1 //===- AsmMatcherEmitter.cpp - Generate an assembly matcher ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits a target specifier matcher for converting parsed 11 // assembly operands in the MCInst structures. It also emits a matcher for 12 // custom operand parsing. 13 // 14 // Converting assembly operands into MCInst structures 15 // --------------------------------------------------- 16 // 17 // The input to the target specific matcher is a list of literal tokens and 18 // operands. The target specific parser should generally eliminate any syntax 19 // which is not relevant for matching; for example, comma tokens should have 20 // already been consumed and eliminated by the parser. Most instructions will 21 // end up with a single literal token (the instruction name) and some number of 22 // operands. 23 // 24 // Some example inputs, for X86: 25 // 'addl' (immediate ...) (register ...) 26 // 'add' (immediate ...) (memory ...) 27 // 'call' '*' %epc 28 // 29 // The assembly matcher is responsible for converting this input into a precise 30 // machine instruction (i.e., an instruction with a well defined encoding). This 31 // mapping has several properties which complicate matching: 32 // 33 // - It may be ambiguous; many architectures can legally encode particular 34 // variants of an instruction in different ways (for example, using a smaller 35 // encoding for small immediates). Such ambiguities should never be 36 // arbitrarily resolved by the assembler, the assembler is always responsible 37 // for choosing the "best" available instruction. 38 // 39 // - It may depend on the subtarget or the assembler context. Instructions 40 // which are invalid for the current mode, but otherwise unambiguous (e.g., 41 // an SSE instruction in a file being assembled for i486) should be accepted 42 // and rejected by the assembler front end. However, if the proper encoding 43 // for an instruction is dependent on the assembler context then the matcher 44 // is responsible for selecting the correct machine instruction for the 45 // current mode. 46 // 47 // The core matching algorithm attempts to exploit the regularity in most 48 // instruction sets to quickly determine the set of possibly matching 49 // instructions, and the simplify the generated code. Additionally, this helps 50 // to ensure that the ambiguities are intentionally resolved by the user. 51 // 52 // The matching is divided into two distinct phases: 53 // 54 // 1. Classification: Each operand is mapped to the unique set which (a) 55 // contains it, and (b) is the largest such subset for which a single 56 // instruction could match all members. 57 // 58 // For register classes, we can generate these subgroups automatically. For 59 // arbitrary operands, we expect the user to define the classes and their 60 // relations to one another (for example, 8-bit signed immediates as a 61 // subset of 32-bit immediates). 62 // 63 // By partitioning the operands in this way, we guarantee that for any 64 // tuple of classes, any single instruction must match either all or none 65 // of the sets of operands which could classify to that tuple. 66 // 67 // In addition, the subset relation amongst classes induces a partial order 68 // on such tuples, which we use to resolve ambiguities. 69 // 70 // 2. The input can now be treated as a tuple of classes (static tokens are 71 // simple singleton sets). Each such tuple should generally map to a single 72 // instruction (we currently ignore cases where this isn't true, whee!!!), 73 // which we can emit a simple matcher for. 74 // 75 // Custom Operand Parsing 76 // ---------------------- 77 // 78 // Some targets need a custom way to parse operands, some specific instructions 79 // can contain arguments that can represent processor flags and other kinds of 80 // identifiers that need to be mapped to specific values in the final encoded 81 // instructions. The target specific custom operand parsing works in the 82 // following way: 83 // 84 // 1. A operand match table is built, each entry contains a mnemonic, an 85 // operand class, a mask for all operand positions for that same 86 // class/mnemonic and target features to be checked while trying to match. 87 // 88 // 2. The operand matcher will try every possible entry with the same 89 // mnemonic and will check if the target feature for this mnemonic also 90 // matches. After that, if the operand to be matched has its index 91 // present in the mask, a successful match occurs. Otherwise, fallback 92 // to the regular operand parsing. 93 // 94 // 3. For a match success, each operand class that has a 'ParserMethod' 95 // becomes part of a switch from where the custom method is called. 96 // 97 //===----------------------------------------------------------------------===// 98 99 #include "CodeGenTarget.h" 100 #include "SubtargetFeatureInfo.h" 101 #include "Types.h" 102 #include "llvm/ADT/CachedHashString.h" 103 #include "llvm/ADT/PointerUnion.h" 104 #include "llvm/ADT/STLExtras.h" 105 #include "llvm/ADT/SmallPtrSet.h" 106 #include "llvm/ADT/SmallVector.h" 107 #include "llvm/ADT/StringExtras.h" 108 #include "llvm/Config/llvm-config.h" 109 #include "llvm/Support/CommandLine.h" 110 #include "llvm/Support/Debug.h" 111 #include "llvm/Support/ErrorHandling.h" 112 #include "llvm/TableGen/Error.h" 113 #include "llvm/TableGen/Record.h" 114 #include "llvm/TableGen/StringMatcher.h" 115 #include "llvm/TableGen/StringToOffsetTable.h" 116 #include "llvm/TableGen/TableGenBackend.h" 117 #include <cassert> 118 #include <cctype> 119 #include <forward_list> 120 #include <map> 121 #include <set> 122 123 using namespace llvm; 124 125 #define DEBUG_TYPE "asm-matcher-emitter" 126 127 cl::OptionCategory AsmMatcherEmitterCat("Options for -gen-asm-matcher"); 128 129 static cl::opt<std::string> 130 MatchPrefix("match-prefix", cl::init(""), 131 cl::desc("Only match instructions with the given prefix"), 132 cl::cat(AsmMatcherEmitterCat)); 133 134 namespace { 135 class AsmMatcherInfo; 136 137 // Register sets are used as keys in some second-order sets TableGen creates 138 // when generating its data structures. This means that the order of two 139 // RegisterSets can be seen in the outputted AsmMatcher tables occasionally, and 140 // can even affect compiler output (at least seen in diagnostics produced when 141 // all matches fail). So we use a type that sorts them consistently. 142 typedef std::set<Record*, LessRecordByID> RegisterSet; 143 144 class AsmMatcherEmitter { 145 RecordKeeper &Records; 146 public: 147 AsmMatcherEmitter(RecordKeeper &R) : Records(R) {} 148 149 void run(raw_ostream &o); 150 }; 151 152 /// ClassInfo - Helper class for storing the information about a particular 153 /// class of operands which can be matched. 154 struct ClassInfo { 155 enum ClassInfoKind { 156 /// Invalid kind, for use as a sentinel value. 157 Invalid = 0, 158 159 /// The class for a particular token. 160 Token, 161 162 /// The (first) register class, subsequent register classes are 163 /// RegisterClass0+1, and so on. 164 RegisterClass0, 165 166 /// The (first) user defined class, subsequent user defined classes are 167 /// UserClass0+1, and so on. 168 UserClass0 = 1<<16 169 }; 170 171 /// Kind - The class kind, which is either a predefined kind, or (UserClass0 + 172 /// N) for the Nth user defined class. 173 unsigned Kind; 174 175 /// SuperClasses - The super classes of this class. Note that for simplicities 176 /// sake user operands only record their immediate super class, while register 177 /// operands include all superclasses. 178 std::vector<ClassInfo*> SuperClasses; 179 180 /// Name - The full class name, suitable for use in an enum. 181 std::string Name; 182 183 /// ClassName - The unadorned generic name for this class (e.g., Token). 184 std::string ClassName; 185 186 /// ValueName - The name of the value this class represents; for a token this 187 /// is the literal token string, for an operand it is the TableGen class (or 188 /// empty if this is a derived class). 189 std::string ValueName; 190 191 /// PredicateMethod - The name of the operand method to test whether the 192 /// operand matches this class; this is not valid for Token or register kinds. 193 std::string PredicateMethod; 194 195 /// RenderMethod - The name of the operand method to add this operand to an 196 /// MCInst; this is not valid for Token or register kinds. 197 std::string RenderMethod; 198 199 /// ParserMethod - The name of the operand method to do a target specific 200 /// parsing on the operand. 201 std::string ParserMethod; 202 203 /// For register classes: the records for all the registers in this class. 204 RegisterSet Registers; 205 206 /// For custom match classes: the diagnostic kind for when the predicate fails. 207 std::string DiagnosticType; 208 209 /// For custom match classes: the diagnostic string for when the predicate fails. 210 std::string DiagnosticString; 211 212 /// Is this operand optional and not always required. 213 bool IsOptional; 214 215 /// DefaultMethod - The name of the method that returns the default operand 216 /// for optional operand 217 std::string DefaultMethod; 218 219 public: 220 /// isRegisterClass() - Check if this is a register class. 221 bool isRegisterClass() const { 222 return Kind >= RegisterClass0 && Kind < UserClass0; 223 } 224 225 /// isUserClass() - Check if this is a user defined class. 226 bool isUserClass() const { 227 return Kind >= UserClass0; 228 } 229 230 /// isRelatedTo - Check whether this class is "related" to \p RHS. Classes 231 /// are related if they are in the same class hierarchy. 232 bool isRelatedTo(const ClassInfo &RHS) const { 233 // Tokens are only related to tokens. 234 if (Kind == Token || RHS.Kind == Token) 235 return Kind == Token && RHS.Kind == Token; 236 237 // Registers classes are only related to registers classes, and only if 238 // their intersection is non-empty. 239 if (isRegisterClass() || RHS.isRegisterClass()) { 240 if (!isRegisterClass() || !RHS.isRegisterClass()) 241 return false; 242 243 RegisterSet Tmp; 244 std::insert_iterator<RegisterSet> II(Tmp, Tmp.begin()); 245 std::set_intersection(Registers.begin(), Registers.end(), 246 RHS.Registers.begin(), RHS.Registers.end(), 247 II, LessRecordByID()); 248 249 return !Tmp.empty(); 250 } 251 252 // Otherwise we have two users operands; they are related if they are in the 253 // same class hierarchy. 254 // 255 // FIXME: This is an oversimplification, they should only be related if they 256 // intersect, however we don't have that information. 257 assert(isUserClass() && RHS.isUserClass() && "Unexpected class!"); 258 const ClassInfo *Root = this; 259 while (!Root->SuperClasses.empty()) 260 Root = Root->SuperClasses.front(); 261 262 const ClassInfo *RHSRoot = &RHS; 263 while (!RHSRoot->SuperClasses.empty()) 264 RHSRoot = RHSRoot->SuperClasses.front(); 265 266 return Root == RHSRoot; 267 } 268 269 /// isSubsetOf - Test whether this class is a subset of \p RHS. 270 bool isSubsetOf(const ClassInfo &RHS) const { 271 // This is a subset of RHS if it is the same class... 272 if (this == &RHS) 273 return true; 274 275 // ... or if any of its super classes are a subset of RHS. 276 SmallVector<const ClassInfo *, 16> Worklist(SuperClasses.begin(), 277 SuperClasses.end()); 278 SmallPtrSet<const ClassInfo *, 16> Visited; 279 while (!Worklist.empty()) { 280 auto *CI = Worklist.pop_back_val(); 281 if (CI == &RHS) 282 return true; 283 for (auto *Super : CI->SuperClasses) 284 if (Visited.insert(Super).second) 285 Worklist.push_back(Super); 286 } 287 288 return false; 289 } 290 291 int getTreeDepth() const { 292 int Depth = 0; 293 const ClassInfo *Root = this; 294 while (!Root->SuperClasses.empty()) { 295 Depth++; 296 Root = Root->SuperClasses.front(); 297 } 298 return Depth; 299 } 300 301 const ClassInfo *findRoot() const { 302 const ClassInfo *Root = this; 303 while (!Root->SuperClasses.empty()) 304 Root = Root->SuperClasses.front(); 305 return Root; 306 } 307 308 /// Compare two classes. This does not produce a total ordering, but does 309 /// guarantee that subclasses are sorted before their parents, and that the 310 /// ordering is transitive. 311 bool operator<(const ClassInfo &RHS) const { 312 if (this == &RHS) 313 return false; 314 315 // First, enforce the ordering between the three different types of class. 316 // Tokens sort before registers, which sort before user classes. 317 if (Kind == Token) { 318 if (RHS.Kind != Token) 319 return true; 320 assert(RHS.Kind == Token); 321 } else if (isRegisterClass()) { 322 if (RHS.Kind == Token) 323 return false; 324 else if (RHS.isUserClass()) 325 return true; 326 assert(RHS.isRegisterClass()); 327 } else if (isUserClass()) { 328 if (!RHS.isUserClass()) 329 return false; 330 assert(RHS.isUserClass()); 331 } else { 332 llvm_unreachable("Unknown ClassInfoKind"); 333 } 334 335 if (Kind == Token || isUserClass()) { 336 // Related tokens and user classes get sorted by depth in the inheritence 337 // tree (so that subclasses are before their parents). 338 if (isRelatedTo(RHS)) { 339 if (getTreeDepth() > RHS.getTreeDepth()) 340 return true; 341 if (getTreeDepth() < RHS.getTreeDepth()) 342 return false; 343 } else { 344 // Unrelated tokens and user classes are ordered by the name of their 345 // root nodes, so that there is a consistent ordering between 346 // unconnected trees. 347 return findRoot()->ValueName < RHS.findRoot()->ValueName; 348 } 349 } else if (isRegisterClass()) { 350 // For register sets, sort by number of registers. This guarantees that 351 // a set will always sort before all of it's strict supersets. 352 if (Registers.size() != RHS.Registers.size()) 353 return Registers.size() < RHS.Registers.size(); 354 } else { 355 llvm_unreachable("Unknown ClassInfoKind"); 356 } 357 358 // FIXME: We should be able to just return false here, as we only need a 359 // partial order (we use stable sorts, so this is deterministic) and the 360 // name of a class shouldn't be significant. However, some of the backends 361 // accidentally rely on this behaviour, so it will have to stay like this 362 // until they are fixed. 363 return ValueName < RHS.ValueName; 364 } 365 }; 366 367 class AsmVariantInfo { 368 public: 369 StringRef RegisterPrefix; 370 StringRef TokenizingCharacters; 371 StringRef SeparatorCharacters; 372 StringRef BreakCharacters; 373 StringRef Name; 374 int AsmVariantNo; 375 }; 376 377 /// MatchableInfo - Helper class for storing the necessary information for an 378 /// instruction or alias which is capable of being matched. 379 struct MatchableInfo { 380 struct AsmOperand { 381 /// Token - This is the token that the operand came from. 382 StringRef Token; 383 384 /// The unique class instance this operand should match. 385 ClassInfo *Class; 386 387 /// The operand name this is, if anything. 388 StringRef SrcOpName; 389 390 /// The operand name this is, before renaming for tied operands. 391 StringRef OrigSrcOpName; 392 393 /// The suboperand index within SrcOpName, or -1 for the entire operand. 394 int SubOpIdx; 395 396 /// Whether the token is "isolated", i.e., it is preceded and followed 397 /// by separators. 398 bool IsIsolatedToken; 399 400 /// Register record if this token is singleton register. 401 Record *SingletonReg; 402 403 explicit AsmOperand(bool IsIsolatedToken, StringRef T) 404 : Token(T), Class(nullptr), SubOpIdx(-1), 405 IsIsolatedToken(IsIsolatedToken), SingletonReg(nullptr) {} 406 }; 407 408 /// ResOperand - This represents a single operand in the result instruction 409 /// generated by the match. In cases (like addressing modes) where a single 410 /// assembler operand expands to multiple MCOperands, this represents the 411 /// single assembler operand, not the MCOperand. 412 struct ResOperand { 413 enum { 414 /// RenderAsmOperand - This represents an operand result that is 415 /// generated by calling the render method on the assembly operand. The 416 /// corresponding AsmOperand is specified by AsmOperandNum. 417 RenderAsmOperand, 418 419 /// TiedOperand - This represents a result operand that is a duplicate of 420 /// a previous result operand. 421 TiedOperand, 422 423 /// ImmOperand - This represents an immediate value that is dumped into 424 /// the operand. 425 ImmOperand, 426 427 /// RegOperand - This represents a fixed register that is dumped in. 428 RegOperand 429 } Kind; 430 431 /// Tuple containing the index of the (earlier) result operand that should 432 /// be copied from, as well as the indices of the corresponding (parsed) 433 /// operands in the asm string. 434 struct TiedOperandsTuple { 435 unsigned ResOpnd; 436 unsigned SrcOpnd1Idx; 437 unsigned SrcOpnd2Idx; 438 }; 439 440 union { 441 /// This is the operand # in the AsmOperands list that this should be 442 /// copied from. 443 unsigned AsmOperandNum; 444 445 /// Description of tied operands. 446 TiedOperandsTuple TiedOperands; 447 448 /// ImmVal - This is the immediate value added to the instruction. 449 int64_t ImmVal; 450 451 /// Register - This is the register record. 452 Record *Register; 453 }; 454 455 /// MINumOperands - The number of MCInst operands populated by this 456 /// operand. 457 unsigned MINumOperands; 458 459 static ResOperand getRenderedOp(unsigned AsmOpNum, unsigned NumOperands) { 460 ResOperand X; 461 X.Kind = RenderAsmOperand; 462 X.AsmOperandNum = AsmOpNum; 463 X.MINumOperands = NumOperands; 464 return X; 465 } 466 467 static ResOperand getTiedOp(unsigned TiedOperandNum, unsigned SrcOperand1, 468 unsigned SrcOperand2) { 469 ResOperand X; 470 X.Kind = TiedOperand; 471 X.TiedOperands = { TiedOperandNum, SrcOperand1, SrcOperand2 }; 472 X.MINumOperands = 1; 473 return X; 474 } 475 476 static ResOperand getImmOp(int64_t Val) { 477 ResOperand X; 478 X.Kind = ImmOperand; 479 X.ImmVal = Val; 480 X.MINumOperands = 1; 481 return X; 482 } 483 484 static ResOperand getRegOp(Record *Reg) { 485 ResOperand X; 486 X.Kind = RegOperand; 487 X.Register = Reg; 488 X.MINumOperands = 1; 489 return X; 490 } 491 }; 492 493 /// AsmVariantID - Target's assembly syntax variant no. 494 int AsmVariantID; 495 496 /// AsmString - The assembly string for this instruction (with variants 497 /// removed), e.g. "movsx $src, $dst". 