1 //===-- Process.cpp ---------------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 // C Includes 11 // C++ Includes 12 #include <atomic> 13 #include <mutex> 14 15 // Other libraries and framework includes 16 // Project includes 17 #include "Plugins/Process/Utility/InferiorCallPOSIX.h" 18 #include "lldb/Breakpoint/BreakpointLocation.h" 19 #include "lldb/Breakpoint/StoppointCallbackContext.h" 20 #include "lldb/Core/Debugger.h" 21 #include "lldb/Core/Event.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/ModuleSpec.h" 25 #include "lldb/Core/PluginManager.h" 26 #include "lldb/Core/State.h" 27 #include "lldb/Core/StreamFile.h" 28 #include "lldb/Expression/DiagnosticManager.h" 29 #include "lldb/Expression/IRDynamicChecks.h" 30 #include "lldb/Expression/UserExpression.h" 31 #include "lldb/Host/ConnectionFileDescriptor.h" 32 #include "lldb/Host/FileSystem.h" 33 #include "lldb/Host/Host.h" 34 #include "lldb/Host/HostInfo.h" 35 #include "lldb/Host/Pipe.h" 36 #include "lldb/Host/Terminal.h" 37 #include "lldb/Host/ThreadLauncher.h" 38 #include "lldb/Interpreter/CommandInterpreter.h" 39 #include "lldb/Interpreter/OptionValueProperties.h" 40 #include "lldb/Symbol/Function.h" 41 #include "lldb/Symbol/Symbol.h" 42 #include "lldb/Target/ABI.h" 43 #include "lldb/Target/CPPLanguageRuntime.h" 44 #include "lldb/Target/DynamicLoader.h" 45 #include "lldb/Target/InstrumentationRuntime.h" 46 #include "lldb/Target/JITLoader.h" 47 #include "lldb/Target/JITLoaderList.h" 48 #include "lldb/Target/LanguageRuntime.h" 49 #include "lldb/Target/MemoryHistory.h" 50 #include "lldb/Target/MemoryRegionInfo.h" 51 #include "lldb/Target/ObjCLanguageRuntime.h" 52 #include "lldb/Target/OperatingSystem.h" 53 #include "lldb/Target/Platform.h" 54 #include "lldb/Target/Process.h" 55 #include "lldb/Target/RegisterContext.h" 56 #include "lldb/Target/StopInfo.h" 57 #include "lldb/Target/SystemRuntime.h" 58 #include "lldb/Target/Target.h" 59 #include "lldb/Target/TargetList.h" 60 #include "lldb/Target/Thread.h" 61 #include "lldb/Target/ThreadPlan.h" 62 #include "lldb/Target/ThreadPlanBase.h" 63 #include "lldb/Target/UnixSignals.h" 64 #include "lldb/Utility/NameMatches.h" 65 66 using namespace lldb; 67 using namespace lldb_private; 68 69 // Comment out line below to disable memory caching, overriding the process setting 70 // target.process.disable-memory-cache 71 #define ENABLE_MEMORY_CACHING 72 73 #ifdef ENABLE_MEMORY_CACHING 74 #define DISABLE_MEM_CACHE_DEFAULT false 75 #else 76 #define DISABLE_MEM_CACHE_DEFAULT true 77 #endif 78 79 class ProcessOptionValueProperties : public OptionValueProperties 80 { 81 public: 82 ProcessOptionValueProperties (const ConstString &name) : 83 OptionValueProperties (name) 84 { 85 } 86 87 // This constructor is used when creating ProcessOptionValueProperties when it 88 // is part of a new lldb_private::Process instance. It will copy all current 89 // global property values as needed 90 ProcessOptionValueProperties (ProcessProperties *global_properties) : 91 OptionValueProperties(*global_properties->GetValueProperties()) 92 { 93 } 94 95 const Property * 96 GetPropertyAtIndex(const ExecutionContext *exe_ctx, bool will_modify, uint32_t idx) const override 97 { 98 // When getting the value for a key from the process options, we will always 99 // try and grab the setting from the current process if there is one. Else we just 100 // use the one from this instance. 101 if (exe_ctx) 102 { 103 Process *process = exe_ctx->GetProcessPtr(); 104 if (process) 105 { 106 ProcessOptionValueProperties *instance_properties = static_cast<ProcessOptionValueProperties *>(process->GetValueProperties().get()); 107 if (this != instance_properties) 108 return instance_properties->ProtectedGetPropertyAtIndex (idx); 109 } 110 } 111 return ProtectedGetPropertyAtIndex (idx); 112 } 113 }; 114 115 static PropertyDefinition 116 g_properties[] = 117 { 118 { "disable-memory-cache" , OptionValue::eTypeBoolean, false, DISABLE_MEM_CACHE_DEFAULT, nullptr, nullptr, "Disable reading and caching of memory in fixed-size units." }, 119 { "extra-startup-command", OptionValue::eTypeArray , false, OptionValue::eTypeString, nullptr, nullptr, "A list containing extra commands understood by the particular process plugin used. " 120 "For instance, to turn on debugserver logging set this to \"QSetLogging:bitmask=LOG_DEFAULT;\"" }, 121 { "ignore-breakpoints-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, breakpoints will be ignored during expression evaluation." }, 122 { "unwind-on-error-in-expressions", OptionValue::eTypeBoolean, true, true, nullptr, nullptr, "If true, errors in expression evaluation will unwind the stack back to the state before the call." }, 123 { "python-os-plugin-path", OptionValue::eTypeFileSpec, false, true, nullptr, nullptr, "A path to a python OS plug-in module file that contains a OperatingSystemPlugIn class." }, 124 { "stop-on-sharedlibrary-events" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, stop when a shared library is loaded or unloaded." }, 125 { "detach-keeps-stopped" , OptionValue::eTypeBoolean, true, false, nullptr, nullptr, "If true, detach will attempt to keep the process stopped." }, 126 { "memory-cache-line-size" , OptionValue::eTypeUInt64, false, 512, nullptr, nullptr, "The memory cache line size" }, 127 { "optimization-warnings" , OptionValue::eTypeBoolean, false, true, nullptr, nullptr, "If true, warn when stopped in code that is optimized where stepping and variable availability may not behave as expected." }, 128 { nullptr , OptionValue::eTypeInvalid, false, 0, nullptr, nullptr, nullptr } 129 }; 130 131 enum { 132 ePropertyDisableMemCache, 133 ePropertyExtraStartCommand, 134 ePropertyIgnoreBreakpointsInExpressions, 135 ePropertyUnwindOnErrorInExpressions, 136 ePropertyPythonOSPluginPath, 137 ePropertyStopOnSharedLibraryEvents, 138 ePropertyDetachKeepsStopped, 139 ePropertyMemCacheLineSize, 140 ePropertyWarningOptimization 141 }; 142 143 ProcessProperties::ProcessProperties (lldb_private::Process *process) : 144 Properties(), 145 m_process(process) // Can be nullptr for global ProcessProperties 146 { 147 if (process == nullptr) 148 { 149 // Global process properties, set them up one time 150 m_collection_sp.reset (new ProcessOptionValueProperties(ConstString("process"))); 151 m_collection_sp->Initialize(g_properties); 152 m_collection_sp->AppendProperty(ConstString("thread"), 153 ConstString("Settings specific to threads."), 154 true, 155 Thread::GetGlobalProperties()->GetValueProperties()); 156 } 157 else 158 { 159 m_collection_sp.reset (new ProcessOptionValueProperties(Process::GetGlobalProperties().get())); 160 m_collection_sp->SetValueChangedCallback(ePropertyPythonOSPluginPath, ProcessProperties::OptionValueChangedCallback, this); 161 } 162 } 163 164 ProcessProperties::~ProcessProperties() = default; 165 166 void 167 ProcessProperties::OptionValueChangedCallback (void *baton, OptionValue *option_value) 168 { 169 ProcessProperties *properties = (ProcessProperties *)baton; 170 if (properties->m_process) 171 properties->m_process->LoadOperatingSystemPlugin(true); 172 } 173 174 bool 175 ProcessProperties::GetDisableMemoryCache() const 176 { 177 const uint32_t idx = ePropertyDisableMemCache; 178 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 179 } 180 181 uint64_t 182 ProcessProperties::GetMemoryCacheLineSize() const 183 { 184 const uint32_t idx = ePropertyMemCacheLineSize; 185 return m_collection_sp->GetPropertyAtIndexAsUInt64(nullptr, idx, g_properties[idx].default_uint_value); 186 } 187 188 Args 189 ProcessProperties::GetExtraStartupCommands () const 190 { 191 Args args; 192 const uint32_t idx = ePropertyExtraStartCommand; 193 m_collection_sp->GetPropertyAtIndexAsArgs(nullptr, idx, args); 194 return args; 195 } 196 197 void 198 ProcessProperties::SetExtraStartupCommands (const Args &args) 199 { 200 const uint32_t idx = ePropertyExtraStartCommand; 201 m_collection_sp->SetPropertyAtIndexFromArgs(nullptr, idx, args); 202 } 203 204 FileSpec 205 ProcessProperties::GetPythonOSPluginPath () const 206 { 207 const uint32_t idx = ePropertyPythonOSPluginPath; 208 return m_collection_sp->GetPropertyAtIndexAsFileSpec(nullptr, idx); 209 } 210 211 void 212 ProcessProperties::SetPythonOSPluginPath (const FileSpec &file) 213 { 214 const uint32_t idx = ePropertyPythonOSPluginPath; 215 m_collection_sp->SetPropertyAtIndexAsFileSpec(nullptr, idx, file); 216 } 217 218 bool 219 ProcessProperties::GetIgnoreBreakpointsInExpressions () const 220 { 221 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 222 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 223 } 224 225 void 226 ProcessProperties::SetIgnoreBreakpointsInExpressions (bool ignore) 227 { 228 const uint32_t idx = ePropertyIgnoreBreakpointsInExpressions; 229 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 230 } 231 232 bool 233 ProcessProperties::GetUnwindOnErrorInExpressions () const 234 { 235 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 236 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 237 } 238 239 void 240 ProcessProperties::SetUnwindOnErrorInExpressions (bool ignore) 241 { 242 const uint32_t idx = ePropertyUnwindOnErrorInExpressions; 243 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, ignore); 244 } 245 246 bool 247 ProcessProperties::GetStopOnSharedLibraryEvents () const 248 { 249 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 250 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 251 } 252 253 void 254 ProcessProperties::SetStopOnSharedLibraryEvents (bool stop) 255 { 256 const uint32_t idx = ePropertyStopOnSharedLibraryEvents; 257 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 258 } 259 260 bool 261 ProcessProperties::GetDetachKeepsStopped () const 262 { 263 const uint32_t idx = ePropertyDetachKeepsStopped; 264 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 265 } 266 267 void 268 ProcessProperties::SetDetachKeepsStopped (bool stop) 269 { 270 const uint32_t idx = ePropertyDetachKeepsStopped; 271 m_collection_sp->SetPropertyAtIndexAsBoolean(nullptr, idx, stop); 272 } 273 274 bool 275 ProcessProperties::GetWarningsOptimization () const 276 { 277 const uint32_t idx = ePropertyWarningOptimization; 278 return m_collection_sp->GetPropertyAtIndexAsBoolean(nullptr, idx, g_properties[idx].default_uint_value != 0); 279 } 280 281 void 282 ProcessInstanceInfo::Dump (Stream &s, Platform *platform) const 283 { 284 const char *cstr; 285 if (m_pid != LLDB_INVALID_PROCESS_ID) 286 s.Printf (" pid = %" PRIu64 "\n", m_pid); 287 288 if (m_parent_pid != LLDB_INVALID_PROCESS_ID) 289 s.Printf (" parent = %" PRIu64 "\n", m_parent_pid); 290 291 if (m_executable) 292 { 293 s.Printf (" name = %s\n", m_executable.GetFilename().GetCString()); 294 s.PutCString (" file = "); 295 m_executable.Dump(&s); 296 s.EOL(); 297 } 298 const uint32_t argc = m_arguments.GetArgumentCount(); 299 if (argc > 0) 300 { 301 for (uint32_t i = 0; i < argc; i++) 302 { 303 const char *arg = m_arguments.GetArgumentAtIndex(i); 304 if (i < 10) 305 s.Printf (" arg[%u] = %s\n", i, arg); 306 else 307 s.Printf ("arg[%u] = %s\n", i, arg); 308 } 309 } 310 311 const uint32_t envc = m_environment.GetArgumentCount(); 312 if (envc > 0) 313 { 314 for (uint32_t i = 0; i < envc; i++) 315 { 316 const char *env = m_environment.GetArgumentAtIndex(i); 317 if (i < 10) 318 s.Printf (" env[%u] = %s\n", i, env); 319 else 320 s.Printf ("env[%u] = %s\n", i, env); 321 } 322 } 323 324 if (m_arch.IsValid()) 325 { 326 s.Printf (" arch = "); 327 m_arch.DumpTriple(s); 328 s.EOL(); 329 } 330 331 if (m_uid != UINT32_MAX) 332 { 333 cstr = platform->GetUserName (m_uid); 334 s.Printf (" uid = %-5u (%s)\n", m_uid, cstr ? cstr : ""); 335 } 336 if (m_gid != UINT32_MAX) 337 { 338 cstr = platform->GetGroupName (m_gid); 339 s.Printf (" gid = %-5u (%s)\n", m_gid, cstr ? cstr : ""); 340 } 341 if (m_euid != UINT32_MAX) 342 { 343 cstr = platform->GetUserName (m_euid); 344 s.Printf (" euid = %-5u (%s)\n", m_euid, cstr ? cstr : ""); 345 } 346 if (m_egid != UINT32_MAX) 347 { 348 cstr = platform->GetGroupName (m_egid); 349 s.Printf (" egid = %-5u (%s)\n", m_egid, cstr ? cstr : ""); 350 } 351 } 352 353 void 354 ProcessInstanceInfo::DumpTableHeader (Stream &s, Platform *platform, bool show_args, bool verbose) 355 { 356 const char *label; 357 if (show_args || verbose) 358 label = "ARGUMENTS"; 359 else 360 label = "NAME"; 361 362 if (verbose) 363 { 364 s.Printf ("PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE %s\n", label); 365 s.PutCString ("====== ====== ========== ========== ========== ========== ======================== ============================\n"); 366 } 367 else 368 { 369 s.Printf ("PID PARENT USER TRIPLE %s\n", label); 370 s.PutCString ("====== ====== ========== ======================== ============================\n"); 371 } 372 } 373 374 void 375 ProcessInstanceInfo::DumpAsTableRow (Stream &s, Platform *platform, bool show_args, bool verbose) const 376 { 377 if (m_pid != LLDB_INVALID_PROCESS_ID) 378 { 379 const char *cstr; 380 s.Printf ("%-6" PRIu64 " %-6" PRIu64 " ", m_pid, m_parent_pid); 381 382 StreamString arch_strm; 383 if (m_arch.IsValid()) 384 m_arch.DumpTriple(arch_strm); 385 386 if (verbose) 387 { 388 cstr = platform->GetUserName (m_uid); 389 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 390 s.Printf ("%-10s ", cstr); 391 else 392 s.Printf ("%-10u ", m_uid); 393 394 cstr = platform->GetGroupName (m_gid); 395 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 396 s.Printf ("%-10s ", cstr); 397 else 398 s.Printf ("%-10u ", m_gid); 399 400 cstr = platform->GetUserName (m_euid); 401 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 402 s.Printf ("%-10s ", cstr); 403 else 404 s.Printf ("%-10u ", m_euid); 405 406 cstr = platform->GetGroupName (m_egid); 407 if (cstr && cstr[0]) // Watch for empty string that indicates lookup failed 408 s.Printf ("%-10s ", cstr); 409 else 410 s.Printf ("%-10u ", m_egid); 411 412 s.Printf ("%-24s ", arch_strm.GetString().c_str()); 413 } 414 else 415 { 416 s.Printf ("%-10s %-24s ", 417 platform->GetUserName (m_euid), 418 arch_strm.GetString().c_str()); 419 } 420 421 if (verbose || show_args) 422 { 423 const uint32_t argc = m_arguments.GetArgumentCount(); 424 if (argc > 0) 425 { 426 for (uint32_t i = 0; i < argc; i++) 427 { 428 if (i > 0) 429 s.PutChar (' '); 430 s.PutCString (m_arguments.GetArgumentAtIndex(i)); 431 } 432 } 433 } 434 else 435 { 436 s.PutCString (GetName()); 437 } 438 439 s.EOL(); 440 } 441 } 442 443 Error 444 ProcessLaunchCommandOptions::SetOptionValue (uint32_t option_idx, const char *option_arg) 445 { 446 Error error; 447 const int short_option = m_getopt_table[option_idx].val; 448 449 switch (short_option) 450 { 451 case 's': // Stop at program entry point 452 launch_info.GetFlags().Set (eLaunchFlagStopAtEntry); 453 break; 454 455 case 'i': // STDIN for read only 456 { 457 FileAction action; 458 if (action.Open(STDIN_FILENO, FileSpec{option_arg, false}, true, false)) 459 launch_info.AppendFileAction (action); 460 break; 461 } 462 463 case 'o': // Open STDOUT for write only 464 { 465 FileAction action; 466 if (action.Open(STDOUT_FILENO, FileSpec{option_arg, false}, false, true)) 467 launch_info.AppendFileAction (action); 468 break; 469 } 470 471 case 'e': // STDERR for write only 472 { 473 FileAction action; 474 if (action.Open(STDERR_FILENO, FileSpec{option_arg, false}, false, true)) 475 launch_info.AppendFileAction (action); 476 break; 477 } 478 479 case 'p': // Process plug-in name 480 launch_info.SetProcessPluginName (option_arg); 481 break; 482 483 case 'n': // Disable STDIO 484 { 485 FileAction action; 486 const FileSpec dev_null{FileSystem::DEV_NULL, false}; 487 if (action.Open(STDIN_FILENO, dev_null, true, false)) 488 launch_info.AppendFileAction (action); 489 if (action.Open(STDOUT_FILENO, dev_null, false, true)) 490 launch_info.AppendFileAction (action); 491 if (action.Open(STDERR_FILENO, dev_null, false, true)) 492 launch_info.AppendFileAction (action); 493 break; 494 } 495 496 case 'w': 497 launch_info.SetWorkingDirectory(FileSpec{option_arg, false}); 498 break; 499 500 case 't': // Open process in new terminal window 501 launch_info.GetFlags().Set (eLaunchFlagLaunchInTTY); 502 break; 503 504 case 'a': 505 if (!launch_info.GetArchitecture().SetTriple (option_arg, m_interpreter.GetPlatform(true).get())) 506 launch_info.GetArchitecture().SetTriple (option_arg); 507 break; 508 509 case 'A': // Disable ASLR. 510 { 511 bool success; 512 const bool disable_aslr_arg = Args::StringToBoolean (option_arg, true, &success); 513 if (success) 514 disable_aslr = disable_aslr_arg ? eLazyBoolYes : eLazyBoolNo; 515 else 516 error.SetErrorStringWithFormat ("Invalid boolean value for disable-aslr option: '%s'", option_arg ? option_arg : "<null>"); 517 break; 518 } 519 520 case 'X': // shell expand args. 521 { 522 bool success; 523 const bool expand_args = Args::StringToBoolean (option_arg, true, &success); 524 if (success) 525 launch_info.SetShellExpandArguments(expand_args); 526 else 527 error.SetErrorStringWithFormat ("Invalid boolean value for shell-expand-args option: '%s'", option_arg ? option_arg : "<null>"); 528 break; 529 } 530 531 case 'c': 532 if (option_arg && option_arg[0]) 533 launch_info.SetShell (FileSpec(option_arg, false)); 534 else 535 launch_info.SetShell (HostInfo::GetDefaultShell()); 536 break; 537 538 case 'v': 539 launch_info.GetEnvironmentEntries().AppendArgument(option_arg); 540 break; 541 542 default: 543 error.SetErrorStringWithFormat("unrecognized short option character '%c'", short_option); 544 break; 545 } 546 return error; 547 } 548 549 OptionDefinition 550 ProcessLaunchCommandOptions::g_option_table[] = 551 { 552 { LLDB_OPT_SET_ALL, false, "stop-at-entry", 's', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Stop at the entry point of the program when launching a process." }, 553 { LLDB_OPT_SET_ALL, false, "disable-aslr", 'A', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to disable address space layout randomization when launching a process." }, 554 { LLDB_OPT_SET_ALL, false, "plugin", 'p', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypePlugin, "Name of the process plugin you want to use." }, 555 { LLDB_OPT_SET_ALL, false, "working-dir", 'w', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeDirectoryName, "Set the current working directory to <path> when running the inferior." }, 556 { LLDB_OPT_SET_ALL, false, "arch", 'a', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeArchitecture, "Set the architecture for the process to launch when ambiguous." }, 557 { LLDB_OPT_SET_ALL, false, "environment", 'v', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeNone, "Specify an environment variable name/value string (--environment NAME=VALUE). Can be specified multiple times for subsequent environment entries." }, 558 { LLDB_OPT_SET_1|LLDB_OPT_SET_2|LLDB_OPT_SET_3, false, "shell", 'c', OptionParser::eOptionalArgument, nullptr, nullptr, 0, eArgTypeFilename, "Run the process in a shell (not supported on all platforms)." }, 559 560 { LLDB_OPT_SET_1 , false, "stdin", 'i', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdin for the process to <filename>." }, 561 { LLDB_OPT_SET_1 , false, "stdout", 'o', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stdout for the process to <filename>." }, 562 { LLDB_OPT_SET_1 , false, "stderr", 'e', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeFilename, "Redirect stderr for the process to <filename>." }, 563 564 { LLDB_OPT_SET_2 , false, "tty", 't', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Start the process in a terminal (not supported on all platforms)." }, 565 566 { LLDB_OPT_SET_3 , false, "no-stdio", 'n', OptionParser::eNoArgument, nullptr, nullptr, 0, eArgTypeNone, "Do not set up for terminal I/O to go to running process." }, 567 { LLDB_OPT_SET_4, false, "shell-expand-args", 'X', OptionParser::eRequiredArgument, nullptr, nullptr, 0, eArgTypeBoolean, "Set whether to shell expand arguments to the process when launching." }, 568 { 0 , false, nullptr, 0, 0, nullptr, nullptr, 0, eArgTypeNone, nullptr } 569 }; 570 571 bool 572 ProcessInstanceInfoMatch::NameMatches (const char *process_name) const 573 { 574 if (m_name_match_type == eNameMatchIgnore || process_name == nullptr) 575 return true; 576 const char *match_name = m_match_info.GetName(); 577 if (!match_name) 578 return true; 579 580 return lldb_private::NameMatches (process_name, m_name_match_type, match_name); 581 } 582 583 bool 584 ProcessInstanceInfoMatch::Matches (const ProcessInstanceInfo &proc_info) const 585 { 586 if (!NameMatches (proc_info.GetName())) 587 return false; 588 589 if (m_match_info.ProcessIDIsValid() && 590 m_match_info.GetProcessID() != proc_info.GetProcessID()) 591 return false; 592 593 if (m_match_info.ParentProcessIDIsValid() && 594 m_match_info.GetParentProcessID() != proc_info.GetParentProcessID()) 595 return false; 596 597 if (m_match_info.UserIDIsValid () && 598 m_match_info.GetUserID() != proc_info.GetUserID()) 599 return false; 600 601 if (m_match_info.GroupIDIsValid () && 602 m_match_info.GetGroupID() != proc_info.GetGroupID()) 603 return false; 604 605 if (m_match_info.EffectiveUserIDIsValid () && 606 m_match_info.GetEffectiveUserID() != proc_info.GetEffectiveUserID()) 607 return false; 608 609 if (m_match_info.EffectiveGroupIDIsValid () && 610 m_match_info.GetEffectiveGroupID() != proc_info.GetEffectiveGroupID()) 611 return false; 612 613 if (m_match_info.GetArchitecture().IsValid() && 614 !m_match_info.GetArchitecture().IsCompatibleMatch(proc_info.GetArchitecture())) 615 return false; 616 return true; 617 } 618 619 bool 620 ProcessInstanceInfoMatch::MatchAllProcesses () const 621 { 622 if (m_name_match_type != eNameMatchIgnore) 623 return false; 624 625 if (m_match_info.ProcessIDIsValid()) 626 return false; 627 628 if (m_match_info.ParentProcessIDIsValid()) 629 return false; 630 631 if (m_match_info.UserIDIsValid ()) 632 return false; 633 634 if (m_match_info.GroupIDIsValid ()) 635 return false; 636 637 if (m_match_info.EffectiveUserIDIsValid ()) 638 return false; 639 640 if (m_match_info.EffectiveGroupIDIsValid ()) 641 return false; 642 643 if (m_match_info.GetArchitecture().IsValid()) 644 return false; 645 646 if (m_match_all_users) 647 return false; 648 649 return true; 650 } 651 652 void 653 ProcessInstanceInfoMatch::Clear() 654 { 655 m_match_info.Clear(); 656 m_name_match_type = eNameMatchIgnore; 657 m_match_all_users = false; 658 } 659 660 ProcessSP 661 Process::FindPlugin (lldb::TargetSP target_sp, const char *plugin_name, ListenerSP listener_sp, const FileSpec *crash_file_path) 662 { 663 static uint32_t g_process_unique_id = 0; 664 665 ProcessSP process_sp; 666 ProcessCreateInstance create_callback = nullptr; 667 if (plugin_name) 668 { 669 ConstString const_plugin_name(plugin_name); 670 create_callback = PluginManager::GetProcessCreateCallbackForPluginName (const_plugin_name); 671 if (create_callback) 672 { 673 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 674 if (process_sp) 675 { 676 if (process_sp->CanDebug(target_sp, true)) 677 { 678 process_sp->m_process_unique_id = ++g_process_unique_id; 679 } 680 else 681 process_sp.reset(); 682 } 683 } 684 } 685 else 686 { 687 for (uint32_t idx = 0; (create_callback = PluginManager::GetProcessCreateCallbackAtIndex(idx)) != nullptr; ++idx) 688 { 689 process_sp = create_callback(target_sp, listener_sp, crash_file_path); 690 if (process_sp) 691 { 692 if (process_sp->CanDebug(target_sp, false)) 693 { 694 process_sp->m_process_unique_id = ++g_process_unique_id; 695 break; 696 } 697 else 698 process_sp.reset(); 699 } 700 } 701 } 702 return process_sp; 703 } 704 705 ConstString & 706 Process::GetStaticBroadcasterClass () 707 { 708 static ConstString class_name ("lldb.process"); 709 return class_name; 710 } 711 712 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp) : 713 Process(target_sp, listener_sp, UnixSignals::Create(HostInfo::GetArchitecture())) 714 { 715 // This constructor just delegates to the full Process constructor, 716 // defaulting to using the Host's UnixSignals. 717 } 718 719 Process::Process(lldb::TargetSP target_sp, ListenerSP listener_sp, const UnixSignalsSP &unix_signals_sp) 720 : ProcessProperties(this), 721 UserID(LLDB_INVALID_PROCESS_ID), 722 Broadcaster((target_sp->GetDebugger().GetBroadcasterManager()), Process::GetStaticBroadcasterClass().AsCString()), 723 m_target_sp(target_sp), 724 m_public_state(eStateUnloaded), 725 m_private_state(eStateUnloaded), 726 m_private_state_broadcaster(nullptr, "lldb.process.internal_state_broadcaster"), 727 m_private_state_control_broadcaster(nullptr, "lldb.process.internal_state_control_broadcaster"), 728 m_private_state_listener_sp(Listener::MakeListener("lldb.process.internal_state_listener")), 729 m_mod_id(), 730 m_process_unique_id(0), 731 m_thread_index_id(0), 732 m_thread_id_to_index_id_map(), 733 m_exit_status(-1), 734 m_exit_string(), 735 m_exit_status_mutex(), 736 m_thread_mutex(), 737 m_thread_list_real(this), 738 m_thread_list(this), 739 m_extended_thread_list(this), 740 m_extended_thread_stop_id(0), 741 m_queue_list(this), 742 m_queue_list_stop_id(0), 743 m_notifications(), 744 m_image_tokens(), 745 m_listener_sp(listener_sp), 746 m_breakpoint_site_list(), 747 m_dynamic_checkers_ap(), 748 m_unix_signals_sp(unix_signals_sp), 749 m_abi_sp(), 750 m_process_input_reader(), 751 m_stdio_communication("process.stdio"), 752 m_stdio_communication_mutex(), 753 m_stdin_forward(false), 754 m_stdout_data(), 755 m_stderr_data(), 756 m_profile_data_comm_mutex(), 757 m_profile_data(), 758 m_iohandler_sync(0), 759 m_memory_cache(*this), 760 m_allocated_memory_cache(*this), 761 m_should_detach(false), 762 m_next_event_action_ap(), 763 m_public_run_lock(), 764 m_private_run_lock(), 765 m_stop_info_override_callback(nullptr), 766 m_finalizing(false), 767 m_finalize_called(false), 768 m_clear_thread_plans_on_stop(false), 769 m_force_next_event_delivery(false), 770 m_last_broadcast_state(eStateInvalid), 771 m_destroy_in_process(false), 772 m_can_interpret_function_calls(false), 773 m_warnings_issued(), 774 m_run_thread_plan_lock(), 775 m_can_jit(eCanJITDontKnow) 776 { 777 CheckInWithManager(); 778 779 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_OBJECT)); 780 if (log) 781 log->Printf("%p Process::Process()", static_cast<void *>(this)); 782 783 if (!m_unix_signals_sp) 784 m_unix_signals_sp = std::make_shared<UnixSignals>(); 785 786 SetEventName(eBroadcastBitStateChanged, "state-changed"); 787 SetEventName(eBroadcastBitInterrupt, "interrupt"); 788 SetEventName(eBroadcastBitSTDOUT, "stdout-available"); 789 SetEventName(eBroadcastBitSTDERR, "stderr-available"); 790 SetEventName(eBroadcastBitProfileData, "profile-data-available"); 791 792 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlStop, "control-stop"); 793 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlPause, "control-pause"); 794 m_private_state_control_broadcaster.SetEventName(eBroadcastInternalStateControlResume, "control-resume"); 795 796 m_listener_sp->StartListeningForEvents(this, eBroadcastBitStateChanged | eBroadcastBitInterrupt | 797 eBroadcastBitSTDOUT | eBroadcastBitSTDERR | 798 eBroadcastBitProfileData); 799 800 m_private_state_listener_sp->StartListeningForEvents(&m_private_state_broadcaster, 801 eBroadcastBitStateChanged | eBroadcastBitInterrupt); 802 803 m_private_state_listener_sp->StartListeningForEvents( 804 &m_private_state_control_broadcaster, eBroadcastInternalStateControlStop | eBroadcastInternalStateControlPause | 805 eBroadcastInternalStateControlResume); 806 // We need something valid here, even if just the default UnixSignalsSP. 