1 //===- CodeGenDAGPatterns.cpp - Read DAG patterns from .td file -----------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the CodeGenDAGPatterns class, which is used to read and 11 // represent the patterns present in a .td file for instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenDAGPatterns.h" 16 #include "Record.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/Support/Debug.h" 20 #include <set> 21 #include <algorithm> 22 using namespace llvm; 23 24 //===----------------------------------------------------------------------===// 25 // EEVT::TypeSet Implementation 26 //===----------------------------------------------------------------------===// 27 28 static inline bool isInteger(MVT::SimpleValueType VT) { 29 return EVT(VT).isInteger(); 30 } 31 static inline bool isFloatingPoint(MVT::SimpleValueType VT) { 32 return EVT(VT).isFloatingPoint(); 33 } 34 static inline bool isVector(MVT::SimpleValueType VT) { 35 return EVT(VT).isVector(); 36 } 37 static inline bool isScalar(MVT::SimpleValueType VT) { 38 return !EVT(VT).isVector(); 39 } 40 41 EEVT::TypeSet::TypeSet(MVT::SimpleValueType VT, TreePattern &TP) { 42 if (VT == MVT::iAny) 43 EnforceInteger(TP); 44 else if (VT == MVT::fAny) 45 EnforceFloatingPoint(TP); 46 else if (VT == MVT::vAny) 47 EnforceVector(TP); 48 else { 49 assert((VT < MVT::LAST_VALUETYPE || VT == MVT::iPTR || 50 VT == MVT::iPTRAny) && "Not a concrete type!"); 51 TypeVec.push_back(VT); 52 } 53 } 54 55 56 EEVT::TypeSet::TypeSet(const std::vector<MVT::SimpleValueType> &VTList) { 57 assert(!VTList.empty() && "empty list?"); 58 TypeVec.append(VTList.begin(), VTList.end()); 59 60 if (!VTList.empty()) 61 assert(VTList[0] != MVT::iAny && VTList[0] != MVT::vAny && 62 VTList[0] != MVT::fAny); 63 64 // Verify no duplicates. 65 array_pod_sort(TypeVec.begin(), TypeVec.end()); 66 assert(std::unique(TypeVec.begin(), TypeVec.end()) == TypeVec.end()); 67 } 68 69 /// FillWithPossibleTypes - Set to all legal types and return true, only valid 70 /// on completely unknown type sets. 71 bool EEVT::TypeSet::FillWithPossibleTypes(TreePattern &TP, 72 bool (*Pred)(MVT::SimpleValueType), 73 const char *PredicateName) { 74 assert(isCompletelyUnknown()); 75 const std::vector<MVT::SimpleValueType> &LegalTypes = 76 TP.getDAGPatterns().getTargetInfo().getLegalValueTypes(); 77 78 for (unsigned i = 0, e = LegalTypes.size(); i != e; ++i) 79 if (Pred == 0 || Pred(LegalTypes[i])) 80 TypeVec.push_back(LegalTypes[i]); 81 82 // If we have nothing that matches the predicate, bail out. 83 if (TypeVec.empty()) 84 TP.error("Type inference contradiction found, no " + 85 std::string(PredicateName) + " types found"); 86 // No need to sort with one element. 87 if (TypeVec.size() == 1) return true; 88 89 // Remove duplicates. 90 array_pod_sort(TypeVec.begin(), TypeVec.end()); 91 TypeVec.erase(std::unique(TypeVec.begin(), TypeVec.end()), TypeVec.end()); 92 93 return true; 94 } 95 96 /// hasIntegerTypes - Return true if this TypeSet contains iAny or an 97 /// integer value type. 98 bool EEVT::TypeSet::hasIntegerTypes() const { 99 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 100 if (isInteger(TypeVec[i])) 101 return true; 102 return false; 103 } 104 105 /// hasFloatingPointTypes - Return true if this TypeSet contains an fAny or 106 /// a floating point value type. 107 bool EEVT::TypeSet::hasFloatingPointTypes() const { 108 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 109 if (isFloatingPoint(TypeVec[i])) 110 return true; 111 return false; 112 } 113 114 /// hasVectorTypes - Return true if this TypeSet contains a vAny or a vector 115 /// value type. 116 bool EEVT::TypeSet::hasVectorTypes() const { 117 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 118 if (isVector(TypeVec[i])) 119 return true; 120 return false; 121 } 122 123 124 std::string EEVT::TypeSet::getName() const { 125 if (TypeVec.empty()) return "<empty>"; 126 127 std::string Result; 128 129 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) { 130 std::string VTName = llvm::getEnumName(TypeVec[i]); 131 // Strip off MVT:: prefix if present. 132 if (VTName.substr(0,5) == "MVT::") 133 VTName = VTName.substr(5); 134 if (i) Result += ':'; 135 Result += VTName; 136 } 137 138 if (TypeVec.size() == 1) 139 return Result; 140 return "{" + Result + "}"; 141 } 142 143 /// MergeInTypeInfo - This merges in type information from the specified 144 /// argument. If 'this' changes, it returns true. If the two types are 145 /// contradictory (e.g. merge f32 into i32) then this throws an exception. 146 bool EEVT::TypeSet::MergeInTypeInfo(const EEVT::TypeSet &InVT, TreePattern &TP){ 147 if (InVT.isCompletelyUnknown() || *this == InVT) 148 return false; 149 150 if (isCompletelyUnknown()) { 151 *this = InVT; 152 return true; 153 } 154 155 assert(TypeVec.size() >= 1 && InVT.TypeVec.size() >= 1 && "No unknowns"); 156 157 // Handle the abstract cases, seeing if we can resolve them better. 158 switch (TypeVec[0]) { 159 default: break; 160 case MVT::iPTR: 161 case MVT::iPTRAny: 162 if (InVT.hasIntegerTypes()) { 163 EEVT::TypeSet InCopy(InVT); 164 InCopy.EnforceInteger(TP); 165 InCopy.EnforceScalar(TP); 166 167 if (InCopy.isConcrete()) { 168 // If the RHS has one integer type, upgrade iPTR to i32. 169 TypeVec[0] = InVT.TypeVec[0]; 170 return true; 171 } 172 173 // If the input has multiple scalar integers, this doesn't add any info. 174 if (!InCopy.isCompletelyUnknown()) 175 return false; 176 } 177 break; 178 } 179 180 // If the input constraint is iAny/iPTR and this is an integer type list, 181 // remove non-integer types from the list. 182 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 183 hasIntegerTypes()) { 184 bool MadeChange = EnforceInteger(TP); 185 186 // If we're merging in iPTR/iPTRAny and the node currently has a list of 187 // multiple different integer types, replace them with a single iPTR. 188 if ((InVT.TypeVec[0] == MVT::iPTR || InVT.TypeVec[0] == MVT::iPTRAny) && 189 TypeVec.size() != 1) { 190 TypeVec.resize(1); 191 TypeVec[0] = InVT.TypeVec[0]; 192 MadeChange = true; 193 } 194 195 return MadeChange; 196 } 197 198 // If this is a type list and the RHS is a typelist as well, eliminate entries 199 // from this list that aren't in the other one. 200 bool MadeChange = false; 201 TypeSet InputSet(*this); 202 203 for (unsigned i = 0; i != TypeVec.size(); ++i) { 204 bool InInVT = false; 205 for (unsigned j = 0, e = InVT.TypeVec.size(); j != e; ++j) 206 if (TypeVec[i] == InVT.TypeVec[j]) { 207 InInVT = true; 208 break; 209 } 210 211 if (InInVT) continue; 212 TypeVec.erase(TypeVec.begin()+i--); 213 MadeChange = true; 214 } 215 216 // If we removed all of our types, we have a type contradiction. 217 if (!TypeVec.empty()) 218 return MadeChange; 219 220 // FIXME: Really want an SMLoc here! 221 TP.error("Type inference contradiction found, merging '" + 222 InVT.getName() + "' into '" + InputSet.getName() + "'"); 223 return true; // unreachable 224 } 225 226 /// EnforceInteger - Remove all non-integer types from this set. 227 bool EEVT::TypeSet::EnforceInteger(TreePattern &TP) { 228 // If we know nothing, then get the full set. 229 if (TypeVec.empty()) 230 return FillWithPossibleTypes(TP, isInteger, "integer"); 231 if (!hasFloatingPointTypes()) 232 return false; 233 234 TypeSet InputSet(*this); 235 236 // Filter out all the fp types. 237 for (unsigned i = 0; i != TypeVec.size(); ++i) 238 if (!isInteger(TypeVec[i])) 239 TypeVec.erase(TypeVec.begin()+i--); 240 241 if (TypeVec.empty()) 242 TP.error("Type inference contradiction found, '" + 243 InputSet.getName() + "' needs to be integer"); 244 return true; 245 } 246 247 /// EnforceFloatingPoint - Remove all integer types from this set. 248 bool EEVT::TypeSet::EnforceFloatingPoint(TreePattern &TP) { 249 // If we know nothing, then get the full set. 250 if (TypeVec.empty()) 251 return FillWithPossibleTypes(TP, isFloatingPoint, "floating point"); 252 253 if (!hasIntegerTypes()) 254 return false; 255 256 TypeSet InputSet(*this); 257 258 // Filter out all the fp types. 259 for (unsigned i = 0; i != TypeVec.size(); ++i) 260 if (!isFloatingPoint(TypeVec[i])) 261 TypeVec.erase(TypeVec.begin()+i--); 262 263 if (TypeVec.empty()) 264 TP.error("Type inference contradiction found, '" + 265 InputSet.getName() + "' needs to be floating point"); 266 return true; 267 } 268 269 /// EnforceScalar - Remove all vector types from this. 270 bool EEVT::TypeSet::EnforceScalar(TreePattern &TP) { 271 // If we know nothing, then get the full set. 272 if (TypeVec.empty()) 273 return FillWithPossibleTypes(TP, isScalar, "scalar"); 274 275 if (!hasVectorTypes()) 276 return false; 277 278 TypeSet InputSet(*this); 279 280 // Filter out all the vector types. 281 for (unsigned i = 0; i != TypeVec.size(); ++i) 282 if (!isScalar(TypeVec[i])) 283 TypeVec.erase(TypeVec.begin()+i--); 284 285 if (TypeVec.empty()) 286 TP.error("Type inference contradiction found, '" + 287 InputSet.getName() + "' needs to be scalar"); 288 return true; 289 } 290 291 /// EnforceVector - Remove all vector types from this. 292 bool EEVT::TypeSet::EnforceVector(TreePattern &TP) { 293 // If we know nothing, then get the full set. 294 if (TypeVec.empty()) 295 return FillWithPossibleTypes(TP, isVector, "vector"); 296 297 TypeSet InputSet(*this); 298 bool MadeChange = false; 299 300 // Filter out all the scalar types. 301 for (unsigned i = 0; i != TypeVec.size(); ++i) 302 if (!isVector(TypeVec[i])) { 303 TypeVec.erase(TypeVec.begin()+i--); 304 MadeChange = true; 305 } 306 307 if (TypeVec.empty()) 308 TP.error("Type inference contradiction found, '" + 309 InputSet.getName() + "' needs to be a vector"); 310 return MadeChange; 311 } 312 313 314 315 /// EnforceSmallerThan - 'this' must be a smaller VT than Other. Update 316 /// this an other based on this information. 317 bool EEVT::TypeSet::EnforceSmallerThan(EEVT::TypeSet &Other, TreePattern &TP) { 318 // Both operands must be integer or FP, but we don't care which. 319 bool MadeChange = false; 320 321 if (isCompletelyUnknown()) 322 MadeChange = FillWithPossibleTypes(TP); 323 324 if (Other.isCompletelyUnknown()) 325 MadeChange = Other.FillWithPossibleTypes(TP); 326 327 // If one side is known to be integer or known to be FP but the other side has 328 // no information, get at least the type integrality info in there. 329 if (!hasFloatingPointTypes()) 330 MadeChange |= Other.EnforceInteger(TP); 331 else if (!hasIntegerTypes()) 332 MadeChange |= Other.EnforceFloatingPoint(TP); 333 if (!Other.hasFloatingPointTypes()) 334 MadeChange |= EnforceInteger(TP); 335 else if (!Other.hasIntegerTypes()) 336 MadeChange |= EnforceFloatingPoint(TP); 337 338 assert(!isCompletelyUnknown() && !Other.isCompletelyUnknown() && 339 "Should have a type list now"); 340 341 // If one contains vectors but the other doesn't pull vectors out. 342 if (!hasVectorTypes()) 343 MadeChange |= Other.EnforceScalar(TP); 344 if (!hasVectorTypes()) 345 MadeChange |= EnforceScalar(TP); 346 347 if (TypeVec.size() == 1 && Other.TypeVec.size() == 1) { 348 // If we are down to concrete types, this code does not currently 349 // handle nodes which have multiple types, where some types are 350 // integer, and some are fp. Assert that this is not the case. 351 assert(!(hasIntegerTypes() && hasFloatingPointTypes()) && 352 !(Other.hasIntegerTypes() && Other.hasFloatingPointTypes()) && 353 "SDTCisOpSmallerThanOp does not handle mixed int/fp types!"); 354 355 // Otherwise, if these are both vector types, either this vector 356 // must have a larger bitsize than the other, or this element type 357 // must be larger than the other. 358 EVT Type(TypeVec[0]); 359 EVT OtherType(Other.TypeVec[0]); 360 361 if (hasVectorTypes() && Other.hasVectorTypes()) { 362 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 363 if (Type.getVectorElementType().getSizeInBits() 364 >= OtherType.getVectorElementType().getSizeInBits()) 365 TP.error("Type inference contradiction found, '" + 366 getName() + "' element type not smaller than '" + 367 Other.getName() +"'!"); 368 } 369 else 370 // For scalar types, the bitsize of this type must be larger 371 // than that of the other. 372 if (Type.getSizeInBits() >= OtherType.getSizeInBits()) 373 TP.error("Type inference contradiction found, '" + 374 getName() + "' is not smaller than '" + 375 Other.getName() +"'!"); 376 377 } 378 379 380 // Handle int and fp as disjoint sets. This won't work for patterns 381 // that have mixed fp/int types but those are likely rare and would 382 // not have been accepted by this code previously. 383 384 // Okay, find the smallest type from the current set and remove it from the 385 // largest set. 386 MVT::SimpleValueType SmallestInt = MVT::LAST_VALUETYPE; 387 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 388 if (isInteger(TypeVec[i])) { 389 SmallestInt = TypeVec[i]; 390 break; 391 } 392 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 393 if (isInteger(TypeVec[i]) && TypeVec[i] < SmallestInt) 394 SmallestInt = TypeVec[i]; 395 396 MVT::SimpleValueType SmallestFP = MVT::LAST_VALUETYPE; 397 for (unsigned i = 0, e = TypeVec.size(); i != e; ++i) 398 if (isFloatingPoint(TypeVec[i])) { 399 SmallestFP = TypeVec[i]; 400 break; 401 } 402 for (unsigned i = 1, e = TypeVec.size(); i != e; ++i) 403 if (isFloatingPoint(TypeVec[i]) && TypeVec[i] < SmallestFP) 404 SmallestFP = TypeVec[i]; 405 406 int OtherIntSize = 0; 407 int OtherFPSize = 0; 408 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 409 Other.TypeVec.begin(); 410 TVI != Other.TypeVec.end(); 411 /* NULL */) { 412 if (isInteger(*TVI)) { 413 ++OtherIntSize; 414 if (*TVI == SmallestInt) { 415 TVI = Other.TypeVec.erase(TVI); 416 --OtherIntSize; 417 MadeChange = true; 418 continue; 419 } 420 } 421 else if (isFloatingPoint(*TVI)) { 422 ++OtherFPSize; 423 if (*TVI == SmallestFP) { 424 TVI = Other.TypeVec.erase(TVI); 425 --OtherFPSize; 426 MadeChange = true; 427 continue; 428 } 429 } 430 ++TVI; 431 } 432 433 // If this is the only type in the large set, the constraint can never be 434 // satisfied. 435 if ((Other.hasIntegerTypes() && OtherIntSize == 0) 436 || (Other.hasFloatingPointTypes() && OtherFPSize == 0)) 437 TP.error("Type inference contradiction found, '" + 438 Other.getName() + "' has nothing larger than '" + getName() +"'!"); 439 440 // Okay, find the largest type in the Other set and remove it from the 441 // current set. 442 MVT::SimpleValueType LargestInt = MVT::Other; 443 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 444 if (isInteger(Other.TypeVec[i])) { 445 LargestInt = Other.TypeVec[i]; 446 break; 447 } 448 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 449 if (isInteger(Other.TypeVec[i]) && Other.TypeVec[i] > LargestInt) 450 LargestInt = Other.TypeVec[i]; 451 452 MVT::SimpleValueType LargestFP = MVT::Other; 453 for (unsigned i = 0, e = Other.TypeVec.size(); i != e; ++i) 454 if (isFloatingPoint(Other.TypeVec[i])) { 455 LargestFP = Other.TypeVec[i]; 456 break; 457 } 458 for (unsigned i = 1, e = Other.TypeVec.size(); i != e; ++i) 459 if (isFloatingPoint(Other.TypeVec[i]) && Other.TypeVec[i] > LargestFP) 460 LargestFP = Other.TypeVec[i]; 461 462 int IntSize = 0; 463 int FPSize = 0; 464 for (SmallVector<MVT::SimpleValueType, 2>::iterator TVI = 465 TypeVec.begin(); 466 TVI != TypeVec.end(); 467 /* NULL */) { 468 if (isInteger(*TVI)) { 469 ++IntSize; 470 if (*TVI == LargestInt) { 471 TVI = TypeVec.erase(TVI); 472 --IntSize; 473 MadeChange = true; 474 continue; 475 } 476 } 477 else if (isFloatingPoint(*TVI)) { 478 ++FPSize; 479 if (*TVI == LargestFP) { 480 TVI = TypeVec.erase(TVI); 481 --FPSize; 482 MadeChange = true; 483 continue; 484 } 485 } 486 ++TVI; 487 } 488 489 // If this is the only type in the small set, the constraint can never be 490 // satisfied. 