1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 #include "lldb/Host/HostInfo.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/MathExtras.h" 35 36 #define CASE_AND_STREAM(s, def, width) \ 37 case def: s->Printf("%-*s", width, #def); break; 38 39 using namespace lldb; 40 using namespace lldb_private; 41 using namespace elf; 42 using namespace llvm::ELF; 43 44 namespace { 45 46 // ELF note owner definitions 47 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 48 const char *const LLDB_NT_OWNER_GNU = "GNU"; 49 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 50 const char *const LLDB_NT_OWNER_CSR = "csr"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 subTypeFromElfHeader(const elf::ELFHeader& header) 287 { 288 return 289 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 290 kalimbaVariantFromElfFlags(header.e_flags) : 291 LLDB_INVALID_CPUTYPE; 292 } 293 294 //! The kalimba toolchain identifies a code section as being 295 //! one with the SHT_PROGBITS set in the section sh_type and the top 296 //! bit in the 32-bit address field set. 297 static lldb::SectionType 298 kalimbaSectionType( 299 const elf::ELFHeader& header, 300 const elf::ELFSectionHeader& sect_hdr) 301 { 302 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 303 { 304 return eSectionTypeOther; 305 } 306 307 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 308 { 309 return eSectionTypeZeroFill; 310 } 311 312 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 313 { 314 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 315 return KAL_CODE_BIT & sect_hdr.sh_addr ? 316 eSectionTypeCode : eSectionTypeData; 317 } 318 319 return eSectionTypeOther; 320 } 321 322 // Arbitrary constant used as UUID prefix for core files. 323 const uint32_t 324 ObjectFileELF::g_core_uuid_magic(0xE210C); 325 326 //------------------------------------------------------------------ 327 // Static methods. 328 //------------------------------------------------------------------ 329 void 330 ObjectFileELF::Initialize() 331 { 332 PluginManager::RegisterPlugin(GetPluginNameStatic(), 333 GetPluginDescriptionStatic(), 334 CreateInstance, 335 CreateMemoryInstance, 336 GetModuleSpecifications); 337 } 338 339 void 340 ObjectFileELF::Terminate() 341 { 342 PluginManager::UnregisterPlugin(CreateInstance); 343 } 344 345 lldb_private::ConstString 346 ObjectFileELF::GetPluginNameStatic() 347 { 348 static ConstString g_name("elf"); 349 return g_name; 350 } 351 352 const char * 353 ObjectFileELF::GetPluginDescriptionStatic() 354 { 355 return "ELF object file reader."; 356 } 357 358 ObjectFile * 359 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 360 DataBufferSP &data_sp, 361 lldb::offset_t data_offset, 362 const lldb_private::FileSpec* file, 363 lldb::offset_t file_offset, 364 lldb::offset_t length) 365 { 366 if (!data_sp) 367 { 368 data_sp = file->MemoryMapFileContents(file_offset, length); 369 data_offset = 0; 370 } 371 372 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 373 { 374 const uint8_t *magic = data_sp->GetBytes() + data_offset; 375 if (ELFHeader::MagicBytesMatch(magic)) 376 { 377 // Update the data to contain the entire file if it doesn't already 378 if (data_sp->GetByteSize() < length) { 379 data_sp = file->MemoryMapFileContents(file_offset, length); 380 data_offset = 0; 381 magic = data_sp->GetBytes(); 382 } 383 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 384 if (address_size == 4 || address_size == 8) 385 { 386 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 387 ArchSpec spec; 388 if (objfile_ap->GetArchitecture(spec) && 389 objfile_ap->SetModulesArchitecture(spec)) 390 return objfile_ap.release(); 391 } 392 } 393 } 394 return NULL; 395 } 396 397 398 ObjectFile* 399 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 400 DataBufferSP& data_sp, 401 const lldb::ProcessSP &process_sp, 402 lldb::addr_t header_addr) 403 { 404 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 405 { 406 const uint8_t *magic = data_sp->GetBytes(); 407 if (ELFHeader::MagicBytesMatch(magic)) 408 { 409 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 410 if (address_size == 4 || address_size == 8) 411 { 412 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 413 ArchSpec spec; 414 if (objfile_ap->GetArchitecture(spec) && 415 objfile_ap->SetModulesArchitecture(spec)) 416 return objfile_ap.release(); 417 } 418 } 419 } 420 return NULL; 421 } 422 423 bool 424 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 425 lldb::addr_t data_offset, 426 lldb::addr_t data_length) 427 { 428 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 429 { 430 const uint8_t *magic = data_sp->GetBytes() + data_offset; 431 return ELFHeader::MagicBytesMatch(magic); 432 } 433 return false; 434 } 435 436 /* 437 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 438 * 439 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 440 * code or tables extracted from it, as desired without restriction. 441 */ 442 static uint32_t 443 calc_crc32(uint32_t crc, const void *buf, size_t size) 444 { 445 static const uint32_t g_crc32_tab[] = 446 { 447 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 448 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 449 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 450 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 451 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 452 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 453 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 454 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 455 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 456 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 457 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 458 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 459 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 460 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 461 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 462 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 463 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 464 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 465 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 466 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 467 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 468 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 469 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 470 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 471 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 472 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 473 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 474 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 475 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 476 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 477 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 478 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 479 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 480 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 481 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 482 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 483 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 484 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 485 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 486 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 487 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 488 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 489 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 490 }; 491 const uint8_t *p = (const uint8_t *)buf; 492 493 crc = crc ^ ~0U; 494 while (size--) 495 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 496 return crc ^ ~0U; 497 } 498 499 static uint32_t 500 calc_gnu_debuglink_crc32(const void *buf, size_t size) 501 { 502 return calc_crc32(0U, buf, size); 503 } 504 505 uint32_t 506 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 507 DataExtractor& object_data) 508 { 509 typedef ProgramHeaderCollConstIter Iter; 510 511 uint32_t core_notes_crc = 0; 512 513 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 514 { 515 if (I->p_type == llvm::ELF::PT_NOTE) 516 { 517 const elf_off ph_offset = I->p_offset; 518 const size_t ph_size = I->p_filesz; 519 520 DataExtractor segment_data; 521 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 522 { 523 // The ELF program header contained incorrect data, 524 // probably corefile is incomplete or corrupted. 525 break; 526 } 527 528 core_notes_crc = calc_crc32(core_notes_crc, 529 segment_data.GetDataStart(), 530 segment_data.GetByteSize()); 531 } 532 } 533 534 return core_notes_crc; 535 } 536 537 static const char* 538 OSABIAsCString (unsigned char osabi_byte) 539 { 540 #define _MAKE_OSABI_CASE(x) case x: return #x 541 switch (osabi_byte) 542 { 543 _MAKE_OSABI_CASE(ELFOSABI_NONE); 544 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 545 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 546 _MAKE_OSABI_CASE(ELFOSABI_GNU); 547 _MAKE_OSABI_CASE(ELFOSABI_HURD); 548 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 549 _MAKE_OSABI_CASE(ELFOSABI_AIX); 550 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 551 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 552 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 553 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 554 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 555 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 556 _MAKE_OSABI_CASE(ELFOSABI_NSK); 557 _MAKE_OSABI_CASE(ELFOSABI_AROS); 558 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 559 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 560 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 561 _MAKE_OSABI_CASE(ELFOSABI_ARM); 562 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 563 default: 564 return "<unknown-osabi>"; 565 } 566 #undef _MAKE_OSABI_CASE 567 } 568 569 static bool 570 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 571 { 572 switch (osabi_byte) 573 { 574 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 575 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 576 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 577 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 578 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 579 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 580 default: 581 ostype = llvm::Triple::OSType::UnknownOS; 582 } 583 return ostype != llvm::Triple::OSType::UnknownOS; 584 } 585 586 size_t 587 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 588 lldb::DataBufferSP& data_sp, 589 lldb::offset_t data_offset, 590 lldb::offset_t file_offset, 591 lldb::offset_t length, 592 lldb_private::ModuleSpecList &specs) 593 { 594 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 595 596 const size_t initial_count = specs.GetSize(); 597 598 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 599 { 600 DataExtractor data; 601 data.SetData(data_sp); 602 elf::ELFHeader header; 603 if (header.Parse(data, &data_offset)) 604 { 605 if (data_sp) 606 { 607 ModuleSpec spec; 608 spec.GetFileSpec() = file; 609 610 const uint32_t sub_type = subTypeFromElfHeader(header); 611 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 612 header.e_machine, 613 sub_type); 614 615 if (spec.GetArchitecture().IsValid()) 616 { 617 llvm::Triple::OSType ostype; 618 // First try to determine the OS type from the OSABI field in the elf header. 