807 assert(m_unix_signals_sp && "null m_unix_signals_sp after initialization"); 808 809 // Allow the platform to override the default cache line size 810 OptionValueSP value_sp = m_collection_sp->GetPropertyAtIndex(nullptr, true, ePropertyMemCacheLineSize)->GetValue(); 811 uint32_t platform_cache_line_size = target_sp->GetPlatform()->GetDefaultMemoryCacheLineSize(); 812 if (!value_sp->OptionWasSet() && platform_cache_line_size != 0) 813 value_sp->SetUInt64Value(platform_cache_line_size); 814 } 815 816 Process::~Process() 817 { 818 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_OBJECT)); 819 if (log) 820 log->Printf ("%p Process::~Process()", static_cast<void*>(this)); 821 StopPrivateStateThread(); 822 823 // ThreadList::Clear() will try to acquire this process's mutex, so 824 // explicitly clear the thread list here to ensure that the mutex 825 // is not destroyed before the thread list. 826 m_thread_list.Clear(); 827 } 828 829 const ProcessPropertiesSP & 830 Process::GetGlobalProperties() 831 { 832 // NOTE: intentional leak so we don't crash if global destructor chain gets 833 // called as other threads still use the result of this function 834 static ProcessPropertiesSP *g_settings_sp_ptr = nullptr; 835 static std::once_flag g_once_flag; 836 std::call_once(g_once_flag, []() { 837 g_settings_sp_ptr = new ProcessPropertiesSP(new ProcessProperties(nullptr)); 838 }); 839 return *g_settings_sp_ptr; 840 } 841 842 void 843 Process::Finalize() 844 { 845 m_finalizing = true; 846 847 // Destroy this process if needed 848 switch (GetPrivateState()) 849 { 850 case eStateConnected: 851 case eStateAttaching: 852 case eStateLaunching: 853 case eStateStopped: 854 case eStateRunning: 855 case eStateStepping: 856 case eStateCrashed: 857 case eStateSuspended: 858 Destroy(false); 859 break; 860 861 case eStateInvalid: 862 case eStateUnloaded: 863 case eStateDetached: 864 case eStateExited: 865 break; 866 } 867 868 // Clear our broadcaster before we proceed with destroying 869 Broadcaster::Clear(); 870 871 // Do any cleanup needed prior to being destructed... Subclasses 872 // that override this method should call this superclass method as well. 873 874 // We need to destroy the loader before the derived Process class gets destroyed 875 // since it is very likely that undoing the loader will require access to the real process. 876 m_dynamic_checkers_ap.reset(); 877 m_abi_sp.reset(); 878 m_os_ap.reset(); 879 m_system_runtime_ap.reset(); 880 m_dyld_ap.reset(); 881 m_jit_loaders_ap.reset(); 882 m_thread_list_real.Destroy(); 883 m_thread_list.Destroy(); 884 m_extended_thread_list.Destroy(); 885 m_queue_list.Clear(); 886 m_queue_list_stop_id = 0; 887 std::vector<Notifications> empty_notifications; 888 m_notifications.swap(empty_notifications); 889 m_image_tokens.clear(); 890 m_memory_cache.Clear(); 891 m_allocated_memory_cache.Clear(); 892 m_language_runtimes.clear(); 893 m_instrumentation_runtimes.clear(); 894 m_next_event_action_ap.reset(); 895 m_stop_info_override_callback = nullptr; 896 // Clear the last natural stop ID since it has a strong 897 // reference to this process 898 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 899 //#ifdef LLDB_CONFIGURATION_DEBUG 900 // StreamFile s(stdout, false); 901 // EventSP event_sp; 902 // while (m_private_state_listener_sp->GetNextEvent(event_sp)) 903 // { 904 // event_sp->Dump (&s); 905 // s.EOL(); 906 // } 907 //#endif 908 // We have to be very careful here as the m_private_state_listener might 909 // contain events that have ProcessSP values in them which can keep this 910 // process around forever. These events need to be cleared out. 911 m_private_state_listener_sp->Clear(); 912 m_public_run_lock.TrySetRunning(); // This will do nothing if already locked 913 m_public_run_lock.SetStopped(); 914 m_private_run_lock.TrySetRunning(); // This will do nothing if already locked 915 m_private_run_lock.SetStopped(); 916 m_finalize_called = true; 917 } 918 919 void 920 Process::RegisterNotificationCallbacks (const Notifications& callbacks) 921 { 922 m_notifications.push_back(callbacks); 923 if (callbacks.initialize != nullptr) 924 callbacks.initialize (callbacks.baton, this); 925 } 926 927 bool 928 Process::UnregisterNotificationCallbacks(const Notifications& callbacks) 929 { 930 std::vector<Notifications>::iterator pos, end = m_notifications.end(); 931 for (pos = m_notifications.begin(); pos != end; ++pos) 932 { 933 if (pos->baton == callbacks.baton && 934 pos->initialize == callbacks.initialize && 935 pos->process_state_changed == callbacks.process_state_changed) 936 { 937 m_notifications.erase(pos); 938 return true; 939 } 940 } 941 return false; 942 } 943 944 void 945 Process::SynchronouslyNotifyStateChanged (StateType state) 946 { 947 std::vector<Notifications>::iterator notification_pos, notification_end = m_notifications.end(); 948 for (notification_pos = m_notifications.begin(); notification_pos != notification_end; ++notification_pos) 949 { 950 if (notification_pos->process_state_changed) 951 notification_pos->process_state_changed (notification_pos->baton, this, state); 952 } 953 } 954 955 // FIXME: We need to do some work on events before the general Listener sees them. 956 // For instance if we are continuing from a breakpoint, we need to ensure that we do 957 // the little "insert real insn, step & stop" trick. But we can't do that when the 958 // event is delivered by the broadcaster - since that is done on the thread that is 959 // waiting for new events, so if we needed more than one event for our handling, we would 960 // stall. So instead we do it when we fetch the event off of the queue. 961 // 962 963 StateType 964 Process::GetNextEvent (EventSP &event_sp) 965 { 966 StateType state = eStateInvalid; 967 968 if (m_listener_sp->GetNextEventForBroadcaster (this, event_sp) && event_sp) 969 state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 970 971 return state; 972 } 973 974 void 975 Process::SyncIOHandler (uint32_t iohandler_id, uint64_t timeout_msec) 976 { 977 // don't sync (potentially context switch) in case where there is no process IO 978 if (!m_process_input_reader) 979 return; 980 981 TimeValue timeout = TimeValue::Now(); 982 timeout.OffsetWithMicroSeconds(timeout_msec*1000); 983 uint32_t new_iohandler_id = 0; 984 m_iohandler_sync.WaitForValueNotEqualTo(iohandler_id, new_iohandler_id, &timeout); 985 986 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 987 if (log) 988 log->Printf("Process::%s waited for m_iohandler_sync to change from %u, new value is %u", __FUNCTION__, iohandler_id, new_iohandler_id); 989 } 990 991 StateType 992 Process::WaitForProcessToStop (const TimeValue *timeout, 993 EventSP *event_sp_ptr, 994 bool wait_always, 995 ListenerSP hijack_listener_sp, 996 Stream *stream, 997 bool use_run_lock) 998 { 999 // We can't just wait for a "stopped" event, because the stopped event may have restarted the target. 1000 // We have to actually check each event, and in the case of a stopped event check the restarted flag 1001 // on the event. 1002 if (event_sp_ptr) 1003 event_sp_ptr->reset(); 1004 StateType state = GetState(); 1005 // If we are exited or detached, we won't ever get back to any 1006 // other valid state... 1007 if (state == eStateDetached || state == eStateExited) 1008 return state; 1009 1010 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1011 if (log) 1012 log->Printf ("Process::%s (timeout = %p)", __FUNCTION__, 1013 static_cast<const void*>(timeout)); 1014 1015 if (!wait_always && 1016 StateIsStoppedState(state, true) && 1017 StateIsStoppedState(GetPrivateState(), true)) 1018 { 1019 if (log) 1020 log->Printf("Process::%s returning without waiting for events; process private and public states are already 'stopped'.", 1021 __FUNCTION__); 1022 // We need to toggle the run lock as this won't get done in 1023 // SetPublicState() if the process is hijacked. 1024 if (hijack_listener_sp && use_run_lock) 1025 m_public_run_lock.SetStopped(); 1026 return state; 1027 } 1028 1029 while (state != eStateInvalid) 1030 { 1031 EventSP event_sp; 1032 state = WaitForStateChangedEvents (timeout, event_sp, hijack_listener_sp); 1033 if (event_sp_ptr && event_sp) 1034 *event_sp_ptr = event_sp; 1035 1036 bool pop_process_io_handler = (hijack_listener_sp.get() != nullptr); 1037 Process::HandleProcessStateChangedEvent (event_sp, stream, pop_process_io_handler); 1038 1039 switch (state) 1040 { 1041 case eStateCrashed: 1042 case eStateDetached: 1043 case eStateExited: 1044 case eStateUnloaded: 1045 // We need to toggle the run lock as this won't get done in 1046 // SetPublicState() if the process is hijacked. 1047 if (hijack_listener_sp && use_run_lock) 1048 m_public_run_lock.SetStopped(); 1049 return state; 1050 case eStateStopped: 1051 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 1052 continue; 1053 else 1054 { 1055 // We need to toggle the run lock as this won't get done in 1056 // SetPublicState() if the process is hijacked. 1057 if (hijack_listener_sp && use_run_lock) 1058 m_public_run_lock.SetStopped(); 1059 return state; 1060 } 1061 default: 1062 continue; 1063 } 1064 } 1065 return state; 1066 } 1067 1068 bool 1069 Process::HandleProcessStateChangedEvent (const EventSP &event_sp, 1070 Stream *stream, 1071 bool &pop_process_io_handler) 1072 { 1073 const bool handle_pop = pop_process_io_handler; 1074 1075 pop_process_io_handler = false; 1076 ProcessSP process_sp = Process::ProcessEventData::GetProcessFromEvent(event_sp.get()); 1077 1078 if (!process_sp) 1079 return false; 1080 1081 StateType event_state = Process::ProcessEventData::GetStateFromEvent (event_sp.get()); 1082 if (event_state == eStateInvalid) 1083 return false; 1084 1085 switch (event_state) 1086 { 1087 case eStateInvalid: 1088 case eStateUnloaded: 1089 case eStateAttaching: 1090 case eStateLaunching: 1091 case eStateStepping: 1092 case eStateDetached: 1093 if (stream) 1094 stream->Printf("Process %" PRIu64 " %s\n", 1095 process_sp->GetID(), 1096 StateAsCString (event_state)); 1097 if (event_state == eStateDetached) 1098 pop_process_io_handler = true; 1099 break; 1100 1101 case eStateConnected: 1102 case eStateRunning: 1103 // Don't be chatty when we run... 1104 break; 1105 1106 case eStateExited: 1107 if (stream) 1108 process_sp->GetStatus(*stream); 1109 pop_process_io_handler = true; 1110 break; 1111 1112 case eStateStopped: 1113 case eStateCrashed: 1114 case eStateSuspended: 1115 // Make sure the program hasn't been auto-restarted: 1116 if (Process::ProcessEventData::GetRestartedFromEvent (event_sp.get())) 1117 { 1118 if (stream) 1119 { 1120 size_t num_reasons = Process::ProcessEventData::GetNumRestartedReasons(event_sp.get()); 1121 if (num_reasons > 0) 1122 { 1123 // FIXME: Do we want to report this, or would that just be annoyingly chatty? 1124 if (num_reasons == 1) 1125 { 1126 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), 0); 1127 stream->Printf ("Process %" PRIu64 " stopped and restarted: %s\n", 1128 process_sp->GetID(), 1129 reason ? reason : "<UNKNOWN REASON>"); 1130 } 1131 else 1132 { 1133 stream->Printf ("Process %" PRIu64 " stopped and restarted, reasons:\n", 1134 process_sp->GetID()); 1135 1136 1137 for (size_t i = 0; i < num_reasons; i++) 1138 { 1139 const char *reason = Process::ProcessEventData::GetRestartedReasonAtIndex (event_sp.get(), i); 1140 stream->Printf("\t%s\n", reason ? reason : "<UNKNOWN REASON>"); 1141 } 1142 } 1143 } 1144 } 1145 } 1146 else 1147 { 1148 // Lock the thread list so it doesn't change on us, this is the scope for the locker: 1149 { 1150 ThreadList &thread_list = process_sp->GetThreadList(); 1151 std::lock_guard<std::recursive_mutex> guard(thread_list.GetMutex()); 1152 1153 ThreadSP curr_thread (thread_list.GetSelectedThread()); 1154 ThreadSP thread; 1155 StopReason curr_thread_stop_reason = eStopReasonInvalid; 1156 if (curr_thread) 1157 curr_thread_stop_reason = curr_thread->GetStopReason(); 1158 if (!curr_thread || 1159 !curr_thread->IsValid() || 1160 curr_thread_stop_reason == eStopReasonInvalid || 1161 curr_thread_stop_reason == eStopReasonNone) 1162 { 1163 // Prefer a thread that has just completed its plan over another thread as current thread. 1164 ThreadSP plan_thread; 1165 ThreadSP other_thread; 1166 1167 const size_t num_threads = thread_list.GetSize(); 1168 size_t i; 1169 for (i = 0; i < num_threads; ++i) 1170 { 1171 thread = thread_list.GetThreadAtIndex(i); 1172 StopReason thread_stop_reason = thread->GetStopReason(); 1173 switch (thread_stop_reason) 1174 { 1175 case eStopReasonInvalid: 1176 case eStopReasonNone: 1177 break; 1178 1179 case eStopReasonSignal: 1180 { 1181 // Don't select a signal thread if we weren't going to stop at that 1182 // signal. We have to have had another reason for stopping here, and 1183 // the user doesn't want to see this thread. 1184 uint64_t signo = thread->GetStopInfo()->GetValue(); 1185 if (process_sp->GetUnixSignals()->GetShouldStop(signo)) 1186 { 1187 if (!other_thread) 1188 other_thread = thread; 1189 } 1190 break; 1191 } 1192 case eStopReasonTrace: 1193 case eStopReasonBreakpoint: 1194 case eStopReasonWatchpoint: 1195 case eStopReasonException: 1196 case eStopReasonExec: 1197 case eStopReasonThreadExiting: 1198 case eStopReasonInstrumentation: 1199 if (!other_thread) 1200 other_thread = thread; 1201 break; 1202 case eStopReasonPlanComplete: 1203 if (!plan_thread) 1204 plan_thread = thread; 1205 break; 1206 } 1207 } 1208 if (plan_thread) 1209 thread_list.SetSelectedThreadByID (plan_thread->GetID()); 1210 else if (other_thread) 1211 thread_list.SetSelectedThreadByID (other_thread->GetID()); 1212 else 1213 { 1214 if (curr_thread && curr_thread->IsValid()) 1215 thread = curr_thread; 1216 else 1217 thread = thread_list.GetThreadAtIndex(0); 1218 1219 if (thread) 1220 thread_list.SetSelectedThreadByID (thread->GetID()); 1221 } 1222 } 1223 } 1224 // Drop the ThreadList mutex by here, since GetThreadStatus below might have to run code, 1225 // e.g. for Data formatters, and if we hold the ThreadList mutex, then the process is going to 1226 // have a hard time restarting the process. 1227 if (stream) 1228 { 1229 Debugger &debugger = process_sp->GetTarget().GetDebugger(); 1230 if (debugger.GetTargetList().GetSelectedTarget().get() == &process_sp->GetTarget()) 1231 { 1232 const bool only_threads_with_stop_reason = true; 1233 const uint32_t start_frame = 0; 1234 const uint32_t num_frames = 1; 1235 const uint32_t num_frames_with_source = 1; 1236 process_sp->GetStatus(*stream); 1237 process_sp->GetThreadStatus (*stream, 1238 only_threads_with_stop_reason, 1239 start_frame, 1240 num_frames, 1241 num_frames_with_source); 1242 } 1243 else 1244 { 1245 uint32_t target_idx = debugger.GetTargetList().GetIndexOfTarget(process_sp->GetTarget().shared_from_this()); 1246 if (target_idx != UINT32_MAX) 1247 stream->Printf ("Target %d: (", target_idx); 1248 else 1249 stream->Printf ("Target <unknown index>: ("); 1250 process_sp->GetTarget().Dump (stream, eDescriptionLevelBrief); 1251 stream->Printf (") stopped.\n"); 1252 } 1253 } 1254 1255 // Pop the process IO handler 1256 pop_process_io_handler = true; 1257 } 1258 break; 1259 } 1260 1261 if (handle_pop && pop_process_io_handler) 1262 process_sp->PopProcessIOHandler(); 1263 1264 return true; 1265 } 1266 1267 StateType 1268 Process::WaitForState(const TimeValue *timeout, 1269 const StateType *match_states, 1270 const uint32_t num_match_states) 1271 { 1272 EventSP event_sp; 1273 StateType state = GetState(); 1274 while (state != eStateInvalid) 1275 { 1276 // If we are exited or detached, we won't ever get back to any 1277 // other valid state... 1278 if (state == eStateDetached || state == eStateExited) 1279 return state; 1280 1281 state = WaitForStateChangedEvents(timeout, event_sp, nullptr); 1282 1283 for (uint32_t i = 0; i < num_match_states; ++i) 1284 { 1285 if (match_states[i] == state) 1286 return state; 1287 } 1288 } 1289 return state; 1290 } 1291 1292 bool 1293 Process::HijackProcessEvents (ListenerSP listener_sp) 1294 { 1295 if (listener_sp) 1296 { 1297 return HijackBroadcaster(listener_sp, eBroadcastBitStateChanged | eBroadcastBitInterrupt); 1298 } 1299 else 1300 return false; 1301 } 1302 1303 void 1304 Process::RestoreProcessEvents () 1305 { 1306 RestoreBroadcaster(); 1307 } 1308 1309 StateType 1310 Process::WaitForStateChangedEvents (const TimeValue *timeout, EventSP &event_sp, ListenerSP hijack_listener_sp) 1311 { 1312 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1313 1314 if (log) 1315 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1316 static_cast<const void*>(timeout)); 1317 1318 ListenerSP listener_sp = hijack_listener_sp; 1319 if (!listener_sp) 1320 listener_sp = m_listener_sp; 1321 1322 StateType state = eStateInvalid; 1323 if (listener_sp->WaitForEventForBroadcasterWithType (timeout, 1324 this, 1325 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1326 event_sp)) 1327 { 1328 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1329 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1330 else if (log) 1331 log->Printf ("Process::%s got no event or was interrupted.", __FUNCTION__); 1332 } 1333 1334 if (log) 1335 log->Printf ("Process::%s (timeout = %p, event_sp) => %s", 1336 __FUNCTION__, static_cast<const void*>(timeout), 1337 StateAsCString(state)); 1338 return state; 1339 } 1340 1341 Event * 1342 Process::PeekAtStateChangedEvents () 1343 { 1344 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1345 1346 if (log) 1347 log->Printf ("Process::%s...", __FUNCTION__); 1348 1349 Event *event_ptr; 1350 event_ptr = m_listener_sp->PeekAtNextEventForBroadcasterWithType (this, 1351 eBroadcastBitStateChanged); 1352 if (log) 1353 { 1354 if (event_ptr) 1355 { 1356 log->Printf ("Process::%s (event_ptr) => %s", 1357 __FUNCTION__, 1358 StateAsCString(ProcessEventData::GetStateFromEvent (event_ptr))); 1359 } 1360 else 1361 { 1362 log->Printf ("Process::%s no events found", 1363 __FUNCTION__); 1364 } 1365 } 1366 return event_ptr; 1367 } 1368 1369 StateType 1370 Process::WaitForStateChangedEventsPrivate (const TimeValue *timeout, EventSP &event_sp) 1371 { 1372 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1373 1374 if (log) 1375 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1376 static_cast<const void*>(timeout)); 1377 1378 StateType state = eStateInvalid; 1379 if (m_private_state_listener_sp->WaitForEventForBroadcasterWithType (timeout, 1380 &m_private_state_broadcaster, 1381 eBroadcastBitStateChanged | eBroadcastBitInterrupt, 1382 event_sp)) 1383 if (event_sp && event_sp->GetType() == eBroadcastBitStateChanged) 1384 state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 1385 1386 // This is a bit of a hack, but when we wait here we could very well return 1387 // to the command-line, and that could disable the log, which would render the 1388 // log we got above invalid. 1389 if (log) 1390 log->Printf ("Process::%s (timeout = %p, event_sp) => %s", 1391 __FUNCTION__, static_cast<const void *>(timeout), 1392 state == eStateInvalid ? "TIMEOUT" : StateAsCString(state)); 1393 return state; 1394 } 1395 1396 bool 1397 Process::WaitForEventsPrivate (const TimeValue *timeout, EventSP &event_sp, bool control_only) 1398 { 1399 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 1400 1401 if (log) 1402 log->Printf ("Process::%s (timeout = %p, event_sp)...", __FUNCTION__, 1403 static_cast<const void*>(timeout)); 1404 1405 if (control_only) 1406 return m_private_state_listener_sp->WaitForEventForBroadcaster(timeout, &m_private_state_control_broadcaster, event_sp); 1407 else 1408 return m_private_state_listener_sp->WaitForEvent(timeout, event_sp); 1409 } 1410 1411 bool 1412 Process::IsRunning () const 1413 { 1414 return StateIsRunningState (m_public_state.GetValue()); 1415 } 1416 1417 int 1418 Process::GetExitStatus () 1419 { 1420 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1421 1422 if (m_public_state.GetValue() == eStateExited) 1423 return m_exit_status; 1424 return -1; 1425 } 1426 1427 const char * 1428 Process::GetExitDescription () 1429 { 1430 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1431 1432 if (m_public_state.GetValue() == eStateExited && !m_exit_string.empty()) 1433 return m_exit_string.c_str(); 1434 return nullptr; 1435 } 1436 1437 bool 1438 Process::SetExitStatus (int status, const char *cstr) 1439 { 1440 // Use a mutex to protect setting the exit status. 1441 std::lock_guard<std::mutex> guard(m_exit_status_mutex); 1442 1443 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1444 if (log) 1445 log->Printf("Process::SetExitStatus (status=%i (0x%8.8x), description=%s%s%s)", 1446 status, status, 1447 cstr ? "\"" : "", 1448 cstr ? cstr : "NULL", 1449 cstr ? "\"" : ""); 1450 1451 // We were already in the exited state 1452 if (m_private_state.GetValue() == eStateExited) 1453 { 1454 if (log) 1455 log->Printf("Process::SetExitStatus () ignoring exit status because state was already set to eStateExited"); 1456 return false; 1457 } 1458 1459 m_exit_status = status; 1460 if (cstr) 1461 m_exit_string = cstr; 1462 else 1463 m_exit_string.clear(); 1464 1465 // Clear the last natural stop ID since it has a strong 1466 // reference to this process 1467 m_mod_id.SetStopEventForLastNaturalStopID(EventSP()); 1468 1469 SetPrivateState (eStateExited); 1470 1471 // Allow subclasses to do some cleanup 1472 DidExit (); 1473 1474 return true; 1475 } 1476 1477 bool 1478 Process::IsAlive () 1479 { 1480 switch (m_private_state.GetValue()) 1481 { 1482 case eStateConnected: 1483 case eStateAttaching: 1484 case eStateLaunching: 1485 case eStateStopped: 1486 case eStateRunning: 1487 case eStateStepping: 1488 case eStateCrashed: 1489 case eStateSuspended: 1490 return true; 1491 default: 1492 return false; 1493 } 1494 } 1495 1496 // This static callback can be used to watch for local child processes on 1497 // the current host. The child process exits, the process will be 1498 // found in the global target list (we want to be completely sure that the 1499 // lldb_private::Process doesn't go away before we can deliver the signal. 1500 bool 1501 Process::SetProcessExitStatus(lldb::pid_t pid, bool exited, 1502 int signo, // Zero for no signal 1503 int exit_status // Exit value of process if signal is zero 1504 ) 1505 { 1506 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 1507 if (log) 1508 log->Printf("Process::SetProcessExitStatus (pid=%" PRIu64 ", exited=%i, signal=%i, exit_status=%i)\n", pid, 1509 exited, signo, exit_status); 1510 1511 if (exited) 1512 { 1513 TargetSP target_sp(Debugger::FindTargetWithProcessID (pid)); 1514 if (target_sp) 1515 { 1516 ProcessSP process_sp (target_sp->GetProcessSP()); 1517 if (process_sp) 1518 { 1519 const char *signal_cstr = nullptr; 1520 if (signo) 1521 signal_cstr = process_sp->GetUnixSignals()->GetSignalAsCString(signo); 1522 1523 process_sp->SetExitStatus (exit_status, signal_cstr); 1524 } 1525 } 1526 return true; 1527 } 1528 return false; 1529 } 1530 1531 void 1532 Process::UpdateThreadListIfNeeded () 1533 { 1534 const uint32_t stop_id = GetStopID(); 1535 if (m_thread_list.GetSize(false) == 0 || stop_id != m_thread_list.GetStopID()) 1536 { 1537 const StateType state = GetPrivateState(); 1538 if (StateIsStoppedState (state, true)) 1539 { 1540 std::lock_guard<std::recursive_mutex> guard(m_thread_list.GetMutex()); 1541 // m_thread_list does have its own mutex, but we need to 1542 // hold onto the mutex between the call to UpdateThreadList(...) 1543 // and the os->UpdateThreadList(...) so it doesn't change on us 1544 ThreadList &old_thread_list = m_thread_list; 1545 ThreadList real_thread_list(this); 1546 ThreadList new_thread_list(this); 1547 // Always update the thread list with the protocol specific 1548 // thread list, but only update if "true" is returned 1549 if (UpdateThreadList (m_thread_list_real, real_thread_list)) 1550 { 1551 // Don't call into the OperatingSystem to update the thread list if we are shutting down, since 1552 // that may call back into the SBAPI's, requiring the API lock which is already held by whoever is 1553 // shutting us down, causing a deadlock. 