491 if ((hasIntegerTypes() && IntSize == 0) 492 || (hasFloatingPointTypes() && FPSize == 0)) 493 TP.error("Type inference contradiction found, '" + 494 getName() + "' has nothing smaller than '" + Other.getName()+"'!"); 495 496 return MadeChange; 497 } 498 499 /// EnforceVectorEltTypeIs - 'this' is now constrainted to be a vector type 500 /// whose element is specified by VTOperand. 501 bool EEVT::TypeSet::EnforceVectorEltTypeIs(EEVT::TypeSet &VTOperand, 502 TreePattern &TP) { 503 // "This" must be a vector and "VTOperand" must be a scalar. 504 bool MadeChange = false; 505 MadeChange |= EnforceVector(TP); 506 MadeChange |= VTOperand.EnforceScalar(TP); 507 508 // If we know the vector type, it forces the scalar to agree. 509 if (isConcrete()) { 510 EVT IVT = getConcrete(); 511 IVT = IVT.getVectorElementType(); 512 return MadeChange | 513 VTOperand.MergeInTypeInfo(IVT.getSimpleVT().SimpleTy, TP); 514 } 515 516 // If the scalar type is known, filter out vector types whose element types 517 // disagree. 518 if (!VTOperand.isConcrete()) 519 return MadeChange; 520 521 MVT::SimpleValueType VT = VTOperand.getConcrete(); 522 523 TypeSet InputSet(*this); 524 525 // Filter out all the types which don't have the right element type. 526 for (unsigned i = 0; i != TypeVec.size(); ++i) { 527 assert(isVector(TypeVec[i]) && "EnforceVector didn't work"); 528 if (EVT(TypeVec[i]).getVectorElementType().getSimpleVT().SimpleTy != VT) { 529 TypeVec.erase(TypeVec.begin()+i--); 530 MadeChange = true; 531 } 532 } 533 534 if (TypeVec.empty()) // FIXME: Really want an SMLoc here! 535 TP.error("Type inference contradiction found, forcing '" + 536 InputSet.getName() + "' to have a vector element"); 537 return MadeChange; 538 } 539 540 /// EnforceVectorSubVectorTypeIs - 'this' is now constrainted to be a 541 /// vector type specified by VTOperand. 542 bool EEVT::TypeSet::EnforceVectorSubVectorTypeIs(EEVT::TypeSet &VTOperand, 543 TreePattern &TP) { 544 // "This" must be a vector and "VTOperand" must be a vector. 545 bool MadeChange = false; 546 MadeChange |= EnforceVector(TP); 547 MadeChange |= VTOperand.EnforceVector(TP); 548 549 // "This" must be larger than "VTOperand." 550 MadeChange |= VTOperand.EnforceSmallerThan(*this, TP); 551 552 // If we know the vector type, it forces the scalar types to agree. 553 if (isConcrete()) { 554 EVT IVT = getConcrete(); 555 IVT = IVT.getVectorElementType(); 556 557 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 558 MadeChange |= VTOperand.EnforceVectorEltTypeIs(EltTypeSet, TP); 559 } else if (VTOperand.isConcrete()) { 560 EVT IVT = VTOperand.getConcrete(); 561 IVT = IVT.getVectorElementType(); 562 563 EEVT::TypeSet EltTypeSet(IVT.getSimpleVT().SimpleTy, TP); 564 MadeChange |= EnforceVectorEltTypeIs(EltTypeSet, TP); 565 } 566 567 return MadeChange; 568 } 569 570 //===----------------------------------------------------------------------===// 571 // Helpers for working with extended types. 572 573 bool RecordPtrCmp::operator()(const Record *LHS, const Record *RHS) const { 574 return LHS->getID() < RHS->getID(); 575 } 576 577 /// Dependent variable map for CodeGenDAGPattern variant generation 578 typedef std::map<std::string, int> DepVarMap; 579 580 /// Const iterator shorthand for DepVarMap 581 typedef DepVarMap::const_iterator DepVarMap_citer; 582 583 static void FindDepVarsOf(TreePatternNode *N, DepVarMap &DepMap) { 584 if (N->isLeaf()) { 585 if (dynamic_cast<DefInit*>(N->getLeafValue()) != NULL) 586 DepMap[N->getName()]++; 587 } else { 588 for (size_t i = 0, e = N->getNumChildren(); i != e; ++i) 589 FindDepVarsOf(N->getChild(i), DepMap); 590 } 591 } 592 593 /// Find dependent variables within child patterns 594 static void FindDepVars(TreePatternNode *N, MultipleUseVarSet &DepVars) { 595 DepVarMap depcounts; 596 FindDepVarsOf(N, depcounts); 597 for (DepVarMap_citer i = depcounts.begin(); i != depcounts.end(); ++i) { 598 if (i->second > 1) // std::pair<std::string, int> 599 DepVars.insert(i->first); 600 } 601 } 602 603 #ifndef NDEBUG 604 /// Dump the dependent variable set: 605 static void DumpDepVars(MultipleUseVarSet &DepVars) { 606 if (DepVars.empty()) { 607 DEBUG(errs() << "<empty set>"); 608 } else { 609 DEBUG(errs() << "[ "); 610 for (MultipleUseVarSet::const_iterator i = DepVars.begin(), 611 e = DepVars.end(); i != e; ++i) { 612 DEBUG(errs() << (*i) << " "); 613 } 614 DEBUG(errs() << "]"); 615 } 616 } 617 #endif 618 619 620 //===----------------------------------------------------------------------===// 621 // TreePredicateFn Implementation 622 //===----------------------------------------------------------------------===// 623 624 /// TreePredicateFn constructor. Here 'N' is a subclass of PatFrag. 625 TreePredicateFn::TreePredicateFn(TreePattern *N) : PatFragRec(N) { 626 assert((getPredCode().empty() || getImmCode().empty()) && 627 ".td file corrupt: can't have a node predicate *and* an imm predicate"); 628 } 629 630 std::string TreePredicateFn::getPredCode() const { 631 return PatFragRec->getRecord()->getValueAsCode("PredicateCode"); 632 } 633 634 std::string TreePredicateFn::getImmCode() const { 635 return PatFragRec->getRecord()->getValueAsCode("ImmediateCode"); 636 } 637 638 639 /// isAlwaysTrue - Return true if this is a noop predicate. 640 bool TreePredicateFn::isAlwaysTrue() const { 641 return getPredCode().empty() && getImmCode().empty(); 642 } 643 644 /// Return the name to use in the generated code to reference this, this is 645 /// "Predicate_foo" if from a pattern fragment "foo". 646 std::string TreePredicateFn::getFnName() const { 647 return "Predicate_" + PatFragRec->getRecord()->getName(); 648 } 649 650 /// getCodeToRunOnSDNode - Return the code for the function body that 651 /// evaluates this predicate. The argument is expected to be in "Node", 652 /// not N. This handles casting and conversion to a concrete node type as 653 /// appropriate. 654 std::string TreePredicateFn::getCodeToRunOnSDNode() const { 655 // Handle immediate predicates first. 656 std::string ImmCode = getImmCode(); 657 if (!ImmCode.empty()) { 658 std::string Result = 659 " int64_t Imm = cast<ConstantSDNode>(Node)->getSExtValue();\n"; 660 return Result + ImmCode; 661 } 662 663 // Handle arbitrary node predicates. 664 assert(!getPredCode().empty() && "Don't have any predicate code!"); 665 std::string ClassName; 666 if (PatFragRec->getOnlyTree()->isLeaf()) 667 ClassName = "SDNode"; 668 else { 669 Record *Op = PatFragRec->getOnlyTree()->getOperator(); 670 ClassName = PatFragRec->getDAGPatterns().getSDNodeInfo(Op).getSDClassName(); 671 } 672 std::string Result; 673 if (ClassName == "SDNode") 674 Result = " SDNode *N = Node;\n"; 675 else 676 Result = " " + ClassName + "*N = cast<" + ClassName + ">(Node);\n"; 677 678 return Result + getPredCode(); 679 } 680 681 //===----------------------------------------------------------------------===// 682 // PatternToMatch implementation 683 // 684 685 686 /// getPatternSize - Return the 'size' of this pattern. We want to match large 687 /// patterns before small ones. This is used to determine the size of a 688 /// pattern. 689 static unsigned getPatternSize(const TreePatternNode *P, 690 const CodeGenDAGPatterns &CGP) { 691 unsigned Size = 3; // The node itself. 692 // If the root node is a ConstantSDNode, increases its size. 693 // e.g. (set R32:$dst, 0). 694 if (P->isLeaf() && dynamic_cast<IntInit*>(P->getLeafValue())) 695 Size += 2; 696 697 // FIXME: This is a hack to statically increase the priority of patterns 698 // which maps a sub-dag to a complex pattern. e.g. favors LEA over ADD. 699 // Later we can allow complexity / cost for each pattern to be (optionally) 700 // specified. To get best possible pattern match we'll need to dynamically 701 // calculate the complexity of all patterns a dag can potentially map to. 702 const ComplexPattern *AM = P->getComplexPatternInfo(CGP); 703 if (AM) 704 Size += AM->getNumOperands() * 3; 705 706 // If this node has some predicate function that must match, it adds to the 707 // complexity of this node. 708 if (!P->getPredicateFns().empty()) 709 ++Size; 710 711 // Count children in the count if they are also nodes. 712 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) { 713 TreePatternNode *Child = P->getChild(i); 714 if (!Child->isLeaf() && Child->getNumTypes() && 715 Child->getType(0) != MVT::Other) 716 Size += getPatternSize(Child, CGP); 717 else if (Child->isLeaf()) { 718 if (dynamic_cast<IntInit*>(Child->getLeafValue())) 719 Size += 5; // Matches a ConstantSDNode (+3) and a specific value (+2). 720 else if (Child->getComplexPatternInfo(CGP)) 721 Size += getPatternSize(Child, CGP); 722 else if (!Child->getPredicateFns().empty()) 723 ++Size; 724 } 725 } 726 727 return Size; 728 } 729 730 /// Compute the complexity metric for the input pattern. This roughly 731 /// corresponds to the number of nodes that are covered. 732 unsigned PatternToMatch:: 733 getPatternComplexity(const CodeGenDAGPatterns &CGP) const { 734 return getPatternSize(getSrcPattern(), CGP) + getAddedComplexity(); 735 } 736 737 738 /// getPredicateCheck - Return a single string containing all of this 739 /// pattern's predicates concatenated with "&&" operators. 740 /// 741 std::string PatternToMatch::getPredicateCheck() const { 742 std::string PredicateCheck; 743 for (unsigned i = 0, e = Predicates->getSize(); i != e; ++i) { 744 if (DefInit *Pred = dynamic_cast<DefInit*>(Predicates->getElement(i))) { 745 Record *Def = Pred->getDef(); 746 if (!Def->isSubClassOf("Predicate")) { 747 #ifndef NDEBUG 748 Def->dump(); 749 #endif 750 assert(0 && "Unknown predicate type!"); 751 } 752 if (!PredicateCheck.empty()) 753 PredicateCheck += " && "; 754 PredicateCheck += "(" + Def->getValueAsString("CondString") + ")"; 755 } 756 } 757 758 return PredicateCheck; 759 } 760 761 //===----------------------------------------------------------------------===// 762 // SDTypeConstraint implementation 763 // 764 765 SDTypeConstraint::SDTypeConstraint(Record *R) { 766 OperandNo = R->getValueAsInt("OperandNum"); 767 768 if (R->isSubClassOf("SDTCisVT")) { 769 ConstraintType = SDTCisVT; 770 x.SDTCisVT_Info.VT = getValueType(R->getValueAsDef("VT")); 771 if (x.SDTCisVT_Info.VT == MVT::isVoid) 772 throw TGError(R->getLoc(), "Cannot use 'Void' as type to SDTCisVT"); 773 774 } else if (R->isSubClassOf("SDTCisPtrTy")) { 775 ConstraintType = SDTCisPtrTy; 776 } else if (R->isSubClassOf("SDTCisInt")) { 777 ConstraintType = SDTCisInt; 778 } else if (R->isSubClassOf("SDTCisFP")) { 779 ConstraintType = SDTCisFP; 780 } else if (R->isSubClassOf("SDTCisVec")) { 781 ConstraintType = SDTCisVec; 782 } else if (R->isSubClassOf("SDTCisSameAs")) { 783 ConstraintType = SDTCisSameAs; 784 x.SDTCisSameAs_Info.OtherOperandNum = R->getValueAsInt("OtherOperandNum"); 785 } else if (R->isSubClassOf("SDTCisVTSmallerThanOp")) { 786 ConstraintType = SDTCisVTSmallerThanOp; 787 x.SDTCisVTSmallerThanOp_Info.OtherOperandNum = 788 R->getValueAsInt("OtherOperandNum"); 789 } else if (R->isSubClassOf("SDTCisOpSmallerThanOp")) { 790 ConstraintType = SDTCisOpSmallerThanOp; 791 x.SDTCisOpSmallerThanOp_Info.BigOperandNum = 792 R->getValueAsInt("BigOperandNum"); 793 } else if (R->isSubClassOf("SDTCisEltOfVec")) { 794 ConstraintType = SDTCisEltOfVec; 795 x.SDTCisEltOfVec_Info.OtherOperandNum = R->getValueAsInt("OtherOpNum"); 796 } else if (R->isSubClassOf("SDTCisSubVecOfVec")) { 797 ConstraintType = SDTCisSubVecOfVec; 798 x.SDTCisSubVecOfVec_Info.OtherOperandNum = 799 R->getValueAsInt("OtherOpNum"); 800 } else { 801 errs() << "Unrecognized SDTypeConstraint '" << R->getName() << "'!\n"; 802 exit(1); 803 } 804 } 805 806 /// getOperandNum - Return the node corresponding to operand #OpNo in tree 807 /// N, and the result number in ResNo. 808 static TreePatternNode *getOperandNum(unsigned OpNo, TreePatternNode *N, 809 const SDNodeInfo &NodeInfo, 810 unsigned &ResNo) { 811 unsigned NumResults = NodeInfo.getNumResults(); 812 if (OpNo < NumResults) { 813 ResNo = OpNo; 814 return N; 815 } 816 817 OpNo -= NumResults; 818 819 if (OpNo >= N->getNumChildren()) { 820 errs() << "Invalid operand number in type constraint " 821 << (OpNo+NumResults) << " "; 822 N->dump(); 823 errs() << '\n'; 824 exit(1); 825 } 826 827 return N->getChild(OpNo); 828 } 829 830 /// ApplyTypeConstraint - Given a node in a pattern, apply this type 831 /// constraint to the nodes operands. This returns true if it makes a 832 /// change, false otherwise. If a type contradiction is found, throw an 833 /// exception. 834 bool SDTypeConstraint::ApplyTypeConstraint(TreePatternNode *N, 835 const SDNodeInfo &NodeInfo, 836 TreePattern &TP) const { 837 unsigned ResNo = 0; // The result number being referenced. 838 TreePatternNode *NodeToApply = getOperandNum(OperandNo, N, NodeInfo, ResNo); 839 840 switch (ConstraintType) { 841 default: assert(0 && "Unknown constraint type!"); 842 case SDTCisVT: 843 // Operand must be a particular type. 844 return NodeToApply->UpdateNodeType(ResNo, x.SDTCisVT_Info.VT, TP); 845 case SDTCisPtrTy: 846 // Operand must be same as target pointer type. 847 return NodeToApply->UpdateNodeType(ResNo, MVT::iPTR, TP); 848 case SDTCisInt: 849 // Require it to be one of the legal integer VTs. 850 return NodeToApply->getExtType(ResNo).EnforceInteger(TP); 851 case SDTCisFP: 852 // Require it to be one of the legal fp VTs. 853 return NodeToApply->getExtType(ResNo).EnforceFloatingPoint(TP); 854 case SDTCisVec: 855 // Require it to be one of the legal vector VTs. 856 return NodeToApply->getExtType(ResNo).EnforceVector(TP); 857 case SDTCisSameAs: { 858 unsigned OResNo = 0; 859 TreePatternNode *OtherNode = 860 getOperandNum(x.SDTCisSameAs_Info.OtherOperandNum, N, NodeInfo, OResNo); 861 return NodeToApply->UpdateNodeType(OResNo, OtherNode->getExtType(ResNo),TP)| 862 OtherNode->UpdateNodeType(ResNo,NodeToApply->getExtType(OResNo),TP); 863 } 864 case SDTCisVTSmallerThanOp: { 865 // The NodeToApply must be a leaf node that is a VT. OtherOperandNum must 866 // have an integer type that is smaller than the VT. 867 if (!NodeToApply->isLeaf() || 868 !dynamic_cast<DefInit*>(NodeToApply->getLeafValue()) || 869 !static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef() 870 ->isSubClassOf("ValueType")) 871 TP.error(N->getOperator()->getName() + " expects a VT operand!"); 872 MVT::SimpleValueType VT = 873 getValueType(static_cast<DefInit*>(NodeToApply->getLeafValue())->getDef()); 874 875 EEVT::TypeSet TypeListTmp(VT, TP); 876 877 unsigned OResNo = 0; 878 TreePatternNode *OtherNode = 879 getOperandNum(x.SDTCisVTSmallerThanOp_Info.OtherOperandNum, N, NodeInfo, 880 OResNo); 881 882 return TypeListTmp.EnforceSmallerThan(OtherNode->getExtType(OResNo), TP); 883 } 884 case SDTCisOpSmallerThanOp: { 885 unsigned BResNo = 0; 886 TreePatternNode *BigOperand = 887 getOperandNum(x.SDTCisOpSmallerThanOp_Info.BigOperandNum, N, NodeInfo, 888 BResNo); 889 return NodeToApply->getExtType(ResNo). 