619 620 if (log) 621 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 622 if (GetOsFromOSABI (header.e_ident[EI_OSABI], ostype) && ostype != llvm::Triple::OSType::UnknownOS) 623 { 624 spec.GetArchitecture ().GetTriple ().setOS (ostype); 625 626 // Also clear the vendor so we don't end up with situations like 627 // x86_64-apple-FreeBSD. 628 spec.GetArchitecture ().GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 629 630 if (log) 631 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 632 } 633 634 // Try to get the UUID from the section list. Usually that's at the end, so 635 // map the file in if we don't have it already. 636 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 637 if (section_header_end > data_sp->GetByteSize()) 638 { 639 data_sp = file.MemoryMapFileContents (file_offset, section_header_end); 640 data.SetData(data_sp); 641 } 642 643 uint32_t gnu_debuglink_crc = 0; 644 std::string gnu_debuglink_file; 645 SectionHeaderColl section_headers; 646 lldb_private::UUID &uuid = spec.GetUUID(); 647 648 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 649 650 // If the module vendor is not set and the module OS matches this host OS, set the module vendor to the host vendor. 651 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 652 if (spec_triple.getVendor () == llvm::Triple::VendorType::UnknownVendor) 653 { 654 const llvm::Triple &host_triple = HostInfo::GetArchitecture().GetTriple(); 655 if (spec_triple.getOS () == host_triple.getOS ()) 656 spec_triple.setVendor (host_triple.getVendor ()); 657 } 658 659 if (log) 660 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 661 662 if (!uuid.IsValid()) 663 { 664 uint32_t core_notes_crc = 0; 665 666 if (!gnu_debuglink_crc) 667 { 668 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 669 "Calculating module crc32 %s with size %" PRIu64 " KiB", 670 file.GetLastPathComponent().AsCString(), 671 (file.GetByteSize()-file_offset)/1024); 672 673 // For core files - which usually don't happen to have a gnu_debuglink, 674 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 675 // Thus we will need to fallback to something simpler. 676 if (header.e_type == llvm::ELF::ET_CORE) 677 { 678 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 679 if (program_headers_end > data_sp->GetByteSize()) 680 { 681 data_sp = file.MemoryMapFileContents(file_offset, program_headers_end); 682 data.SetData(data_sp); 683 } 684 ProgramHeaderColl program_headers; 685 GetProgramHeaderInfo(program_headers, data, header); 686 687 size_t segment_data_end = 0; 688 for (ProgramHeaderCollConstIter I = program_headers.begin(); 689 I != program_headers.end(); ++I) 690 { 691 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 692 } 693 694 if (segment_data_end > data_sp->GetByteSize()) 695 { 696 data_sp = file.MemoryMapFileContents(file_offset, segment_data_end); 697 data.SetData(data_sp); 698 } 699 700 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 701 } 702 else 703 { 704 // Need to map entire file into memory to calculate the crc. 705 data_sp = file.MemoryMapFileContents (file_offset, SIZE_MAX); 706 data.SetData(data_sp); 707 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 708 } 709 } 710 if (gnu_debuglink_crc) 711 { 712 // Use 4 bytes of crc from the .gnu_debuglink section. 713 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 714 uuid.SetBytes (uuidt, sizeof(uuidt)); 715 } 716 else if (core_notes_crc) 717 { 718 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 719 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 720 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 721 uuid.SetBytes (uuidt, sizeof(uuidt)); 722 } 723 } 724 725 specs.Append(spec); 726 } 727 } 728 } 729 } 730 731 return specs.GetSize() - initial_count; 732 } 733 734 //------------------------------------------------------------------ 735 // PluginInterface protocol 736 //------------------------------------------------------------------ 737 lldb_private::ConstString 738 ObjectFileELF::GetPluginName() 739 { 740 return GetPluginNameStatic(); 741 } 742 743 uint32_t 744 ObjectFileELF::GetPluginVersion() 745 { 746 return m_plugin_version; 747 } 748 //------------------------------------------------------------------ 749 // ObjectFile protocol 750 //------------------------------------------------------------------ 751 752 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 753 DataBufferSP& data_sp, 754 lldb::offset_t data_offset, 755 const FileSpec* file, 756 lldb::offset_t file_offset, 757 lldb::offset_t length) : 758 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 759 m_header(), 760 m_uuid(), 761 m_gnu_debuglink_file(), 762 m_gnu_debuglink_crc(0), 763 m_program_headers(), 764 m_section_headers(), 765 m_dynamic_symbols(), 766 m_filespec_ap(), 767 m_entry_point_address(), 768 m_arch_spec() 769 { 770 if (file) 771 m_file = *file; 772 ::memset(&m_header, 0, sizeof(m_header)); 773 } 774 775 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 776 DataBufferSP& data_sp, 777 const lldb::ProcessSP &process_sp, 778 addr_t header_addr) : 779 ObjectFile(module_sp, process_sp, LLDB_INVALID_ADDRESS, data_sp), 780 m_header(), 781 m_uuid(), 782 m_gnu_debuglink_file(), 783 m_gnu_debuglink_crc(0), 784 m_program_headers(), 785 m_section_headers(), 786 m_dynamic_symbols(), 787 m_filespec_ap(), 788 m_entry_point_address(), 789 m_arch_spec() 790 { 791 ::memset(&m_header, 0, sizeof(m_header)); 792 } 793 794 ObjectFileELF::~ObjectFileELF() 795 { 796 } 797 798 bool 799 ObjectFileELF::IsExecutable() const 800 { 801 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 802 } 803 804 bool 805 ObjectFileELF::SetLoadAddress (Target &target, 806 lldb::addr_t value, 807 bool value_is_offset) 808 { 809 ModuleSP module_sp = GetModule(); 810 if (module_sp) 811 { 812 size_t num_loaded_sections = 0; 813 SectionList *section_list = GetSectionList (); 814 if (section_list) 815 { 816 if (value_is_offset) 817 { 818 const size_t num_sections = section_list->GetSize(); 819 size_t sect_idx = 0; 820 821 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 822 { 823 // Iterate through the object file sections to find all 824 // of the sections that have SHF_ALLOC in their flag bits. 825 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 826 // if (section_sp && !section_sp->IsThreadSpecific()) 827 if (section_sp && section_sp->Test(SHF_ALLOC)) 828 { 829 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, section_sp->GetFileAddress() + value)) 830 ++num_loaded_sections; 831 } 832 } 833 return num_loaded_sections > 0; 834 } 835 else 836 { 837 // Not sure how to slide an ELF file given the base address 838 // of the ELF file in memory 839 } 840 } 841 } 842 return false; // If it changed 843 } 844 845 ByteOrder 846 ObjectFileELF::GetByteOrder() const 847 { 848 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 849 return eByteOrderBig; 850 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 851 return eByteOrderLittle; 852 return eByteOrderInvalid; 853 } 854 855 uint32_t 856 ObjectFileELF::GetAddressByteSize() const 857 { 858 return m_data.GetAddressByteSize(); 859 } 860 861 // Top 16 bits of the `Symbol` flags are available. 862 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 863 864 AddressClass 865 ObjectFileELF::GetAddressClass (addr_t file_addr) 866 { 867 auto res = ObjectFile::GetAddressClass (file_addr); 868 869 if (res != eAddressClassCode) 870 return res; 871 872 ArchSpec arch_spec; 873 GetArchitecture(arch_spec); 874 if (arch_spec.GetMachine() != llvm::Triple::arm) 875 return res; 876 877 auto symtab = GetSymtab(); 878 if (symtab == nullptr) 879 return res; 880 881 auto symbol = symtab->FindSymbolContainingFileAddress(file_addr); 882 if (symbol == nullptr) 883 return res; 884 885 // Thumb symbols have the lower bit set in the flags field so we just check 886 // for that. 887 if (symbol->GetFlags() & ARM_ELF_SYM_IS_THUMB) 888 res = eAddressClassCodeAlternateISA; 889 890 return res; 891 } 892 893 size_t 894 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 895 { 896 return std::distance(m_section_headers.begin(), I) + 1u; 897 } 898 899 size_t 900 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 901 { 902 return std::distance(m_section_headers.begin(), I) + 1u; 903 } 904 905 bool 906 ObjectFileELF::ParseHeader() 907 { 908 lldb::offset_t offset = 0; 909 return m_header.Parse(m_data, &offset); 910 } 911 912 bool 913 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 914 { 915 // Need to parse the section list to get the UUIDs, so make sure that's been done. 916 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 917 return false; 918 919 if (m_uuid.IsValid()) 920 { 921 // We have the full build id uuid. 922 *uuid = m_uuid; 923 return true; 924 } 925 else if (GetType() == ObjectFile::eTypeCoreFile) 926 { 927 uint32_t core_notes_crc = 0; 928 929 if (!ParseProgramHeaders()) 930 return false; 931 932 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 933 934 if (core_notes_crc) 935 { 936 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 937 // look different form .gnu_debuglink crc - followed by 4 bytes of note 938 // segments crc. 939 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 940 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 941 } 942 } 943 else 944 { 945 if (!m_gnu_debuglink_crc) 946 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 947 if (m_gnu_debuglink_crc) 948 { 949 // Use 4 bytes of crc from the .gnu_debuglink section. 