1554 OperatingSystem *os = GetOperatingSystem (); 1555 if (os && !m_destroy_in_process) 1556 { 1557 // Clear any old backing threads where memory threads might have been 1558 // backed by actual threads from the lldb_private::Process subclass 1559 size_t num_old_threads = old_thread_list.GetSize(false); 1560 for (size_t i = 0; i < num_old_threads; ++i) 1561 old_thread_list.GetThreadAtIndex(i, false)->ClearBackingThread(); 1562 1563 // Turn off dynamic types to ensure we don't run any expressions. Objective C 1564 // can run an expression to determine if a SBValue is a dynamic type or not 1565 // and we need to avoid this. OperatingSystem plug-ins can't run expressions 1566 // that require running code... 1567 1568 Target &target = GetTarget(); 1569 const lldb::DynamicValueType saved_prefer_dynamic = target.GetPreferDynamicValue (); 1570 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1571 target.SetPreferDynamicValue(lldb::eNoDynamicValues); 1572 1573 // Now let the OperatingSystem plug-in update the thread list 1574 1575 os->UpdateThreadList (old_thread_list, // Old list full of threads created by OS plug-in 1576 real_thread_list, // The actual thread list full of threads created by each lldb_private::Process subclass 1577 new_thread_list); // The new thread list that we will show to the user that gets filled in 1578 1579 if (saved_prefer_dynamic != lldb::eNoDynamicValues) 1580 target.SetPreferDynamicValue(saved_prefer_dynamic); 1581 } 1582 else 1583 { 1584 // No OS plug-in, the new thread list is the same as the real thread list 1585 new_thread_list = real_thread_list; 1586 } 1587 1588 m_thread_list_real.Update(real_thread_list); 1589 m_thread_list.Update (new_thread_list); 1590 m_thread_list.SetStopID (stop_id); 1591 1592 if (GetLastNaturalStopID () != m_extended_thread_stop_id) 1593 { 1594 // Clear any extended threads that we may have accumulated previously 1595 m_extended_thread_list.Clear(); 1596 m_extended_thread_stop_id = GetLastNaturalStopID (); 1597 1598 m_queue_list.Clear(); 1599 m_queue_list_stop_id = GetLastNaturalStopID (); 1600 } 1601 } 1602 } 1603 } 1604 } 1605 1606 void 1607 Process::UpdateQueueListIfNeeded () 1608 { 1609 if (m_system_runtime_ap) 1610 { 1611 if (m_queue_list.GetSize() == 0 || m_queue_list_stop_id != GetLastNaturalStopID()) 1612 { 1613 const StateType state = GetPrivateState(); 1614 if (StateIsStoppedState (state, true)) 1615 { 1616 m_system_runtime_ap->PopulateQueueList (m_queue_list); 1617 m_queue_list_stop_id = GetLastNaturalStopID(); 1618 } 1619 } 1620 } 1621 } 1622 1623 ThreadSP 1624 Process::CreateOSPluginThread (lldb::tid_t tid, lldb::addr_t context) 1625 { 1626 OperatingSystem *os = GetOperatingSystem (); 1627 if (os) 1628 return os->CreateThread(tid, context); 1629 return ThreadSP(); 1630 } 1631 1632 uint32_t 1633 Process::GetNextThreadIndexID (uint64_t thread_id) 1634 { 1635 return AssignIndexIDToThread(thread_id); 1636 } 1637 1638 bool 1639 Process::HasAssignedIndexIDToThread(uint64_t thread_id) 1640 { 1641 return (m_thread_id_to_index_id_map.find(thread_id) != m_thread_id_to_index_id_map.end()); 1642 } 1643 1644 uint32_t 1645 Process::AssignIndexIDToThread(uint64_t thread_id) 1646 { 1647 uint32_t result = 0; 1648 std::map<uint64_t, uint32_t>::iterator iterator = m_thread_id_to_index_id_map.find(thread_id); 1649 if (iterator == m_thread_id_to_index_id_map.end()) 1650 { 1651 result = ++m_thread_index_id; 1652 m_thread_id_to_index_id_map[thread_id] = result; 1653 } 1654 else 1655 { 1656 result = iterator->second; 1657 } 1658 1659 return result; 1660 } 1661 1662 StateType 1663 Process::GetState() 1664 { 1665 // If any other threads access this we will need a mutex for it 1666 return m_public_state.GetValue (); 1667 } 1668 1669 bool 1670 Process::StateChangedIsExternallyHijacked() 1671 { 1672 if (IsHijackedForEvent(eBroadcastBitStateChanged)) 1673 { 1674 const char *hijacking_name = GetHijackingListenerName(); 1675 if (hijacking_name && strcmp(hijacking_name, "lldb.Process.ResumeSynchronous.hijack")) 1676 return true; 1677 } 1678 return false; 1679 } 1680 1681 void 1682 Process::SetPublicState (StateType new_state, bool restarted) 1683 { 1684 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1685 if (log) 1686 log->Printf("Process::SetPublicState (state = %s, restarted = %i)", StateAsCString(new_state), restarted); 1687 const StateType old_state = m_public_state.GetValue(); 1688 m_public_state.SetValue (new_state); 1689 1690 // On the transition from Run to Stopped, we unlock the writer end of the 1691 // run lock. The lock gets locked in Resume, which is the public API 1692 // to tell the program to run. 1693 if (!StateChangedIsExternallyHijacked()) 1694 { 1695 if (new_state == eStateDetached) 1696 { 1697 if (log) 1698 log->Printf("Process::SetPublicState (%s) -- unlocking run lock for detach", StateAsCString(new_state)); 1699 m_public_run_lock.SetStopped(); 1700 } 1701 else 1702 { 1703 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1704 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1705 if ((old_state_is_stopped != new_state_is_stopped)) 1706 { 1707 if (new_state_is_stopped && !restarted) 1708 { 1709 if (log) 1710 log->Printf("Process::SetPublicState (%s) -- unlocking run lock", StateAsCString(new_state)); 1711 m_public_run_lock.SetStopped(); 1712 } 1713 } 1714 } 1715 } 1716 } 1717 1718 Error 1719 Process::Resume () 1720 { 1721 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1722 if (log) 1723 log->Printf("Process::Resume -- locking run lock"); 1724 if (!m_public_run_lock.TrySetRunning()) 1725 { 1726 Error error("Resume request failed - process still running."); 1727 if (log) 1728 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1729 return error; 1730 } 1731 return PrivateResume(); 1732 } 1733 1734 Error 1735 Process::ResumeSynchronous (Stream *stream) 1736 { 1737 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1738 if (log) 1739 log->Printf("Process::ResumeSynchronous -- locking run lock"); 1740 if (!m_public_run_lock.TrySetRunning()) 1741 { 1742 Error error("Resume request failed - process still running."); 1743 if (log) 1744 log->Printf ("Process::Resume: -- TrySetRunning failed, not resuming."); 1745 return error; 1746 } 1747 1748 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.ResumeSynchronous.hijack")); 1749 HijackProcessEvents(listener_sp); 1750 1751 Error error = PrivateResume(); 1752 if (error.Success()) 1753 { 1754 StateType state = WaitForProcessToStop (NULL, NULL, true, listener_sp, stream); 1755 const bool must_be_alive = false; // eStateExited is ok, so this must be false 1756 if (!StateIsStoppedState(state, must_be_alive)) 1757 error.SetErrorStringWithFormat("process not in stopped state after synchronous resume: %s", StateAsCString(state)); 1758 } 1759 1760 // Undo the hijacking of process events... 1761 RestoreProcessEvents(); 1762 1763 return error; 1764 } 1765 1766 StateType 1767 Process::GetPrivateState () 1768 { 1769 return m_private_state.GetValue(); 1770 } 1771 1772 void 1773 Process::SetPrivateState (StateType new_state) 1774 { 1775 if (m_finalize_called) 1776 return; 1777 1778 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STATE | LIBLLDB_LOG_PROCESS)); 1779 bool state_changed = false; 1780 1781 if (log) 1782 log->Printf("Process::SetPrivateState (%s)", StateAsCString(new_state)); 1783 1784 std::lock_guard<std::recursive_mutex> thread_guard(m_thread_list.GetMutex()); 1785 std::lock_guard<std::recursive_mutex> guard(m_private_state.GetMutex()); 1786 1787 const StateType old_state = m_private_state.GetValueNoLock (); 1788 state_changed = old_state != new_state; 1789 1790 const bool old_state_is_stopped = StateIsStoppedState(old_state, false); 1791 const bool new_state_is_stopped = StateIsStoppedState(new_state, false); 1792 if (old_state_is_stopped != new_state_is_stopped) 1793 { 1794 if (new_state_is_stopped) 1795 m_private_run_lock.SetStopped(); 1796 else 1797 m_private_run_lock.SetRunning(); 1798 } 1799 1800 if (state_changed) 1801 { 1802 m_private_state.SetValueNoLock (new_state); 1803 EventSP event_sp (new Event (eBroadcastBitStateChanged, new ProcessEventData (shared_from_this(), new_state))); 1804 if (StateIsStoppedState(new_state, false)) 1805 { 1806 // Note, this currently assumes that all threads in the list 1807 // stop when the process stops. In the future we will want to 1808 // support a debugging model where some threads continue to run 1809 // while others are stopped. When that happens we will either need 1810 // a way for the thread list to identify which threads are stopping 1811 // or create a special thread list containing only threads which 1812 // actually stopped. 1813 // 1814 // The process plugin is responsible for managing the actual 1815 // behavior of the threads and should have stopped any threads 1816 // that are going to stop before we get here. 1817 m_thread_list.DidStop(); 1818 1819 m_mod_id.BumpStopID(); 1820 if (!m_mod_id.IsLastResumeForUserExpression()) 1821 m_mod_id.SetStopEventForLastNaturalStopID(event_sp); 1822 m_memory_cache.Clear(); 1823 if (log) 1824 log->Printf("Process::SetPrivateState (%s) stop_id = %u", StateAsCString(new_state), m_mod_id.GetStopID()); 1825 } 1826 1827 // Use our target to get a shared pointer to ourselves... 1828 if (m_finalize_called && !PrivateStateThreadIsValid()) 1829 BroadcastEvent (event_sp); 1830 else 1831 m_private_state_broadcaster.BroadcastEvent (event_sp); 1832 } 1833 else 1834 { 1835 if (log) 1836 log->Printf("Process::SetPrivateState (%s) state didn't change. Ignoring...", StateAsCString(new_state)); 1837 } 1838 } 1839 1840 void 1841 Process::SetRunningUserExpression (bool on) 1842 { 1843 m_mod_id.SetRunningUserExpression (on); 1844 } 1845 1846 addr_t 1847 Process::GetImageInfoAddress() 1848 { 1849 return LLDB_INVALID_ADDRESS; 1850 } 1851 1852 const lldb::ABISP & 1853 Process::GetABI() 1854 { 1855 if (!m_abi_sp) 1856 m_abi_sp = ABI::FindPlugin(GetTarget().GetArchitecture()); 1857 return m_abi_sp; 1858 } 1859 1860 LanguageRuntime * 1861 Process::GetLanguageRuntime(lldb::LanguageType language, bool retry_if_null) 1862 { 1863 if (m_finalizing) 1864 return nullptr; 1865 1866 LanguageRuntimeCollection::iterator pos; 1867 pos = m_language_runtimes.find (language); 1868 if (pos == m_language_runtimes.end() || (retry_if_null && !(*pos).second)) 1869 { 1870 lldb::LanguageRuntimeSP runtime_sp(LanguageRuntime::FindPlugin(this, language)); 1871 1872 m_language_runtimes[language] = runtime_sp; 1873 return runtime_sp.get(); 1874 } 1875 else 1876 return (*pos).second.get(); 1877 } 1878 1879 CPPLanguageRuntime * 1880 Process::GetCPPLanguageRuntime (bool retry_if_null) 1881 { 1882 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeC_plus_plus, retry_if_null); 1883 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeC_plus_plus) 1884 return static_cast<CPPLanguageRuntime *> (runtime); 1885 return nullptr; 1886 } 1887 1888 ObjCLanguageRuntime * 1889 Process::GetObjCLanguageRuntime (bool retry_if_null) 1890 { 1891 LanguageRuntime *runtime = GetLanguageRuntime(eLanguageTypeObjC, retry_if_null); 1892 if (runtime != nullptr && runtime->GetLanguageType() == eLanguageTypeObjC) 1893 return static_cast<ObjCLanguageRuntime *> (runtime); 1894 return nullptr; 1895 } 1896 1897 bool 1898 Process::IsPossibleDynamicValue (ValueObject& in_value) 1899 { 1900 if (m_finalizing) 1901 return false; 1902 1903 if (in_value.IsDynamic()) 1904 return false; 1905 LanguageType known_type = in_value.GetObjectRuntimeLanguage(); 1906 1907 if (known_type != eLanguageTypeUnknown && known_type != eLanguageTypeC) 1908 { 1909 LanguageRuntime *runtime = GetLanguageRuntime (known_type); 1910 return runtime ? runtime->CouldHaveDynamicValue(in_value) : false; 1911 } 1912 1913 LanguageRuntime *cpp_runtime = GetLanguageRuntime (eLanguageTypeC_plus_plus); 1914 if (cpp_runtime && cpp_runtime->CouldHaveDynamicValue(in_value)) 1915 return true; 1916 1917 LanguageRuntime *objc_runtime = GetLanguageRuntime (eLanguageTypeObjC); 1918 return objc_runtime ? objc_runtime->CouldHaveDynamicValue(in_value) : false; 1919 } 1920 1921 void 1922 Process::SetDynamicCheckers(DynamicCheckerFunctions *dynamic_checkers) 1923 { 1924 m_dynamic_checkers_ap.reset(dynamic_checkers); 1925 } 1926 1927 BreakpointSiteList & 1928 Process::GetBreakpointSiteList() 1929 { 1930 return m_breakpoint_site_list; 1931 } 1932 1933 const BreakpointSiteList & 1934 Process::GetBreakpointSiteList() const 1935 { 1936 return m_breakpoint_site_list; 1937 } 1938 1939 void 1940 Process::DisableAllBreakpointSites () 1941 { 1942 m_breakpoint_site_list.ForEach([this](BreakpointSite *bp_site) -> void { 1943 // bp_site->SetEnabled(true); 1944 DisableBreakpointSite(bp_site); 1945 }); 1946 } 1947 1948 Error 1949 Process::ClearBreakpointSiteByID (lldb::user_id_t break_id) 1950 { 1951 Error error (DisableBreakpointSiteByID (break_id)); 1952 1953 if (error.Success()) 1954 m_breakpoint_site_list.Remove(break_id); 1955 1956 return error; 1957 } 1958 1959 Error 1960 Process::DisableBreakpointSiteByID (lldb::user_id_t break_id) 1961 { 1962 Error error; 1963 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1964 if (bp_site_sp) 1965 { 1966 if (bp_site_sp->IsEnabled()) 1967 error = DisableBreakpointSite (bp_site_sp.get()); 1968 } 1969 else 1970 { 1971 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1972 } 1973 1974 return error; 1975 } 1976 1977 Error 1978 Process::EnableBreakpointSiteByID (lldb::user_id_t break_id) 1979 { 1980 Error error; 1981 BreakpointSiteSP bp_site_sp = m_breakpoint_site_list.FindByID (break_id); 1982 if (bp_site_sp) 1983 { 1984 if (!bp_site_sp->IsEnabled()) 1985 error = EnableBreakpointSite (bp_site_sp.get()); 1986 } 1987 else 1988 { 1989 error.SetErrorStringWithFormat("invalid breakpoint site ID: %" PRIu64, break_id); 1990 } 1991 return error; 1992 } 1993 1994 lldb::break_id_t 1995 Process::CreateBreakpointSite (const BreakpointLocationSP &owner, bool use_hardware) 1996 { 1997 addr_t load_addr = LLDB_INVALID_ADDRESS; 1998 1999 bool show_error = true; 2000 switch (GetState()) 2001 { 2002 case eStateInvalid: 2003 case eStateUnloaded: 2004 case eStateConnected: 2005 case eStateAttaching: 2006 case eStateLaunching: 2007 case eStateDetached: 2008 case eStateExited: 2009 show_error = false; 2010 break; 2011 2012 case eStateStopped: 2013 case eStateRunning: 2014 case eStateStepping: 2015 case eStateCrashed: 2016 case eStateSuspended: 2017 show_error = IsAlive(); 2018 break; 2019 } 2020 2021 // Reset the IsIndirect flag here, in case the location changes from 2022 // pointing to a indirect symbol to a regular symbol. 2023 owner->SetIsIndirect (false); 2024 2025 if (owner->ShouldResolveIndirectFunctions()) 2026 { 2027 Symbol *symbol = owner->GetAddress().CalculateSymbolContextSymbol(); 2028 if (symbol && symbol->IsIndirect()) 2029 { 2030 Error error; 2031 Address symbol_address = symbol->GetAddress(); 2032 load_addr = ResolveIndirectFunction (&symbol_address, error); 2033 if (!error.Success() && show_error) 2034 { 2035 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to resolve indirect function at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2036 symbol->GetLoadAddress(&GetTarget()), 2037 owner->GetBreakpoint().GetID(), 2038 owner->GetID(), 2039 error.AsCString() ? error.AsCString() : "unknown error"); 2040 return LLDB_INVALID_BREAK_ID; 2041 } 2042 Address resolved_address(load_addr); 2043 load_addr = resolved_address.GetOpcodeLoadAddress (&GetTarget()); 2044 owner->SetIsIndirect(true); 2045 } 2046 else 2047 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2048 } 2049 else 2050 load_addr = owner->GetAddress().GetOpcodeLoadAddress (&GetTarget()); 2051 2052 if (load_addr != LLDB_INVALID_ADDRESS) 2053 { 2054 BreakpointSiteSP bp_site_sp; 2055 2056 // Look up this breakpoint site. If it exists, then add this new owner, otherwise 2057 // create a new breakpoint site and add it. 2058 2059 bp_site_sp = m_breakpoint_site_list.FindByAddress (load_addr); 2060 2061 if (bp_site_sp) 2062 { 2063 bp_site_sp->AddOwner (owner); 2064 owner->SetBreakpointSite (bp_site_sp); 2065 return bp_site_sp->GetID(); 2066 } 2067 else 2068 { 2069 bp_site_sp.reset (new BreakpointSite (&m_breakpoint_site_list, owner, load_addr, use_hardware)); 2070 if (bp_site_sp) 2071 { 2072 Error error = EnableBreakpointSite (bp_site_sp.get()); 2073 if (error.Success()) 2074 { 2075 owner->SetBreakpointSite (bp_site_sp); 2076 return m_breakpoint_site_list.Add (bp_site_sp); 2077 } 2078 else 2079 { 2080 if (show_error) 2081 { 2082 // Report error for setting breakpoint... 2083 GetTarget().GetDebugger().GetErrorFile()->Printf ("warning: failed to set breakpoint site at 0x%" PRIx64 " for breakpoint %i.%i: %s\n", 2084 load_addr, 2085 owner->GetBreakpoint().GetID(), 2086 owner->GetID(), 2087 error.AsCString() ? error.AsCString() : "unknown error"); 2088 } 2089 } 2090 } 2091 } 2092 } 2093 // We failed to enable the breakpoint 2094 return LLDB_INVALID_BREAK_ID; 2095 } 2096 2097 void 2098 Process::RemoveOwnerFromBreakpointSite (lldb::user_id_t owner_id, lldb::user_id_t owner_loc_id, BreakpointSiteSP &bp_site_sp) 2099 { 2100 uint32_t num_owners = bp_site_sp->RemoveOwner (owner_id, owner_loc_id); 2101 if (num_owners == 0) 2102 { 2103 // Don't try to disable the site if we don't have a live process anymore. 2104 if (IsAlive()) 2105 DisableBreakpointSite (bp_site_sp.get()); 2106 m_breakpoint_site_list.RemoveByAddress(bp_site_sp->GetLoadAddress()); 2107 } 2108 } 2109 2110 size_t 2111 Process::RemoveBreakpointOpcodesFromBuffer (addr_t bp_addr, size_t size, uint8_t *buf) const 2112 { 2113 size_t bytes_removed = 0; 2114 BreakpointSiteList bp_sites_in_range; 2115 2116 if (m_breakpoint_site_list.FindInRange (bp_addr, bp_addr + size, bp_sites_in_range)) 2117 { 2118 bp_sites_in_range.ForEach([bp_addr, size, buf, &bytes_removed](BreakpointSite *bp_site) -> void { 2119 if (bp_site->GetType() == BreakpointSite::eSoftware) 2120 { 2121 addr_t intersect_addr; 2122 size_t intersect_size; 2123 size_t opcode_offset; 2124 if (bp_site->IntersectsRange(bp_addr, size, &intersect_addr, &intersect_size, &opcode_offset)) 2125 { 2126 assert(bp_addr <= intersect_addr && intersect_addr < bp_addr + size); 2127 assert(bp_addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= bp_addr + size); 2128 assert(opcode_offset + intersect_size <= bp_site->GetByteSize()); 2129 size_t buf_offset = intersect_addr - bp_addr; 2130 ::memcpy(buf + buf_offset, bp_site->GetSavedOpcodeBytes() + opcode_offset, intersect_size); 2131 } 2132 } 2133 }); 2134 } 2135 return bytes_removed; 2136 } 2137 2138 size_t 2139 Process::GetSoftwareBreakpointTrapOpcode (BreakpointSite* bp_site) 2140 { 2141 PlatformSP platform_sp (GetTarget().GetPlatform()); 2142 if (platform_sp) 2143 return platform_sp->GetSoftwareBreakpointTrapOpcode (GetTarget(), bp_site); 2144 return 0; 2145 } 2146 2147 Error 2148 Process::EnableSoftwareBreakpoint (BreakpointSite *bp_site) 2149 { 2150 Error error; 2151 assert(bp_site != nullptr); 2152 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2153 const addr_t bp_addr = bp_site->GetLoadAddress(); 2154 if (log) 2155 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64, bp_site->GetID(), (uint64_t)bp_addr); 2156 if (bp_site->IsEnabled()) 2157 { 2158 if (log) 2159 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already enabled", bp_site->GetID(), (uint64_t)bp_addr); 2160 return error; 2161 } 2162 2163 if (bp_addr == LLDB_INVALID_ADDRESS) 2164 { 2165 error.SetErrorString("BreakpointSite contains an invalid load address."); 2166 return error; 2167 } 2168 // Ask the lldb::Process subclass to fill in the correct software breakpoint 2169 // trap for the breakpoint site 2170 const size_t bp_opcode_size = GetSoftwareBreakpointTrapOpcode(bp_site); 2171 2172 if (bp_opcode_size == 0) 2173 { 2174 error.SetErrorStringWithFormat ("Process::GetSoftwareBreakpointTrapOpcode() returned zero, unable to get breakpoint trap for address 0x%" PRIx64, bp_addr); 2175 } 2176 else 2177 { 2178 const uint8_t * const bp_opcode_bytes = bp_site->GetTrapOpcodeBytes(); 2179 2180 if (bp_opcode_bytes == nullptr) 2181 { 2182 error.SetErrorString ("BreakpointSite doesn't contain a valid breakpoint trap opcode."); 2183 return error; 2184 } 2185 2186 // Save the original opcode by reading it 2187 if (DoReadMemory(bp_addr, bp_site->GetSavedOpcodeBytes(), bp_opcode_size, error) == bp_opcode_size) 2188 { 2189 // Write a software breakpoint in place of the original opcode 2190 if (DoWriteMemory(bp_addr, bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2191 { 2192 uint8_t verify_bp_opcode_bytes[64]; 2193 if (DoReadMemory(bp_addr, verify_bp_opcode_bytes, bp_opcode_size, error) == bp_opcode_size) 2194 { 2195 if (::memcmp(bp_opcode_bytes, verify_bp_opcode_bytes, bp_opcode_size) == 0) 2196 { 2197 bp_site->SetEnabled(true); 2198 bp_site->SetType (BreakpointSite::eSoftware); 2199 if (log) 2200 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", 2201 bp_site->GetID(), 2202 (uint64_t)bp_addr); 2203 } 2204 else 2205 error.SetErrorString("failed to verify the breakpoint trap in memory."); 2206 } 2207 else 2208 error.SetErrorString("Unable to read memory to verify breakpoint trap."); 2209 } 2210 else 2211 error.SetErrorString("Unable to write breakpoint trap to memory."); 2212 } 2213 else 2214 error.SetErrorString("Unable to read memory at breakpoint address."); 2215 } 2216 if (log && error.Fail()) 2217 log->Printf ("Process::EnableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2218 bp_site->GetID(), 2219 (uint64_t)bp_addr, 2220 error.AsCString()); 2221 return error; 2222 } 2223 2224 Error 2225 Process::DisableSoftwareBreakpoint (BreakpointSite *bp_site) 2226 { 2227 Error error; 2228 assert(bp_site != nullptr); 2229 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_BREAKPOINTS)); 2230 addr_t bp_addr = bp_site->GetLoadAddress(); 2231 lldb::user_id_t breakID = bp_site->GetID(); 2232 if (log) 2233 log->Printf ("Process::DisableSoftwareBreakpoint (breakID = %" PRIu64 ") addr = 0x%" PRIx64, breakID, (uint64_t)bp_addr); 2234 2235 if (bp_site->IsHardware()) 2236 { 2237 error.SetErrorString("Breakpoint site is a hardware breakpoint."); 2238 } 2239 else if (bp_site->IsEnabled()) 2240 { 2241 const size_t break_op_size = bp_site->GetByteSize(); 2242 const uint8_t * const break_op = bp_site->GetTrapOpcodeBytes(); 2243 if (break_op_size > 0) 2244 { 2245 // Clear a software breakpoint instruction 2246 uint8_t curr_break_op[8]; 2247 assert (break_op_size <= sizeof(curr_break_op)); 2248 bool break_op_found = false; 2249 2250 // Read the breakpoint opcode 2251 if (DoReadMemory (bp_addr, curr_break_op, break_op_size, error) == break_op_size) 2252 { 2253 bool verify = false; 2254 // Make sure the breakpoint opcode exists at this address 2255 if (::memcmp (curr_break_op, break_op, break_op_size) == 0) 2256 { 2257 break_op_found = true; 2258 // We found a valid breakpoint opcode at this address, now restore 2259 // the saved opcode. 2260 if (DoWriteMemory (bp_addr, bp_site->GetSavedOpcodeBytes(), break_op_size, error) == break_op_size) 2261 { 2262 verify = true; 2263 } 2264 else 2265 error.SetErrorString("Memory write failed when restoring original opcode."); 2266 } 2267 else 2268 { 2269 error.SetErrorString("Original breakpoint trap is no longer in memory."); 2270 // Set verify to true and so we can check if the original opcode has already been restored 2271 verify = true; 2272 } 2273 2274 if (verify) 2275 { 2276 uint8_t verify_opcode[8]; 2277 assert (break_op_size < sizeof(verify_opcode)); 2278 // Verify that our original opcode made it back to the inferior 2279 if (DoReadMemory (bp_addr, verify_opcode, break_op_size, error) == break_op_size) 2280 { 2281 // compare the memory we just read with the original opcode 2282 if (::memcmp (bp_site->GetSavedOpcodeBytes(), verify_opcode, break_op_size) == 0) 2283 { 2284 // SUCCESS 2285 bp_site->SetEnabled(false); 2286 if (log) 2287 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- SUCCESS", bp_site->GetID(), (uint64_t)bp_addr); 2288 return error; 2289 } 2290 else 2291 { 2292 if (break_op_found) 2293 error.SetErrorString("Failed to restore original opcode."); 2294 } 2295 } 2296 else 2297 error.SetErrorString("Failed to read memory to verify that breakpoint trap was restored."); 2298 } 2299 } 2300 else 2301 error.SetErrorString("Unable to read memory that should contain the breakpoint trap."); 2302 } 2303 } 2304 else 2305 { 2306 if (log) 2307 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- already disabled", bp_site->GetID(), (uint64_t)bp_addr); 2308 return error; 2309 } 2310 2311 if (log) 2312 log->Printf ("Process::DisableSoftwareBreakpoint (site_id = %d) addr = 0x%" PRIx64 " -- FAILED: %s", 2313 bp_site->GetID(), 2314 (uint64_t)bp_addr, 2315 error.AsCString()); 2316 return error; 2317 } 2318 2319 // Uncomment to verify memory caching works after making changes to caching code 2320 //#define VERIFY_MEMORY_READS 2321 2322 size_t 2323 Process::ReadMemory (addr_t addr, void *buf, size_t size, Error &error) 2324 { 2325 error.Clear(); 2326 if (!GetDisableMemoryCache()) 2327 { 2328 #if defined (VERIFY_MEMORY_READS) 2329 // Memory caching is enabled, with debug verification 2330 2331 if (buf && size) 2332 { 2333 // Uncomment the line below to make sure memory caching is working. 2334 // I ran this through the test suite and got no assertions, so I am 2335 // pretty confident this is working well. If any changes are made to 2336 // memory caching, uncomment the line below and test your changes! 2337 2338 // Verify all memory reads by using the cache first, then redundantly 2339 // reading the same memory from the inferior and comparing to make sure 2340 // everything is exactly the same. 2341 std::string verify_buf (size, '\0'); 2342 assert (verify_buf.size() == size); 2343 const size_t cache_bytes_read = m_memory_cache.Read (this, addr, buf, size, error); 2344 Error verify_error; 2345 const size_t verify_bytes_read = ReadMemoryFromInferior (addr, const_cast<char *>(verify_buf.data()), verify_buf.size(), verify_error); 2346 assert (cache_bytes_read == verify_bytes_read); 2347 assert (memcmp(buf, verify_buf.data(), verify_buf.size()) == 0); 2348 assert (verify_error.Success() == error.Success()); 2349 return cache_bytes_read; 2350 } 2351 return 0; 2352 #else // !defined(VERIFY_MEMORY_READS) 2353 // Memory caching is enabled, without debug verification 2354 2355 return m_memory_cache.Read (addr, buf, size, error); 2356 #endif // defined (VERIFY_MEMORY_READS) 2357 } 2358 else 2359 { 2360 // Memory caching is disabled 2361 2362 return ReadMemoryFromInferior (addr, buf, size, error); 2363 } 2364 } 2365 2366 size_t 2367 Process::ReadCStringFromMemory (addr_t addr, std::string &out_str, Error &error) 2368 { 2369 char buf[256]; 2370 out_str.clear(); 2371 addr_t curr_addr = addr; 2372 while (true) 2373 { 2374 size_t length = ReadCStringFromMemory (curr_addr, buf, sizeof(buf), error); 2375 if (length == 0) 2376 break; 2377 out_str.append(buf, length); 2378 // If we got "length - 1" bytes, we didn't get the whole C string, we 2379 // need to read some more characters 2380 if (length == sizeof(buf) - 1) 2381 curr_addr += length; 2382 else 2383 break; 2384 } 2385 return out_str.size(); 2386 } 2387 2388 size_t 2389 Process::ReadStringFromMemory (addr_t addr, char *dst, size_t max_bytes, Error &error, 2390 size_t type_width) 2391 { 2392 size_t total_bytes_read = 0; 2393 if (dst && max_bytes && type_width && max_bytes >= type_width) 2394 { 2395 // Ensure a null terminator independent of the number of bytes that is read. 2396 memset (dst, 0, max_bytes); 2397 size_t bytes_left = max_bytes - type_width; 2398 2399 const char terminator[4] = {'\0', '\0', '\0', '\0'}; 2400 assert(sizeof(terminator) >= type_width && 2401 "Attempting to validate a string with more than 4 bytes per character!"); 2402 2403 addr_t curr_addr = addr; 2404 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2405 char *curr_dst = dst; 2406 2407 error.Clear(); 2408 while (bytes_left > 0 && error.Success()) 2409 { 2410 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2411 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2412 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2413 2414 if (bytes_read == 0) 2415 break; 2416 2417 // Search for a null terminator of correct size and alignment in bytes_read 2418 size_t aligned_start = total_bytes_read - total_bytes_read % type_width; 2419 for (size_t i = aligned_start; i + type_width <= total_bytes_read + bytes_read; i += type_width) 2420 if (::memcmp(&dst[i], terminator, type_width) == 0) 2421 { 2422 error.Clear(); 2423 return i; 2424 } 2425 2426 total_bytes_read += bytes_read; 2427 curr_dst += bytes_read; 2428 curr_addr += bytes_read; 2429 bytes_left -= bytes_read; 2430 } 2431 } 2432 else 2433 { 2434 if (max_bytes) 2435 error.SetErrorString("invalid arguments"); 2436 } 2437 return total_bytes_read; 2438 } 2439 2440 // Deprecated in favor of ReadStringFromMemory which has wchar support and correct code to find 2441 // null terminators. 