1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     auto res = ObjectFile::GetAddressClass (file_addr);
909 
910     if (res != eAddressClassCode)
911         return res;
912 
913     auto ub = m_address_class_map.upper_bound(file_addr);
914     if (ub == m_address_class_map.begin())
915     {
916         // No entry in the address class map before the address. Return
917         // default address class for an address in a code section.
918         return eAddressClassCode;
919     }
920 
921     // Move iterator to the address class entry preceding address
922     --ub;
923 
924     return ub->second;
925 }
926 
927 size_t
928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
929 {
930     return std::distance(m_section_headers.begin(), I) + 1u;
931 }
932 
933 size_t
934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
935 {
936     return std::distance(m_section_headers.begin(), I) + 1u;
937 }
938 
939 bool
940 ObjectFileELF::ParseHeader()
941 {
942     lldb::offset_t offset = 0;
943     if (!m_header.Parse(m_data, &offset))
944         return false;
945 
946     if (!IsInMemory())
947         return true;
948 
949     // For in memory object files m_data might not contain the full object file. Try to load it
950     // until the end of the "Section header table" what is at the end of the ELF file.
951     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
952     if (m_data.GetByteSize() < file_size)
953     {
954         ProcessSP process_sp (m_process_wp.lock());
955         if (!process_sp)
956             return false;
957 
958         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
959         if (!data_sp)
960             return false;
961         m_data.SetData(data_sp, 0, file_size);
962     }
963 
964     return true;
965 }
966 
967 bool
968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
969 {
970     // Need to parse the section list to get the UUIDs, so make sure that's been done.
971     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
972         return false;
973 
974     if (m_uuid.IsValid())
975     {
976         // We have the full build id uuid.
977         *uuid = m_uuid;
978         return true;
979     }
980     else if (GetType() == ObjectFile::eTypeCoreFile)
981     {
982         uint32_t core_notes_crc = 0;
983 
984         if (!ParseProgramHeaders())
985             return false;
986 
987         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
988 
989         if (core_notes_crc)
990         {
991             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
992             // look different form .gnu_debuglink crc - followed by 4 bytes of note
993             // segments crc.
994             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
995             m_uuid.SetBytes (uuidt, sizeof(uuidt));
996         }
997     }
998     else
999     {
1000         if (!m_gnu_debuglink_crc)
1001             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1002         if (m_gnu_debuglink_crc)
1003         {
1004             // Use 4 bytes of crc from the .gnu_debuglink section.
1005             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1006             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1007         }
1008     }
1009 
1010     if (m_uuid.IsValid())
1011     {
1012         *uuid = m_uuid;
1013         return true;
1014     }
1015 
1016     return false;
1017 }
1018 
1019 lldb_private::FileSpecList
1020 ObjectFileELF::GetDebugSymbolFilePaths()
1021 {
1022     FileSpecList file_spec_list;
1023 
1024     if (!m_gnu_debuglink_file.empty())
1025     {
1026         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1027         file_spec_list.Append (file_spec);
1028     }
1029     return file_spec_list;
1030 }
1031 
1032 uint32_t
1033 ObjectFileELF::GetDependentModules(FileSpecList &files)
1034 {
1035     size_t num_modules = ParseDependentModules();
1036     uint32_t num_specs = 0;
1037 
1038     for (unsigned i = 0; i < num_modules; ++i)
1039     {
1040         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1041             num_specs++;
1042     }
1043 
1044     return num_specs;
1045 }
1046 
1047 Address
1048 ObjectFileELF::GetImageInfoAddress(Target *target)
1049 {
1050     if (!ParseDynamicSymbols())
1051         return Address();
1052 
1053     SectionList *section_list = GetSectionList();
1054     if (!section_list)
1055         return Address();
1056 
1057     // Find the SHT_DYNAMIC (.dynamic) section.