950 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 951 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 952 } 953 } 954 955 if (m_uuid.IsValid()) 956 { 957 *uuid = m_uuid; 958 return true; 959 } 960 961 return false; 962 } 963 964 lldb_private::FileSpecList 965 ObjectFileELF::GetDebugSymbolFilePaths() 966 { 967 FileSpecList file_spec_list; 968 969 if (!m_gnu_debuglink_file.empty()) 970 { 971 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 972 file_spec_list.Append (file_spec); 973 } 974 return file_spec_list; 975 } 976 977 uint32_t 978 ObjectFileELF::GetDependentModules(FileSpecList &files) 979 { 980 size_t num_modules = ParseDependentModules(); 981 uint32_t num_specs = 0; 982 983 for (unsigned i = 0; i < num_modules; ++i) 984 { 985 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 986 num_specs++; 987 } 988 989 return num_specs; 990 } 991 992 Address 993 ObjectFileELF::GetImageInfoAddress(Target *target) 994 { 995 if (!ParseDynamicSymbols()) 996 return Address(); 997 998 SectionList *section_list = GetSectionList(); 999 if (!section_list) 1000 return Address(); 1001 1002 // Find the SHT_DYNAMIC (.dynamic) section. 1003 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1004 if (!dynsym_section_sp) 1005 return Address(); 1006 assert (dynsym_section_sp->GetObjectFile() == this); 1007 1008 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1009 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1010 if (!dynsym_hdr) 1011 return Address(); 1012 1013 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1014 { 1015 ELFDynamic &symbol = m_dynamic_symbols[i]; 1016 1017 if (symbol.d_tag == DT_DEBUG) 1018 { 1019 // Compute the offset as the number of previous entries plus the 1020 // size of d_tag. 1021 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1022 return Address(dynsym_section_sp, offset); 1023 } 1024 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1025 { 1026 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1027 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1028 if (dyn_base == LLDB_INVALID_ADDRESS) 1029 return Address(); 1030 Address addr; 1031 Error error; 1032 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1033 return addr; 1034 } 1035 } 1036 1037 return Address(); 1038 } 1039 1040 lldb_private::Address 1041 ObjectFileELF::GetEntryPointAddress () 1042 { 1043 if (m_entry_point_address.IsValid()) 1044 return m_entry_point_address; 1045 1046 if (!ParseHeader() || !IsExecutable()) 1047 return m_entry_point_address; 1048 1049 SectionList *section_list = GetSectionList(); 1050 addr_t offset = m_header.e_entry; 1051 1052 if (!section_list) 1053 m_entry_point_address.SetOffset(offset); 1054 else 1055 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1056 return m_entry_point_address; 1057 } 1058 1059 //---------------------------------------------------------------------- 1060 // ParseDependentModules 1061 //---------------------------------------------------------------------- 1062 size_t 1063 ObjectFileELF::ParseDependentModules() 1064 { 1065 if (m_filespec_ap.get()) 1066 return m_filespec_ap->GetSize(); 1067 1068 m_filespec_ap.reset(new FileSpecList()); 1069 1070 if (!ParseSectionHeaders()) 1071 return 0; 1072 1073 SectionList *section_list = GetSectionList(); 1074 if (!section_list) 1075 return 0; 1076 1077 // Find the SHT_DYNAMIC section. 1078 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1079 if (!dynsym) 1080 return 0; 1081 assert (dynsym->GetObjectFile() == this); 1082 1083 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1084 if (!header) 1085 return 0; 1086 // sh_link: section header index of string table used by entries in the section. 1087 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1088 if (!dynstr) 1089 return 0; 1090 1091 DataExtractor dynsym_data; 1092 DataExtractor dynstr_data; 1093 if (ReadSectionData(dynsym, dynsym_data) && 1094 ReadSectionData(dynstr, dynstr_data)) 1095 { 1096 ELFDynamic symbol; 1097 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1098 lldb::offset_t offset = 0; 1099 1100 // The only type of entries we are concerned with are tagged DT_NEEDED, 1101 // yielding the name of a required library. 1102 while (offset < section_size) 1103 { 1104 if (!symbol.Parse(dynsym_data, &offset)) 1105 break; 1106 1107 if (symbol.d_tag != DT_NEEDED) 1108 continue; 1109 1110 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1111 const char *lib_name = dynstr_data.PeekCStr(str_index); 1112 m_filespec_ap->Append(FileSpec(lib_name, true)); 1113 } 1114 } 1115 1116 return m_filespec_ap->GetSize(); 1117 } 1118 1119 //---------------------------------------------------------------------- 1120 // GetProgramHeaderInfo 1121 //---------------------------------------------------------------------- 1122 size_t 1123 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1124 DataExtractor &object_data, 1125 const ELFHeader &header) 1126 { 1127 // We have already parsed the program headers 1128 if (!program_headers.empty()) 1129 return program_headers.size(); 1130 1131 // If there are no program headers to read we are done. 1132 if (header.e_phnum == 0) 1133 return 0; 1134 1135 program_headers.resize(header.e_phnum); 1136 if (program_headers.size() != header.e_phnum) 1137 return 0; 1138 1139 const size_t ph_size = header.e_phnum * header.e_phentsize; 1140 const elf_off ph_offset = header.e_phoff; 1141 DataExtractor data; 1142 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1143 return 0; 1144 1145 uint32_t idx; 1146 lldb::offset_t offset; 1147 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1148 { 1149 if (program_headers[idx].Parse(data, &offset) == false) 1150 break; 1151 } 1152 1153 if (idx < program_headers.size()) 1154 program_headers.resize(idx); 1155 1156 return program_headers.size(); 1157 1158 } 1159 1160 //---------------------------------------------------------------------- 1161 // ParseProgramHeaders 1162 //---------------------------------------------------------------------- 1163 size_t 1164 ObjectFileELF::ParseProgramHeaders() 1165 { 1166 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1167 } 1168 1169 lldb_private::Error 1170 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1171 { 1172 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1173 Error error; 1174 1175 lldb::offset_t offset = 0; 1176 1177 while (true) 1178 { 1179 // Parse the note header. If this fails, bail out. 1180 ELFNote note = ELFNote(); 1181 if (!note.Parse(data, &offset)) 1182 { 1183 // We're done. 1184 return error; 1185 } 1186 1187 // If a tag processor handles the tag, it should set processed to true, and 1188 // the loop will assume the tag processing has moved entirely past the note's payload. 1189 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1190 bool processed = false; 1191 1192 if (log) 1193 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1194 1195 // Process FreeBSD ELF notes. 1196 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1197 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1198 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1199 { 1200 // We'll consume the payload below. 1201 processed = true; 1202 1203 // Pull out the min version info. 1204 uint32_t version_info; 1205 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1206 { 1207 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1208 return error; 1209 } 1210 1211 // Convert the version info into a major/minor number. 1212 const uint32_t version_major = version_info / 100000; 1213 const uint32_t version_minor = (version_info / 1000) % 100; 1214 1215 char os_name[32]; 1216 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1217 1218 // Set the elf OS version to FreeBSD. Also clear the vendor. 1219 arch_spec.GetTriple ().setOSName (os_name); 1220 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1221 1222 if (log) 1223 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1224 } 1225 // Process GNU ELF notes. 1226 else if (note.n_name == LLDB_NT_OWNER_GNU) 1227 { 1228 switch (note.n_type) 1229 { 1230 case LLDB_NT_GNU_ABI_TAG: 1231 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1232 { 1233 // We'll consume the payload below. 1234 processed = true; 1235 1236 // Pull out the min OS version supporting the ABI. 1237 uint32_t version_info[4]; 1238 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1239 { 1240 error.SetErrorString ("failed to read GNU ABI note payload"); 1241 return error; 1242 } 1243 1244 // Set the OS per the OS field. 1245 switch (version_info[0]) 1246 { 1247 case LLDB_NT_GNU_ABI_OS_LINUX: 1248 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1249 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1250 if (log) 1251 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1252 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1253 break; 1254 case LLDB_NT_GNU_ABI_OS_HURD: 1255 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1256 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1257 if (log) 1258 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1259 break; 1260 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1261 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1262 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1263 if (log) 1264 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1265 break; 1266 default: 1267 if (log) 1268 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1269 break; 1270 } 1271 } 1272 break; 1273 1274 case LLDB_NT_GNU_BUILD_ID_TAG: 1275 // Only bother processing this if we don't already have the uuid set. 1276 if (!uuid.IsValid()) 1277 { 1278 // We'll consume the payload below. 