + 1); 2340 if (!isOperandClass(SubIdxChild, "SubRegIndex")) { 2341 TP.error("REG_SEQUENCE requires a SubRegIndex for operand " + 2342 Twine(I + 1) + "!"); 2343 return false; 2344 } 2345 } 2346 } 2347 2348 unsigned ChildNo = 0; 2349 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 2350 Record *OperandNode = Inst.getOperand(i); 2351 2352 // If the instruction expects a predicate or optional def operand, we 2353 // codegen this by setting the operand to it's default value if it has a 2354 // non-empty DefaultOps field. 2355 if (OperandNode->isSubClassOf("OperandWithDefaultOps") && 2356 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 2357 continue; 2358 2359 // Verify that we didn't run out of provided operands. 2360 if (ChildNo >= getNumChildren()) { 2361 emitTooFewOperandsError(TP, getOperator()->getName(), getNumChildren()); 2362 return false; 2363 } 2364 2365 TreePatternNode *Child = getChild(ChildNo++); 2366 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 2367 2368 // If the operand has sub-operands, they may be provided by distinct 2369 // child patterns, so attempt to match each sub-operand separately. 2370 if (OperandNode->isSubClassOf("Operand")) { 2371 DagInit *MIOpInfo = OperandNode->getValueAsDag("MIOperandInfo"); 2372 if (unsigned NumArgs = MIOpInfo->getNumArgs()) { 2373 // But don't do that if the whole operand is being provided by 2374 // a single ComplexPattern-related Operand. 2375 2376 if (Child->getNumMIResults(CDP) < NumArgs) { 2377 // Match first sub-operand against the child we already have. 2378 Record *SubRec = cast<DefInit>(MIOpInfo->getArg(0))->getDef(); 2379 MadeChange |= 2380 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2381 2382 // And the remaining sub-operands against subsequent children. 2383 for (unsigned Arg = 1; Arg < NumArgs; ++Arg) { 2384 if (ChildNo >= getNumChildren()) { 2385 emitTooFewOperandsError(TP, getOperator()->getName(), 2386 getNumChildren()); 2387 return false; 2388 } 2389 Child = getChild(ChildNo++); 2390 2391 SubRec = cast<DefInit>(MIOpInfo->getArg(Arg))->getDef(); 2392 MadeChange |= 2393 Child->UpdateNodeTypeFromInst(ChildResNo, SubRec, TP); 2394 } 2395 continue; 2396 } 2397 } 2398 } 2399 2400 // If we didn't match by pieces above, attempt to match the whole 2401 // operand now. 2402 MadeChange |= Child->UpdateNodeTypeFromInst(ChildResNo, OperandNode, TP); 2403 } 2404 2405 if (!InstInfo.Operands.isVariadic && ChildNo != getNumChildren()) { 2406 emitTooManyOperandsError(TP, getOperator()->getName(), 2407 ChildNo, getNumChildren()); 2408 return false; 2409 } 2410 2411 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2412 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2413 return MadeChange; 2414 } 2415 2416 if (getOperator()->isSubClassOf("ComplexPattern")) { 2417 bool MadeChange = false; 2418 2419 for (unsigned i = 0; i < getNumChildren(); ++i) 2420 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 2421 2422 return MadeChange; 2423 } 2424 2425 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 2426 2427 // Node transforms always take one operand. 2428 if (getNumChildren() != 1) { 2429 TP.error("Node transform '" + getOperator()->getName() + 2430 "' requires one operand!"); 2431 return false; 2432 } 2433 2434 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 2435 return MadeChange; 2436 } 2437 2438 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 2439 /// RHS of a commutative operation, not the on LHS. 2440 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 2441 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 2442 return true; 2443 if (N->isLeaf() && isa<IntInit>(N->getLeafValue())) 2444 return true; 2445 return false; 2446 } 2447 2448 2449 /// canPatternMatch - If it is impossible for this pattern to match on this 2450 /// target, fill in Reason and return false. Otherwise, return true. This is 2451 /// used as a sanity check for .td files (to prevent people from writing stuff 2452 /// that can never possibly work), and to prevent the pattern permuter from 2453 /// generating stuff that is useless. 2454 bool TreePatternNode::canPatternMatch(std::string &Reason, 2455 const CodeGenDAGPatterns &CDP) { 2456 if (isLeaf()) return true; 2457 2458 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 2459 if (!getChild(i)->canPatternMatch(Reason, CDP)) 2460 return false; 2461 2462 // If this is an intrinsic, handle cases that would make it not match. For 2463 // example, if an operand is required to be an immediate. 2464 if (getOperator()->isSubClassOf("Intrinsic")) { 2465 // TODO: 2466 return true; 2467 } 2468 2469 if (getOperator()->isSubClassOf("ComplexPattern")) 2470 return true; 2471 2472 // If this node is a commutative operator, check that the LHS isn't an 2473 // immediate. 2474 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 2475 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 2476 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 2477 // Scan all of the operands of the node and make sure that only the last one 2478 // is a constant node, unless the RHS also is. 2479 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 2480 unsigned Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 2481 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 2482 if (OnlyOnRHSOfCommutative(getChild(i))) { 2483 Reason="Immediate value must be on the RHS of commutative operators!"; 2484 return false; 2485 } 2486 } 2487 } 2488 2489 return true; 2490 } 2491 2492 //===----------------------------------------------------------------------===// 2493 // TreePattern implementation 2494 // 2495 2496 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 2497 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2498 isInputPattern(isInput), HasError(false), 2499 Infer(*this) { 2500 for (Init *I : RawPat->getValues()) 2501 Trees.push_back(ParseTreePattern(I, "")); 2502 } 2503 2504 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 2505 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2506 isInputPattern(isInput), HasError(false), 2507 Infer(*this) { 2508 Trees.push_back(ParseTreePattern(Pat, "")); 2509 } 2510 2511 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 2512 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp), 2513 isInputPattern(isInput), HasError(false), 2514 Infer(*this) { 2515 Trees.push_back(Pat); 2516 } 2517 2518 void TreePattern::error(const Twine &Msg) { 2519 if (HasError) 2520 return; 2521 dump(); 2522 PrintError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 2523 HasError = true; 2524 } 2525 2526 void TreePattern::ComputeNamedNodes() { 2527 for (TreePatternNode *Tree : Trees) 2528 ComputeNamedNodes(Tree); 2529 } 2530 2531 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 2532 if (!N->getName().empty()) 2533 NamedNodes[N->getName()].push_back(N); 2534 2535 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2536 ComputeNamedNodes(N->getChild(i)); 2537 } 2538 2539 2540 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 2541 if (DefInit *DI = dyn_cast<DefInit>(TheInit)) { 2542 Record *R = DI->getDef(); 2543 2544 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 2545 // TreePatternNode of its own. For example: 2546 /// (foo GPR, imm) -> (foo GPR, (imm)) 2547 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 2548 return ParseTreePattern( 2549 DagInit::get(DI, nullptr, 2550 std::vector<std::pair<Init*, StringInit*> >()), 2551 OpName); 2552 2553 // Input argument? 2554 TreePatternNode *Res = new TreePatternNode(DI, 1); 2555 if (R->getName() == "node" && !OpName.empty()) { 2556 if (OpName.empty()) 2557 error("'node' argument requires a name to match with operand list"); 2558 Args.push_back(OpName); 2559 } 2560 2561 Res->setName(OpName); 2562 return Res; 2563 } 2564 2565 // ?:$name or just $name. 2566 if (isa<UnsetInit>(TheInit)) { 2567 if (OpName.empty()) 2568 error("'?' argument requires a name to match with operand list"); 2569 TreePatternNode *Res = new TreePatternNode(TheInit, 1); 2570 Args.push_back(OpName); 2571 Res->setName(OpName); 2572 return Res; 2573 } 2574 2575 if (IntInit *II = dyn_cast<IntInit>(TheInit)) { 2576 if (!OpName.empty()) 2577 error("Constant int argument should not have a name!"); 2578 return new TreePatternNode(II, 1); 2579 } 2580 2581 if (BitsInit *BI = dyn_cast<BitsInit>(TheInit)) { 2582 // Turn this into an IntInit. 2583 Init *II = BI->convertInitializerTo(IntRecTy::get()); 2584 if (!II || !isa<IntInit>(II)) 2585 error("Bits value must be constants!"); 2586 return ParseTreePattern(II, OpName); 2587 } 2588 2589 DagInit *Dag = dyn_cast<DagInit>(TheInit); 2590 if (!Dag) { 2591 TheInit->print(errs()); 2592 error("Pattern has unexpected init kind!"); 2593 } 2594 DefInit *OpDef = dyn_cast<DefInit>(Dag->getOperator()); 2595 if (!OpDef) error("Pattern has unexpected operator type!"); 2596 Record *Operator = OpDef->getDef(); 2597 2598 if (Operator->isSubClassOf("ValueType")) { 2599 // If the operator is a ValueType, then this must be "type cast" of a leaf 2600 // node. 2601 if (Dag->getNumArgs() != 1) 2602 error("Type cast only takes one operand!"); 2603 2604 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), 2605 Dag->getArgNameStr(0)); 2606 2607 // Apply the type cast. 2608 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 2609 const CodeGenHwModes &CGH = getDAGPatterns().getTargetInfo().getHwModes(); 2610 New->UpdateNodeType(0, getValueTypeByHwMode(Operator, CGH), *this); 2611 2612 if (!OpName.empty()) 2613 error("ValueType cast should not have a name!"); 2614 return New; 2615 } 2616 2617 // Verify that this is something that makes sense for an operator. 2618 if (!Operator->isSubClassOf("PatFrag") && 2619 !Operator->isSubClassOf("SDNode") && 2620 !Operator->isSubClassOf("Instruction") && 2621 !Operator->isSubClassOf("SDNodeXForm") && 2622 !Operator->isSubClassOf("Intrinsic") && 2623 !Operator->isSubClassOf("ComplexPattern") && 2624 Operator->getName() != "set" && 2625 Operator->getName() != "implicit") 2626 error("Unrecognized node '" + Operator->getName() + "'!"); 2627 2628 // Check to see if this is something that is illegal in an input pattern. 