2442 size_t 2443 Process::ReadCStringFromMemory (addr_t addr, char *dst, size_t dst_max_len, Error &result_error) 2444 { 2445 size_t total_cstr_len = 0; 2446 if (dst && dst_max_len) 2447 { 2448 result_error.Clear(); 2449 // NULL out everything just to be safe 2450 memset (dst, 0, dst_max_len); 2451 Error error; 2452 addr_t curr_addr = addr; 2453 const size_t cache_line_size = m_memory_cache.GetMemoryCacheLineSize(); 2454 size_t bytes_left = dst_max_len - 1; 2455 char *curr_dst = dst; 2456 2457 while (bytes_left > 0) 2458 { 2459 addr_t cache_line_bytes_left = cache_line_size - (curr_addr % cache_line_size); 2460 addr_t bytes_to_read = std::min<addr_t>(bytes_left, cache_line_bytes_left); 2461 size_t bytes_read = ReadMemory (curr_addr, curr_dst, bytes_to_read, error); 2462 2463 if (bytes_read == 0) 2464 { 2465 result_error = error; 2466 dst[total_cstr_len] = '\0'; 2467 break; 2468 } 2469 const size_t len = strlen(curr_dst); 2470 2471 total_cstr_len += len; 2472 2473 if (len < bytes_to_read) 2474 break; 2475 2476 curr_dst += bytes_read; 2477 curr_addr += bytes_read; 2478 bytes_left -= bytes_read; 2479 } 2480 } 2481 else 2482 { 2483 if (dst == nullptr) 2484 result_error.SetErrorString("invalid arguments"); 2485 else 2486 result_error.Clear(); 2487 } 2488 return total_cstr_len; 2489 } 2490 2491 size_t 2492 Process::ReadMemoryFromInferior (addr_t addr, void *buf, size_t size, Error &error) 2493 { 2494 if (buf == nullptr || size == 0) 2495 return 0; 2496 2497 size_t bytes_read = 0; 2498 uint8_t *bytes = (uint8_t *)buf; 2499 2500 while (bytes_read < size) 2501 { 2502 const size_t curr_size = size - bytes_read; 2503 const size_t curr_bytes_read = DoReadMemory (addr + bytes_read, 2504 bytes + bytes_read, 2505 curr_size, 2506 error); 2507 bytes_read += curr_bytes_read; 2508 if (curr_bytes_read == curr_size || curr_bytes_read == 0) 2509 break; 2510 } 2511 2512 // Replace any software breakpoint opcodes that fall into this range back 2513 // into "buf" before we return 2514 if (bytes_read > 0) 2515 RemoveBreakpointOpcodesFromBuffer (addr, bytes_read, (uint8_t *)buf); 2516 return bytes_read; 2517 } 2518 2519 uint64_t 2520 Process::ReadUnsignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, uint64_t fail_value, 2521 Error &error) 2522 { 2523 Scalar scalar; 2524 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, false, scalar, error)) 2525 return scalar.ULongLong(fail_value); 2526 return fail_value; 2527 } 2528 2529 int64_t 2530 Process::ReadSignedIntegerFromMemory(lldb::addr_t vm_addr, size_t integer_byte_size, int64_t fail_value, Error &error) 2531 { 2532 Scalar scalar; 2533 if (ReadScalarIntegerFromMemory(vm_addr, integer_byte_size, true, scalar, error)) 2534 return scalar.SLongLong(fail_value); 2535 return fail_value; 2536 } 2537 2538 addr_t 2539 Process::ReadPointerFromMemory (lldb::addr_t vm_addr, Error &error) 2540 { 2541 Scalar scalar; 2542 if (ReadScalarIntegerFromMemory(vm_addr, GetAddressByteSize(), false, scalar, error)) 2543 return scalar.ULongLong(LLDB_INVALID_ADDRESS); 2544 return LLDB_INVALID_ADDRESS; 2545 } 2546 2547 bool 2548 Process::WritePointerToMemory (lldb::addr_t vm_addr, 2549 lldb::addr_t ptr_value, 2550 Error &error) 2551 { 2552 Scalar scalar; 2553 const uint32_t addr_byte_size = GetAddressByteSize(); 2554 if (addr_byte_size <= 4) 2555 scalar = (uint32_t)ptr_value; 2556 else 2557 scalar = ptr_value; 2558 return WriteScalarToMemory(vm_addr, scalar, addr_byte_size, error) == addr_byte_size; 2559 } 2560 2561 size_t 2562 Process::WriteMemoryPrivate (addr_t addr, const void *buf, size_t size, Error &error) 2563 { 2564 size_t bytes_written = 0; 2565 const uint8_t *bytes = (const uint8_t *)buf; 2566 2567 while (bytes_written < size) 2568 { 2569 const size_t curr_size = size - bytes_written; 2570 const size_t curr_bytes_written = DoWriteMemory (addr + bytes_written, 2571 bytes + bytes_written, 2572 curr_size, 2573 error); 2574 bytes_written += curr_bytes_written; 2575 if (curr_bytes_written == curr_size || curr_bytes_written == 0) 2576 break; 2577 } 2578 return bytes_written; 2579 } 2580 2581 size_t 2582 Process::WriteMemory (addr_t addr, const void *buf, size_t size, Error &error) 2583 { 2584 #if defined (ENABLE_MEMORY_CACHING) 2585 m_memory_cache.Flush (addr, size); 2586 #endif 2587 2588 if (buf == nullptr || size == 0) 2589 return 0; 2590 2591 m_mod_id.BumpMemoryID(); 2592 2593 // We need to write any data that would go where any current software traps 2594 // (enabled software breakpoints) any software traps (breakpoints) that we 2595 // may have placed in our tasks memory. 2596 2597 BreakpointSiteList bp_sites_in_range; 2598 2599 if (m_breakpoint_site_list.FindInRange (addr, addr + size, bp_sites_in_range)) 2600 { 2601 // No breakpoint sites overlap 2602 if (bp_sites_in_range.IsEmpty()) 2603 return WriteMemoryPrivate (addr, buf, size, error); 2604 else 2605 { 2606 const uint8_t *ubuf = (const uint8_t *)buf; 2607 uint64_t bytes_written = 0; 2608 2609 bp_sites_in_range.ForEach([this, addr, size, &bytes_written, &ubuf, &error](BreakpointSite *bp) -> void { 2610 2611 if (error.Success()) 2612 { 2613 addr_t intersect_addr; 2614 size_t intersect_size; 2615 size_t opcode_offset; 2616 const bool intersects = bp->IntersectsRange(addr, size, &intersect_addr, &intersect_size, &opcode_offset); 2617 UNUSED_IF_ASSERT_DISABLED(intersects); 2618 assert(intersects); 2619 assert(addr <= intersect_addr && intersect_addr < addr + size); 2620 assert(addr < intersect_addr + intersect_size && intersect_addr + intersect_size <= addr + size); 2621 assert(opcode_offset + intersect_size <= bp->GetByteSize()); 2622 2623 // Check for bytes before this breakpoint 2624 const addr_t curr_addr = addr + bytes_written; 2625 if (intersect_addr > curr_addr) 2626 { 2627 // There are some bytes before this breakpoint that we need to 2628 // just write to memory 2629 size_t curr_size = intersect_addr - curr_addr; 2630 size_t curr_bytes_written = WriteMemoryPrivate (curr_addr, 2631 ubuf + bytes_written, 2632 curr_size, 2633 error); 2634 bytes_written += curr_bytes_written; 2635 if (curr_bytes_written != curr_size) 2636 { 2637 // We weren't able to write all of the requested bytes, we 2638 // are done looping and will return the number of bytes that 2639 // we have written so far. 2640 if (error.Success()) 2641 error.SetErrorToGenericError(); 2642 } 2643 } 2644 // Now write any bytes that would cover up any software breakpoints 2645 // directly into the breakpoint opcode buffer 2646 ::memcpy(bp->GetSavedOpcodeBytes() + opcode_offset, ubuf + bytes_written, intersect_size); 2647 bytes_written += intersect_size; 2648 } 2649 }); 2650 2651 if (bytes_written < size) 2652 WriteMemoryPrivate (addr + bytes_written, 2653 ubuf + bytes_written, 2654 size - bytes_written, 2655 error); 2656 } 2657 } 2658 else 2659 { 2660 return WriteMemoryPrivate (addr, buf, size, error); 2661 } 2662 2663 // Write any remaining bytes after the last breakpoint if we have any left 2664 return 0; //bytes_written; 2665 } 2666 2667 size_t 2668 Process::WriteScalarToMemory (addr_t addr, const Scalar &scalar, size_t byte_size, Error &error) 2669 { 2670 if (byte_size == UINT32_MAX) 2671 byte_size = scalar.GetByteSize(); 2672 if (byte_size > 0) 2673 { 2674 uint8_t buf[32]; 2675 const size_t mem_size = scalar.GetAsMemoryData (buf, byte_size, GetByteOrder(), error); 2676 if (mem_size > 0) 2677 return WriteMemory(addr, buf, mem_size, error); 2678 else 2679 error.SetErrorString ("failed to get scalar as memory data"); 2680 } 2681 else 2682 { 2683 error.SetErrorString ("invalid scalar value"); 2684 } 2685 return 0; 2686 } 2687 2688 size_t 2689 Process::ReadScalarIntegerFromMemory (addr_t addr, 2690 uint32_t byte_size, 2691 bool is_signed, 2692 Scalar &scalar, 2693 Error &error) 2694 { 2695 uint64_t uval = 0; 2696 if (byte_size == 0) 2697 { 2698 error.SetErrorString ("byte size is zero"); 2699 } 2700 else if (byte_size & (byte_size - 1)) 2701 { 2702 error.SetErrorStringWithFormat ("byte size %u is not a power of 2", byte_size); 2703 } 2704 else if (byte_size <= sizeof(uval)) 2705 { 2706 const size_t bytes_read = ReadMemory (addr, &uval, byte_size, error); 2707 if (bytes_read == byte_size) 2708 { 2709 DataExtractor data (&uval, sizeof(uval), GetByteOrder(), GetAddressByteSize()); 2710 lldb::offset_t offset = 0; 2711 if (byte_size <= 4) 2712 scalar = data.GetMaxU32 (&offset, byte_size); 2713 else 2714 scalar = data.GetMaxU64 (&offset, byte_size); 2715 if (is_signed) 2716 scalar.SignExtend(byte_size * 8); 2717 return bytes_read; 2718 } 2719 } 2720 else 2721 { 2722 error.SetErrorStringWithFormat ("byte size of %u is too large for integer scalar type", byte_size); 2723 } 2724 return 0; 2725 } 2726 2727 #define USE_ALLOCATE_MEMORY_CACHE 1 2728 addr_t 2729 Process::AllocateMemory(size_t size, uint32_t permissions, Error &error) 2730 { 2731 if (GetPrivateState() != eStateStopped) 2732 return LLDB_INVALID_ADDRESS; 2733 2734 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2735 return m_allocated_memory_cache.AllocateMemory(size, permissions, error); 2736 #else 2737 addr_t allocated_addr = DoAllocateMemory (size, permissions, error); 2738 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2739 if (log) 2740 log->Printf("Process::AllocateMemory(size=%" PRIu64 ", permissions=%s) => 0x%16.16" PRIx64 " (m_stop_id = %u m_memory_id = %u)", 2741 (uint64_t)size, 2742 GetPermissionsAsCString (permissions), 2743 (uint64_t)allocated_addr, 2744 m_mod_id.GetStopID(), 2745 m_mod_id.GetMemoryID()); 2746 return allocated_addr; 2747 #endif 2748 } 2749 2750 addr_t 2751 Process::CallocateMemory(size_t size, uint32_t permissions, Error &error) 2752 { 2753 addr_t return_addr = AllocateMemory(size, permissions, error); 2754 if (error.Success()) 2755 { 2756 std::string buffer(size, 0); 2757 WriteMemory(return_addr, buffer.c_str(), size, error); 2758 } 2759 return return_addr; 2760 } 2761 2762 bool 2763 Process::CanJIT () 2764 { 2765 if (m_can_jit == eCanJITDontKnow) 2766 { 2767 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2768 Error err; 2769 2770 uint64_t allocated_memory = AllocateMemory(8, 2771 ePermissionsReadable | ePermissionsWritable | ePermissionsExecutable, 2772 err); 2773 2774 if (err.Success()) 2775 { 2776 m_can_jit = eCanJITYes; 2777 if (log) 2778 log->Printf ("Process::%s pid %" PRIu64 " allocation test passed, CanJIT () is true", __FUNCTION__, GetID ()); 2779 } 2780 else 2781 { 2782 m_can_jit = eCanJITNo; 2783 if (log) 2784 log->Printf ("Process::%s pid %" PRIu64 " allocation test failed, CanJIT () is false: %s", __FUNCTION__, GetID (), err.AsCString ()); 2785 } 2786 2787 DeallocateMemory (allocated_memory); 2788 } 2789 2790 return m_can_jit == eCanJITYes; 2791 } 2792 2793 void 2794 Process::SetCanJIT (bool can_jit) 2795 { 2796 m_can_jit = (can_jit ? eCanJITYes : eCanJITNo); 2797 } 2798 2799 void 2800 Process::SetCanRunCode (bool can_run_code) 2801 { 2802 SetCanJIT(can_run_code); 2803 m_can_interpret_function_calls = can_run_code; 2804 } 2805 2806 Error 2807 Process::DeallocateMemory (addr_t ptr) 2808 { 2809 Error error; 2810 #if defined (USE_ALLOCATE_MEMORY_CACHE) 2811 if (!m_allocated_memory_cache.DeallocateMemory(ptr)) 2812 { 2813 error.SetErrorStringWithFormat ("deallocation of memory at 0x%" PRIx64 " failed.", (uint64_t)ptr); 2814 } 2815 #else 2816 error = DoDeallocateMemory (ptr); 2817 2818 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 2819 if (log) 2820 log->Printf("Process::DeallocateMemory(addr=0x%16.16" PRIx64 ") => err = %s (m_stop_id = %u, m_memory_id = %u)", 2821 ptr, 2822 error.AsCString("SUCCESS"), 2823 m_mod_id.GetStopID(), 2824 m_mod_id.GetMemoryID()); 2825 #endif 2826 return error; 2827 } 2828 2829 ModuleSP 2830 Process::ReadModuleFromMemory (const FileSpec& file_spec, 2831 lldb::addr_t header_addr, 2832 size_t size_to_read) 2833 { 2834 Log *log = lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_HOST); 2835 if (log) 2836 { 2837 log->Printf ("Process::ReadModuleFromMemory reading %s binary from memory", file_spec.GetPath().c_str()); 2838 } 2839 ModuleSP module_sp (new Module (file_spec, ArchSpec())); 2840 if (module_sp) 2841 { 2842 Error error; 2843 ObjectFile *objfile = module_sp->GetMemoryObjectFile (shared_from_this(), header_addr, error, size_to_read); 2844 if (objfile) 2845 return module_sp; 2846 } 2847 return ModuleSP(); 2848 } 2849 2850 bool 2851 Process::GetLoadAddressPermissions (lldb::addr_t load_addr, uint32_t &permissions) 2852 { 2853 MemoryRegionInfo range_info; 2854 permissions = 0; 2855 Error error (GetMemoryRegionInfo (load_addr, range_info)); 2856 if (!error.Success()) 2857 return false; 2858 if (range_info.GetReadable() == MemoryRegionInfo::eDontKnow 2859 || range_info.GetWritable() == MemoryRegionInfo::eDontKnow 2860 || range_info.GetExecutable() == MemoryRegionInfo::eDontKnow) 2861 { 2862 return false; 2863 } 2864 2865 if (range_info.GetReadable() == MemoryRegionInfo::eYes) 2866 permissions |= lldb::ePermissionsReadable; 2867 2868 if (range_info.GetWritable() == MemoryRegionInfo::eYes) 2869 permissions |= lldb::ePermissionsWritable; 2870 2871 if (range_info.GetExecutable() == MemoryRegionInfo::eYes) 2872 permissions |= lldb::ePermissionsExecutable; 2873 2874 return true; 2875 } 2876 2877 Error 2878 Process::EnableWatchpoint (Watchpoint *watchpoint, bool notify) 2879 { 2880 Error error; 2881 error.SetErrorString("watchpoints are not supported"); 2882 return error; 2883 } 2884 2885 Error 2886 Process::DisableWatchpoint (Watchpoint *watchpoint, bool notify) 2887 { 2888 Error error; 2889 error.SetErrorString("watchpoints are not supported"); 2890 return error; 2891 } 2892 2893 StateType 2894 Process::WaitForProcessStopPrivate (const TimeValue *timeout, EventSP &event_sp) 2895 { 2896 StateType state; 2897 // Now wait for the process to launch and return control to us, and then 2898 // call DidLaunch: 2899 while (true) 2900 { 2901 event_sp.reset(); 2902 state = WaitForStateChangedEventsPrivate (timeout, event_sp); 2903 2904 if (StateIsStoppedState(state, false)) 2905 break; 2906 2907 // If state is invalid, then we timed out 2908 if (state == eStateInvalid) 2909 break; 2910 2911 if (event_sp) 2912 HandlePrivateEvent (event_sp); 2913 } 2914 return state; 2915 } 2916 2917 void 2918 Process::LoadOperatingSystemPlugin(bool flush) 2919 { 2920 if (flush) 2921 m_thread_list.Clear(); 2922 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 2923 if (flush) 2924 Flush(); 2925 } 2926 2927 Error 2928 Process::Launch (ProcessLaunchInfo &launch_info) 2929 { 2930 Error error; 2931 m_abi_sp.reset(); 2932 m_dyld_ap.reset(); 2933 m_jit_loaders_ap.reset(); 2934 m_system_runtime_ap.reset(); 2935 m_os_ap.reset(); 2936 m_process_input_reader.reset(); 2937 m_stop_info_override_callback = nullptr; 2938 2939 Module *exe_module = GetTarget().GetExecutableModulePointer(); 2940 if (exe_module) 2941 { 2942 char local_exec_file_path[PATH_MAX]; 2943 char platform_exec_file_path[PATH_MAX]; 2944 exe_module->GetFileSpec().GetPath(local_exec_file_path, sizeof(local_exec_file_path)); 2945 exe_module->GetPlatformFileSpec().GetPath(platform_exec_file_path, sizeof(platform_exec_file_path)); 2946 if (exe_module->GetFileSpec().Exists()) 2947 { 2948 // Install anything that might need to be installed prior to launching. 2949 // For host systems, this will do nothing, but if we are connected to a 2950 // remote platform it will install any needed binaries 2951 error = GetTarget().Install(&launch_info); 2952 if (error.Fail()) 2953 return error; 2954 2955 if (PrivateStateThreadIsValid ()) 2956 PausePrivateStateThread (); 2957 2958 error = WillLaunch (exe_module); 2959 if (error.Success()) 2960 { 2961 const bool restarted = false; 2962 SetPublicState (eStateLaunching, restarted); 2963 m_should_detach = false; 2964 2965 if (m_public_run_lock.TrySetRunning()) 2966 { 2967 // Now launch using these arguments. 2968 error = DoLaunch (exe_module, launch_info); 2969 } 2970 else 2971 { 2972 // This shouldn't happen 2973 error.SetErrorString("failed to acquire process run lock"); 2974 } 2975 2976 if (error.Fail()) 2977 { 2978 if (GetID() != LLDB_INVALID_PROCESS_ID) 2979 { 2980 SetID (LLDB_INVALID_PROCESS_ID); 2981 const char *error_string = error.AsCString(); 2982 if (error_string == nullptr) 2983 error_string = "launch failed"; 2984 SetExitStatus (-1, error_string); 2985 } 2986 } 2987 else 2988 { 2989 EventSP event_sp; 2990 TimeValue timeout_time; 2991 timeout_time = TimeValue::Now(); 2992 timeout_time.OffsetWithSeconds(10); 2993 StateType state = WaitForProcessStopPrivate(&timeout_time, event_sp); 2994 2995 if (state == eStateInvalid || !event_sp) 2996 { 2997 // We were able to launch the process, but we failed to 2998 // catch the initial stop. 2999 error.SetErrorString ("failed to catch stop after launch"); 3000 SetExitStatus (0, "failed to catch stop after launch"); 3001 Destroy(false); 3002 } 3003 else if (state == eStateStopped || state == eStateCrashed) 3004 { 3005 DidLaunch (); 3006 3007 DynamicLoader *dyld = GetDynamicLoader (); 3008 if (dyld) 3009 dyld->DidLaunch(); 3010 3011 GetJITLoaders().DidLaunch(); 3012 3013 SystemRuntime *system_runtime = GetSystemRuntime (); 3014 if (system_runtime) 3015 system_runtime->DidLaunch(); 3016 3017 LoadOperatingSystemPlugin(false); 3018 3019 // Note, the stop event was consumed above, but not handled. This was done 3020 // to give DidLaunch a chance to run. The target is either stopped or crashed. 3021 // Directly set the state. This is done to prevent a stop message with a bunch 3022 // of spurious output on thread status, as well as not pop a ProcessIOHandler. 3023 SetPublicState(state, false); 3024 3025 if (PrivateStateThreadIsValid ()) 3026 ResumePrivateStateThread (); 3027 else 3028 StartPrivateStateThread (); 3029 3030 m_stop_info_override_callback = GetTarget().GetArchitecture().GetStopInfoOverrideCallback(); 3031 3032 // Target was stopped at entry as was intended. Need to notify the listeners 3033 // about it. 3034 if (state == eStateStopped && launch_info.GetFlags().Test(eLaunchFlagStopAtEntry)) 3035 HandlePrivateEvent(event_sp); 3036 } 3037 else if (state == eStateExited) 3038 { 3039 // We exited while trying to launch somehow. Don't call DidLaunch as that's 3040 // not likely to work, and return an invalid pid. 3041 HandlePrivateEvent (event_sp); 3042 } 3043 } 3044 } 3045 } 3046 else 3047 { 3048 error.SetErrorStringWithFormat("file doesn't exist: '%s'", local_exec_file_path); 3049 } 3050 } 3051 return error; 3052 } 3053 3054 Error 3055 Process::LoadCore () 3056 { 3057 Error error = DoLoadCore(); 3058 if (error.Success()) 3059 { 3060 ListenerSP listener_sp (Listener::MakeListener("lldb.process.load_core_listener")); 3061 HijackProcessEvents(listener_sp); 3062 3063 if (PrivateStateThreadIsValid ()) 3064 ResumePrivateStateThread (); 3065 else 3066 StartPrivateStateThread (); 3067 3068 DynamicLoader *dyld = GetDynamicLoader (); 3069 if (dyld) 3070 dyld->DidAttach(); 3071 3072 GetJITLoaders().DidAttach(); 3073 3074 SystemRuntime *system_runtime = GetSystemRuntime (); 3075 if (system_runtime) 3076 system_runtime->DidAttach(); 3077 3078 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3079 // We successfully loaded a core file, now pretend we stopped so we can 3080 // show all of the threads in the core file and explore the crashed 3081 // state. 3082 SetPrivateState (eStateStopped); 3083 3084 // Wait indefinitely for a stopped event since we just posted one above... 3085 lldb::EventSP event_sp; 3086 listener_sp->WaitForEvent (nullptr, event_sp); 3087 StateType state = ProcessEventData::GetStateFromEvent(event_sp.get()); 3088 3089 if (!StateIsStoppedState (state, false)) 3090 { 3091 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3092 if (log) 3093 log->Printf("Process::Halt() failed to stop, state is: %s", StateAsCString(state)); 3094 error.SetErrorString ("Did not get stopped event after loading the core file."); 3095 } 3096 RestoreProcessEvents (); 3097 } 3098 return error; 3099 } 3100 3101 DynamicLoader * 3102 Process::GetDynamicLoader () 3103 { 3104 if (!m_dyld_ap) 3105 m_dyld_ap.reset(DynamicLoader::FindPlugin(this, nullptr)); 3106 return m_dyld_ap.get(); 3107 } 3108 3109 const lldb::DataBufferSP 3110 Process::GetAuxvData() 3111 { 3112 return DataBufferSP (); 3113 } 3114 3115 JITLoaderList & 3116 Process::GetJITLoaders () 3117 { 3118 if (!m_jit_loaders_ap) 3119 { 3120 m_jit_loaders_ap.reset(new JITLoaderList()); 3121 JITLoader::LoadPlugins(this, *m_jit_loaders_ap); 3122 } 3123 return *m_jit_loaders_ap; 3124 } 3125 3126 SystemRuntime * 3127 Process::GetSystemRuntime () 3128 { 3129 if (!m_system_runtime_ap) 3130 m_system_runtime_ap.reset(SystemRuntime::FindPlugin(this)); 3131 return m_system_runtime_ap.get(); 3132 } 3133 3134 Process::AttachCompletionHandler::AttachCompletionHandler (Process *process, uint32_t exec_count) : 3135 NextEventAction (process), 3136 m_exec_count (exec_count) 3137 { 3138 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3139 if (log) 3140 log->Printf ("Process::AttachCompletionHandler::%s process=%p, exec_count=%" PRIu32, __FUNCTION__, static_cast<void*>(process), exec_count); 3141 } 3142 3143 Process::NextEventAction::EventActionResult 3144 Process::AttachCompletionHandler::PerformAction (lldb::EventSP &event_sp) 3145 { 3146 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3147 3148 StateType state = ProcessEventData::GetStateFromEvent (event_sp.get()); 3149 if (log) 3150 log->Printf ("Process::AttachCompletionHandler::%s called with state %s (%d)", __FUNCTION__, StateAsCString(state), static_cast<int> (state)); 3151 3152 switch (state) 3153 { 3154 case eStateAttaching: 3155 return eEventActionSuccess; 3156 3157 case eStateRunning: 3158 case eStateConnected: 3159 return eEventActionRetry; 3160 3161 case eStateStopped: 3162 case eStateCrashed: 3163 // During attach, prior to sending the eStateStopped event, 3164 // lldb_private::Process subclasses must set the new process ID. 3165 assert (m_process->GetID() != LLDB_INVALID_PROCESS_ID); 3166 // We don't want these events to be reported, so go set the ShouldReportStop here: 3167 m_process->GetThreadList().SetShouldReportStop (eVoteNo); 3168 3169 if (m_exec_count > 0) 3170 { 3171 --m_exec_count; 3172 3173 if (log) 3174 log->Printf ("Process::AttachCompletionHandler::%s state %s: reduced remaining exec count to %" PRIu32 ", requesting resume", __FUNCTION__, StateAsCString(state), m_exec_count); 3175 3176 RequestResume(); 3177 return eEventActionRetry; 3178 } 3179 else 3180 { 3181 if (log) 3182 log->Printf ("Process::AttachCompletionHandler::%s state %s: no more execs expected to start, continuing with attach", __FUNCTION__, StateAsCString(state)); 3183 3184 m_process->CompleteAttach (); 3185 return eEventActionSuccess; 3186 } 3187 break; 3188 3189 default: 3190 case eStateExited: 3191 case eStateInvalid: 3192 break; 3193 } 3194 3195 m_exit_string.assign ("No valid Process"); 3196 return eEventActionExit; 3197 } 3198 3199 Process::NextEventAction::EventActionResult 3200 Process::AttachCompletionHandler::HandleBeingInterrupted() 3201 { 3202 return eEventActionSuccess; 3203 } 3204 3205 const char * 3206 Process::AttachCompletionHandler::GetExitString () 3207 { 3208 return m_exit_string.c_str(); 3209 } 3210 3211 ListenerSP 3212 ProcessAttachInfo::GetListenerForProcess (Debugger &debugger) 3213 { 3214 if (m_listener_sp) 3215 return m_listener_sp; 3216 else 3217 return debugger.GetListener(); 3218 } 3219 3220 Error 3221 Process::Attach (ProcessAttachInfo &attach_info) 3222 { 3223 m_abi_sp.reset(); 3224 m_process_input_reader.reset(); 3225 m_dyld_ap.reset(); 3226 m_jit_loaders_ap.reset(); 3227 m_system_runtime_ap.reset(); 3228 m_os_ap.reset(); 3229 m_stop_info_override_callback = nullptr; 3230 3231 lldb::pid_t attach_pid = attach_info.GetProcessID(); 3232 Error error; 3233 if (attach_pid == LLDB_INVALID_PROCESS_ID) 3234 { 3235 char process_name[PATH_MAX]; 3236 3237 if (attach_info.GetExecutableFile().GetPath (process_name, sizeof(process_name))) 3238 { 3239 const bool wait_for_launch = attach_info.GetWaitForLaunch(); 3240 3241 if (wait_for_launch) 3242 { 3243 error = WillAttachToProcessWithName(process_name, wait_for_launch); 3244 if (error.Success()) 3245 { 3246 if (m_public_run_lock.TrySetRunning()) 3247 { 3248 m_should_detach = true; 3249 const bool restarted = false; 3250 SetPublicState (eStateAttaching, restarted); 3251 // Now attach using these arguments. 3252 error = DoAttachToProcessWithName (process_name, attach_info); 3253 } 3254 else 3255 { 3256 // This shouldn't happen 3257 error.SetErrorString("failed to acquire process run lock"); 3258 } 3259 3260 if (error.Fail()) 3261 { 3262 if (GetID() != LLDB_INVALID_PROCESS_ID) 3263 { 3264 SetID (LLDB_INVALID_PROCESS_ID); 3265 if (error.AsCString() == nullptr) 3266 error.SetErrorString("attach failed"); 3267 3268 SetExitStatus(-1, error.AsCString()); 3269 } 3270 } 3271 else 3272 { 3273 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3274 StartPrivateStateThread(); 3275 } 3276 return error; 3277 } 3278 } 3279 else 3280 { 3281 ProcessInstanceInfoList process_infos; 3282 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3283 3284 if (platform_sp) 3285 { 3286 ProcessInstanceInfoMatch match_info; 3287 match_info.GetProcessInfo() = attach_info; 3288 match_info.SetNameMatchType (eNameMatchEquals); 3289 platform_sp->FindProcesses (match_info, process_infos); 3290 const uint32_t num_matches = process_infos.GetSize(); 3291 if (num_matches == 1) 3292 { 3293 attach_pid = process_infos.GetProcessIDAtIndex(0); 3294 // Fall through and attach using the above process ID 3295 } 3296 else 3297 { 3298 match_info.GetProcessInfo().GetExecutableFile().GetPath (process_name, sizeof(process_name)); 3299 if (num_matches > 1) 3300 { 3301 StreamString s; 3302 ProcessInstanceInfo::DumpTableHeader (s, platform_sp.get(), true, false); 3303 for (size_t i = 0; i < num_matches; i++) 3304 { 3305 process_infos.GetProcessInfoAtIndex(i).DumpAsTableRow(s, platform_sp.get(), true, false); 3306 } 3307 error.SetErrorStringWithFormat ("more than one process named %s:\n%s", 3308 process_name, 3309 s.GetData()); 3310 } 3311 else 3312 error.SetErrorStringWithFormat ("could not find a process named %s", process_name); 3313 } 3314 } 3315 else 3316 { 3317 error.SetErrorString ("invalid platform, can't find processes by name"); 3318 return error; 3319 } 3320 } 3321 } 3322 else 3323 { 3324 error.SetErrorString ("invalid process name"); 3325 } 3326 } 3327 3328 if (attach_pid != LLDB_INVALID_PROCESS_ID) 3329 { 3330 error = WillAttachToProcessWithID(attach_pid); 3331 if (error.Success()) 3332 { 3333 3334 if (m_public_run_lock.TrySetRunning()) 3335 { 3336 // Now attach using these arguments. 