890 EnforceSmallerThan(BigOperand->getExtType(BResNo), TP); 891 } 892 case SDTCisEltOfVec: { 893 unsigned VResNo = 0; 894 TreePatternNode *VecOperand = 895 getOperandNum(x.SDTCisEltOfVec_Info.OtherOperandNum, N, NodeInfo, 896 VResNo); 897 898 // Filter vector types out of VecOperand that don't have the right element 899 // type. 900 return VecOperand->getExtType(VResNo). 901 EnforceVectorEltTypeIs(NodeToApply->getExtType(ResNo), TP); 902 } 903 case SDTCisSubVecOfVec: { 904 unsigned VResNo = 0; 905 TreePatternNode *BigVecOperand = 906 getOperandNum(x.SDTCisSubVecOfVec_Info.OtherOperandNum, N, NodeInfo, 907 VResNo); 908 909 // Filter vector types out of BigVecOperand that don't have the 910 // right subvector type. 911 return BigVecOperand->getExtType(VResNo). 912 EnforceVectorSubVectorTypeIs(NodeToApply->getExtType(ResNo), TP); 913 } 914 } 915 return false; 916 } 917 918 //===----------------------------------------------------------------------===// 919 // SDNodeInfo implementation 920 // 921 SDNodeInfo::SDNodeInfo(Record *R) : Def(R) { 922 EnumName = R->getValueAsString("Opcode"); 923 SDClassName = R->getValueAsString("SDClass"); 924 Record *TypeProfile = R->getValueAsDef("TypeProfile"); 925 NumResults = TypeProfile->getValueAsInt("NumResults"); 926 NumOperands = TypeProfile->getValueAsInt("NumOperands"); 927 928 // Parse the properties. 929 Properties = 0; 930 std::vector<Record*> PropList = R->getValueAsListOfDefs("Properties"); 931 for (unsigned i = 0, e = PropList.size(); i != e; ++i) { 932 if (PropList[i]->getName() == "SDNPCommutative") { 933 Properties |= 1 << SDNPCommutative; 934 } else if (PropList[i]->getName() == "SDNPAssociative") { 935 Properties |= 1 << SDNPAssociative; 936 } else if (PropList[i]->getName() == "SDNPHasChain") { 937 Properties |= 1 << SDNPHasChain; 938 } else if (PropList[i]->getName() == "SDNPOutGlue") { 939 Properties |= 1 << SDNPOutGlue; 940 } else if (PropList[i]->getName() == "SDNPInGlue") { 941 Properties |= 1 << SDNPInGlue; 942 } else if (PropList[i]->getName() == "SDNPOptInGlue") { 943 Properties |= 1 << SDNPOptInGlue; 944 } else if (PropList[i]->getName() == "SDNPMayStore") { 945 Properties |= 1 << SDNPMayStore; 946 } else if (PropList[i]->getName() == "SDNPMayLoad") { 947 Properties |= 1 << SDNPMayLoad; 948 } else if (PropList[i]->getName() == "SDNPSideEffect") { 949 Properties |= 1 << SDNPSideEffect; 950 } else if (PropList[i]->getName() == "SDNPMemOperand") { 951 Properties |= 1 << SDNPMemOperand; 952 } else if (PropList[i]->getName() == "SDNPVariadic") { 953 Properties |= 1 << SDNPVariadic; 954 } else { 955 errs() << "Unknown SD Node property '" << PropList[i]->getName() 956 << "' on node '" << R->getName() << "'!\n"; 957 exit(1); 958 } 959 } 960 961 962 // Parse the type constraints. 963 std::vector<Record*> ConstraintList = 964 TypeProfile->getValueAsListOfDefs("Constraints"); 965 TypeConstraints.assign(ConstraintList.begin(), ConstraintList.end()); 966 } 967 968 /// getKnownType - If the type constraints on this node imply a fixed type 969 /// (e.g. all stores return void, etc), then return it as an 970 /// MVT::SimpleValueType. Otherwise, return EEVT::Other. 971 MVT::SimpleValueType SDNodeInfo::getKnownType(unsigned ResNo) const { 972 unsigned NumResults = getNumResults(); 973 assert(NumResults <= 1 && 974 "We only work with nodes with zero or one result so far!"); 975 assert(ResNo == 0 && "Only handles single result nodes so far"); 976 977 for (unsigned i = 0, e = TypeConstraints.size(); i != e; ++i) { 978 // Make sure that this applies to the correct node result. 979 if (TypeConstraints[i].OperandNo >= NumResults) // FIXME: need value # 980 continue; 981 982 switch (TypeConstraints[i].ConstraintType) { 983 default: break; 984 case SDTypeConstraint::SDTCisVT: 985 return TypeConstraints[i].x.SDTCisVT_Info.VT; 986 case SDTypeConstraint::SDTCisPtrTy: 987 return MVT::iPTR; 988 } 989 } 990 return MVT::Other; 991 } 992 993 //===----------------------------------------------------------------------===// 994 // TreePatternNode implementation 995 // 996 997 TreePatternNode::~TreePatternNode() { 998 #if 0 // FIXME: implement refcounted tree nodes! 999 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1000 delete getChild(i); 1001 #endif 1002 } 1003 1004 static unsigned GetNumNodeResults(Record *Operator, CodeGenDAGPatterns &CDP) { 1005 if (Operator->getName() == "set" || 1006 Operator->getName() == "implicit") 1007 return 0; // All return nothing. 1008 1009 if (Operator->isSubClassOf("Intrinsic")) 1010 return CDP.getIntrinsic(Operator).IS.RetVTs.size(); 1011 1012 if (Operator->isSubClassOf("SDNode")) 1013 return CDP.getSDNodeInfo(Operator).getNumResults(); 1014 1015 if (Operator->isSubClassOf("PatFrag")) { 1016 // If we've already parsed this pattern fragment, get it. Otherwise, handle 1017 // the forward reference case where one pattern fragment references another 1018 // before it is processed. 1019 if (TreePattern *PFRec = CDP.getPatternFragmentIfRead(Operator)) 1020 return PFRec->getOnlyTree()->getNumTypes(); 1021 1022 // Get the result tree. 1023 DagInit *Tree = Operator->getValueAsDag("Fragment"); 1024 Record *Op = 0; 1025 if (Tree && dynamic_cast<DefInit*>(Tree->getOperator())) 1026 Op = dynamic_cast<DefInit*>(Tree->getOperator())->getDef(); 1027 assert(Op && "Invalid Fragment"); 1028 return GetNumNodeResults(Op, CDP); 1029 } 1030 1031 if (Operator->isSubClassOf("Instruction")) { 1032 CodeGenInstruction &InstInfo = CDP.getTargetInfo().getInstruction(Operator); 1033 1034 // FIXME: Should allow access to all the results here. 1035 unsigned NumDefsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1036 1037 // Add on one implicit def if it has a resolvable type. 1038 if (InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()) !=MVT::Other) 1039 ++NumDefsToAdd; 1040 return NumDefsToAdd; 1041 } 1042 1043 if (Operator->isSubClassOf("SDNodeXForm")) 1044 return 1; // FIXME: Generalize SDNodeXForm 1045 1046 Operator->dump(); 1047 errs() << "Unhandled node in GetNumNodeResults\n"; 1048 exit(1); 1049 } 1050 1051 void TreePatternNode::print(raw_ostream &OS) const { 1052 if (isLeaf()) 1053 OS << *getLeafValue(); 1054 else 1055 OS << '(' << getOperator()->getName(); 1056 1057 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1058 OS << ':' << getExtType(i).getName(); 1059 1060 if (!isLeaf()) { 1061 if (getNumChildren() != 0) { 1062 OS << " "; 1063 getChild(0)->print(OS); 1064 for (unsigned i = 1, e = getNumChildren(); i != e; ++i) { 1065 OS << ", "; 1066 getChild(i)->print(OS); 1067 } 1068 } 1069 OS << ")"; 1070 } 1071 1072 for (unsigned i = 0, e = PredicateFns.size(); i != e; ++i) 1073 OS << "<<P:" << PredicateFns[i].getFnName() << ">>"; 1074 if (TransformFn) 1075 OS << "<<X:" << TransformFn->getName() << ">>"; 1076 if (!getName().empty()) 1077 OS << ":$" << getName(); 1078 1079 } 1080 void TreePatternNode::dump() const { 1081 print(errs()); 1082 } 1083 1084 /// isIsomorphicTo - Return true if this node is recursively 1085 /// isomorphic to the specified node. For this comparison, the node's 1086 /// entire state is considered. The assigned name is ignored, since 1087 /// nodes with differing names are considered isomorphic. However, if 1088 /// the assigned name is present in the dependent variable set, then 1089 /// the assigned name is considered significant and the node is 1090 /// isomorphic if the names match. 1091 bool TreePatternNode::isIsomorphicTo(const TreePatternNode *N, 1092 const MultipleUseVarSet &DepVars) const { 1093 if (N == this) return true; 1094 if (N->isLeaf() != isLeaf() || getExtTypes() != N->getExtTypes() || 1095 getPredicateFns() != N->getPredicateFns() || 1096 getTransformFn() != N->getTransformFn()) 1097 return false; 1098 1099 if (isLeaf()) { 1100 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1101 if (DefInit *NDI = dynamic_cast<DefInit*>(N->getLeafValue())) { 1102 return ((DI->getDef() == NDI->getDef()) 1103 && (DepVars.find(getName()) == DepVars.end() 1104 || getName() == N->getName())); 1105 } 1106 } 1107 return getLeafValue() == N->getLeafValue(); 1108 } 1109 1110 if (N->getOperator() != getOperator() || 1111 N->getNumChildren() != getNumChildren()) return false; 1112 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1113 if (!getChild(i)->isIsomorphicTo(N->getChild(i), DepVars)) 1114 return false; 1115 return true; 1116 } 1117 1118 /// clone - Make a copy of this tree and all of its children. 1119 /// 1120 TreePatternNode *TreePatternNode::clone() const { 1121 TreePatternNode *New; 1122 if (isLeaf()) { 1123 New = new TreePatternNode(getLeafValue(), getNumTypes()); 1124 } else { 1125 std::vector<TreePatternNode*> CChildren; 1126 CChildren.reserve(Children.size()); 1127 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1128 CChildren.push_back(getChild(i)->clone()); 1129 New = new TreePatternNode(getOperator(), CChildren, getNumTypes()); 1130 } 1131 New->setName(getName()); 1132 New->Types = Types; 1133 New->setPredicateFns(getPredicateFns()); 1134 New->setTransformFn(getTransformFn()); 1135 return New; 1136 } 1137 1138 /// RemoveAllTypes - Recursively strip all the types of this tree. 1139 void TreePatternNode::RemoveAllTypes() { 1140 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1141 Types[i] = EEVT::TypeSet(); // Reset to unknown type. 1142 if (isLeaf()) return; 1143 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1144 getChild(i)->RemoveAllTypes(); 1145 } 1146 1147 1148 /// SubstituteFormalArguments - Replace the formal arguments in this tree 1149 /// with actual values specified by ArgMap. 1150 void TreePatternNode:: 1151 SubstituteFormalArguments(std::map<std::string, TreePatternNode*> &ArgMap) { 1152 if (isLeaf()) return; 1153 1154 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1155 TreePatternNode *Child = getChild(i); 1156 if (Child->isLeaf()) { 1157 Init *Val = Child->getLeafValue(); 1158 if (dynamic_cast<DefInit*>(Val) && 1159 static_cast<DefInit*>(Val)->getDef()->getName() == "node") { 1160 // We found a use of a formal argument, replace it with its value. 1161 TreePatternNode *NewChild = ArgMap[Child->getName()]; 1162 assert(NewChild && "Couldn't find formal argument!"); 1163 assert((Child->getPredicateFns().empty() || 1164 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1165 "Non-empty child predicate clobbered!"); 1166 setChild(i, NewChild); 1167 } 1168 } else { 1169 getChild(i)->SubstituteFormalArguments(ArgMap); 1170 } 1171 } 1172 } 1173 1174 1175 /// InlinePatternFragments - If this pattern refers to any pattern 1176 /// fragments, inline them into place, giving us a pattern without any 1177 /// PatFrag references. 1178 TreePatternNode *TreePatternNode::InlinePatternFragments(TreePattern &TP) { 1179 if (isLeaf()) return this; // nothing to do. 1180 Record *Op = getOperator(); 1181 1182 if (!Op->isSubClassOf("PatFrag")) { 1183 // Just recursively inline children nodes. 1184 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) { 1185 TreePatternNode *Child = getChild(i); 1186 TreePatternNode *NewChild = Child->InlinePatternFragments(TP); 1187 1188 assert((Child->getPredicateFns().empty() || 1189 NewChild->getPredicateFns() == Child->getPredicateFns()) && 1190 "Non-empty child predicate clobbered!"); 1191 1192 setChild(i, NewChild); 1193 } 1194 return this; 1195 } 1196 1197 // Otherwise, we found a reference to a fragment. First, look up its 1198 // TreePattern record. 1199 TreePattern *Frag = TP.getDAGPatterns().getPatternFragment(Op); 1200 1201 // Verify that we are passing the right number of operands. 1202 if (Frag->getNumArgs() != Children.size()) 1203 TP.error("'" + Op->getName() + "' fragment requires " + 1204 utostr(Frag->getNumArgs()) + " operands!"); 1205 1206 TreePatternNode *FragTree = Frag->getOnlyTree()->clone(); 1207 1208 TreePredicateFn PredFn(Frag); 1209 if (!PredFn.isAlwaysTrue()) 1210 FragTree->addPredicateFn(PredFn); 1211 1212 // Resolve formal arguments to their actual value. 1213 if (Frag->getNumArgs()) { 1214 // Compute the map of formal to actual arguments. 1215 std::map<std::string, TreePatternNode*> ArgMap; 1216 for (unsigned i = 0, e = Frag->getNumArgs(); i != e; ++i) 1217 ArgMap[Frag->getArgName(i)] = getChild(i)->InlinePatternFragments(TP); 1218 1219 FragTree->SubstituteFormalArguments(ArgMap); 1220 } 1221 1222 FragTree->setName(getName()); 1223 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1224 FragTree->UpdateNodeType(i, getExtType(i), TP); 1225 1226 // Transfer in the old predicates. 1227 for (unsigned i = 0, e = getPredicateFns().size(); i != e; ++i) 1228 FragTree->addPredicateFn(getPredicateFns()[i]); 1229 1230 // Get a new copy of this fragment to stitch into here. 1231 //delete this; // FIXME: implement refcounting! 1232 1233 // The fragment we inlined could have recursive inlining that is needed. See 1234 // if there are any pattern fragments in it and inline them as needed. 1235 return FragTree->InlinePatternFragments(TP); 1236 } 1237 1238 /// getImplicitType - Check to see if the specified record has an implicit 1239 /// type which should be applied to it. This will infer the type of register 1240 /// references from the register file information, for example. 1241 /// 1242 static EEVT::TypeSet getImplicitType(Record *R, unsigned ResNo, 1243 bool NotRegisters, TreePattern &TP) { 1244 // Check to see if this is a register or a register class. 1245 if (R->isSubClassOf("RegisterClass")) { 1246 assert(ResNo == 0 && "Regclass ref only has one result!"); 1247 if (NotRegisters) 1248 return EEVT::TypeSet(); // Unknown. 1249 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1250 return EEVT::TypeSet(T.getRegisterClass(R).getValueTypes()); 1251 } 1252 1253 if (R->isSubClassOf("PatFrag")) { 1254 assert(ResNo == 0 && "FIXME: PatFrag with multiple results?"); 1255 // Pattern fragment types will be resolved when they are inlined. 1256 return EEVT::TypeSet(); // Unknown. 1257 } 1258 1259 if (R->isSubClassOf("Register")) { 1260 assert(ResNo == 0 && "Registers only produce one result!"); 1261 if (NotRegisters) 1262 return EEVT::TypeSet(); // Unknown. 1263 const CodeGenTarget &T = TP.getDAGPatterns().getTargetInfo(); 1264 return EEVT::TypeSet(T.getRegisterVTs(R)); 1265 } 1266 1267 if (R->isSubClassOf("SubRegIndex")) { 1268 assert(ResNo == 0 && "SubRegisterIndices only produce one result!"); 1269 return EEVT::TypeSet(); 1270 } 1271 1272 if (R->isSubClassOf("ValueType") || R->isSubClassOf("CondCode")) { 1273 assert(ResNo == 0 && "This node only has one result!"); 1274 // Using a VTSDNode or CondCodeSDNode. 1275 return EEVT::TypeSet(MVT::Other, TP); 1276 } 1277 1278 if (R->isSubClassOf("ComplexPattern")) { 1279 assert(ResNo == 0 && "FIXME: ComplexPattern with multiple results?"); 1280 if (NotRegisters) 1281 return EEVT::TypeSet(); // Unknown. 1282 return EEVT::TypeSet(TP.getDAGPatterns().getComplexPattern(R).getValueType(), 1283 TP); 1284 } 1285 if (R->isSubClassOf("PointerLikeRegClass")) { 1286 assert(ResNo == 0 && "Regclass can only have one result!"); 1287 return EEVT::TypeSet(MVT::iPTR, TP); 1288 } 1289 1290 if (R->getName() == "node" || R->getName() == "srcvalue" || 1291 R->getName() == "zero_reg") { 1292 // Placeholder. 1293 return EEVT::TypeSet(); // Unknown. 1294 } 1295 1296 TP.error("Unknown node flavor used in pattern: " + R->getName()); 1297 return EEVT::TypeSet(MVT::Other, TP); 1298 } 1299 1300 1301 /// getIntrinsicInfo - If this node corresponds to an intrinsic, return the 1302 /// CodeGenIntrinsic information for it, otherwise return a null pointer. 