1058     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1059     if (!dynsym_section_sp)
1060         return Address();
1061     assert (dynsym_section_sp->GetObjectFile() == this);
1062 
1063     user_id_t dynsym_id = dynsym_section_sp->GetID();
1064     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1065     if (!dynsym_hdr)
1066         return Address();
1067 
1068     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1069     {
1070         ELFDynamic &symbol = m_dynamic_symbols[i];
1071 
1072         if (symbol.d_tag == DT_DEBUG)
1073         {
1074             // Compute the offset as the number of previous entries plus the
1075             // size of d_tag.
1076             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1077             return Address(dynsym_section_sp, offset);
1078         }
1079         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1080         {
1081             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1082             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1083             if (dyn_base == LLDB_INVALID_ADDRESS)
1084                 return Address();
1085             Address addr;
1086             Error error;
1087             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1088                 return addr;
1089         }
1090     }
1091 
1092     return Address();
1093 }
1094 
1095 lldb_private::Address
1096 ObjectFileELF::GetEntryPointAddress ()
1097 {
1098     if (m_entry_point_address.IsValid())
1099         return m_entry_point_address;
1100 
1101     if (!ParseHeader() || !IsExecutable())
1102         return m_entry_point_address;
1103 
1104     SectionList *section_list = GetSectionList();
1105     addr_t offset = m_header.e_entry;
1106 
1107     if (!section_list)
1108         m_entry_point_address.SetOffset(offset);
1109     else
1110         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1111     return m_entry_point_address;
1112 }
1113 
1114 //----------------------------------------------------------------------
1115 // ParseDependentModules
1116 //----------------------------------------------------------------------
1117 size_t
1118 ObjectFileELF::ParseDependentModules()
1119 {
1120     if (m_filespec_ap.get())
1121         return m_filespec_ap->GetSize();
1122 
1123     m_filespec_ap.reset(new FileSpecList());
1124 
1125     if (!ParseSectionHeaders())
1126         return 0;
1127 
1128     SectionList *section_list = GetSectionList();
1129     if (!section_list)
1130         return 0;
1131 
1132     // Find the SHT_DYNAMIC section.
1133     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1134     if (!dynsym)
1135         return 0;
1136     assert (dynsym->GetObjectFile() == this);
1137 
1138     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1139     if (!header)
1140         return 0;
1141     // sh_link: section header index of string table used by entries in the section.
1142     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1143     if (!dynstr)
1144         return 0;
1145 
1146     DataExtractor dynsym_data;
1147     DataExtractor dynstr_data;
1148     if (ReadSectionData(dynsym, dynsym_data) &&
1149         ReadSectionData(dynstr, dynstr_data))
1150     {
1151         ELFDynamic symbol;
1152         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1153         lldb::offset_t offset = 0;
1154 
1155         // The only type of entries we are concerned with are tagged DT_NEEDED,
1156         // yielding the name of a required library.
1157         while (offset < section_size)
1158         {
1159             if (!symbol.Parse(dynsym_data, &offset))
1160                 break;
1161 
1162             if (symbol.d_tag != DT_NEEDED)
1163                 continue;
1164 
1165             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1166             const char *lib_name = dynstr_data.PeekCStr(str_index);
1167             m_filespec_ap->Append(FileSpec(lib_name, true));
1168         }
1169     }
1170 
1171     return m_filespec_ap->GetSize();
1172 }
1173 
1174 //----------------------------------------------------------------------
1175 // GetProgramHeaderInfo
1176 //----------------------------------------------------------------------
1177 size_t
1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1179                                     DataExtractor &object_data,
1180                                     const ELFHeader &header)
1181 {
1182     // We have already parsed the program headers
1183     if (!program_headers.empty())
1184         return program_headers.size();
1185 
1186     // If there are no program headers to read we are done.