2629 if (isInputPattern) { 2630 if (Operator->isSubClassOf("Instruction") || 2631 Operator->isSubClassOf("SDNodeXForm")) 2632 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 2633 } else { 2634 if (Operator->isSubClassOf("Intrinsic")) 2635 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2636 2637 if (Operator->isSubClassOf("SDNode") && 2638 Operator->getName() != "imm" && 2639 Operator->getName() != "fpimm" && 2640 Operator->getName() != "tglobaltlsaddr" && 2641 Operator->getName() != "tconstpool" && 2642 Operator->getName() != "tjumptable" && 2643 Operator->getName() != "tframeindex" && 2644 Operator->getName() != "texternalsym" && 2645 Operator->getName() != "tblockaddress" && 2646 Operator->getName() != "tglobaladdr" && 2647 Operator->getName() != "bb" && 2648 Operator->getName() != "vt" && 2649 Operator->getName() != "mcsym") 2650 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 2651 } 2652 2653 std::vector<TreePatternNode*> Children; 2654 2655 // Parse all the operands. 2656 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 2657 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgNameStr(i))); 2658 2659 // Get the actual number of results before Operator is converted to an intrinsic 2660 // node (which is hard-coded to have either zero or one result). 2661 unsigned NumResults = GetNumNodeResults(Operator, CDP); 2662 2663 // If the operator is an intrinsic, then this is just syntactic sugar for for 2664 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 2665 // convert the intrinsic name to a number. 2666 if (Operator->isSubClassOf("Intrinsic")) { 2667 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 2668 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 2669 2670 // If this intrinsic returns void, it must have side-effects and thus a 2671 // chain. 2672 if (Int.IS.RetVTs.empty()) 2673 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 2674 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 2675 // Has side-effects, requires chain. 2676 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 2677 else // Otherwise, no chain. 2678 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 2679 2680 TreePatternNode *IIDNode = new TreePatternNode(IntInit::get(IID), 1); 2681 Children.insert(Children.begin(), IIDNode); 2682 } 2683 2684 if (Operator->isSubClassOf("ComplexPattern")) { 2685 for (unsigned i = 0; i < Children.size(); ++i) { 2686 TreePatternNode *Child = Children[i]; 2687 2688 if (Child->getName().empty()) 2689 error("All arguments to a ComplexPattern must be named"); 2690 2691 // Check that the ComplexPattern uses are consistent: "(MY_PAT $a, $b)" 2692 // and "(MY_PAT $b, $a)" should not be allowed in the same pattern; 2693 // neither should "(MY_PAT_1 $a, $b)" and "(MY_PAT_2 $a, $b)". 2694 auto OperandId = std::make_pair(Operator, i); 2695 auto PrevOp = ComplexPatternOperands.find(Child->getName()); 2696 if (PrevOp != ComplexPatternOperands.end()) { 2697 if (PrevOp->getValue() != OperandId) 2698 error("All ComplexPattern operands must appear consistently: " 2699 "in the same order in just one ComplexPattern instance."); 2700 } else 2701 ComplexPatternOperands[Child->getName()] = OperandId; 2702 } 2703 } 2704 2705 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 2706 Result->setName(OpName); 2707 2708 if (Dag->getName()) { 2709 assert(Result->getName().empty()); 2710 Result->setName(Dag->getNameStr()); 2711 } 2712 return Result; 2713 } 2714 2715 /// SimplifyTree - See if we can simplify this tree to eliminate something that 2716 /// will never match in favor of something obvious that will. This is here 2717 /// strictly as a convenience to target authors because it allows them to write 2718 /// more type generic things and have useless type casts fold away. 2719 /// 2720 /// This returns true if any change is made. 2721 static bool SimplifyTree(TreePatternNode *&N) { 2722 if (N->isLeaf()) 2723 return false; 2724 2725 // If we have a bitconvert with a resolved type and if the source and 2726 // destination types are the same, then the bitconvert is useless, remove it. 2727 if (N->getOperator()->getName() == "bitconvert" && 2728 N->getExtType(0).isValueTypeByHwMode(false) && 2729 N->getExtType(0) == N->getChild(0)->getExtType(0) && 2730 N->getName().empty()) { 2731 N = N->getChild(0); 2732 SimplifyTree(N); 2733 return true; 2734 } 2735 2736 // Walk all children. 2737 bool MadeChange = false; 2738 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 2739 TreePatternNode *Child = N->getChild(i); 2740 MadeChange |= SimplifyTree(Child); 2741 N->setChild(i, Child); 2742 } 2743 return MadeChange; 2744 } 2745 2746 2747 2748 /// InferAllTypes - Infer/propagate as many types throughout the expression 2749 /// patterns as possible. Return true if all types are inferred, false 2750 /// otherwise. Flags an error if a type contradiction is found. 2751 bool TreePattern:: 2752 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 2753 if (NamedNodes.empty()) 2754 ComputeNamedNodes(); 2755 2756 bool MadeChange = true; 2757 while (MadeChange) { 2758 MadeChange = false; 2759 for (TreePatternNode *&Tree : Trees) { 2760 MadeChange |= Tree->ApplyTypeConstraints(*this, false); 2761 MadeChange |= SimplifyTree(Tree); 2762 } 2763 2764 // If there are constraints on our named nodes, apply them. 2765 for (auto &Entry : NamedNodes) { 2766 SmallVectorImpl<TreePatternNode*> &Nodes = Entry.second; 2767 2768 // If we have input named node types, propagate their types to the named 2769 // values here. 2770 if (InNamedTypes) { 2771 if (!InNamedTypes->count(Entry.getKey())) { 2772 error("Node '" + std::string(Entry.getKey()) + 2773 "' in output pattern but not input pattern"); 2774 return true; 2775 } 2776 2777 const SmallVectorImpl<TreePatternNode*> &InNodes = 2778 InNamedTypes->find(Entry.getKey())->second; 2779 2780 // The input types should be fully resolved by now. 2781 for (TreePatternNode *Node : Nodes) { 2782 // If this node is a register class, and it is the root of the pattern 2783 // then we're mapping something onto an input register. We allow 2784 // changing the type of the input register in this case. This allows 2785 // us to match things like: 2786 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 2787 if (Node == Trees[0] && Node->isLeaf()) { 2788 DefInit *DI = dyn_cast<DefInit>(Node->getLeafValue()); 2789 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 2790 DI->getDef()->isSubClassOf("RegisterOperand"))) 2791 continue; 2792 } 2793 2794 assert(Node->getNumTypes() == 1 && 2795 InNodes[0]->getNumTypes() == 1 && 2796 "FIXME: cannot name multiple result nodes yet"); 2797 MadeChange |= Node->UpdateNodeType(0, InNodes[0]->getExtType(0), 2798 *this); 2799 } 2800 } 2801 2802 // If there are multiple nodes with the same name, they must all have the 2803 // same type. 2804 if (Entry.second.size() > 1) { 2805 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 2806 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 2807 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 2808 "FIXME: cannot name multiple result nodes yet"); 2809 2810 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 2811 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 2812 } 2813 } 2814 } 2815 } 2816 2817 bool HasUnresolvedTypes = false; 2818 for (const TreePatternNode *Tree : Trees) 2819 HasUnresolvedTypes |= Tree->ContainsUnresolvedType(*this); 2820 return !HasUnresolvedTypes; 2821 } 2822 2823 void TreePattern::print(raw_ostream &OS) const { 2824 OS << getRecord()->getName(); 2825 if (!Args.empty()) { 2826 OS << "(" << Args[0]; 2827 for (unsigned i = 1, e = Args.size(); i != e; ++i) 2828 OS << ", " << Args[i]; 2829 OS << ")"; 2830 } 2831 OS << ": "; 2832 2833 if (Trees.size() > 1) 2834 OS << "[\n"; 2835 for (const TreePatternNode *Tree : Trees) { 2836 OS << "\t"; 2837 Tree->print(OS); 2838 OS << "\n"; 2839 } 2840 2841 if (Trees.size() > 1) 2842 OS << "]\n"; 2843 } 2844 2845 void TreePattern::dump() const { print(errs()); } 2846 2847 //===----------------------------------------------------------------------===// 2848 // CodeGenDAGPatterns implementation 2849 // 2850 2851 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R, 2852 PatternRewriterFn PatternRewriter) 2853 : Records(R), Target(R), LegalVTS(Target.getLegalValueTypes()), 2854 PatternRewriter(PatternRewriter) { 2855 2856 Intrinsics = CodeGenIntrinsicTable(Records, false); 2857 TgtIntrinsics = CodeGenIntrinsicTable(Records, true); 2858 ParseNodeInfo(); 2859 ParseNodeTransforms(); 2860 ParseComplexPatterns(); 2861 ParsePatternFragments(); 2862 ParseDefaultOperands(); 2863 ParseInstructions(); 2864 ParsePatternFragments(/*OutFrags*/true); 2865 ParsePatterns(); 2866 2867 // Break patterns with parameterized types into a series of patterns, 2868 // where each one has a fixed type and is predicated on the conditions 2869 // of the associated HW mode. 2870 ExpandHwModeBasedTypes(); 2871 2872 // Generate variants. For example, commutative patterns can match 2873 // multiple ways. Add them to PatternsToMatch as well. 2874 GenerateVariants(); 2875 2876 // Infer instruction flags. For example, we can detect loads, 2877 // stores, and side effects in many cases by examining an 2878 // instruction's pattern. 2879 InferInstructionFlags(); 2880 2881 // Verify that instruction flags match the patterns. 2882 VerifyInstructionFlags(); 2883 } 2884 2885 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2886 Record *N = Records.getDef(Name); 2887 if (!N || !N->isSubClassOf("SDNode")) 2888 PrintFatalError("Error getting SDNode '" + Name + "'!"); 2889 2890 return N; 2891 } 2892 2893 // Parse all of the SDNode definitions for the target, populating SDNodes. 