3337 m_should_detach = true; 3338 const bool restarted = false; 3339 SetPublicState (eStateAttaching, restarted); 3340 error = DoAttachToProcessWithID (attach_pid, attach_info); 3341 } 3342 else 3343 { 3344 // This shouldn't happen 3345 error.SetErrorString("failed to acquire process run lock"); 3346 } 3347 3348 if (error.Success()) 3349 { 3350 SetNextEventAction(new Process::AttachCompletionHandler(this, attach_info.GetResumeCount())); 3351 StartPrivateStateThread(); 3352 } 3353 else 3354 { 3355 if (GetID() != LLDB_INVALID_PROCESS_ID) 3356 SetID (LLDB_INVALID_PROCESS_ID); 3357 3358 const char *error_string = error.AsCString(); 3359 if (error_string == nullptr) 3360 error_string = "attach failed"; 3361 3362 SetExitStatus(-1, error_string); 3363 } 3364 } 3365 } 3366 return error; 3367 } 3368 3369 void 3370 Process::CompleteAttach () 3371 { 3372 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS | LIBLLDB_LOG_TARGET)); 3373 if (log) 3374 log->Printf ("Process::%s()", __FUNCTION__); 3375 3376 // Let the process subclass figure out at much as it can about the process 3377 // before we go looking for a dynamic loader plug-in. 3378 ArchSpec process_arch; 3379 DidAttach(process_arch); 3380 3381 if (process_arch.IsValid()) 3382 { 3383 GetTarget().SetArchitecture(process_arch); 3384 if (log) 3385 { 3386 const char *triple_str = process_arch.GetTriple().getTriple().c_str (); 3387 log->Printf ("Process::%s replacing process architecture with DidAttach() architecture: %s", 3388 __FUNCTION__, 3389 triple_str ? triple_str : "<null>"); 3390 } 3391 } 3392 3393 // We just attached. If we have a platform, ask it for the process architecture, and if it isn't 3394 // the same as the one we've already set, switch architectures. 3395 PlatformSP platform_sp (GetTarget().GetPlatform ()); 3396 assert(platform_sp); 3397 if (platform_sp) 3398 { 3399 const ArchSpec &target_arch = GetTarget().GetArchitecture(); 3400 if (target_arch.IsValid() && !platform_sp->IsCompatibleArchitecture(target_arch, false, nullptr)) 3401 { 3402 ArchSpec platform_arch; 3403 platform_sp = platform_sp->GetPlatformForArchitecture (target_arch, &platform_arch); 3404 if (platform_sp) 3405 { 3406 GetTarget().SetPlatform (platform_sp); 3407 GetTarget().SetArchitecture(platform_arch); 3408 if (log) 3409 log->Printf ("Process::%s switching platform to %s and architecture to %s based on info from attach", __FUNCTION__, platform_sp->GetName().AsCString (""), platform_arch.GetTriple().getTriple().c_str ()); 3410 } 3411 } 3412 else if (!process_arch.IsValid()) 3413 { 3414 ProcessInstanceInfo process_info; 3415 GetProcessInfo(process_info); 3416 const ArchSpec &process_arch = process_info.GetArchitecture(); 3417 if (process_arch.IsValid() && !GetTarget().GetArchitecture().IsExactMatch(process_arch)) 3418 { 3419 GetTarget().SetArchitecture (process_arch); 3420 if (log) 3421 log->Printf ("Process::%s switching architecture to %s based on info the platform retrieved for pid %" PRIu64, __FUNCTION__, process_arch.GetTriple().getTriple().c_str (), GetID ()); 3422 } 3423 } 3424 } 3425 3426 // We have completed the attach, now it is time to find the dynamic loader 3427 // plug-in 3428 DynamicLoader *dyld = GetDynamicLoader (); 3429 if (dyld) 3430 { 3431 dyld->DidAttach(); 3432 if (log) 3433 { 3434 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3435 log->Printf ("Process::%s after DynamicLoader::DidAttach(), target executable is %s (using %s plugin)", 3436 __FUNCTION__, 3437 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3438 dyld->GetPluginName().AsCString ("<unnamed>")); 3439 } 3440 } 3441 3442 GetJITLoaders().DidAttach(); 3443 3444 SystemRuntime *system_runtime = GetSystemRuntime (); 3445 if (system_runtime) 3446 { 3447 system_runtime->DidAttach(); 3448 if (log) 3449 { 3450 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3451 log->Printf ("Process::%s after SystemRuntime::DidAttach(), target executable is %s (using %s plugin)", 3452 __FUNCTION__, 3453 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>", 3454 system_runtime->GetPluginName().AsCString("<unnamed>")); 3455 } 3456 } 3457 3458 m_os_ap.reset(OperatingSystem::FindPlugin(this, nullptr)); 3459 // Figure out which one is the executable, and set that in our target: 3460 const ModuleList &target_modules = GetTarget().GetImages(); 3461 std::lock_guard<std::recursive_mutex> guard(target_modules.GetMutex()); 3462 size_t num_modules = target_modules.GetSize(); 3463 ModuleSP new_executable_module_sp; 3464 3465 for (size_t i = 0; i < num_modules; i++) 3466 { 3467 ModuleSP module_sp (target_modules.GetModuleAtIndexUnlocked (i)); 3468 if (module_sp && module_sp->IsExecutable()) 3469 { 3470 if (GetTarget().GetExecutableModulePointer() != module_sp.get()) 3471 new_executable_module_sp = module_sp; 3472 break; 3473 } 3474 } 3475 if (new_executable_module_sp) 3476 { 3477 GetTarget().SetExecutableModule (new_executable_module_sp, false); 3478 if (log) 3479 { 3480 ModuleSP exe_module_sp = GetTarget().GetExecutableModule (); 3481 log->Printf ("Process::%s after looping through modules, target executable is %s", 3482 __FUNCTION__, 3483 exe_module_sp ? exe_module_sp->GetFileSpec().GetPath().c_str () : "<none>"); 3484 } 3485 } 3486 3487 m_stop_info_override_callback = process_arch.GetStopInfoOverrideCallback(); 3488 } 3489 3490 Error 3491 Process::ConnectRemote (Stream *strm, const char *remote_url) 3492 { 3493 m_abi_sp.reset(); 3494 m_process_input_reader.reset(); 3495 3496 // Find the process and its architecture. Make sure it matches the architecture 3497 // of the current Target, and if not adjust it. 3498 3499 Error error (DoConnectRemote (strm, remote_url)); 3500 if (error.Success()) 3501 { 3502 if (GetID() != LLDB_INVALID_PROCESS_ID) 3503 { 3504 EventSP event_sp; 3505 StateType state = WaitForProcessStopPrivate(nullptr, event_sp); 3506 3507 if (state == eStateStopped || state == eStateCrashed) 3508 { 3509 // If we attached and actually have a process on the other end, then 3510 // this ended up being the equivalent of an attach. 3511 CompleteAttach (); 3512 3513 // This delays passing the stopped event to listeners till 3514 // CompleteAttach gets a chance to complete... 3515 HandlePrivateEvent (event_sp); 3516 } 3517 } 3518 3519 if (PrivateStateThreadIsValid ()) 3520 ResumePrivateStateThread (); 3521 else 3522 StartPrivateStateThread (); 3523 } 3524 return error; 3525 } 3526 3527 Error 3528 Process::PrivateResume () 3529 { 3530 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS|LIBLLDB_LOG_STEP)); 3531 if (log) 3532 log->Printf("Process::PrivateResume() m_stop_id = %u, public state: %s private state: %s", 3533 m_mod_id.GetStopID(), 3534 StateAsCString(m_public_state.GetValue()), 3535 StateAsCString(m_private_state.GetValue())); 3536 3537 Error error (WillResume()); 3538 // Tell the process it is about to resume before the thread list 3539 if (error.Success()) 3540 { 3541 // Now let the thread list know we are about to resume so it 3542 // can let all of our threads know that they are about to be 3543 // resumed. Threads will each be called with 3544 // Thread::WillResume(StateType) where StateType contains the state 3545 // that they are supposed to have when the process is resumed 3546 // (suspended/running/stepping). Threads should also check 3547 // their resume signal in lldb::Thread::GetResumeSignal() 3548 // to see if they are supposed to start back up with a signal. 3549 if (m_thread_list.WillResume()) 3550 { 3551 // Last thing, do the PreResumeActions. 3552 if (!RunPreResumeActions()) 3553 { 3554 error.SetErrorStringWithFormat ("Process::PrivateResume PreResumeActions failed, not resuming."); 3555 } 3556 else 3557 { 3558 m_mod_id.BumpResumeID(); 3559 error = DoResume(); 3560 if (error.Success()) 3561 { 3562 DidResume(); 3563 m_thread_list.DidResume(); 3564 if (log) 3565 log->Printf ("Process thinks the process has resumed."); 3566 } 3567 } 3568 } 3569 else 3570 { 3571 // Somebody wanted to run without running (e.g. we were faking a step from one frame of a set of inlined 3572 // frames that share the same PC to another.) So generate a continue & a stopped event, 3573 // and let the world handle them. 3574 if (log) 3575 log->Printf ("Process::PrivateResume() asked to simulate a start & stop."); 3576 3577 SetPrivateState(eStateRunning); 3578 SetPrivateState(eStateStopped); 3579 } 3580 } 3581 else if (log) 3582 log->Printf ("Process::PrivateResume() got an error \"%s\".", error.AsCString("<unknown error>")); 3583 return error; 3584 } 3585 3586 Error 3587 Process::Halt (bool clear_thread_plans, bool use_run_lock) 3588 { 3589 if (! StateIsRunningState(m_public_state.GetValue())) 3590 return Error("Process is not running."); 3591 3592 // Don't clear the m_clear_thread_plans_on_stop, only set it to true if 3593 // in case it was already set and some thread plan logic calls halt on its 3594 // own. 3595 m_clear_thread_plans_on_stop |= clear_thread_plans; 3596 3597 ListenerSP halt_listener_sp (Listener::MakeListener("lldb.process.halt_listener")); 3598 HijackProcessEvents(halt_listener_sp); 3599 3600 EventSP event_sp; 3601 3602 SendAsyncInterrupt(); 3603 3604 if (m_public_state.GetValue() == eStateAttaching) 3605 { 3606 // Don't hijack and eat the eStateExited as the code that was doing 3607 // the attach will be waiting for this event... 3608 RestoreProcessEvents(); 3609 SetExitStatus(SIGKILL, "Cancelled async attach."); 3610 Destroy (false); 3611 return Error(); 3612 } 3613 3614 // Wait for 10 second for the process to stop. 3615 TimeValue timeout_time; 3616 timeout_time = TimeValue::Now(); 3617 timeout_time.OffsetWithSeconds(10); 3618 StateType state = WaitForProcessToStop(&timeout_time, &event_sp, true, halt_listener_sp, 3619 nullptr, use_run_lock); 3620 RestoreProcessEvents(); 3621 3622 if (state == eStateInvalid || ! event_sp) 3623 { 3624 // We timed out and didn't get a stop event... 3625 return Error("Halt timed out. State = %s", StateAsCString(GetState())); 3626 } 3627 3628 BroadcastEvent(event_sp); 3629 3630 return Error(); 3631 } 3632 3633 Error 3634 Process::StopForDestroyOrDetach(lldb::EventSP &exit_event_sp) 3635 { 3636 Error error; 3637 if (m_public_state.GetValue() == eStateRunning) 3638 { 3639 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 3640 if (log) 3641 log->Printf("Process::%s() About to stop.", __FUNCTION__); 3642 3643 ListenerSP listener_sp (Listener::MakeListener("lldb.Process.StopForDestroyOrDetach.hijack")); 3644 HijackProcessEvents(listener_sp); 3645 3646 SendAsyncInterrupt(); 3647 3648 // Consume the interrupt event. 3649 TimeValue timeout (TimeValue::Now()); 3650 timeout.OffsetWithSeconds(10); 3651 3652 StateType state = WaitForProcessToStop (&timeout, &exit_event_sp, true, listener_sp); 3653 3654 RestoreProcessEvents(); 3655 3656 // If the process exited while we were waiting for it to stop, put the exited event into 3657 // the shared pointer passed in and return. Our caller doesn't need to do anything else, since 3658 // they don't have a process anymore... 3659 3660 if (state == eStateExited || m_private_state.GetValue() == eStateExited) 3661 { 3662 if (log) 3663 log->Printf("Process::%s() Process exited while waiting to stop.", __FUNCTION__); 3664 return error; 3665 } 3666 else 3667 exit_event_sp.reset(); // It is ok to consume any non-exit stop events 3668 3669 if (state != eStateStopped) 3670 { 3671 if (log) 3672 log->Printf("Process::%s() failed to stop, state is: %s", __FUNCTION__, StateAsCString(state)); 3673 // If we really couldn't stop the process then we should just error out here, but if the 3674 // lower levels just bobbled sending the event and we really are stopped, then continue on. 3675 StateType private_state = m_private_state.GetValue(); 3676 if (private_state != eStateStopped) 3677 { 3678 return Error("Attempt to stop the target in order to detach timed out. State = %s", StateAsCString(GetState())); 3679 } 3680 } 3681 } 3682 return error; 3683 } 3684 3685 Error 3686 Process::Detach (bool keep_stopped) 3687 { 3688 EventSP exit_event_sp; 3689 Error error; 3690 m_destroy_in_process = true; 3691 3692 error = WillDetach(); 3693 3694 if (error.Success()) 3695 { 3696 if (DetachRequiresHalt()) 3697 { 3698 error = StopForDestroyOrDetach (exit_event_sp); 3699 if (!error.Success()) 3700 { 3701 m_destroy_in_process = false; 3702 return error; 3703 } 3704 else if (exit_event_sp) 3705 { 3706 // We shouldn't need to do anything else here. There's no process left to detach from... 3707 StopPrivateStateThread(); 3708 m_destroy_in_process = false; 3709 return error; 3710 } 3711 } 3712 3713 m_thread_list.DiscardThreadPlans(); 3714 DisableAllBreakpointSites(); 3715 3716 error = DoDetach(keep_stopped); 3717 if (error.Success()) 3718 { 3719 DidDetach(); 3720 StopPrivateStateThread(); 3721 } 3722 else 3723 { 3724 return error; 3725 } 3726 } 3727 m_destroy_in_process = false; 3728 3729 // If we exited when we were waiting for a process to stop, then 3730 // forward the event here so we don't lose the event 3731 if (exit_event_sp) 3732 { 3733 // Directly broadcast our exited event because we shut down our 3734 // private state thread above 3735 BroadcastEvent(exit_event_sp); 3736 } 3737 3738 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3739 // the last events through the event system, in which case we might strand the write lock. Unlock 3740 // it here so when we do to tear down the process we don't get an error destroying the lock. 3741 3742 m_public_run_lock.SetStopped(); 3743 return error; 3744 } 3745 3746 Error 3747 Process::Destroy (bool force_kill) 3748 { 3749 3750 // Tell ourselves we are in the process of destroying the process, so that we don't do any unnecessary work 3751 // that might hinder the destruction. Remember to set this back to false when we are done. That way if the attempt 3752 // failed and the process stays around for some reason it won't be in a confused state. 3753 3754 if (force_kill) 3755 m_should_detach = false; 3756 3757 if (GetShouldDetach()) 3758 { 3759 // FIXME: This will have to be a process setting: 3760 bool keep_stopped = false; 3761 Detach(keep_stopped); 3762 } 3763 3764 m_destroy_in_process = true; 3765 3766 Error error (WillDestroy()); 3767 if (error.Success()) 3768 { 3769 EventSP exit_event_sp; 3770 if (DestroyRequiresHalt()) 3771 { 3772 error = StopForDestroyOrDetach(exit_event_sp); 3773 } 3774 3775 if (m_public_state.GetValue() != eStateRunning) 3776 { 3777 // Ditch all thread plans, and remove all our breakpoints: in case we have to restart the target to 3778 // kill it, we don't want it hitting a breakpoint... 3779 // Only do this if we've stopped, however, since if we didn't manage to halt it above, then 3780 // we're not going to have much luck doing this now. 3781 m_thread_list.DiscardThreadPlans(); 3782 DisableAllBreakpointSites(); 3783 } 3784 3785 error = DoDestroy(); 3786 if (error.Success()) 3787 { 3788 DidDestroy(); 3789 StopPrivateStateThread(); 3790 } 3791 m_stdio_communication.Disconnect(); 3792 m_stdio_communication.StopReadThread(); 3793 m_stdin_forward = false; 3794 3795 if (m_process_input_reader) 3796 { 3797 m_process_input_reader->SetIsDone(true); 3798 m_process_input_reader->Cancel(); 3799 m_process_input_reader.reset(); 3800 } 3801 3802 // If we exited when we were waiting for a process to stop, then 3803 // forward the event here so we don't lose the event 3804 if (exit_event_sp) 3805 { 3806 // Directly broadcast our exited event because we shut down our 3807 // private state thread above 3808 BroadcastEvent(exit_event_sp); 3809 } 3810 3811 // If we have been interrupted (to kill us) in the middle of running, we may not end up propagating 3812 // the last events through the event system, in which case we might strand the write lock. Unlock 3813 // it here so when we do to tear down the process we don't get an error destroying the lock. 3814 m_public_run_lock.SetStopped(); 3815 } 3816 3817 m_destroy_in_process = false; 3818 3819 return error; 3820 } 3821 3822 Error 3823 Process::Signal (int signal) 3824 { 3825 Error error (WillSignal()); 3826 if (error.Success()) 3827 { 3828 error = DoSignal(signal); 3829 if (error.Success()) 3830 DidSignal(); 3831 } 3832 return error; 3833 } 3834 3835 void 3836 Process::SetUnixSignals(UnixSignalsSP &&signals_sp) 3837 { 3838 assert (signals_sp && "null signals_sp"); 3839 m_unix_signals_sp = signals_sp; 3840 } 3841 3842 const lldb::UnixSignalsSP & 3843 Process::GetUnixSignals () 3844 { 3845 assert (m_unix_signals_sp && "null m_unix_signals_sp"); 3846 return m_unix_signals_sp; 3847 } 3848 3849 lldb::ByteOrder 3850 Process::GetByteOrder () const 3851 { 3852 return GetTarget().GetArchitecture().GetByteOrder(); 3853 } 3854 3855 uint32_t 3856 Process::GetAddressByteSize () const 3857 { 3858 return GetTarget().GetArchitecture().GetAddressByteSize(); 3859 } 3860 3861 bool 3862 Process::ShouldBroadcastEvent (Event *event_ptr) 3863 { 3864 const StateType state = Process::ProcessEventData::GetStateFromEvent (event_ptr); 3865 bool return_value = true; 3866 Log *log(lldb_private::GetLogIfAnyCategoriesSet(LIBLLDB_LOG_EVENTS | LIBLLDB_LOG_PROCESS)); 3867 3868 switch (state) 3869 { 3870 case eStateDetached: 3871 case eStateExited: 3872 case eStateUnloaded: 3873 m_stdio_communication.SynchronizeWithReadThread(); 3874 m_stdio_communication.Disconnect(); 3875 m_stdio_communication.StopReadThread(); 3876 m_stdin_forward = false; 3877 3878 LLVM_FALLTHROUGH; 3879 case eStateConnected: 3880 case eStateAttaching: 3881 case eStateLaunching: 3882 // These events indicate changes in the state of the debugging session, always report them. 3883 return_value = true; 3884 break; 3885 case eStateInvalid: 3886 // We stopped for no apparent reason, don't report it. 3887 return_value = false; 3888 break; 3889 case eStateRunning: 3890 case eStateStepping: 3891 // If we've started the target running, we handle the cases where we 3892 // are already running and where there is a transition from stopped to 3893 // running differently. 3894 // running -> running: Automatically suppress extra running events 3895 // stopped -> running: Report except when there is one or more no votes 3896 // and no yes votes. 3897 SynchronouslyNotifyStateChanged (state); 3898 if (m_force_next_event_delivery) 3899 return_value = true; 3900 else 3901 { 3902 switch (m_last_broadcast_state) 3903 { 3904 case eStateRunning: 3905 case eStateStepping: 3906 // We always suppress multiple runnings with no PUBLIC stop in between. 3907 return_value = false; 3908 break; 3909 default: 3910 // TODO: make this work correctly. For now always report 3911 // run if we aren't running so we don't miss any running 3912 // events. If I run the lldb/test/thread/a.out file and 3913 // break at main.cpp:58, run and hit the breakpoints on 3914 // multiple threads, then somehow during the stepping over 3915 // of all breakpoints no run gets reported. 3916 3917 // This is a transition from stop to run. 3918 switch (m_thread_list.ShouldReportRun (event_ptr)) 3919 { 3920 case eVoteYes: 3921 case eVoteNoOpinion: 3922 return_value = true; 3923 break; 3924 case eVoteNo: 3925 return_value = false; 3926 break; 3927 } 3928 break; 3929 } 3930 } 3931 break; 3932 case eStateStopped: 3933 case eStateCrashed: 3934 case eStateSuspended: 3935 // We've stopped. First see if we're going to restart the target. 3936 // If we are going to stop, then we always broadcast the event. 3937 // If we aren't going to stop, let the thread plans decide if we're going to report this event. 3938 // If no thread has an opinion, we don't report it. 3939 3940 m_stdio_communication.SynchronizeWithReadThread(); 3941 RefreshStateAfterStop (); 3942 if (ProcessEventData::GetInterruptedFromEvent (event_ptr)) 3943 { 3944 if (log) 3945 log->Printf ("Process::ShouldBroadcastEvent (%p) stopped due to an interrupt, state: %s", 3946 static_cast<void*>(event_ptr), 3947 StateAsCString(state)); 3948 // Even though we know we are going to stop, we should let the threads have a look at the stop, 3949 // so they can properly set their state. 3950 m_thread_list.ShouldStop (event_ptr); 3951 return_value = true; 3952 } 3953 else 3954 { 3955 bool was_restarted = ProcessEventData::GetRestartedFromEvent (event_ptr); 3956 bool should_resume = false; 3957 3958 // It makes no sense to ask "ShouldStop" if we've already been restarted... 3959 // Asking the thread list is also not likely to go well, since we are running again. 3960 // So in that case just report the event. 3961 3962 if (!was_restarted) 3963 should_resume = !m_thread_list.ShouldStop(event_ptr); 3964 3965 if (was_restarted || should_resume || m_resume_requested) 3966 { 3967 Vote stop_vote = m_thread_list.ShouldReportStop (event_ptr); 3968 if (log) 3969 log->Printf ("Process::ShouldBroadcastEvent: should_resume: %i state: %s was_restarted: %i stop_vote: %d.", 3970 should_resume, StateAsCString(state), 3971 was_restarted, stop_vote); 3972 3973 switch (stop_vote) 3974 { 3975 case eVoteYes: 3976 return_value = true; 3977 break; 3978 case eVoteNoOpinion: 3979 case eVoteNo: 3980 return_value = false; 3981 break; 3982 } 3983 3984 if (!was_restarted) 3985 { 3986 if (log) 3987 log->Printf ("Process::ShouldBroadcastEvent (%p) Restarting process from state: %s", 3988 static_cast<void*>(event_ptr), 3989 StateAsCString(state)); 3990 ProcessEventData::SetRestartedInEvent(event_ptr, true); 3991 PrivateResume (); 3992 } 3993 } 3994 else 3995 { 3996 return_value = true; 3997 SynchronouslyNotifyStateChanged (state); 3998 } 3999 } 4000 break; 4001 } 4002 4003 // Forcing the next event delivery is a one shot deal. So reset it here. 4004 m_force_next_event_delivery = false; 4005 4006 // We do some coalescing of events (for instance two consecutive running events get coalesced.) 4007 // But we only coalesce against events we actually broadcast. So we use m_last_broadcast_state 4008 // to track that. NB - you can't use "m_public_state.GetValue()" for that purpose, as was originally done, 4009 // because the PublicState reflects the last event pulled off the queue, and there may be several 4010 // events stacked up on the queue unserviced. So the PublicState may not reflect the last broadcasted event 4011 // yet. m_last_broadcast_state gets updated here. 4012 4013 if (return_value) 4014 m_last_broadcast_state = state; 4015 4016 if (log) 4017 log->Printf ("Process::ShouldBroadcastEvent (%p) => new state: %s, last broadcast state: %s - %s", 4018 static_cast<void*>(event_ptr), StateAsCString(state), 4019 StateAsCString(m_last_broadcast_state), 4020 return_value ? "YES" : "NO"); 4021 return return_value; 4022 } 4023 4024 bool 4025 Process::StartPrivateStateThread (bool is_secondary_thread) 4026 { 4027 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_EVENTS)); 4028 4029 bool already_running = PrivateStateThreadIsValid (); 4030 if (log) 4031 log->Printf ("Process::%s()%s ", __FUNCTION__, already_running ? " already running" : " starting private state thread"); 4032 4033 if (!is_secondary_thread && already_running) 4034 return true; 4035 4036 // Create a thread that watches our internal state and controls which 4037 // events make it to clients (into the DCProcess event queue). 4038 char thread_name[1024]; 4039 4040 if (HostInfo::GetMaxThreadNameLength() <= 30) 4041 { 4042 // On platforms with abbreviated thread name lengths, choose thread names that fit within the limit. 4043 if (already_running) 4044 snprintf(thread_name, sizeof(thread_name), "intern-state-OV"); 4045 else 4046 snprintf(thread_name, sizeof(thread_name), "intern-state"); 4047 } 4048 else 4049 { 4050 if (already_running) 4051 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state-override(pid=%" PRIu64 ")>", GetID()); 4052 else 4053 snprintf(thread_name, sizeof(thread_name), "<lldb.process.internal-state(pid=%" PRIu64 ")>", GetID()); 4054 } 4055 4056 // Create the private state thread, and start it running. 4057 PrivateStateThreadArgs *args_ptr = new PrivateStateThreadArgs(this, is_secondary_thread); 4058 m_private_state_thread = ThreadLauncher::LaunchThread(thread_name, Process::PrivateStateThread, (void *) args_ptr, nullptr, 8 * 1024 * 1024); 4059 if (m_private_state_thread.IsJoinable()) 4060 { 4061 ResumePrivateStateThread(); 4062 return true; 4063 } 4064 else 4065 return false; 4066 } 4067 4068 void 4069 Process::PausePrivateStateThread () 4070 { 4071 ControlPrivateStateThread (eBroadcastInternalStateControlPause); 4072 } 4073 4074 void 4075 Process::ResumePrivateStateThread () 4076 { 4077 ControlPrivateStateThread (eBroadcastInternalStateControlResume); 4078 } 4079 4080 void 4081 Process::StopPrivateStateThread () 4082 { 4083 if (m_private_state_thread.IsJoinable ()) 4084 ControlPrivateStateThread (eBroadcastInternalStateControlStop); 4085 else 4086 { 4087 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4088 if (log) 4089 log->Printf ("Went to stop the private state thread, but it was already invalid."); 4090 } 4091 } 4092 4093 void 4094 Process::ControlPrivateStateThread (uint32_t signal) 4095 { 4096 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_PROCESS)); 4097 4098 assert (signal == eBroadcastInternalStateControlStop || 4099 signal == eBroadcastInternalStateControlPause || 4100 signal == eBroadcastInternalStateControlResume); 4101 4102 if (log) 4103 log->Printf ("Process::%s (signal = %d)", __FUNCTION__, signal); 4104 4105 // Signal the private state thread 4106 if (m_private_state_thread.IsJoinable()) 4107 { 4108 // Broadcast the event. 4109 // It is important to do this outside of the if below, because 4110 // it's possible that the thread state is invalid but that the 4111 // thread is waiting on a control event instead of simply being 4112 // on its way out (this should not happen, but it apparently can). 4113 if (log) 4114 log->Printf ("Sending control event of type: %d.", signal); 4115 std::shared_ptr<EventDataReceipt> event_receipt_sp(new EventDataReceipt()); 4116 m_private_state_control_broadcaster.BroadcastEvent(signal, event_receipt_sp); 4117 4118 // Wait for the event receipt or for the private state thread to exit 4119 bool receipt_received = false; 4120 if (PrivateStateThreadIsValid()) 4121 { 4122 while (!receipt_received) 4123 { 4124 bool timed_out = false; 4125 TimeValue timeout_time; 4126 timeout_time = TimeValue::Now(); 4127 timeout_time.OffsetWithSeconds(2); 4128 // Check for a receipt for 2 seconds and then check if the private state 4129 // thread is still around. 