498 std::string AsmString; 499 500 /// TheDef - This is the definition of the instruction or InstAlias that this 501 /// matchable came from. 502 Record *const TheDef; 503 504 /// DefRec - This is the definition that it came from. 505 PointerUnion<const CodeGenInstruction*, const CodeGenInstAlias*> DefRec; 506 507 const CodeGenInstruction *getResultInst() const { 508 if (DefRec.is<const CodeGenInstruction*>()) 509 return DefRec.get<const CodeGenInstruction*>(); 510 return DefRec.get<const CodeGenInstAlias*>()->ResultInst; 511 } 512 513 /// ResOperands - This is the operand list that should be built for the result 514 /// MCInst. 515 SmallVector<ResOperand, 8> ResOperands; 516 517 /// Mnemonic - This is the first token of the matched instruction, its 518 /// mnemonic. 519 StringRef Mnemonic; 520 521 /// AsmOperands - The textual operands that this instruction matches, 522 /// annotated with a class and where in the OperandList they were defined. 523 /// This directly corresponds to the tokenized AsmString after the mnemonic is 524 /// removed. 525 SmallVector<AsmOperand, 8> AsmOperands; 526 527 /// Predicates - The required subtarget features to match this instruction. 528 SmallVector<const SubtargetFeatureInfo *, 4> RequiredFeatures; 529 530 /// ConversionFnKind - The enum value which is passed to the generated 531 /// convertToMCInst to convert parsed operands into an MCInst for this 532 /// function. 533 std::string ConversionFnKind; 534 535 /// If this instruction is deprecated in some form. 536 bool HasDeprecation; 537 538 /// If this is an alias, this is use to determine whether or not to using 539 /// the conversion function defined by the instruction's AsmMatchConverter 540 /// or to use the function generated by the alias. 541 bool UseInstAsmMatchConverter; 542 543 MatchableInfo(const CodeGenInstruction &CGI) 544 : AsmVariantID(0), AsmString(CGI.AsmString), TheDef(CGI.TheDef), DefRec(&CGI), 545 UseInstAsmMatchConverter(true) { 546 } 547 548 MatchableInfo(std::unique_ptr<const CodeGenInstAlias> Alias) 549 : AsmVariantID(0), AsmString(Alias->AsmString), TheDef(Alias->TheDef), 550 DefRec(Alias.release()), 551 UseInstAsmMatchConverter( 552 TheDef->getValueAsBit("UseInstAsmMatchConverter")) { 553 } 554 555 // Could remove this and the dtor if PointerUnion supported unique_ptr 556 // elements with a dynamic failure/assertion (like the one below) in the case 557 // where it was copied while being in an owning state. 558 MatchableInfo(const MatchableInfo &RHS) 559 : AsmVariantID(RHS.AsmVariantID), AsmString(RHS.AsmString), 560 TheDef(RHS.TheDef), DefRec(RHS.DefRec), ResOperands(RHS.ResOperands), 561 Mnemonic(RHS.Mnemonic), AsmOperands(RHS.AsmOperands), 562 RequiredFeatures(RHS.RequiredFeatures), 563 ConversionFnKind(RHS.ConversionFnKind), 564 HasDeprecation(RHS.HasDeprecation), 565 UseInstAsmMatchConverter(RHS.UseInstAsmMatchConverter) { 566 assert(!DefRec.is<const CodeGenInstAlias *>()); 567 } 568 569 ~MatchableInfo() { 570 delete DefRec.dyn_cast<const CodeGenInstAlias*>(); 571 } 572 573 // Two-operand aliases clone from the main matchable, but mark the second 574 // operand as a tied operand of the first for purposes of the assembler. 575 void formTwoOperandAlias(StringRef Constraint); 576 577 void initialize(const AsmMatcherInfo &Info, 578 SmallPtrSetImpl<Record*> &SingletonRegisters, 579 AsmVariantInfo const &Variant, 580 bool HasMnemonicFirst); 581 582 /// validate - Return true if this matchable is a valid thing to match against 583 /// and perform a bunch of validity checking. 584 bool validate(StringRef CommentDelimiter, bool IsAlias) const; 585 586 /// findAsmOperand - Find the AsmOperand with the specified name and 587 /// suboperand index. 588 int findAsmOperand(StringRef N, int SubOpIdx) const { 589 auto I = find_if(AsmOperands, [&](const AsmOperand &Op) { 590 return Op.SrcOpName == N && Op.SubOpIdx == SubOpIdx; 591 }); 592 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 593 } 594 595 /// findAsmOperandNamed - Find the first AsmOperand with the specified name. 596 /// This does not check the suboperand index. 597 int findAsmOperandNamed(StringRef N, int LastIdx = -1) const { 598 auto I = std::find_if(AsmOperands.begin() + LastIdx + 1, AsmOperands.end(), 599 [&](const AsmOperand &Op) { return Op.SrcOpName == N; }); 600 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 601 } 602 603 int findAsmOperandOriginallyNamed(StringRef N) const { 604 auto I = 605 find_if(AsmOperands, 606 [&](const AsmOperand &Op) { return Op.OrigSrcOpName == N; }); 607 return (I != AsmOperands.end()) ? I - AsmOperands.begin() : -1; 608 } 609 610 void buildInstructionResultOperands(); 611 void buildAliasResultOperands(bool AliasConstraintsAreChecked); 612 613 /// operator< - Compare two matchables. 614 bool operator<(const MatchableInfo &RHS) const { 615 // The primary comparator is the instruction mnemonic. 616 if (int Cmp = Mnemonic.compare(RHS.Mnemonic)) 617 return Cmp == -1; 618 619 if (AsmOperands.size() != RHS.AsmOperands.size()) 620 return AsmOperands.size() < RHS.AsmOperands.size(); 621 622 // Compare lexicographically by operand. The matcher validates that other 623 // orderings wouldn't be ambiguous using \see couldMatchAmbiguouslyWith(). 624 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 625 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 626 return true; 627 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 628 return false; 629 } 630 631 // Give matches that require more features higher precedence. This is useful 632 // because we cannot define AssemblerPredicates with the negation of 633 // processor features. For example, ARM v6 "nop" may be either a HINT or 634 // MOV. With v6, we want to match HINT. The assembler has no way to 635 // predicate MOV under "NoV6", but HINT will always match first because it 636 // requires V6 while MOV does not. 637 if (RequiredFeatures.size() != RHS.RequiredFeatures.size()) 638 return RequiredFeatures.size() > RHS.RequiredFeatures.size(); 639 640 return false; 641 } 642 643 /// couldMatchAmbiguouslyWith - Check whether this matchable could 644 /// ambiguously match the same set of operands as \p RHS (without being a 645 /// strictly superior match). 646 bool couldMatchAmbiguouslyWith(const MatchableInfo &RHS) const { 647 // The primary comparator is the instruction mnemonic. 648 if (Mnemonic != RHS.Mnemonic) 649 return false; 650 651 // Different variants can't conflict. 652 if (AsmVariantID != RHS.AsmVariantID) 653 return false; 654 655 // The number of operands is unambiguous. 656 if (AsmOperands.size() != RHS.AsmOperands.size()) 657 return false; 658 659 // Otherwise, make sure the ordering of the two instructions is unambiguous 660 // by checking that either (a) a token or operand kind discriminates them, 661 // or (b) the ordering among equivalent kinds is consistent. 662 663 // Tokens and operand kinds are unambiguous (assuming a correct target 664 // specific parser). 665 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) 666 if (AsmOperands[i].Class->Kind != RHS.AsmOperands[i].Class->Kind || 667 AsmOperands[i].Class->Kind == ClassInfo::Token) 668 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class || 669 *RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 670 return false; 671 672 // Otherwise, this operand could commute if all operands are equivalent, or 673 // there is a pair of operands that compare less than and a pair that 674 // compare greater than. 675 bool HasLT = false, HasGT = false; 676 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 677 if (*AsmOperands[i].Class < *RHS.AsmOperands[i].Class) 678 HasLT = true; 679 if (*RHS.AsmOperands[i].Class < *AsmOperands[i].Class) 680 HasGT = true; 681 } 682 683 return HasLT == HasGT; 684 } 685 686 void dump() const; 687 688 private: 689 void tokenizeAsmString(AsmMatcherInfo const &Info, 690 AsmVariantInfo const &Variant); 691 void addAsmOperand(StringRef Token, bool IsIsolatedToken = false); 692 }; 693 694 struct OperandMatchEntry { 695 unsigned OperandMask; 696 const MatchableInfo* MI; 697 ClassInfo *CI; 698 699 static OperandMatchEntry create(const MatchableInfo *mi, ClassInfo *ci, 700 unsigned opMask) { 701 OperandMatchEntry X; 702 X.OperandMask = opMask; 703 X.CI = ci; 704 X.MI = mi; 705 return X; 706 } 707 }; 708 709 class AsmMatcherInfo { 710 public: 711 /// Tracked Records 712 RecordKeeper &Records; 713 714 /// The tablegen AsmParser record. 715 Record *AsmParser; 716 717 /// Target - The target information. 718 CodeGenTarget &Target; 719 720 /// The classes which are needed for matching. 721 std::forward_list<ClassInfo> Classes; 722 723 /// The information on the matchables to match. 724 std::vector<std::unique_ptr<MatchableInfo>> Matchables; 725 726 /// Info for custom matching operands by user defined methods. 727 std::vector<OperandMatchEntry> OperandMatchInfo; 728 729 /// Map of Register records to their class information. 730 typedef std::map<Record*, ClassInfo*, LessRecordByID> RegisterClassesTy; 731 RegisterClassesTy RegisterClasses; 732 733 /// Map of Predicate records to their subtarget information. 734 std::map<Record *, SubtargetFeatureInfo, LessRecordByID> SubtargetFeatures; 735 736 /// Map of AsmOperandClass records to their class information. 737 std::map<Record*, ClassInfo*> AsmOperandClasses; 738 739 /// Map of RegisterClass records to their class information. 740 std::map<Record*, ClassInfo*> RegisterClassClasses; 741 742 private: 743 /// Map of token to class information which has already been constructed. 744 std::map<std::string, ClassInfo*> TokenClasses; 745 746 private: 747 /// getTokenClass - Lookup or create the class for the given token. 748 ClassInfo *getTokenClass(StringRef Token); 749 750 /// getOperandClass - Lookup or create the class for the given operand. 751 ClassInfo *getOperandClass(const CGIOperandList::OperandInfo &OI, 752 int SubOpIdx); 753 ClassInfo *getOperandClass(Record *Rec, int SubOpIdx); 754 755 /// buildRegisterClasses - Build the ClassInfo* instances for register 756 /// classes. 757 void buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters); 758 759 /// buildOperandClasses - Build the ClassInfo* instances for user defined 760 /// operand classes. 761 void buildOperandClasses(); 762 763 void buildInstructionOperandReference(MatchableInfo *II, StringRef OpName, 764 unsigned AsmOpIdx); 765 void buildAliasOperandReference(MatchableInfo *II, StringRef OpName, 766 MatchableInfo::AsmOperand &Op); 767 768 public: 769 AsmMatcherInfo(Record *AsmParser, 770 CodeGenTarget &Target, 771 RecordKeeper &Records); 772 773 /// Construct the various tables used during matching. 774 void buildInfo(); 775 776 /// buildOperandMatchInfo - Build the necessary information to handle user 777 /// defined operand parsing methods. 778 void buildOperandMatchInfo(); 779 780 /// getSubtargetFeature - Lookup or create the subtarget feature info for the 781 /// given operand. 782 const SubtargetFeatureInfo *getSubtargetFeature(Record *Def) const { 783 assert(Def->isSubClassOf("Predicate") && "Invalid predicate type!"); 784 const auto &I = SubtargetFeatures.find(Def); 785 return I == SubtargetFeatures.end() ? nullptr : &I->second; 786 } 787 788 RecordKeeper &getRecords() const { 789 return Records; 790 } 791 792 bool hasOptionalOperands() const { 793 return find_if(Classes, [](const ClassInfo &Class) { 794 return Class.IsOptional; 795 }) != Classes.end(); 796 } 797 }; 798 799 } // end anonymous namespace 800 801 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 802 LLVM_DUMP_METHOD void MatchableInfo::dump() const { 803 errs() << TheDef->getName() << " -- " << "flattened:\"" << AsmString <<"\"\n"; 804 805 errs() << " variant: " << AsmVariantID << "\n"; 806 807 for (unsigned i = 0, e = AsmOperands.size(); i != e; ++i) { 808 const AsmOperand &Op = AsmOperands[i]; 809 errs() << " op[" << i << "] = " << Op.Class->ClassName << " - "; 810 errs() << '\"' << Op.Token << "\"\n"; 811 } 812 } 813 #endif 814 815 static std::pair<StringRef, StringRef> 816 parseTwoOperandConstraint(StringRef S, ArrayRef<SMLoc> Loc) { 817 // Split via the '='. 818 std::pair<StringRef, StringRef> Ops = S.split('='); 819 if (Ops.second == "") 820 PrintFatalError(Loc, "missing '=' in two-operand alias constraint"); 821 // Trim whitespace and the leading '$' on the operand names. 822 size_t start = Ops.first.find_first_of('$'); 823 if (start == std::string::npos) 824 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 825 Ops.first = Ops.first.slice(start + 1, std::string::npos); 826 size_t end = Ops.first.find_last_of(" \t"); 827 Ops.first = Ops.first.slice(0, end); 828 // Now the second operand. 829 start = Ops.second.find_first_of('$'); 830 if (start == std::string::npos) 831 PrintFatalError(Loc, "expected '$' prefix on asm operand name"); 832 Ops.second = Ops.second.slice(start + 1, std::string::npos); 833 end = Ops.second.find_last_of(" \t"); 834 Ops.first = Ops.first.slice(0, end); 835 return Ops; 836 } 837 838 void MatchableInfo::formTwoOperandAlias(StringRef Constraint) { 839 // Figure out which operands are aliased and mark them as tied. 840 std::pair<StringRef, StringRef> Ops = 841 parseTwoOperandConstraint(Constraint, TheDef->getLoc()); 842 843 // Find the AsmOperands that refer to the operands we're aliasing. 844 int SrcAsmOperand = findAsmOperandNamed(Ops.first); 845 int DstAsmOperand = findAsmOperandNamed(Ops.second); 846 if (SrcAsmOperand == -1) 847 PrintFatalError(TheDef->getLoc(), 848 "unknown source two-operand alias operand '" + Ops.first + 849 "'."); 850 if (DstAsmOperand == -1) 851 PrintFatalError(TheDef->getLoc(), 852 "unknown destination two-operand alias operand '" + 853 Ops.second + "'."); 854 855 // Find the ResOperand that refers to the operand we're aliasing away 856 // and update it to refer to the combined operand instead. 857 for (ResOperand &Op : ResOperands) { 858 if (Op.Kind == ResOperand::RenderAsmOperand && 859 Op.AsmOperandNum == (unsigned)SrcAsmOperand) { 860 Op.AsmOperandNum = DstAsmOperand; 861 break; 862 } 863 } 864 // Remove the AsmOperand for the alias operand. 865 AsmOperands.erase(AsmOperands.begin() + SrcAsmOperand); 866 // Adjust the ResOperand references to any AsmOperands that followed 867 // the one we just deleted. 868 for (ResOperand &Op : ResOperands) { 869 switch(Op.Kind) { 870 default: 871 // Nothing to do for operands that don't reference AsmOperands. 872 break; 873 case ResOperand::RenderAsmOperand: 874 if (Op.AsmOperandNum > (unsigned)SrcAsmOperand) 875 --Op.AsmOperandNum; 876 break; 877 } 878 } 879 } 880 881 /// extractSingletonRegisterForAsmOperand - Extract singleton register, 882 /// if present, from specified token. 883 static void 884 extractSingletonRegisterForAsmOperand(MatchableInfo::AsmOperand &Op, 885 const AsmMatcherInfo &Info, 886 StringRef RegisterPrefix) { 887 StringRef Tok = Op.Token; 888 889 // If this token is not an isolated token, i.e., it isn't separated from 890 // other tokens (e.g. with whitespace), don't interpret it as a register name. 891 if (!Op.IsIsolatedToken) 892 return; 893 894 if (RegisterPrefix.empty()) { 895 std::string LoweredTok = Tok.lower(); 896 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(LoweredTok)) 897 Op.SingletonReg = Reg->TheDef; 898 return; 899 } 900 901 if (!Tok.startswith(RegisterPrefix)) 902 return; 903 904 StringRef RegName = Tok.substr(RegisterPrefix.size()); 905 if (const CodeGenRegister *Reg = Info.Target.getRegisterByName(RegName)) 906 Op.SingletonReg = Reg->TheDef; 907 908 // If there is no register prefix (i.e. "%" in "%eax"), then this may 909 // be some random non-register token, just ignore it. 910 } 911 912 void MatchableInfo::initialize(const AsmMatcherInfo &Info, 913 SmallPtrSetImpl<Record*> &SingletonRegisters, 914 AsmVariantInfo const &Variant, 915 bool HasMnemonicFirst) { 916 AsmVariantID = Variant.AsmVariantNo; 917 AsmString = 918 CodeGenInstruction::FlattenAsmStringVariants(AsmString, 919 Variant.AsmVariantNo); 920 921 tokenizeAsmString(Info, Variant); 922 923 // The first token of the instruction is the mnemonic, which must be a 924 // simple string, not a $foo variable or a singleton register. 925 if (AsmOperands.empty()) 926 PrintFatalError(TheDef->getLoc(), 927 "Instruction '" + TheDef->getName() + "' has no tokens"); 928 929 assert(!AsmOperands[0].Token.empty()); 930 if (HasMnemonicFirst) { 931 Mnemonic = AsmOperands[0].Token; 932 if (Mnemonic[0] == '$') 933 PrintFatalError(TheDef->getLoc(), 934 "Invalid instruction mnemonic '" + Mnemonic + "'!"); 935 936 // Remove the first operand, it is tracked in the mnemonic field. 937 AsmOperands.erase(AsmOperands.begin()); 938 } else if (AsmOperands[0].Token[0] != '$') 939 Mnemonic = AsmOperands[0].Token; 940 941 // Compute the require features. 942 for (Record *Predicate : TheDef->getValueAsListOfDefs("Predicates")) 943 if (const SubtargetFeatureInfo *Feature = 944 Info.getSubtargetFeature(Predicate)) 945 RequiredFeatures.push_back(Feature); 946 947 // Collect singleton registers, if used. 948 for (MatchableInfo::AsmOperand &Op : AsmOperands) { 949 extractSingletonRegisterForAsmOperand(Op, Info, Variant.RegisterPrefix); 950 if (Record *Reg = Op.SingletonReg) 951 SingletonRegisters.insert(Reg); 952 } 953 954 const RecordVal *DepMask = TheDef->getValue("DeprecatedFeatureMask"); 955 if (!DepMask) 956 DepMask = TheDef->getValue("ComplexDeprecationPredicate"); 957 958 HasDeprecation = 959 DepMask ? !DepMask->getValue()->getAsUnquotedString().empty() : false; 960 } 961 962 /// Append an AsmOperand for the given substring of AsmString. 963 void MatchableInfo::addAsmOperand(StringRef Token, bool IsIsolatedToken) { 964 AsmOperands.push_back(AsmOperand(IsIsolatedToken, Token)); 965 } 966 967 /// tokenizeAsmString - Tokenize a simplified assembly string. 