2894 void CodeGenDAGPatterns::ParseNodeInfo() { 2895 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2896 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 2897 2898 while (!Nodes.empty()) { 2899 Record *R = Nodes.back(); 2900 SDNodes.insert(std::make_pair(R, SDNodeInfo(R, CGH))); 2901 Nodes.pop_back(); 2902 } 2903 2904 // Get the builtin intrinsic nodes. 2905 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2906 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2907 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2908 } 2909 2910 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2911 /// map, and emit them to the file as functions. 2912 void CodeGenDAGPatterns::ParseNodeTransforms() { 2913 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2914 while (!Xforms.empty()) { 2915 Record *XFormNode = Xforms.back(); 2916 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2917 StringRef Code = XFormNode->getValueAsString("XFormFunction"); 2918 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2919 2920 Xforms.pop_back(); 2921 } 2922 } 2923 2924 void CodeGenDAGPatterns::ParseComplexPatterns() { 2925 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2926 while (!AMs.empty()) { 2927 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2928 AMs.pop_back(); 2929 } 2930 } 2931 2932 2933 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2934 /// file, building up the PatternFragments map. After we've collected them all, 2935 /// inline fragments together as necessary, so that there are no references left 2936 /// inside a pattern fragment to a pattern fragment. 2937 /// 2938 void CodeGenDAGPatterns::ParsePatternFragments(bool OutFrags) { 2939 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2940 2941 // First step, parse all of the fragments. 2942 for (Record *Frag : Fragments) { 2943 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 2944 continue; 2945 2946 DagInit *Tree = Frag->getValueAsDag("Fragment"); 2947 TreePattern *P = 2948 (PatternFragments[Frag] = llvm::make_unique<TreePattern>( 2949 Frag, Tree, !Frag->isSubClassOf("OutPatFrag"), 2950 *this)).get(); 2951 2952 // Validate the argument list, converting it to set, to discard duplicates. 2953 std::vector<std::string> &Args = P->getArgList(); 2954 // Copy the args so we can take StringRefs to them. 2955 auto ArgsCopy = Args; 2956 SmallDenseSet<StringRef, 4> OperandsSet; 2957 OperandsSet.insert(ArgsCopy.begin(), ArgsCopy.end()); 2958 2959 if (OperandsSet.count("")) 2960 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2961 2962 // Parse the operands list. 2963 DagInit *OpsList = Frag->getValueAsDag("Operands"); 2964 DefInit *OpsOp = dyn_cast<DefInit>(OpsList->getOperator()); 2965 // Special cases: ops == outs == ins. Different names are used to 2966 // improve readability. 2967 if (!OpsOp || 2968 (OpsOp->getDef()->getName() != "ops" && 2969 OpsOp->getDef()->getName() != "outs" && 2970 OpsOp->getDef()->getName() != "ins")) 2971 P->error("Operands list should start with '(ops ... '!"); 2972 2973 // Copy over the arguments. 2974 Args.clear(); 2975 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2976 if (!isa<DefInit>(OpsList->getArg(j)) || 2977 cast<DefInit>(OpsList->getArg(j))->getDef()->getName() != "node") 2978 P->error("Operands list should all be 'node' values."); 2979 if (!OpsList->getArgName(j)) 2980 P->error("Operands list should have names for each operand!"); 2981 StringRef ArgNameStr = OpsList->getArgNameStr(j); 2982 if (!OperandsSet.count(ArgNameStr)) 2983 P->error("'" + ArgNameStr + 2984 "' does not occur in pattern or was multiply specified!"); 2985 OperandsSet.erase(ArgNameStr); 2986 Args.push_back(ArgNameStr); 2987 } 2988 2989 if (!OperandsSet.empty()) 2990 P->error("Operands list does not contain an entry for operand '" + 2991 *OperandsSet.begin() + "'!"); 2992 2993 // If there is a code init for this fragment, keep track of the fact that 2994 // this fragment uses it. 2995 TreePredicateFn PredFn(P); 2996 if (!PredFn.isAlwaysTrue()) 2997 P->getOnlyTree()->addPredicateFn(PredFn); 2998 2999 // If there is a node transformation corresponding to this, keep track of 3000 // it. 3001 Record *Transform = Frag->getValueAsDef("OperandTransform"); 3002 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 3003 P->getOnlyTree()->setTransformFn(Transform); 3004 } 3005 3006 // Now that we've parsed all of the tree fragments, do a closure on them so 3007 // that there are not references to PatFrags left inside of them. 3008 for (Record *Frag : Fragments) { 3009 if (OutFrags != Frag->isSubClassOf("OutPatFrag")) 3010 continue; 3011 3012 TreePattern &ThePat = *PatternFragments[Frag]; 3013 ThePat.InlinePatternFragments(); 3014 3015 // Infer as many types as possible. Don't worry about it if we don't infer 3016 // all of them, some may depend on the inputs of the pattern. 3017 ThePat.InferAllTypes(); 3018 ThePat.resetError(); 3019 3020 // If debugging, print out the pattern fragment result. 3021 DEBUG(ThePat.dump()); 3022 } 3023 } 3024 3025 void CodeGenDAGPatterns::ParseDefaultOperands() { 3026 std::vector<Record*> DefaultOps; 3027 DefaultOps = Records.getAllDerivedDefinitions("OperandWithDefaultOps"); 3028 3029 // Find some SDNode. 3030 assert(!SDNodes.empty() && "No SDNodes parsed?"); 3031 Init *SomeSDNode = DefInit::get(SDNodes.begin()->first); 3032 3033 for (unsigned i = 0, e = DefaultOps.size(); i != e; ++i) { 3034 DagInit *DefaultInfo = DefaultOps[i]->getValueAsDag("DefaultOps"); 3035 3036 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 3037 // SomeSDnode so that we can parse this. 3038 std::vector<std::pair<Init*, StringInit*> > Ops; 3039 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 3040 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 3041 DefaultInfo->getArgName(op))); 3042 DagInit *DI = DagInit::get(SomeSDNode, nullptr, Ops); 3043 3044 // Create a TreePattern to parse this. 3045 TreePattern P(DefaultOps[i], DI, false, *this); 3046 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 3047 3048 // Copy the operands over into a DAGDefaultOperand. 3049 DAGDefaultOperand DefaultOpInfo; 3050 3051 TreePatternNode *T = P.getTree(0); 3052 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 3053 TreePatternNode *TPN = T->getChild(op); 3054 while (TPN->ApplyTypeConstraints(P, false)) 3055 /* Resolve all types */; 3056 3057 if (TPN->ContainsUnresolvedType(P)) { 3058 PrintFatalError("Value #" + Twine(i) + " of OperandWithDefaultOps '" + 3059 DefaultOps[i]->getName() + 3060 "' doesn't have a concrete type!"); 3061 } 3062 DefaultOpInfo.DefaultOps.push_back(TPN); 3063 } 3064 3065 // Insert it into the DefaultOperands map so we can find it later. 3066 DefaultOperands[DefaultOps[i]] = DefaultOpInfo; 3067 } 3068 } 3069 3070 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 3071 /// instruction input. Return true if this is a real use. 3072 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 3073 std::map<std::string, TreePatternNode*> &InstInputs) { 3074 // No name -> not interesting. 3075 if (Pat->getName().empty()) { 3076 if (Pat->isLeaf()) { 3077 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3078 if (DI && (DI->getDef()->isSubClassOf("RegisterClass") || 3079 DI->getDef()->isSubClassOf("RegisterOperand"))) 3080 I->error("Input " + DI->getDef()->getName() + " must be named!"); 3081 } 3082 return false; 3083 } 3084 3085 Record *Rec; 3086 if (Pat->isLeaf()) { 3087 DefInit *DI = dyn_cast<DefInit>(Pat->getLeafValue()); 3088 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 3089 Rec = DI->getDef(); 3090 } else { 3091 Rec = Pat->getOperator(); 3092 } 3093 3094 // SRCVALUE nodes are ignored. 3095 if (Rec->getName() == "srcvalue") 3096 return false; 3097 3098 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 3099 if (!Slot) { 3100 Slot = Pat; 3101 return true; 3102 } 3103 Record *SlotRec; 3104 if (Slot->isLeaf()) { 3105 SlotRec = cast<DefInit>(Slot->getLeafValue())->getDef(); 3106 } else { 3107 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 3108 SlotRec = Slot->getOperator(); 3109 } 3110 3111 // Ensure that the inputs agree if we've already seen this input. 3112 if (Rec != SlotRec) 3113 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3114 if (Slot->getExtTypes() != Pat->getExtTypes()) 3115 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 3116 return true; 3117 } 3118 3119 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 3120 /// part of "I", the instruction), computing the set of inputs and outputs of 3121 /// the pattern. Report errors if we see anything naughty. 3122 void CodeGenDAGPatterns:: 3123 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 3124 std::map<std::string, TreePatternNode*> &InstInputs, 3125 std::map<std::string, TreePatternNode*>&InstResults, 3126 std::vector<Record*> &InstImpResults) { 3127 if (Pat->isLeaf()) { 3128 bool isUse = HandleUse(I, Pat, InstInputs); 3129 if (!isUse && Pat->getTransformFn()) 3130 I->error("Cannot specify a transform function for a non-input value!"); 3131 return; 3132 } 3133 3134 if (Pat->getOperator()->getName() == "implicit") { 3135 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3136 TreePatternNode *Dest = Pat->getChild(i); 3137 if (!Dest->isLeaf()) 3138 I->error("implicitly defined value should be a register!"); 3139 3140 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3141 if (!Val || !Val->getDef()->isSubClassOf("Register")) 3142 I->error("implicitly defined value should be a register!"); 3143 InstImpResults.push_back(Val->getDef()); 3144 } 3145 return; 3146 } 3147 3148 if (Pat->getOperator()->getName() != "set") { 3149 // If this is not a set, verify that the children nodes are not void typed, 3150 // and recurse. 3151 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 3152 if (Pat->getChild(i)->getNumTypes() == 0) 3153 I->error("Cannot have void nodes inside of patterns!"); 3154 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 3155 InstImpResults); 3156 } 3157 3158 // If this is a non-leaf node with no children, treat it basically as if 3159 // it were a leaf. This handles nodes like (imm). 