4130 receipt_received = event_receipt_sp->WaitForEventReceived (&timeout_time, &timed_out); 4131 if (!receipt_received) 4132 { 4133 // Check if the private state thread is still around. If it isn't then we are done waiting 4134 if (!PrivateStateThreadIsValid()) 4135 break; // Private state thread exited or is exiting, we are done 4136 } 4137 } 4138 } 4139 4140 if (signal == eBroadcastInternalStateControlStop) 4141 { 4142 thread_result_t result = NULL; 4143 m_private_state_thread.Join(&result); 4144 m_private_state_thread.Reset(); 4145 } 4146 } 4147 else 4148 { 4149 if (log) 4150 log->Printf("Private state thread already dead, no need to signal it to stop."); 4151 } 4152 } 4153 4154 void 4155 Process::SendAsyncInterrupt () 4156 { 4157 if (PrivateStateThreadIsValid()) 4158 m_private_state_broadcaster.BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4159 else 4160 BroadcastEvent(Process::eBroadcastBitInterrupt, nullptr); 4161 } 4162 4163 void 4164 Process::HandlePrivateEvent (EventSP &event_sp) 4165 { 4166 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4167 m_resume_requested = false; 4168 4169 const StateType new_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4170 4171 // First check to see if anybody wants a shot at this event: 4172 if (m_next_event_action_ap) 4173 { 4174 NextEventAction::EventActionResult action_result = m_next_event_action_ap->PerformAction(event_sp); 4175 if (log) 4176 log->Printf ("Ran next event action, result was %d.", action_result); 4177 4178 switch (action_result) 4179 { 4180 case NextEventAction::eEventActionSuccess: 4181 SetNextEventAction(nullptr); 4182 break; 4183 4184 case NextEventAction::eEventActionRetry: 4185 break; 4186 4187 case NextEventAction::eEventActionExit: 4188 // Handle Exiting Here. If we already got an exited event, 4189 // we should just propagate it. Otherwise, swallow this event, 4190 // and set our state to exit so the next event will kill us. 4191 if (new_state != eStateExited) 4192 { 4193 // FIXME: should cons up an exited event, and discard this one. 4194 SetExitStatus(0, m_next_event_action_ap->GetExitString()); 4195 SetNextEventAction(nullptr); 4196 return; 4197 } 4198 SetNextEventAction(nullptr); 4199 break; 4200 } 4201 } 4202 4203 // See if we should broadcast this state to external clients? 4204 const bool should_broadcast = ShouldBroadcastEvent (event_sp.get()); 4205 4206 if (should_broadcast) 4207 { 4208 const bool is_hijacked = IsHijackedForEvent(eBroadcastBitStateChanged); 4209 if (log) 4210 { 4211 log->Printf ("Process::%s (pid = %" PRIu64 ") broadcasting new state %s (old state %s) to %s", 4212 __FUNCTION__, 4213 GetID(), 4214 StateAsCString(new_state), 4215 StateAsCString (GetState ()), 4216 is_hijacked ? "hijacked" : "public"); 4217 } 4218 Process::ProcessEventData::SetUpdateStateOnRemoval(event_sp.get()); 4219 if (StateIsRunningState (new_state)) 4220 { 4221 // Only push the input handler if we aren't fowarding events, 4222 // as this means the curses GUI is in use... 4223 // Or don't push it if we are launching since it will come up stopped. 4224 if (!GetTarget().GetDebugger().IsForwardingEvents() && new_state != eStateLaunching && 4225 new_state != eStateAttaching) 4226 { 4227 PushProcessIOHandler (); 4228 m_iohandler_sync.SetValue(m_iohandler_sync.GetValue()+1, eBroadcastAlways); 4229 if (log) 4230 log->Printf("Process::%s updated m_iohandler_sync to %d", __FUNCTION__, m_iohandler_sync.GetValue()); 4231 } 4232 } 4233 else if (StateIsStoppedState(new_state, false)) 4234 { 4235 if (!Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 4236 { 4237 // If the lldb_private::Debugger is handling the events, we don't 4238 // want to pop the process IOHandler here, we want to do it when 4239 // we receive the stopped event so we can carefully control when 4240 // the process IOHandler is popped because when we stop we want to 4241 // display some text stating how and why we stopped, then maybe some 4242 // process/thread/frame info, and then we want the "(lldb) " prompt 4243 // to show up. If we pop the process IOHandler here, then we will 4244 // cause the command interpreter to become the top IOHandler after 4245 // the process pops off and it will update its prompt right away... 4246 // See the Debugger.cpp file where it calls the function as 4247 // "process_sp->PopProcessIOHandler()" to see where I am talking about. 4248 // Otherwise we end up getting overlapping "(lldb) " prompts and 4249 // garbled output. 4250 // 4251 // If we aren't handling the events in the debugger (which is indicated 4252 // by "m_target.GetDebugger().IsHandlingEvents()" returning false) or we 4253 // are hijacked, then we always pop the process IO handler manually. 4254 // Hijacking happens when the internal process state thread is running 4255 // thread plans, or when commands want to run in synchronous mode 4256 // and they call "process->WaitForProcessToStop()". An example of something 4257 // that will hijack the events is a simple expression: 4258 // 4259 // (lldb) expr (int)puts("hello") 4260 // 4261 // This will cause the internal process state thread to resume and halt 4262 // the process (and _it_ will hijack the eBroadcastBitStateChanged 4263 // events) and we do need the IO handler to be pushed and popped 4264 // correctly. 4265 4266 if (is_hijacked || !GetTarget().GetDebugger().IsHandlingEvents()) 4267 PopProcessIOHandler (); 4268 } 4269 } 4270 4271 BroadcastEvent (event_sp); 4272 } 4273 else 4274 { 4275 if (log) 4276 { 4277 log->Printf ("Process::%s (pid = %" PRIu64 ") suppressing state %s (old state %s): should_broadcast == false", 4278 __FUNCTION__, 4279 GetID(), 4280 StateAsCString(new_state), 4281 StateAsCString (GetState ())); 4282 } 4283 } 4284 } 4285 4286 Error 4287 Process::HaltPrivate() 4288 { 4289 EventSP event_sp; 4290 Error error (WillHalt()); 4291 if (error.Fail()) 4292 return error; 4293 4294 // Ask the process subclass to actually halt our process 4295 bool caused_stop; 4296 error = DoHalt(caused_stop); 4297 4298 DidHalt(); 4299 return error; 4300 } 4301 4302 thread_result_t 4303 Process::PrivateStateThread (void *arg) 4304 { 4305 PrivateStateThreadArgs real_args = *static_cast<PrivateStateThreadArgs *> (arg); 4306 free (arg); 4307 thread_result_t result = real_args.process->RunPrivateStateThread(real_args.is_secondary_thread); 4308 return result; 4309 } 4310 4311 thread_result_t 4312 Process::RunPrivateStateThread (bool is_secondary_thread) 4313 { 4314 bool control_only = true; 4315 4316 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4317 if (log) 4318 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread starting...", 4319 __FUNCTION__, static_cast<void*>(this), GetID()); 4320 4321 bool exit_now = false; 4322 bool interrupt_requested = false; 4323 while (!exit_now) 4324 { 4325 EventSP event_sp; 4326 WaitForEventsPrivate(nullptr, event_sp, control_only); 4327 if (event_sp->BroadcasterIs(&m_private_state_control_broadcaster)) 4328 { 4329 if (log) 4330 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") got a control event: %d", 4331 __FUNCTION__, static_cast<void*>(this), GetID(), 4332 event_sp->GetType()); 4333 4334 switch (event_sp->GetType()) 4335 { 4336 case eBroadcastInternalStateControlStop: 4337 exit_now = true; 4338 break; // doing any internal state management below 4339 4340 case eBroadcastInternalStateControlPause: 4341 control_only = true; 4342 break; 4343 4344 case eBroadcastInternalStateControlResume: 4345 control_only = false; 4346 break; 4347 } 4348 4349 continue; 4350 } 4351 else if (event_sp->GetType() == eBroadcastBitInterrupt) 4352 { 4353 if (m_public_state.GetValue() == eStateAttaching) 4354 { 4355 if (log) 4356 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt while attaching - forwarding interrupt.", 4357 __FUNCTION__, static_cast<void*>(this), 4358 GetID()); 4359 BroadcastEvent(eBroadcastBitInterrupt, nullptr); 4360 } 4361 else if(StateIsRunningState(m_last_broadcast_state)) 4362 { 4363 if (log) 4364 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") woke up with an interrupt - Halting.", 4365 __FUNCTION__, static_cast<void*>(this), 4366 GetID()); 4367 Error error = HaltPrivate(); 4368 if (error.Fail() && log) 4369 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") failed to halt the process: %s", 4370 __FUNCTION__, static_cast<void*>(this), 4371 GetID(), error.AsCString()); 4372 // Halt should generate a stopped event. Make a note of the fact that we were 4373 // doing the interrupt, so we can set the interrupted flag after we receive the 4374 // event. We deliberately set this to true even if HaltPrivate failed, so that we 4375 // can interrupt on the next natural stop. 4376 interrupt_requested = true; 4377 } 4378 else 4379 { 4380 // This can happen when someone (e.g. Process::Halt) sees that we are running and 4381 // sends an interrupt request, but the process actually stops before we receive 4382 // it. In that case, we can just ignore the request. We use 4383 // m_last_broadcast_state, because the Stopped event may not have been popped of 4384 // the event queue yet, which is when the public state gets updated. 4385 if (log) 4386 log->Printf("Process::%s ignoring interrupt as we have already stopped.", __FUNCTION__); 4387 } 4388 continue; 4389 } 4390 4391 const StateType internal_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 4392 4393 if (internal_state != eStateInvalid) 4394 { 4395 if (m_clear_thread_plans_on_stop && 4396 StateIsStoppedState(internal_state, true)) 4397 { 4398 m_clear_thread_plans_on_stop = false; 4399 m_thread_list.DiscardThreadPlans(); 4400 } 4401 4402 if (interrupt_requested) 4403 { 4404 if (StateIsStoppedState (internal_state, true)) 4405 { 4406 // We requested the interrupt, so mark this as such in the stop event so 4407 // clients can tell an interrupted process from a natural stop 4408 ProcessEventData::SetInterruptedInEvent (event_sp.get(), true); 4409 interrupt_requested = false; 4410 } 4411 else if (log) 4412 { 4413 log->Printf("Process::%s interrupt_requested, but a non-stopped state '%s' received.", 4414 __FUNCTION__, StateAsCString(internal_state)); 4415 } 4416 } 4417 4418 HandlePrivateEvent (event_sp); 4419 } 4420 4421 if (internal_state == eStateInvalid || 4422 internal_state == eStateExited || 4423 internal_state == eStateDetached ) 4424 { 4425 if (log) 4426 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") about to exit with internal state %s...", 4427 __FUNCTION__, static_cast<void*>(this), GetID(), 4428 StateAsCString(internal_state)); 4429 4430 break; 4431 } 4432 } 4433 4434 // Verify log is still enabled before attempting to write to it... 4435 if (log) 4436 log->Printf ("Process::%s (arg = %p, pid = %" PRIu64 ") thread exiting...", 4437 __FUNCTION__, static_cast<void*>(this), GetID()); 4438 4439 // If we are a secondary thread, then the primary thread we are working for will have already 4440 // acquired the public_run_lock, and isn't done with what it was doing yet, so don't 4441 // try to change it on the way out. 4442 if (!is_secondary_thread) 4443 m_public_run_lock.SetStopped(); 4444 return NULL; 4445 } 4446 4447 //------------------------------------------------------------------ 4448 // Process Event Data 4449 //------------------------------------------------------------------ 4450 4451 Process::ProcessEventData::ProcessEventData () : 4452 EventData (), 4453 m_process_wp (), 4454 m_state (eStateInvalid), 4455 m_restarted (false), 4456 m_update_state (0), 4457 m_interrupted (false) 4458 { 4459 } 4460 4461 Process::ProcessEventData::ProcessEventData (const ProcessSP &process_sp, StateType state) : 4462 EventData (), 4463 m_process_wp (), 4464 m_state (state), 4465 m_restarted (false), 4466 m_update_state (0), 4467 m_interrupted (false) 4468 { 4469 if (process_sp) 4470 m_process_wp = process_sp; 4471 } 4472 4473 Process::ProcessEventData::~ProcessEventData() = default; 4474 4475 const ConstString & 4476 Process::ProcessEventData::GetFlavorString () 4477 { 4478 static ConstString g_flavor ("Process::ProcessEventData"); 4479 return g_flavor; 4480 } 4481 4482 const ConstString & 4483 Process::ProcessEventData::GetFlavor () const 4484 { 4485 return ProcessEventData::GetFlavorString (); 4486 } 4487 4488 void 4489 Process::ProcessEventData::DoOnRemoval (Event *event_ptr) 4490 { 4491 ProcessSP process_sp(m_process_wp.lock()); 4492 4493 if (!process_sp) 4494 return; 4495 4496 // This function gets called twice for each event, once when the event gets pulled 4497 // off of the private process event queue, and then any number of times, first when it gets pulled off of 4498 // the public event queue, then other times when we're pretending that this is where we stopped at the 4499 // end of expression evaluation. m_update_state is used to distinguish these 4500 // three cases; it is 0 when we're just pulling it off for private handling, 4501 // and > 1 for expression evaluation, and we don't want to do the breakpoint command handling then. 4502 if (m_update_state != 1) 4503 return; 4504 4505 process_sp->SetPublicState (m_state, Process::ProcessEventData::GetRestartedFromEvent(event_ptr)); 4506 4507 // If this is a halt event, even if the halt stopped with some reason other than a plain interrupt (e.g. we had 4508 // already stopped for a breakpoint when the halt request came through) don't do the StopInfo actions, as they may 4509 // end up restarting the process. 4510 if (m_interrupted) 4511 return; 4512 4513 // If we're stopped and haven't restarted, then do the StopInfo actions here: 4514 if (m_state == eStateStopped && ! m_restarted) 4515 { 4516 // Let process subclasses know we are about to do a public stop and 4517 // do anything they might need to in order to speed up register and 4518 // memory accesses. 4519 process_sp->WillPublicStop(); 4520 4521 ThreadList &curr_thread_list = process_sp->GetThreadList(); 4522 uint32_t num_threads = curr_thread_list.GetSize(); 4523 uint32_t idx; 4524 4525 // The actions might change one of the thread's stop_info's opinions about whether we should 4526 // stop the process, so we need to query that as we go. 4527 4528 // One other complication here, is that we try to catch any case where the target has run (except for expressions) 4529 // and immediately exit, but if we get that wrong (which is possible) then the thread list might have changed, and 4530 // that would cause our iteration here to crash. We could make a copy of the thread list, but we'd really like 4531 // to also know if it has changed at all, so we make up a vector of the thread ID's and check what we get back 4532 // against this list & bag out if anything differs. 4533 std::vector<uint32_t> thread_index_array(num_threads); 4534 for (idx = 0; idx < num_threads; ++idx) 4535 thread_index_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetIndexID(); 4536 4537 // Use this to track whether we should continue from here. We will only continue the target running if 4538 // no thread says we should stop. Of course if some thread's PerformAction actually sets the target running, 4539 // then it doesn't matter what the other threads say... 4540 4541 bool still_should_stop = false; 4542 4543 // Sometimes - for instance if we have a bug in the stub we are talking to, we stop but no thread has a 4544 // valid stop reason. In that case we should just stop, because we have no way of telling what the right 4545 // thing to do is, and it's better to let the user decide than continue behind their backs. 4546 4547 bool does_anybody_have_an_opinion = false; 4548 4549 for (idx = 0; idx < num_threads; ++idx) 4550 { 4551 curr_thread_list = process_sp->GetThreadList(); 4552 if (curr_thread_list.GetSize() != num_threads) 4553 { 4554 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4555 if (log) 4556 log->Printf("Number of threads changed from %u to %u while processing event.", num_threads, curr_thread_list.GetSize()); 4557 break; 4558 } 4559 4560 lldb::ThreadSP thread_sp = curr_thread_list.GetThreadAtIndex(idx); 4561 4562 if (thread_sp->GetIndexID() != thread_index_array[idx]) 4563 { 4564 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 4565 if (log) 4566 log->Printf("The thread at position %u changed from %u to %u while processing event.", 4567 idx, 4568 thread_index_array[idx], 4569 thread_sp->GetIndexID()); 4570 break; 4571 } 4572 4573 StopInfoSP stop_info_sp = thread_sp->GetStopInfo (); 4574 if (stop_info_sp && stop_info_sp->IsValid()) 4575 { 4576 does_anybody_have_an_opinion = true; 4577 bool this_thread_wants_to_stop; 4578 if (stop_info_sp->GetOverrideShouldStop()) 4579 { 4580 this_thread_wants_to_stop = stop_info_sp->GetOverriddenShouldStopValue(); 4581 } 4582 else 4583 { 4584 stop_info_sp->PerformAction(event_ptr); 4585 // The stop action might restart the target. If it does, then we want to mark that in the 4586 // event so that whoever is receiving it will know to wait for the running event and reflect 4587 // that state appropriately. 4588 // We also need to stop processing actions, since they aren't expecting the target to be running. 4589 4590 // FIXME: we might have run. 4591 if (stop_info_sp->HasTargetRunSinceMe()) 4592 { 4593 SetRestarted (true); 4594 break; 4595 } 4596 4597 this_thread_wants_to_stop = stop_info_sp->ShouldStop(event_ptr); 4598 } 4599 4600 if (!still_should_stop) 4601 still_should_stop = this_thread_wants_to_stop; 4602 } 4603 } 4604 4605 if (!GetRestarted()) 4606 { 4607 if (!still_should_stop && does_anybody_have_an_opinion) 4608 { 4609 // We've been asked to continue, so do that here. 4610 SetRestarted(true); 4611 // Use the public resume method here, since this is just 4612 // extending a public resume. 4613 process_sp->PrivateResume(); 4614 } 4615 else 4616 { 4617 // If we didn't restart, run the Stop Hooks here: 4618 // They might also restart the target, so watch for that. 4619 process_sp->GetTarget().RunStopHooks(); 4620 if (process_sp->GetPrivateState() == eStateRunning) 4621 SetRestarted(true); 4622 } 4623 } 4624 } 4625 } 4626 4627 void 4628 Process::ProcessEventData::Dump (Stream *s) const 4629 { 4630 ProcessSP process_sp(m_process_wp.lock()); 4631 4632 if (process_sp) 4633 s->Printf(" process = %p (pid = %" PRIu64 "), ", 4634 static_cast<void*>(process_sp.get()), process_sp->GetID()); 4635 else 4636 s->PutCString(" process = NULL, "); 4637 4638 s->Printf("state = %s", StateAsCString(GetState())); 4639 } 4640 4641 const Process::ProcessEventData * 4642 Process::ProcessEventData::GetEventDataFromEvent (const Event *event_ptr) 4643 { 4644 if (event_ptr) 4645 { 4646 const EventData *event_data = event_ptr->GetData(); 4647 if (event_data && event_data->GetFlavor() == ProcessEventData::GetFlavorString()) 4648 return static_cast <const ProcessEventData *> (event_ptr->GetData()); 4649 } 4650 return nullptr; 4651 } 4652 4653 ProcessSP 4654 Process::ProcessEventData::GetProcessFromEvent (const Event *event_ptr) 4655 { 4656 ProcessSP process_sp; 4657 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4658 if (data) 4659 process_sp = data->GetProcessSP(); 4660 return process_sp; 4661 } 4662 4663 StateType 4664 Process::ProcessEventData::GetStateFromEvent (const Event *event_ptr) 4665 { 4666 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4667 if (data == nullptr) 4668 return eStateInvalid; 4669 else 4670 return data->GetState(); 4671 } 4672 4673 bool 4674 Process::ProcessEventData::GetRestartedFromEvent (const Event *event_ptr) 4675 { 4676 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4677 if (data == nullptr) 4678 return false; 4679 else 4680 return data->GetRestarted(); 4681 } 4682 4683 void 4684 Process::ProcessEventData::SetRestartedInEvent (Event *event_ptr, bool new_value) 4685 { 4686 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4687 if (data != nullptr) 4688 data->SetRestarted(new_value); 4689 } 4690 4691 size_t 4692 Process::ProcessEventData::GetNumRestartedReasons(const Event *event_ptr) 4693 { 4694 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4695 if (data != nullptr) 4696 return data->GetNumRestartedReasons(); 4697 else 4698 return 0; 4699 } 4700 4701 const char * 4702 Process::ProcessEventData::GetRestartedReasonAtIndex(const Event *event_ptr, size_t idx) 4703 { 4704 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4705 if (data != nullptr) 4706 return data->GetRestartedReasonAtIndex(idx); 4707 else 4708 return nullptr; 4709 } 4710 4711 void 4712 Process::ProcessEventData::AddRestartedReason (Event *event_ptr, const char *reason) 4713 { 4714 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4715 if (data != nullptr) 4716 data->AddRestartedReason(reason); 4717 } 4718 4719 bool 4720 Process::ProcessEventData::GetInterruptedFromEvent (const Event *event_ptr) 4721 { 4722 const ProcessEventData *data = GetEventDataFromEvent (event_ptr); 4723 if (data == nullptr) 4724 return false; 4725 else 4726 return data->GetInterrupted (); 4727 } 4728 4729 void 4730 Process::ProcessEventData::SetInterruptedInEvent (Event *event_ptr, bool new_value) 4731 { 4732 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4733 if (data != nullptr) 4734 data->SetInterrupted(new_value); 4735 } 4736 4737 bool 4738 Process::ProcessEventData::SetUpdateStateOnRemoval (Event *event_ptr) 4739 { 4740 ProcessEventData *data = const_cast<ProcessEventData *>(GetEventDataFromEvent (event_ptr)); 4741 if (data) 4742 { 4743 data->SetUpdateStateOnRemoval(); 4744 return true; 4745 } 4746 return false; 4747 } 4748 4749 lldb::TargetSP 4750 Process::CalculateTarget () 4751 { 4752 return m_target_sp.lock(); 4753 } 4754 4755 void 4756 Process::CalculateExecutionContext (ExecutionContext &exe_ctx) 4757 { 4758 exe_ctx.SetTargetPtr (&GetTarget()); 4759 exe_ctx.SetProcessPtr (this); 4760 exe_ctx.SetThreadPtr(nullptr); 4761 exe_ctx.SetFramePtr(nullptr); 4762 } 4763 4764 //uint32_t 4765 //Process::ListProcessesMatchingName (const char *name, StringList &matches, std::vector<lldb::pid_t> &pids) 4766 //{ 4767 // return 0; 4768 //} 4769 // 4770 //ArchSpec 4771 //Process::GetArchSpecForExistingProcess (lldb::pid_t pid) 4772 //{ 4773 // return Host::GetArchSpecForExistingProcess (pid); 4774 //} 4775 // 4776 //ArchSpec 4777 //Process::GetArchSpecForExistingProcess (const char *process_name) 4778 //{ 4779 // return Host::GetArchSpecForExistingProcess (process_name); 4780 //} 4781 4782 void 4783 Process::AppendSTDOUT (const char * s, size_t len) 4784 { 4785 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4786 m_stdout_data.append (s, len); 4787 BroadcastEventIfUnique (eBroadcastBitSTDOUT, new ProcessEventData (shared_from_this(), GetState())); 4788 } 4789 4790 void 4791 Process::AppendSTDERR (const char * s, size_t len) 4792 { 4793 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4794 m_stderr_data.append (s, len); 4795 BroadcastEventIfUnique (eBroadcastBitSTDERR, new ProcessEventData (shared_from_this(), GetState())); 4796 } 4797 4798 void 4799 Process::BroadcastAsyncProfileData(const std::string &one_profile_data) 4800 { 4801 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4802 m_profile_data.push_back(one_profile_data); 4803 BroadcastEventIfUnique (eBroadcastBitProfileData, new ProcessEventData (shared_from_this(), GetState())); 4804 } 4805 4806 size_t 4807 Process::GetAsyncProfileData (char *buf, size_t buf_size, Error &error) 4808 { 4809 std::lock_guard<std::recursive_mutex> guard(m_profile_data_comm_mutex); 4810 if (m_profile_data.empty()) 4811 return 0; 4812 4813 std::string &one_profile_data = m_profile_data.front(); 4814 size_t bytes_available = one_profile_data.size(); 4815 if (bytes_available > 0) 4816 { 4817 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4818 if (log) 4819 log->Printf ("Process::GetProfileData (buf = %p, size = %" PRIu64 ")", 4820 static_cast<void*>(buf), 4821 static_cast<uint64_t>(buf_size)); 4822 if (bytes_available > buf_size) 4823 { 4824 memcpy(buf, one_profile_data.c_str(), buf_size); 4825 one_profile_data.erase(0, buf_size); 4826 bytes_available = buf_size; 4827 } 4828 else 4829 { 4830 memcpy(buf, one_profile_data.c_str(), bytes_available); 4831 m_profile_data.erase(m_profile_data.begin()); 4832 } 4833 } 4834 return bytes_available; 4835 } 4836 4837 //------------------------------------------------------------------ 4838 // Process STDIO 4839 //------------------------------------------------------------------ 4840 4841 size_t 4842 Process::GetSTDOUT (char *buf, size_t buf_size, Error &error) 4843 { 4844 std::lock_guard<std::recursive_mutex> guard(m_stdio_communication_mutex); 4845 size_t bytes_available = m_stdout_data.size(); 4846 if (bytes_available > 0) 4847 { 4848 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4849 if (log) 4850 log->Printf ("Process::GetSTDOUT (buf = %p, size = %" PRIu64 ")", 4851 static_cast<void*>(buf), 4852 static_cast<uint64_t>(buf_size)); 4853 if (bytes_available > buf_size) 4854 { 4855 memcpy(buf, m_stdout_data.c_str(), buf_size); 4856 m_stdout_data.erase(0, buf_size); 4857 bytes_available = buf_size; 4858 } 4859 else 4860 { 4861 memcpy(buf, m_stdout_data.c_str(), bytes_available); 4862 m_stdout_data.clear(); 4863 } 4864 } 4865 return bytes_available; 4866 } 4867 4868 size_t 4869 Process::GetSTDERR (char *buf, size_t buf_size, Error &error) 4870 { 4871 std::lock_guard<std::recursive_mutex> gaurd(m_stdio_communication_mutex); 4872 size_t bytes_available = m_stderr_data.size(); 4873 if (bytes_available > 0) 4874 { 4875 Log *log (lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 4876 if (log) 4877 log->Printf ("Process::GetSTDERR (buf = %p, size = %" PRIu64 ")", 4878 static_cast<void*>(buf), 4879 static_cast<uint64_t>(buf_size)); 4880 if (bytes_available > buf_size) 4881 { 4882 memcpy(buf, m_stderr_data.c_str(), buf_size); 4883 m_stderr_data.erase(0, buf_size); 4884 bytes_available = buf_size; 4885 } 4886 else 4887 { 4888 memcpy(buf, m_stderr_data.c_str(), bytes_available); 4889 m_stderr_data.clear(); 4890 } 4891 } 4892 return bytes_available; 4893 } 4894 4895 void 4896 Process::STDIOReadThreadBytesReceived (void *baton, const void *src, size_t src_len) 4897 { 4898 Process *process = (Process *) baton; 4899 process->AppendSTDOUT (static_cast<const char *>(src), src_len); 4900 } 4901 4902 class IOHandlerProcessSTDIO : 4903 public IOHandler 4904 { 4905 public: 4906 IOHandlerProcessSTDIO (Process *process, 4907 int write_fd) : 4908 IOHandler(process->GetTarget().GetDebugger(), IOHandler::Type::ProcessIO), 4909 m_process (process), 4910 m_read_file (), 4911 m_write_file (write_fd, false), 4912 m_pipe () 4913 { 4914 m_pipe.CreateNew(false); 4915 m_read_file.SetDescriptor(GetInputFD(), false); 4916 } 4917 4918 ~IOHandlerProcessSTDIO() override = default; 4919 4920 // Each IOHandler gets to run until it is done. It should read data 4921 // from the "in" and place output into "out" and "err and return 4922 // when done. 4923 void 4924 Run () override 4925 { 4926 if (!m_read_file.IsValid() || !m_write_file.IsValid() || !m_pipe.CanRead() || !m_pipe.CanWrite()) 4927 { 4928 SetIsDone(true); 4929 return; 4930 } 4931 4932 SetIsDone(false); 4933 const int read_fd = m_read_file.GetDescriptor(); 4934 TerminalState terminal_state; 4935 terminal_state.Save (read_fd, false); 4936 Terminal terminal(read_fd); 4937 terminal.SetCanonical(false); 4938 terminal.SetEcho(false); 4939 // FD_ZERO, FD_SET are not supported on windows 4940 #ifndef _WIN32 4941 const int pipe_read_fd = m_pipe.GetReadFileDescriptor(); 4942 m_is_running = true; 4943 while (!GetIsDone()) 4944 { 4945 fd_set read_fdset; 4946 FD_ZERO (&read_fdset); 4947 FD_SET (read_fd, &read_fdset); 4948 FD_SET (pipe_read_fd, &read_fdset); 4949 const int nfds = std::max<int>(read_fd, pipe_read_fd) + 1; 4950 int num_set_fds = select(nfds, &read_fdset, nullptr, nullptr, nullptr); 4951 4952 if (num_set_fds < 0) 4953 { 4954 const int select_errno = errno; 4955 4956 if (select_errno != EINTR) 4957 SetIsDone(true); 4958 } 4959 else if (num_set_fds > 0) 4960 { 4961 char ch = 0; 4962 size_t n; 4963 if (FD_ISSET (read_fd, &read_fdset)) 4964 { 4965 n = 1; 4966 if (m_read_file.Read(&ch, n).Success() && n == 1) 4967 { 4968 if (m_write_file.Write(&ch, n).Fail() || n != 1) 4969 SetIsDone(true); 4970 } 4971 else 4972 SetIsDone(true); 4973 } 4974 if (FD_ISSET (pipe_read_fd, &read_fdset)) 4975 { 4976 size_t bytes_read; 4977 // Consume the interrupt byte 4978 Error error = m_pipe.Read(&ch, 1, bytes_read); 4979 if (error.Success()) 4980 { 4981 switch (ch) 4982 { 4983 case 'q': 4984 SetIsDone(true); 4985 break; 4986 case 'i': 4987 if (StateIsRunningState(m_process->GetState())) 4988 m_process->SendAsyncInterrupt(); 4989 break; 4990 } 4991 } 4992 } 4993 } 4994 } 4995 m_is_running = false; 4996 #endif 4997 terminal_state.Restore(); 4998 } 4999 5000 void 5001 Cancel () override 5002 { 5003 SetIsDone(true); 5004 // Only write to our pipe to cancel if we are in IOHandlerProcessSTDIO::Run(). 