1303 const CodeGenIntrinsic *TreePatternNode:: 1304 getIntrinsicInfo(const CodeGenDAGPatterns &CDP) const { 1305 if (getOperator() != CDP.get_intrinsic_void_sdnode() && 1306 getOperator() != CDP.get_intrinsic_w_chain_sdnode() && 1307 getOperator() != CDP.get_intrinsic_wo_chain_sdnode()) 1308 return 0; 1309 1310 unsigned IID = 1311 dynamic_cast<IntInit*>(getChild(0)->getLeafValue())->getValue(); 1312 return &CDP.getIntrinsicInfo(IID); 1313 } 1314 1315 /// getComplexPatternInfo - If this node corresponds to a ComplexPattern, 1316 /// return the ComplexPattern information, otherwise return null. 1317 const ComplexPattern * 1318 TreePatternNode::getComplexPatternInfo(const CodeGenDAGPatterns &CGP) const { 1319 if (!isLeaf()) return 0; 1320 1321 DefInit *DI = dynamic_cast<DefInit*>(getLeafValue()); 1322 if (DI && DI->getDef()->isSubClassOf("ComplexPattern")) 1323 return &CGP.getComplexPattern(DI->getDef()); 1324 return 0; 1325 } 1326 1327 /// NodeHasProperty - Return true if this node has the specified property. 1328 bool TreePatternNode::NodeHasProperty(SDNP Property, 1329 const CodeGenDAGPatterns &CGP) const { 1330 if (isLeaf()) { 1331 if (const ComplexPattern *CP = getComplexPatternInfo(CGP)) 1332 return CP->hasProperty(Property); 1333 return false; 1334 } 1335 1336 Record *Operator = getOperator(); 1337 if (!Operator->isSubClassOf("SDNode")) return false; 1338 1339 return CGP.getSDNodeInfo(Operator).hasProperty(Property); 1340 } 1341 1342 1343 1344 1345 /// TreeHasProperty - Return true if any node in this tree has the specified 1346 /// property. 1347 bool TreePatternNode::TreeHasProperty(SDNP Property, 1348 const CodeGenDAGPatterns &CGP) const { 1349 if (NodeHasProperty(Property, CGP)) 1350 return true; 1351 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1352 if (getChild(i)->TreeHasProperty(Property, CGP)) 1353 return true; 1354 return false; 1355 } 1356 1357 /// isCommutativeIntrinsic - Return true if the node corresponds to a 1358 /// commutative intrinsic. 1359 bool 1360 TreePatternNode::isCommutativeIntrinsic(const CodeGenDAGPatterns &CDP) const { 1361 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) 1362 return Int->isCommutative; 1363 return false; 1364 } 1365 1366 1367 /// ApplyTypeConstraints - Apply all of the type constraints relevant to 1368 /// this node and its children in the tree. This returns true if it makes a 1369 /// change, false otherwise. If a type contradiction is found, throw an 1370 /// exception. 1371 bool TreePatternNode::ApplyTypeConstraints(TreePattern &TP, bool NotRegisters) { 1372 CodeGenDAGPatterns &CDP = TP.getDAGPatterns(); 1373 if (isLeaf()) { 1374 if (DefInit *DI = dynamic_cast<DefInit*>(getLeafValue())) { 1375 // If it's a regclass or something else known, include the type. 1376 bool MadeChange = false; 1377 for (unsigned i = 0, e = Types.size(); i != e; ++i) 1378 MadeChange |= UpdateNodeType(i, getImplicitType(DI->getDef(), i, 1379 NotRegisters, TP), TP); 1380 return MadeChange; 1381 } 1382 1383 if (IntInit *II = dynamic_cast<IntInit*>(getLeafValue())) { 1384 assert(Types.size() == 1 && "Invalid IntInit"); 1385 1386 // Int inits are always integers. :) 1387 bool MadeChange = Types[0].EnforceInteger(TP); 1388 1389 if (!Types[0].isConcrete()) 1390 return MadeChange; 1391 1392 MVT::SimpleValueType VT = getType(0); 1393 if (VT == MVT::iPTR || VT == MVT::iPTRAny) 1394 return MadeChange; 1395 1396 unsigned Size = EVT(VT).getSizeInBits(); 1397 // Make sure that the value is representable for this type. 1398 if (Size >= 32) return MadeChange; 1399 1400 int Val = (II->getValue() << (32-Size)) >> (32-Size); 1401 if (Val == II->getValue()) return MadeChange; 1402 1403 // If sign-extended doesn't fit, does it fit as unsigned? 1404 unsigned ValueMask; 1405 unsigned UnsignedVal; 1406 ValueMask = unsigned(~uint32_t(0UL) >> (32-Size)); 1407 UnsignedVal = unsigned(II->getValue()); 1408 1409 if ((ValueMask & UnsignedVal) == UnsignedVal) 1410 return MadeChange; 1411 1412 TP.error("Integer value '" + itostr(II->getValue())+ 1413 "' is out of range for type '" + getEnumName(getType(0)) + "'!"); 1414 return MadeChange; 1415 } 1416 return false; 1417 } 1418 1419 // special handling for set, which isn't really an SDNode. 1420 if (getOperator()->getName() == "set") { 1421 assert(getNumTypes() == 0 && "Set doesn't produce a value"); 1422 assert(getNumChildren() >= 2 && "Missing RHS of a set?"); 1423 unsigned NC = getNumChildren(); 1424 1425 TreePatternNode *SetVal = getChild(NC-1); 1426 bool MadeChange = SetVal->ApplyTypeConstraints(TP, NotRegisters); 1427 1428 for (unsigned i = 0; i < NC-1; ++i) { 1429 TreePatternNode *Child = getChild(i); 1430 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1431 1432 // Types of operands must match. 1433 MadeChange |= Child->UpdateNodeType(0, SetVal->getExtType(i), TP); 1434 MadeChange |= SetVal->UpdateNodeType(i, Child->getExtType(0), TP); 1435 } 1436 return MadeChange; 1437 } 1438 1439 if (getOperator()->getName() == "implicit") { 1440 assert(getNumTypes() == 0 && "Node doesn't produce a value"); 1441 1442 bool MadeChange = false; 1443 for (unsigned i = 0; i < getNumChildren(); ++i) 1444 MadeChange = getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1445 return MadeChange; 1446 } 1447 1448 if (getOperator()->getName() == "COPY_TO_REGCLASS") { 1449 bool MadeChange = false; 1450 MadeChange |= getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1451 MadeChange |= getChild(1)->ApplyTypeConstraints(TP, NotRegisters); 1452 1453 assert(getChild(0)->getNumTypes() == 1 && 1454 getChild(1)->getNumTypes() == 1 && "Unhandled case"); 1455 1456 // child #1 of COPY_TO_REGCLASS should be a register class. We don't care 1457 // what type it gets, so if it didn't get a concrete type just give it the 1458 // first viable type from the reg class. 1459 if (!getChild(1)->hasTypeSet(0) && 1460 !getChild(1)->getExtType(0).isCompletelyUnknown()) { 1461 MVT::SimpleValueType RCVT = getChild(1)->getExtType(0).getTypeList()[0]; 1462 MadeChange |= getChild(1)->UpdateNodeType(0, RCVT, TP); 1463 } 1464 return MadeChange; 1465 } 1466 1467 if (const CodeGenIntrinsic *Int = getIntrinsicInfo(CDP)) { 1468 bool MadeChange = false; 1469 1470 // Apply the result type to the node. 1471 unsigned NumRetVTs = Int->IS.RetVTs.size(); 1472 unsigned NumParamVTs = Int->IS.ParamVTs.size(); 1473 1474 for (unsigned i = 0, e = NumRetVTs; i != e; ++i) 1475 MadeChange |= UpdateNodeType(i, Int->IS.RetVTs[i], TP); 1476 1477 if (getNumChildren() != NumParamVTs + 1) 1478 TP.error("Intrinsic '" + Int->Name + "' expects " + 1479 utostr(NumParamVTs) + " operands, not " + 1480 utostr(getNumChildren() - 1) + " operands!"); 1481 1482 // Apply type info to the intrinsic ID. 1483 MadeChange |= getChild(0)->UpdateNodeType(0, MVT::iPTR, TP); 1484 1485 for (unsigned i = 0, e = getNumChildren()-1; i != e; ++i) { 1486 MadeChange |= getChild(i+1)->ApplyTypeConstraints(TP, NotRegisters); 1487 1488 MVT::SimpleValueType OpVT = Int->IS.ParamVTs[i]; 1489 assert(getChild(i+1)->getNumTypes() == 1 && "Unhandled case"); 1490 MadeChange |= getChild(i+1)->UpdateNodeType(0, OpVT, TP); 1491 } 1492 return MadeChange; 1493 } 1494 1495 if (getOperator()->isSubClassOf("SDNode")) { 1496 const SDNodeInfo &NI = CDP.getSDNodeInfo(getOperator()); 1497 1498 // Check that the number of operands is sane. Negative operands -> varargs. 1499 if (NI.getNumOperands() >= 0 && 1500 getNumChildren() != (unsigned)NI.getNumOperands()) 1501 TP.error(getOperator()->getName() + " node requires exactly " + 1502 itostr(NI.getNumOperands()) + " operands!"); 1503 1504 bool MadeChange = NI.ApplyTypeConstraints(this, TP); 1505 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1506 MadeChange |= getChild(i)->ApplyTypeConstraints(TP, NotRegisters); 1507 return MadeChange; 1508 } 1509 1510 if (getOperator()->isSubClassOf("Instruction")) { 1511 const DAGInstruction &Inst = CDP.getInstruction(getOperator()); 1512 CodeGenInstruction &InstInfo = 1513 CDP.getTargetInfo().getInstruction(getOperator()); 1514 1515 bool MadeChange = false; 1516 1517 // Apply the result types to the node, these come from the things in the 1518 // (outs) list of the instruction. 1519 // FIXME: Cap at one result so far. 1520 unsigned NumResultsToAdd = InstInfo.Operands.NumDefs ? 1 : 0; 1521 for (unsigned ResNo = 0; ResNo != NumResultsToAdd; ++ResNo) { 1522 Record *ResultNode = Inst.getResult(ResNo); 1523 1524 if (ResultNode->isSubClassOf("PointerLikeRegClass")) { 1525 MadeChange |= UpdateNodeType(ResNo, MVT::iPTR, TP); 1526 } else if (ResultNode->getName() == "unknown") { 1527 // Nothing to do. 1528 } else { 1529 assert(ResultNode->isSubClassOf("RegisterClass") && 1530 "Operands should be register classes!"); 1531 const CodeGenRegisterClass &RC = 1532 CDP.getTargetInfo().getRegisterClass(ResultNode); 1533 MadeChange |= UpdateNodeType(ResNo, RC.getValueTypes(), TP); 1534 } 1535 } 1536 1537 // If the instruction has implicit defs, we apply the first one as a result. 1538 // FIXME: This sucks, it should apply all implicit defs. 1539 if (!InstInfo.ImplicitDefs.empty()) { 1540 unsigned ResNo = NumResultsToAdd; 1541 1542 // FIXME: Generalize to multiple possible types and multiple possible 1543 // ImplicitDefs. 1544 MVT::SimpleValueType VT = 1545 InstInfo.HasOneImplicitDefWithKnownVT(CDP.getTargetInfo()); 1546 1547 if (VT != MVT::Other) 1548 MadeChange |= UpdateNodeType(ResNo, VT, TP); 1549 } 1550 1551 // If this is an INSERT_SUBREG, constrain the source and destination VTs to 1552 // be the same. 1553 if (getOperator()->getName() == "INSERT_SUBREG") { 1554 assert(getChild(0)->getNumTypes() == 1 && "FIXME: Unhandled"); 1555 MadeChange |= UpdateNodeType(0, getChild(0)->getExtType(0), TP); 1556 MadeChange |= getChild(0)->UpdateNodeType(0, getExtType(0), TP); 1557 } 1558 1559 unsigned ChildNo = 0; 1560 for (unsigned i = 0, e = Inst.getNumOperands(); i != e; ++i) { 1561 Record *OperandNode = Inst.getOperand(i); 1562 1563 // If the instruction expects a predicate or optional def operand, we 1564 // codegen this by setting the operand to it's default value if it has a 1565 // non-empty DefaultOps field. 1566 if ((OperandNode->isSubClassOf("PredicateOperand") || 1567 OperandNode->isSubClassOf("OptionalDefOperand")) && 1568 !CDP.getDefaultOperand(OperandNode).DefaultOps.empty()) 1569 continue; 1570 1571 // Verify that we didn't run out of provided operands. 1572 if (ChildNo >= getNumChildren()) 1573 TP.error("Instruction '" + getOperator()->getName() + 1574 "' expects more operands than were provided."); 1575 1576 MVT::SimpleValueType VT; 1577 TreePatternNode *Child = getChild(ChildNo++); 1578 unsigned ChildResNo = 0; // Instructions always use res #0 of their op. 1579 1580 if (OperandNode->isSubClassOf("RegisterClass")) { 1581 const CodeGenRegisterClass &RC = 1582 CDP.getTargetInfo().getRegisterClass(OperandNode); 1583 MadeChange |= Child->UpdateNodeType(ChildResNo, RC.getValueTypes(), TP); 1584 } else if (OperandNode->isSubClassOf("Operand")) { 1585 VT = getValueType(OperandNode->getValueAsDef("Type")); 1586 MadeChange |= Child->UpdateNodeType(ChildResNo, VT, TP); 1587 } else if (OperandNode->isSubClassOf("PointerLikeRegClass")) { 1588 MadeChange |= Child->UpdateNodeType(ChildResNo, MVT::iPTR, TP); 1589 } else if (OperandNode->getName() == "unknown") { 1590 // Nothing to do. 1591 } else { 1592 assert(0 && "Unknown operand type!"); 1593 abort(); 1594 } 1595 MadeChange |= Child->ApplyTypeConstraints(TP, NotRegisters); 1596 } 1597 1598 if (ChildNo != getNumChildren()) 1599 TP.error("Instruction '" + getOperator()->getName() + 1600 "' was provided too many operands!"); 1601 1602 return MadeChange; 1603 } 1604 1605 assert(getOperator()->isSubClassOf("SDNodeXForm") && "Unknown node type!"); 1606 1607 // Node transforms always take one operand. 1608 if (getNumChildren() != 1) 1609 TP.error("Node transform '" + getOperator()->getName() + 1610 "' requires one operand!"); 1611 1612 bool MadeChange = getChild(0)->ApplyTypeConstraints(TP, NotRegisters); 1613 1614 1615 // If either the output or input of the xform does not have exact 1616 // type info. We assume they must be the same. Otherwise, it is perfectly 1617 // legal to transform from one type to a completely different type. 1618 #if 0 1619 if (!hasTypeSet() || !getChild(0)->hasTypeSet()) { 1620 bool MadeChange = UpdateNodeType(getChild(0)->getExtType(), TP); 1621 MadeChange |= getChild(0)->UpdateNodeType(getExtType(), TP); 1622 return MadeChange; 1623 } 1624 #endif 1625 return MadeChange; 1626 } 1627 1628 /// OnlyOnRHSOfCommutative - Return true if this value is only allowed on the 1629 /// RHS of a commutative operation, not the on LHS. 1630 static bool OnlyOnRHSOfCommutative(TreePatternNode *N) { 1631 if (!N->isLeaf() && N->getOperator()->getName() == "imm") 1632 return true; 1633 if (N->isLeaf() && dynamic_cast<IntInit*>(N->getLeafValue())) 1634 return true; 1635 return false; 1636 } 1637 1638 1639 /// canPatternMatch - If it is impossible for this pattern to match on this 1640 /// target, fill in Reason and return false. Otherwise, return true. This is 1641 /// used as a sanity check for .td files (to prevent people from writing stuff 1642 /// that can never possibly work), and to prevent the pattern permuter from 1643 /// generating stuff that is useless. 1644 bool TreePatternNode::canPatternMatch(std::string &Reason, 1645 const CodeGenDAGPatterns &CDP) { 1646 if (isLeaf()) return true; 1647 1648 for (unsigned i = 0, e = getNumChildren(); i != e; ++i) 1649 if (!getChild(i)->canPatternMatch(Reason, CDP)) 1650 return false; 1651 1652 // If this is an intrinsic, handle cases that would make it not match. For 1653 // example, if an operand is required to be an immediate. 1654 if (getOperator()->isSubClassOf("Intrinsic")) { 1655 // TODO: 1656 return true; 1657 } 1658 1659 // If this node is a commutative operator, check that the LHS isn't an 1660 // immediate. 1661 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(getOperator()); 1662 bool isCommIntrinsic = isCommutativeIntrinsic(CDP); 1663 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 1664 // Scan all of the operands of the node and make sure that only the last one 1665 // is a constant node, unless the RHS also is. 1666 if (!OnlyOnRHSOfCommutative(getChild(getNumChildren()-1))) { 1667 bool Skip = isCommIntrinsic ? 