3160 bool isUse = HandleUse(I, Pat, InstInputs); 3161 3162 if (!isUse && Pat->getTransformFn()) 3163 I->error("Cannot specify a transform function for a non-input value!"); 3164 return; 3165 } 3166 3167 // Otherwise, this is a set, validate and collect instruction results. 3168 if (Pat->getNumChildren() == 0) 3169 I->error("set requires operands!"); 3170 3171 if (Pat->getTransformFn()) 3172 I->error("Cannot specify a transform function on a set node!"); 3173 3174 // Check the set destinations. 3175 unsigned NumDests = Pat->getNumChildren()-1; 3176 for (unsigned i = 0; i != NumDests; ++i) { 3177 TreePatternNode *Dest = Pat->getChild(i); 3178 if (!Dest->isLeaf()) 3179 I->error("set destination should be a register!"); 3180 3181 DefInit *Val = dyn_cast<DefInit>(Dest->getLeafValue()); 3182 if (!Val) { 3183 I->error("set destination should be a register!"); 3184 continue; 3185 } 3186 3187 if (Val->getDef()->isSubClassOf("RegisterClass") || 3188 Val->getDef()->isSubClassOf("ValueType") || 3189 Val->getDef()->isSubClassOf("RegisterOperand") || 3190 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 3191 if (Dest->getName().empty()) 3192 I->error("set destination must have a name!"); 3193 if (InstResults.count(Dest->getName())) 3194 I->error("cannot set '" + Dest->getName() +"' multiple times"); 3195 InstResults[Dest->getName()] = Dest; 3196 } else if (Val->getDef()->isSubClassOf("Register")) { 3197 InstImpResults.push_back(Val->getDef()); 3198 } else { 3199 I->error("set destination should be a register!"); 3200 } 3201 } 3202 3203 // Verify and collect info from the computation. 3204 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 3205 InstInputs, InstResults, InstImpResults); 3206 } 3207 3208 //===----------------------------------------------------------------------===// 3209 // Instruction Analysis 3210 //===----------------------------------------------------------------------===// 3211 3212 class InstAnalyzer { 3213 const CodeGenDAGPatterns &CDP; 3214 public: 3215 bool hasSideEffects; 3216 bool mayStore; 3217 bool mayLoad; 3218 bool isBitcast; 3219 bool isVariadic; 3220 3221 InstAnalyzer(const CodeGenDAGPatterns &cdp) 3222 : CDP(cdp), hasSideEffects(false), mayStore(false), mayLoad(false), 3223 isBitcast(false), isVariadic(false) {} 3224 3225 void Analyze(const TreePattern *Pat) { 3226 // Assume only the first tree is the pattern. The others are clobber nodes. 3227 AnalyzeNode(Pat->getTree(0)); 3228 } 3229 3230 void Analyze(const PatternToMatch &Pat) { 3231 AnalyzeNode(Pat.getSrcPattern()); 3232 } 3233 3234 private: 3235 bool IsNodeBitcast(const TreePatternNode *N) const { 3236 if (hasSideEffects || mayLoad || mayStore || isVariadic) 3237 return false; 3238 3239 if (N->getNumChildren() != 2) 3240 return false; 3241 3242 const TreePatternNode *N0 = N->getChild(0); 3243 if (!N0->isLeaf() || !isa<DefInit>(N0->getLeafValue())) 3244 return false; 3245 3246 const TreePatternNode *N1 = N->getChild(1); 3247 if (N1->isLeaf()) 3248 return false; 3249 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 3250 return false; 3251 3252 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 3253 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 3254 return false; 3255 return OpInfo.getEnumName() == "ISD::BITCAST"; 3256 } 3257 3258 public: 3259 void AnalyzeNode(const TreePatternNode *N) { 3260 if (N->isLeaf()) { 3261 if (DefInit *DI = dyn_cast<DefInit>(N->getLeafValue())) { 3262 Record *LeafRec = DI->getDef(); 3263 // Handle ComplexPattern leaves. 3264 if (LeafRec->isSubClassOf("ComplexPattern")) { 3265 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 3266 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 3267 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 3268 if (CP.hasProperty(SDNPSideEffect)) hasSideEffects = true; 3269 } 3270 } 3271 return; 3272 } 3273 3274 // Analyze children. 3275 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3276 AnalyzeNode(N->getChild(i)); 3277 3278 // Ignore set nodes, which are not SDNodes. 3279 if (N->getOperator()->getName() == "set") { 3280 isBitcast = IsNodeBitcast(N); 3281 return; 3282 } 3283 3284 // Notice properties of the node. 3285 if (N->NodeHasProperty(SDNPMayStore, CDP)) mayStore = true; 3286 if (N->NodeHasProperty(SDNPMayLoad, CDP)) mayLoad = true; 3287 if (N->NodeHasProperty(SDNPSideEffect, CDP)) hasSideEffects = true; 3288 if (N->NodeHasProperty(SDNPVariadic, CDP)) isVariadic = true; 3289 3290 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 3291 // If this is an intrinsic, analyze it. 3292 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Ref) 3293 mayLoad = true;// These may load memory. 3294 3295 if (IntInfo->ModRef & CodeGenIntrinsic::MR_Mod) 3296 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 3297 3298 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem || 3299 IntInfo->hasSideEffects) 3300 // ReadWriteMem intrinsics can have other strange effects. 3301 hasSideEffects = true; 3302 } 3303 } 3304 3305 }; 3306 3307 static bool InferFromPattern(CodeGenInstruction &InstInfo, 3308 const InstAnalyzer &PatInfo, 3309 Record *PatDef) { 3310 bool Error = false; 3311 3312 // Remember where InstInfo got its flags. 3313 if (InstInfo.hasUndefFlags()) 3314 InstInfo.InferredFrom = PatDef; 3315 3316 // Check explicitly set flags for consistency. 3317 if (InstInfo.hasSideEffects != PatInfo.hasSideEffects && 3318 !InstInfo.hasSideEffects_Unset) { 3319 // Allow explicitly setting hasSideEffects = 1 on instructions, even when 3320 // the pattern has no side effects. That could be useful for div/rem 3321 // instructions that may trap. 3322 if (!InstInfo.hasSideEffects) { 3323 Error = true; 3324 PrintError(PatDef->getLoc(), "Pattern doesn't match hasSideEffects = " + 3325 Twine(InstInfo.hasSideEffects)); 3326 } 3327 } 3328 3329 if (InstInfo.mayStore != PatInfo.mayStore && !InstInfo.mayStore_Unset) { 3330 Error = true; 3331 PrintError(PatDef->getLoc(), "Pattern doesn't match mayStore = " + 3332 Twine(InstInfo.mayStore)); 3333 } 3334 3335 if (InstInfo.mayLoad != PatInfo.mayLoad && !InstInfo.mayLoad_Unset) { 3336 // Allow explicitly setting mayLoad = 1, even when the pattern has no loads. 3337 // Some targets translate immediates to loads. 3338 if (!InstInfo.mayLoad) { 3339 Error = true; 3340 PrintError(PatDef->getLoc(), "Pattern doesn't match mayLoad = " + 3341 Twine(InstInfo.mayLoad)); 3342 } 3343 } 3344 3345 // Transfer inferred flags. 3346 InstInfo.hasSideEffects |= PatInfo.hasSideEffects; 3347 InstInfo.mayStore |= PatInfo.mayStore; 3348 InstInfo.mayLoad |= PatInfo.mayLoad; 3349 3350 // These flags are silently added without any verification. 3351 InstInfo.isBitcast |= PatInfo.isBitcast; 3352 3353 // Don't infer isVariadic. This flag means something different on SDNodes and 3354 // instructions. For example, a CALL SDNode is variadic because it has the 3355 // call arguments as operands, but a CALL instruction is not variadic - it 3356 // has argument registers as implicit, not explicit uses. 3357 3358 return Error; 3359 } 3360 3361 /// hasNullFragReference - Return true if the DAG has any reference to the 3362 /// null_frag operator. 3363 static bool hasNullFragReference(DagInit *DI) { 3364 DefInit *OpDef = dyn_cast<DefInit>(DI->getOperator()); 3365 if (!OpDef) return false; 3366 Record *Operator = OpDef->getDef(); 3367 3368 // If this is the null fragment, return true. 3369 if (Operator->getName() == "null_frag") return true; 3370 // If any of the arguments reference the null fragment, return true. 3371 for (unsigned i = 0, e = DI->getNumArgs(); i != e; ++i) { 3372 DagInit *Arg = dyn_cast<DagInit>(DI->getArg(i)); 3373 if (Arg && hasNullFragReference(Arg)) 3374 return true; 3375 } 3376 3377 return false; 3378 } 3379 3380 /// hasNullFragReference - Return true if any DAG in the list references 3381 /// the null_frag operator. 3382 static bool hasNullFragReference(ListInit *LI) { 3383 for (Init *I : LI->getValues()) { 3384 DagInit *DI = dyn_cast<DagInit>(I); 3385 assert(DI && "non-dag in an instruction Pattern list?!"); 3386 if (hasNullFragReference(DI)) 3387 return true; 3388 } 3389 return false; 3390 } 3391 3392 /// Get all the instructions in a tree. 3393 static void 3394 getInstructionsInTree(TreePatternNode *Tree, SmallVectorImpl<Record*> &Instrs) { 3395 if (Tree->isLeaf()) 3396 return; 3397 if (Tree->getOperator()->isSubClassOf("Instruction")) 3398 Instrs.push_back(Tree->getOperator()); 3399 for (unsigned i = 0, e = Tree->getNumChildren(); i != e; ++i) 3400 getInstructionsInTree(Tree->getChild(i), Instrs); 3401 } 3402 3403 /// Check the class of a pattern leaf node against the instruction operand it 3404 /// represents. 3405 static bool checkOperandClass(CGIOperandList::OperandInfo &OI, 3406 Record *Leaf) { 3407 if (OI.Rec == Leaf) 3408 return true; 3409 3410 // Allow direct value types to be used in instruction set patterns. 3411 // The type will be checked later. 3412 if (Leaf->isSubClassOf("ValueType")) 3413 return true; 3414 3415 // Patterns can also be ComplexPattern instances. 3416 if (Leaf->isSubClassOf("ComplexPattern")) 3417 return true; 3418 3419 return false; 3420 } 3421 3422 const DAGInstruction &CodeGenDAGPatterns::parseInstructionPattern( 3423 CodeGenInstruction &CGI, ListInit *Pat, DAGInstMap &DAGInsts) { 3424 3425 assert(!DAGInsts.count(CGI.TheDef) && "Instruction already parsed!"); 3426 3427 // Parse the instruction. 