968 void MatchableInfo::tokenizeAsmString(const AsmMatcherInfo &Info, 969 AsmVariantInfo const &Variant) { 970 StringRef String = AsmString; 971 size_t Prev = 0; 972 bool InTok = false; 973 bool IsIsolatedToken = true; 974 for (size_t i = 0, e = String.size(); i != e; ++i) { 975 char Char = String[i]; 976 if (Variant.BreakCharacters.find(Char) != std::string::npos) { 977 if (InTok) { 978 addAsmOperand(String.slice(Prev, i), false); 979 Prev = i; 980 IsIsolatedToken = false; 981 } 982 InTok = true; 983 continue; 984 } 985 if (Variant.TokenizingCharacters.find(Char) != std::string::npos) { 986 if (InTok) { 987 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 988 InTok = false; 989 IsIsolatedToken = false; 990 } 991 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 992 Prev = i + 1; 993 IsIsolatedToken = true; 994 continue; 995 } 996 if (Variant.SeparatorCharacters.find(Char) != std::string::npos) { 997 if (InTok) { 998 addAsmOperand(String.slice(Prev, i), IsIsolatedToken); 999 InTok = false; 1000 } 1001 Prev = i + 1; 1002 IsIsolatedToken = true; 1003 continue; 1004 } 1005 1006 switch (Char) { 1007 case '\\': 1008 if (InTok) { 1009 addAsmOperand(String.slice(Prev, i), false); 1010 InTok = false; 1011 IsIsolatedToken = false; 1012 } 1013 ++i; 1014 assert(i != String.size() && "Invalid quoted character"); 1015 addAsmOperand(String.slice(i, i + 1), IsIsolatedToken); 1016 Prev = i + 1; 1017 IsIsolatedToken = false; 1018 break; 1019 1020 case '$': { 1021 if (InTok) { 1022 addAsmOperand(String.slice(Prev, i), false); 1023 InTok = false; 1024 IsIsolatedToken = false; 1025 } 1026 1027 // If this isn't "${", start new identifier looking like "$xxx" 1028 if (i + 1 == String.size() || String[i + 1] != '{') { 1029 Prev = i; 1030 break; 1031 } 1032 1033 size_t EndPos = String.find('}', i); 1034 assert(EndPos != StringRef::npos && 1035 "Missing brace in operand reference!"); 1036 addAsmOperand(String.slice(i, EndPos+1), IsIsolatedToken); 1037 Prev = EndPos + 1; 1038 i = EndPos; 1039 IsIsolatedToken = false; 1040 break; 1041 } 1042 1043 default: 1044 InTok = true; 1045 break; 1046 } 1047 } 1048 if (InTok && Prev != String.size()) 1049 addAsmOperand(String.substr(Prev), IsIsolatedToken); 1050 } 1051 1052 bool MatchableInfo::validate(StringRef CommentDelimiter, bool IsAlias) const { 1053 // Reject matchables with no .s string. 1054 if (AsmString.empty()) 1055 PrintFatalError(TheDef->getLoc(), "instruction with empty asm string"); 1056 1057 // Reject any matchables with a newline in them, they should be marked 1058 // isCodeGenOnly if they are pseudo instructions. 1059 if (AsmString.find('\n') != std::string::npos) 1060 PrintFatalError(TheDef->getLoc(), 1061 "multiline instruction is not valid for the asmparser, " 1062 "mark it isCodeGenOnly"); 1063 1064 // Remove comments from the asm string. We know that the asmstring only 1065 // has one line. 1066 if (!CommentDelimiter.empty() && 1067 StringRef(AsmString).find(CommentDelimiter) != StringRef::npos) 1068 PrintFatalError(TheDef->getLoc(), 1069 "asmstring for instruction has comment character in it, " 1070 "mark it isCodeGenOnly"); 1071 1072 // Reject matchables with operand modifiers, these aren't something we can 1073 // handle, the target should be refactored to use operands instead of 1074 // modifiers. 1075 // 1076 // Also, check for instructions which reference the operand multiple times; 1077 // this implies a constraint we would not honor. 1078 std::set<std::string> OperandNames; 1079 for (const AsmOperand &Op : AsmOperands) { 1080 StringRef Tok = Op.Token; 1081 if (Tok[0] == '$' && Tok.find(':') != StringRef::npos) 1082 PrintFatalError(TheDef->getLoc(), 1083 "matchable with operand modifier '" + Tok + 1084 "' not supported by asm matcher. Mark isCodeGenOnly!"); 1085 // Verify that any operand is only mentioned once. 1086 // We reject aliases and ignore instructions for now. 1087 if (!IsAlias && Tok[0] == '$' && !OperandNames.insert(Tok).second) { 1088 LLVM_DEBUG({ 1089 errs() << "warning: '" << TheDef->getName() << "': " 1090 << "ignoring instruction with tied operand '" 1091 << Tok << "'\n"; 1092 }); 1093 return false; 1094 } 1095 } 1096 1097 return true; 1098 } 1099 1100 static std::string getEnumNameForToken(StringRef Str) { 1101 std::string Res; 1102 1103 for (StringRef::iterator it = Str.begin(), ie = Str.end(); it != ie; ++it) { 1104 switch (*it) { 1105 case '*': Res += "_STAR_"; break; 1106 case '%': Res += "_PCT_"; break; 1107 case ':': Res += "_COLON_"; break; 1108 case '!': Res += "_EXCLAIM_"; break; 1109 case '.': Res += "_DOT_"; break; 1110 case '<': Res += "_LT_"; break; 1111 case '>': Res += "_GT_"; break; 1112 case '-': Res += "_MINUS_"; break; 1113 default: 1114 if ((*it >= 'A' && *it <= 'Z') || 1115 (*it >= 'a' && *it <= 'z') || 1116 (*it >= '0' && *it <= '9')) 1117 Res += *it; 1118 else 1119 Res += "_" + utostr((unsigned) *it) + "_"; 1120 } 1121 } 1122 1123 return Res; 1124 } 1125 1126 ClassInfo *AsmMatcherInfo::getTokenClass(StringRef Token) { 1127 ClassInfo *&Entry = TokenClasses[Token]; 1128 1129 if (!Entry) { 1130 Classes.emplace_front(); 1131 Entry = &Classes.front(); 1132 Entry->Kind = ClassInfo::Token; 1133 Entry->ClassName = "Token"; 1134 Entry->Name = "MCK_" + getEnumNameForToken(Token); 1135 Entry->ValueName = Token; 1136 Entry->PredicateMethod = "<invalid>"; 1137 Entry->RenderMethod = "<invalid>"; 1138 Entry->ParserMethod = ""; 1139 Entry->DiagnosticType = ""; 1140 Entry->IsOptional = false; 1141 Entry->DefaultMethod = "<invalid>"; 1142 } 1143 1144 return Entry; 1145 } 1146 1147 ClassInfo * 1148 AsmMatcherInfo::getOperandClass(const CGIOperandList::OperandInfo &OI, 1149 int SubOpIdx) { 1150 Record *Rec = OI.Rec; 1151 if (SubOpIdx != -1) 1152 Rec = cast<DefInit>(OI.MIOperandInfo->getArg(SubOpIdx))->getDef(); 1153 return getOperandClass(Rec, SubOpIdx); 1154 } 1155 1156 ClassInfo * 1157 AsmMatcherInfo::getOperandClass(Record *Rec, int SubOpIdx) { 1158 if (Rec->isSubClassOf("RegisterOperand")) { 1159 // RegisterOperand may have an associated ParserMatchClass. If it does, 1160 // use it, else just fall back to the underlying register class. 1161 const RecordVal *R = Rec->getValue("ParserMatchClass"); 1162 if (!R || !R->getValue()) 1163 PrintFatalError("Record `" + Rec->getName() + 1164 "' does not have a ParserMatchClass!\n"); 1165 1166 if (DefInit *DI= dyn_cast<DefInit>(R->getValue())) { 1167 Record *MatchClass = DI->getDef(); 1168 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1169 return CI; 1170 } 1171 1172 // No custom match class. Just use the register class. 1173 Record *ClassRec = Rec->getValueAsDef("RegClass"); 1174 if (!ClassRec) 1175 PrintFatalError(Rec->getLoc(), "RegisterOperand `" + Rec->getName() + 1176 "' has no associated register class!\n"); 1177 if (ClassInfo *CI = RegisterClassClasses[ClassRec]) 1178 return CI; 1179 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1180 } 1181 1182 if (Rec->isSubClassOf("RegisterClass")) { 1183 if (ClassInfo *CI = RegisterClassClasses[Rec]) 1184 return CI; 1185 PrintFatalError(Rec->getLoc(), "register class has no class info!"); 1186 } 1187 1188 if (!Rec->isSubClassOf("Operand")) 1189 PrintFatalError(Rec->getLoc(), "Operand `" + Rec->getName() + 1190 "' does not derive from class Operand!\n"); 1191 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1192 if (ClassInfo *CI = AsmOperandClasses[MatchClass]) 1193 return CI; 1194 1195 PrintFatalError(Rec->getLoc(), "operand has no match class!"); 1196 } 1197 1198 struct LessRegisterSet { 1199 bool operator() (const RegisterSet &LHS, const RegisterSet & RHS) const { 1200 // std::set<T> defines its own compariso "operator<", but it 1201 // performs a lexicographical comparison by T's innate comparison 1202 // for some reason. We don't want non-deterministic pointer 1203 // comparisons so use this instead. 1204 return std::lexicographical_compare(LHS.begin(), LHS.end(), 1205 RHS.begin(), RHS.end(), 1206 LessRecordByID()); 1207 } 1208 }; 1209 1210 void AsmMatcherInfo:: 1211 buildRegisterClasses(SmallPtrSetImpl<Record*> &SingletonRegisters) { 1212 const auto &Registers = Target.getRegBank().getRegisters(); 1213 auto &RegClassList = Target.getRegBank().getRegClasses(); 1214 1215 typedef std::set<RegisterSet, LessRegisterSet> RegisterSetSet; 1216 1217 // The register sets used for matching. 1218 RegisterSetSet RegisterSets; 1219 1220 // Gather the defined sets. 1221 for (const CodeGenRegisterClass &RC : RegClassList) 1222 RegisterSets.insert( 1223 RegisterSet(RC.getOrder().begin(), RC.getOrder().end())); 1224 1225 // Add any required singleton sets. 1226 for (Record *Rec : SingletonRegisters) { 1227 RegisterSets.insert(RegisterSet(&Rec, &Rec + 1)); 1228 } 1229 1230 // Introduce derived sets where necessary (when a register does not determine 1231 // a unique register set class), and build the mapping of registers to the set 1232 // they should classify to. 1233 std::map<Record*, RegisterSet> RegisterMap; 1234 for (const CodeGenRegister &CGR : Registers) { 1235 // Compute the intersection of all sets containing this register. 1236 RegisterSet ContainingSet; 1237 1238 for (const RegisterSet &RS : RegisterSets) { 1239 if (!RS.count(CGR.TheDef)) 1240 continue; 1241 1242 if (ContainingSet.empty()) { 1243 ContainingSet = RS; 1244 continue; 1245 } 1246 1247 RegisterSet Tmp; 1248 std::swap(Tmp, ContainingSet); 1249 std::insert_iterator<RegisterSet> II(ContainingSet, 1250 ContainingSet.begin()); 1251 std::set_intersection(Tmp.begin(), Tmp.end(), RS.begin(), RS.end(), II, 1252 LessRecordByID()); 1253 } 1254 1255 if (!ContainingSet.empty()) { 1256 RegisterSets.insert(ContainingSet); 1257 RegisterMap.insert(std::make_pair(CGR.TheDef, ContainingSet)); 1258 } 1259 } 1260 1261 // Construct the register classes. 1262 std::map<RegisterSet, ClassInfo*, LessRegisterSet> RegisterSetClasses; 1263 unsigned Index = 0; 1264 for (const RegisterSet &RS : RegisterSets) { 1265 Classes.emplace_front(); 1266 ClassInfo *CI = &Classes.front(); 1267 CI->Kind = ClassInfo::RegisterClass0 + Index; 1268 CI->ClassName = "Reg" + utostr(Index); 1269 CI->Name = "MCK_Reg" + utostr(Index); 1270 CI->ValueName = ""; 1271 CI->PredicateMethod = ""; // unused 1272 CI->RenderMethod = "addRegOperands"; 1273 CI->Registers = RS; 1274 // FIXME: diagnostic type. 1275 CI->DiagnosticType = ""; 1276 CI->IsOptional = false; 1277 CI->DefaultMethod = ""; // unused 1278 RegisterSetClasses.insert(std::make_pair(RS, CI)); 1279 ++Index; 1280 } 1281 1282 // Find the superclasses; we could compute only the subgroup lattice edges, 1283 // but there isn't really a point. 1284 for (const RegisterSet &RS : RegisterSets) { 1285 ClassInfo *CI = RegisterSetClasses[RS]; 1286 for (const RegisterSet &RS2 : RegisterSets) 1287 if (RS != RS2 && 1288 std::includes(RS2.begin(), RS2.end(), RS.begin(), RS.end(), 1289 LessRecordByID())) 1290 CI->SuperClasses.push_back(RegisterSetClasses[RS2]); 1291 } 1292 1293 // Name the register classes which correspond to a user defined RegisterClass. 1294 for (const CodeGenRegisterClass &RC : RegClassList) { 1295 // Def will be NULL for non-user defined register classes. 1296 Record *Def = RC.getDef(); 1297 if (!Def) 1298 continue; 1299 ClassInfo *CI = RegisterSetClasses[RegisterSet(RC.getOrder().begin(), 1300 RC.getOrder().end())]; 1301 if (CI->ValueName.empty()) { 1302 CI->ClassName = RC.getName(); 1303 CI->Name = "MCK_" + RC.getName(); 1304 CI->ValueName = RC.getName(); 1305 } else 1306 CI->ValueName = CI->ValueName + "," + RC.getName(); 1307 1308 Init *DiagnosticType = Def->getValueInit("DiagnosticType"); 1309 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1310 CI->DiagnosticType = SI->getValue(); 1311 1312 Init *DiagnosticString = Def->getValueInit("DiagnosticString"); 1313 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1314 CI->DiagnosticString = SI->getValue(); 1315 1316 // If we have a diagnostic string but the diagnostic type is not specified 1317 // explicitly, create an anonymous diagnostic type. 1318 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1319 CI->DiagnosticType = RC.getName(); 1320 1321 RegisterClassClasses.insert(std::make_pair(Def, CI)); 1322 } 1323 1324 // Populate the map for individual registers. 1325 for (std::map<Record*, RegisterSet>::iterator it = RegisterMap.begin(), 1326 ie = RegisterMap.end(); it != ie; ++it) 1327 RegisterClasses[it->first] = RegisterSetClasses[it->second]; 1328 1329 // Name the register classes which correspond to singleton registers. 1330 for (Record *Rec : SingletonRegisters) { 1331 ClassInfo *CI = RegisterClasses[Rec]; 1332 assert(CI && "Missing singleton register class info!"); 1333 1334 if (CI->ValueName.empty()) { 1335 CI->ClassName = Rec->getName(); 1336 CI->Name = "MCK_" + Rec->getName().str(); 1337 CI->ValueName = Rec->getName(); 1338 } else 1339 CI->ValueName = CI->ValueName + "," + Rec->getName().str(); 1340 } 1341 } 1342 1343 void AsmMatcherInfo::buildOperandClasses() { 1344 std::vector<Record*> AsmOperands = 1345 Records.getAllDerivedDefinitions("AsmOperandClass"); 1346 1347 // Pre-populate AsmOperandClasses map. 1348 for (Record *Rec : AsmOperands) { 1349 Classes.emplace_front(); 1350 AsmOperandClasses[Rec] = &Classes.front(); 1351 } 1352 1353 unsigned Index = 0; 1354 for (Record *Rec : AsmOperands) { 1355 ClassInfo *CI = AsmOperandClasses[Rec]; 1356 CI->Kind = ClassInfo::UserClass0 + Index; 1357 1358 ListInit *Supers = Rec->getValueAsListInit("SuperClasses"); 1359 for (Init *I : Supers->getValues()) { 1360 DefInit *DI = dyn_cast<DefInit>(I); 1361 if (!DI) { 1362 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1363 continue; 1364 } 1365 1366 ClassInfo *SC = AsmOperandClasses[DI->getDef()]; 1367 if (!SC) 1368 PrintError(Rec->getLoc(), "Invalid super class reference!"); 1369 else 1370 CI->SuperClasses.push_back(SC); 1371 } 1372 CI->ClassName = Rec->getValueAsString("Name"); 1373 CI->Name = "MCK_" + CI->ClassName; 1374 CI->ValueName = Rec->getName(); 1375 1376 // Get or construct the predicate method name. 1377 Init *PMName = Rec->getValueInit("PredicateMethod"); 1378 if (StringInit *SI = dyn_cast<StringInit>(PMName)) { 1379 CI->PredicateMethod = SI->getValue(); 1380 } else { 1381 assert(isa<UnsetInit>(PMName) && "Unexpected PredicateMethod field!"); 1382 CI->PredicateMethod = "is" + CI->ClassName; 1383 } 1384 1385 // Get or construct the render method name. 1386 Init *RMName = Rec->getValueInit("RenderMethod"); 1387 if (StringInit *SI = dyn_cast<StringInit>(RMName)) { 1388 CI->RenderMethod = SI->getValue(); 1389 } else { 1390 assert(isa<UnsetInit>(RMName) && "Unexpected RenderMethod field!"); 1391 CI->RenderMethod = "add" + CI->ClassName + "Operands"; 1392 } 1393 1394 // Get the parse method name or leave it as empty. 1395 Init *PRMName = Rec->getValueInit("ParserMethod"); 1396 if (StringInit *SI = dyn_cast<StringInit>(PRMName)) 1397 CI->ParserMethod = SI->getValue(); 1398 1399 // Get the diagnostic type and string or leave them as empty. 1400 Init *DiagnosticType = Rec->getValueInit("DiagnosticType"); 1401 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticType)) 1402 CI->DiagnosticType = SI->getValue(); 1403 Init *DiagnosticString = Rec->getValueInit("DiagnosticString"); 1404 if (StringInit *SI = dyn_cast<StringInit>(DiagnosticString)) 1405 CI->DiagnosticString = SI->getValue(); 1406 // If we have a DiagnosticString, we need a DiagnosticType for use within 1407 // the matcher. 1408 if (!CI->DiagnosticString.empty() && CI->DiagnosticType.empty()) 1409 CI->DiagnosticType = CI->ClassName; 1410 1411 Init *IsOptional = Rec->getValueInit("IsOptional"); 1412 if (BitInit *BI = dyn_cast<BitInit>(IsOptional)) 1413 CI->IsOptional = BI->getValue(); 1414 1415 // Get or construct the default method name. 1416 Init *DMName = Rec->getValueInit("DefaultMethod"); 1417 if (StringInit *SI = dyn_cast<StringInit>(DMName)) { 1418 CI->DefaultMethod = SI->getValue(); 1419 } else { 1420 assert(isa<UnsetInit>(DMName) && "Unexpected DefaultMethod field!"); 1421 CI->DefaultMethod = "default" + CI->ClassName + "Operands"; 1422 } 1423 1424 ++Index; 1425 } 1426 } 1427 1428 AsmMatcherInfo::AsmMatcherInfo(Record *asmParser, 1429 CodeGenTarget &target, 1430 RecordKeeper &records) 1431 : Records(records), AsmParser(asmParser), Target(target) { 1432 } 1433 1434 /// buildOperandMatchInfo - Build the necessary information to handle user 1435 /// defined operand parsing methods. 1436 void AsmMatcherInfo::buildOperandMatchInfo() { 1437 1438 /// Map containing a mask with all operands indices that can be found for 1439 /// that class inside a instruction. 1440 typedef std::map<ClassInfo *, unsigned, less_ptr<ClassInfo>> OpClassMaskTy; 1441 OpClassMaskTy OpClassMask; 1442 1443 for (const auto &MI : Matchables) { 1444 OpClassMask.clear(); 1445 1446 // Keep track of all operands of this instructions which belong to the 1447 // same class. 1448 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 1449 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 1450 if (Op.Class->ParserMethod.empty()) 1451 continue; 1452 unsigned &OperandMask = OpClassMask[Op.Class]; 1453 OperandMask |= (1 << i); 1454 } 1455 1456 // Generate operand match info for each mnemonic/operand class pair. 1457 for (const auto &OCM : OpClassMask) { 1458 unsigned OpMask = OCM.second; 1459 ClassInfo *CI = OCM.first; 1460 OperandMatchInfo.push_back(OperandMatchEntry::create(MI.get(), CI, 1461 OpMask)); 1462 } 1463 } 1464 } 1465 1466 void AsmMatcherInfo::buildInfo() { 1467 // Build information about all of the AssemblerPredicates. 1468 const std::vector<std::pair<Record *, SubtargetFeatureInfo>> 1469 &SubtargetFeaturePairs = SubtargetFeatureInfo::getAll(Records); 1470 SubtargetFeatures.insert(SubtargetFeaturePairs.begin(), 1471 SubtargetFeaturePairs.end()); 1472 #ifndef NDEBUG 1473 for (const auto &Pair : SubtargetFeatures) 1474 LLVM_DEBUG(Pair.second.dump()); 1475 #endif // NDEBUG 1476 assert(SubtargetFeatures.size() <= 64 && "Too many subtarget features!"); 1477 1478 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 1479 bool ReportMultipleNearMisses = 1480 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 1481 1482 // Parse the instructions; we need to do this first so that we can gather the 1483 // singleton register classes. 1484 SmallPtrSet<Record*, 16> SingletonRegisters; 1485 unsigned VariantCount = Target.getAsmParserVariantCount(); 1486 for (unsigned VC = 0; VC != VariantCount; ++VC) { 1487 Record *AsmVariant = Target.getAsmParserVariant(VC); 1488 StringRef CommentDelimiter = 1489 AsmVariant->getValueAsString("CommentDelimiter"); 1490 AsmVariantInfo Variant; 1491 Variant.RegisterPrefix = AsmVariant->getValueAsString("RegisterPrefix"); 1492 Variant.TokenizingCharacters = 1493 AsmVariant->getValueAsString("TokenizingCharacters"); 1494 Variant.SeparatorCharacters = 1495 AsmVariant->getValueAsString("SeparatorCharacters"); 1496 Variant.BreakCharacters = 1497 AsmVariant->getValueAsString("BreakCharacters"); 1498 Variant.Name = AsmVariant->getValueAsString("Name"); 1499 Variant.AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 1500 1501 for (const CodeGenInstruction *CGI : Target.getInstructionsByEnumValue()) { 1502 1503 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1504 // filter the set of instructions we consider. 