1 : 0; // First operand is intrinsic id. 1668 for (unsigned i = Skip, e = getNumChildren()-1; i != e; ++i) 1669 if (OnlyOnRHSOfCommutative(getChild(i))) { 1670 Reason="Immediate value must be on the RHS of commutative operators!"; 1671 return false; 1672 } 1673 } 1674 } 1675 1676 return true; 1677 } 1678 1679 //===----------------------------------------------------------------------===// 1680 // TreePattern implementation 1681 // 1682 1683 TreePattern::TreePattern(Record *TheRec, ListInit *RawPat, bool isInput, 1684 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1685 isInputPattern = isInput; 1686 for (unsigned i = 0, e = RawPat->getSize(); i != e; ++i) 1687 Trees.push_back(ParseTreePattern(RawPat->getElement(i), "")); 1688 } 1689 1690 TreePattern::TreePattern(Record *TheRec, DagInit *Pat, bool isInput, 1691 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1692 isInputPattern = isInput; 1693 Trees.push_back(ParseTreePattern(Pat, "")); 1694 } 1695 1696 TreePattern::TreePattern(Record *TheRec, TreePatternNode *Pat, bool isInput, 1697 CodeGenDAGPatterns &cdp) : TheRecord(TheRec), CDP(cdp){ 1698 isInputPattern = isInput; 1699 Trees.push_back(Pat); 1700 } 1701 1702 void TreePattern::error(const std::string &Msg) const { 1703 dump(); 1704 throw TGError(TheRecord->getLoc(), "In " + TheRecord->getName() + ": " + Msg); 1705 } 1706 1707 void TreePattern::ComputeNamedNodes() { 1708 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1709 ComputeNamedNodes(Trees[i]); 1710 } 1711 1712 void TreePattern::ComputeNamedNodes(TreePatternNode *N) { 1713 if (!N->getName().empty()) 1714 NamedNodes[N->getName()].push_back(N); 1715 1716 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 1717 ComputeNamedNodes(N->getChild(i)); 1718 } 1719 1720 1721 TreePatternNode *TreePattern::ParseTreePattern(Init *TheInit, StringRef OpName){ 1722 if (DefInit *DI = dynamic_cast<DefInit*>(TheInit)) { 1723 Record *R = DI->getDef(); 1724 1725 // Direct reference to a leaf DagNode or PatFrag? Turn it into a 1726 // TreePatternNode if its own. For example: 1727 /// (foo GPR, imm) -> (foo GPR, (imm)) 1728 if (R->isSubClassOf("SDNode") || R->isSubClassOf("PatFrag")) 1729 return ParseTreePattern(new DagInit(DI, "", 1730 std::vector<std::pair<Init*, std::string> >()), 1731 OpName); 1732 1733 // Input argument? 1734 TreePatternNode *Res = new TreePatternNode(DI, 1); 1735 if (R->getName() == "node" && !OpName.empty()) { 1736 if (OpName.empty()) 1737 error("'node' argument requires a name to match with operand list"); 1738 Args.push_back(OpName); 1739 } 1740 1741 Res->setName(OpName); 1742 return Res; 1743 } 1744 1745 if (IntInit *II = dynamic_cast<IntInit*>(TheInit)) { 1746 if (!OpName.empty()) 1747 error("Constant int argument should not have a name!"); 1748 return new TreePatternNode(II, 1); 1749 } 1750 1751 if (BitsInit *BI = dynamic_cast<BitsInit*>(TheInit)) { 1752 // Turn this into an IntInit. 1753 Init *II = BI->convertInitializerTo(new IntRecTy()); 1754 if (II == 0 || !dynamic_cast<IntInit*>(II)) 1755 error("Bits value must be constants!"); 1756 return ParseTreePattern(II, OpName); 1757 } 1758 1759 DagInit *Dag = dynamic_cast<DagInit*>(TheInit); 1760 if (!Dag) { 1761 TheInit->dump(); 1762 error("Pattern has unexpected init kind!"); 1763 } 1764 DefInit *OpDef = dynamic_cast<DefInit*>(Dag->getOperator()); 1765 if (!OpDef) error("Pattern has unexpected operator type!"); 1766 Record *Operator = OpDef->getDef(); 1767 1768 if (Operator->isSubClassOf("ValueType")) { 1769 // If the operator is a ValueType, then this must be "type cast" of a leaf 1770 // node. 1771 if (Dag->getNumArgs() != 1) 1772 error("Type cast only takes one operand!"); 1773 1774 TreePatternNode *New = ParseTreePattern(Dag->getArg(0), Dag->getArgName(0)); 1775 1776 // Apply the type cast. 1777 assert(New->getNumTypes() == 1 && "FIXME: Unhandled"); 1778 New->UpdateNodeType(0, getValueType(Operator), *this); 1779 1780 if (!OpName.empty()) 1781 error("ValueType cast should not have a name!"); 1782 return New; 1783 } 1784 1785 // Verify that this is something that makes sense for an operator. 1786 if (!Operator->isSubClassOf("PatFrag") && 1787 !Operator->isSubClassOf("SDNode") && 1788 !Operator->isSubClassOf("Instruction") && 1789 !Operator->isSubClassOf("SDNodeXForm") && 1790 !Operator->isSubClassOf("Intrinsic") && 1791 Operator->getName() != "set" && 1792 Operator->getName() != "implicit") 1793 error("Unrecognized node '" + Operator->getName() + "'!"); 1794 1795 // Check to see if this is something that is illegal in an input pattern. 1796 if (isInputPattern) { 1797 if (Operator->isSubClassOf("Instruction") || 1798 Operator->isSubClassOf("SDNodeXForm")) 1799 error("Cannot use '" + Operator->getName() + "' in an input pattern!"); 1800 } else { 1801 if (Operator->isSubClassOf("Intrinsic")) 1802 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1803 1804 if (Operator->isSubClassOf("SDNode") && 1805 Operator->getName() != "imm" && 1806 Operator->getName() != "fpimm" && 1807 Operator->getName() != "tglobaltlsaddr" && 1808 Operator->getName() != "tconstpool" && 1809 Operator->getName() != "tjumptable" && 1810 Operator->getName() != "tframeindex" && 1811 Operator->getName() != "texternalsym" && 1812 Operator->getName() != "tblockaddress" && 1813 Operator->getName() != "tglobaladdr" && 1814 Operator->getName() != "bb" && 1815 Operator->getName() != "vt") 1816 error("Cannot use '" + Operator->getName() + "' in an output pattern!"); 1817 } 1818 1819 std::vector<TreePatternNode*> Children; 1820 1821 // Parse all the operands. 1822 for (unsigned i = 0, e = Dag->getNumArgs(); i != e; ++i) 1823 Children.push_back(ParseTreePattern(Dag->getArg(i), Dag->getArgName(i))); 1824 1825 // If the operator is an intrinsic, then this is just syntactic sugar for for 1826 // (intrinsic_* <number>, ..children..). Pick the right intrinsic node, and 1827 // convert the intrinsic name to a number. 1828 if (Operator->isSubClassOf("Intrinsic")) { 1829 const CodeGenIntrinsic &Int = getDAGPatterns().getIntrinsic(Operator); 1830 unsigned IID = getDAGPatterns().getIntrinsicID(Operator)+1; 1831 1832 // If this intrinsic returns void, it must have side-effects and thus a 1833 // chain. 1834 if (Int.IS.RetVTs.empty()) 1835 Operator = getDAGPatterns().get_intrinsic_void_sdnode(); 1836 else if (Int.ModRef != CodeGenIntrinsic::NoMem) 1837 // Has side-effects, requires chain. 1838 Operator = getDAGPatterns().get_intrinsic_w_chain_sdnode(); 1839 else // Otherwise, no chain. 1840 Operator = getDAGPatterns().get_intrinsic_wo_chain_sdnode(); 1841 1842 TreePatternNode *IIDNode = new TreePatternNode(new IntInit(IID), 1); 1843 Children.insert(Children.begin(), IIDNode); 1844 } 1845 1846 unsigned NumResults = GetNumNodeResults(Operator, CDP); 1847 TreePatternNode *Result = new TreePatternNode(Operator, Children, NumResults); 1848 Result->setName(OpName); 1849 1850 if (!Dag->getName().empty()) { 1851 assert(Result->getName().empty()); 1852 Result->setName(Dag->getName()); 1853 } 1854 return Result; 1855 } 1856 1857 /// SimplifyTree - See if we can simplify this tree to eliminate something that 1858 /// will never match in favor of something obvious that will. This is here 1859 /// strictly as a convenience to target authors because it allows them to write 1860 /// more type generic things and have useless type casts fold away. 1861 /// 1862 /// This returns true if any change is made. 1863 static bool SimplifyTree(TreePatternNode *&N) { 1864 if (N->isLeaf()) 1865 return false; 1866 1867 // If we have a bitconvert with a resolved type and if the source and 1868 // destination types are the same, then the bitconvert is useless, remove it. 1869 if (N->getOperator()->getName() == "bitconvert" && 1870 N->getExtType(0).isConcrete() && 1871 N->getExtType(0) == N->getChild(0)->getExtType(0) && 1872 N->getName().empty()) { 1873 N = N->getChild(0); 1874 SimplifyTree(N); 1875 return true; 1876 } 1877 1878 // Walk all children. 1879 bool MadeChange = false; 1880 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 1881 TreePatternNode *Child = N->getChild(i); 1882 MadeChange |= SimplifyTree(Child); 1883 N->setChild(i, Child); 1884 } 1885 return MadeChange; 1886 } 1887 1888 1889 1890 /// InferAllTypes - Infer/propagate as many types throughout the expression 1891 /// patterns as possible. Return true if all types are inferred, false 1892 /// otherwise. Throw an exception if a type contradiction is found. 1893 bool TreePattern:: 1894 InferAllTypes(const StringMap<SmallVector<TreePatternNode*,1> > *InNamedTypes) { 1895 if (NamedNodes.empty()) 1896 ComputeNamedNodes(); 1897 1898 bool MadeChange = true; 1899 while (MadeChange) { 1900 MadeChange = false; 1901 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1902 MadeChange |= Trees[i]->ApplyTypeConstraints(*this, false); 1903 MadeChange |= SimplifyTree(Trees[i]); 1904 } 1905 1906 // If there are constraints on our named nodes, apply them. 1907 for (StringMap<SmallVector<TreePatternNode*,1> >::iterator 1908 I = NamedNodes.begin(), E = NamedNodes.end(); I != E; ++I) { 1909 SmallVectorImpl<TreePatternNode*> &Nodes = I->second; 1910 1911 // If we have input named node types, propagate their types to the named 1912 // values here. 1913 if (InNamedTypes) { 1914 // FIXME: Should be error? 1915 assert(InNamedTypes->count(I->getKey()) && 1916 "Named node in output pattern but not input pattern?"); 1917 1918 const SmallVectorImpl<TreePatternNode*> &InNodes = 1919 InNamedTypes->find(I->getKey())->second; 1920 1921 // The input types should be fully resolved by now. 1922 for (unsigned i = 0, e = Nodes.size(); i != e; ++i) { 1923 // If this node is a register class, and it is the root of the pattern 1924 // then we're mapping something onto an input register. We allow 1925 // changing the type of the input register in this case. This allows 1926 // us to match things like: 1927 // def : Pat<(v1i64 (bitconvert(v2i32 DPR:$src))), (v1i64 DPR:$src)>; 1928 if (Nodes[i] == Trees[0] && Nodes[i]->isLeaf()) { 1929 DefInit *DI = dynamic_cast<DefInit*>(Nodes[i]->getLeafValue()); 1930 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 1931 continue; 1932 } 1933 1934 assert(Nodes[i]->getNumTypes() == 1 && 1935 InNodes[0]->getNumTypes() == 1 && 1936 "FIXME: cannot name multiple result nodes yet"); 1937 MadeChange |= Nodes[i]->UpdateNodeType(0, InNodes[0]->getExtType(0), 1938 *this); 1939 } 1940 } 1941 1942 // If there are multiple nodes with the same name, they must all have the 1943 // same type. 1944 if (I->second.size() > 1) { 1945 for (unsigned i = 0, e = Nodes.size()-1; i != e; ++i) { 1946 TreePatternNode *N1 = Nodes[i], *N2 = Nodes[i+1]; 1947 assert(N1->getNumTypes() == 1 && N2->getNumTypes() == 1 && 1948 "FIXME: cannot name multiple result nodes yet"); 1949 1950 MadeChange |= N1->UpdateNodeType(0, N2->getExtType(0), *this); 1951 MadeChange |= N2->UpdateNodeType(0, N1->getExtType(0), *this); 1952 } 1953 } 1954 } 1955 } 1956 1957 bool HasUnresolvedTypes = false; 1958 for (unsigned i = 0, e = Trees.size(); i != e; ++i) 1959 HasUnresolvedTypes |= Trees[i]->ContainsUnresolvedType(); 1960 return !HasUnresolvedTypes; 1961 } 1962 1963 void TreePattern::print(raw_ostream &OS) const { 1964 OS << getRecord()->getName(); 1965 if (!Args.empty()) { 1966 OS << "(" << Args[0]; 1967 for (unsigned i = 1, e = Args.size(); i != e; ++i) 1968 OS << ", " << Args[i]; 1969 OS << ")"; 1970 } 1971 OS << ": "; 1972 1973 if (Trees.size() > 1) 1974 OS << "[\n"; 1975 for (unsigned i = 0, e = Trees.size(); i != e; ++i) { 1976 OS << "\t"; 1977 Trees[i]->print(OS); 1978 OS << "\n"; 1979 } 1980 1981 if (Trees.size() > 1) 1982 OS << "]\n"; 1983 } 1984 1985 void TreePattern::dump() const { print(errs()); } 1986 1987 //===----------------------------------------------------------------------===// 1988 // CodeGenDAGPatterns implementation 1989 // 1990 1991 CodeGenDAGPatterns::CodeGenDAGPatterns(RecordKeeper &R) : 1992 Records(R), Target(R) { 1993 1994 Intrinsics = LoadIntrinsics(Records, false); 1995 TgtIntrinsics = LoadIntrinsics(Records, true); 1996 ParseNodeInfo(); 1997 ParseNodeTransforms(); 1998 ParseComplexPatterns(); 1999 ParsePatternFragments(); 2000 ParseDefaultOperands(); 2001 ParseInstructions(); 2002 ParsePatterns(); 2003 2004 // Generate variants. For example, commutative patterns can match 2005 // multiple ways. Add them to PatternsToMatch as well. 2006 GenerateVariants(); 2007 2008 // Infer instruction flags. For example, we can detect loads, 2009 // stores, and side effects in many cases by examining an 2010 // instruction's pattern. 2011 InferInstructionFlags(); 2012 } 2013 2014 CodeGenDAGPatterns::~CodeGenDAGPatterns() { 2015 for (pf_iterator I = PatternFragments.begin(), 2016 E = PatternFragments.end(); I != E; ++I) 2017 delete I->second; 2018 } 2019 2020 2021 Record *CodeGenDAGPatterns::getSDNodeNamed(const std::string &Name) const { 2022 Record *N = Records.getDef(Name); 2023 if (!N || !N->isSubClassOf("SDNode")) { 2024 errs() << "Error getting SDNode '" << Name << "'!\n"; 2025 exit(1); 2026 } 2027 return N; 2028 } 2029 2030 // Parse all of the SDNode definitions for the target, populating SDNodes. 2031 void CodeGenDAGPatterns::ParseNodeInfo() { 2032 std::vector<Record*> Nodes = Records.getAllDerivedDefinitions("SDNode"); 2033 while (!Nodes.empty()) { 2034 SDNodes.insert(std::make_pair(Nodes.back(), Nodes.back())); 2035 Nodes.pop_back(); 2036 } 2037 2038 // Get the builtin intrinsic nodes. 2039 intrinsic_void_sdnode = getSDNodeNamed("intrinsic_void"); 2040 intrinsic_w_chain_sdnode = getSDNodeNamed("intrinsic_w_chain"); 2041 intrinsic_wo_chain_sdnode = getSDNodeNamed("intrinsic_wo_chain"); 2042 } 2043 2044 /// ParseNodeTransforms - Parse all SDNodeXForm instances into the SDNodeXForms 2045 /// map, and emit them to the file as functions. 2046 void CodeGenDAGPatterns::ParseNodeTransforms() { 2047 std::vector<Record*> Xforms = Records.getAllDerivedDefinitions("SDNodeXForm"); 2048 while (!Xforms.empty()) { 2049 Record *XFormNode = Xforms.back(); 2050 Record *SDNode = XFormNode->getValueAsDef("Opcode"); 2051 std::string Code = XFormNode->getValueAsCode("XFormFunction"); 2052 SDNodeXForms.insert(std::make_pair(XFormNode, NodeXForm(SDNode, Code))); 2053 2054 Xforms.pop_back(); 2055 } 2056 } 2057 2058 void CodeGenDAGPatterns::ParseComplexPatterns() { 2059 std::vector<Record*> AMs = Records.getAllDerivedDefinitions("ComplexPattern"); 2060 while (!AMs.empty()) { 2061 ComplexPatterns.insert(std::make_pair(AMs.back(), AMs.back())); 2062 AMs.pop_back(); 2063 } 2064 } 2065 2066 2067 /// ParsePatternFragments - Parse all of the PatFrag definitions in the .td 2068 /// file, building up the PatternFragments map. After we've collected them all, 2069 /// inline fragments together as necessary, so that there are no references left 2070 /// inside a pattern fragment to a pattern fragment. 2071 /// 2072 void CodeGenDAGPatterns::ParsePatternFragments() { 2073 std::vector<Record*> Fragments = Records.getAllDerivedDefinitions("PatFrag"); 2074 2075 // First step, parse all of the fragments. 2076 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2077 DagInit *Tree = Fragments[i]->getValueAsDag("Fragment"); 2078 TreePattern *P = new TreePattern(Fragments[i], Tree, true, *this); 2079 PatternFragments[Fragments[i]] = P; 2080 2081 // Validate the argument list, converting it to set, to discard duplicates. 2082 std::vector<std::string> &Args = P->getArgList(); 2083 std::set<std::string> OperandsSet(Args.begin(), Args.end()); 2084 2085 if (OperandsSet.count("")) 2086 P->error("Cannot have unnamed 'node' values in pattern fragment!"); 2087 2088 // Parse the operands list. 2089 DagInit *OpsList = Fragments[i]->getValueAsDag("Operands"); 2090 DefInit *OpsOp = dynamic_cast<DefInit*>(OpsList->getOperator()); 2091 // Special cases: ops == outs == ins. Different names are used to 2092 // improve readability. 2093 if (!OpsOp || 2094 (OpsOp->getDef()->getName() != "ops" && 2095 OpsOp->getDef()->getName() != "outs" && 2096 OpsOp->getDef()->getName() != "ins")) 2097 P->error("Operands list should start with '(ops ... '!"); 2098 2099 // Copy over the arguments. 