3428 TreePattern *I = new TreePattern(CGI.TheDef, Pat, true, *this); 3429 // Inline pattern fragments into it. 3430 I->InlinePatternFragments(); 3431 3432 // Infer as many types as possible. If we cannot infer all of them, we can 3433 // never do anything with this instruction pattern: report it to the user. 3434 if (!I->InferAllTypes()) 3435 I->error("Could not infer all types in pattern!"); 3436 3437 // InstInputs - Keep track of all of the inputs of the instruction, along 3438 // with the record they are declared as. 3439 std::map<std::string, TreePatternNode*> InstInputs; 3440 3441 // InstResults - Keep track of all the virtual registers that are 'set' 3442 // in the instruction, including what reg class they are. 3443 std::map<std::string, TreePatternNode*> InstResults; 3444 3445 std::vector<Record*> InstImpResults; 3446 3447 // Verify that the top-level forms in the instruction are of void type, and 3448 // fill in the InstResults map. 3449 SmallString<32> TypesString; 3450 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 3451 TypesString.clear(); 3452 TreePatternNode *Pat = I->getTree(j); 3453 if (Pat->getNumTypes() != 0) { 3454 raw_svector_ostream OS(TypesString); 3455 for (unsigned k = 0, ke = Pat->getNumTypes(); k != ke; ++k) { 3456 if (k > 0) 3457 OS << ", "; 3458 Pat->getExtType(k).writeToStream(OS); 3459 } 3460 I->error("Top-level forms in instruction pattern should have" 3461 " void types, has types " + 3462 OS.str()); 3463 } 3464 3465 // Find inputs and outputs, and verify the structure of the uses/defs. 3466 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 3467 InstImpResults); 3468 } 3469 3470 // Now that we have inputs and outputs of the pattern, inspect the operands 3471 // list for the instruction. This determines the order that operands are 3472 // added to the machine instruction the node corresponds to. 3473 unsigned NumResults = InstResults.size(); 3474 3475 // Parse the operands list from the (ops) list, validating it. 3476 assert(I->getArgList().empty() && "Args list should still be empty here!"); 3477 3478 // Check that all of the results occur first in the list. 3479 std::vector<Record*> Results; 3480 SmallVector<TreePatternNode *, 2> ResNodes; 3481 for (unsigned i = 0; i != NumResults; ++i) { 3482 if (i == CGI.Operands.size()) 3483 I->error("'" + InstResults.begin()->first + 3484 "' set but does not appear in operand list!"); 3485 const std::string &OpName = CGI.Operands[i].Name; 3486 3487 // Check that it exists in InstResults. 3488 TreePatternNode *RNode = InstResults[OpName]; 3489 if (!RNode) 3490 I->error("Operand $" + OpName + " does not exist in operand list!"); 3491 3492 ResNodes.push_back(RNode); 3493 3494 Record *R = cast<DefInit>(RNode->getLeafValue())->getDef(); 3495 if (!R) 3496 I->error("Operand $" + OpName + " should be a set destination: all " 3497 "outputs must occur before inputs in operand list!"); 3498 3499 if (!checkOperandClass(CGI.Operands[i], R)) 3500 I->error("Operand $" + OpName + " class mismatch!"); 3501 3502 // Remember the return type. 3503 Results.push_back(CGI.Operands[i].Rec); 3504 3505 // Okay, this one checks out. 3506 InstResults.erase(OpName); 3507 } 3508 3509 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 3510 // the copy while we're checking the inputs. 3511 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 3512 3513 std::vector<TreePatternNode*> ResultNodeOperands; 3514 std::vector<Record*> Operands; 3515 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 3516 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 3517 const std::string &OpName = Op.Name; 3518 if (OpName.empty()) 3519 I->error("Operand #" + Twine(i) + " in operands list has no name!"); 3520 3521 if (!InstInputsCheck.count(OpName)) { 3522 // If this is an operand with a DefaultOps set filled in, we can ignore 3523 // this. When we codegen it, we will do so as always executed. 3524 if (Op.Rec->isSubClassOf("OperandWithDefaultOps")) { 3525 // Does it have a non-empty DefaultOps field? If so, ignore this 3526 // operand. 3527 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 3528 continue; 3529 } 3530 I->error("Operand $" + OpName + 3531 " does not appear in the instruction pattern"); 3532 } 3533 TreePatternNode *InVal = InstInputsCheck[OpName]; 3534 InstInputsCheck.erase(OpName); // It occurred, remove from map. 3535 3536 if (InVal->isLeaf() && isa<DefInit>(InVal->getLeafValue())) { 3537 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 3538 if (!checkOperandClass(Op, InRec)) 3539 I->error("Operand $" + OpName + "'s register class disagrees" 3540 " between the operand and pattern"); 3541 } 3542 Operands.push_back(Op.Rec); 3543 3544 // Construct the result for the dest-pattern operand list. 3545 TreePatternNode *OpNode = InVal->clone(); 3546 3547 // No predicate is useful on the result. 3548 OpNode->clearPredicateFns(); 3549 3550 // Promote the xform function to be an explicit node if set. 3551 if (Record *Xform = OpNode->getTransformFn()) { 3552 OpNode->setTransformFn(nullptr); 3553 std::vector<TreePatternNode*> Children; 3554 Children.push_back(OpNode); 3555 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 3556 } 3557 3558 ResultNodeOperands.push_back(OpNode); 3559 } 3560 3561 if (!InstInputsCheck.empty()) 3562 I->error("Input operand $" + InstInputsCheck.begin()->first + 3563 " occurs in pattern but not in operands list!"); 3564 3565 TreePatternNode *ResultPattern = 3566 new TreePatternNode(I->getRecord(), ResultNodeOperands, 3567 GetNumNodeResults(I->getRecord(), *this)); 3568 // Copy fully inferred output node types to instruction result pattern. 3569 for (unsigned i = 0; i != NumResults; ++i) { 3570 assert(ResNodes[i]->getNumTypes() == 1 && "FIXME: Unhandled"); 3571 ResultPattern->setType(i, ResNodes[i]->getExtType(0)); 3572 } 3573 3574 // Create and insert the instruction. 3575 // FIXME: InstImpResults should not be part of DAGInstruction. 3576 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 3577 DAGInsts.insert(std::make_pair(I->getRecord(), TheInst)); 3578 3579 // Use a temporary tree pattern to infer all types and make sure that the 3580 // constructed result is correct. This depends on the instruction already 3581 // being inserted into the DAGInsts map. 3582 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 3583 Temp.InferAllTypes(&I->getNamedNodesMap()); 3584 3585 DAGInstruction &TheInsertedInst = DAGInsts.find(I->getRecord())->second; 3586 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 3587 3588 return TheInsertedInst; 3589 } 3590 3591 /// ParseInstructions - Parse all of the instructions, inlining and resolving 3592 /// any fragments involved. This populates the Instructions list with fully 3593 /// resolved instructions. 3594 void CodeGenDAGPatterns::ParseInstructions() { 3595 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 3596 3597 for (Record *Instr : Instrs) { 3598 ListInit *LI = nullptr; 3599 3600 if (isa<ListInit>(Instr->getValueInit("Pattern"))) 3601 LI = Instr->getValueAsListInit("Pattern"); 3602 3603 // If there is no pattern, only collect minimal information about the 3604 // instruction for its operand list. We have to assume that there is one 3605 // result, as we have no detailed info. A pattern which references the 3606 // null_frag operator is as-if no pattern were specified. Normally this 3607 // is from a multiclass expansion w/ a SDPatternOperator passed in as 3608 // null_frag. 3609 if (!LI || LI->empty() || hasNullFragReference(LI)) { 3610 std::vector<Record*> Results; 3611 std::vector<Record*> Operands; 3612 3613 CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3614 3615 if (InstInfo.Operands.size() != 0) { 3616 for (unsigned j = 0, e = InstInfo.Operands.NumDefs; j < e; ++j) 3617 Results.push_back(InstInfo.Operands[j].Rec); 3618 3619 // The rest are inputs. 3620 for (unsigned j = InstInfo.Operands.NumDefs, 3621 e = InstInfo.Operands.size(); j < e; ++j) 3622 Operands.push_back(InstInfo.Operands[j].Rec); 3623 } 3624 3625 // Create and insert the instruction. 3626 std::vector<Record*> ImpResults; 3627 Instructions.insert(std::make_pair(Instr, 3628 DAGInstruction(nullptr, Results, Operands, ImpResults))); 3629 continue; // no pattern. 3630 } 3631 3632 CodeGenInstruction &CGI = Target.getInstruction(Instr); 3633 const DAGInstruction &DI = parseInstructionPattern(CGI, LI, Instructions); 3634 3635 (void)DI; 3636 DEBUG(DI.getPattern()->dump()); 3637 } 3638 3639 // If we can, convert the instructions to be patterns that are matched! 3640 for (auto &Entry : Instructions) { 3641 DAGInstruction &TheInst = Entry.second; 3642 TreePattern *I = TheInst.getPattern(); 3643 if (!I) continue; // No pattern. 3644 3645 if (PatternRewriter) 3646 PatternRewriter(I); 3647 // FIXME: Assume only the first tree is the pattern. The others are clobber 3648 // nodes. 3649 TreePatternNode *Pattern = I->getTree(0); 3650 TreePatternNode *SrcPattern; 3651 if (Pattern->getOperator()->getName() == "set") { 3652 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 3653 } else{ 3654 // Not a set (store or something?) 3655 SrcPattern = Pattern; 3656 } 3657 3658 Record *Instr = Entry.first; 3659 ListInit *Preds = Instr->getValueAsListInit("Predicates"); 3660 int Complexity = Instr->getValueAsInt("AddedComplexity"); 3661 AddPatternToMatch( 3662 I, 3663 PatternToMatch(Instr, makePredList(Preds), SrcPattern, 3664 TheInst.getResultPattern(), TheInst.getImpResults(), 3665 Complexity, Instr->getID())); 3666 } 3667 } 3668 3669 3670 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 3671 3672 static void FindNames(const TreePatternNode *P, 3673 std::map<std::string, NameRecord> &Names, 3674 TreePattern *PatternTop) { 3675 if (!P->getName().empty()) { 3676 NameRecord &Rec = Names[P->getName()]; 3677 // If this is the first instance of the name, remember the node. 3678 if (Rec.second++ == 0) 3679 Rec.first = P; 3680 else if (Rec.first->getExtTypes() != P->getExtTypes()) 3681 PatternTop->error("repetition of value: $" + P->getName() + 3682 " where different uses have different types!"); 3683 } 3684 3685 if (!P->isLeaf()) { 3686 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 3687 FindNames(P->getChild(i), Names, PatternTop); 3688 } 3689 } 3690 3691 std::vector<Predicate> CodeGenDAGPatterns::makePredList(ListInit *L) { 3692 std::vector<Predicate> Preds; 3693 for (Init *I : L->getValues()) { 3694 if (DefInit *Pred = dyn_cast<DefInit>(I)) 3695 Preds.push_back(Pred->getDef()); 3696 else 3697 llvm_unreachable("Non-def on the list"); 3698 } 3699 3700 // Sort so that different orders get canonicalized to the same string. 