1187     if (header.e_phnum == 0)
1188         return 0;
1189 
1190     program_headers.resize(header.e_phnum);
1191     if (program_headers.size() != header.e_phnum)
1192         return 0;
1193 
1194     const size_t ph_size = header.e_phnum * header.e_phentsize;
1195     const elf_off ph_offset = header.e_phoff;
1196     DataExtractor data;
1197     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1198         return 0;
1199 
1200     uint32_t idx;
1201     lldb::offset_t offset;
1202     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1203     {
1204         if (program_headers[idx].Parse(data, &offset) == false)
1205             break;
1206     }
1207 
1208     if (idx < program_headers.size())
1209         program_headers.resize(idx);
1210 
1211     return program_headers.size();
1212 
1213 }
1214 
1215 //----------------------------------------------------------------------
1216 // ParseProgramHeaders
1217 //----------------------------------------------------------------------
1218 size_t
1219 ObjectFileELF::ParseProgramHeaders()
1220 {
1221     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1222 }
1223 
1224 lldb_private::Error
1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1226 {
1227     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1228     Error error;
1229 
1230     lldb::offset_t offset = 0;
1231 
1232     while (true)
1233     {
1234         // Parse the note header.  If this fails, bail out.
1235         ELFNote note = ELFNote();
1236         if (!note.Parse(data, &offset))
1237         {
1238             // We're done.
1239             return error;
1240         }
1241 
1242         // If a tag processor handles the tag, it should set processed to true, and
1243         // the loop will assume the tag processing has moved entirely past the note's payload.
1244         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1245         bool processed = false;
1246 
1247         if (log)
1248             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1249 
1250         // Process FreeBSD ELF notes.
1251         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1252             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1253             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1254         {
1255             // We'll consume the payload below.
1256             processed = true;
1257 
1258             // Pull out the min version info.
1259             uint32_t version_info;
1260             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1261             {
1262                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1263                 return error;
1264             }
1265 
1266             // Convert the version info into a major/minor number.
1267             const uint32_t version_major = version_info / 100000;
1268             const uint32_t version_minor = (version_info / 1000) % 100;
1269 
1270             char os_name[32];
1271             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1272 
1273             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1274             arch_spec.GetTriple ().setOSName (os_name);
1275             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1276 
1277             if (log)
1278                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1279         }
1280         // Process GNU ELF notes.
1281         else if (note.n_name == LLDB_NT_OWNER_GNU)
1282         {
1283             switch (note.n_type)
1284             {
1285                 case LLDB_NT_GNU_ABI_TAG:
1286                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1287                     {
1288                         // We'll consume the payload below.
1289                         processed = true;
1290 
1291                         // Pull out the min OS version supporting the ABI.
1292                         uint32_t version_info[4];
1293                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1294                         {
1295                             error.SetErrorString ("failed to read GNU ABI note payload");
1296                             return error;
1297                         }
1298 
1299                         // Set the OS per the OS field.
1300                         switch (version_info[0])
1301                         {
1302                             case LLDB_NT_GNU_ABI_OS_LINUX:
1303                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1304                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1305                                 if (log)
1306                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1307                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1308                                 break;
1309                             case LLDB_NT_GNU_ABI_OS_HURD:
1310                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1311                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1312                                 if (log)
1313                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1314                                 break;
1315                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1316                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1317                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1318                                 if (log)
1319                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1320                                 break;
1321                             default:
1322                                 if (log)
1323                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1324                                 break;
1325                         }
1326                     }
1327                     break;
1328 
1329                 case LLDB_NT_GNU_BUILD_ID_TAG:
1330                     // Only bother processing this if we don't already have the uuid set.
1331                     if (!uuid.IsValid())
1332                     {
1333                         // We'll consume the payload below.
1334                         processed = true;
1335 
1336                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1337                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1338                         {
1339                             uint8_t uuidbuf[20];
1340                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1341                             {
1342                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1343                                 return error;
1344                             }
1345 
1346                             // Save the build id as the UUID for the module.
1347                             uuid.SetBytes (uuidbuf, note.n_descsz);
1348                         }
1349                     }
1350                     break;
1351             }
1352         }
1353         // Process NetBSD ELF notes.
1354         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1355                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1356                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1357         {
1358 
1359             // We'll consume the payload below.
1360             processed = true;
1361 
1362             // Pull out the min version info.
1363             uint32_t version_info;
1364             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1365             {
1366                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1367                 return error;
1368             }
1369 
1370             // Set the elf OS version to NetBSD.  Also clear the vendor.