2100 Args.clear(); 2101 for (unsigned j = 0, e = OpsList->getNumArgs(); j != e; ++j) { 2102 if (!dynamic_cast<DefInit*>(OpsList->getArg(j)) || 2103 static_cast<DefInit*>(OpsList->getArg(j))-> 2104 getDef()->getName() != "node") 2105 P->error("Operands list should all be 'node' values."); 2106 if (OpsList->getArgName(j).empty()) 2107 P->error("Operands list should have names for each operand!"); 2108 if (!OperandsSet.count(OpsList->getArgName(j))) 2109 P->error("'" + OpsList->getArgName(j) + 2110 "' does not occur in pattern or was multiply specified!"); 2111 OperandsSet.erase(OpsList->getArgName(j)); 2112 Args.push_back(OpsList->getArgName(j)); 2113 } 2114 2115 if (!OperandsSet.empty()) 2116 P->error("Operands list does not contain an entry for operand '" + 2117 *OperandsSet.begin() + "'!"); 2118 2119 // If there is a code init for this fragment, keep track of the fact that 2120 // this fragment uses it. 2121 TreePredicateFn PredFn(P); 2122 if (!PredFn.isAlwaysTrue()) 2123 P->getOnlyTree()->addPredicateFn(PredFn); 2124 2125 // If there is a node transformation corresponding to this, keep track of 2126 // it. 2127 Record *Transform = Fragments[i]->getValueAsDef("OperandTransform"); 2128 if (!getSDNodeTransform(Transform).second.empty()) // not noop xform? 2129 P->getOnlyTree()->setTransformFn(Transform); 2130 } 2131 2132 // Now that we've parsed all of the tree fragments, do a closure on them so 2133 // that there are not references to PatFrags left inside of them. 2134 for (unsigned i = 0, e = Fragments.size(); i != e; ++i) { 2135 TreePattern *ThePat = PatternFragments[Fragments[i]]; 2136 ThePat->InlinePatternFragments(); 2137 2138 // Infer as many types as possible. Don't worry about it if we don't infer 2139 // all of them, some may depend on the inputs of the pattern. 2140 try { 2141 ThePat->InferAllTypes(); 2142 } catch (...) { 2143 // If this pattern fragment is not supported by this target (no types can 2144 // satisfy its constraints), just ignore it. If the bogus pattern is 2145 // actually used by instructions, the type consistency error will be 2146 // reported there. 2147 } 2148 2149 // If debugging, print out the pattern fragment result. 2150 DEBUG(ThePat->dump()); 2151 } 2152 } 2153 2154 void CodeGenDAGPatterns::ParseDefaultOperands() { 2155 std::vector<Record*> DefaultOps[2]; 2156 DefaultOps[0] = Records.getAllDerivedDefinitions("PredicateOperand"); 2157 DefaultOps[1] = Records.getAllDerivedDefinitions("OptionalDefOperand"); 2158 2159 // Find some SDNode. 2160 assert(!SDNodes.empty() && "No SDNodes parsed?"); 2161 Init *SomeSDNode = new DefInit(SDNodes.begin()->first); 2162 2163 for (unsigned iter = 0; iter != 2; ++iter) { 2164 for (unsigned i = 0, e = DefaultOps[iter].size(); i != e; ++i) { 2165 DagInit *DefaultInfo = DefaultOps[iter][i]->getValueAsDag("DefaultOps"); 2166 2167 // Clone the DefaultInfo dag node, changing the operator from 'ops' to 2168 // SomeSDnode so that we can parse this. 2169 std::vector<std::pair<Init*, std::string> > Ops; 2170 for (unsigned op = 0, e = DefaultInfo->getNumArgs(); op != e; ++op) 2171 Ops.push_back(std::make_pair(DefaultInfo->getArg(op), 2172 DefaultInfo->getArgName(op))); 2173 DagInit *DI = new DagInit(SomeSDNode, "", Ops); 2174 2175 // Create a TreePattern to parse this. 2176 TreePattern P(DefaultOps[iter][i], DI, false, *this); 2177 assert(P.getNumTrees() == 1 && "This ctor can only produce one tree!"); 2178 2179 // Copy the operands over into a DAGDefaultOperand. 2180 DAGDefaultOperand DefaultOpInfo; 2181 2182 TreePatternNode *T = P.getTree(0); 2183 for (unsigned op = 0, e = T->getNumChildren(); op != e; ++op) { 2184 TreePatternNode *TPN = T->getChild(op); 2185 while (TPN->ApplyTypeConstraints(P, false)) 2186 /* Resolve all types */; 2187 2188 if (TPN->ContainsUnresolvedType()) { 2189 if (iter == 0) 2190 throw "Value #" + utostr(i) + " of PredicateOperand '" + 2191 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2192 else 2193 throw "Value #" + utostr(i) + " of OptionalDefOperand '" + 2194 DefaultOps[iter][i]->getName() +"' doesn't have a concrete type!"; 2195 } 2196 DefaultOpInfo.DefaultOps.push_back(TPN); 2197 } 2198 2199 // Insert it into the DefaultOperands map so we can find it later. 2200 DefaultOperands[DefaultOps[iter][i]] = DefaultOpInfo; 2201 } 2202 } 2203 } 2204 2205 /// HandleUse - Given "Pat" a leaf in the pattern, check to see if it is an 2206 /// instruction input. Return true if this is a real use. 2207 static bool HandleUse(TreePattern *I, TreePatternNode *Pat, 2208 std::map<std::string, TreePatternNode*> &InstInputs) { 2209 // No name -> not interesting. 2210 if (Pat->getName().empty()) { 2211 if (Pat->isLeaf()) { 2212 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2213 if (DI && DI->getDef()->isSubClassOf("RegisterClass")) 2214 I->error("Input " + DI->getDef()->getName() + " must be named!"); 2215 } 2216 return false; 2217 } 2218 2219 Record *Rec; 2220 if (Pat->isLeaf()) { 2221 DefInit *DI = dynamic_cast<DefInit*>(Pat->getLeafValue()); 2222 if (!DI) I->error("Input $" + Pat->getName() + " must be an identifier!"); 2223 Rec = DI->getDef(); 2224 } else { 2225 Rec = Pat->getOperator(); 2226 } 2227 2228 // SRCVALUE nodes are ignored. 2229 if (Rec->getName() == "srcvalue") 2230 return false; 2231 2232 TreePatternNode *&Slot = InstInputs[Pat->getName()]; 2233 if (!Slot) { 2234 Slot = Pat; 2235 return true; 2236 } 2237 Record *SlotRec; 2238 if (Slot->isLeaf()) { 2239 SlotRec = dynamic_cast<DefInit*>(Slot->getLeafValue())->getDef(); 2240 } else { 2241 assert(Slot->getNumChildren() == 0 && "can't be a use with children!"); 2242 SlotRec = Slot->getOperator(); 2243 } 2244 2245 // Ensure that the inputs agree if we've already seen this input. 2246 if (Rec != SlotRec) 2247 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2248 if (Slot->getExtTypes() != Pat->getExtTypes()) 2249 I->error("All $" + Pat->getName() + " inputs must agree with each other"); 2250 return true; 2251 } 2252 2253 /// FindPatternInputsAndOutputs - Scan the specified TreePatternNode (which is 2254 /// part of "I", the instruction), computing the set of inputs and outputs of 2255 /// the pattern. Report errors if we see anything naughty. 2256 void CodeGenDAGPatterns:: 2257 FindPatternInputsAndOutputs(TreePattern *I, TreePatternNode *Pat, 2258 std::map<std::string, TreePatternNode*> &InstInputs, 2259 std::map<std::string, TreePatternNode*>&InstResults, 2260 std::vector<Record*> &InstImpResults) { 2261 if (Pat->isLeaf()) { 2262 bool isUse = HandleUse(I, Pat, InstInputs); 2263 if (!isUse && Pat->getTransformFn()) 2264 I->error("Cannot specify a transform function for a non-input value!"); 2265 return; 2266 } 2267 2268 if (Pat->getOperator()->getName() == "implicit") { 2269 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2270 TreePatternNode *Dest = Pat->getChild(i); 2271 if (!Dest->isLeaf()) 2272 I->error("implicitly defined value should be a register!"); 2273 2274 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2275 if (!Val || !Val->getDef()->isSubClassOf("Register")) 2276 I->error("implicitly defined value should be a register!"); 2277 InstImpResults.push_back(Val->getDef()); 2278 } 2279 return; 2280 } 2281 2282 if (Pat->getOperator()->getName() != "set") { 2283 // If this is not a set, verify that the children nodes are not void typed, 2284 // and recurse. 2285 for (unsigned i = 0, e = Pat->getNumChildren(); i != e; ++i) { 2286 if (Pat->getChild(i)->getNumTypes() == 0) 2287 I->error("Cannot have void nodes inside of patterns!"); 2288 FindPatternInputsAndOutputs(I, Pat->getChild(i), InstInputs, InstResults, 2289 InstImpResults); 2290 } 2291 2292 // If this is a non-leaf node with no children, treat it basically as if 2293 // it were a leaf. This handles nodes like (imm). 2294 bool isUse = HandleUse(I, Pat, InstInputs); 2295 2296 if (!isUse && Pat->getTransformFn()) 2297 I->error("Cannot specify a transform function for a non-input value!"); 2298 return; 2299 } 2300 2301 // Otherwise, this is a set, validate and collect instruction results. 2302 if (Pat->getNumChildren() == 0) 2303 I->error("set requires operands!"); 2304 2305 if (Pat->getTransformFn()) 2306 I->error("Cannot specify a transform function on a set node!"); 2307 2308 // Check the set destinations. 2309 unsigned NumDests = Pat->getNumChildren()-1; 2310 for (unsigned i = 0; i != NumDests; ++i) { 2311 TreePatternNode *Dest = Pat->getChild(i); 2312 if (!Dest->isLeaf()) 2313 I->error("set destination should be a register!"); 2314 2315 DefInit *Val = dynamic_cast<DefInit*>(Dest->getLeafValue()); 2316 if (!Val) 2317 I->error("set destination should be a register!"); 2318 2319 if (Val->getDef()->isSubClassOf("RegisterClass") || 2320 Val->getDef()->isSubClassOf("PointerLikeRegClass")) { 2321 if (Dest->getName().empty()) 2322 I->error("set destination must have a name!"); 2323 if (InstResults.count(Dest->getName())) 2324 I->error("cannot set '" + Dest->getName() +"' multiple times"); 2325 InstResults[Dest->getName()] = Dest; 2326 } else if (Val->getDef()->isSubClassOf("Register")) { 2327 InstImpResults.push_back(Val->getDef()); 2328 } else { 2329 I->error("set destination should be a register!"); 2330 } 2331 } 2332 2333 // Verify and collect info from the computation. 2334 FindPatternInputsAndOutputs(I, Pat->getChild(NumDests), 2335 InstInputs, InstResults, InstImpResults); 2336 } 2337 2338 //===----------------------------------------------------------------------===// 2339 // Instruction Analysis 2340 //===----------------------------------------------------------------------===// 2341 2342 class InstAnalyzer { 2343 const CodeGenDAGPatterns &CDP; 2344 bool &mayStore; 2345 bool &mayLoad; 2346 bool &IsBitcast; 2347 bool &HasSideEffects; 2348 bool &IsVariadic; 2349 public: 2350 InstAnalyzer(const CodeGenDAGPatterns &cdp, 2351 bool &maystore, bool &mayload, bool &isbc, bool &hse, bool &isv) 2352 : CDP(cdp), mayStore(maystore), mayLoad(mayload), IsBitcast(isbc), 2353 HasSideEffects(hse), IsVariadic(isv) { 2354 } 2355 2356 /// Analyze - Analyze the specified instruction, returning true if the 2357 /// instruction had a pattern. 2358 bool Analyze(Record *InstRecord) { 2359 const TreePattern *Pattern = CDP.getInstruction(InstRecord).getPattern(); 2360 if (Pattern == 0) { 2361 HasSideEffects = 1; 2362 return false; // No pattern. 2363 } 2364 2365 // FIXME: Assume only the first tree is the pattern. The others are clobber 2366 // nodes. 2367 AnalyzeNode(Pattern->getTree(0)); 2368 return true; 2369 } 2370 2371 private: 2372 bool IsNodeBitcast(const TreePatternNode *N) const { 2373 if (HasSideEffects || mayLoad || mayStore || IsVariadic) 2374 return false; 2375 2376 if (N->getNumChildren() != 2) 2377 return false; 2378 2379 const TreePatternNode *N0 = N->getChild(0); 2380 if (!N0->isLeaf() || !dynamic_cast<DefInit*>(N0->getLeafValue())) 2381 return false; 2382 2383 const TreePatternNode *N1 = N->getChild(1); 2384 if (N1->isLeaf()) 2385 return false; 2386 if (N1->getNumChildren() != 1 || !N1->getChild(0)->isLeaf()) 2387 return false; 2388 2389 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N1->getOperator()); 2390 if (OpInfo.getNumResults() != 1 || OpInfo.getNumOperands() != 1) 2391 return false; 2392 return OpInfo.getEnumName() == "ISD::BITCAST"; 2393 } 2394 2395 void AnalyzeNode(const TreePatternNode *N) { 2396 if (N->isLeaf()) { 2397 if (DefInit *DI = dynamic_cast<DefInit*>(N->getLeafValue())) { 2398 Record *LeafRec = DI->getDef(); 2399 // Handle ComplexPattern leaves. 2400 if (LeafRec->isSubClassOf("ComplexPattern")) { 2401 const ComplexPattern &CP = CDP.getComplexPattern(LeafRec); 2402 if (CP.hasProperty(SDNPMayStore)) mayStore = true; 2403 if (CP.hasProperty(SDNPMayLoad)) mayLoad = true; 2404 if (CP.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2405 } 2406 } 2407 return; 2408 } 2409 2410 // Analyze children. 2411 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2412 AnalyzeNode(N->getChild(i)); 2413 2414 // Ignore set nodes, which are not SDNodes. 2415 if (N->getOperator()->getName() == "set") { 2416 IsBitcast = IsNodeBitcast(N); 2417 return; 2418 } 2419 2420 // Get information about the SDNode for the operator. 2421 const SDNodeInfo &OpInfo = CDP.getSDNodeInfo(N->getOperator()); 2422 2423 // Notice properties of the node. 2424 if (OpInfo.hasProperty(SDNPMayStore)) mayStore = true; 2425 if (OpInfo.hasProperty(SDNPMayLoad)) mayLoad = true; 2426 if (OpInfo.hasProperty(SDNPSideEffect)) HasSideEffects = true; 2427 if (OpInfo.hasProperty(SDNPVariadic)) IsVariadic = true; 2428 2429 if (const CodeGenIntrinsic *IntInfo = N->getIntrinsicInfo(CDP)) { 2430 // If this is an intrinsic, analyze it. 2431 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadArgMem) 2432 mayLoad = true;// These may load memory. 2433 2434 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteArgMem) 2435 mayStore = true;// Intrinsics that can write to memory are 'mayStore'. 2436 2437 if (IntInfo->ModRef >= CodeGenIntrinsic::ReadWriteMem) 2438 // WriteMem intrinsics can have other strange effects. 2439 HasSideEffects = true; 2440 } 2441 } 2442 2443 }; 2444 2445 static void InferFromPattern(const CodeGenInstruction &Inst, 2446 bool &MayStore, bool &MayLoad, 2447 bool &IsBitcast, 2448 bool &HasSideEffects, bool &IsVariadic, 2449 const CodeGenDAGPatterns &CDP) { 2450 MayStore = MayLoad = IsBitcast = HasSideEffects = IsVariadic = false; 2451 2452 bool HadPattern = 2453 InstAnalyzer(CDP, MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic) 2454 .Analyze(Inst.TheDef); 2455 2456 // InstAnalyzer only correctly analyzes mayStore/mayLoad so far. 2457 if (Inst.mayStore) { // If the .td file explicitly sets mayStore, use it. 2458 // If we decided that this is a store from the pattern, then the .td file 2459 // entry is redundant. 2460 if (MayStore) 2461 fprintf(stderr, 2462 "Warning: mayStore flag explicitly set on instruction '%s'" 2463 " but flag already inferred from pattern.\n", 2464 Inst.TheDef->getName().c_str()); 2465 MayStore = true; 2466 } 2467 2468 if (Inst.mayLoad) { // If the .td file explicitly sets mayLoad, use it. 2469 // If we decided that this is a load from the pattern, then the .td file 2470 // entry is redundant. 2471 if (MayLoad) 2472 fprintf(stderr, 2473 "Warning: mayLoad flag explicitly set on instruction '%s'" 2474 " but flag already inferred from pattern.\n", 2475 Inst.TheDef->getName().c_str()); 2476 MayLoad = true; 2477 } 2478 2479 if (Inst.neverHasSideEffects) { 2480 if (HadPattern) 2481 fprintf(stderr, "Warning: neverHasSideEffects set on instruction '%s' " 2482 "which already has a pattern\n", Inst.TheDef->getName().c_str()); 2483 HasSideEffects = false; 2484 } 2485 2486 if (Inst.hasSideEffects) { 2487 if (HasSideEffects) 2488 fprintf(stderr, "Warning: hasSideEffects set on instruction '%s' " 2489 "which already inferred this.\n", Inst.TheDef->getName().c_str()); 2490 HasSideEffects = true; 2491 } 2492 2493 if (Inst.Operands.isVariadic) 2494 IsVariadic = true; // Can warn if we want. 2495 } 2496 2497 /// ParseInstructions - Parse all of the instructions, inlining and resolving 2498 /// any fragments involved. This populates the Instructions list with fully 2499 /// resolved instructions. 