3701 std::sort(Preds.begin(), Preds.end()); 3702 return Preds; 3703 } 3704 3705 void CodeGenDAGPatterns::AddPatternToMatch(TreePattern *Pattern, 3706 PatternToMatch &&PTM) { 3707 // Do some sanity checking on the pattern we're about to match. 3708 std::string Reason; 3709 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) { 3710 PrintWarning(Pattern->getRecord()->getLoc(), 3711 Twine("Pattern can never match: ") + Reason); 3712 return; 3713 } 3714 3715 // If the source pattern's root is a complex pattern, that complex pattern 3716 // must specify the nodes it can potentially match. 3717 if (const ComplexPattern *CP = 3718 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 3719 if (CP->getRootNodes().empty()) 3720 Pattern->error("ComplexPattern at root must specify list of opcodes it" 3721 " could match"); 3722 3723 3724 // Find all of the named values in the input and output, ensure they have the 3725 // same type. 3726 std::map<std::string, NameRecord> SrcNames, DstNames; 3727 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 3728 FindNames(PTM.getDstPattern(), DstNames, Pattern); 3729 3730 // Scan all of the named values in the destination pattern, rejecting them if 3731 // they don't exist in the input pattern. 3732 for (const auto &Entry : DstNames) { 3733 if (SrcNames[Entry.first].first == nullptr) 3734 Pattern->error("Pattern has input without matching name in output: $" + 3735 Entry.first); 3736 } 3737 3738 // Scan all of the named values in the source pattern, rejecting them if the 3739 // name isn't used in the dest, and isn't used to tie two values together. 3740 for (const auto &Entry : SrcNames) 3741 if (DstNames[Entry.first].first == nullptr && 3742 SrcNames[Entry.first].second == 1) 3743 Pattern->error("Pattern has dead named input: $" + Entry.first); 3744 3745 PatternsToMatch.push_back(std::move(PTM)); 3746 } 3747 3748 void CodeGenDAGPatterns::InferInstructionFlags() { 3749 ArrayRef<const CodeGenInstruction*> Instructions = 3750 Target.getInstructionsByEnumValue(); 3751 3752 // First try to infer flags from the primary instruction pattern, if any. 3753 SmallVector<CodeGenInstruction*, 8> Revisit; 3754 unsigned Errors = 0; 3755 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 3756 CodeGenInstruction &InstInfo = 3757 const_cast<CodeGenInstruction &>(*Instructions[i]); 3758 3759 // Get the primary instruction pattern. 3760 const TreePattern *Pattern = getInstruction(InstInfo.TheDef).getPattern(); 3761 if (!Pattern) { 3762 if (InstInfo.hasUndefFlags()) 3763 Revisit.push_back(&InstInfo); 3764 continue; 3765 } 3766 InstAnalyzer PatInfo(*this); 3767 PatInfo.Analyze(Pattern); 3768 Errors += InferFromPattern(InstInfo, PatInfo, InstInfo.TheDef); 3769 } 3770 3771 // Second, look for single-instruction patterns defined outside the 3772 // instruction. 3773 for (const PatternToMatch &PTM : ptms()) { 3774 // We can only infer from single-instruction patterns, otherwise we won't 3775 // know which instruction should get the flags. 3776 SmallVector<Record*, 8> PatInstrs; 3777 getInstructionsInTree(PTM.getDstPattern(), PatInstrs); 3778 if (PatInstrs.size() != 1) 3779 continue; 3780 3781 // Get the single instruction. 3782 CodeGenInstruction &InstInfo = Target.getInstruction(PatInstrs.front()); 3783 3784 // Only infer properties from the first pattern. We'll verify the others. 3785 if (InstInfo.InferredFrom) 3786 continue; 3787 3788 InstAnalyzer PatInfo(*this); 3789 PatInfo.Analyze(PTM); 3790 Errors += InferFromPattern(InstInfo, PatInfo, PTM.getSrcRecord()); 3791 } 3792 3793 if (Errors) 3794 PrintFatalError("pattern conflicts"); 3795 3796 // Revisit instructions with undefined flags and no pattern. 3797 if (Target.guessInstructionProperties()) { 3798 for (CodeGenInstruction *InstInfo : Revisit) { 3799 if (InstInfo->InferredFrom) 3800 continue; 3801 // The mayLoad and mayStore flags default to false. 3802 // Conservatively assume hasSideEffects if it wasn't explicit. 3803 if (InstInfo->hasSideEffects_Unset) 3804 InstInfo->hasSideEffects = true; 3805 } 3806 return; 3807 } 3808 3809 // Complain about any flags that are still undefined. 3810 for (CodeGenInstruction *InstInfo : Revisit) { 3811 if (InstInfo->InferredFrom) 3812 continue; 3813 if (InstInfo->hasSideEffects_Unset) 3814 PrintError(InstInfo->TheDef->getLoc(), 3815 "Can't infer hasSideEffects from patterns"); 3816 if (InstInfo->mayStore_Unset) 3817 PrintError(InstInfo->TheDef->getLoc(), 3818 "Can't infer mayStore from patterns"); 3819 if (InstInfo->mayLoad_Unset) 3820 PrintError(InstInfo->TheDef->getLoc(), 3821 "Can't infer mayLoad from patterns"); 3822 } 3823 } 3824 3825 3826 /// Verify instruction flags against pattern node properties. 3827 void CodeGenDAGPatterns::VerifyInstructionFlags() { 3828 unsigned Errors = 0; 3829 for (ptm_iterator I = ptm_begin(), E = ptm_end(); I != E; ++I) { 3830 const PatternToMatch &PTM = *I; 3831 SmallVector<Record*, 8> Instrs; 3832 getInstructionsInTree(PTM.getDstPattern(), Instrs); 3833 if (Instrs.empty()) 3834 continue; 3835 3836 // Count the number of instructions with each flag set. 3837 unsigned NumSideEffects = 0; 3838 unsigned NumStores = 0; 3839 unsigned NumLoads = 0; 3840 for (const Record *Instr : Instrs) { 3841 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3842 NumSideEffects += InstInfo.hasSideEffects; 3843 NumStores += InstInfo.mayStore; 3844 NumLoads += InstInfo.mayLoad; 3845 } 3846 3847 // Analyze the source pattern. 3848 InstAnalyzer PatInfo(*this); 3849 PatInfo.Analyze(PTM); 3850 3851 // Collect error messages. 3852 SmallVector<std::string, 4> Msgs; 3853 3854 // Check for missing flags in the output. 3855 // Permit extra flags for now at least. 3856 if (PatInfo.hasSideEffects && !NumSideEffects) 3857 Msgs.push_back("pattern has side effects, but hasSideEffects isn't set"); 3858 3859 // Don't verify store flags on instructions with side effects. At least for 3860 // intrinsics, side effects implies mayStore. 3861 if (!PatInfo.hasSideEffects && PatInfo.mayStore && !NumStores) 3862 Msgs.push_back("pattern may store, but mayStore isn't set"); 3863 3864 // Similarly, mayStore implies mayLoad on intrinsics. 3865 if (!PatInfo.mayStore && PatInfo.mayLoad && !NumLoads) 3866 Msgs.push_back("pattern may load, but mayLoad isn't set"); 3867 3868 // Print error messages. 3869 if (Msgs.empty()) 3870 continue; 3871 ++Errors; 3872 3873 for (const std::string &Msg : Msgs) 3874 PrintError(PTM.getSrcRecord()->getLoc(), Twine(Msg) + " on the " + 3875 (Instrs.size() == 1 ? 3876 "instruction" : "output instructions")); 3877 // Provide the location of the relevant instruction definitions. 3878 for (const Record *Instr : Instrs) { 3879 if (Instr != PTM.getSrcRecord()) 3880 PrintError(Instr->getLoc(), "defined here"); 3881 const CodeGenInstruction &InstInfo = Target.getInstruction(Instr); 3882 if (InstInfo.InferredFrom && 3883 InstInfo.InferredFrom != InstInfo.TheDef && 3884 InstInfo.InferredFrom != PTM.getSrcRecord()) 3885 PrintError(InstInfo.InferredFrom->getLoc(), "inferred from pattern"); 3886 } 3887 } 3888 if (Errors) 3889 PrintFatalError("Errors in DAG patterns"); 3890 } 3891 3892 /// Given a pattern result with an unresolved type, see if we can find one 3893 /// instruction with an unresolved result type. Force this result type to an 3894 /// arbitrary element if it's possible types to converge results. 3895 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 3896 if (N->isLeaf()) 3897 return false; 3898 3899 // Analyze children. 3900 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3901 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 3902 return true; 3903 3904 if (!N->getOperator()->isSubClassOf("Instruction")) 3905 return false; 3906 3907 // If this type is already concrete or completely unknown we can't do 3908 // anything. 3909 TypeInfer &TI = TP.getInfer(); 3910 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 3911 if (N->getExtType(i).empty() || TI.isConcrete(N->getExtType(i), false)) 3912 continue; 3913 3914 // Otherwise, force its type to an arbitrary choice. 3915 if (TI.forceArbitrary(N->getExtType(i))) 3916 return true; 3917 } 3918 3919 return false; 3920 } 3921 3922 void CodeGenDAGPatterns::ParsePatterns() { 3923 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 3924 3925 for (Record *CurPattern : Patterns) { 3926 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 3927 3928 // If the pattern references the null_frag, there's nothing to do. 3929 if (hasNullFragReference(Tree)) 3930 continue; 3931 3932 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 3933 3934 // Inline pattern fragments into it. 3935 Pattern->InlinePatternFragments(); 3936 3937 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 3938 if (LI->empty()) continue; // no pattern. 3939 3940 // Parse the instruction. 3941 TreePattern Result(CurPattern, LI, false, *this); 3942 3943 // Inline pattern fragments into it. 3944 Result.InlinePatternFragments(); 3945 3946 if (Result.getNumTrees() != 1) 3947 Result.error("Cannot handle instructions producing instructions " 3948 "with temporaries yet!"); 3949 3950 bool IterateInference; 3951 bool InferredAllPatternTypes, InferredAllResultTypes; 3952 do { 3953 // Infer as many types as possible. If we cannot infer all of them, we 3954 // can never do anything with this pattern: report it to the user. 3955 InferredAllPatternTypes = 3956 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 3957 3958 // Infer as many types as possible. If we cannot infer all of them, we 3959 // can never do anything with this pattern: report it to the user. 3960 InferredAllResultTypes = 3961 Result.InferAllTypes(&Pattern->getNamedNodesMap()); 3962 3963 IterateInference = false; 3964 3965 // Apply the type of the result to the source pattern. This helps us 3966 // resolve cases where the input type is known to be a pointer type (which 3967 // is considered resolved), but the result knows it needs to be 32- or 3968 // 64-bits. Infer the other way for good measure. 