1505 if (!StringRef(CGI->TheDef->getName()).startswith(MatchPrefix)) 1506 continue; 1507 1508 // Ignore "codegen only" instructions. 1509 if (CGI->TheDef->getValueAsBit("isCodeGenOnly")) 1510 continue; 1511 1512 // Ignore instructions for different instructions 1513 StringRef V = CGI->TheDef->getValueAsString("AsmVariantName"); 1514 if (!V.empty() && V != Variant.Name) 1515 continue; 1516 1517 auto II = llvm::make_unique<MatchableInfo>(*CGI); 1518 1519 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1520 1521 // Ignore instructions which shouldn't be matched and diagnose invalid 1522 // instruction definitions with an error. 1523 if (!II->validate(CommentDelimiter, false)) 1524 continue; 1525 1526 Matchables.push_back(std::move(II)); 1527 } 1528 1529 // Parse all of the InstAlias definitions and stick them in the list of 1530 // matchables. 1531 std::vector<Record*> AllInstAliases = 1532 Records.getAllDerivedDefinitions("InstAlias"); 1533 for (unsigned i = 0, e = AllInstAliases.size(); i != e; ++i) { 1534 auto Alias = llvm::make_unique<CodeGenInstAlias>(AllInstAliases[i], 1535 Target); 1536 1537 // If the tblgen -match-prefix option is specified (for tblgen hackers), 1538 // filter the set of instruction aliases we consider, based on the target 1539 // instruction. 1540 if (!StringRef(Alias->ResultInst->TheDef->getName()) 1541 .startswith( MatchPrefix)) 1542 continue; 1543 1544 StringRef V = Alias->TheDef->getValueAsString("AsmVariantName"); 1545 if (!V.empty() && V != Variant.Name) 1546 continue; 1547 1548 auto II = llvm::make_unique<MatchableInfo>(std::move(Alias)); 1549 1550 II->initialize(*this, SingletonRegisters, Variant, HasMnemonicFirst); 1551 1552 // Validate the alias definitions. 1553 II->validate(CommentDelimiter, true); 1554 1555 Matchables.push_back(std::move(II)); 1556 } 1557 } 1558 1559 // Build info for the register classes. 1560 buildRegisterClasses(SingletonRegisters); 1561 1562 // Build info for the user defined assembly operand classes. 1563 buildOperandClasses(); 1564 1565 // Build the information about matchables, now that we have fully formed 1566 // classes. 1567 std::vector<std::unique_ptr<MatchableInfo>> NewMatchables; 1568 for (auto &II : Matchables) { 1569 // Parse the tokens after the mnemonic. 1570 // Note: buildInstructionOperandReference may insert new AsmOperands, so 1571 // don't precompute the loop bound. 1572 for (unsigned i = 0; i != II->AsmOperands.size(); ++i) { 1573 MatchableInfo::AsmOperand &Op = II->AsmOperands[i]; 1574 StringRef Token = Op.Token; 1575 1576 // Check for singleton registers. 1577 if (Record *RegRecord = Op.SingletonReg) { 1578 Op.Class = RegisterClasses[RegRecord]; 1579 assert(Op.Class && Op.Class->Registers.size() == 1 && 1580 "Unexpected class for singleton register"); 1581 continue; 1582 } 1583 1584 // Check for simple tokens. 1585 if (Token[0] != '$') { 1586 Op.Class = getTokenClass(Token); 1587 continue; 1588 } 1589 1590 if (Token.size() > 1 && isdigit(Token[1])) { 1591 Op.Class = getTokenClass(Token); 1592 continue; 1593 } 1594 1595 // Otherwise this is an operand reference. 1596 StringRef OperandName; 1597 if (Token[1] == '{') 1598 OperandName = Token.substr(2, Token.size() - 3); 1599 else 1600 OperandName = Token.substr(1); 1601 1602 if (II->DefRec.is<const CodeGenInstruction*>()) 1603 buildInstructionOperandReference(II.get(), OperandName, i); 1604 else 1605 buildAliasOperandReference(II.get(), OperandName, Op); 1606 } 1607 1608 if (II->DefRec.is<const CodeGenInstruction*>()) { 1609 II->buildInstructionResultOperands(); 1610 // If the instruction has a two-operand alias, build up the 1611 // matchable here. We'll add them in bulk at the end to avoid 1612 // confusing this loop. 1613 StringRef Constraint = 1614 II->TheDef->getValueAsString("TwoOperandAliasConstraint"); 1615 if (Constraint != "") { 1616 // Start by making a copy of the original matchable. 1617 auto AliasII = llvm::make_unique<MatchableInfo>(*II); 1618 1619 // Adjust it to be a two-operand alias. 1620 AliasII->formTwoOperandAlias(Constraint); 1621 1622 // Add the alias to the matchables list. 1623 NewMatchables.push_back(std::move(AliasII)); 1624 } 1625 } else 1626 // FIXME: The tied operands checking is not yet integrated with the 1627 // framework for reporting multiple near misses. To prevent invalid 1628 // formats from being matched with an alias if a tied-operands check 1629 // would otherwise have disallowed it, we just disallow such constructs 1630 // in TableGen completely. 1631 II->buildAliasResultOperands(!ReportMultipleNearMisses); 1632 } 1633 if (!NewMatchables.empty()) 1634 Matchables.insert(Matchables.end(), 1635 std::make_move_iterator(NewMatchables.begin()), 1636 std::make_move_iterator(NewMatchables.end())); 1637 1638 // Process token alias definitions and set up the associated superclass 1639 // information. 1640 std::vector<Record*> AllTokenAliases = 1641 Records.getAllDerivedDefinitions("TokenAlias"); 1642 for (Record *Rec : AllTokenAliases) { 1643 ClassInfo *FromClass = getTokenClass(Rec->getValueAsString("FromToken")); 1644 ClassInfo *ToClass = getTokenClass(Rec->getValueAsString("ToToken")); 1645 if (FromClass == ToClass) 1646 PrintFatalError(Rec->getLoc(), 1647 "error: Destination value identical to source value."); 1648 FromClass->SuperClasses.push_back(ToClass); 1649 } 1650 1651 // Reorder classes so that classes precede super classes. 1652 Classes.sort(); 1653 1654 #ifdef EXPENSIVE_CHECKS 1655 // Verify that the table is sorted and operator < works transitively. 1656 for (auto I = Classes.begin(), E = Classes.end(); I != E; ++I) { 1657 for (auto J = I; J != E; ++J) { 1658 assert(!(*J < *I)); 1659 assert(I == J || !J->isSubsetOf(*I)); 1660 } 1661 } 1662 #endif 1663 } 1664 1665 /// buildInstructionOperandReference - The specified operand is a reference to a 1666 /// named operand such as $src. Resolve the Class and OperandInfo pointers. 1667 void AsmMatcherInfo:: 1668 buildInstructionOperandReference(MatchableInfo *II, 1669 StringRef OperandName, 1670 unsigned AsmOpIdx) { 1671 const CodeGenInstruction &CGI = *II->DefRec.get<const CodeGenInstruction*>(); 1672 const CGIOperandList &Operands = CGI.Operands; 1673 MatchableInfo::AsmOperand *Op = &II->AsmOperands[AsmOpIdx]; 1674 1675 // Map this token to an operand. 1676 unsigned Idx; 1677 if (!Operands.hasOperandNamed(OperandName, Idx)) 1678 PrintFatalError(II->TheDef->getLoc(), 1679 "error: unable to find operand: '" + OperandName + "'"); 1680 1681 // If the instruction operand has multiple suboperands, but the parser 1682 // match class for the asm operand is still the default "ImmAsmOperand", 1683 // then handle each suboperand separately. 1684 if (Op->SubOpIdx == -1 && Operands[Idx].MINumOperands > 1) { 1685 Record *Rec = Operands[Idx].Rec; 1686 assert(Rec->isSubClassOf("Operand") && "Unexpected operand!"); 1687 Record *MatchClass = Rec->getValueAsDef("ParserMatchClass"); 1688 if (MatchClass && MatchClass->getValueAsString("Name") == "Imm") { 1689 // Insert remaining suboperands after AsmOpIdx in II->AsmOperands. 1690 StringRef Token = Op->Token; // save this in case Op gets moved 1691 for (unsigned SI = 1, SE = Operands[Idx].MINumOperands; SI != SE; ++SI) { 1692 MatchableInfo::AsmOperand NewAsmOp(/*IsIsolatedToken=*/true, Token); 1693 NewAsmOp.SubOpIdx = SI; 1694 II->AsmOperands.insert(II->AsmOperands.begin()+AsmOpIdx+SI, NewAsmOp); 1695 } 1696 // Replace Op with first suboperand. 1697 Op = &II->AsmOperands[AsmOpIdx]; // update the pointer in case it moved 1698 Op->SubOpIdx = 0; 1699 } 1700 } 1701 1702 // Set up the operand class. 1703 Op->Class = getOperandClass(Operands[Idx], Op->SubOpIdx); 1704 Op->OrigSrcOpName = OperandName; 1705 1706 // If the named operand is tied, canonicalize it to the untied operand. 1707 // For example, something like: 1708 // (outs GPR:$dst), (ins GPR:$src) 1709 // with an asmstring of 1710 // "inc $src" 1711 // we want to canonicalize to: 1712 // "inc $dst" 1713 // so that we know how to provide the $dst operand when filling in the result. 1714 int OITied = -1; 1715 if (Operands[Idx].MINumOperands == 1) 1716 OITied = Operands[Idx].getTiedRegister(); 1717 if (OITied != -1) { 1718 // The tied operand index is an MIOperand index, find the operand that 1719 // contains it. 1720 std::pair<unsigned, unsigned> Idx = Operands.getSubOperandNumber(OITied); 1721 OperandName = Operands[Idx.first].Name; 1722 Op->SubOpIdx = Idx.second; 1723 } 1724 1725 Op->SrcOpName = OperandName; 1726 } 1727 1728 /// buildAliasOperandReference - When parsing an operand reference out of the 1729 /// matching string (e.g. "movsx $src, $dst"), determine what the class of the 1730 /// operand reference is by looking it up in the result pattern definition. 1731 void AsmMatcherInfo::buildAliasOperandReference(MatchableInfo *II, 1732 StringRef OperandName, 1733 MatchableInfo::AsmOperand &Op) { 1734 const CodeGenInstAlias &CGA = *II->DefRec.get<const CodeGenInstAlias*>(); 1735 1736 // Set up the operand class. 1737 for (unsigned i = 0, e = CGA.ResultOperands.size(); i != e; ++i) 1738 if (CGA.ResultOperands[i].isRecord() && 1739 CGA.ResultOperands[i].getName() == OperandName) { 1740 // It's safe to go with the first one we find, because CodeGenInstAlias 1741 // validates that all operands with the same name have the same record. 1742 Op.SubOpIdx = CGA.ResultInstOperandIndex[i].second; 1743 // Use the match class from the Alias definition, not the 1744 // destination instruction, as we may have an immediate that's 1745 // being munged by the match class. 1746 Op.Class = getOperandClass(CGA.ResultOperands[i].getRecord(), 1747 Op.SubOpIdx); 1748 Op.SrcOpName = OperandName; 1749 Op.OrigSrcOpName = OperandName; 1750 return; 1751 } 1752 1753 PrintFatalError(II->TheDef->getLoc(), 1754 "error: unable to find operand: '" + OperandName + "'"); 1755 } 1756 1757 void MatchableInfo::buildInstructionResultOperands() { 1758 const CodeGenInstruction *ResultInst = getResultInst(); 1759 1760 // Loop over all operands of the result instruction, determining how to 1761 // populate them. 1762 for (const CGIOperandList::OperandInfo &OpInfo : ResultInst->Operands) { 1763 // If this is a tied operand, just copy from the previously handled operand. 1764 int TiedOp = -1; 1765 if (OpInfo.MINumOperands == 1) 1766 TiedOp = OpInfo.getTiedRegister(); 1767 if (TiedOp != -1) { 1768 int TiedSrcOperand = findAsmOperandOriginallyNamed(OpInfo.Name); 1769 if (TiedSrcOperand != -1 && 1770 ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) 1771 ResOperands.push_back(ResOperand::getTiedOp( 1772 TiedOp, ResOperands[TiedOp].AsmOperandNum, TiedSrcOperand)); 1773 else 1774 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, 0, 0)); 1775 continue; 1776 } 1777 1778 int SrcOperand = findAsmOperandNamed(OpInfo.Name); 1779 if (OpInfo.Name.empty() || SrcOperand == -1) { 1780 // This may happen for operands that are tied to a suboperand of a 1781 // complex operand. Simply use a dummy value here; nobody should 1782 // use this operand slot. 1783 // FIXME: The long term goal is for the MCOperand list to not contain 1784 // tied operands at all. 1785 ResOperands.push_back(ResOperand::getImmOp(0)); 1786 continue; 1787 } 1788 1789 // Check if the one AsmOperand populates the entire operand. 1790 unsigned NumOperands = OpInfo.MINumOperands; 1791 if (AsmOperands[SrcOperand].SubOpIdx == -1) { 1792 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, NumOperands)); 1793 continue; 1794 } 1795 1796 // Add a separate ResOperand for each suboperand. 1797 for (unsigned AI = 0; AI < NumOperands; ++AI) { 1798 assert(AsmOperands[SrcOperand+AI].SubOpIdx == (int)AI && 1799 AsmOperands[SrcOperand+AI].SrcOpName == OpInfo.Name && 1800 "unexpected AsmOperands for suboperands"); 1801 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand + AI, 1)); 1802 } 1803 } 1804 } 1805 1806 void MatchableInfo::buildAliasResultOperands(bool AliasConstraintsAreChecked) { 1807 const CodeGenInstAlias &CGA = *DefRec.get<const CodeGenInstAlias*>(); 1808 const CodeGenInstruction *ResultInst = getResultInst(); 1809 1810 // Map of: $reg -> #lastref 1811 // where $reg is the name of the operand in the asm string 1812 // where #lastref is the last processed index where $reg was referenced in 1813 // the asm string. 1814 SmallDenseMap<StringRef, int> OperandRefs; 1815 1816 // Loop over all operands of the result instruction, determining how to 1817 // populate them. 1818 unsigned AliasOpNo = 0; 1819 unsigned LastOpNo = CGA.ResultInstOperandIndex.size(); 1820 for (unsigned i = 0, e = ResultInst->Operands.size(); i != e; ++i) { 1821 const CGIOperandList::OperandInfo *OpInfo = &ResultInst->Operands[i]; 1822 1823 // If this is a tied operand, just copy from the previously handled operand. 1824 int TiedOp = -1; 1825 if (OpInfo->MINumOperands == 1) 1826 TiedOp = OpInfo->getTiedRegister(); 1827 if (TiedOp != -1) { 1828 unsigned SrcOp1 = 0; 1829 unsigned SrcOp2 = 0; 1830 1831 // If an operand has been specified twice in the asm string, 1832 // add the two source operand's indices to the TiedOp so that 1833 // at runtime the 'tied' constraint is checked. 1834 if (ResOperands[TiedOp].Kind == ResOperand::RenderAsmOperand) { 1835 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1836 1837 // Find the next operand (similarly named operand) in the string. 1838 StringRef Name = AsmOperands[SrcOp1].SrcOpName; 1839 auto Insert = OperandRefs.try_emplace(Name, SrcOp1); 1840 SrcOp2 = findAsmOperandNamed(Name, Insert.first->second); 1841 1842 // Not updating the record in OperandRefs will cause TableGen 1843 // to fail with an error at the end of this function. 1844 if (AliasConstraintsAreChecked) 1845 Insert.first->second = SrcOp2; 1846 1847 // In case it only has one reference in the asm string, 1848 // it doesn't need to be checked for tied constraints. 1849 SrcOp2 = (SrcOp2 == (unsigned)-1) ? SrcOp1 : SrcOp2; 1850 } 1851 1852 // If the alias operand is of a different operand class, we only want 1853 // to benefit from the tied-operands check and just match the operand 1854 // as a normal, but not copy the original (TiedOp) to the result 1855 // instruction. We do this by passing -1 as the tied operand to copy. 1856 if (ResultInst->Operands[i].Rec->getName() != 1857 ResultInst->Operands[TiedOp].Rec->getName()) { 1858 SrcOp1 = ResOperands[TiedOp].AsmOperandNum; 1859 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1860 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1861 SrcOp2 = findAsmOperand(Name, SubIdx); 1862 ResOperands.push_back( 1863 ResOperand::getTiedOp((unsigned)-1, SrcOp1, SrcOp2)); 1864 } else { 1865 ResOperands.push_back(ResOperand::getTiedOp(TiedOp, SrcOp1, SrcOp2)); 1866 continue; 1867 } 1868 } 1869 1870 // Handle all the suboperands for this operand. 1871 const std::string &OpName = OpInfo->Name; 1872 for ( ; AliasOpNo < LastOpNo && 1873 CGA.ResultInstOperandIndex[AliasOpNo].first == i; ++AliasOpNo) { 1874 int SubIdx = CGA.ResultInstOperandIndex[AliasOpNo].second; 1875 1876 // Find out what operand from the asmparser that this MCInst operand 1877 // comes from. 1878 switch (CGA.ResultOperands[AliasOpNo].Kind) { 1879 case CodeGenInstAlias::ResultOperand::K_Record: { 1880 StringRef Name = CGA.ResultOperands[AliasOpNo].getName(); 1881 int SrcOperand = findAsmOperand(Name, SubIdx); 1882 if (SrcOperand == -1) 1883 PrintFatalError(TheDef->getLoc(), "Instruction '" + 1884 TheDef->getName() + "' has operand '" + OpName + 1885 "' that doesn't appear in asm string!"); 1886 1887 // Add it to the operand references. If it is added a second time, the 1888 // record won't be updated and it will fail later on. 1889 OperandRefs.try_emplace(Name, SrcOperand); 1890 1891 unsigned NumOperands = (SubIdx == -1 ? OpInfo->MINumOperands : 1); 1892 ResOperands.push_back(ResOperand::getRenderedOp(SrcOperand, 1893 NumOperands)); 1894 break; 1895 } 1896 case CodeGenInstAlias::ResultOperand::K_Imm: { 1897 int64_t ImmVal = CGA.ResultOperands[AliasOpNo].getImm(); 1898 ResOperands.push_back(ResOperand::getImmOp(ImmVal)); 1899 break; 1900 } 1901 case CodeGenInstAlias::ResultOperand::K_Reg: { 1902 Record *Reg = CGA.ResultOperands[AliasOpNo].getRegister(); 1903 ResOperands.push_back(ResOperand::getRegOp(Reg)); 1904 break; 1905 } 1906 } 1907 } 1908 } 1909 1910 // Check that operands are not repeated more times than is supported. 1911 for (auto &T : OperandRefs) { 1912 if (T.second != -1 && findAsmOperandNamed(T.first, T.second) != -1) 1913 PrintFatalError(TheDef->getLoc(), 1914 "Operand '" + T.first + "' can never be matched"); 1915 } 1916 } 1917 1918 static unsigned 1919 getConverterOperandID(const std::string &Name, 1920 SmallSetVector<CachedHashString, 16> &Table, 1921 bool &IsNew) { 1922 IsNew = Table.insert(CachedHashString(Name)); 1923 1924 unsigned ID = IsNew ? Table.size() - 1 : find(Table, Name) - Table.begin(); 1925 1926 assert(ID < Table.size()); 1927 1928 return ID; 1929 } 1930 1931 static void emitConvertFuncs(CodeGenTarget &Target, StringRef ClassName, 1932 std::vector<std::unique_ptr<MatchableInfo>> &Infos, 1933 bool HasMnemonicFirst, bool HasOptionalOperands, 1934 raw_ostream &OS) { 1935 SmallSetVector<CachedHashString, 16> OperandConversionKinds; 1936 SmallSetVector<CachedHashString, 16> InstructionConversionKinds; 1937 std::vector<std::vector<uint8_t> > ConversionTable; 1938 size_t MaxRowLength = 2; // minimum is custom converter plus terminator. 1939 1940 // TargetOperandClass - This is the target's operand class, like X86Operand. 1941 std::string TargetOperandClass = Target.getName().str() + "Operand"; 1942 1943 // Write the convert function to a separate stream, so we can drop it after 1944 // the enum. We'll build up the conversion handlers for the individual 1945 // operand types opportunistically as we encounter them. 1946 std::string ConvertFnBody; 1947 raw_string_ostream CvtOS(ConvertFnBody); 1948 // Start the unified conversion function. 