1279 processed = true; 1280 1281 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1282 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1283 { 1284 uint8_t uuidbuf[20]; 1285 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1286 { 1287 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1288 return error; 1289 } 1290 1291 // Save the build id as the UUID for the module. 1292 uuid.SetBytes (uuidbuf, note.n_descsz); 1293 } 1294 } 1295 break; 1296 } 1297 } 1298 // Process NetBSD ELF notes. 1299 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1300 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1301 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1302 { 1303 1304 // We'll consume the payload below. 1305 processed = true; 1306 1307 // Pull out the min version info. 1308 uint32_t version_info; 1309 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1310 { 1311 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1312 return error; 1313 } 1314 1315 // Set the elf OS version to NetBSD. Also clear the vendor. 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 1319 if (log) 1320 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1321 } 1322 // Process CSR kalimba notes 1323 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1324 (note.n_name == LLDB_NT_OWNER_CSR)) 1325 { 1326 // We'll consume the payload below. 1327 processed = true; 1328 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1329 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1330 1331 // TODO At some point the description string could be processed. 1332 // It could provide a steer towards the kalimba variant which 1333 // this ELF targets. 1334 if(note.n_descsz) 1335 { 1336 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1337 (void)cstr; 1338 } 1339 } 1340 1341 if (!processed) 1342 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1343 } 1344 1345 return error; 1346 } 1347 1348 1349 //---------------------------------------------------------------------- 1350 // GetSectionHeaderInfo 1351 //---------------------------------------------------------------------- 1352 size_t 1353 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1354 lldb_private::DataExtractor &object_data, 1355 const elf::ELFHeader &header, 1356 lldb_private::UUID &uuid, 1357 std::string &gnu_debuglink_file, 1358 uint32_t &gnu_debuglink_crc, 1359 ArchSpec &arch_spec) 1360 { 1361 // Don't reparse the section headers if we already did that. 1362 if (!section_headers.empty()) 1363 return section_headers.size(); 1364 1365 // Only initialize the arch_spec to okay defaults if they're not already set. 1366 // We'll refine this with note data as we parse the notes. 1367 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1368 { 1369 const uint32_t sub_type = subTypeFromElfHeader(header); 1370 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type); 1371 1372 switch (arch_spec.GetAddressByteSize()) 1373 { 1374 case 4: 1375 { 1376 const ArchSpec host_arch32 = HostInfo::GetArchitecture(HostInfo::eArchKind32); 1377 if (host_arch32.GetCore() == arch_spec.GetCore()) 1378 { 1379 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1380 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1381 } 1382 } 1383 break; 1384 case 8: 1385 { 1386 const ArchSpec host_arch64 = HostInfo::GetArchitecture(HostInfo::eArchKind64); 1387 if (host_arch64.GetCore() == arch_spec.GetCore()) 1388 { 1389 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1390 arch_spec.GetTriple().setVendorName(HostInfo::GetVendorString().data()); 1391 } 1392 } 1393 break; 1394 } 1395 } 1396 1397 // If there are no section headers we are done. 1398 if (header.e_shnum == 0) { 1399 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1400 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1401 return 0; 1402 } 1403 1404 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1405 1406 section_headers.resize(header.e_shnum); 1407 if (section_headers.size() != header.e_shnum) 1408 return 0; 1409 1410 const size_t sh_size = header.e_shnum * header.e_shentsize; 1411 const elf_off sh_offset = header.e_shoff; 1412 DataExtractor sh_data; 1413 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1414 return 0; 1415 1416 uint32_t idx; 1417 lldb::offset_t offset; 1418 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1419 { 1420 if (section_headers[idx].Parse(sh_data, &offset) == false) 1421 break; 1422 } 1423 if (idx < section_headers.size()) 1424 section_headers.resize(idx); 1425 1426 const unsigned strtab_idx = header.e_shstrndx; 1427 if (strtab_idx && strtab_idx < section_headers.size()) 1428 { 1429 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1430 const size_t byte_size = sheader.sh_size; 1431 const Elf64_Off offset = sheader.sh_offset; 1432 lldb_private::DataExtractor shstr_data; 1433 1434 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1435 { 1436 for (SectionHeaderCollIter I = section_headers.begin(); 1437 I != section_headers.end(); ++I) 1438 { 1439 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1440 const ELFSectionHeaderInfo &header = *I; 1441 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1442 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1443 1444 I->section_name = name; 1445 1446 if (name == g_sect_name_gnu_debuglink) 1447 { 1448 DataExtractor data; 1449 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1450 { 1451 lldb::offset_t gnu_debuglink_offset = 0; 1452 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1453 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1454 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1455 } 1456 } 1457 1458 // Process ELF note section entries. 1459 if (header.sh_type == SHT_NOTE) 1460 { 1461 // Allow notes to refine module info. 1462 DataExtractor data; 1463 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1464 { 1465 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1466 if (error.Fail ()) 1467 { 1468 if (log) 1469 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1470 } 1471 } 1472 } 1473 } 1474 1475 return section_headers.size(); 1476 } 1477 } 1478 1479 section_headers.clear(); 1480 return 0; 1481 } 1482 1483 size_t 1484 ObjectFileELF::GetProgramHeaderCount() 1485 { 1486 return ParseProgramHeaders(); 1487 } 1488 1489 const elf::ELFProgramHeader * 1490 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1491 { 1492 if (!id || !ParseProgramHeaders()) 1493 return NULL; 1494 1495 if (--id < m_program_headers.size()) 1496 return &m_program_headers[id]; 1497 1498 return NULL; 1499 } 1500 1501 DataExtractor 1502 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1503 { 1504 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1505 if (segment_header == NULL) 1506 return DataExtractor(); 1507 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1508 } 1509 1510 //---------------------------------------------------------------------- 1511 // ParseSectionHeaders 1512 //---------------------------------------------------------------------- 1513 size_t 1514 ObjectFileELF::ParseSectionHeaders() 1515 { 1516 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1517 } 1518 1519 const ObjectFileELF::ELFSectionHeaderInfo * 1520 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1521 { 1522 if (!id || !ParseSectionHeaders()) 1523 return NULL; 1524 1525 if (--id < m_section_headers.size()) 1526 return &m_section_headers[id]; 1527 1528 return NULL; 1529 } 1530 1531 void 1532 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1533 { 1534 if (!m_sections_ap.get() && ParseSectionHeaders()) 1535 { 1536 m_sections_ap.reset(new SectionList()); 1537 1538 for (SectionHeaderCollIter I = m_section_headers.begin(); 1539 I != m_section_headers.end(); ++I) 1540 { 1541 const ELFSectionHeaderInfo &header = *I; 1542 1543 ConstString& name = I->section_name; 1544 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1545 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1546 1547 static ConstString g_sect_name_text (".text"); 1548 static ConstString g_sect_name_data (".data"); 1549 static ConstString g_sect_name_bss (".bss"); 1550 static ConstString g_sect_name_tdata (".tdata"); 1551 static ConstString g_sect_name_tbss (".tbss"); 1552 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1553 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1554 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1555 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1556 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1557 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1558 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1559 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1560 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1561 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1562 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1563 static ConstString g_sect_name_eh_frame (".eh_frame"); 1564 1565 SectionType sect_type = eSectionTypeOther; 1566 1567 bool is_thread_specific = false; 1568 1569 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1570 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1571 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1572 else if (name == g_sect_name_tdata) 1573 { 1574 sect_type = eSectionTypeData; 1575 is_thread_specific = true; 1576 } 1577 else if (name == g_sect_name_tbss) 1578 { 1579 sect_type = eSectionTypeZeroFill; 1580 is_thread_specific = true; 1581 } 1582 // .debug_abbrev – Abbreviations used in the .debug_info section 1583 // .debug_aranges – Lookup table for mapping addresses to compilation units 1584 // .debug_frame – Call frame information 1585 // .debug_info – The core DWARF information section 1586 // .debug_line – Line number information 1587 // .debug_loc – Location lists used in DW_AT_location attributes 1588 // .debug_macinfo – Macro information 1589 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1590 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1591 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1592 // .debug_str – String table used in .debug_info 1593 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1594 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1595 