3969 for (unsigned i = 0, e = std::min(Result.getTree(0)->getNumTypes(), 3970 Pattern->getTree(0)->getNumTypes()); 3971 i != e; ++i) { 3972 IterateInference = Pattern->getTree(0)->UpdateNodeType( 3973 i, Result.getTree(0)->getExtType(i), Result); 3974 IterateInference |= Result.getTree(0)->UpdateNodeType( 3975 i, Pattern->getTree(0)->getExtType(i), Result); 3976 } 3977 3978 // If our iteration has converged and the input pattern's types are fully 3979 // resolved but the result pattern is not fully resolved, we may have a 3980 // situation where we have two instructions in the result pattern and 3981 // the instructions require a common register class, but don't care about 3982 // what actual MVT is used. This is actually a bug in our modelling: 3983 // output patterns should have register classes, not MVTs. 3984 // 3985 // In any case, to handle this, we just go through and disambiguate some 3986 // arbitrary types to the result pattern's nodes. 3987 if (!IterateInference && InferredAllPatternTypes && 3988 !InferredAllResultTypes) 3989 IterateInference = 3990 ForceArbitraryInstResultType(Result.getTree(0), Result); 3991 } while (IterateInference); 3992 3993 // Verify that we inferred enough types that we can do something with the 3994 // pattern and result. If these fire the user has to add type casts. 3995 if (!InferredAllPatternTypes) 3996 Pattern->error("Could not infer all types in pattern!"); 3997 if (!InferredAllResultTypes) { 3998 Pattern->dump(); 3999 Result.error("Could not infer all types in pattern result!"); 4000 } 4001 4002 // Validate that the input pattern is correct. 4003 std::map<std::string, TreePatternNode*> InstInputs; 4004 std::map<std::string, TreePatternNode*> InstResults; 4005 std::vector<Record*> InstImpResults; 4006 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 4007 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 4008 InstInputs, InstResults, 4009 InstImpResults); 4010 4011 // Promote the xform function to be an explicit node if set. 4012 TreePatternNode *DstPattern = Result.getOnlyTree(); 4013 std::vector<TreePatternNode*> ResultNodeOperands; 4014 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 4015 TreePatternNode *OpNode = DstPattern->getChild(ii); 4016 if (Record *Xform = OpNode->getTransformFn()) { 4017 OpNode->setTransformFn(nullptr); 4018 std::vector<TreePatternNode*> Children; 4019 Children.push_back(OpNode); 4020 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 4021 } 4022 ResultNodeOperands.push_back(OpNode); 4023 } 4024 DstPattern = Result.getOnlyTree(); 4025 if (!DstPattern->isLeaf()) 4026 DstPattern = new TreePatternNode(DstPattern->getOperator(), 4027 ResultNodeOperands, 4028 DstPattern->getNumTypes()); 4029 4030 for (unsigned i = 0, e = Result.getOnlyTree()->getNumTypes(); i != e; ++i) 4031 DstPattern->setType(i, Result.getOnlyTree()->getExtType(i)); 4032 4033 TreePattern Temp(Result.getRecord(), DstPattern, false, *this); 4034 Temp.InferAllTypes(); 4035 4036 // A pattern may end up with an "impossible" type, i.e. a situation 4037 // where all types have been eliminated for some node in this pattern. 4038 // This could occur for intrinsics that only make sense for a specific 4039 // value type, and use a specific register class. If, for some mode, 4040 // that register class does not accept that type, the type inference 4041 // will lead to a contradiction, which is not an error however, but 4042 // a sign that this pattern will simply never match. 4043 if (Pattern->getTree(0)->hasPossibleType() && 4044 Temp.getOnlyTree()->hasPossibleType()) { 4045 ListInit *Preds = CurPattern->getValueAsListInit("Predicates"); 4046 int Complexity = CurPattern->getValueAsInt("AddedComplexity"); 4047 if (PatternRewriter) 4048 PatternRewriter(Pattern); 4049 AddPatternToMatch( 4050 Pattern, 4051 PatternToMatch( 4052 CurPattern, makePredList(Preds), Pattern->getTree(0), 4053 Temp.getOnlyTree(), std::move(InstImpResults), Complexity, 4054 CurPattern->getID())); 4055 } 4056 } 4057 } 4058 4059 static void collectModes(std::set<unsigned> &Modes, const TreePatternNode *N) { 4060 for (const TypeSetByHwMode &VTS : N->getExtTypes()) 4061 for (const auto &I : VTS) 4062 Modes.insert(I.first); 4063 4064 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4065 collectModes(Modes, N->getChild(i)); 4066 } 4067 4068 void CodeGenDAGPatterns::ExpandHwModeBasedTypes() { 4069 const CodeGenHwModes &CGH = getTargetInfo().getHwModes(); 4070 std::map<unsigned,std::vector<Predicate>> ModeChecks; 4071 std::vector<PatternToMatch> Copy = PatternsToMatch; 4072 PatternsToMatch.clear(); 4073 4074 auto AppendPattern = [this,&ModeChecks](PatternToMatch &P, unsigned Mode) { 4075 TreePatternNode *NewSrc = P.SrcPattern->clone(); 4076 TreePatternNode *NewDst = P.DstPattern->clone(); 4077 if (!NewSrc->setDefaultMode(Mode) || !NewDst->setDefaultMode(Mode)) { 4078 delete NewSrc; 4079 delete NewDst; 4080 return; 4081 } 4082 4083 std::vector<Predicate> Preds = P.Predicates; 4084 const std::vector<Predicate> &MC = ModeChecks[Mode]; 4085 Preds.insert(Preds.end(), MC.begin(), MC.end()); 4086 PatternsToMatch.emplace_back(P.getSrcRecord(), Preds, NewSrc, NewDst, 4087 P.getDstRegs(), P.getAddedComplexity(), 4088 Record::getNewUID(), Mode); 4089 }; 4090 4091 for (PatternToMatch &P : Copy) { 4092 TreePatternNode *SrcP = nullptr, *DstP = nullptr; 4093 if (P.SrcPattern->hasProperTypeByHwMode()) 4094 SrcP = P.SrcPattern; 4095 if (P.DstPattern->hasProperTypeByHwMode()) 4096 DstP = P.DstPattern; 4097 if (!SrcP && !DstP) { 4098 PatternsToMatch.push_back(P); 4099 continue; 4100 } 4101 4102 std::set<unsigned> Modes; 4103 if (SrcP) 4104 collectModes(Modes, SrcP); 4105 if (DstP) 4106 collectModes(Modes, DstP); 4107 4108 // The predicate for the default mode needs to be constructed for each 4109 // pattern separately. 4110 // Since not all modes must be present in each pattern, if a mode m is 4111 // absent, then there is no point in constructing a check for m. If such 4112 // a check was created, it would be equivalent to checking the default 4113 // mode, except not all modes' predicates would be a part of the checking 4114 // code. The subsequently generated check for the default mode would then 4115 // have the exact same patterns, but a different predicate code. To avoid 4116 // duplicated patterns with different predicate checks, construct the 4117 // default check as a negation of all predicates that are actually present 4118 // in the source/destination patterns. 4119 std::vector<Predicate> DefaultPred; 4120 4121 for (unsigned M : Modes) { 4122 if (M == DefaultMode) 4123 continue; 4124 if (ModeChecks.find(M) != ModeChecks.end()) 4125 continue; 4126 4127 // Fill the map entry for this mode. 4128 const HwMode &HM = CGH.getMode(M); 4129 ModeChecks[M].emplace_back(Predicate(HM.Features, true)); 4130 4131 // Add negations of the HM's predicates to the default predicate. 4132 DefaultPred.emplace_back(Predicate(HM.Features, false)); 4133 } 4134 4135 for (unsigned M : Modes) { 4136 if (M == DefaultMode) 4137 continue; 4138 AppendPattern(P, M); 4139 } 4140 4141 bool HasDefault = Modes.count(DefaultMode); 4142 if (HasDefault) 4143 AppendPattern(P, DefaultMode); 4144 } 4145 } 4146 4147 /// Dependent variable map for CodeGenDAGPattern variant generation 4148 typedef StringMap<int> DepVarMap; 4149 4150 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 4151 if (N->isLeaf()) { 4152 if (N->hasName() && isa<DefInit>(N->getLeafValue())) 4153 DepMap[N->getName()]++; 4154 } else { 4155 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 4156 FindDepVarsOf(N->getChild(i), DepMap); 4157 } 4158 } 4159 4160 /// Find dependent variables within child patterns 4161 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 4162 DepVarMap depcounts; 4163 FindDepVarsOf(N, depcounts); 4164 for (const auto &Pair : depcounts) { 4165 if (Pair.getValue() > 1) 4166 DepVars.insert(Pair.getKey()); 4167 } 4168 } 4169 4170 #ifndef NDEBUG 4171 /// Dump the dependent variable set: 4172 static void DumpDepVars(MultipleUseVarSet &DepVars) { 4173 if (DepVars.empty()) { 4174 DEBUG(errs() << "<empty set>"); 4175 } else { 4176 DEBUG(errs() << "[ "); 4177 for (const auto &DepVar : DepVars) { 4178 DEBUG(errs() << DepVar.getKey() << " "); 4179 } 4180 DEBUG(errs() << "]"); 4181 } 4182 } 4183 #endif 4184 4185 4186 /// CombineChildVariants - Given a bunch of permutations of each child of the 4187 /// 'operator' node, put them together in all possible ways. 4188 static void CombineChildVariants(TreePatternNode *Orig, 4189 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 4190 std::vector<TreePatternNode*> &OutVariants, 4191 CodeGenDAGPatterns &CDP, 4192 const MultipleUseVarSet &DepVars) { 4193 // Make sure that each operand has at least one variant to choose from. 4194 for (const auto &Variants : ChildVariants) 4195 if (Variants.empty()) 4196 return; 4197 4198 // The end result is an all-pairs construction of the resultant pattern. 4199 std::vector<unsigned> Idxs; 4200 Idxs.resize(ChildVariants.size()); 4201 bool NotDone; 4202 do { 4203 #ifndef NDEBUG 4204 DEBUG(if (!Idxs.empty()) { 4205 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 4206 for (unsigned Idx : Idxs) { 4207 errs() << Idx << " "; 4208 } 4209 errs() << "]\n"; 4210 }); 4211 #endif 4212 // Create the variant and add it to the output list. 4213 std::vector<TreePatternNode*> NewChildren; 4214 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 4215 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 4216 auto R = llvm::make_unique<TreePatternNode>( 4217 Orig->getOperator(), NewChildren, Orig->getNumTypes()); 4218 4219 // Copy over properties. 4220 R->setName(Orig->getName()); 4221 R->setPredicateFns(Orig->getPredicateFns()); 4222 R->setTransformFn(Orig->getTransformFn()); 4223 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 4224 R->setType(i, Orig->getExtType(i)); 4225 4226 // If this pattern cannot match, do not include it as a variant. 