1949 if (HasOptionalOperands) { 1950 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1951 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1952 << "unsigned Opcode,\n" 1953 << " const OperandVector &Operands,\n" 1954 << " const SmallBitVector &OptionalOperandsMask) {\n"; 1955 } else { 1956 CvtOS << "void " << Target.getName() << ClassName << "::\n" 1957 << "convertToMCInst(unsigned Kind, MCInst &Inst, " 1958 << "unsigned Opcode,\n" 1959 << " const OperandVector &Operands) {\n"; 1960 } 1961 CvtOS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 1962 CvtOS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 1963 if (HasOptionalOperands) { 1964 size_t MaxNumOperands = 0; 1965 for (const auto &MI : Infos) { 1966 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 1967 } 1968 CvtOS << " unsigned DefaultsOffset[" << (MaxNumOperands + 1) 1969 << "] = { 0 };\n"; 1970 CvtOS << " assert(OptionalOperandsMask.size() == " << (MaxNumOperands) 1971 << ");\n"; 1972 CvtOS << " for (unsigned i = 0, NumDefaults = 0; i < " << (MaxNumOperands) 1973 << "; ++i) {\n"; 1974 CvtOS << " DefaultsOffset[i + 1] = NumDefaults;\n"; 1975 CvtOS << " NumDefaults += (OptionalOperandsMask[i] ? 1 : 0);\n"; 1976 CvtOS << " }\n"; 1977 } 1978 CvtOS << " unsigned OpIdx;\n"; 1979 CvtOS << " Inst.setOpcode(Opcode);\n"; 1980 CvtOS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 1981 if (HasOptionalOperands) { 1982 CvtOS << " OpIdx = *(p + 1) - DefaultsOffset[*(p + 1)];\n"; 1983 } else { 1984 CvtOS << " OpIdx = *(p + 1);\n"; 1985 } 1986 CvtOS << " switch (*p) {\n"; 1987 CvtOS << " default: llvm_unreachable(\"invalid conversion entry!\");\n"; 1988 CvtOS << " case CVT_Reg:\n"; 1989 CvtOS << " static_cast<" << TargetOperandClass 1990 << "&>(*Operands[OpIdx]).addRegOperands(Inst, 1);\n"; 1991 CvtOS << " break;\n"; 1992 CvtOS << " case CVT_Tied: {\n"; 1993 CvtOS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 1994 CvtOS << " std::begin(TiedAsmOperandTable)) &&\n"; 1995 CvtOS << " \"Tied operand not found\");\n"; 1996 CvtOS << " unsigned TiedResOpnd = TiedAsmOperandTable[OpIdx][0];\n"; 1997 CvtOS << " if (TiedResOpnd != (uint8_t) -1)\n"; 1998 CvtOS << " Inst.addOperand(Inst.getOperand(TiedResOpnd));\n"; 1999 CvtOS << " break;\n"; 2000 CvtOS << " }\n"; 2001 2002 std::string OperandFnBody; 2003 raw_string_ostream OpOS(OperandFnBody); 2004 // Start the operand number lookup function. 2005 OpOS << "void " << Target.getName() << ClassName << "::\n" 2006 << "convertToMapAndConstraints(unsigned Kind,\n"; 2007 OpOS.indent(27); 2008 OpOS << "const OperandVector &Operands) {\n" 2009 << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n" 2010 << " unsigned NumMCOperands = 0;\n" 2011 << " const uint8_t *Converter = ConversionTable[Kind];\n" 2012 << " for (const uint8_t *p = Converter; *p; p+= 2) {\n" 2013 << " switch (*p) {\n" 2014 << " default: llvm_unreachable(\"invalid conversion entry!\");\n" 2015 << " case CVT_Reg:\n" 2016 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2017 << " Operands[*(p + 1)]->setConstraint(\"r\");\n" 2018 << " ++NumMCOperands;\n" 2019 << " break;\n" 2020 << " case CVT_Tied:\n" 2021 << " ++NumMCOperands;\n" 2022 << " break;\n"; 2023 2024 // Pre-populate the operand conversion kinds with the standard always 2025 // available entries. 2026 OperandConversionKinds.insert(CachedHashString("CVT_Done")); 2027 OperandConversionKinds.insert(CachedHashString("CVT_Reg")); 2028 OperandConversionKinds.insert(CachedHashString("CVT_Tied")); 2029 enum { CVT_Done, CVT_Reg, CVT_Tied }; 2030 2031 // Map of e.g. <0, 2, 3> -> "Tie_0_2_3" enum label. 2032 std::map<std::tuple<uint8_t, uint8_t, uint8_t>, std::string> 2033 TiedOperandsEnumMap; 2034 2035 for (auto &II : Infos) { 2036 // Check if we have a custom match function. 2037 StringRef AsmMatchConverter = 2038 II->getResultInst()->TheDef->getValueAsString("AsmMatchConverter"); 2039 if (!AsmMatchConverter.empty() && II->UseInstAsmMatchConverter) { 2040 std::string Signature = ("ConvertCustom_" + AsmMatchConverter).str(); 2041 II->ConversionFnKind = Signature; 2042 2043 // Check if we have already generated this signature. 2044 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2045 continue; 2046 2047 // Remember this converter for the kind enum. 2048 unsigned KindID = OperandConversionKinds.size(); 2049 OperandConversionKinds.insert( 2050 CachedHashString("CVT_" + getEnumNameForToken(AsmMatchConverter))); 2051 2052 // Add the converter row for this instruction. 2053 ConversionTable.emplace_back(); 2054 ConversionTable.back().push_back(KindID); 2055 ConversionTable.back().push_back(CVT_Done); 2056 2057 // Add the handler to the conversion driver function. 2058 CvtOS << " case CVT_" 2059 << getEnumNameForToken(AsmMatchConverter) << ":\n" 2060 << " " << AsmMatchConverter << "(Inst, Operands);\n" 2061 << " break;\n"; 2062 2063 // FIXME: Handle the operand number lookup for custom match functions. 2064 continue; 2065 } 2066 2067 // Build the conversion function signature. 2068 std::string Signature = "Convert"; 2069 2070 std::vector<uint8_t> ConversionRow; 2071 2072 // Compute the convert enum and the case body. 2073 MaxRowLength = std::max(MaxRowLength, II->ResOperands.size()*2 + 1 ); 2074 2075 for (unsigned i = 0, e = II->ResOperands.size(); i != e; ++i) { 2076 const MatchableInfo::ResOperand &OpInfo = II->ResOperands[i]; 2077 2078 // Generate code to populate each result operand. 2079 switch (OpInfo.Kind) { 2080 case MatchableInfo::ResOperand::RenderAsmOperand: { 2081 // This comes from something we parsed. 2082 const MatchableInfo::AsmOperand &Op = 2083 II->AsmOperands[OpInfo.AsmOperandNum]; 2084 2085 // Registers are always converted the same, don't duplicate the 2086 // conversion function based on them. 2087 Signature += "__"; 2088 std::string Class; 2089 Class = Op.Class->isRegisterClass() ? "Reg" : Op.Class->ClassName; 2090 Signature += Class; 2091 Signature += utostr(OpInfo.MINumOperands); 2092 Signature += "_" + itostr(OpInfo.AsmOperandNum); 2093 2094 // Add the conversion kind, if necessary, and get the associated ID 2095 // the index of its entry in the vector). 2096 std::string Name = "CVT_" + (Op.Class->isRegisterClass() ? "Reg" : 2097 Op.Class->RenderMethod); 2098 if (Op.Class->IsOptional) { 2099 // For optional operands we must also care about DefaultMethod 2100 assert(HasOptionalOperands); 2101 Name += "_" + Op.Class->DefaultMethod; 2102 } 2103 Name = getEnumNameForToken(Name); 2104 2105 bool IsNewConverter = false; 2106 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2107 IsNewConverter); 2108 2109 // Add the operand entry to the instruction kind conversion row. 2110 ConversionRow.push_back(ID); 2111 ConversionRow.push_back(OpInfo.AsmOperandNum + HasMnemonicFirst); 2112 2113 if (!IsNewConverter) 2114 break; 2115 2116 // This is a new operand kind. Add a handler for it to the 2117 // converter driver. 2118 CvtOS << " case " << Name << ":\n"; 2119 if (Op.Class->IsOptional) { 2120 // If optional operand is not present in actual instruction then we 2121 // should call its DefaultMethod before RenderMethod 2122 assert(HasOptionalOperands); 2123 CvtOS << " if (OptionalOperandsMask[*(p + 1) - 1]) {\n" 2124 << " " << Op.Class->DefaultMethod << "()" 2125 << "->" << Op.Class->RenderMethod << "(Inst, " 2126 << OpInfo.MINumOperands << ");\n" 2127 << " } else {\n" 2128 << " static_cast<" << TargetOperandClass 2129 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2130 << "(Inst, " << OpInfo.MINumOperands << ");\n" 2131 << " }\n"; 2132 } else { 2133 CvtOS << " static_cast<" << TargetOperandClass 2134 << "&>(*Operands[OpIdx])." << Op.Class->RenderMethod 2135 << "(Inst, " << OpInfo.MINumOperands << ");\n"; 2136 } 2137 CvtOS << " break;\n"; 2138 2139 // Add a handler for the operand number lookup. 2140 OpOS << " case " << Name << ":\n" 2141 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n"; 2142 2143 if (Op.Class->isRegisterClass()) 2144 OpOS << " Operands[*(p + 1)]->setConstraint(\"r\");\n"; 2145 else 2146 OpOS << " Operands[*(p + 1)]->setConstraint(\"m\");\n"; 2147 OpOS << " NumMCOperands += " << OpInfo.MINumOperands << ";\n" 2148 << " break;\n"; 2149 break; 2150 } 2151 case MatchableInfo::ResOperand::TiedOperand: { 2152 // If this operand is tied to a previous one, just copy the MCInst 2153 // operand from the earlier one.We can only tie single MCOperand values. 2154 assert(OpInfo.MINumOperands == 1 && "Not a singular MCOperand"); 2155 uint8_t TiedOp = OpInfo.TiedOperands.ResOpnd; 2156 uint8_t SrcOp1 = 2157 OpInfo.TiedOperands.SrcOpnd1Idx + HasMnemonicFirst; 2158 uint8_t SrcOp2 = 2159 OpInfo.TiedOperands.SrcOpnd2Idx + HasMnemonicFirst; 2160 assert((i > TiedOp || TiedOp == (uint8_t)-1) && 2161 "Tied operand precedes its target!"); 2162 auto TiedTupleName = std::string("Tie") + utostr(TiedOp) + '_' + 2163 utostr(SrcOp1) + '_' + utostr(SrcOp2); 2164 Signature += "__" + TiedTupleName; 2165 ConversionRow.push_back(CVT_Tied); 2166 ConversionRow.push_back(TiedOp); 2167 ConversionRow.push_back(SrcOp1); 2168 ConversionRow.push_back(SrcOp2); 2169 2170 // Also create an 'enum' for this combination of tied operands. 2171 auto Key = std::make_tuple(TiedOp, SrcOp1, SrcOp2); 2172 TiedOperandsEnumMap.emplace(Key, TiedTupleName); 2173 break; 2174 } 2175 case MatchableInfo::ResOperand::ImmOperand: { 2176 int64_t Val = OpInfo.ImmVal; 2177 std::string Ty = "imm_" + itostr(Val); 2178 Ty = getEnumNameForToken(Ty); 2179 Signature += "__" + Ty; 2180 2181 std::string Name = "CVT_" + Ty; 2182 bool IsNewConverter = false; 2183 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2184 IsNewConverter); 2185 // Add the operand entry to the instruction kind conversion row. 2186 ConversionRow.push_back(ID); 2187 ConversionRow.push_back(0); 2188 2189 if (!IsNewConverter) 2190 break; 2191 2192 CvtOS << " case " << Name << ":\n" 2193 << " Inst.addOperand(MCOperand::createImm(" << Val << "));\n" 2194 << " break;\n"; 2195 2196 OpOS << " case " << Name << ":\n" 2197 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2198 << " Operands[*(p + 1)]->setConstraint(\"\");\n" 2199 << " ++NumMCOperands;\n" 2200 << " break;\n"; 2201 break; 2202 } 2203 case MatchableInfo::ResOperand::RegOperand: { 2204 std::string Reg, Name; 2205 if (!OpInfo.Register) { 2206 Name = "reg0"; 2207 Reg = "0"; 2208 } else { 2209 Reg = getQualifiedName(OpInfo.Register); 2210 Name = "reg" + OpInfo.Register->getName().str(); 2211 } 2212 Signature += "__" + Name; 2213 Name = "CVT_" + Name; 2214 bool IsNewConverter = false; 2215 unsigned ID = getConverterOperandID(Name, OperandConversionKinds, 2216 IsNewConverter); 2217 // Add the operand entry to the instruction kind conversion row. 2218 ConversionRow.push_back(ID); 2219 ConversionRow.push_back(0); 2220 2221 if (!IsNewConverter) 2222 break; 2223 CvtOS << " case " << Name << ":\n" 2224 << " Inst.addOperand(MCOperand::createReg(" << Reg << "));\n" 2225 << " break;\n"; 2226 2227 OpOS << " case " << Name << ":\n" 2228 << " Operands[*(p + 1)]->setMCOperandNum(NumMCOperands);\n" 2229 << " Operands[*(p + 1)]->setConstraint(\"m\");\n" 2230 << " ++NumMCOperands;\n" 2231 << " break;\n"; 2232 } 2233 } 2234 } 2235 2236 // If there were no operands, add to the signature to that effect 2237 if (Signature == "Convert") 2238 Signature += "_NoOperands"; 2239 2240 II->ConversionFnKind = Signature; 2241 2242 // Save the signature. If we already have it, don't add a new row 2243 // to the table. 2244 if (!InstructionConversionKinds.insert(CachedHashString(Signature))) 2245 continue; 2246 2247 // Add the row to the table. 2248 ConversionTable.push_back(std::move(ConversionRow)); 2249 } 2250 2251 // Finish up the converter driver function. 2252 CvtOS << " }\n }\n}\n\n"; 2253 2254 // Finish up the operand number lookup function. 2255 OpOS << " }\n }\n}\n\n"; 2256 2257 // Output a static table for tied operands. 2258 if (TiedOperandsEnumMap.size()) { 2259 // The number of tied operand combinations will be small in practice, 2260 // but just add the assert to be sure. 2261 assert(TiedOperandsEnumMap.size() <= 254 && 2262 "Too many tied-operand combinations to reference with " 2263 "an 8bit offset from the conversion table, where index " 2264 "'255' is reserved as operand not to be copied."); 2265 2266 OS << "enum {\n"; 2267 for (auto &KV : TiedOperandsEnumMap) { 2268 OS << " " << KV.second << ",\n"; 2269 } 2270 OS << "};\n\n"; 2271 2272 OS << "static const uint8_t TiedAsmOperandTable[][3] = {\n"; 2273 for (auto &KV : TiedOperandsEnumMap) { 2274 OS << " /* " << KV.second << " */ { " 2275 << utostr(std::get<0>(KV.first)) << ", " 2276 << utostr(std::get<1>(KV.first)) << ", " 2277 << utostr(std::get<2>(KV.first)) << " },\n"; 2278 } 2279 OS << "};\n\n"; 2280 } else 2281 OS << "static const uint8_t TiedAsmOperandTable[][3] = " 2282 "{ /* empty */ {0, 0, 0} };\n\n"; 2283 2284 OS << "namespace {\n"; 2285 2286 // Output the operand conversion kind enum. 2287 OS << "enum OperatorConversionKind {\n"; 2288 for (const auto &Converter : OperandConversionKinds) 2289 OS << " " << Converter << ",\n"; 2290 OS << " CVT_NUM_CONVERTERS\n"; 2291 OS << "};\n\n"; 2292 2293 // Output the instruction conversion kind enum. 2294 OS << "enum InstructionConversionKind {\n"; 2295 for (const auto &Signature : InstructionConversionKinds) 2296 OS << " " << Signature << ",\n"; 2297 OS << " CVT_NUM_SIGNATURES\n"; 2298 OS << "};\n\n"; 2299 2300 OS << "} // end anonymous namespace\n\n"; 2301 2302 // Output the conversion table. 2303 OS << "static const uint8_t ConversionTable[CVT_NUM_SIGNATURES][" 2304 << MaxRowLength << "] = {\n"; 2305 2306 for (unsigned Row = 0, ERow = ConversionTable.size(); Row != ERow; ++Row) { 2307 assert(ConversionTable[Row].size() % 2 == 0 && "bad conversion row!"); 2308 OS << " // " << InstructionConversionKinds[Row] << "\n"; 2309 OS << " { "; 2310 for (unsigned i = 0, e = ConversionTable[Row].size(); i != e; i += 2) { 2311 OS << OperandConversionKinds[ConversionTable[Row][i]] << ", "; 2312 if (OperandConversionKinds[ConversionTable[Row][i]] != 2313 CachedHashString("CVT_Tied")) { 2314 OS << (unsigned)(ConversionTable[Row][i + 1]) << ", "; 2315 continue; 2316 } 2317 2318 // For a tied operand, emit a reference to the TiedAsmOperandTable 2319 // that contains the operand to copy, and the parsed operands to 2320 // check for their tied constraints. 2321 auto Key = std::make_tuple((uint8_t)ConversionTable[Row][i + 1], 2322 (uint8_t)ConversionTable[Row][i + 2], 2323 (uint8_t)ConversionTable[Row][i + 3]); 2324 auto TiedOpndEnum = TiedOperandsEnumMap.find(Key); 2325 assert(TiedOpndEnum != TiedOperandsEnumMap.end() && 2326 "No record for tied operand pair"); 2327 OS << TiedOpndEnum->second << ", "; 2328 i += 2; 2329 } 2330 OS << "CVT_Done },\n"; 2331 } 2332 2333 OS << "};\n\n"; 2334 2335 // Spit out the conversion driver function. 2336 OS << CvtOS.str(); 2337 2338 // Spit out the operand number lookup function. 2339 OS << OpOS.str(); 2340 } 2341 2342 /// emitMatchClassEnumeration - Emit the enumeration for match class kinds. 2343 static void emitMatchClassEnumeration(CodeGenTarget &Target, 2344 std::forward_list<ClassInfo> &Infos, 2345 raw_ostream &OS) { 2346 OS << "namespace {\n\n"; 2347 2348 OS << "/// MatchClassKind - The kinds of classes which participate in\n" 2349 << "/// instruction matching.\n"; 2350 OS << "enum MatchClassKind {\n"; 2351 OS << " InvalidMatchClass = 0,\n"; 2352 OS << " OptionalMatchClass = 1,\n"; 2353 ClassInfo::ClassInfoKind LastKind = ClassInfo::Token; 2354 StringRef LastName = "OptionalMatchClass"; 2355 for (const auto &CI : Infos) { 2356 if (LastKind == ClassInfo::Token && CI.Kind != ClassInfo::Token) { 2357 OS << " MCK_LAST_TOKEN = " << LastName << ",\n"; 2358 } else if (LastKind < ClassInfo::UserClass0 && 2359 CI.Kind >= ClassInfo::UserClass0) { 2360 OS << " MCK_LAST_REGISTER = " << LastName << ",\n"; 2361 } 2362 LastKind = (ClassInfo::ClassInfoKind)CI.Kind; 2363 LastName = CI.Name; 2364 2365 OS << " " << CI.Name << ", // "; 2366 if (CI.Kind == ClassInfo::Token) { 2367 OS << "'" << CI.ValueName << "'\n"; 2368 } else if (CI.isRegisterClass()) { 2369 if (!CI.ValueName.empty()) 2370 OS << "register class '" << CI.ValueName << "'\n"; 2371 else 2372 OS << "derived register class\n"; 2373 } else { 2374 OS << "user defined class '" << CI.ValueName << "'\n"; 2375 } 2376 } 2377 OS << " NumMatchClassKinds\n"; 2378 OS << "};\n\n"; 2379 2380 OS << "}\n\n"; 2381 } 2382 2383 /// emitMatchClassDiagStrings - Emit a function to get the diagnostic text to be 2384 /// used when an assembly operand does not match the expected operand class. 2385 static void emitOperandMatchErrorDiagStrings(AsmMatcherInfo &Info, raw_ostream &OS) { 2386 // If the target does not use DiagnosticString for any operands, don't emit 2387 // an unused function. 2388 if (std::all_of( 2389 Info.Classes.begin(), Info.Classes.end(), 2390 [](const ClassInfo &CI) { return CI.DiagnosticString.empty(); })) 2391 return; 2392 2393 OS << "static const char *getMatchKindDiag(" << Info.Target.getName() 2394 << "AsmParser::" << Info.Target.getName() 2395 << "MatchResultTy MatchResult) {\n"; 2396 OS << " switch (MatchResult) {\n"; 2397 2398 for (const auto &CI: Info.Classes) { 2399 if (!CI.DiagnosticString.empty()) { 2400 assert(!CI.DiagnosticType.empty() && 2401 "DiagnosticString set without DiagnosticType"); 2402 OS << " case " << Info.Target.getName() 2403 << "AsmParser::Match_" << CI.DiagnosticType << ":\n"; 2404 OS << " return \"" << CI.DiagnosticString << "\";\n"; 2405 } 2406 } 2407 2408 OS << " default:\n"; 2409 OS << " return nullptr;\n"; 2410 2411 OS << " }\n"; 2412 OS << "}\n\n"; 2413 } 2414 2415 static void emitRegisterMatchErrorFunc(AsmMatcherInfo &Info, raw_ostream &OS) { 2416 OS << "static unsigned getDiagKindFromRegisterClass(MatchClassKind " 2417 "RegisterClass) {\n"; 2418 if (none_of(Info.Classes, [](const ClassInfo &CI) { 2419 return CI.isRegisterClass() && !CI.DiagnosticType.empty(); 2420 })) { 2421 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2422 } else { 2423 OS << " switch (RegisterClass) {\n"; 2424 for (const auto &CI: Info.Classes) { 2425 if (CI.isRegisterClass() && !CI.DiagnosticType.empty()) { 2426 OS << " case " << CI.Name << ":\n"; 2427 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2428 << CI.DiagnosticType << ";\n"; 2429 } 2430 } 2431 2432 OS << " default:\n"; 2433 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2434 2435 OS << " }\n"; 2436 } 2437 OS << "}\n\n"; 2438 } 2439 2440 /// emitValidateOperandClass - Emit the function to validate an operand class. 