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1596 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1597 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1598 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1599 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1600 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1601 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1602 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1603 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1604 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1605 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1606 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1607 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1608 1609 switch (header.sh_type) 1610 { 1611 case SHT_SYMTAB: 1612 assert (sect_type == eSectionTypeOther); 1613 sect_type = eSectionTypeELFSymbolTable; 1614 break; 1615 case SHT_DYNSYM: 1616 assert (sect_type == eSectionTypeOther); 1617 sect_type = eSectionTypeELFDynamicSymbols; 1618 break; 1619 case SHT_RELA: 1620 case SHT_REL: 1621 assert (sect_type == eSectionTypeOther); 1622 sect_type = eSectionTypeELFRelocationEntries; 1623 break; 1624 case SHT_DYNAMIC: 1625 assert (sect_type == eSectionTypeOther); 1626 sect_type = eSectionTypeELFDynamicLinkInfo; 1627 break; 1628 } 1629 1630 if (eSectionTypeOther == sect_type) 1631 { 1632 // the kalimba toolchain assumes that ELF section names are free-form. It does 1633 // supports linkscripts which (can) give rise to various arbitarily named 1634 // sections being "Code" or "Data". 1635 sect_type = kalimbaSectionType(m_header, header); 1636 } 1637 1638 const uint32_t target_bytes_size = 1639 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1640 m_arch_spec.GetDataByteSize() : 1641 eSectionTypeCode == sect_type ? 1642 m_arch_spec.GetCodeByteSize() : 1; 1643 1644 elf::elf_xword log2align = (header.sh_addralign==0) 1645 ? 0 1646 : llvm::Log2_64(header.sh_addralign); 1647 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1648 this, // ObjectFile to which this section belongs and should read section data from. 1649 SectionIndex(I), // Section ID. 1650 name, // Section name. 1651 sect_type, // Section type. 1652 header.sh_addr, // VM address. 1653 vm_size, // VM size in bytes of this section. 1654 header.sh_offset, // Offset of this section in the file. 1655 file_size, // Size of the section as found in the file. 1656 log2align, // Alignment of the section 1657 header.sh_flags, // Flags for this section. 1658 target_bytes_size));// Number of host bytes per target byte 1659 1660 if (is_thread_specific) 1661 section_sp->SetIsThreadSpecific (is_thread_specific); 1662 m_sections_ap->AddSection(section_sp); 1663 } 1664 } 1665 1666 if (m_sections_ap.get()) 1667 { 1668 if (GetType() == eTypeDebugInfo) 1669 { 1670 static const SectionType g_sections[] = 1671 { 1672 eSectionTypeDWARFDebugAranges, 1673 eSectionTypeDWARFDebugInfo, 1674 eSectionTypeDWARFDebugAbbrev, 1675 eSectionTypeDWARFDebugFrame, 1676 eSectionTypeDWARFDebugLine, 1677 eSectionTypeDWARFDebugStr, 1678 eSectionTypeDWARFDebugLoc, 1679 eSectionTypeDWARFDebugMacInfo, 1680 eSectionTypeDWARFDebugPubNames, 1681 eSectionTypeDWARFDebugPubTypes, 1682 eSectionTypeDWARFDebugRanges, 1683 eSectionTypeELFSymbolTable, 1684 }; 1685 SectionList *elf_section_list = m_sections_ap.get(); 1686 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1687 { 1688 SectionType section_type = g_sections[idx]; 1689 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1690 if (section_sp) 1691 { 1692 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1693 if (module_section_sp) 1694 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1695 else 1696 unified_section_list.AddSection (section_sp); 1697 } 1698 } 1699 } 1700 else 1701 { 1702 unified_section_list = *m_sections_ap; 1703 } 1704 } 1705 } 1706 1707 // private 1708 unsigned 1709 ObjectFileELF::ParseSymbols (Symtab *symtab, 1710 user_id_t start_id, 1711 SectionList *section_list, 1712 const size_t num_symbols, 1713 const DataExtractor &symtab_data, 1714 const DataExtractor &strtab_data) 1715 { 1716 ELFSymbol symbol; 1717 lldb::offset_t offset = 0; 1718 1719 static ConstString text_section_name(".text"); 1720 static ConstString init_section_name(".init"); 1721 static ConstString fini_section_name(".fini"); 1722 static ConstString ctors_section_name(".ctors"); 1723 static ConstString dtors_section_name(".dtors"); 1724 1725 static ConstString data_section_name(".data"); 1726 static ConstString rodata_section_name(".rodata"); 1727 static ConstString rodata1_section_name(".rodata1"); 1728 static ConstString data2_section_name(".data1"); 1729 static ConstString bss_section_name(".bss"); 1730 static ConstString opd_section_name(".opd"); // For ppc64 1731 1732 //StreamFile strm(stdout, false); 1733 unsigned i; 1734 for (i = 0; i < num_symbols; ++i) 1735 { 1736 if (symbol.Parse(symtab_data, &offset) == false) 1737 break; 1738 1739 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1740 1741 // No need to add non-section symbols that have no names 1742 if (symbol.getType() != STT_SECTION && 1743 (symbol_name == NULL || symbol_name[0] == '\0')) 1744 continue; 1745 1746 //symbol.Dump (&strm, i, &strtab_data, section_list); 1747 1748 SectionSP symbol_section_sp; 1749 SymbolType symbol_type = eSymbolTypeInvalid; 1750 Elf64_Half symbol_idx = symbol.st_shndx; 1751 1752 switch (symbol_idx) 1753 { 1754 case SHN_ABS: 1755 symbol_type = eSymbolTypeAbsolute; 1756 break; 1757 case SHN_UNDEF: 1758 symbol_type = eSymbolTypeUndefined; 1759 break; 1760 default: 1761 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1762 break; 1763 } 1764 1765 // If a symbol is undefined do not process it further even if it has a STT type 1766 if (symbol_type != eSymbolTypeUndefined) 1767 { 1768 switch (symbol.getType()) 1769 { 1770 default: 1771 case STT_NOTYPE: 1772 // The symbol's type is not specified. 1773 break; 1774 1775 case STT_OBJECT: 1776 // The symbol is associated with a data object, such as a variable, 1777 // an array, etc. 1778 symbol_type = eSymbolTypeData; 1779 break; 1780 1781 case STT_FUNC: 1782 // The symbol is associated with a function or other executable code. 1783 symbol_type = eSymbolTypeCode; 1784 break; 1785 1786 case STT_SECTION: 1787 // The symbol is associated with a section. Symbol table entries of 1788 // this type exist primarily for relocation and normally have 1789 // STB_LOCAL binding. 1790 break; 1791 1792 case STT_FILE: 1793 // Conventionally, the symbol's name gives the name of the source 1794 // file associated with the object file. A file symbol has STB_LOCAL 1795 // binding, its section index is SHN_ABS, and it precedes the other 1796 // STB_LOCAL symbols for the file, if it is present. 1797 symbol_type = eSymbolTypeSourceFile; 1798 break; 1799 1800 case STT_GNU_IFUNC: 1801 // The symbol is associated with an indirect function. The actual 1802 // function will be resolved if it is referenced. 1803 symbol_type = eSymbolTypeResolver; 1804 break; 1805 } 1806 } 1807 1808 if (symbol_type == eSymbolTypeInvalid) 1809 { 1810 if (symbol_section_sp) 1811 { 1812 const ConstString §_name = symbol_section_sp->GetName(); 1813 if (sect_name == text_section_name || 1814 sect_name == init_section_name || 1815 sect_name == fini_section_name || 1816 sect_name == ctors_section_name || 1817 sect_name == dtors_section_name) 1818 { 1819 symbol_type = eSymbolTypeCode; 1820 } 1821 else if (sect_name == data_section_name || 1822 sect_name == data2_section_name || 1823 sect_name == rodata_section_name || 1824 sect_name == rodata1_section_name || 1825 sect_name == bss_section_name) 1826 { 1827 symbol_type = eSymbolTypeData; 1828 } 1829 } 1830 } 1831 1832 ArchSpec arch; 1833 int64_t symbol_value_offset = 0; 1834 uint32_t additional_flags = 0; 1835 1836 if (GetArchitecture(arch) && 1837 arch.GetMachine() == llvm::Triple::arm) 1838 { 1839 // ELF symbol tables may contain some mapping symbols. They provide 1840 // information about the underlying data. There are three of them 1841 // currently defined: 1842 // $a[.<any>]* - marks an ARM instruction sequence 1843 // $t[.<any>]* - marks a THUMB instruction sequence 1844 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1845 // These symbols interfere with normal debugger operations and we 1846 // don't need them. We can drop them here. 1847 1848 static const llvm::StringRef g_armelf_arm_marker("$a"); 1849 static const llvm::StringRef g_armelf_thumb_marker("$t"); 1850 static const llvm::StringRef g_armelf_data_marker("$d"); 1851 llvm::StringRef symbol_name_ref(symbol_name); 1852 1853 if (symbol_name && 1854 (symbol_name_ref.startswith(g_armelf_arm_marker) || 1855 symbol_name_ref.startswith(g_armelf_thumb_marker) || 1856 symbol_name_ref.startswith(g_armelf_data_marker))) 1857 continue; 1858 1859 // THUMB functions have the lower bit of their address set. Fixup 1860 // the actual address and mark the symbol as THUMB. 1861 if (symbol_type == eSymbolTypeCode && symbol.st_value & 1) 1862 { 1863 // Substracting 1 from the address effectively unsets 1864 // the low order bit, which results in the address 1865 // actually pointing to the beginning of the symbol. 1866 // This delta will be used below in conjuction with 1867 // symbol.st_value to produce the final symbol_value 1868 // that we store in the symtab. 1869 symbol_value_offset = -1; 1870 additional_flags = ARM_ELF_SYM_IS_THUMB; 1871 } 1872 } 1873 1874 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1875 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1876 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1877 { 1878 ModuleSP module_sp(GetModule()); 1879 if (module_sp) 1880 { 1881 SectionList *module_section_list = module_sp->GetSectionList(); 1882 if (module_section_list && module_section_list != section_list) 1883 { 1884 const ConstString §_name = symbol_section_sp->GetName(); 1885 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 1886 if (section_sp && section_sp->GetFileSize()) 1887 { 1888 symbol_section_sp = section_sp; 1889 } 1890 } 1891 } 1892 } 1893 1894 // symbol_value_offset may contain 0 for ARM symbols or -1 for 1895 // THUMB symbols. See above for more details. 