4227 std::string ErrString; 4228 // Scan to see if this pattern has already been emitted. We can get 4229 // duplication due to things like commuting: 4230 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 4231 // which are the same pattern. Ignore the dups. 4232 if (R->canPatternMatch(ErrString, CDP) && 4233 none_of(OutVariants, [&](TreePatternNode *Variant) { 4234 return R->isIsomorphicTo(Variant, DepVars); 4235 })) 4236 OutVariants.push_back(R.release()); 4237 4238 // Increment indices to the next permutation by incrementing the 4239 // indices from last index backward, e.g., generate the sequence 4240 // [0, 0], [0, 1], [1, 0], [1, 1]. 4241 int IdxsIdx; 4242 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 4243 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 4244 Idxs[IdxsIdx] = 0; 4245 else 4246 break; 4247 } 4248 NotDone = (IdxsIdx >= 0); 4249 } while (NotDone); 4250 } 4251 4252 /// CombineChildVariants - A helper function for binary operators. 4253 /// 4254 static void CombineChildVariants(TreePatternNode *Orig, 4255 const std::vector<TreePatternNode*> &LHS, 4256 const std::vector<TreePatternNode*> &RHS, 4257 std::vector<TreePatternNode*> &OutVariants, 4258 CodeGenDAGPatterns &CDP, 4259 const MultipleUseVarSet &DepVars) { 4260 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4261 ChildVariants.push_back(LHS); 4262 ChildVariants.push_back(RHS); 4263 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 4264 } 4265 4266 4267 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 4268 std::vector<TreePatternNode *> &Children) { 4269 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 4270 Record *Operator = N->getOperator(); 4271 4272 // Only permit raw nodes. 4273 if (!N->getName().empty() || !N->getPredicateFns().empty() || 4274 N->getTransformFn()) { 4275 Children.push_back(N); 4276 return; 4277 } 4278 4279 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 4280 Children.push_back(N->getChild(0)); 4281 else 4282 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 4283 4284 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 4285 Children.push_back(N->getChild(1)); 4286 else 4287 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 4288 } 4289 4290 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 4291 /// the (potentially recursive) pattern by using algebraic laws. 4292 /// 4293 static void GenerateVariantsOf(TreePatternNode *N, 4294 std::vector<TreePatternNode*> &OutVariants, 4295 CodeGenDAGPatterns &CDP, 4296 const MultipleUseVarSet &DepVars) { 4297 // We cannot permute leaves or ComplexPattern uses. 4298 if (N->isLeaf() || N->getOperator()->isSubClassOf("ComplexPattern")) { 4299 OutVariants.push_back(N); 4300 return; 4301 } 4302 4303 // Look up interesting info about the node. 4304 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 4305 4306 // If this node is associative, re-associate. 4307 if (NodeInfo.hasProperty(SDNPAssociative)) { 4308 // Re-associate by pulling together all of the linked operators 4309 std::vector<TreePatternNode*> MaximalChildren; 4310 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 4311 4312 // Only handle child sizes of 3. Otherwise we'll end up trying too many 4313 // permutations. 4314 if (MaximalChildren.size() == 3) { 4315 // Find the variants of all of our maximal children. 4316 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 4317 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 4318 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 4319 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 4320 4321 // There are only two ways we can permute the tree: 4322 // (A op B) op C and A op (B op C) 4323 // Within these forms, we can also permute A/B/C. 4324 4325 // Generate legal pair permutations of A/B/C. 4326 std::vector<TreePatternNode*> ABVariants; 4327 std::vector<TreePatternNode*> BAVariants; 4328 std::vector<TreePatternNode*> ACVariants; 4329 std::vector<TreePatternNode*> CAVariants; 4330 std::vector<TreePatternNode*> BCVariants; 4331 std::vector<TreePatternNode*> CBVariants; 4332 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 4333 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 4334 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 4335 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 4336 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 4337 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 4338 4339 // Combine those into the result: (x op x) op x 4340 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 4341 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 4342 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 4343 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 4344 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 4345 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 4346 4347 // Combine those into the result: x op (x op x) 4348 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 4349 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 4350 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 4351 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 4352 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 4353 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 4354 return; 4355 } 4356 } 4357 4358 // Compute permutations of all children. 4359 std::vector<std::vector<TreePatternNode*> > ChildVariants; 4360 ChildVariants.resize(N->getNumChildren()); 4361 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 4362 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 4363 4364 // Build all permutations based on how the children were formed. 4365 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 4366 4367 // If this node is commutative, consider the commuted order. 4368 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 4369 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 4370 assert((N->getNumChildren()>=2 || isCommIntrinsic) && 4371 "Commutative but doesn't have 2 children!"); 4372 // Don't count children which are actually register references. 4373 unsigned NC = 0; 4374 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 4375 TreePatternNode *Child = N->getChild(i); 4376 if (Child->isLeaf()) 4377 if (DefInit *DI = dyn_cast<DefInit>(Child->getLeafValue())) { 4378 Record *RR = DI->getDef(); 4379 if (RR->isSubClassOf("Register")) 4380 continue; 4381 } 4382 NC++; 4383 } 4384 // Consider the commuted order. 4385 if (isCommIntrinsic) { 4386 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 4387 // operands are the commutative operands, and there might be more operands 4388 // after those. 4389 assert(NC >= 3 && 4390 "Commutative intrinsic should have at least 3 children!"); 4391 std::vector<std::vector<TreePatternNode*> > Variants; 4392 Variants.push_back(ChildVariants[0]); // Intrinsic id. 4393 Variants.push_back(ChildVariants[2]); 4394 Variants.push_back(ChildVariants[1]); 4395 for (unsigned i = 3; i != NC; ++i) 4396 Variants.push_back(ChildVariants[i]); 4397 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4398 } else if (NC == N->getNumChildren()) { 4399 std::vector<std::vector<TreePatternNode*> > Variants; 4400 Variants.push_back(ChildVariants[1]); 4401 Variants.push_back(ChildVariants[0]); 4402 for (unsigned i = 2; i != NC; ++i) 4403 Variants.push_back(ChildVariants[i]); 4404 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 4405 } 4406 } 4407 } 4408 4409 4410 // GenerateVariants - Generate variants. For example, commutative patterns can 4411 // match multiple ways. Add them to PatternsToMatch as well. 4412 void CodeGenDAGPatterns::GenerateVariants() { 4413 DEBUG(errs() << "Generating instruction variants.\n"); 4414 4415 // Loop over all of the patterns we've collected, checking to see if we can 4416 // generate variants of the instruction, through the exploitation of 4417 // identities. This permits the target to provide aggressive matching without 4418 // the .td file having to contain tons of variants of instructions. 4419 // 4420 // Note that this loop adds new patterns to the PatternsToMatch list, but we 4421 // intentionally do not reconsider these. Any variants of added patterns have 4422 // already been added. 4423 // 4424 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 4425 MultipleUseVarSet DepVars; 4426 std::vector<TreePatternNode*> Variants; 4427 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 4428 DEBUG(errs() << "Dependent/multiply used variables: "); 4429 DEBUG(DumpDepVars(DepVars)); 4430 DEBUG(errs() << "\n"); 4431 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 4432 DepVars); 4433 4434 assert(!Variants.empty() && "Must create at least original variant!"); 4435 if (Variants.size() == 1) // No additional variants for this pattern. 4436 continue; 4437 4438 DEBUG(errs() << "FOUND VARIANTS OF: "; 4439 PatternsToMatch[i].getSrcPattern()->dump(); 4440 errs() << "\n"); 4441 4442 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 4443 TreePatternNode *Variant = Variants[v]; 4444 4445 DEBUG(errs() << " VAR#" << v << ": "; 4446 Variant->dump(); 4447 errs() << "\n"); 4448 4449 // Scan to see if an instruction or explicit pattern already matches this. 4450 bool AlreadyExists = false; 4451 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 4452 // Skip if the top level predicates do not match. 4453 if (PatternsToMatch[i].getPredicates() != 4454 PatternsToMatch[p].getPredicates()) 4455 continue; 4456 // Check to see if this variant already exists. 4457 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 4458 DepVars)) { 4459 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 4460 AlreadyExists = true; 4461 break; 4462 } 4463 } 4464 // If we already have it, ignore the variant. 4465 if (AlreadyExists) continue; 4466 4467 // Otherwise, add it to the list of patterns we have. 4468 PatternsToMatch.push_back(PatternToMatch( 4469 PatternsToMatch[i].getSrcRecord(), PatternsToMatch[i].getPredicates(), 4470 Variant, PatternsToMatch[i].getDstPattern(), 4471 PatternsToMatch[i].getDstRegs(), 4472 PatternsToMatch[i].getAddedComplexity(), Record::getNewUID())); 4473 } 4474 4475 DEBUG(errs() << "\n"); 4476 } 4477 } 4478