2441 static void emitValidateOperandClass(AsmMatcherInfo &Info, 2442 raw_ostream &OS) { 2443 OS << "static unsigned validateOperandClass(MCParsedAsmOperand &GOp, " 2444 << "MatchClassKind Kind) {\n"; 2445 OS << " " << Info.Target.getName() << "Operand &Operand = (" 2446 << Info.Target.getName() << "Operand&)GOp;\n"; 2447 2448 // The InvalidMatchClass is not to match any operand. 2449 OS << " if (Kind == InvalidMatchClass)\n"; 2450 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2451 2452 // Check for Token operands first. 2453 // FIXME: Use a more specific diagnostic type. 2454 OS << " if (Operand.isToken() && Kind <= MCK_LAST_TOKEN)\n"; 2455 OS << " return isSubclass(matchTokenString(Operand.getToken()), Kind) ?\n" 2456 << " MCTargetAsmParser::Match_Success :\n" 2457 << " MCTargetAsmParser::Match_InvalidOperand;\n\n"; 2458 2459 // Check the user classes. We don't care what order since we're only 2460 // actually matching against one of them. 2461 OS << " switch (Kind) {\n" 2462 " default: break;\n"; 2463 for (const auto &CI : Info.Classes) { 2464 if (!CI.isUserClass()) 2465 continue; 2466 2467 OS << " // '" << CI.ClassName << "' class\n"; 2468 OS << " case " << CI.Name << ": {\n"; 2469 OS << " DiagnosticPredicate DP(Operand." << CI.PredicateMethod 2470 << "());\n"; 2471 OS << " if (DP.isMatch())\n"; 2472 OS << " return MCTargetAsmParser::Match_Success;\n"; 2473 if (!CI.DiagnosticType.empty()) { 2474 OS << " if (DP.isNearMatch())\n"; 2475 OS << " return " << Info.Target.getName() << "AsmParser::Match_" 2476 << CI.DiagnosticType << ";\n"; 2477 OS << " break;\n"; 2478 } 2479 else 2480 OS << " break;\n"; 2481 OS << " }\n"; 2482 } 2483 OS << " } // end switch (Kind)\n\n"; 2484 2485 // Check for register operands, including sub-classes. 2486 OS << " if (Operand.isReg()) {\n"; 2487 OS << " MatchClassKind OpKind;\n"; 2488 OS << " switch (Operand.getReg()) {\n"; 2489 OS << " default: OpKind = InvalidMatchClass; break;\n"; 2490 for (const auto &RC : Info.RegisterClasses) 2491 OS << " case " << RC.first->getValueAsString("Namespace") << "::" 2492 << RC.first->getName() << ": OpKind = " << RC.second->Name 2493 << "; break;\n"; 2494 OS << " }\n"; 2495 OS << " return isSubclass(OpKind, Kind) ? " 2496 << "(unsigned)MCTargetAsmParser::Match_Success :\n " 2497 << " getDiagKindFromRegisterClass(Kind);\n }\n\n"; 2498 2499 // Expected operand is a register, but actual is not. 2500 OS << " if (Kind > MCK_LAST_TOKEN && Kind <= MCK_LAST_REGISTER)\n"; 2501 OS << " return getDiagKindFromRegisterClass(Kind);\n\n"; 2502 2503 // Generic fallthrough match failure case for operands that don't have 2504 // specialized diagnostic types. 2505 OS << " return MCTargetAsmParser::Match_InvalidOperand;\n"; 2506 OS << "}\n\n"; 2507 } 2508 2509 /// emitIsSubclass - Emit the subclass predicate function. 2510 static void emitIsSubclass(CodeGenTarget &Target, 2511 std::forward_list<ClassInfo> &Infos, 2512 raw_ostream &OS) { 2513 OS << "/// isSubclass - Compute whether \\p A is a subclass of \\p B.\n"; 2514 OS << "static bool isSubclass(MatchClassKind A, MatchClassKind B) {\n"; 2515 OS << " if (A == B)\n"; 2516 OS << " return true;\n\n"; 2517 2518 bool EmittedSwitch = false; 2519 for (const auto &A : Infos) { 2520 std::vector<StringRef> SuperClasses; 2521 if (A.IsOptional) 2522 SuperClasses.push_back("OptionalMatchClass"); 2523 for (const auto &B : Infos) { 2524 if (&A != &B && A.isSubsetOf(B)) 2525 SuperClasses.push_back(B.Name); 2526 } 2527 2528 if (SuperClasses.empty()) 2529 continue; 2530 2531 // If this is the first SuperClass, emit the switch header. 2532 if (!EmittedSwitch) { 2533 OS << " switch (A) {\n"; 2534 OS << " default:\n"; 2535 OS << " return false;\n"; 2536 EmittedSwitch = true; 2537 } 2538 2539 OS << "\n case " << A.Name << ":\n"; 2540 2541 if (SuperClasses.size() == 1) { 2542 OS << " return B == " << SuperClasses.back() << ";\n"; 2543 continue; 2544 } 2545 2546 if (!SuperClasses.empty()) { 2547 OS << " switch (B) {\n"; 2548 OS << " default: return false;\n"; 2549 for (StringRef SC : SuperClasses) 2550 OS << " case " << SC << ": return true;\n"; 2551 OS << " }\n"; 2552 } else { 2553 // No case statement to emit 2554 OS << " return false;\n"; 2555 } 2556 } 2557 2558 // If there were case statements emitted into the string stream write the 2559 // default. 2560 if (EmittedSwitch) 2561 OS << " }\n"; 2562 else 2563 OS << " return false;\n"; 2564 2565 OS << "}\n\n"; 2566 } 2567 2568 /// emitMatchTokenString - Emit the function to match a token string to the 2569 /// appropriate match class value. 2570 static void emitMatchTokenString(CodeGenTarget &Target, 2571 std::forward_list<ClassInfo> &Infos, 2572 raw_ostream &OS) { 2573 // Construct the match list. 2574 std::vector<StringMatcher::StringPair> Matches; 2575 for (const auto &CI : Infos) { 2576 if (CI.Kind == ClassInfo::Token) 2577 Matches.emplace_back(CI.ValueName, "return " + CI.Name + ";"); 2578 } 2579 2580 OS << "static MatchClassKind matchTokenString(StringRef Name) {\n"; 2581 2582 StringMatcher("Name", Matches, OS).Emit(); 2583 2584 OS << " return InvalidMatchClass;\n"; 2585 OS << "}\n\n"; 2586 } 2587 2588 /// emitMatchRegisterName - Emit the function to match a string to the target 2589 /// specific register enum. 2590 static void emitMatchRegisterName(CodeGenTarget &Target, Record *AsmParser, 2591 raw_ostream &OS) { 2592 // Construct the match list. 2593 std::vector<StringMatcher::StringPair> Matches; 2594 const auto &Regs = Target.getRegBank().getRegisters(); 2595 for (const CodeGenRegister &Reg : Regs) { 2596 if (Reg.TheDef->getValueAsString("AsmName").empty()) 2597 continue; 2598 2599 Matches.emplace_back(Reg.TheDef->getValueAsString("AsmName"), 2600 "return " + utostr(Reg.EnumValue) + ";"); 2601 } 2602 2603 OS << "static unsigned MatchRegisterName(StringRef Name) {\n"; 2604 2605 bool IgnoreDuplicates = 2606 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2607 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2608 2609 OS << " return 0;\n"; 2610 OS << "}\n\n"; 2611 } 2612 2613 /// Emit the function to match a string to the target 2614 /// specific register enum. 2615 static void emitMatchRegisterAltName(CodeGenTarget &Target, Record *AsmParser, 2616 raw_ostream &OS) { 2617 // Construct the match list. 2618 std::vector<StringMatcher::StringPair> Matches; 2619 const auto &Regs = Target.getRegBank().getRegisters(); 2620 for (const CodeGenRegister &Reg : Regs) { 2621 2622 auto AltNames = Reg.TheDef->getValueAsListOfStrings("AltNames"); 2623 2624 for (auto AltName : AltNames) { 2625 AltName = StringRef(AltName).trim(); 2626 2627 // don't handle empty alternative names 2628 if (AltName.empty()) 2629 continue; 2630 2631 Matches.emplace_back(AltName, 2632 "return " + utostr(Reg.EnumValue) + ";"); 2633 } 2634 } 2635 2636 OS << "static unsigned MatchRegisterAltName(StringRef Name) {\n"; 2637 2638 bool IgnoreDuplicates = 2639 AsmParser->getValueAsBit("AllowDuplicateRegisterNames"); 2640 StringMatcher("Name", Matches, OS).Emit(0, IgnoreDuplicates); 2641 2642 OS << " return 0;\n"; 2643 OS << "}\n\n"; 2644 } 2645 2646 /// emitOperandDiagnosticTypes - Emit the operand matching diagnostic types. 2647 static void emitOperandDiagnosticTypes(AsmMatcherInfo &Info, raw_ostream &OS) { 2648 // Get the set of diagnostic types from all of the operand classes. 2649 std::set<StringRef> Types; 2650 for (const auto &OpClassEntry : Info.AsmOperandClasses) { 2651 if (!OpClassEntry.second->DiagnosticType.empty()) 2652 Types.insert(OpClassEntry.second->DiagnosticType); 2653 } 2654 for (const auto &OpClassEntry : Info.RegisterClassClasses) { 2655 if (!OpClassEntry.second->DiagnosticType.empty()) 2656 Types.insert(OpClassEntry.second->DiagnosticType); 2657 } 2658 2659 if (Types.empty()) return; 2660 2661 // Now emit the enum entries. 2662 for (StringRef Type : Types) 2663 OS << " Match_" << Type << ",\n"; 2664 OS << " END_OPERAND_DIAGNOSTIC_TYPES\n"; 2665 } 2666 2667 /// emitGetSubtargetFeatureName - Emit the helper function to get the 2668 /// user-level name for a subtarget feature. 2669 static void emitGetSubtargetFeatureName(AsmMatcherInfo &Info, raw_ostream &OS) { 2670 OS << "// User-level names for subtarget features that participate in\n" 2671 << "// instruction matching.\n" 2672 << "static const char *getSubtargetFeatureName(uint64_t Val) {\n"; 2673 if (!Info.SubtargetFeatures.empty()) { 2674 OS << " switch(Val) {\n"; 2675 for (const auto &SF : Info.SubtargetFeatures) { 2676 const SubtargetFeatureInfo &SFI = SF.second; 2677 // FIXME: Totally just a placeholder name to get the algorithm working. 2678 OS << " case " << SFI.getEnumName() << ": return \"" 2679 << SFI.TheDef->getValueAsString("PredicateName") << "\";\n"; 2680 } 2681 OS << " default: return \"(unknown)\";\n"; 2682 OS << " }\n"; 2683 } else { 2684 // Nothing to emit, so skip the switch 2685 OS << " return \"(unknown)\";\n"; 2686 } 2687 OS << "}\n\n"; 2688 } 2689 2690 static std::string GetAliasRequiredFeatures(Record *R, 2691 const AsmMatcherInfo &Info) { 2692 std::vector<Record*> ReqFeatures = R->getValueAsListOfDefs("Predicates"); 2693 std::string Result; 2694 unsigned NumFeatures = 0; 2695 for (unsigned i = 0, e = ReqFeatures.size(); i != e; ++i) { 2696 const SubtargetFeatureInfo *F = Info.getSubtargetFeature(ReqFeatures[i]); 2697 2698 if (!F) 2699 PrintFatalError(R->getLoc(), "Predicate '" + ReqFeatures[i]->getName() + 2700 "' is not marked as an AssemblerPredicate!"); 2701 2702 if (NumFeatures) 2703 Result += '|'; 2704 2705 Result += F->getEnumName(); 2706 ++NumFeatures; 2707 } 2708 2709 if (NumFeatures > 1) 2710 Result = '(' + Result + ')'; 2711 return Result; 2712 } 2713 2714 static void emitMnemonicAliasVariant(raw_ostream &OS,const AsmMatcherInfo &Info, 2715 std::vector<Record*> &Aliases, 2716 unsigned Indent = 0, 2717 StringRef AsmParserVariantName = StringRef()){ 2718 // Keep track of all the aliases from a mnemonic. Use an std::map so that the 2719 // iteration order of the map is stable. 2720 std::map<std::string, std::vector<Record*> > AliasesFromMnemonic; 2721 2722 for (Record *R : Aliases) { 2723 // FIXME: Allow AssemblerVariantName to be a comma separated list. 2724 StringRef AsmVariantName = R->getValueAsString("AsmVariantName"); 2725 if (AsmVariantName != AsmParserVariantName) 2726 continue; 2727 AliasesFromMnemonic[R->getValueAsString("FromMnemonic")].push_back(R); 2728 } 2729 if (AliasesFromMnemonic.empty()) 2730 return; 2731 2732 // Process each alias a "from" mnemonic at a time, building the code executed 2733 // by the string remapper. 2734 std::vector<StringMatcher::StringPair> Cases; 2735 for (const auto &AliasEntry : AliasesFromMnemonic) { 2736 const std::vector<Record*> &ToVec = AliasEntry.second; 2737 2738 // Loop through each alias and emit code that handles each case. If there 2739 // are two instructions without predicates, emit an error. If there is one, 2740 // emit it last. 2741 std::string MatchCode; 2742 int AliasWithNoPredicate = -1; 2743 2744 for (unsigned i = 0, e = ToVec.size(); i != e; ++i) { 2745 Record *R = ToVec[i]; 2746 std::string FeatureMask = GetAliasRequiredFeatures(R, Info); 2747 2748 // If this unconditionally matches, remember it for later and diagnose 2749 // duplicates. 2750 if (FeatureMask.empty()) { 2751 if (AliasWithNoPredicate != -1) { 2752 // We can't have two aliases from the same mnemonic with no predicate. 2753 PrintError(ToVec[AliasWithNoPredicate]->getLoc(), 2754 "two MnemonicAliases with the same 'from' mnemonic!"); 2755 PrintFatalError(R->getLoc(), "this is the other MnemonicAlias."); 2756 } 2757 2758 AliasWithNoPredicate = i; 2759 continue; 2760 } 2761 if (R->getValueAsString("ToMnemonic") == AliasEntry.first) 2762 PrintFatalError(R->getLoc(), "MnemonicAlias to the same string"); 2763 2764 if (!MatchCode.empty()) 2765 MatchCode += "else "; 2766 MatchCode += "if ((Features & " + FeatureMask + ") == "+FeatureMask+")\n"; 2767 MatchCode += " Mnemonic = \""; 2768 MatchCode += R->getValueAsString("ToMnemonic"); 2769 MatchCode += "\";\n"; 2770 } 2771 2772 if (AliasWithNoPredicate != -1) { 2773 Record *R = ToVec[AliasWithNoPredicate]; 2774 if (!MatchCode.empty()) 2775 MatchCode += "else\n "; 2776 MatchCode += "Mnemonic = \""; 2777 MatchCode += R->getValueAsString("ToMnemonic"); 2778 MatchCode += "\";\n"; 2779 } 2780 2781 MatchCode += "return;"; 2782 2783 Cases.push_back(std::make_pair(AliasEntry.first, MatchCode)); 2784 } 2785 StringMatcher("Mnemonic", Cases, OS).Emit(Indent); 2786 } 2787 2788 /// emitMnemonicAliases - If the target has any MnemonicAlias<> definitions, 2789 /// emit a function for them and return true, otherwise return false. 2790 static bool emitMnemonicAliases(raw_ostream &OS, const AsmMatcherInfo &Info, 2791 CodeGenTarget &Target) { 2792 // Ignore aliases when match-prefix is set. 2793 if (!MatchPrefix.empty()) 2794 return false; 2795 2796 std::vector<Record*> Aliases = 2797 Info.getRecords().getAllDerivedDefinitions("MnemonicAlias"); 2798 if (Aliases.empty()) return false; 2799 2800 OS << "static void applyMnemonicAliases(StringRef &Mnemonic, " 2801 "uint64_t Features, unsigned VariantID) {\n"; 2802 OS << " switch (VariantID) {\n"; 2803 unsigned VariantCount = Target.getAsmParserVariantCount(); 2804 for (unsigned VC = 0; VC != VariantCount; ++VC) { 2805 Record *AsmVariant = Target.getAsmParserVariant(VC); 2806 int AsmParserVariantNo = AsmVariant->getValueAsInt("Variant"); 2807 StringRef AsmParserVariantName = AsmVariant->getValueAsString("Name"); 2808 OS << " case " << AsmParserVariantNo << ":\n"; 2809 emitMnemonicAliasVariant(OS, Info, Aliases, /*Indent=*/2, 2810 AsmParserVariantName); 2811 OS << " break;\n"; 2812 } 2813 OS << " }\n"; 2814 2815 // Emit aliases that apply to all variants. 2816 emitMnemonicAliasVariant(OS, Info, Aliases); 2817 2818 OS << "}\n\n"; 2819 2820 return true; 2821 } 2822 2823 static void emitCustomOperandParsing(raw_ostream &OS, CodeGenTarget &Target, 2824 const AsmMatcherInfo &Info, StringRef ClassName, 2825 StringToOffsetTable &StringTable, 2826 unsigned MaxMnemonicIndex, bool HasMnemonicFirst) { 2827 unsigned MaxMask = 0; 2828 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2829 MaxMask |= OMI.OperandMask; 2830 } 2831 2832 // Emit the static custom operand parsing table; 2833 OS << "namespace {\n"; 2834 OS << " struct OperandMatchEntry {\n"; 2835 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 2836 << " RequiredFeatures;\n"; 2837 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 2838 << " Mnemonic;\n"; 2839 OS << " " << getMinimalTypeForRange(std::distance( 2840 Info.Classes.begin(), Info.Classes.end())) << " Class;\n"; 2841 OS << " " << getMinimalTypeForRange(MaxMask) 2842 << " OperandMask;\n\n"; 2843 OS << " StringRef getMnemonic() const {\n"; 2844 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 2845 OS << " MnemonicTable[Mnemonic]);\n"; 2846 OS << " }\n"; 2847 OS << " };\n\n"; 2848 2849 OS << " // Predicate for searching for an opcode.\n"; 2850 OS << " struct LessOpcodeOperand {\n"; 2851 OS << " bool operator()(const OperandMatchEntry &LHS, StringRef RHS) {\n"; 2852 OS << " return LHS.getMnemonic() < RHS;\n"; 2853 OS << " }\n"; 2854 OS << " bool operator()(StringRef LHS, const OperandMatchEntry &RHS) {\n"; 2855 OS << " return LHS < RHS.getMnemonic();\n"; 2856 OS << " }\n"; 2857 OS << " bool operator()(const OperandMatchEntry &LHS,"; 2858 OS << " const OperandMatchEntry &RHS) {\n"; 2859 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 2860 OS << " }\n"; 2861 OS << " };\n"; 2862 2863 OS << "} // end anonymous namespace.\n\n"; 2864 2865 OS << "static const OperandMatchEntry OperandMatchTable[" 2866 << Info.OperandMatchInfo.size() << "] = {\n"; 2867 2868 OS << " /* Operand List Mask, Mnemonic, Operand Class, Features */\n"; 2869 for (const OperandMatchEntry &OMI : Info.OperandMatchInfo) { 2870 const MatchableInfo &II = *OMI.MI; 2871 2872 OS << " { "; 2873 2874 // Write the required features mask. 2875 if (!II.RequiredFeatures.empty()) { 2876 for (unsigned i = 0, e = II.RequiredFeatures.size(); i != e; ++i) { 2877 if (i) OS << "|"; 2878 OS << II.RequiredFeatures[i]->getEnumName(); 2879 } 2880 } else 2881 OS << "0"; 2882 2883 // Store a pascal-style length byte in the mnemonic. 2884 std::string LenMnemonic = char(II.Mnemonic.size()) + II.Mnemonic.str(); 2885 OS << ", " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 2886 << " /* " << II.Mnemonic << " */, "; 2887 2888 OS << OMI.CI->Name; 2889 2890 OS << ", " << OMI.OperandMask; 2891 OS << " /* "; 2892 bool printComma = false; 2893 for (int i = 0, e = 31; i !=e; ++i) 2894 if (OMI.OperandMask & (1 << i)) { 2895 if (printComma) 2896 OS << ", "; 2897 OS << i; 2898 printComma = true; 2899 } 2900 OS << " */"; 2901 2902 OS << " },\n"; 2903 } 2904 OS << "};\n\n"; 2905 2906 // Emit the operand class switch to call the correct custom parser for 2907 // the found operand class. 2908 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2909 << "tryCustomParseOperand(OperandVector" 2910 << " &Operands,\n unsigned MCK) {\n\n" 2911 << " switch(MCK) {\n"; 2912 2913 for (const auto &CI : Info.Classes) { 2914 if (CI.ParserMethod.empty()) 2915 continue; 2916 OS << " case " << CI.Name << ":\n" 2917 << " return " << CI.ParserMethod << "(Operands);\n"; 2918 } 2919 2920 OS << " default:\n"; 2921 OS << " return MatchOperand_NoMatch;\n"; 2922 OS << " }\n"; 2923 OS << " return MatchOperand_NoMatch;\n"; 2924 OS << "}\n\n"; 2925 2926 // Emit the static custom operand parser. This code is very similar with 2927 // the other matcher. Also use MatchResultTy here just in case we go for 2928 // a better error handling. 2929 OS << "OperandMatchResultTy " << Target.getName() << ClassName << "::\n" 2930 << "MatchOperandParserImpl(OperandVector" 2931 << " &Operands,\n StringRef Mnemonic,\n" 2932 << " bool ParseForAllFeatures) {\n"; 2933 2934 // Emit code to get the available features. 2935 OS << " // Get the current feature set.\n"; 2936 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 2937 2938 OS << " // Get the next operand index.\n"; 2939 OS << " unsigned NextOpNum = Operands.size()" 2940 << (HasMnemonicFirst ? " - 1" : "") << ";\n"; 2941 2942 // Emit code to search the table. 2943 OS << " // Search the table.