1896 uint64_t symbol_value = symbol.st_value | symbol_value_offset; 1897 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 1898 symbol_value -= symbol_section_sp->GetFileAddress(); 1899 bool is_global = symbol.getBinding() == STB_GLOBAL; 1900 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 1901 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 1902 1903 Symbol dc_symbol( 1904 i + start_id, // ID is the original symbol table index. 1905 symbol_name, // Symbol name. 1906 is_mangled, // Is the symbol name mangled? 1907 symbol_type, // Type of this symbol 1908 is_global, // Is this globally visible? 1909 false, // Is this symbol debug info? 1910 false, // Is this symbol a trampoline? 1911 false, // Is this symbol artificial? 1912 symbol_section_sp, // Section in which this symbol is defined or null. 1913 symbol_value, // Offset in section or symbol value. 1914 symbol.st_size, // Size in bytes of this symbol. 1915 true, // Size is valid 1916 flags); // Symbol flags. 1917 symtab->AddSymbol(dc_symbol); 1918 } 1919 1920 return i; 1921 } 1922 1923 unsigned 1924 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 1925 { 1926 if (symtab->GetObjectFile() != this) 1927 { 1928 // If the symbol table section is owned by a different object file, have it do the 1929 // parsing. 1930 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 1931 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 1932 } 1933 1934 // Get section list for this object file. 1935 SectionList *section_list = m_sections_ap.get(); 1936 if (!section_list) 1937 return 0; 1938 1939 user_id_t symtab_id = symtab->GetID(); 1940 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 1941 assert(symtab_hdr->sh_type == SHT_SYMTAB || 1942 symtab_hdr->sh_type == SHT_DYNSYM); 1943 1944 // sh_link: section header index of associated string table. 1945 // Section ID's are ones based. 1946 user_id_t strtab_id = symtab_hdr->sh_link + 1; 1947 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 1948 1949 if (symtab && strtab) 1950 { 1951 assert (symtab->GetObjectFile() == this); 1952 assert (strtab->GetObjectFile() == this); 1953 1954 DataExtractor symtab_data; 1955 DataExtractor strtab_data; 1956 if (ReadSectionData(symtab, symtab_data) && 1957 ReadSectionData(strtab, strtab_data)) 1958 { 1959 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 1960 1961 return ParseSymbols(symbol_table, start_id, section_list, 1962 num_symbols, symtab_data, strtab_data); 1963 } 1964 } 1965 1966 return 0; 1967 } 1968 1969 size_t 1970 ObjectFileELF::ParseDynamicSymbols() 1971 { 1972 if (m_dynamic_symbols.size()) 1973 return m_dynamic_symbols.size(); 1974 1975 SectionList *section_list = GetSectionList(); 1976 if (!section_list) 1977 return 0; 1978 1979 // Find the SHT_DYNAMIC section. 1980 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1981 if (!dynsym) 1982 return 0; 1983 assert (dynsym->GetObjectFile() == this); 1984 1985 ELFDynamic symbol; 1986 DataExtractor dynsym_data; 1987 if (ReadSectionData(dynsym, dynsym_data)) 1988 { 1989 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1990 lldb::offset_t cursor = 0; 1991 1992 while (cursor < section_size) 1993 { 1994 if (!symbol.Parse(dynsym_data, &cursor)) 1995 break; 1996 1997 m_dynamic_symbols.push_back(symbol); 1998 } 1999 } 2000 2001 return m_dynamic_symbols.size(); 2002 } 2003 2004 const ELFDynamic * 2005 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2006 { 2007 if (!ParseDynamicSymbols()) 2008 return NULL; 2009 2010 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2011 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2012 for ( ; I != E; ++I) 2013 { 2014 ELFDynamic *symbol = &*I; 2015 2016 if (symbol->d_tag == tag) 2017 return symbol; 2018 } 2019 2020 return NULL; 2021 } 2022 2023 unsigned 2024 ObjectFileELF::PLTRelocationType() 2025 { 2026 // DT_PLTREL 2027 // This member specifies the type of relocation entry to which the 2028 // procedure linkage table refers. The d_val member holds DT_REL or 2029 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2030 // must use the same relocation. 2031 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2032 2033 if (symbol) 2034 return symbol->d_val; 2035 2036 return 0; 2037 } 2038 2039 static unsigned 2040 ParsePLTRelocations(Symtab *symbol_table, 2041 user_id_t start_id, 2042 unsigned rel_type, 2043 const ELFHeader *hdr, 2044 const ELFSectionHeader *rel_hdr, 2045 const ELFSectionHeader *plt_hdr, 2046 const ELFSectionHeader *sym_hdr, 2047 const lldb::SectionSP &plt_section_sp, 2048 DataExtractor &rel_data, 2049 DataExtractor &symtab_data, 2050 DataExtractor &strtab_data) 2051 { 2052 ELFRelocation rel(rel_type); 2053 ELFSymbol symbol; 2054 lldb::offset_t offset = 0; 2055 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2056 // So round the entsize up by the alignment if addralign is set. 2057 const elf_xword plt_entsize = plt_hdr->sh_addralign ? 2058 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2059 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2060 2061 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2062 reloc_info_fn reloc_type; 2063 reloc_info_fn reloc_symbol; 2064 2065 if (hdr->Is32Bit()) 2066 { 2067 reloc_type = ELFRelocation::RelocType32; 2068 reloc_symbol = ELFRelocation::RelocSymbol32; 2069 } 2070 else 2071 { 2072 reloc_type = ELFRelocation::RelocType64; 2073 reloc_symbol = ELFRelocation::RelocSymbol64; 2074 } 2075 2076 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2077 unsigned i; 2078 for (i = 0; i < num_relocations; ++i) 2079 { 2080 if (rel.Parse(rel_data, &offset) == false) 2081 break; 2082 2083 if (reloc_type(rel) != slot_type) 2084 continue; 2085 2086 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2087 uint64_t plt_index = (i + 1) * plt_entsize; 2088 2089 if (!symbol.Parse(symtab_data, &symbol_offset)) 2090 break; 2091 2092 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2093 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2094 2095 Symbol jump_symbol( 2096 i + start_id, // Symbol table index 2097 symbol_name, // symbol name. 2098 is_mangled, // is the symbol name mangled? 2099 eSymbolTypeTrampoline, // Type of this symbol 2100 false, // Is this globally visible? 2101 false, // Is this symbol debug info? 2102 true, // Is this symbol a trampoline? 2103 true, // Is this symbol artificial? 2104 plt_section_sp, // Section in which this symbol is defined or null. 2105 plt_index, // Offset in section or symbol value. 2106 plt_entsize, // Size in bytes of this symbol. 2107 true, // Size is valid 2108 0); // Symbol flags. 2109 2110 symbol_table->AddSymbol(jump_symbol); 2111 } 2112 2113 return i; 2114 } 2115 2116 unsigned 2117 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2118 user_id_t start_id, 2119 const ELFSectionHeaderInfo *rel_hdr, 2120 user_id_t rel_id) 2121 { 2122 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2123 2124 // The link field points to the associated symbol table. The info field 2125 // points to the section holding the plt. 2126 user_id_t symtab_id = rel_hdr->sh_link; 2127 user_id_t plt_id = rel_hdr->sh_info; 2128 2129 if (!symtab_id || !plt_id) 2130 return 0; 2131 2132 // Section ID's are ones based; 2133 symtab_id++; 2134 plt_id++; 2135 2136 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2137 if (!plt_hdr) 2138 return 0; 2139 2140 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2141 if (!sym_hdr) 2142 return 0; 2143 2144 SectionList *section_list = m_sections_ap.get(); 2145 if (!section_list) 2146 return 0; 2147 2148 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2149 if (!rel_section) 2150 return 0; 2151 2152 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2153 if (!plt_section_sp) 2154 return 0; 2155 2156 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2157 if (!symtab) 2158 return 0; 2159 2160 // sh_link points to associated string table. 2161 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2162 if (!strtab) 2163 return 0; 2164 2165 DataExtractor rel_data; 2166 if (!ReadSectionData(rel_section, rel_data)) 2167 return 0; 2168 2169 DataExtractor symtab_data; 2170 if (!ReadSectionData(symtab, symtab_data)) 2171 return 0; 2172 2173 DataExtractor strtab_data; 2174 if (!ReadSectionData(strtab, strtab_data)) 2175 return 0; 2176 2177 unsigned rel_type = PLTRelocationType(); 2178 if (!rel_type) 2179 return 0; 2180 2181 return ParsePLTRelocations (symbol_table, 2182 start_id, 2183 rel_type, 2184 &m_header, 2185 rel_hdr, 2186 plt_hdr, 2187 sym_hdr, 2188 plt_section_sp, 2189 rel_data, 2190 symtab_data, 2191 strtab_data); 2192 } 2193 2194 unsigned 2195 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2196 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2197 DataExtractor &rel_data, DataExtractor &symtab_data, 2198 DataExtractor &debug_data, Section* rel_section) 2199 { 2200 ELFRelocation rel(rel_hdr->sh_type); 2201 lldb::addr_t offset = 0; 2202 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2203 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2204 reloc_info_fn reloc_type; 2205 reloc_info_fn reloc_symbol; 2206 2207 if (hdr->Is32Bit()) 2208 { 2209 reloc_type = ELFRelocation::RelocType32; 2210 reloc_symbol = ELFRelocation::RelocSymbol32; 2211 } 2212 else 2213 { 2214 reloc_type = ELFRelocation::RelocType64; 2215 reloc_symbol = ELFRelocation::RelocSymbol64; 2216 } 2217 2218 for (unsigned i = 0; i < num_relocations; ++i) 2219 { 2220 if (rel.Parse(rel_data, &offset) == false) 2221 break; 2222 2223 Symbol* symbol = NULL; 2224 2225 if (hdr->Is32Bit()) 2226 { 2227 switch (reloc_type(rel)) { 2228 case R_386_32: 2229 case R_386_PC32: 2230 default: 2231 assert(false && "unexpected relocation type"); 2232 } 2233 } else { 2234 switch (reloc_type(rel)) { 2235 case R_X86_64_64: 2236 { 2237 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2238 if (symbol) 2239 { 2240 addr_t value = symbol->GetAddress().GetFileAddress(); 2241 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2242 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2243 *dst = value + ELFRelocation::RelocAddend64(rel); 2244 } 2245 break; 2246 } 2247 case R_X86_64_32: 2248 case R_X86_64_32S: 2249 { 2250 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2251 if (symbol) 2252 { 2253 addr_t value = symbol->GetAddress().GetFileAddress(); 2254 value += ELFRelocation::RelocAddend32(rel); 2255 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2256 (reloc_type(rel) == R_X86_64_32S && 2257 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2258 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2259 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2260 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2261 *dst = truncated_addr; 2262 } 2263 break; 2264 } 2265 case R_X86_64_PC32: 2266 default: 2267 assert(false && "unexpected relocation type"); 2268 } 2269 } 2270 } 2271 2272 return 0; 2273 } 2274 2275 unsigned 2276 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2277 { 2278 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2279 2280 // Parse in the section list if needed. 