2500 void CodeGenDAGPatterns::ParseInstructions() { 2501 std::vector<Record*> Instrs = Records.getAllDerivedDefinitions("Instruction"); 2502 2503 for (unsigned i = 0, e = Instrs.size(); i != e; ++i) { 2504 ListInit *LI = 0; 2505 2506 if (dynamic_cast<ListInit*>(Instrs[i]->getValueInit("Pattern"))) 2507 LI = Instrs[i]->getValueAsListInit("Pattern"); 2508 2509 // If there is no pattern, only collect minimal information about the 2510 // instruction for its operand list. We have to assume that there is one 2511 // result, as we have no detailed info. 2512 if (!LI || LI->getSize() == 0) { 2513 std::vector<Record*> Results; 2514 std::vector<Record*> Operands; 2515 2516 CodeGenInstruction &InstInfo = Target.getInstruction(Instrs[i]); 2517 2518 if (InstInfo.Operands.size() != 0) { 2519 if (InstInfo.Operands.NumDefs == 0) { 2520 // These produce no results 2521 for (unsigned j = 0, e = InstInfo.Operands.size(); j < e; ++j) 2522 Operands.push_back(InstInfo.Operands[j].Rec); 2523 } else { 2524 // Assume the first operand is the result. 2525 Results.push_back(InstInfo.Operands[0].Rec); 2526 2527 // The rest are inputs. 2528 for (unsigned j = 1, e = InstInfo.Operands.size(); j < e; ++j) 2529 Operands.push_back(InstInfo.Operands[j].Rec); 2530 } 2531 } 2532 2533 // Create and insert the instruction. 2534 std::vector<Record*> ImpResults; 2535 Instructions.insert(std::make_pair(Instrs[i], 2536 DAGInstruction(0, Results, Operands, ImpResults))); 2537 continue; // no pattern. 2538 } 2539 2540 // Parse the instruction. 2541 TreePattern *I = new TreePattern(Instrs[i], LI, true, *this); 2542 // Inline pattern fragments into it. 2543 I->InlinePatternFragments(); 2544 2545 // Infer as many types as possible. If we cannot infer all of them, we can 2546 // never do anything with this instruction pattern: report it to the user. 2547 if (!I->InferAllTypes()) 2548 I->error("Could not infer all types in pattern!"); 2549 2550 // InstInputs - Keep track of all of the inputs of the instruction, along 2551 // with the record they are declared as. 2552 std::map<std::string, TreePatternNode*> InstInputs; 2553 2554 // InstResults - Keep track of all the virtual registers that are 'set' 2555 // in the instruction, including what reg class they are. 2556 std::map<std::string, TreePatternNode*> InstResults; 2557 2558 std::vector<Record*> InstImpResults; 2559 2560 // Verify that the top-level forms in the instruction are of void type, and 2561 // fill in the InstResults map. 2562 for (unsigned j = 0, e = I->getNumTrees(); j != e; ++j) { 2563 TreePatternNode *Pat = I->getTree(j); 2564 if (Pat->getNumTypes() != 0) 2565 I->error("Top-level forms in instruction pattern should have" 2566 " void types"); 2567 2568 // Find inputs and outputs, and verify the structure of the uses/defs. 2569 FindPatternInputsAndOutputs(I, Pat, InstInputs, InstResults, 2570 InstImpResults); 2571 } 2572 2573 // Now that we have inputs and outputs of the pattern, inspect the operands 2574 // list for the instruction. This determines the order that operands are 2575 // added to the machine instruction the node corresponds to. 2576 unsigned NumResults = InstResults.size(); 2577 2578 // Parse the operands list from the (ops) list, validating it. 2579 assert(I->getArgList().empty() && "Args list should still be empty here!"); 2580 CodeGenInstruction &CGI = Target.getInstruction(Instrs[i]); 2581 2582 // Check that all of the results occur first in the list. 2583 std::vector<Record*> Results; 2584 TreePatternNode *Res0Node = 0; 2585 for (unsigned i = 0; i != NumResults; ++i) { 2586 if (i == CGI.Operands.size()) 2587 I->error("'" + InstResults.begin()->first + 2588 "' set but does not appear in operand list!"); 2589 const std::string &OpName = CGI.Operands[i].Name; 2590 2591 // Check that it exists in InstResults. 2592 TreePatternNode *RNode = InstResults[OpName]; 2593 if (RNode == 0) 2594 I->error("Operand $" + OpName + " does not exist in operand list!"); 2595 2596 if (i == 0) 2597 Res0Node = RNode; 2598 Record *R = dynamic_cast<DefInit*>(RNode->getLeafValue())->getDef(); 2599 if (R == 0) 2600 I->error("Operand $" + OpName + " should be a set destination: all " 2601 "outputs must occur before inputs in operand list!"); 2602 2603 if (CGI.Operands[i].Rec != R) 2604 I->error("Operand $" + OpName + " class mismatch!"); 2605 2606 // Remember the return type. 2607 Results.push_back(CGI.Operands[i].Rec); 2608 2609 // Okay, this one checks out. 2610 InstResults.erase(OpName); 2611 } 2612 2613 // Loop over the inputs next. Make a copy of InstInputs so we can destroy 2614 // the copy while we're checking the inputs. 2615 std::map<std::string, TreePatternNode*> InstInputsCheck(InstInputs); 2616 2617 std::vector<TreePatternNode*> ResultNodeOperands; 2618 std::vector<Record*> Operands; 2619 for (unsigned i = NumResults, e = CGI.Operands.size(); i != e; ++i) { 2620 CGIOperandList::OperandInfo &Op = CGI.Operands[i]; 2621 const std::string &OpName = Op.Name; 2622 if (OpName.empty()) 2623 I->error("Operand #" + utostr(i) + " in operands list has no name!"); 2624 2625 if (!InstInputsCheck.count(OpName)) { 2626 // If this is an predicate operand or optional def operand with an 2627 // DefaultOps set filled in, we can ignore this. When we codegen it, 2628 // we will do so as always executed. 2629 if (Op.Rec->isSubClassOf("PredicateOperand") || 2630 Op.Rec->isSubClassOf("OptionalDefOperand")) { 2631 // Does it have a non-empty DefaultOps field? If so, ignore this 2632 // operand. 2633 if (!getDefaultOperand(Op.Rec).DefaultOps.empty()) 2634 continue; 2635 } 2636 I->error("Operand $" + OpName + 2637 " does not appear in the instruction pattern"); 2638 } 2639 TreePatternNode *InVal = InstInputsCheck[OpName]; 2640 InstInputsCheck.erase(OpName); // It occurred, remove from map. 2641 2642 if (InVal->isLeaf() && 2643 dynamic_cast<DefInit*>(InVal->getLeafValue())) { 2644 Record *InRec = static_cast<DefInit*>(InVal->getLeafValue())->getDef(); 2645 if (Op.Rec != InRec && !InRec->isSubClassOf("ComplexPattern")) 2646 I->error("Operand $" + OpName + "'s register class disagrees" 2647 " between the operand and pattern"); 2648 } 2649 Operands.push_back(Op.Rec); 2650 2651 // Construct the result for the dest-pattern operand list. 2652 TreePatternNode *OpNode = InVal->clone(); 2653 2654 // No predicate is useful on the result. 2655 OpNode->clearPredicateFns(); 2656 2657 // Promote the xform function to be an explicit node if set. 2658 if (Record *Xform = OpNode->getTransformFn()) { 2659 OpNode->setTransformFn(0); 2660 std::vector<TreePatternNode*> Children; 2661 Children.push_back(OpNode); 2662 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2663 } 2664 2665 ResultNodeOperands.push_back(OpNode); 2666 } 2667 2668 if (!InstInputsCheck.empty()) 2669 I->error("Input operand $" + InstInputsCheck.begin()->first + 2670 " occurs in pattern but not in operands list!"); 2671 2672 TreePatternNode *ResultPattern = 2673 new TreePatternNode(I->getRecord(), ResultNodeOperands, 2674 GetNumNodeResults(I->getRecord(), *this)); 2675 // Copy fully inferred output node type to instruction result pattern. 2676 for (unsigned i = 0; i != NumResults; ++i) 2677 ResultPattern->setType(i, Res0Node->getExtType(i)); 2678 2679 // Create and insert the instruction. 2680 // FIXME: InstImpResults should not be part of DAGInstruction. 2681 DAGInstruction TheInst(I, Results, Operands, InstImpResults); 2682 Instructions.insert(std::make_pair(I->getRecord(), TheInst)); 2683 2684 // Use a temporary tree pattern to infer all types and make sure that the 2685 // constructed result is correct. This depends on the instruction already 2686 // being inserted into the Instructions map. 2687 TreePattern Temp(I->getRecord(), ResultPattern, false, *this); 2688 Temp.InferAllTypes(&I->getNamedNodesMap()); 2689 2690 DAGInstruction &TheInsertedInst = Instructions.find(I->getRecord())->second; 2691 TheInsertedInst.setResultPattern(Temp.getOnlyTree()); 2692 2693 DEBUG(I->dump()); 2694 } 2695 2696 // If we can, convert the instructions to be patterns that are matched! 2697 for (std::map<Record*, DAGInstruction, RecordPtrCmp>::iterator II = 2698 Instructions.begin(), 2699 E = Instructions.end(); II != E; ++II) { 2700 DAGInstruction &TheInst = II->second; 2701 const TreePattern *I = TheInst.getPattern(); 2702 if (I == 0) continue; // No pattern. 2703 2704 // FIXME: Assume only the first tree is the pattern. The others are clobber 2705 // nodes. 2706 TreePatternNode *Pattern = I->getTree(0); 2707 TreePatternNode *SrcPattern; 2708 if (Pattern->getOperator()->getName() == "set") { 2709 SrcPattern = Pattern->getChild(Pattern->getNumChildren()-1)->clone(); 2710 } else{ 2711 // Not a set (store or something?) 2712 SrcPattern = Pattern; 2713 } 2714 2715 Record *Instr = II->first; 2716 AddPatternToMatch(I, 2717 PatternToMatch(Instr, 2718 Instr->getValueAsListInit("Predicates"), 2719 SrcPattern, 2720 TheInst.getResultPattern(), 2721 TheInst.getImpResults(), 2722 Instr->getValueAsInt("AddedComplexity"), 2723 Instr->getID())); 2724 } 2725 } 2726 2727 2728 typedef std::pair<const TreePatternNode*, unsigned> NameRecord; 2729 2730 static void FindNames(const TreePatternNode *P, 2731 std::map<std::string, NameRecord> &Names, 2732 const TreePattern *PatternTop) { 2733 if (!P->getName().empty()) { 2734 NameRecord &Rec = Names[P->getName()]; 2735 // If this is the first instance of the name, remember the node. 2736 if (Rec.second++ == 0) 2737 Rec.first = P; 2738 else if (Rec.first->getExtTypes() != P->getExtTypes()) 2739 PatternTop->error("repetition of value: $" + P->getName() + 2740 " where different uses have different types!"); 2741 } 2742 2743 if (!P->isLeaf()) { 2744 for (unsigned i = 0, e = P->getNumChildren(); i != e; ++i) 2745 FindNames(P->getChild(i), Names, PatternTop); 2746 } 2747 } 2748 2749 void CodeGenDAGPatterns::AddPatternToMatch(const TreePattern *Pattern, 2750 const PatternToMatch &PTM) { 2751 // Do some sanity checking on the pattern we're about to match. 2752 std::string Reason; 2753 if (!PTM.getSrcPattern()->canPatternMatch(Reason, *this)) 2754 Pattern->error("Pattern can never match: " + Reason); 2755 2756 // If the source pattern's root is a complex pattern, that complex pattern 2757 // must specify the nodes it can potentially match. 2758 if (const ComplexPattern *CP = 2759 PTM.getSrcPattern()->getComplexPatternInfo(*this)) 2760 if (CP->getRootNodes().empty()) 2761 Pattern->error("ComplexPattern at root must specify list of opcodes it" 2762 " could match"); 2763 2764 2765 // Find all of the named values in the input and output, ensure they have the 2766 // same type. 2767 std::map<std::string, NameRecord> SrcNames, DstNames; 2768 FindNames(PTM.getSrcPattern(), SrcNames, Pattern); 2769 FindNames(PTM.getDstPattern(), DstNames, Pattern); 2770 2771 // Scan all of the named values in the destination pattern, rejecting them if 2772 // they don't exist in the input pattern. 2773 for (std::map<std::string, NameRecord>::iterator 2774 I = DstNames.begin(), E = DstNames.end(); I != E; ++I) { 2775 if (SrcNames[I->first].first == 0) 2776 Pattern->error("Pattern has input without matching name in output: $" + 2777 I->first); 2778 } 2779 2780 // Scan all of the named values in the source pattern, rejecting them if the 2781 // name isn't used in the dest, and isn't used to tie two values together. 2782 for (std::map<std::string, NameRecord>::iterator 2783 I = SrcNames.begin(), E = SrcNames.end(); I != E; ++I) 2784 if (DstNames[I->first].first == 0 && SrcNames[I->first].second == 1) 2785 Pattern->error("Pattern has dead named input: $" + I->first); 2786 2787 PatternsToMatch.push_back(PTM); 2788 } 2789 2790 2791 2792 void CodeGenDAGPatterns::InferInstructionFlags() { 2793 const std::vector<const CodeGenInstruction*> &Instructions = 2794 Target.getInstructionsByEnumValue(); 2795 for (unsigned i = 0, e = Instructions.size(); i != e; ++i) { 2796 CodeGenInstruction &InstInfo = 2797 const_cast<CodeGenInstruction &>(*Instructions[i]); 2798 // Determine properties of the instruction from its pattern. 2799 bool MayStore, MayLoad, IsBitcast, HasSideEffects, IsVariadic; 2800 InferFromPattern(InstInfo, MayStore, MayLoad, IsBitcast, 2801 HasSideEffects, IsVariadic, *this); 2802 InstInfo.mayStore = MayStore; 2803 InstInfo.mayLoad = MayLoad; 2804 InstInfo.isBitcast = IsBitcast; 2805 InstInfo.hasSideEffects = HasSideEffects; 2806 InstInfo.Operands.isVariadic = IsVariadic; 2807 } 2808 } 2809 2810 /// Given a pattern result with an unresolved type, see if we can find one 2811 /// instruction with an unresolved result type. Force this result type to an 2812 /// arbitrary element if it's possible types to converge results. 2813 static bool ForceArbitraryInstResultType(TreePatternNode *N, TreePattern &TP) { 2814 if (N->isLeaf()) 2815 return false; 2816 2817 // Analyze children. 2818 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 2819 if (ForceArbitraryInstResultType(N->getChild(i), TP)) 2820 return true; 2821 2822 if (!N->getOperator()->isSubClassOf("Instruction")) 2823 return false; 2824 2825 // If this type is already concrete or completely unknown we can't do 2826 // anything. 2827 for (unsigned i = 0, e = N->getNumTypes(); i != e; ++i) { 2828 if (N->getExtType(i).isCompletelyUnknown() || N->getExtType(i).isConcrete()) 2829 continue; 2830 2831 // Otherwise, force its type to the first possibility (an arbitrary choice). 2832 if (N->getExtType(i).MergeInTypeInfo(N->getExtType(i).getTypeList()[0], TP)) 2833 return true; 2834 } 2835 2836 return false; 2837 } 2838 2839 void CodeGenDAGPatterns::ParsePatterns() { 2840 std::vector<Record*> Patterns = Records.getAllDerivedDefinitions("Pattern"); 2841 2842 for (unsigned i = 0, e = Patterns.size(); i != e; ++i) { 2843 Record *CurPattern = Patterns[i]; 2844 DagInit *Tree = CurPattern->getValueAsDag("PatternToMatch"); 2845 TreePattern *Pattern = new TreePattern(CurPattern, Tree, true, *this); 2846 2847 // Inline pattern fragments into it. 2848 Pattern->InlinePatternFragments(); 2849 2850 ListInit *LI = CurPattern->getValueAsListInit("ResultInstrs"); 2851 if (LI->getSize() == 0) continue; // no pattern. 2852 2853 // Parse the instruction. 2854 TreePattern *Result = new TreePattern(CurPattern, LI, false, *this); 2855 2856 // Inline pattern fragments into it. 2857 Result->InlinePatternFragments(); 2858 2859 if (Result->getNumTrees() != 1) 2860 Result->error("Cannot handle instructions producing instructions " 2861 "with temporaries yet!"); 2862 2863 bool IterateInference; 2864 bool InferredAllPatternTypes, InferredAllResultTypes; 2865 do { 2866 // Infer as many types as possible. If we cannot infer all of them, we 2867 // can never do anything with this pattern: report it to the user. 2868 InferredAllPatternTypes = 2869 Pattern->InferAllTypes(&Pattern->getNamedNodesMap()); 2870 2871 // Infer as many types as possible. If we cannot infer all of them, we 2872 // can never do anything with this pattern: report it to the user. 2873 InferredAllResultTypes = 2874 Result->InferAllTypes(&Pattern->getNamedNodesMap()); 2875 2876 IterateInference = false; 2877 2878 // Apply the type of the result to the source pattern. This helps us 2879 // resolve cases where the input type is known to be a pointer type (which 2880 // is considered resolved), but the result knows it needs to be 32- or 2881 // 64-bits. Infer the other way for good measure. 