\n"; 2944 if (HasMnemonicFirst) { 2945 OS << " auto MnemonicRange =\n"; 2946 OS << " std::equal_range(std::begin(OperandMatchTable), " 2947 "std::end(OperandMatchTable),\n"; 2948 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2949 } else { 2950 OS << " auto MnemonicRange = std::make_pair(std::begin(OperandMatchTable)," 2951 " std::end(OperandMatchTable));\n"; 2952 OS << " if (!Mnemonic.empty())\n"; 2953 OS << " MnemonicRange =\n"; 2954 OS << " std::equal_range(std::begin(OperandMatchTable), " 2955 "std::end(OperandMatchTable),\n"; 2956 OS << " Mnemonic, LessOpcodeOperand());\n\n"; 2957 } 2958 2959 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 2960 OS << " return MatchOperand_NoMatch;\n\n"; 2961 2962 OS << " for (const OperandMatchEntry *it = MnemonicRange.first,\n" 2963 << " *ie = MnemonicRange.second; it != ie; ++it) {\n"; 2964 2965 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 2966 OS << " assert(Mnemonic == it->getMnemonic());\n\n"; 2967 2968 // Emit check that the required features are available. 2969 OS << " // check if the available features match\n"; 2970 OS << " if (!ParseForAllFeatures && (AvailableFeatures & " 2971 "it->RequiredFeatures) != it->RequiredFeatures)\n"; 2972 OS << " continue;\n\n"; 2973 2974 // Emit check to ensure the operand number matches. 2975 OS << " // check if the operand in question has a custom parser.\n"; 2976 OS << " if (!(it->OperandMask & (1 << NextOpNum)))\n"; 2977 OS << " continue;\n\n"; 2978 2979 // Emit call to the custom parser method 2980 OS << " // call custom parse method to handle the operand\n"; 2981 OS << " OperandMatchResultTy Result = "; 2982 OS << "tryCustomParseOperand(Operands, it->Class);\n"; 2983 OS << " if (Result != MatchOperand_NoMatch)\n"; 2984 OS << " return Result;\n"; 2985 OS << " }\n\n"; 2986 2987 OS << " // Okay, we had no match.\n"; 2988 OS << " return MatchOperand_NoMatch;\n"; 2989 OS << "}\n\n"; 2990 } 2991 2992 static void emitAsmTiedOperandConstraints(CodeGenTarget &Target, 2993 AsmMatcherInfo &Info, 2994 raw_ostream &OS) { 2995 std::string AsmParserName = 2996 Info.AsmParser->getValueAsString("AsmParserClassName"); 2997 OS << "static bool "; 2998 OS << "checkAsmTiedOperandConstraints(const " << Target.getName() 2999 << AsmParserName << "&AsmParser,\n"; 3000 OS << " unsigned Kind,\n"; 3001 OS << " const OperandVector &Operands,\n"; 3002 OS << " uint64_t &ErrorInfo) {\n"; 3003 OS << " assert(Kind < CVT_NUM_SIGNATURES && \"Invalid signature!\");\n"; 3004 OS << " const uint8_t *Converter = ConversionTable[Kind];\n"; 3005 OS << " for (const uint8_t *p = Converter; *p; p+= 2) {\n"; 3006 OS << " switch (*p) {\n"; 3007 OS << " case CVT_Tied: {\n"; 3008 OS << " unsigned OpIdx = *(p+1);\n"; 3009 OS << " assert(OpIdx < (size_t)(std::end(TiedAsmOperandTable) -\n"; 3010 OS << " std::begin(TiedAsmOperandTable)) &&\n"; 3011 OS << " \"Tied operand not found\");\n"; 3012 OS << " unsigned OpndNum1 = TiedAsmOperandTable[OpIdx][1];\n"; 3013 OS << " unsigned OpndNum2 = TiedAsmOperandTable[OpIdx][2];\n"; 3014 OS << " if (OpndNum1 != OpndNum2) {\n"; 3015 OS << " auto &SrcOp1 = Operands[OpndNum1];\n"; 3016 OS << " auto &SrcOp2 = Operands[OpndNum2];\n"; 3017 OS << " if (SrcOp1->isReg() && SrcOp2->isReg()) {\n"; 3018 OS << " if (!AsmParser.regsEqual(*SrcOp1, *SrcOp2)) {\n"; 3019 OS << " ErrorInfo = OpndNum2;\n"; 3020 OS << " return false;\n"; 3021 OS << " }\n"; 3022 OS << " }\n"; 3023 OS << " }\n"; 3024 OS << " break;\n"; 3025 OS << " }\n"; 3026 OS << " default:\n"; 3027 OS << " break;\n"; 3028 OS << " }\n"; 3029 OS << " }\n"; 3030 OS << " return true;\n"; 3031 OS << "}\n\n"; 3032 } 3033 3034 static void emitMnemonicSpellChecker(raw_ostream &OS, CodeGenTarget &Target, 3035 unsigned VariantCount) { 3036 OS << "static std::string " << Target.getName() 3037 << "MnemonicSpellCheck(StringRef S, uint64_t FBS, unsigned VariantID) {\n"; 3038 if (!VariantCount) 3039 OS << " return \"\";"; 3040 else { 3041 OS << " const unsigned MaxEditDist = 2;\n"; 3042 OS << " std::vector<StringRef> Candidates;\n"; 3043 OS << " StringRef Prev = \"\";\n\n"; 3044 3045 OS << " // Find the appropriate table for this asm variant.\n"; 3046 OS << " const MatchEntry *Start, *End;\n"; 3047 OS << " switch (VariantID) {\n"; 3048 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3049 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3050 Record *AsmVariant = Target.getAsmParserVariant(VC); 3051 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3052 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3053 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3054 } 3055 OS << " }\n\n"; 3056 OS << " for (auto I = Start; I < End; I++) {\n"; 3057 OS << " // Ignore unsupported instructions.\n"; 3058 OS << " if ((FBS & I->RequiredFeatures) != I->RequiredFeatures)\n"; 3059 OS << " continue;\n"; 3060 OS << "\n"; 3061 OS << " StringRef T = I->getMnemonic();\n"; 3062 OS << " // Avoid recomputing the edit distance for the same string.\n"; 3063 OS << " if (T.equals(Prev))\n"; 3064 OS << " continue;\n"; 3065 OS << "\n"; 3066 OS << " Prev = T;\n"; 3067 OS << " unsigned Dist = S.edit_distance(T, false, MaxEditDist);\n"; 3068 OS << " if (Dist <= MaxEditDist)\n"; 3069 OS << " Candidates.push_back(T);\n"; 3070 OS << " }\n"; 3071 OS << "\n"; 3072 OS << " if (Candidates.empty())\n"; 3073 OS << " return \"\";\n"; 3074 OS << "\n"; 3075 OS << " std::string Res = \", did you mean: \";\n"; 3076 OS << " unsigned i = 0;\n"; 3077 OS << " for( ; i < Candidates.size() - 1; i++)\n"; 3078 OS << " Res += Candidates[i].str() + \", \";\n"; 3079 OS << " return Res + Candidates[i].str() + \"?\";\n"; 3080 } 3081 OS << "}\n"; 3082 OS << "\n"; 3083 } 3084 3085 3086 // Emit a function mapping match classes to strings, for debugging. 3087 static void emitMatchClassKindNames(std::forward_list<ClassInfo> &Infos, 3088 raw_ostream &OS) { 3089 OS << "#ifndef NDEBUG\n"; 3090 OS << "const char *getMatchClassName(MatchClassKind Kind) {\n"; 3091 OS << " switch (Kind) {\n"; 3092 3093 OS << " case InvalidMatchClass: return \"InvalidMatchClass\";\n"; 3094 OS << " case OptionalMatchClass: return \"OptionalMatchClass\";\n"; 3095 for (const auto &CI : Infos) { 3096 OS << " case " << CI.Name << ": return \"" << CI.Name << "\";\n"; 3097 } 3098 OS << " case NumMatchClassKinds: return \"NumMatchClassKinds\";\n"; 3099 3100 OS << " }\n"; 3101 OS << " llvm_unreachable(\"unhandled MatchClassKind!\");\n"; 3102 OS << "}\n\n"; 3103 OS << "#endif // NDEBUG\n"; 3104 } 3105 3106 void AsmMatcherEmitter::run(raw_ostream &OS) { 3107 CodeGenTarget Target(Records); 3108 Record *AsmParser = Target.getAsmParser(); 3109 StringRef ClassName = AsmParser->getValueAsString("AsmParserClassName"); 3110 3111 // Compute the information on the instructions to match. 3112 AsmMatcherInfo Info(AsmParser, Target, Records); 3113 Info.buildInfo(); 3114 3115 // Sort the instruction table using the partial order on classes. We use 3116 // stable_sort to ensure that ambiguous instructions are still 3117 // deterministically ordered. 3118 std::stable_sort(Info.Matchables.begin(), Info.Matchables.end(), 3119 [](const std::unique_ptr<MatchableInfo> &a, 3120 const std::unique_ptr<MatchableInfo> &b){ 3121 return *a < *b;}); 3122 3123 #ifdef EXPENSIVE_CHECKS 3124 // Verify that the table is sorted and operator < works transitively. 3125 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3126 ++I) { 3127 for (auto J = I; J != E; ++J) { 3128 assert(!(**J < **I)); 3129 } 3130 } 3131 #endif 3132 3133 DEBUG_WITH_TYPE("instruction_info", { 3134 for (const auto &MI : Info.Matchables) 3135 MI->dump(); 3136 }); 3137 3138 // Check for ambiguous matchables. 3139 DEBUG_WITH_TYPE("ambiguous_instrs", { 3140 unsigned NumAmbiguous = 0; 3141 for (auto I = Info.Matchables.begin(), E = Info.Matchables.end(); I != E; 3142 ++I) { 3143 for (auto J = std::next(I); J != E; ++J) { 3144 const MatchableInfo &A = **I; 3145 const MatchableInfo &B = **J; 3146 3147 if (A.couldMatchAmbiguouslyWith(B)) { 3148 errs() << "warning: ambiguous matchables:\n"; 3149 A.dump(); 3150 errs() << "\nis incomparable with:\n"; 3151 B.dump(); 3152 errs() << "\n\n"; 3153 ++NumAmbiguous; 3154 } 3155 } 3156 } 3157 if (NumAmbiguous) 3158 errs() << "warning: " << NumAmbiguous 3159 << " ambiguous matchables!\n"; 3160 }); 3161 3162 // Compute the information on the custom operand parsing. 3163 Info.buildOperandMatchInfo(); 3164 3165 bool HasMnemonicFirst = AsmParser->getValueAsBit("HasMnemonicFirst"); 3166 bool HasOptionalOperands = Info.hasOptionalOperands(); 3167 bool ReportMultipleNearMisses = 3168 AsmParser->getValueAsBit("ReportMultipleNearMisses"); 3169 3170 // Write the output. 3171 3172 // Information for the class declaration. 3173 OS << "\n#ifdef GET_ASSEMBLER_HEADER\n"; 3174 OS << "#undef GET_ASSEMBLER_HEADER\n"; 3175 OS << " // This should be included into the middle of the declaration of\n"; 3176 OS << " // your subclasses implementation of MCTargetAsmParser.\n"; 3177 OS << " uint64_t ComputeAvailableFeatures(const FeatureBitset& FB) const;\n"; 3178 if (HasOptionalOperands) { 3179 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3180 << "unsigned Opcode,\n" 3181 << " const OperandVector &Operands,\n" 3182 << " const SmallBitVector &OptionalOperandsMask);\n"; 3183 } else { 3184 OS << " void convertToMCInst(unsigned Kind, MCInst &Inst, " 3185 << "unsigned Opcode,\n" 3186 << " const OperandVector &Operands);\n"; 3187 } 3188 OS << " void convertToMapAndConstraints(unsigned Kind,\n "; 3189 OS << " const OperandVector &Operands) override;\n"; 3190 OS << " unsigned MatchInstructionImpl(const OperandVector &Operands,\n" 3191 << " MCInst &Inst,\n"; 3192 if (ReportMultipleNearMisses) 3193 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3194 else 3195 OS << " uint64_t &ErrorInfo,\n"; 3196 OS << " bool matchingInlineAsm,\n" 3197 << " unsigned VariantID = 0);\n"; 3198 3199 if (!Info.OperandMatchInfo.empty()) { 3200 OS << " OperandMatchResultTy MatchOperandParserImpl(\n"; 3201 OS << " OperandVector &Operands,\n"; 3202 OS << " StringRef Mnemonic,\n"; 3203 OS << " bool ParseForAllFeatures = false);\n"; 3204 3205 OS << " OperandMatchResultTy tryCustomParseOperand(\n"; 3206 OS << " OperandVector &Operands,\n"; 3207 OS << " unsigned MCK);\n\n"; 3208 } 3209 3210 OS << "#endif // GET_ASSEMBLER_HEADER_INFO\n\n"; 3211 3212 // Emit the operand match diagnostic enum names. 3213 OS << "\n#ifdef GET_OPERAND_DIAGNOSTIC_TYPES\n"; 3214 OS << "#undef GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3215 emitOperandDiagnosticTypes(Info, OS); 3216 OS << "#endif // GET_OPERAND_DIAGNOSTIC_TYPES\n\n"; 3217 3218 OS << "\n#ifdef GET_REGISTER_MATCHER\n"; 3219 OS << "#undef GET_REGISTER_MATCHER\n\n"; 3220 3221 // Emit the subtarget feature enumeration. 3222 SubtargetFeatureInfo::emitSubtargetFeatureFlagEnumeration( 3223 Info.SubtargetFeatures, OS); 3224 3225 // Emit the function to match a register name to number. 3226 // This should be omitted for Mips target 3227 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterName")) 3228 emitMatchRegisterName(Target, AsmParser, OS); 3229 3230 if (AsmParser->getValueAsBit("ShouldEmitMatchRegisterAltName")) 3231 emitMatchRegisterAltName(Target, AsmParser, OS); 3232 3233 OS << "#endif // GET_REGISTER_MATCHER\n\n"; 3234 3235 OS << "\n#ifdef GET_SUBTARGET_FEATURE_NAME\n"; 3236 OS << "#undef GET_SUBTARGET_FEATURE_NAME\n\n"; 3237 3238 // Generate the helper function to get the names for subtarget features. 3239 emitGetSubtargetFeatureName(Info, OS); 3240 3241 OS << "#endif // GET_SUBTARGET_FEATURE_NAME\n\n"; 3242 3243 OS << "\n#ifdef GET_MATCHER_IMPLEMENTATION\n"; 3244 OS << "#undef GET_MATCHER_IMPLEMENTATION\n\n"; 3245 3246 // Generate the function that remaps for mnemonic aliases. 3247 bool HasMnemonicAliases = emitMnemonicAliases(OS, Info, Target); 3248 3249 // Generate the convertToMCInst function to convert operands into an MCInst. 3250 // Also, generate the convertToMapAndConstraints function for MS-style inline 3251 // assembly. The latter doesn't actually generate a MCInst. 3252 emitConvertFuncs(Target, ClassName, Info.Matchables, HasMnemonicFirst, 3253 HasOptionalOperands, OS); 3254 3255 // Emit the enumeration for classes which participate in matching. 3256 emitMatchClassEnumeration(Target, Info.Classes, OS); 3257 3258 // Emit a function to get the user-visible string to describe an operand 3259 // match failure in diagnostics. 3260 emitOperandMatchErrorDiagStrings(Info, OS); 3261 3262 // Emit a function to map register classes to operand match failure codes. 3263 emitRegisterMatchErrorFunc(Info, OS); 3264 3265 // Emit the routine to match token strings to their match class. 3266 emitMatchTokenString(Target, Info.Classes, OS); 3267 3268 // Emit the subclass predicate routine. 3269 emitIsSubclass(Target, Info.Classes, OS); 3270 3271 // Emit the routine to validate an operand against a match class. 3272 emitValidateOperandClass(Info, OS); 3273 3274 emitMatchClassKindNames(Info.Classes, OS); 3275 3276 // Emit the available features compute function. 3277 SubtargetFeatureInfo::emitComputeAssemblerAvailableFeatures( 3278 Info.Target.getName(), ClassName, "ComputeAvailableFeatures", 3279 Info.SubtargetFeatures, OS); 3280 3281 if (!ReportMultipleNearMisses) 3282 emitAsmTiedOperandConstraints(Target, Info, OS); 3283 3284 StringToOffsetTable StringTable; 3285 3286 size_t MaxNumOperands = 0; 3287 unsigned MaxMnemonicIndex = 0; 3288 bool HasDeprecation = false; 3289 for (const auto &MI : Info.Matchables) { 3290 MaxNumOperands = std::max(MaxNumOperands, MI->AsmOperands.size()); 3291 HasDeprecation |= MI->HasDeprecation; 3292 3293 // Store a pascal-style length byte in the mnemonic. 3294 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3295 MaxMnemonicIndex = std::max(MaxMnemonicIndex, 3296 StringTable.GetOrAddStringOffset(LenMnemonic, false)); 3297 } 3298 3299 OS << "static const char *const MnemonicTable =\n"; 3300 StringTable.EmitString(OS); 3301 OS << ";\n\n"; 3302 3303 // Emit the static match table; unused classes get initialized to 0 which is 3304 // guaranteed to be InvalidMatchClass. 3305 // 3306 // FIXME: We can reduce the size of this table very easily. First, we change 3307 // it so that store the kinds in separate bit-fields for each index, which 3308 // only needs to be the max width used for classes at that index (we also need 3309 // to reject based on this during classification). If we then make sure to 3310 // order the match kinds appropriately (putting mnemonics last), then we 3311 // should only end up using a few bits for each class, especially the ones 3312 // following the mnemonic. 3313 OS << "namespace {\n"; 3314 OS << " struct MatchEntry {\n"; 3315 OS << " " << getMinimalTypeForRange(MaxMnemonicIndex) 3316 << " Mnemonic;\n"; 3317 OS << " uint16_t Opcode;\n"; 3318 OS << " " << getMinimalTypeForRange(Info.Matchables.size()) 3319 << " ConvertFn;\n"; 3320 OS << " " << getMinimalTypeForEnumBitfield(Info.SubtargetFeatures.size()) 3321 << " RequiredFeatures;\n"; 3322 OS << " " << getMinimalTypeForRange( 3323 std::distance(Info.Classes.begin(), Info.Classes.end())) 3324 << " Classes[" << MaxNumOperands << "];\n"; 3325 OS << " StringRef getMnemonic() const {\n"; 3326 OS << " return StringRef(MnemonicTable + Mnemonic + 1,\n"; 3327 OS << " MnemonicTable[Mnemonic]);\n"; 3328 OS << " }\n"; 3329 OS << " };\n\n"; 3330 3331 OS << " // Predicate for searching for an opcode.\n"; 3332 OS << " struct LessOpcode {\n"; 3333 OS << " bool operator()(const MatchEntry &LHS, StringRef RHS) {\n"; 3334 OS << " return LHS.getMnemonic() < RHS;\n"; 3335 OS << " }\n"; 3336 OS << " bool operator()(StringRef LHS, const MatchEntry &RHS) {\n"; 3337 OS << " return LHS < RHS.getMnemonic();\n"; 3338 OS << " }\n"; 3339 OS << " bool operator()(const MatchEntry &LHS, const MatchEntry &RHS) {\n"; 3340 OS << " return LHS.getMnemonic() < RHS.getMnemonic();\n"; 3341 OS << " }\n"; 3342 OS << " };\n"; 3343 3344 OS << "} // end anonymous namespace.\n\n"; 3345 3346 unsigned VariantCount = Target.getAsmParserVariantCount(); 3347 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3348 Record *AsmVariant = Target.getAsmParserVariant(VC); 3349 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3350 3351 OS << "static const MatchEntry MatchTable" << VC << "[] = {\n"; 3352 3353 for (const auto &MI : Info.Matchables) { 3354 if (MI->AsmVariantID != AsmVariantNo) 3355 continue; 3356 3357 // Store a pascal-style length byte in the mnemonic. 3358 std::string LenMnemonic = char(MI->Mnemonic.size()) + MI->Mnemonic.str(); 3359 OS << " { " << StringTable.GetOrAddStringOffset(LenMnemonic, false) 3360 << " /* " << MI->Mnemonic << " */, " 3361 << Target.getInstNamespace() << "::" 3362 << MI->getResultInst()->TheDef->getName() << ", " 3363 << MI->ConversionFnKind << ", "; 3364 3365 // Write the required features mask. 3366 if (!MI->RequiredFeatures.empty()) { 3367 for (unsigned i = 0, e = MI->RequiredFeatures.size(); i != e; ++i) { 3368 if (i) OS << "|"; 3369 OS << MI->RequiredFeatures[i]->getEnumName(); 3370 } 3371 } else 3372 OS << "0"; 3373 3374 OS << ", { "; 3375 for (unsigned i = 0, e = MI->AsmOperands.size(); i != e; ++i) { 3376 const MatchableInfo::AsmOperand &Op = MI->AsmOperands[i]; 3377 3378 if (i) OS << ", "; 3379 OS << Op.Class->Name; 3380 } 3381 OS << " }, },\n"; 3382 } 3383 3384 OS << "};\n\n"; 3385 } 3386 3387 OS << "#include \"llvm/Support/Debug.h\"\n"; 3388 OS << "#include \"llvm/Support/Format.h\"\n\n"; 3389 3390 // Finally, build the match function. 3391 OS << "unsigned " << Target.getName() << ClassName << "::\n" 3392 << "MatchInstructionImpl(const OperandVector &Operands,\n"; 3393 OS << " MCInst &Inst,\n"; 3394 if (ReportMultipleNearMisses) 3395 OS << " SmallVectorImpl<NearMissInfo> *NearMisses,\n"; 3396 else 3397 OS << " uint64_t &ErrorInfo,\n"; 3398 OS << " bool matchingInlineAsm, unsigned VariantID) {\n"; 3399 3400 if (!ReportMultipleNearMisses) { 3401 OS << " // Eliminate obvious mismatches.\n"; 3402 OS << " if (Operands.size() > " 3403 << (MaxNumOperands + HasMnemonicFirst) << ") {\n"; 3404 OS << " ErrorInfo = " 3405 << (MaxNumOperands + HasMnemonicFirst) << ";\n"; 3406 OS << " return Match_InvalidOperand;\n"; 3407 OS << " }\n\n"; 3408 } 3409 3410 // Emit code to get the available features. 3411 OS << " // Get the current feature set.\n"; 3412 OS << " uint64_t AvailableFeatures = getAvailableFeatures();\n\n"; 3413 3414 OS << " // Get the instruction mnemonic, which is the first token.\n"; 3415 if (HasMnemonicFirst) { 3416 OS << " StringRef Mnemonic = ((" << Target.getName() 3417 << "Operand&)*Operands[0]).getToken();\n\n"; 3418 } else { 3419 OS << " StringRef Mnemonic;\n"; 3420 OS << " if (Operands[0]->isToken())\n"; 3421 OS << " Mnemonic = ((" << Target.getName() 3422 << "Operand&)*Operands[0]).getToken();\n\n"; 3423 } 3424 3425 if (HasMnemonicAliases) { 3426 OS << " // Process all MnemonicAliases to remap the mnemonic.