2281 SectionList *section_list = GetSectionList(); 2282 if (!section_list) 2283 return 0; 2284 2285 // Section ID's are ones based. 2286 user_id_t symtab_id = rel_hdr->sh_link + 1; 2287 user_id_t debug_id = rel_hdr->sh_info + 1; 2288 2289 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2290 if (!symtab_hdr) 2291 return 0; 2292 2293 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2294 if (!debug_hdr) 2295 return 0; 2296 2297 Section *rel = section_list->FindSectionByID(rel_id).get(); 2298 if (!rel) 2299 return 0; 2300 2301 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2302 if (!symtab) 2303 return 0; 2304 2305 Section *debug = section_list->FindSectionByID(debug_id).get(); 2306 if (!debug) 2307 return 0; 2308 2309 DataExtractor rel_data; 2310 DataExtractor symtab_data; 2311 DataExtractor debug_data; 2312 2313 if (ReadSectionData(rel, rel_data) && 2314 ReadSectionData(symtab, symtab_data) && 2315 ReadSectionData(debug, debug_data)) 2316 { 2317 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2318 rel_data, symtab_data, debug_data, debug); 2319 } 2320 2321 return 0; 2322 } 2323 2324 Symtab * 2325 ObjectFileELF::GetSymtab() 2326 { 2327 ModuleSP module_sp(GetModule()); 2328 if (!module_sp) 2329 return NULL; 2330 2331 // We always want to use the main object file so we (hopefully) only have one cached copy 2332 // of our symtab, dynamic sections, etc. 2333 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2334 if (module_obj_file && module_obj_file != this) 2335 return module_obj_file->GetSymtab(); 2336 2337 if (m_symtab_ap.get() == NULL) 2338 { 2339 SectionList *section_list = GetSectionList(); 2340 if (!section_list) 2341 return NULL; 2342 2343 uint64_t symbol_id = 0; 2344 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2345 2346 m_symtab_ap.reset(new Symtab(this)); 2347 2348 // Sharable objects and dynamic executables usually have 2 distinct symbol 2349 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2350 // version of the symtab that only contains global symbols. The information found 2351 // in the dynsym is therefore also found in the symtab, while the reverse is not 2352 // necessarily true. 2353 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2354 if (!symtab) 2355 { 2356 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2357 // then use the dynsym section which should always be there. 2358 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2359 } 2360 if (symtab) 2361 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2362 2363 // DT_JMPREL 2364 // If present, this entry's d_ptr member holds the address of relocation 2365 // entries associated solely with the procedure linkage table. Separating 2366 // these relocation entries lets the dynamic linker ignore them during 2367 // process initialization, if lazy binding is enabled. If this entry is 2368 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2369 // also be present. 2370 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2371 if (symbol) 2372 { 2373 // Synthesize trampoline symbols to help navigate the PLT. 2374 addr_t addr = symbol->d_ptr; 2375 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2376 if (reloc_section) 2377 { 2378 user_id_t reloc_id = reloc_section->GetID(); 2379 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2380 assert(reloc_header); 2381 2382 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2383 } 2384 } 2385 } 2386 2387 for (SectionHeaderCollIter I = m_section_headers.begin(); 2388 I != m_section_headers.end(); ++I) 2389 { 2390 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2391 { 2392 if (CalculateType() == eTypeObjectFile) 2393 { 2394 const char *section_name = I->section_name.AsCString(""); 2395 if (strstr(section_name, ".rela.debug") || 2396 strstr(section_name, ".rel.debug")) 2397 { 2398 const ELFSectionHeader &reloc_header = *I; 2399 user_id_t reloc_id = SectionIndex(I); 2400 RelocateDebugSections(&reloc_header, reloc_id); 2401 } 2402 } 2403 } 2404 } 2405 return m_symtab_ap.get(); 2406 } 2407 2408 Symbol * 2409 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2410 { 2411 if (!m_symtab_ap.get()) 2412 return nullptr; // GetSymtab() should be called first. 2413 2414 const SectionList *section_list = GetSectionList(); 2415 if (!section_list) 2416 return nullptr; 2417 2418 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2419 { 2420 AddressRange range; 2421 if (eh_frame->GetAddressRange (so_addr, range)) 2422 { 2423 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2424 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2425 if (symbol) 2426 return symbol; 2427 2428 // Note that a (stripped) symbol won't be found by GetSymtab()... 2429 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2430 if (eh_sym_section_sp.get()) 2431 { 2432 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2433 addr_t offset = file_addr - section_base; 2434 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2435 2436 Symbol eh_symbol( 2437 symbol_id, // Symbol table index. 2438 "???", // Symbol name. 2439 false, // Is the symbol name mangled? 2440 eSymbolTypeCode, // Type of this symbol. 2441 true, // Is this globally visible? 2442 false, // Is this symbol debug info? 2443 false, // Is this symbol a trampoline? 2444 true, // Is this symbol artificial? 2445 eh_sym_section_sp, // Section in which this symbol is defined or null. 2446 offset, // Offset in section or symbol value. 2447 range.GetByteSize(), // Size in bytes of this symbol. 2448 true, // Size is valid. 2449 0); // Symbol flags. 2450 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2451 return m_symtab_ap->SymbolAtIndex(symbol_id); 2452 } 2453 } 2454 } 2455 return nullptr; 2456 } 2457 2458 2459 bool 2460 ObjectFileELF::IsStripped () 2461 { 2462 // TODO: determine this for ELF 2463 return false; 2464 } 2465 2466 //===----------------------------------------------------------------------===// 2467 // Dump 2468 // 2469 // Dump the specifics of the runtime file container (such as any headers 2470 // segments, sections, etc). 2471 //---------------------------------------------------------------------- 2472 void 2473 ObjectFileELF::Dump(Stream *s) 2474 { 2475 DumpELFHeader(s, m_header); 2476 s->EOL(); 2477 DumpELFProgramHeaders(s); 2478 s->EOL(); 2479 DumpELFSectionHeaders(s); 2480 s->EOL(); 2481 SectionList *section_list = GetSectionList(); 2482 if (section_list) 2483 section_list->Dump(s, NULL, true, UINT32_MAX); 2484 Symtab *symtab = GetSymtab(); 2485 if (symtab) 2486 symtab->Dump(s, NULL, eSortOrderNone); 2487 s->EOL(); 2488 DumpDependentModules(s); 2489 s->EOL(); 2490 } 2491 2492 //---------------------------------------------------------------------- 2493 // DumpELFHeader 2494 // 2495 // Dump the ELF header to the specified output stream 2496 //---------------------------------------------------------------------- 2497 void 2498 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2499 { 2500 s->PutCString("ELF Header\n"); 2501 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2502 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2503 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2504 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2505 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2506 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2507 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2508 2509 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2510 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2511 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2512 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2513 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2514 2515 s->Printf("e_type = 0x%4.4x ", header.e_type); 2516 DumpELFHeader_e_type(s, header.e_type); 2517 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2518 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2519 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2520 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2521 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2522 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2523 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2524 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2525 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2526 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2527 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2528 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2529 } 2530 2531 //---------------------------------------------------------------------- 2532 // DumpELFHeader_e_type 2533 // 2534 // Dump an token value for the ELF header member e_type 2535 //---------------------------------------------------------------------- 2536 void 2537 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2538 { 2539 switch (e_type) 2540 { 2541 case ET_NONE: *s << "ET_NONE"; break; 2542 case ET_REL: *s << "ET_REL"; break; 2543 case ET_EXEC: *s << "ET_EXEC"; break; 2544 case ET_DYN: *s << "ET_DYN"; break; 2545 case ET_CORE: *s << "ET_CORE"; break; 2546 default: 2547 break; 2548 } 2549 } 2550 2551 //---------------------------------------------------------------------- 2552 // DumpELFHeader_e_ident_EI_DATA 2553 // 2554 // Dump an token value for the ELF header member e_ident[EI_DATA] 