5005 // We can end up with a python command that is being run from the command 5006 // interpreter: 5007 // 5008 // (lldb) step_process_thousands_of_times 5009 // 5010 // In this case the command interpreter will be in the middle of handling 5011 // the command and if the process pushes and pops the IOHandler thousands 5012 // of times, we can end up writing to m_pipe without ever consuming the 5013 // bytes from the pipe in IOHandlerProcessSTDIO::Run() and end up 5014 // deadlocking when the pipe gets fed up and blocks until data is consumed. 5015 if (m_is_running) 5016 { 5017 char ch = 'q'; // Send 'q' for quit 5018 size_t bytes_written = 0; 5019 m_pipe.Write(&ch, 1, bytes_written); 5020 } 5021 } 5022 5023 bool 5024 Interrupt () override 5025 { 5026 // Do only things that are safe to do in an interrupt context (like in 5027 // a SIGINT handler), like write 1 byte to a file descriptor. This will 5028 // interrupt the IOHandlerProcessSTDIO::Run() and we can look at the byte 5029 // that was written to the pipe and then call m_process->SendAsyncInterrupt() 5030 // from a much safer location in code. 5031 if (m_active) 5032 { 5033 char ch = 'i'; // Send 'i' for interrupt 5034 size_t bytes_written = 0; 5035 Error result = m_pipe.Write(&ch, 1, bytes_written); 5036 return result.Success(); 5037 } 5038 else 5039 { 5040 // This IOHandler might be pushed on the stack, but not being run currently 5041 // so do the right thing if we aren't actively watching for STDIN by sending 5042 // the interrupt to the process. Otherwise the write to the pipe above would 5043 // do nothing. This can happen when the command interpreter is running and 5044 // gets a "expression ...". It will be on the IOHandler thread and sending 5045 // the input is complete to the delegate which will cause the expression to 5046 // run, which will push the process IO handler, but not run it. 5047 5048 if (StateIsRunningState(m_process->GetState())) 5049 { 5050 m_process->SendAsyncInterrupt(); 5051 return true; 5052 } 5053 } 5054 return false; 5055 } 5056 5057 void 5058 GotEOF() override 5059 { 5060 } 5061 5062 protected: 5063 Process *m_process; 5064 File m_read_file; // Read from this file (usually actual STDIN for LLDB 5065 File m_write_file; // Write to this file (usually the master pty for getting io to debuggee) 5066 Pipe m_pipe; 5067 std::atomic<bool> m_is_running; 5068 }; 5069 5070 void 5071 Process::SetSTDIOFileDescriptor (int fd) 5072 { 5073 // First set up the Read Thread for reading/handling process I/O 5074 5075 std::unique_ptr<ConnectionFileDescriptor> conn_ap (new ConnectionFileDescriptor (fd, true)); 5076 5077 if (conn_ap) 5078 { 5079 m_stdio_communication.SetConnection (conn_ap.release()); 5080 if (m_stdio_communication.IsConnected()) 5081 { 5082 m_stdio_communication.SetReadThreadBytesReceivedCallback (STDIOReadThreadBytesReceived, this); 5083 m_stdio_communication.StartReadThread(); 5084 5085 // Now read thread is set up, set up input reader. 5086 5087 if (!m_process_input_reader) 5088 m_process_input_reader.reset (new IOHandlerProcessSTDIO (this, fd)); 5089 } 5090 } 5091 } 5092 5093 bool 5094 Process::ProcessIOHandlerIsActive () 5095 { 5096 IOHandlerSP io_handler_sp (m_process_input_reader); 5097 if (io_handler_sp) 5098 return GetTarget().GetDebugger().IsTopIOHandler (io_handler_sp); 5099 return false; 5100 } 5101 bool 5102 Process::PushProcessIOHandler () 5103 { 5104 IOHandlerSP io_handler_sp (m_process_input_reader); 5105 if (io_handler_sp) 5106 { 5107 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 5108 if (log) 5109 log->Printf("Process::%s pushing IO handler", __FUNCTION__); 5110 5111 io_handler_sp->SetIsDone(false); 5112 GetTarget().GetDebugger().PushIOHandler (io_handler_sp); 5113 return true; 5114 } 5115 return false; 5116 } 5117 5118 bool 5119 Process::PopProcessIOHandler () 5120 { 5121 IOHandlerSP io_handler_sp (m_process_input_reader); 5122 if (io_handler_sp) 5123 return GetTarget().GetDebugger().PopIOHandler (io_handler_sp); 5124 return false; 5125 } 5126 5127 // The process needs to know about installed plug-ins 5128 void 5129 Process::SettingsInitialize () 5130 { 5131 Thread::SettingsInitialize (); 5132 } 5133 5134 void 5135 Process::SettingsTerminate () 5136 { 5137 Thread::SettingsTerminate (); 5138 } 5139 5140 namespace 5141 { 5142 // RestorePlanState is used to record the "is private", "is master" and "okay to discard" fields of 5143 // the plan we are running, and reset it on Clean or on destruction. 5144 // It will only reset the state once, so you can call Clean and then monkey with the state and it 5145 // won't get reset on you again. 5146 5147 class RestorePlanState 5148 { 5149 public: 5150 RestorePlanState (lldb::ThreadPlanSP thread_plan_sp) : 5151 m_thread_plan_sp(thread_plan_sp), 5152 m_already_reset(false) 5153 { 5154 if (m_thread_plan_sp) 5155 { 5156 m_private = m_thread_plan_sp->GetPrivate(); 5157 m_is_master = m_thread_plan_sp->IsMasterPlan(); 5158 m_okay_to_discard = m_thread_plan_sp->OkayToDiscard(); 5159 } 5160 } 5161 5162 ~RestorePlanState() 5163 { 5164 Clean(); 5165 } 5166 5167 void 5168 Clean () 5169 { 5170 if (!m_already_reset && m_thread_plan_sp) 5171 { 5172 m_already_reset = true; 5173 m_thread_plan_sp->SetPrivate(m_private); 5174 m_thread_plan_sp->SetIsMasterPlan (m_is_master); 5175 m_thread_plan_sp->SetOkayToDiscard(m_okay_to_discard); 5176 } 5177 } 5178 5179 private: 5180 lldb::ThreadPlanSP m_thread_plan_sp; 5181 bool m_already_reset; 5182 bool m_private; 5183 bool m_is_master; 5184 bool m_okay_to_discard; 5185 }; 5186 } // anonymous namespace 5187 5188 ExpressionResults 5189 Process::RunThreadPlan(ExecutionContext &exe_ctx, lldb::ThreadPlanSP &thread_plan_sp, 5190 const EvaluateExpressionOptions &options, DiagnosticManager &diagnostic_manager) 5191 { 5192 ExpressionResults return_value = eExpressionSetupError; 5193 5194 std::lock_guard<std::mutex> run_thread_plan_locker(m_run_thread_plan_lock); 5195 5196 if (!thread_plan_sp) 5197 { 5198 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with empty thread plan."); 5199 return eExpressionSetupError; 5200 } 5201 5202 if (!thread_plan_sp->ValidatePlan(nullptr)) 5203 { 5204 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with an invalid thread plan."); 5205 return eExpressionSetupError; 5206 } 5207 5208 if (exe_ctx.GetProcessPtr() != this) 5209 { 5210 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called on wrong process."); 5211 return eExpressionSetupError; 5212 } 5213 5214 Thread *thread = exe_ctx.GetThreadPtr(); 5215 if (thread == nullptr) 5216 { 5217 diagnostic_manager.PutCString(eDiagnosticSeverityError, "RunThreadPlan called with invalid thread."); 5218 return eExpressionSetupError; 5219 } 5220 5221 // We need to change some of the thread plan attributes for the thread plan runner. This will restore them 5222 // when we are done: 5223 5224 RestorePlanState thread_plan_restorer(thread_plan_sp); 5225 5226 // We rely on the thread plan we are running returning "PlanCompleted" if when it successfully completes. 5227 // For that to be true the plan can't be private - since private plans suppress themselves in the 5228 // GetCompletedPlan call. 5229 5230 thread_plan_sp->SetPrivate(false); 5231 5232 // The plans run with RunThreadPlan also need to be terminal master plans or when they are done we will end 5233 // up asking the plan above us whether we should stop, which may give the wrong answer. 5234 5235 thread_plan_sp->SetIsMasterPlan (true); 5236 thread_plan_sp->SetOkayToDiscard(false); 5237 5238 if (m_private_state.GetValue() != eStateStopped) 5239 { 5240 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5241 "RunThreadPlan called while the private state was not stopped."); 5242 return eExpressionSetupError; 5243 } 5244 5245 // Save the thread & frame from the exe_ctx for restoration after we run 5246 const uint32_t thread_idx_id = thread->GetIndexID(); 5247 StackFrameSP selected_frame_sp = thread->GetSelectedFrame(); 5248 if (!selected_frame_sp) 5249 { 5250 thread->SetSelectedFrame(nullptr); 5251 selected_frame_sp = thread->GetSelectedFrame(); 5252 if (!selected_frame_sp) 5253 { 5254 diagnostic_manager.Printf(eDiagnosticSeverityError, 5255 "RunThreadPlan called without a selected frame on thread %d", thread_idx_id); 5256 return eExpressionSetupError; 5257 } 5258 } 5259 5260 StackID ctx_frame_id = selected_frame_sp->GetStackID(); 5261 5262 // N.B. Running the target may unset the currently selected thread and frame. We don't want to do that either, 5263 // so we should arrange to reset them as well. 5264 5265 lldb::ThreadSP selected_thread_sp = GetThreadList().GetSelectedThread(); 5266 5267 uint32_t selected_tid; 5268 StackID selected_stack_id; 5269 if (selected_thread_sp) 5270 { 5271 selected_tid = selected_thread_sp->GetIndexID(); 5272 selected_stack_id = selected_thread_sp->GetSelectedFrame()->GetStackID(); 5273 } 5274 else 5275 { 5276 selected_tid = LLDB_INVALID_THREAD_ID; 5277 } 5278 5279 HostThread backup_private_state_thread; 5280 lldb::StateType old_state = eStateInvalid; 5281 lldb::ThreadPlanSP stopper_base_plan_sp; 5282 5283 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_STEP | LIBLLDB_LOG_PROCESS)); 5284 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 5285 { 5286 // Yikes, we are running on the private state thread! So we can't wait for public events on this thread, since 5287 // we are the thread that is generating public events. 5288 // The simplest thing to do is to spin up a temporary thread to handle private state thread events while 5289 // we are fielding public events here. 5290 if (log) 5291 log->Printf ("Running thread plan on private state thread, spinning up another state thread to handle the events."); 5292 5293 backup_private_state_thread = m_private_state_thread; 5294 5295 // One other bit of business: we want to run just this thread plan and anything it pushes, and then stop, 5296 // returning control here. 5297 // But in the normal course of things, the plan above us on the stack would be given a shot at the stop 5298 // event before deciding to stop, and we don't want that. So we insert a "stopper" base plan on the stack 5299 // before the plan we want to run. Since base plans always stop and return control to the user, that will 5300 // do just what we want. 5301 stopper_base_plan_sp.reset(new ThreadPlanBase (*thread)); 5302 thread->QueueThreadPlan (stopper_base_plan_sp, false); 5303 // Have to make sure our public state is stopped, since otherwise the reporting logic below doesn't work correctly. 5304 old_state = m_public_state.GetValue(); 5305 m_public_state.SetValueNoLock(eStateStopped); 5306 5307 // Now spin up the private state thread: 5308 StartPrivateStateThread(true); 5309 } 5310 5311 thread->QueueThreadPlan(thread_plan_sp, false); // This used to pass "true" does that make sense? 5312 5313 if (options.GetDebug()) 5314 { 5315 // In this case, we aren't actually going to run, we just want to stop right away. 5316 // Flush this thread so we will refetch the stacks and show the correct backtrace. 5317 // FIXME: To make this prettier we should invent some stop reason for this, but that 5318 // is only cosmetic, and this functionality is only of use to lldb developers who can 5319 // live with not pretty... 5320 thread->Flush(); 5321 return eExpressionStoppedForDebug; 5322 } 5323 5324 ListenerSP listener_sp(Listener::MakeListener("lldb.process.listener.run-thread-plan")); 5325 5326 lldb::EventSP event_to_broadcast_sp; 5327 5328 { 5329 // This process event hijacker Hijacks the Public events and its destructor makes sure that the process events get 5330 // restored on exit to the function. 5331 // 5332 // If the event needs to propagate beyond the hijacker (e.g., the process exits during execution), then the event 5333 // is put into event_to_broadcast_sp for rebroadcasting. 5334 5335 ProcessEventHijacker run_thread_plan_hijacker (*this, listener_sp); 5336 5337 if (log) 5338 { 5339 StreamString s; 5340 thread_plan_sp->GetDescription(&s, lldb::eDescriptionLevelVerbose); 5341 log->Printf ("Process::RunThreadPlan(): Resuming thread %u - 0x%4.4" PRIx64 " to run thread plan \"%s\".", 5342 thread->GetIndexID(), 5343 thread->GetID(), 5344 s.GetData()); 5345 } 5346 5347 bool got_event; 5348 lldb::EventSP event_sp; 5349 lldb::StateType stop_state = lldb::eStateInvalid; 5350 5351 TimeValue* timeout_ptr = nullptr; 5352 TimeValue real_timeout; 5353 5354 bool before_first_timeout = true; // This is set to false the first time that we have to halt the target. 5355 bool do_resume = true; 5356 bool handle_running_event = true; 5357 const uint64_t default_one_thread_timeout_usec = 250000; 5358 5359 // This is just for accounting: 5360 uint32_t num_resumes = 0; 5361 5362 uint32_t timeout_usec = options.GetTimeoutUsec(); 5363 uint32_t one_thread_timeout_usec; 5364 uint32_t all_threads_timeout_usec = 0; 5365 5366 // If we are going to run all threads the whole time, or if we are only going to run one thread, 5367 // then we don't need the first timeout. So we set the final timeout, and pretend we are after the 5368 // first timeout already. 5369 5370 if (!options.GetStopOthers() || !options.GetTryAllThreads()) 5371 { 5372 before_first_timeout = false; 5373 one_thread_timeout_usec = 0; 5374 all_threads_timeout_usec = timeout_usec; 5375 } 5376 else 5377 { 5378 uint32_t option_one_thread_timeout = options.GetOneThreadTimeoutUsec(); 5379 5380 // If the overall wait is forever, then we only need to set the one thread timeout: 5381 if (timeout_usec == 0) 5382 { 5383 if (option_one_thread_timeout != 0) 5384 one_thread_timeout_usec = option_one_thread_timeout; 5385 else 5386 one_thread_timeout_usec = default_one_thread_timeout_usec; 5387 } 5388 else 5389 { 5390 // Otherwise, if the one thread timeout is set, make sure it isn't longer than the overall timeout, 5391 // and use it, otherwise use half the total timeout, bounded by the default_one_thread_timeout_usec. 5392 uint64_t computed_one_thread_timeout; 5393 if (option_one_thread_timeout != 0) 5394 { 5395 if (timeout_usec < option_one_thread_timeout) 5396 { 5397 diagnostic_manager.PutCString( 5398 eDiagnosticSeverityError, 5399 "RunThreadPlan called without one thread timeout greater than total timeout"); 5400 return eExpressionSetupError; 5401 } 5402 computed_one_thread_timeout = option_one_thread_timeout; 5403 } 5404 else 5405 { 5406 computed_one_thread_timeout = timeout_usec / 2; 5407 if (computed_one_thread_timeout > default_one_thread_timeout_usec) 5408 computed_one_thread_timeout = default_one_thread_timeout_usec; 5409 } 5410 one_thread_timeout_usec = computed_one_thread_timeout; 5411 all_threads_timeout_usec = timeout_usec - one_thread_timeout_usec; 5412 } 5413 } 5414 5415 if (log) 5416 log->Printf ("Stop others: %u, try all: %u, before_first: %u, one thread: %" PRIu32 " - all threads: %" PRIu32 ".\n", 5417 options.GetStopOthers(), 5418 options.GetTryAllThreads(), 5419 before_first_timeout, 5420 one_thread_timeout_usec, 5421 all_threads_timeout_usec); 5422 5423 // This isn't going to work if there are unfetched events on the queue. 5424 // Are there cases where we might want to run the remaining events here, and then try to 5425 // call the function? That's probably being too tricky for our own good. 5426 5427 Event *other_events = listener_sp->PeekAtNextEvent(); 5428 if (other_events != nullptr) 5429 { 5430 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5431 "RunThreadPlan called with pending events on the queue."); 5432 return eExpressionSetupError; 5433 } 5434 5435 // We also need to make sure that the next event is delivered. We might be calling a function as part of 5436 // a thread plan, in which case the last delivered event could be the running event, and we don't want 5437 // event coalescing to cause us to lose OUR running event... 5438 ForceNextEventDelivery(); 5439 5440 // This while loop must exit out the bottom, there's cleanup that we need to do when we are done. 5441 // So don't call return anywhere within it. 5442 5443 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5444 // It's pretty much impossible to write test cases for things like: 5445 // One thread timeout expires, I go to halt, but the process already stopped 5446 // on the function call stop breakpoint. Turning on this define will make us not 5447 // fetch the first event till after the halt. So if you run a quick function, it will have 5448 // completed, and the completion event will be waiting, when you interrupt for halt. 5449 // The expression evaluation should still succeed. 5450 bool miss_first_event = true; 5451 #endif 5452 TimeValue one_thread_timeout; 5453 TimeValue final_timeout; 5454 5455 while (true) 5456 { 5457 // We usually want to resume the process if we get to the top of the loop. 5458 // The only exception is if we get two running events with no intervening 5459 // stop, which can happen, we will just wait for then next stop event. 5460 if (log) 5461 log->Printf ("Top of while loop: do_resume: %i handle_running_event: %i before_first_timeout: %i.", 5462 do_resume, 5463 handle_running_event, 5464 before_first_timeout); 5465 5466 if (do_resume || handle_running_event) 5467 { 5468 // Do the initial resume and wait for the running event before going further. 5469 5470 if (do_resume) 5471 { 5472 num_resumes++; 5473 Error resume_error = PrivateResume(); 5474 if (!resume_error.Success()) 5475 { 5476 diagnostic_manager.Printf(eDiagnosticSeverityError, 5477 "couldn't resume inferior the %d time: \"%s\".", num_resumes, 5478 resume_error.AsCString()); 5479 return_value = eExpressionSetupError; 5480 break; 5481 } 5482 } 5483 5484 TimeValue resume_timeout = TimeValue::Now(); 5485 resume_timeout.OffsetWithMicroSeconds(500000); 5486 5487 got_event = listener_sp->WaitForEvent(&resume_timeout, event_sp); 5488 if (!got_event) 5489 { 5490 if (log) 5491 log->Printf("Process::RunThreadPlan(): didn't get any event after resume %" PRIu32 ", exiting.", 5492 num_resumes); 5493 5494 diagnostic_manager.Printf(eDiagnosticSeverityError, 5495 "didn't get any event after resume %" PRIu32 ", exiting.", num_resumes); 5496 return_value = eExpressionSetupError; 5497 break; 5498 } 5499 5500 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5501 5502 if (stop_state != eStateRunning) 5503 { 5504 bool restarted = false; 5505 5506 if (stop_state == eStateStopped) 5507 { 5508 restarted = Process::ProcessEventData::GetRestartedFromEvent(event_sp.get()); 5509 if (log) 5510 log->Printf("Process::RunThreadPlan(): didn't get running event after " 5511 "resume %d, got %s instead (restarted: %i, do_resume: %i, handle_running_event: %i).", 5512 num_resumes, 5513 StateAsCString(stop_state), 5514 restarted, 5515 do_resume, 5516 handle_running_event); 5517 } 5518 5519 if (restarted) 5520 { 5521 // This is probably an overabundance of caution, I don't think I should ever get a stopped & restarted 5522 // event here. But if I do, the best thing is to Halt and then get out of here. 5523 const bool clear_thread_plans = false; 5524 const bool use_run_lock = false; 5525 Halt(clear_thread_plans, use_run_lock); 5526 } 5527 5528 diagnostic_manager.Printf(eDiagnosticSeverityError, 5529 "didn't get running event after initial resume, got %s instead.", 5530 StateAsCString(stop_state)); 5531 return_value = eExpressionSetupError; 5532 break; 5533 } 5534 5535 if (log) 5536 log->PutCString ("Process::RunThreadPlan(): resuming succeeded."); 5537 // We need to call the function synchronously, so spin waiting for it to return. 5538 // If we get interrupted while executing, we're going to lose our context, and 5539 // won't be able to gather the result at this point. 5540 // We set the timeout AFTER the resume, since the resume takes some time and we 5541 // don't want to charge that to the timeout. 5542 } 5543 else 5544 { 5545 if (log) 5546 log->PutCString ("Process::RunThreadPlan(): waiting for next event."); 5547 } 5548 5549 if (before_first_timeout) 5550 { 5551 if (options.GetTryAllThreads()) 5552 { 5553 one_thread_timeout = TimeValue::Now(); 5554 one_thread_timeout.OffsetWithMicroSeconds(one_thread_timeout_usec); 5555 timeout_ptr = &one_thread_timeout; 5556 } 5557 else 5558 { 5559 if (timeout_usec == 0) 5560 timeout_ptr = nullptr; 5561 else 5562 { 5563 final_timeout = TimeValue::Now(); 5564 final_timeout.OffsetWithMicroSeconds (timeout_usec); 5565 timeout_ptr = &final_timeout; 5566 } 5567 } 5568 } 5569 else 5570 { 5571 if (timeout_usec == 0) 5572 timeout_ptr = nullptr; 5573 else 5574 { 5575 final_timeout = TimeValue::Now(); 5576 final_timeout.OffsetWithMicroSeconds (all_threads_timeout_usec); 5577 timeout_ptr = &final_timeout; 5578 } 5579 } 5580 5581 do_resume = true; 5582 handle_running_event = true; 5583 5584 // Now wait for the process to stop again: 5585 event_sp.reset(); 5586 5587 if (log) 5588 { 5589 if (timeout_ptr) 5590 { 5591 log->Printf ("Process::RunThreadPlan(): about to wait - now is %" PRIu64 " - endpoint is %" PRIu64, 5592 TimeValue::Now().GetAsMicroSecondsSinceJan1_1970(), 5593 timeout_ptr->GetAsMicroSecondsSinceJan1_1970()); 5594 } 5595 else 5596 { 5597 log->Printf ("Process::RunThreadPlan(): about to wait forever."); 5598 } 5599 } 5600 5601 #ifdef LLDB_RUN_THREAD_HALT_WITH_EVENT 5602 // See comment above... 5603 if (miss_first_event) 5604 { 5605 usleep(1000); 5606 miss_first_event = false; 5607 got_event = false; 5608 } 5609 else 5610 #endif 5611 got_event = listener_sp->WaitForEvent (timeout_ptr, event_sp); 5612 5613 if (got_event) 5614 { 5615 if (event_sp) 5616 { 5617 bool keep_going = false; 5618 if (event_sp->GetType() == eBroadcastBitInterrupt) 5619 { 5620 const bool clear_thread_plans = false; 5621 const bool use_run_lock = false; 5622 Halt(clear_thread_plans, use_run_lock); 5623 return_value = eExpressionInterrupted; 5624 diagnostic_manager.PutCString(eDiagnosticSeverityRemark, "execution halted by user interrupt."); 5625 if (log) 5626 log->Printf( 5627 "Process::RunThreadPlan(): Got interrupted by eBroadcastBitInterrupted, exiting."); 5628 break; 5629 } 5630 else 5631 { 5632 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5633 if (log) 5634 log->Printf("Process::RunThreadPlan(): in while loop, got event: %s.", StateAsCString(stop_state)); 5635 5636 switch (stop_state) 5637 { 5638 case lldb::eStateStopped: 5639 { 5640 // We stopped, figure out what we are going to do now. 5641 ThreadSP thread_sp = GetThreadList().FindThreadByIndexID (thread_idx_id); 5642 if (!thread_sp) 5643 { 5644 // Ooh, our thread has vanished. Unlikely that this was successful execution... 5645 if (log) 5646 log->Printf ("Process::RunThreadPlan(): execution completed but our thread (index-id=%u) has vanished.", thread_idx_id); 5647 return_value = eExpressionInterrupted; 5648 } 5649 else 5650 { 5651 // If we were restarted, we just need to go back up to fetch another event. 5652 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5653 { 5654 if (log) 5655 { 5656 log->Printf ("Process::RunThreadPlan(): Got a stop and restart, so we'll continue waiting."); 5657 } 5658 keep_going = true; 5659 do_resume = false; 5660 handle_running_event = true; 5661 } 5662 else 5663 { 5664 StopInfoSP stop_info_sp (thread_sp->GetStopInfo ()); 5665 StopReason stop_reason = eStopReasonInvalid; 5666 if (stop_info_sp) 5667 stop_reason = stop_info_sp->GetStopReason(); 5668 5669 // FIXME: We only check if the stop reason is plan complete, should we make sure that 5670 // it is OUR plan that is complete? 5671 if (stop_reason == eStopReasonPlanComplete) 5672 { 5673 if (log) 5674 log->PutCString ("Process::RunThreadPlan(): execution completed successfully."); 5675 5676 // Restore the plan state so it will get reported as intended when we are done. 5677 thread_plan_restorer.Clean(); 5678 5679 return_value = eExpressionCompleted; 5680 } 5681 else 5682 { 5683 // Something restarted the target, so just wait for it to stop for real. 5684 if (stop_reason == eStopReasonBreakpoint) 5685 { 5686 if (log) 5687 log->Printf ("Process::RunThreadPlan() stopped for breakpoint: %s.", stop_info_sp->GetDescription()); 5688 return_value = eExpressionHitBreakpoint; 5689 if (!options.DoesIgnoreBreakpoints()) 5690 { 5691 // Restore the plan state and then force Private to false. We are 5692 // going to stop because of this plan so we need it to become a public 5693 // plan or it won't report correctly when we continue to its termination 5694 // later on. 5695 thread_plan_restorer.Clean(); 5696 if (thread_plan_sp) 5697 thread_plan_sp->SetPrivate(false); 5698 event_to_broadcast_sp = event_sp; 5699 } 5700 } 5701 else 5702 { 5703 if (log) 5704 log->PutCString ("Process::RunThreadPlan(): thread plan didn't successfully complete."); 5705 if (!options.DoesUnwindOnError()) 5706 event_to_broadcast_sp = event_sp; 5707 return_value = eExpressionInterrupted; 5708 } 5709 } 5710 } 5711 } 5712 } 5713 break; 5714 5715 case lldb::eStateRunning: 5716 // This shouldn't really happen, but sometimes we do get two running events without an 5717 // intervening stop, and in that case we should just go back to waiting for the stop. 5718 do_resume = false; 5719 keep_going = true; 5720 handle_running_event = false; 5721 break; 5722 5723 default: 5724 if (log) 5725 log->Printf("Process::RunThreadPlan(): execution stopped with unexpected state: %s.", StateAsCString(stop_state)); 5726 5727 if (stop_state == eStateExited) 5728 event_to_broadcast_sp = event_sp; 5729 5730 diagnostic_manager.PutCString(eDiagnosticSeverityError, 5731 "execution stopped with unexpected state."); 5732 return_value = eExpressionInterrupted; 5733 break; 5734 } 5735 } 5736 5737 if (keep_going) 5738 continue; 5739 else 5740 break; 5741 } 5742 else 5743 { 5744 if (log) 5745 log->PutCString ("Process::RunThreadPlan(): got_event was true, but the event pointer was null. How odd..."); 5746 return_value = eExpressionInterrupted; 5747 break; 5748 } 5749 } 5750 else 5751 { 5752 // If we didn't get an event that means we've timed out... 5753 // We will interrupt the process here. Depending on what we were asked to do we will 5754 // either exit, or try with all threads running for the same timeout. 