\n"; 3427 OS << " applyMnemonicAliases(Mnemonic, AvailableFeatures, VariantID);\n\n"; 3428 } 3429 3430 // Emit code to compute the class list for this operand vector. 3431 if (!ReportMultipleNearMisses) { 3432 OS << " // Some state to try to produce better error messages.\n"; 3433 OS << " bool HadMatchOtherThanFeatures = false;\n"; 3434 OS << " bool HadMatchOtherThanPredicate = false;\n"; 3435 OS << " unsigned RetCode = Match_InvalidOperand;\n"; 3436 OS << " uint64_t MissingFeatures = ~0ULL;\n"; 3437 OS << " // Set ErrorInfo to the operand that mismatches if it is\n"; 3438 OS << " // wrong for all instances of the instruction.\n"; 3439 OS << " ErrorInfo = ~0ULL;\n"; 3440 } 3441 3442 if (HasOptionalOperands) { 3443 OS << " SmallBitVector OptionalOperandsMask(" << MaxNumOperands << ");\n"; 3444 } 3445 3446 // Emit code to search the table. 3447 OS << " // Find the appropriate table for this asm variant.\n"; 3448 OS << " const MatchEntry *Start, *End;\n"; 3449 OS << " switch (VariantID) {\n"; 3450 OS << " default: llvm_unreachable(\"invalid variant!\");\n"; 3451 for (unsigned VC = 0; VC != VariantCount; ++VC) { 3452 Record *AsmVariant = Target.getAsmParserVariant(VC); 3453 int AsmVariantNo = AsmVariant->getValueAsInt("Variant"); 3454 OS << " case " << AsmVariantNo << ": Start = std::begin(MatchTable" << VC 3455 << "); End = std::end(MatchTable" << VC << "); break;\n"; 3456 } 3457 OS << " }\n"; 3458 3459 OS << " // Search the table.\n"; 3460 if (HasMnemonicFirst) { 3461 OS << " auto MnemonicRange = " 3462 "std::equal_range(Start, End, Mnemonic, LessOpcode());\n\n"; 3463 } else { 3464 OS << " auto MnemonicRange = std::make_pair(Start, End);\n"; 3465 OS << " unsigned SIndex = Mnemonic.empty() ? 0 : 1;\n"; 3466 OS << " if (!Mnemonic.empty())\n"; 3467 OS << " MnemonicRange = " 3468 "std::equal_range(Start, End, Mnemonic.lower(), LessOpcode());\n\n"; 3469 } 3470 3471 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"AsmMatcher: found \" <<\n" 3472 << " std::distance(MnemonicRange.first, MnemonicRange.second) << \n" 3473 << " \" encodings with mnemonic '\" << Mnemonic << \"'\\n\");\n\n"; 3474 3475 OS << " // Return a more specific error code if no mnemonics match.\n"; 3476 OS << " if (MnemonicRange.first == MnemonicRange.second)\n"; 3477 OS << " return Match_MnemonicFail;\n\n"; 3478 3479 OS << " for (const MatchEntry *it = MnemonicRange.first, " 3480 << "*ie = MnemonicRange.second;\n"; 3481 OS << " it != ie; ++it) {\n"; 3482 OS << " bool HasRequiredFeatures =\n"; 3483 OS << " (AvailableFeatures & it->RequiredFeatures) == " 3484 "it->RequiredFeatures;\n"; 3485 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Trying to match opcode \"\n"; 3486 OS << " << MII.getName(it->Opcode) << \"\\n\");\n"; 3487 3488 if (ReportMultipleNearMisses) { 3489 OS << " // Some state to record ways in which this instruction did not match.\n"; 3490 OS << " NearMissInfo OperandNearMiss = NearMissInfo::getSuccess();\n"; 3491 OS << " NearMissInfo FeaturesNearMiss = NearMissInfo::getSuccess();\n"; 3492 OS << " NearMissInfo EarlyPredicateNearMiss = NearMissInfo::getSuccess();\n"; 3493 OS << " NearMissInfo LatePredicateNearMiss = NearMissInfo::getSuccess();\n"; 3494 OS << " bool MultipleInvalidOperands = false;\n"; 3495 } 3496 3497 if (HasMnemonicFirst) { 3498 OS << " // equal_range guarantees that instruction mnemonic matches.\n"; 3499 OS << " assert(Mnemonic == it->getMnemonic());\n"; 3500 } 3501 3502 // Emit check that the subclasses match. 3503 if (!ReportMultipleNearMisses) 3504 OS << " bool OperandsValid = true;\n"; 3505 if (HasOptionalOperands) { 3506 OS << " OptionalOperandsMask.reset(0, " << MaxNumOperands << ");\n"; 3507 } 3508 OS << " for (unsigned FormalIdx = " << (HasMnemonicFirst ? "0" : "SIndex") 3509 << ", ActualIdx = " << (HasMnemonicFirst ? "1" : "SIndex") 3510 << "; FormalIdx != " << MaxNumOperands << "; ++FormalIdx) {\n"; 3511 OS << " auto Formal = " 3512 << "static_cast<MatchClassKind>(it->Classes[FormalIdx]);\n"; 3513 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3514 OS << " dbgs() << \" Matching formal operand class \" << getMatchClassName(Formal)\n"; 3515 OS << " << \" against actual operand at index \" << ActualIdx);\n"; 3516 OS << " if (ActualIdx < Operands.size())\n"; 3517 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \" (\";\n"; 3518 OS << " Operands[ActualIdx]->print(dbgs()); dbgs() << \"): \");\n"; 3519 OS << " else\n"; 3520 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \": \");\n"; 3521 OS << " if (ActualIdx >= Operands.size()) {\n"; 3522 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"actual operand index out of range \");\n"; 3523 if (ReportMultipleNearMisses) { 3524 OS << " bool ThisOperandValid = (Formal == " <<"InvalidMatchClass) || " 3525 "isSubclass(Formal, OptionalMatchClass);\n"; 3526 OS << " if (!ThisOperandValid) {\n"; 3527 OS << " if (!OperandNearMiss) {\n"; 3528 OS << " // Record info about match failure for later use.\n"; 3529 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"recording too-few-operands near miss\\n\");\n"; 3530 OS << " OperandNearMiss =\n"; 3531 OS << " NearMissInfo::getTooFewOperands(Formal, it->Opcode);\n"; 3532 OS << " } else if (OperandNearMiss.getKind() != NearMissInfo::NearMissTooFewOperands) {\n"; 3533 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3534 OS << " DEBUG_WITH_TYPE(\n"; 3535 OS << " \"asm-matcher\",\n"; 3536 OS << " dbgs() << \"second invalid operand, giving up on this opcode\\n\");\n"; 3537 OS << " MultipleInvalidOperands = true;\n"; 3538 OS << " break;\n"; 3539 OS << " }\n"; 3540 OS << " } else {\n"; 3541 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"but formal operand not required\\n\");\n"; 3542 OS << " break;\n"; 3543 OS << " }\n"; 3544 OS << " continue;\n"; 3545 } else { 3546 OS << " OperandsValid = (Formal == InvalidMatchClass) || isSubclass(Formal, OptionalMatchClass);\n"; 3547 OS << " if (!OperandsValid) ErrorInfo = ActualIdx;\n"; 3548 if (HasOptionalOperands) { 3549 OS << " OptionalOperandsMask.set(FormalIdx, " << MaxNumOperands 3550 << ");\n"; 3551 } 3552 OS << " break;\n"; 3553 } 3554 OS << " }\n"; 3555 OS << " MCParsedAsmOperand &Actual = *Operands[ActualIdx];\n"; 3556 OS << " unsigned Diag = validateOperandClass(Actual, Formal);\n"; 3557 OS << " if (Diag == Match_Success) {\n"; 3558 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3559 OS << " dbgs() << \"match success using generic matcher\\n\");\n"; 3560 OS << " ++ActualIdx;\n"; 3561 OS << " continue;\n"; 3562 OS << " }\n"; 3563 OS << " // If the generic handler indicates an invalid operand\n"; 3564 OS << " // failure, check for a special case.\n"; 3565 OS << " if (Diag != Match_Success) {\n"; 3566 OS << " unsigned TargetDiag = validateTargetOperandClass(Actual, Formal);\n"; 3567 OS << " if (TargetDiag == Match_Success) {\n"; 3568 OS << " DEBUG_WITH_TYPE(\"asm-matcher\",\n"; 3569 OS << " dbgs() << \"match success using target matcher\\n\");\n"; 3570 OS << " ++ActualIdx;\n"; 3571 OS << " continue;\n"; 3572 OS << " }\n"; 3573 OS << " // If the target matcher returned a specific error code use\n"; 3574 OS << " // that, else use the one from the generic matcher.\n"; 3575 OS << " if (TargetDiag != Match_InvalidOperand && " 3576 "HasRequiredFeatures)\n"; 3577 OS << " Diag = TargetDiag;\n"; 3578 OS << " }\n"; 3579 OS << " // If current formal operand wasn't matched and it is optional\n" 3580 << " // then try to match next formal operand\n"; 3581 OS << " if (Diag == Match_InvalidOperand " 3582 << "&& isSubclass(Formal, OptionalMatchClass)) {\n"; 3583 if (HasOptionalOperands) { 3584 OS << " OptionalOperandsMask.set(FormalIdx);\n"; 3585 } 3586 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"ignoring optional operand\\n\");\n"; 3587 OS << " continue;\n"; 3588 OS << " }\n"; 3589 3590 if (ReportMultipleNearMisses) { 3591 OS << " if (!OperandNearMiss) {\n"; 3592 OS << " // If this is the first invalid operand we have seen, record some\n"; 3593 OS << " // information about it.\n"; 3594 OS << " DEBUG_WITH_TYPE(\n"; 3595 OS << " \"asm-matcher\",\n"; 3596 OS << " dbgs()\n"; 3597 OS << " << \"operand match failed, recording near-miss with diag code \"\n"; 3598 OS << " << Diag << \"\\n\");\n"; 3599 OS << " OperandNearMiss =\n"; 3600 OS << " NearMissInfo::getMissedOperand(Diag, Formal, it->Opcode, ActualIdx);\n"; 3601 OS << " ++ActualIdx;\n"; 3602 OS << " } else {\n"; 3603 OS << " // If more than one operand is invalid, give up on this match entry.\n"; 3604 OS << " DEBUG_WITH_TYPE(\n"; 3605 OS << " \"asm-matcher\",\n"; 3606 OS << " dbgs() << \"second operand mismatch, skipping this opcode\\n\");\n"; 3607 OS << " MultipleInvalidOperands = true;\n"; 3608 OS << " break;\n"; 3609 OS << " }\n"; 3610 OS << " }\n\n"; 3611 } else { 3612 OS << " // If this operand is broken for all of the instances of this\n"; 3613 OS << " // mnemonic, keep track of it so we can report loc info.\n"; 3614 OS << " // If we already had a match that only failed due to a\n"; 3615 OS << " // target predicate, that diagnostic is preferred.\n"; 3616 OS << " if (!HadMatchOtherThanPredicate &&\n"; 3617 OS << " (it == MnemonicRange.first || ErrorInfo <= ActualIdx)) {\n"; 3618 OS << " if (HasRequiredFeatures && (ErrorInfo != ActualIdx || Diag " 3619 "!= Match_InvalidOperand))\n"; 3620 OS << " RetCode = Diag;\n"; 3621 OS << " ErrorInfo = ActualIdx;\n"; 3622 OS << " }\n"; 3623 OS << " // Otherwise, just reject this instance of the mnemonic.\n"; 3624 OS << " OperandsValid = false;\n"; 3625 OS << " break;\n"; 3626 OS << " }\n\n"; 3627 } 3628 3629 if (ReportMultipleNearMisses) 3630 OS << " if (MultipleInvalidOperands) {\n"; 3631 else 3632 OS << " if (!OperandsValid) {\n"; 3633 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3634 OS << " \"operand mismatches, ignoring \"\n"; 3635 OS << " \"this opcode\\n\");\n"; 3636 OS << " continue;\n"; 3637 OS << " }\n"; 3638 3639 // Emit check that the required features are available. 3640 OS << " if (!HasRequiredFeatures) {\n"; 3641 if (!ReportMultipleNearMisses) 3642 OS << " HadMatchOtherThanFeatures = true;\n"; 3643 OS << " uint64_t NewMissingFeatures = it->RequiredFeatures & " 3644 "~AvailableFeatures;\n"; 3645 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Missing target features: \"\n"; 3646 OS << " << format_hex(NewMissingFeatures, 18)\n"; 3647 OS << " << \"\\n\");\n"; 3648 if (ReportMultipleNearMisses) { 3649 OS << " FeaturesNearMiss = NearMissInfo::getMissedFeature(NewMissingFeatures);\n"; 3650 } else { 3651 OS << " if (countPopulation(NewMissingFeatures) <=\n" 3652 " countPopulation(MissingFeatures))\n"; 3653 OS << " MissingFeatures = NewMissingFeatures;\n"; 3654 OS << " continue;\n"; 3655 } 3656 OS << " }\n"; 3657 OS << "\n"; 3658 OS << " Inst.clear();\n\n"; 3659 OS << " Inst.setOpcode(it->Opcode);\n"; 3660 // Verify the instruction with the target-specific match predicate function. 3661 OS << " // We have a potential match but have not rendered the operands.\n" 3662 << " // Check the target predicate to handle any context sensitive\n" 3663 " // constraints.\n" 3664 << " // For example, Ties that are referenced multiple times must be\n" 3665 " // checked here to ensure the input is the same for each match\n" 3666 " // constraints. If we leave it any later the ties will have been\n" 3667 " // canonicalized\n" 3668 << " unsigned MatchResult;\n" 3669 << " if ((MatchResult = checkEarlyTargetMatchPredicate(Inst, " 3670 "Operands)) != Match_Success) {\n" 3671 << " Inst.clear();\n"; 3672 OS << " DEBUG_WITH_TYPE(\n"; 3673 OS << " \"asm-matcher\",\n"; 3674 OS << " dbgs() << \"Early target match predicate failed with diag code \"\n"; 3675 OS << " << MatchResult << \"\\n\");\n"; 3676 if (ReportMultipleNearMisses) { 3677 OS << " EarlyPredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3678 } else { 3679 OS << " RetCode = MatchResult;\n" 3680 << " HadMatchOtherThanPredicate = true;\n" 3681 << " continue;\n"; 3682 } 3683 OS << " }\n\n"; 3684 3685 if (ReportMultipleNearMisses) { 3686 OS << " // If we did not successfully match the operands, then we can't convert to\n"; 3687 OS << " // an MCInst, so bail out on this instruction variant now.\n"; 3688 OS << " if (OperandNearMiss) {\n"; 3689 OS << " // If the operand mismatch was the only problem, reprrt it as a near-miss.\n"; 3690 OS << " if (NearMisses && !FeaturesNearMiss && !EarlyPredicateNearMiss) {\n"; 3691 OS << " DEBUG_WITH_TYPE(\n"; 3692 OS << " \"asm-matcher\",\n"; 3693 OS << " dbgs()\n"; 3694 OS << " << \"Opcode result: one mismatched operand, adding near-miss\\n\");\n"; 3695 OS << " NearMisses->push_back(OperandNearMiss);\n"; 3696 OS << " } else {\n"; 3697 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3698 OS << " \"types of mismatch, so not \"\n"; 3699 OS << " \"reporting near-miss\\n\");\n"; 3700 OS << " }\n"; 3701 OS << " continue;\n"; 3702 OS << " }\n\n"; 3703 } 3704 3705 OS << " if (matchingInlineAsm) {\n"; 3706 OS << " convertToMapAndConstraints(it->ConvertFn, Operands);\n"; 3707 if (!ReportMultipleNearMisses) { 3708 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3709 "Operands, ErrorInfo))\n"; 3710 OS << " return Match_InvalidTiedOperand;\n"; 3711 OS << "\n"; 3712 } 3713 OS << " return Match_Success;\n"; 3714 OS << " }\n\n"; 3715 OS << " // We have selected a definite instruction, convert the parsed\n" 3716 << " // operands into the appropriate MCInst.\n"; 3717 if (HasOptionalOperands) { 3718 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands,\n" 3719 << " OptionalOperandsMask);\n"; 3720 } else { 3721 OS << " convertToMCInst(it->ConvertFn, Inst, it->Opcode, Operands);\n"; 3722 } 3723 OS << "\n"; 3724 3725 // Verify the instruction with the target-specific match predicate function. 3726 OS << " // We have a potential match. Check the target predicate to\n" 3727 << " // handle any context sensitive constraints.\n" 3728 << " if ((MatchResult = checkTargetMatchPredicate(Inst)) !=" 3729 << " Match_Success) {\n" 3730 << " DEBUG_WITH_TYPE(\"asm-matcher\",\n" 3731 << " dbgs() << \"Target match predicate failed with diag code \"\n" 3732 << " << MatchResult << \"\\n\");\n" 3733 << " Inst.clear();\n"; 3734 if (ReportMultipleNearMisses) { 3735 OS << " LatePredicateNearMiss = NearMissInfo::getMissedPredicate(MatchResult);\n"; 3736 } else { 3737 OS << " RetCode = MatchResult;\n" 3738 << " HadMatchOtherThanPredicate = true;\n" 3739 << " continue;\n"; 3740 } 3741 OS << " }\n\n"; 3742 3743 if (ReportMultipleNearMisses) { 3744 OS << " int NumNearMisses = ((int)(bool)OperandNearMiss +\n"; 3745 OS << " (int)(bool)FeaturesNearMiss +\n"; 3746 OS << " (int)(bool)EarlyPredicateNearMiss +\n"; 3747 OS << " (int)(bool)LatePredicateNearMiss);\n"; 3748 OS << " if (NumNearMisses == 1) {\n"; 3749 OS << " // We had exactly one type of near-miss, so add that to the list.\n"; 3750 OS << " assert(!OperandNearMiss && \"OperandNearMiss was handled earlier\");\n"; 3751 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: found one type of \"\n"; 3752 OS << " \"mismatch, so reporting a \"\n"; 3753 OS << " \"near-miss\\n\");\n"; 3754 OS << " if (NearMisses && FeaturesNearMiss)\n"; 3755 OS << " NearMisses->push_back(FeaturesNearMiss);\n"; 3756 OS << " else if (NearMisses && EarlyPredicateNearMiss)\n"; 3757 OS << " NearMisses->push_back(EarlyPredicateNearMiss);\n"; 3758 OS << " else if (NearMisses && LatePredicateNearMiss)\n"; 3759 OS << " NearMisses->push_back(LatePredicateNearMiss);\n"; 3760 OS << "\n"; 3761 OS << " continue;\n"; 3762 OS << " } else if (NumNearMisses > 1) {\n"; 3763 OS << " // This instruction missed in more than one way, so ignore it.\n"; 3764 OS << " DEBUG_WITH_TYPE(\"asm-matcher\", dbgs() << \"Opcode result: multiple \"\n"; 3765 OS << " \"types of mismatch, so not \"\n"; 3766 OS << " \"reporting near-miss\\n\");\n"; 3767 OS << " continue;\n"; 3768 OS << " }\n"; 3769 } 3770 3771 // Call the post-processing function, if used. 3772 StringRef InsnCleanupFn = AsmParser->getValueAsString("AsmParserInstCleanup"); 3773 if (!InsnCleanupFn.empty()) 3774 OS << " " << InsnCleanupFn << "(Inst);\n"; 3775 3776 if (HasDeprecation) { 3777 OS << " std::string Info;\n"; 3778 OS << " if (!getParser().getTargetParser().\n"; 3779 OS << " getTargetOptions().MCNoDeprecatedWarn &&\n"; 3780 OS << " MII.get(Inst.getOpcode()).getDeprecatedInfo(Inst, getSTI(), Info)) {\n"; 3781 OS << " SMLoc Loc = ((" << Target.getName() 3782 << "Operand&)*Operands[0]).getStartLoc();\n"; 3783 OS << " getParser().Warning(Loc, Info, None);\n"; 3784 OS << " }\n"; 3785 } 3786 3787 if (!ReportMultipleNearMisses) { 3788 OS << " if (!checkAsmTiedOperandConstraints(*this, it->ConvertFn, " 3789 "Operands, ErrorInfo))\n"; 3790 OS << " return Match_InvalidTiedOperand;\n"; 3791 OS << "\n"; 3792 } 3793 3794 OS << " DEBUG_WITH_TYPE(\n"; 3795 OS << " \"asm-matcher\",\n"; 3796 OS << " dbgs() << \"Opcode result: complete match, selecting this opcode\\n\");\n"; 3797 OS << " return Match_Success;\n"; 3798 OS << " }\n\n"; 3799 3800 if (ReportMultipleNearMisses) { 3801 OS << " // No instruction variants matched exactly.\n"; 3802 OS << " return Match_NearMisses;\n"; 3803 } else { 3804 OS << " // Okay, we had no match. Try to return a useful error code.\n"; 3805 OS << " if (HadMatchOtherThanPredicate || !HadMatchOtherThanFeatures)\n"; 3806 OS << " return RetCode;\n\n"; 3807 OS << " // Missing feature matches return which features were missing\n"; 3808 OS << " ErrorInfo = MissingFeatures;\n"; 3809 OS << " return Match_MissingFeature;\n"; 3810 } 3811 OS << "}\n\n"; 3812 3813 if (!Info.OperandMatchInfo.empty()) 3814 emitCustomOperandParsing(OS, Target, Info, ClassName, StringTable, 3815 MaxMnemonicIndex, HasMnemonicFirst); 3816 3817 OS << "#endif // GET_MATCHER_IMPLEMENTATION\n\n"; 3818 3819 OS << "\n#ifdef GET_MNEMONIC_SPELL_CHECKER\n"; 3820 OS << "#undef GET_MNEMONIC_SPELL_CHECKER\n\n"; 3821 3822 emitMnemonicSpellChecker(OS, Target, VariantCount); 3823 3824 OS << "#endif // GET_MNEMONIC_SPELL_CHECKER\n\n"; 3825 } 3826 3827 namespace llvm { 3828 3829 void EmitAsmMatcher(RecordKeeper &RK, raw_ostream &OS) { 3830 emitSourceFileHeader("Assembly Matcher Source Fragment", OS); 3831 AsmMatcherEmitter(RK).run(OS); 3832 } 3833 3834 } // end namespace llvm 3835