2555 //---------------------------------------------------------------------- 2556 void 2557 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2558 { 2559 switch (ei_data) 2560 { 2561 case ELFDATANONE: *s << "ELFDATANONE"; break; 2562 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2563 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2564 default: 2565 break; 2566 } 2567 } 2568 2569 2570 //---------------------------------------------------------------------- 2571 // DumpELFProgramHeader 2572 // 2573 // Dump a single ELF program header to the specified output stream 2574 //---------------------------------------------------------------------- 2575 void 2576 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2577 { 2578 DumpELFProgramHeader_p_type(s, ph.p_type); 2579 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2580 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2581 2582 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2583 s->Printf(") %8.8" PRIx64, ph.p_align); 2584 } 2585 2586 //---------------------------------------------------------------------- 2587 // DumpELFProgramHeader_p_type 2588 // 2589 // Dump an token value for the ELF program header member p_type which 2590 // describes the type of the program header 2591 // ---------------------------------------------------------------------- 2592 void 2593 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2594 { 2595 const int kStrWidth = 15; 2596 switch (p_type) 2597 { 2598 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2599 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2600 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2601 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2602 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2603 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2604 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2605 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2606 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2607 default: 2608 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2609 break; 2610 } 2611 } 2612 2613 2614 //---------------------------------------------------------------------- 2615 // DumpELFProgramHeader_p_flags 2616 // 2617 // Dump an token value for the ELF program header member p_flags 2618 //---------------------------------------------------------------------- 2619 void 2620 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2621 { 2622 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2623 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2624 << ((p_flags & PF_W) ? "PF_W" : " ") 2625 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2626 << ((p_flags & PF_R) ? "PF_R" : " "); 2627 } 2628 2629 //---------------------------------------------------------------------- 2630 // DumpELFProgramHeaders 2631 // 2632 // Dump all of the ELF program header to the specified output stream 2633 //---------------------------------------------------------------------- 2634 void 2635 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2636 { 2637 if (ParseProgramHeaders()) 2638 { 2639 s->PutCString("Program Headers\n"); 2640 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2641 "p_filesz p_memsz p_flags p_align\n"); 2642 s->PutCString("==== --------------- -------- -------- -------- " 2643 "-------- -------- ------------------------- --------\n"); 2644 2645 uint32_t idx = 0; 2646 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2647 I != m_program_headers.end(); ++I, ++idx) 2648 { 2649 s->Printf("[%2u] ", idx); 2650 ObjectFileELF::DumpELFProgramHeader(s, *I); 2651 s->EOL(); 2652 } 2653 } 2654 } 2655 2656 //---------------------------------------------------------------------- 2657 // DumpELFSectionHeader 2658 // 2659 // Dump a single ELF section header to the specified output stream 2660 //---------------------------------------------------------------------- 2661 void 2662 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2663 { 2664 s->Printf("%8.8x ", sh.sh_name); 2665 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2666 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2667 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2668 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2669 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2670 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2671 } 2672 2673 //---------------------------------------------------------------------- 2674 // DumpELFSectionHeader_sh_type 2675 // 2676 // Dump an token value for the ELF section header member sh_type which 2677 // describes the type of the section 2678 //---------------------------------------------------------------------- 2679 void 2680 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2681 { 2682 const int kStrWidth = 12; 2683 switch (sh_type) 2684 { 2685 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2686 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2687 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2688 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2689 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2690 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2691 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2692 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2693 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2694 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2695 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2696 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2697 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2698 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2699 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2700 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2701 default: 2702 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2703 break; 2704 } 2705 } 2706 2707 //---------------------------------------------------------------------- 2708 // DumpELFSectionHeader_sh_flags 2709 // 2710 // Dump an token value for the ELF section header member sh_flags 2711 //---------------------------------------------------------------------- 2712 void 2713 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2714 { 2715 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2716 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2717 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2718 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2719 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2720 } 2721 2722 //---------------------------------------------------------------------- 2723 // DumpELFSectionHeaders 2724 // 2725 // Dump all of the ELF section header to the specified output stream 2726 //---------------------------------------------------------------------- 2727 void 2728 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2729 { 2730 if (!ParseSectionHeaders()) 2731 return; 2732 2733 s->PutCString("Section Headers\n"); 2734 s->PutCString("IDX name type flags " 2735 "addr offset size link info addralgn " 2736 "entsize Name\n"); 2737 s->PutCString("==== -------- ------------ -------------------------------- " 2738 "-------- -------- -------- -------- -------- -------- " 2739 "-------- ====================\n"); 2740 2741 uint32_t idx = 0; 2742 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2743 I != m_section_headers.end(); ++I, ++idx) 2744 { 2745 s->Printf("[%2u] ", idx); 2746 ObjectFileELF::DumpELFSectionHeader(s, *I); 2747 const char* section_name = I->section_name.AsCString(""); 2748 if (section_name) 2749 *s << ' ' << section_name << "\n"; 2750 } 2751 } 2752 2753 void 2754 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2755 { 2756 size_t num_modules = ParseDependentModules(); 2757 2758 if (num_modules > 0) 2759 { 2760 s->PutCString("Dependent Modules:\n"); 2761 for (unsigned i = 0; i < num_modules; ++i) 2762 { 2763 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2764 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2765 } 2766 } 2767 } 2768 2769 bool 2770 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2771 { 2772 if (!ParseHeader()) 2773 return false; 2774 2775 if (m_section_headers.empty()) 2776 { 2777 // Allow elf notes to be parsed which may affect the detected architecture. 2778 ParseSectionHeaders(); 2779 } 2780 2781 arch = m_arch_spec; 2782 return true; 2783 } 2784 2785 ObjectFile::Type 2786 ObjectFileELF::CalculateType() 2787 { 2788 switch (m_header.e_type) 2789 { 2790 case llvm::ELF::ET_NONE: 2791 // 0 - No file type 2792 return eTypeUnknown; 2793 2794 case llvm::ELF::ET_REL: 2795 // 1 - Relocatable file 2796 return eTypeObjectFile; 2797 2798 case llvm::ELF::ET_EXEC: 2799 // 2 - Executable file 2800 return eTypeExecutable; 2801 2802 case llvm::ELF::ET_DYN: 2803 // 3 - Shared object file 2804 return eTypeSharedLibrary; 2805 2806 case ET_CORE: 2807 // 4 - Core file 2808 return eTypeCoreFile; 2809 2810 default: 2811 break; 2812 } 2813 return eTypeUnknown; 2814 } 2815 2816 ObjectFile::Strata 2817 ObjectFileELF::CalculateStrata() 2818 { 2819 switch (m_header.e_type) 2820 { 2821 case llvm::ELF::ET_NONE: 2822 // 0 - No file type 2823 return eStrataUnknown; 2824 2825 case llvm::ELF::ET_REL: 2826 // 1 - Relocatable file 2827 return eStrataUnknown; 2828 2829 case llvm::ELF::ET_EXEC: 2830 // 2 - Executable file 2831 // TODO: is there any way to detect that an executable is a kernel 2832 // related executable by inspecting the program headers, section 2833 // headers, symbols, or any other flag bits??? 2834 return eStrataUser; 2835 2836 case llvm::ELF::ET_DYN: 2837 // 3 - Shared object file 2838 // TODO: is there any way to detect that an shared library is a kernel 2839 // related executable by inspecting the program headers, section 2840 // headers, symbols, or any other flag bits??? 2841 return eStrataUnknown; 2842 2843 case ET_CORE: 2844 // 4 - Core file 2845 // TODO: is there any way to detect that an core file is a kernel 2846 // related executable by inspecting the program headers, section 2847 // headers, symbols, or any other flag bits??? 2848 return eStrataUnknown; 2849 2850 default: 2851 break; 2852 } 2853 return eStrataUnknown; 2854 } 2855 2856