2882 for (unsigned i = 0, e = std::min(Result->getTree(0)->getNumTypes(), 2883 Pattern->getTree(0)->getNumTypes()); 2884 i != e; ++i) { 2885 IterateInference = Pattern->getTree(0)-> 2886 UpdateNodeType(i, Result->getTree(0)->getExtType(i), *Result); 2887 IterateInference |= Result->getTree(0)-> 2888 UpdateNodeType(i, Pattern->getTree(0)->getExtType(i), *Result); 2889 } 2890 2891 // If our iteration has converged and the input pattern's types are fully 2892 // resolved but the result pattern is not fully resolved, we may have a 2893 // situation where we have two instructions in the result pattern and 2894 // the instructions require a common register class, but don't care about 2895 // what actual MVT is used. This is actually a bug in our modelling: 2896 // output patterns should have register classes, not MVTs. 2897 // 2898 // In any case, to handle this, we just go through and disambiguate some 2899 // arbitrary types to the result pattern's nodes. 2900 if (!IterateInference && InferredAllPatternTypes && 2901 !InferredAllResultTypes) 2902 IterateInference = ForceArbitraryInstResultType(Result->getTree(0), 2903 *Result); 2904 } while (IterateInference); 2905 2906 // Verify that we inferred enough types that we can do something with the 2907 // pattern and result. If these fire the user has to add type casts. 2908 if (!InferredAllPatternTypes) 2909 Pattern->error("Could not infer all types in pattern!"); 2910 if (!InferredAllResultTypes) { 2911 Pattern->dump(); 2912 Result->error("Could not infer all types in pattern result!"); 2913 } 2914 2915 // Validate that the input pattern is correct. 2916 std::map<std::string, TreePatternNode*> InstInputs; 2917 std::map<std::string, TreePatternNode*> InstResults; 2918 std::vector<Record*> InstImpResults; 2919 for (unsigned j = 0, ee = Pattern->getNumTrees(); j != ee; ++j) 2920 FindPatternInputsAndOutputs(Pattern, Pattern->getTree(j), 2921 InstInputs, InstResults, 2922 InstImpResults); 2923 2924 // Promote the xform function to be an explicit node if set. 2925 TreePatternNode *DstPattern = Result->getOnlyTree(); 2926 std::vector<TreePatternNode*> ResultNodeOperands; 2927 for (unsigned ii = 0, ee = DstPattern->getNumChildren(); ii != ee; ++ii) { 2928 TreePatternNode *OpNode = DstPattern->getChild(ii); 2929 if (Record *Xform = OpNode->getTransformFn()) { 2930 OpNode->setTransformFn(0); 2931 std::vector<TreePatternNode*> Children; 2932 Children.push_back(OpNode); 2933 OpNode = new TreePatternNode(Xform, Children, OpNode->getNumTypes()); 2934 } 2935 ResultNodeOperands.push_back(OpNode); 2936 } 2937 DstPattern = Result->getOnlyTree(); 2938 if (!DstPattern->isLeaf()) 2939 DstPattern = new TreePatternNode(DstPattern->getOperator(), 2940 ResultNodeOperands, 2941 DstPattern->getNumTypes()); 2942 2943 for (unsigned i = 0, e = Result->getOnlyTree()->getNumTypes(); i != e; ++i) 2944 DstPattern->setType(i, Result->getOnlyTree()->getExtType(i)); 2945 2946 TreePattern Temp(Result->getRecord(), DstPattern, false, *this); 2947 Temp.InferAllTypes(); 2948 2949 2950 AddPatternToMatch(Pattern, 2951 PatternToMatch(CurPattern, 2952 CurPattern->getValueAsListInit("Predicates"), 2953 Pattern->getTree(0), 2954 Temp.getOnlyTree(), InstImpResults, 2955 CurPattern->getValueAsInt("AddedComplexity"), 2956 CurPattern->getID())); 2957 } 2958 } 2959 2960 /// CombineChildVariants - Given a bunch of permutations of each child of the 2961 /// 'operator' node, put them together in all possible ways. 2962 static void CombineChildVariants(TreePatternNode *Orig, 2963 const std::vector<std::vector<TreePatternNode*> > &ChildVariants, 2964 std::vector<TreePatternNode*> &OutVariants, 2965 CodeGenDAGPatterns &CDP, 2966 const MultipleUseVarSet &DepVars) { 2967 // Make sure that each operand has at least one variant to choose from. 2968 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2969 if (ChildVariants[i].empty()) 2970 return; 2971 2972 // The end result is an all-pairs construction of the resultant pattern. 2973 std::vector<unsigned> Idxs; 2974 Idxs.resize(ChildVariants.size()); 2975 bool NotDone; 2976 do { 2977 #ifndef NDEBUG 2978 DEBUG(if (!Idxs.empty()) { 2979 errs() << Orig->getOperator()->getName() << ": Idxs = [ "; 2980 for (unsigned i = 0; i < Idxs.size(); ++i) { 2981 errs() << Idxs[i] << " "; 2982 } 2983 errs() << "]\n"; 2984 }); 2985 #endif 2986 // Create the variant and add it to the output list. 2987 std::vector<TreePatternNode*> NewChildren; 2988 for (unsigned i = 0, e = ChildVariants.size(); i != e; ++i) 2989 NewChildren.push_back(ChildVariants[i][Idxs[i]]); 2990 TreePatternNode *R = new TreePatternNode(Orig->getOperator(), NewChildren, 2991 Orig->getNumTypes()); 2992 2993 // Copy over properties. 2994 R->setName(Orig->getName()); 2995 R->setPredicateFns(Orig->getPredicateFns()); 2996 R->setTransformFn(Orig->getTransformFn()); 2997 for (unsigned i = 0, e = Orig->getNumTypes(); i != e; ++i) 2998 R->setType(i, Orig->getExtType(i)); 2999 3000 // If this pattern cannot match, do not include it as a variant. 3001 std::string ErrString; 3002 if (!R->canPatternMatch(ErrString, CDP)) { 3003 delete R; 3004 } else { 3005 bool AlreadyExists = false; 3006 3007 // Scan to see if this pattern has already been emitted. We can get 3008 // duplication due to things like commuting: 3009 // (and GPRC:$a, GPRC:$b) -> (and GPRC:$b, GPRC:$a) 3010 // which are the same pattern. Ignore the dups. 3011 for (unsigned i = 0, e = OutVariants.size(); i != e; ++i) 3012 if (R->isIsomorphicTo(OutVariants[i], DepVars)) { 3013 AlreadyExists = true; 3014 break; 3015 } 3016 3017 if (AlreadyExists) 3018 delete R; 3019 else 3020 OutVariants.push_back(R); 3021 } 3022 3023 // Increment indices to the next permutation by incrementing the 3024 // indicies from last index backward, e.g., generate the sequence 3025 // [0, 0], [0, 1], [1, 0], [1, 1]. 3026 int IdxsIdx; 3027 for (IdxsIdx = Idxs.size() - 1; IdxsIdx >= 0; --IdxsIdx) { 3028 if (++Idxs[IdxsIdx] == ChildVariants[IdxsIdx].size()) 3029 Idxs[IdxsIdx] = 0; 3030 else 3031 break; 3032 } 3033 NotDone = (IdxsIdx >= 0); 3034 } while (NotDone); 3035 } 3036 3037 /// CombineChildVariants - A helper function for binary operators. 3038 /// 3039 static void CombineChildVariants(TreePatternNode *Orig, 3040 const std::vector<TreePatternNode*> &LHS, 3041 const std::vector<TreePatternNode*> &RHS, 3042 std::vector<TreePatternNode*> &OutVariants, 3043 CodeGenDAGPatterns &CDP, 3044 const MultipleUseVarSet &DepVars) { 3045 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3046 ChildVariants.push_back(LHS); 3047 ChildVariants.push_back(RHS); 3048 CombineChildVariants(Orig, ChildVariants, OutVariants, CDP, DepVars); 3049 } 3050 3051 3052 static void GatherChildrenOfAssociativeOpcode(TreePatternNode *N, 3053 std::vector<TreePatternNode *> &Children) { 3054 assert(N->getNumChildren()==2 &&"Associative but doesn't have 2 children!"); 3055 Record *Operator = N->getOperator(); 3056 3057 // Only permit raw nodes. 3058 if (!N->getName().empty() || !N->getPredicateFns().empty() || 3059 N->getTransformFn()) { 3060 Children.push_back(N); 3061 return; 3062 } 3063 3064 if (N->getChild(0)->isLeaf() || N->getChild(0)->getOperator() != Operator) 3065 Children.push_back(N->getChild(0)); 3066 else 3067 GatherChildrenOfAssociativeOpcode(N->getChild(0), Children); 3068 3069 if (N->getChild(1)->isLeaf() || N->getChild(1)->getOperator() != Operator) 3070 Children.push_back(N->getChild(1)); 3071 else 3072 GatherChildrenOfAssociativeOpcode(N->getChild(1), Children); 3073 } 3074 3075 /// GenerateVariantsOf - Given a pattern N, generate all permutations we can of 3076 /// the (potentially recursive) pattern by using algebraic laws. 3077 /// 3078 static void GenerateVariantsOf(TreePatternNode *N, 3079 std::vector<TreePatternNode*> &OutVariants, 3080 CodeGenDAGPatterns &CDP, 3081 const MultipleUseVarSet &DepVars) { 3082 // We cannot permute leaves. 3083 if (N->isLeaf()) { 3084 OutVariants.push_back(N); 3085 return; 3086 } 3087 3088 // Look up interesting info about the node. 3089 const SDNodeInfo &NodeInfo = CDP.getSDNodeInfo(N->getOperator()); 3090 3091 // If this node is associative, re-associate. 3092 if (NodeInfo.hasProperty(SDNPAssociative)) { 3093 // Re-associate by pulling together all of the linked operators 3094 std::vector<TreePatternNode*> MaximalChildren; 3095 GatherChildrenOfAssociativeOpcode(N, MaximalChildren); 3096 3097 // Only handle child sizes of 3. Otherwise we'll end up trying too many 3098 // permutations. 3099 if (MaximalChildren.size() == 3) { 3100 // Find the variants of all of our maximal children. 3101 std::vector<TreePatternNode*> AVariants, BVariants, CVariants; 3102 GenerateVariantsOf(MaximalChildren[0], AVariants, CDP, DepVars); 3103 GenerateVariantsOf(MaximalChildren[1], BVariants, CDP, DepVars); 3104 GenerateVariantsOf(MaximalChildren[2], CVariants, CDP, DepVars); 3105 3106 // There are only two ways we can permute the tree: 3107 // (A op B) op C and A op (B op C) 3108 // Within these forms, we can also permute A/B/C. 3109 3110 // Generate legal pair permutations of A/B/C. 3111 std::vector<TreePatternNode*> ABVariants; 3112 std::vector<TreePatternNode*> BAVariants; 3113 std::vector<TreePatternNode*> ACVariants; 3114 std::vector<TreePatternNode*> CAVariants; 3115 std::vector<TreePatternNode*> BCVariants; 3116 std::vector<TreePatternNode*> CBVariants; 3117 CombineChildVariants(N, AVariants, BVariants, ABVariants, CDP, DepVars); 3118 CombineChildVariants(N, BVariants, AVariants, BAVariants, CDP, DepVars); 3119 CombineChildVariants(N, AVariants, CVariants, ACVariants, CDP, DepVars); 3120 CombineChildVariants(N, CVariants, AVariants, CAVariants, CDP, DepVars); 3121 CombineChildVariants(N, BVariants, CVariants, BCVariants, CDP, DepVars); 3122 CombineChildVariants(N, CVariants, BVariants, CBVariants, CDP, DepVars); 3123 3124 // Combine those into the result: (x op x) op x 3125 CombineChildVariants(N, ABVariants, CVariants, OutVariants, CDP, DepVars); 3126 CombineChildVariants(N, BAVariants, CVariants, OutVariants, CDP, DepVars); 3127 CombineChildVariants(N, ACVariants, BVariants, OutVariants, CDP, DepVars); 3128 CombineChildVariants(N, CAVariants, BVariants, OutVariants, CDP, DepVars); 3129 CombineChildVariants(N, BCVariants, AVariants, OutVariants, CDP, DepVars); 3130 CombineChildVariants(N, CBVariants, AVariants, OutVariants, CDP, DepVars); 3131 3132 // Combine those into the result: x op (x op x) 3133 CombineChildVariants(N, CVariants, ABVariants, OutVariants, CDP, DepVars); 3134 CombineChildVariants(N, CVariants, BAVariants, OutVariants, CDP, DepVars); 3135 CombineChildVariants(N, BVariants, ACVariants, OutVariants, CDP, DepVars); 3136 CombineChildVariants(N, BVariants, CAVariants, OutVariants, CDP, DepVars); 3137 CombineChildVariants(N, AVariants, BCVariants, OutVariants, CDP, DepVars); 3138 CombineChildVariants(N, AVariants, CBVariants, OutVariants, CDP, DepVars); 3139 return; 3140 } 3141 } 3142 3143 // Compute permutations of all children. 3144 std::vector<std::vector<TreePatternNode*> > ChildVariants; 3145 ChildVariants.resize(N->getNumChildren()); 3146 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) 3147 GenerateVariantsOf(N->getChild(i), ChildVariants[i], CDP, DepVars); 3148 3149 // Build all permutations based on how the children were formed. 3150 CombineChildVariants(N, ChildVariants, OutVariants, CDP, DepVars); 3151 3152 // If this node is commutative, consider the commuted order. 3153 bool isCommIntrinsic = N->isCommutativeIntrinsic(CDP); 3154 if (NodeInfo.hasProperty(SDNPCommutative) || isCommIntrinsic) { 3155 assert((N->getNumChildren()==2 || isCommIntrinsic) && 3156 "Commutative but doesn't have 2 children!"); 3157 // Don't count children which are actually register references. 3158 unsigned NC = 0; 3159 for (unsigned i = 0, e = N->getNumChildren(); i != e; ++i) { 3160 TreePatternNode *Child = N->getChild(i); 3161 if (Child->isLeaf()) 3162 if (DefInit *DI = dynamic_cast<DefInit*>(Child->getLeafValue())) { 3163 Record *RR = DI->getDef(); 3164 if (RR->isSubClassOf("Register")) 3165 continue; 3166 } 3167 NC++; 3168 } 3169 // Consider the commuted order. 3170 if (isCommIntrinsic) { 3171 // Commutative intrinsic. First operand is the intrinsic id, 2nd and 3rd 3172 // operands are the commutative operands, and there might be more operands 3173 // after those. 3174 assert(NC >= 3 && 3175 "Commutative intrinsic should have at least 3 childrean!"); 3176 std::vector<std::vector<TreePatternNode*> > Variants; 3177 Variants.push_back(ChildVariants[0]); // Intrinsic id. 3178 Variants.push_back(ChildVariants[2]); 3179 Variants.push_back(ChildVariants[1]); 3180 for (unsigned i = 3; i != NC; ++i) 3181 Variants.push_back(ChildVariants[i]); 3182 CombineChildVariants(N, Variants, OutVariants, CDP, DepVars); 3183 } else if (NC == 2) 3184 CombineChildVariants(N, ChildVariants[1], ChildVariants[0], 3185 OutVariants, CDP, DepVars); 3186 } 3187 } 3188 3189 3190 // GenerateVariants - Generate variants. For example, commutative patterns can 3191 // match multiple ways. Add them to PatternsToMatch as well. 3192 void CodeGenDAGPatterns::GenerateVariants() { 3193 DEBUG(errs() << "Generating instruction variants.\n"); 3194 3195 // Loop over all of the patterns we've collected, checking to see if we can 3196 // generate variants of the instruction, through the exploitation of 3197 // identities. This permits the target to provide aggressive matching without 3198 // the .td file having to contain tons of variants of instructions. 3199 // 3200 // Note that this loop adds new patterns to the PatternsToMatch list, but we 3201 // intentionally do not reconsider these. Any variants of added patterns have 3202 // already been added. 3203 // 3204 for (unsigned i = 0, e = PatternsToMatch.size(); i != e; ++i) { 3205 MultipleUseVarSet DepVars; 3206 std::vector<TreePatternNode*> Variants; 3207 FindDepVars(PatternsToMatch[i].getSrcPattern(), DepVars); 3208 DEBUG(errs() << "Dependent/multiply used variables: "); 3209 DEBUG(DumpDepVars(DepVars)); 3210 DEBUG(errs() << "\n"); 3211 GenerateVariantsOf(PatternsToMatch[i].getSrcPattern(), Variants, *this, 3212 DepVars); 3213 3214 assert(!Variants.empty() && "Must create at least original variant!"); 3215 Variants.erase(Variants.begin()); // Remove the original pattern. 3216 3217 if (Variants.empty()) // No variants for this pattern. 3218 continue; 3219 3220 DEBUG(errs() << "FOUND VARIANTS OF: "; 3221 PatternsToMatch[i].getSrcPattern()->dump(); 3222 errs() << "\n"); 3223 3224 for (unsigned v = 0, e = Variants.size(); v != e; ++v) { 3225 TreePatternNode *Variant = Variants[v]; 3226 3227 DEBUG(errs() << " VAR#" << v << ": "; 3228 Variant->dump(); 3229 errs() << "\n"); 3230 3231 // Scan to see if an instruction or explicit pattern already matches this. 3232 bool AlreadyExists = false; 3233 for (unsigned p = 0, e = PatternsToMatch.size(); p != e; ++p) { 3234 // Skip if the top level predicates do not match. 3235 if (PatternsToMatch[i].getPredicates() != 3236 PatternsToMatch[p].getPredicates()) 3237 continue; 3238 // Check to see if this variant already exists. 3239 if (Variant->isIsomorphicTo(PatternsToMatch[p].getSrcPattern(), 3240 DepVars)) { 3241 DEBUG(errs() << " *** ALREADY EXISTS, ignoring variant.\n"); 3242 AlreadyExists = true; 3243 break; 3244 } 3245 } 3246 // If we already have it, ignore the variant. 3247 if (AlreadyExists) continue; 3248 3249 // Otherwise, add it to the list of patterns we have. 3250 PatternsToMatch. 3251 push_back(PatternToMatch(PatternsToMatch[i].getSrcRecord(), 3252 PatternsToMatch[i].getPredicates(), 3253 Variant, PatternsToMatch[i].getDstPattern(), 3254 PatternsToMatch[i].getDstRegs(), 3255 PatternsToMatch[i].getAddedComplexity(), 3256 Record::getNewUID())); 3257 } 3258 3259 DEBUG(errs() << "\n"); 3260 } 3261 } 3262 3263