5755 5756 if (log) { 5757 if (options.GetTryAllThreads()) 5758 { 5759 if (before_first_timeout) 5760 { 5761 if (timeout_usec != 0) 5762 { 5763 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5764 "running for %" PRIu32 " usec with all threads enabled.", 5765 all_threads_timeout_usec); 5766 } 5767 else 5768 { 5769 log->Printf ("Process::RunThreadPlan(): Running function with one thread timeout timed out, " 5770 "running forever with all threads enabled."); 5771 } 5772 } 5773 else 5774 log->Printf ("Process::RunThreadPlan(): Restarting function with all threads enabled " 5775 "and timeout: %u timed out, abandoning execution.", 5776 timeout_usec); 5777 } 5778 else 5779 log->Printf ("Process::RunThreadPlan(): Running function with timeout: %u timed out, " 5780 "abandoning execution.", 5781 timeout_usec); 5782 } 5783 5784 // It is possible that between the time we issued the Halt, and we get around to calling Halt the target 5785 // could have stopped. That's fine, Halt will figure that out and send the appropriate Stopped event. 5786 // BUT it is also possible that we stopped & restarted (e.g. hit a signal with "stop" set to false.) In 5787 // that case, we'll get the stopped & restarted event, and we should go back to waiting for the Halt's 5788 // stopped event. That's what this while loop does. 5789 5790 bool back_to_top = true; 5791 uint32_t try_halt_again = 0; 5792 bool do_halt = true; 5793 const uint32_t num_retries = 5; 5794 while (try_halt_again < num_retries) 5795 { 5796 Error halt_error; 5797 if (do_halt) 5798 { 5799 if (log) 5800 log->Printf ("Process::RunThreadPlan(): Running Halt."); 5801 const bool clear_thread_plans = false; 5802 const bool use_run_lock = false; 5803 Halt(clear_thread_plans, use_run_lock); 5804 } 5805 if (halt_error.Success()) 5806 { 5807 if (log) 5808 log->PutCString ("Process::RunThreadPlan(): Halt succeeded."); 5809 5810 real_timeout = TimeValue::Now(); 5811 real_timeout.OffsetWithMicroSeconds(500000); 5812 5813 got_event = listener_sp->WaitForEvent(&real_timeout, event_sp); 5814 5815 if (got_event) 5816 { 5817 stop_state = Process::ProcessEventData::GetStateFromEvent(event_sp.get()); 5818 if (log) 5819 { 5820 log->Printf ("Process::RunThreadPlan(): Stopped with event: %s", StateAsCString(stop_state)); 5821 if (stop_state == lldb::eStateStopped 5822 && Process::ProcessEventData::GetInterruptedFromEvent(event_sp.get())) 5823 log->PutCString (" Event was the Halt interruption event."); 5824 } 5825 5826 if (stop_state == lldb::eStateStopped) 5827 { 5828 // Between the time we initiated the Halt and the time we delivered it, the process could have 5829 // already finished its job. Check that here: 5830 5831 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 5832 { 5833 if (log) 5834 log->PutCString ("Process::RunThreadPlan(): Even though we timed out, the call plan was done. " 5835 "Exiting wait loop."); 5836 return_value = eExpressionCompleted; 5837 back_to_top = false; 5838 break; 5839 } 5840 5841 if (Process::ProcessEventData::GetRestartedFromEvent(event_sp.get())) 5842 { 5843 if (log) 5844 log->PutCString ("Process::RunThreadPlan(): Went to halt but got a restarted event, there must be an un-restarted stopped event so try again... " 5845 "Exiting wait loop."); 5846 try_halt_again++; 5847 do_halt = false; 5848 continue; 5849 } 5850 5851 if (!options.GetTryAllThreads()) 5852 { 5853 if (log) 5854 log->PutCString ("Process::RunThreadPlan(): try_all_threads was false, we stopped so now we're quitting."); 5855 return_value = eExpressionInterrupted; 5856 back_to_top = false; 5857 break; 5858 } 5859 5860 if (before_first_timeout) 5861 { 5862 // Set all the other threads to run, and return to the top of the loop, which will continue; 5863 before_first_timeout = false; 5864 thread_plan_sp->SetStopOthers (false); 5865 if (log) 5866 log->PutCString ("Process::RunThreadPlan(): about to resume."); 5867 5868 back_to_top = true; 5869 break; 5870 } 5871 else 5872 { 5873 // Running all threads failed, so return Interrupted. 5874 if (log) 5875 log->PutCString("Process::RunThreadPlan(): running all threads timed out."); 5876 return_value = eExpressionInterrupted; 5877 back_to_top = false; 5878 break; 5879 } 5880 } 5881 } 5882 else 5883 { if (log) 5884 log->PutCString("Process::RunThreadPlan(): halt said it succeeded, but I got no event. " 5885 "I'm getting out of here passing Interrupted."); 5886 return_value = eExpressionInterrupted; 5887 back_to_top = false; 5888 break; 5889 } 5890 } 5891 else 5892 { 5893 try_halt_again++; 5894 continue; 5895 } 5896 } 5897 5898 if (!back_to_top || try_halt_again > num_retries) 5899 break; 5900 else 5901 continue; 5902 } 5903 } // END WAIT LOOP 5904 5905 // If we had to start up a temporary private state thread to run this thread plan, shut it down now. 5906 if (backup_private_state_thread.IsJoinable()) 5907 { 5908 StopPrivateStateThread(); 5909 Error error; 5910 m_private_state_thread = backup_private_state_thread; 5911 if (stopper_base_plan_sp) 5912 { 5913 thread->DiscardThreadPlansUpToPlan(stopper_base_plan_sp); 5914 } 5915 if (old_state != eStateInvalid) 5916 m_public_state.SetValueNoLock(old_state); 5917 } 5918 5919 if (return_value != eExpressionCompleted && log) 5920 { 5921 // Print a backtrace into the log so we can figure out where we are: 5922 StreamString s; 5923 s.PutCString("Thread state after unsuccessful completion: \n"); 5924 thread->GetStackFrameStatus (s, 5925 0, 5926 UINT32_MAX, 5927 true, 5928 UINT32_MAX); 5929 log->PutCString(s.GetData()); 5930 5931 } 5932 // Restore the thread state if we are going to discard the plan execution. There are three cases where this 5933 // could happen: 5934 // 1) The execution successfully completed 5935 // 2) We hit a breakpoint, and ignore_breakpoints was true 5936 // 3) We got some other error, and discard_on_error was true 5937 bool should_unwind = (return_value == eExpressionInterrupted && options.DoesUnwindOnError()) 5938 || (return_value == eExpressionHitBreakpoint && options.DoesIgnoreBreakpoints()); 5939 5940 if (return_value == eExpressionCompleted 5941 || should_unwind) 5942 { 5943 thread_plan_sp->RestoreThreadState(); 5944 } 5945 5946 // Now do some processing on the results of the run: 5947 if (return_value == eExpressionInterrupted || return_value == eExpressionHitBreakpoint) 5948 { 5949 if (log) 5950 { 5951 StreamString s; 5952 if (event_sp) 5953 event_sp->Dump (&s); 5954 else 5955 { 5956 log->PutCString ("Process::RunThreadPlan(): Stop event that interrupted us is NULL."); 5957 } 5958 5959 StreamString ts; 5960 5961 const char *event_explanation = nullptr; 5962 5963 do 5964 { 5965 if (!event_sp) 5966 { 5967 event_explanation = "<no event>"; 5968 break; 5969 } 5970 else if (event_sp->GetType() == eBroadcastBitInterrupt) 5971 { 5972 event_explanation = "<user interrupt>"; 5973 break; 5974 } 5975 else 5976 { 5977 const Process::ProcessEventData *event_data = Process::ProcessEventData::GetEventDataFromEvent (event_sp.get()); 5978 5979 if (!event_data) 5980 { 5981 event_explanation = "<no event data>"; 5982 break; 5983 } 5984 5985 Process *process = event_data->GetProcessSP().get(); 5986 5987 if (!process) 5988 { 5989 event_explanation = "<no process>"; 5990 break; 5991 } 5992 5993 ThreadList &thread_list = process->GetThreadList(); 5994 5995 uint32_t num_threads = thread_list.GetSize(); 5996 uint32_t thread_index; 5997 5998 ts.Printf("<%u threads> ", num_threads); 5999 6000 for (thread_index = 0; 6001 thread_index < num_threads; 6002 ++thread_index) 6003 { 6004 Thread *thread = thread_list.GetThreadAtIndex(thread_index).get(); 6005 6006 if (!thread) 6007 { 6008 ts.Printf("<?> "); 6009 continue; 6010 } 6011 6012 ts.Printf("<0x%4.4" PRIx64 " ", thread->GetID()); 6013 RegisterContext *register_context = thread->GetRegisterContext().get(); 6014 6015 if (register_context) 6016 ts.Printf("[ip 0x%" PRIx64 "] ", register_context->GetPC()); 6017 else 6018 ts.Printf("[ip unknown] "); 6019 6020 // Show the private stop info here, the public stop info will be from the last natural stop. 6021 lldb::StopInfoSP stop_info_sp = thread->GetPrivateStopInfo(); 6022 if (stop_info_sp) 6023 { 6024 const char *stop_desc = stop_info_sp->GetDescription(); 6025 if (stop_desc) 6026 ts.PutCString (stop_desc); 6027 } 6028 ts.Printf(">"); 6029 } 6030 6031 event_explanation = ts.GetData(); 6032 } 6033 } while (0); 6034 6035 if (event_explanation) 6036 log->Printf("Process::RunThreadPlan(): execution interrupted: %s %s", s.GetData(), event_explanation); 6037 else 6038 log->Printf("Process::RunThreadPlan(): execution interrupted: %s", s.GetData()); 6039 } 6040 6041 if (should_unwind) 6042 { 6043 if (log) 6044 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - discarding thread plans up to %p.", 6045 static_cast<void*>(thread_plan_sp.get())); 6046 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6047 } 6048 else 6049 { 6050 if (log) 6051 log->Printf ("Process::RunThreadPlan: ExecutionInterrupted - for plan: %p not discarding.", 6052 static_cast<void*>(thread_plan_sp.get())); 6053 } 6054 } 6055 else if (return_value == eExpressionSetupError) 6056 { 6057 if (log) 6058 log->PutCString("Process::RunThreadPlan(): execution set up error."); 6059 6060 if (options.DoesUnwindOnError()) 6061 { 6062 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6063 } 6064 } 6065 else 6066 { 6067 if (thread->IsThreadPlanDone (thread_plan_sp.get())) 6068 { 6069 if (log) 6070 log->PutCString("Process::RunThreadPlan(): thread plan is done"); 6071 return_value = eExpressionCompleted; 6072 } 6073 else if (thread->WasThreadPlanDiscarded (thread_plan_sp.get())) 6074 { 6075 if (log) 6076 log->PutCString("Process::RunThreadPlan(): thread plan was discarded"); 6077 return_value = eExpressionDiscarded; 6078 } 6079 else 6080 { 6081 if (log) 6082 log->PutCString("Process::RunThreadPlan(): thread plan stopped in mid course"); 6083 if (options.DoesUnwindOnError() && thread_plan_sp) 6084 { 6085 if (log) 6086 log->PutCString("Process::RunThreadPlan(): discarding thread plan 'cause unwind_on_error is set."); 6087 thread->DiscardThreadPlansUpToPlan (thread_plan_sp); 6088 } 6089 } 6090 } 6091 6092 // Thread we ran the function in may have gone away because we ran the target 6093 // Check that it's still there, and if it is put it back in the context. Also restore the 6094 // frame in the context if it is still present. 6095 thread = GetThreadList().FindThreadByIndexID(thread_idx_id, true).get(); 6096 if (thread) 6097 { 6098 exe_ctx.SetFrameSP (thread->GetFrameWithStackID (ctx_frame_id)); 6099 } 6100 6101 // Also restore the current process'es selected frame & thread, since this function calling may 6102 // be done behind the user's back. 6103 6104 if (selected_tid != LLDB_INVALID_THREAD_ID) 6105 { 6106 if (GetThreadList().SetSelectedThreadByIndexID (selected_tid) && selected_stack_id.IsValid()) 6107 { 6108 // We were able to restore the selected thread, now restore the frame: 6109 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6110 StackFrameSP old_frame_sp = GetThreadList().GetSelectedThread()->GetFrameWithStackID(selected_stack_id); 6111 if (old_frame_sp) 6112 GetThreadList().GetSelectedThread()->SetSelectedFrame(old_frame_sp.get()); 6113 } 6114 } 6115 } 6116 6117 // If the process exited during the run of the thread plan, notify everyone. 6118 6119 if (event_to_broadcast_sp) 6120 { 6121 if (log) 6122 log->PutCString("Process::RunThreadPlan(): rebroadcasting event."); 6123 BroadcastEvent(event_to_broadcast_sp); 6124 } 6125 6126 return return_value; 6127 } 6128 6129 const char * 6130 Process::ExecutionResultAsCString (ExpressionResults result) 6131 { 6132 const char *result_name; 6133 6134 switch (result) 6135 { 6136 case eExpressionCompleted: 6137 result_name = "eExpressionCompleted"; 6138 break; 6139 case eExpressionDiscarded: 6140 result_name = "eExpressionDiscarded"; 6141 break; 6142 case eExpressionInterrupted: 6143 result_name = "eExpressionInterrupted"; 6144 break; 6145 case eExpressionHitBreakpoint: 6146 result_name = "eExpressionHitBreakpoint"; 6147 break; 6148 case eExpressionSetupError: 6149 result_name = "eExpressionSetupError"; 6150 break; 6151 case eExpressionParseError: 6152 result_name = "eExpressionParseError"; 6153 break; 6154 case eExpressionResultUnavailable: 6155 result_name = "eExpressionResultUnavailable"; 6156 break; 6157 case eExpressionTimedOut: 6158 result_name = "eExpressionTimedOut"; 6159 break; 6160 case eExpressionStoppedForDebug: 6161 result_name = "eExpressionStoppedForDebug"; 6162 break; 6163 } 6164 return result_name; 6165 } 6166 6167 void 6168 Process::GetStatus (Stream &strm) 6169 { 6170 const StateType state = GetState(); 6171 if (StateIsStoppedState(state, false)) 6172 { 6173 if (state == eStateExited) 6174 { 6175 int exit_status = GetExitStatus(); 6176 const char *exit_description = GetExitDescription(); 6177 strm.Printf ("Process %" PRIu64 " exited with status = %i (0x%8.8x) %s\n", 6178 GetID(), 6179 exit_status, 6180 exit_status, 6181 exit_description ? exit_description : ""); 6182 } 6183 else 6184 { 6185 if (state == eStateConnected) 6186 strm.Printf ("Connected to remote target.\n"); 6187 else 6188 strm.Printf ("Process %" PRIu64 " %s\n", GetID(), StateAsCString (state)); 6189 } 6190 } 6191 else 6192 { 6193 strm.Printf ("Process %" PRIu64 " is running.\n", GetID()); 6194 } 6195 } 6196 6197 size_t 6198 Process::GetThreadStatus (Stream &strm, 6199 bool only_threads_with_stop_reason, 6200 uint32_t start_frame, 6201 uint32_t num_frames, 6202 uint32_t num_frames_with_source) 6203 { 6204 size_t num_thread_infos_dumped = 0; 6205 6206 // You can't hold the thread list lock while calling Thread::GetStatus. That very well might run code (e.g. if we need it 6207 // to get return values or arguments.) For that to work the process has to be able to acquire it. So instead copy the thread 6208 // ID's, and look them up one by one: 6209 6210 uint32_t num_threads; 6211 std::vector<lldb::tid_t> thread_id_array; 6212 //Scope for thread list locker; 6213 { 6214 std::lock_guard<std::recursive_mutex> guard(GetThreadList().GetMutex()); 6215 ThreadList &curr_thread_list = GetThreadList(); 6216 num_threads = curr_thread_list.GetSize(); 6217 uint32_t idx; 6218 thread_id_array.resize(num_threads); 6219 for (idx = 0; idx < num_threads; ++idx) 6220 thread_id_array[idx] = curr_thread_list.GetThreadAtIndex(idx)->GetID(); 6221 } 6222 6223 for (uint32_t i = 0; i < num_threads; i++) 6224 { 6225 ThreadSP thread_sp(GetThreadList().FindThreadByID(thread_id_array[i])); 6226 if (thread_sp) 6227 { 6228 if (only_threads_with_stop_reason) 6229 { 6230 StopInfoSP stop_info_sp = thread_sp->GetStopInfo(); 6231 if (!stop_info_sp || !stop_info_sp->IsValid()) 6232 continue; 6233 } 6234 thread_sp->GetStatus (strm, 6235 start_frame, 6236 num_frames, 6237 num_frames_with_source); 6238 ++num_thread_infos_dumped; 6239 } 6240 else 6241 { 6242 Log *log(lldb_private::GetLogIfAnyCategoriesSet (LIBLLDB_LOG_PROCESS)); 6243 if (log) 6244 log->Printf("Process::GetThreadStatus - thread 0x" PRIu64 " vanished while running Thread::GetStatus."); 6245 } 6246 } 6247 return num_thread_infos_dumped; 6248 } 6249 6250 void 6251 Process::AddInvalidMemoryRegion (const LoadRange ®ion) 6252 { 6253 m_memory_cache.AddInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6254 } 6255 6256 bool 6257 Process::RemoveInvalidMemoryRange (const LoadRange ®ion) 6258 { 6259 return m_memory_cache.RemoveInvalidRange(region.GetRangeBase(), region.GetByteSize()); 6260 } 6261 6262 void 6263 Process::AddPreResumeAction (PreResumeActionCallback callback, void *baton) 6264 { 6265 m_pre_resume_actions.push_back(PreResumeCallbackAndBaton (callback, baton)); 6266 } 6267 6268 bool 6269 Process::RunPreResumeActions () 6270 { 6271 bool result = true; 6272 while (!m_pre_resume_actions.empty()) 6273 { 6274 struct PreResumeCallbackAndBaton action = m_pre_resume_actions.back(); 6275 m_pre_resume_actions.pop_back(); 6276 bool this_result = action.callback (action.baton); 6277 if (result) 6278 result = this_result; 6279 } 6280 return result; 6281 } 6282 6283 void 6284 Process::ClearPreResumeActions () 6285 { 6286 m_pre_resume_actions.clear(); 6287 } 6288 6289 ProcessRunLock & 6290 Process::GetRunLock() 6291 { 6292 if (m_private_state_thread.EqualsThread(Host::GetCurrentThread())) 6293 return m_private_run_lock; 6294 else 6295 return m_public_run_lock; 6296 } 6297 6298 void 6299 Process::Flush () 6300 { 6301 m_thread_list.Flush(); 6302 m_extended_thread_list.Flush(); 6303 m_extended_thread_stop_id = 0; 6304 m_queue_list.Clear(); 6305 m_queue_list_stop_id = 0; 6306 } 6307 6308 void 6309 Process::DidExec () 6310 { 6311 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_PROCESS)); 6312 if (log) 6313 log->Printf ("Process::%s()", __FUNCTION__); 6314 6315 Target &target = GetTarget(); 6316 target.CleanupProcess (); 6317 target.ClearModules(false); 6318 m_dynamic_checkers_ap.reset(); 6319 m_abi_sp.reset(); 6320 m_system_runtime_ap.reset(); 6321 m_os_ap.reset(); 6322 m_dyld_ap.reset(); 6323 m_jit_loaders_ap.reset(); 6324 m_image_tokens.clear(); 6325 m_allocated_memory_cache.Clear(); 6326 m_language_runtimes.clear(); 6327 m_instrumentation_runtimes.clear(); 6328 m_thread_list.DiscardThreadPlans(); 6329 m_memory_cache.Clear(true); 6330 m_stop_info_override_callback = nullptr; 6331 DoDidExec(); 6332 CompleteAttach (); 6333 // Flush the process (threads and all stack frames) after running CompleteAttach() 6334 // in case the dynamic loader loaded things in new locations. 6335 Flush(); 6336 6337 // After we figure out what was loaded/unloaded in CompleteAttach, 6338 // we need to let the target know so it can do any cleanup it needs to. 6339 target.DidExec(); 6340 } 6341 6342 addr_t 6343 Process::ResolveIndirectFunction(const Address *address, Error &error) 6344 { 6345 if (address == nullptr) 6346 { 6347 error.SetErrorString("Invalid address argument"); 6348 return LLDB_INVALID_ADDRESS; 6349 } 6350 6351 addr_t function_addr = LLDB_INVALID_ADDRESS; 6352 6353 addr_t addr = address->GetLoadAddress(&GetTarget()); 6354 std::map<addr_t,addr_t>::const_iterator iter = m_resolved_indirect_addresses.find(addr); 6355 if (iter != m_resolved_indirect_addresses.end()) 6356 { 6357 function_addr = (*iter).second; 6358 } 6359 else 6360 { 6361 if (!InferiorCall(this, address, function_addr)) 6362 { 6363 Symbol *symbol = address->CalculateSymbolContextSymbol(); 6364 error.SetErrorStringWithFormat ("Unable to call resolver for indirect function %s", 6365 symbol ? symbol->GetName().AsCString() : "<UNKNOWN>"); 6366 function_addr = LLDB_INVALID_ADDRESS; 6367 } 6368 else 6369 { 6370 m_resolved_indirect_addresses.insert(std::pair<addr_t, addr_t>(addr, function_addr)); 6371 } 6372 } 6373 return function_addr; 6374 } 6375 6376 void 6377 Process::ModulesDidLoad (ModuleList &module_list) 6378 { 6379 SystemRuntime *sys_runtime = GetSystemRuntime(); 6380 if (sys_runtime) 6381 { 6382 sys_runtime->ModulesDidLoad (module_list); 6383 } 6384 6385 GetJITLoaders().ModulesDidLoad (module_list); 6386 6387 // Give runtimes a chance to be created. 6388 InstrumentationRuntime::ModulesDidLoad(module_list, this, m_instrumentation_runtimes); 6389 6390 // Tell runtimes about new modules. 6391 for (auto pos = m_instrumentation_runtimes.begin(); pos != m_instrumentation_runtimes.end(); ++pos) 6392 { 6393 InstrumentationRuntimeSP runtime = pos->second; 6394 runtime->ModulesDidLoad(module_list); 6395 } 6396 6397 // Let any language runtimes we have already created know 6398 // about the modules that loaded. 6399 6400 // Iterate over a copy of this language runtime list in case 6401 // the language runtime ModulesDidLoad somehow causes the language 6402 // riuntime to be unloaded. 6403 LanguageRuntimeCollection language_runtimes(m_language_runtimes); 6404 for (const auto &pair: language_runtimes) 6405 { 6406 // We must check language_runtime_sp to make sure it is not 6407 // nullptr as we might cache the fact that we didn't have a 6408 // language runtime for a language. 6409 LanguageRuntimeSP language_runtime_sp = pair.second; 6410 if (language_runtime_sp) 6411 language_runtime_sp->ModulesDidLoad(module_list); 6412 } 6413 6414 // If we don't have an operating system plug-in, try to load one since 6415 // loading shared libraries might cause a new one to try and load 6416 if (!m_os_ap) 6417 LoadOperatingSystemPlugin(false); 6418 } 6419 6420 void 6421 Process::PrintWarning (uint64_t warning_type, const void *repeat_key, const char *fmt, ...) 6422 { 6423 bool print_warning = true; 6424 6425 StreamSP stream_sp = GetTarget().GetDebugger().GetAsyncOutputStream(); 6426 if (!stream_sp) 6427 return; 6428 if (warning_type == eWarningsOptimization 6429 && !GetWarningsOptimization()) 6430 { 6431 return; 6432 } 6433 6434 if (repeat_key != nullptr) 6435 { 6436 WarningsCollection::iterator it = m_warnings_issued.find (warning_type); 6437 if (it == m_warnings_issued.end()) 6438 { 6439 m_warnings_issued[warning_type] = WarningsPointerSet(); 6440 m_warnings_issued[warning_type].insert (repeat_key); 6441 } 6442 else 6443 { 6444 if (it->second.find (repeat_key) != it->second.end()) 6445 { 6446 print_warning = false; 6447 } 6448 else 6449 { 6450 it->second.insert (repeat_key); 6451 } 6452 } 6453 } 6454 6455 if (print_warning) 6456 { 6457 va_list args; 6458 va_start (args, fmt); 6459 stream_sp->PrintfVarArg (fmt, args); 6460 va_end (args); 6461 } 6462 } 6463 6464 void 6465 Process::PrintWarningOptimization (const SymbolContext &sc) 6466 { 6467 if (GetWarningsOptimization() 6468 && sc.module_sp 6469 && !sc.module_sp->GetFileSpec().GetFilename().IsEmpty() 6470 && sc.function 6471 && sc.function->GetIsOptimized()) 6472 { 6473 PrintWarning (Process::Warnings::eWarningsOptimization, sc.module_sp.get(), "%s was compiled with optimization - stepping may behave oddly; variables may not be available.\n", sc.module_sp->GetFileSpec().GetFilename().GetCString()); 6474 } 6475 } 6476 6477 bool 6478 Process::GetProcessInfo(ProcessInstanceInfo &info) 6479 { 6480 info.Clear(); 6481 6482 PlatformSP platform_sp = GetTarget().GetPlatform(); 6483 if (! platform_sp) 6484 return false; 6485 6486 return platform_sp->GetProcessInfo(GetID(), info); 6487 } 6488 6489 ThreadCollectionSP 6490 Process::GetHistoryThreads(lldb::addr_t addr) 6491 { 6492 ThreadCollectionSP threads; 6493 6494 const MemoryHistorySP &memory_history = MemoryHistory::FindPlugin(shared_from_this()); 6495 6496 if (!memory_history) { 6497 return threads; 6498 } 6499 6500 threads.reset(new ThreadCollection(memory_history->GetHistoryThreads(addr))); 6501 6502 return threads; 6503 } 6504 6505 InstrumentationRuntimeSP 6506 Process::GetInstrumentationRuntime(lldb::InstrumentationRuntimeType type) 6507 { 6508 InstrumentationRuntimeCollection::iterator pos; 6509 pos = m_instrumentation_runtimes.find (type); 6510 if (pos == m_instrumentation_runtimes.end()) 6511 { 6512 return InstrumentationRuntimeSP(); 6513 } 6514 else 6515 return (*pos).second; 6516 } 6517 6518 bool 6519 Process::GetModuleSpec(const FileSpec& module_file_spec, 6520 const ArchSpec& arch, 6521 ModuleSpec& module_spec) 6522 { 6523 module_spec.Clear(); 6524 return false; 6525 } 6526 6527 size_t 6528 Process::AddImageToken(lldb::addr_t image_ptr) 6529 { 6530 m_image_tokens.push_back(image_ptr); 6531 return m_image_tokens.size() - 1; 6532 } 6533 6534 lldb::addr_t 6535 Process::GetImagePtrFromToken(size_t token) const 6536 { 6537 if (token < m_image_tokens.size()) 6538 return m_image_tokens[token]; 6539 return LLDB_INVALID_IMAGE_TOKEN; 6540 } 6541 6542 void 6543 Process::ResetImageToken(size_t token) 6544 { 6545 if (token < m_image_tokens.size()) 6546 m_image_tokens[token] = LLDB_INVALID_IMAGE_TOKEN; 6547 } 6548 6549 Address 6550 Process::AdvanceAddressToNextBranchInstruction (Address default_stop_addr, AddressRange range_bounds) 6551 { 6552 Target &target = GetTarget(); 6553 DisassemblerSP disassembler_sp; 6554 InstructionList *insn_list = nullptr; 6555 6556 Address retval = default_stop_addr; 6557 6558 if (!target.GetUseFastStepping()) 6559 return retval; 6560 if (!default_stop_addr.IsValid()) 6561 return retval; 6562 6563 ExecutionContext exe_ctx (this); 6564 const char *plugin_name = nullptr; 6565 const char *flavor = nullptr; 6566 const bool prefer_file_cache = true; 6567 disassembler_sp = Disassembler::DisassembleRange(target.GetArchitecture(), 6568 plugin_name, 6569 flavor, 6570 exe_ctx, 6571 range_bounds, 6572 prefer_file_cache); 6573 if (disassembler_sp) 6574 insn_list = &disassembler_sp->GetInstructionList(); 6575 6576 if (insn_list == nullptr) 6577 { 6578 return retval; 6579 } 6580 6581 size_t insn_offset = insn_list->GetIndexOfInstructionAtAddress (default_stop_addr); 6582 if (insn_offset == UINT32_MAX) 6583 { 6584 return retval; 6585 } 6586 6587 uint32_t branch_index = insn_list->GetIndexOfNextBranchInstruction (insn_offset, target); 6588 if (branch_index == UINT32_MAX) 6589 { 6590 return retval; 6591 } 6592 6593 if (branch_index > insn_offset) 6594 { 6595 Address next_branch_insn_address = insn_list->GetInstructionAtIndex (branch_index)->GetAddress(); 6596 if (next_branch_insn_address.IsValid() && range_bounds.ContainsFileAddress (next_branch_insn_address)) 6597 { 6598 retval = next_branch_insn_address; 6599 } 6600 } 6601 6602 return retval; 6603 } 6604 6605 Error 6606 Process::GetMemoryRegions (std::vector<lldb::MemoryRegionInfoSP>& region_list) 6607 { 6608 6609 Error error; 6610 6611 lldb::addr_t range_base = 0; 6612 lldb::addr_t range_end = 0; 6613 6614 region_list.clear(); 6615 do 6616 { 6617 lldb::MemoryRegionInfoSP region_info( new lldb_private::MemoryRegionInfo() ); 6618 error = GetMemoryRegionInfo (range_end, *region_info); 6619 // GetMemoryRegionInfo should only return an error if it is unimplemented. 6620 if (error.Fail()) 6621 { 6622 region_list.clear(); 6623 break; 6624 } 6625 6626 range_base = region_info->GetRange().GetRangeBase(); 6627 range_end = region_info->GetRange().GetRangeEnd(); 6628 if( region_info->GetMapped() == MemoryRegionInfo::eYes ) 6629 { 6630 region_list.push_back(region_info); 6631 } 6632 } while (range_end != LLDB_INVALID_ADDRESS); 6633 6634 return error; 6635 6636 } 6637