1371             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1372             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1373 
1374             if (log)
1375                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1376         }
1377         // Process CSR kalimba notes
1378         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1379                 (note.n_name == LLDB_NT_OWNER_CSR))
1380         {
1381             // We'll consume the payload below.
1382             processed = true;
1383             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1384             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1385 
1386             // TODO At some point the description string could be processed.
1387             // It could provide a steer towards the kalimba variant which
1388             // this ELF targets.
1389             if(note.n_descsz)
1390             {
1391                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1392                 (void)cstr;
1393             }
1394         }
1395         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1396         {
1397             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1398             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1399         }
1400 
1401         if (!processed)
1402             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1403     }
1404 
1405     return error;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------
1410 // GetSectionHeaderInfo
1411 //----------------------------------------------------------------------
1412 size_t
1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1414                                     lldb_private::DataExtractor &object_data,
1415                                     const elf::ELFHeader &header,
1416                                     lldb_private::UUID &uuid,
1417                                     std::string &gnu_debuglink_file,
1418                                     uint32_t &gnu_debuglink_crc,
1419                                     ArchSpec &arch_spec)
1420 {
1421     // Don't reparse the section headers if we already did that.
1422     if (!section_headers.empty())
1423         return section_headers.size();
1424 
1425     // Only initialize the arch_spec to okay defaults if they're not already set.
1426     // We'll refine this with note data as we parse the notes.
1427     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1428     {
1429         llvm::Triple::OSType ostype;
1430         llvm::Triple::OSType spec_ostype;
1431         const uint32_t sub_type = subTypeFromElfHeader(header);
1432         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1433         //
1434         // Validate if it is ok to remove GetOsFromOSABI
1435         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1436         spec_ostype = arch_spec.GetTriple ().getOS ();
1437         assert(spec_ostype == ostype);
1438     }
1439 
1440     if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1441         || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1442     {
1443         switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE)
1444         {
1445             case llvm::ELF::EF_MIPS_MICROMIPS:
1446                 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips);
1447                 break;
1448             case llvm::ELF::EF_MIPS_ARCH_ASE_M16:
1449                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16);
1450                 break;
1451             case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX:
1452                 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx);
1453                 break;
1454             default:
1455                 break;
1456         }
1457     }
1458 
1459     // If there are no section headers we are done.
1460     if (header.e_shnum == 0) {
1461 #if 0
1462         if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1463             arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1464 #endif
1465         return 0;
1466     }
1467 
1468     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1469 
1470     section_headers.resize(header.e_shnum);
1471     if (section_headers.size() != header.e_shnum)
1472         return 0;
1473 
1474     const size_t sh_size = header.e_shnum * header.e_shentsize;
1475     const elf_off sh_offset = header.e_shoff;
1476     DataExtractor sh_data;
1477     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1478         return 0;
1479 
1480     uint32_t idx;
1481     lldb::offset_t offset;
1482     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1483     {
1484         if (section_headers[idx].Parse(sh_data, &offset) == false)
1485             break;
1486     }
1487     if (idx < section_headers.size())
1488         section_headers.resize(idx);
1489 
1490     const unsigned strtab_idx = header.e_shstrndx;
1491     if (strtab_idx && strtab_idx < section_headers.size())
1492     {
1493         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1494         const size_t byte_size = sheader.sh_size;
1495         const Elf64_Off offset = sheader.sh_offset;
1496         lldb_private::DataExtractor shstr_data;
1497 
1498         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1499         {
1500             for (SectionHeaderCollIter I = section_headers.begin();
1501                  I != section_headers.end(); ++I)
1502             {
1503                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1504                 const ELFSectionHeaderInfo &header = *I;
1505                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1506                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1507 
1508                 I->section_name = name;
1509 
1510                 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel
1511                     || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el)
1512                 {
1513                     if (header.sh_type == SHT_MIPS_ABIFLAGS)
1514                     {
1515                         DataExtractor data;
1516                         if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1517                         {
1518                             lldb::offset_t ase_offset = 12; // MIPS ABI Flags Version: 0
1519                             uint32_t arch_flags = arch_spec.GetFlags ();
1520                             arch_flags |= data.GetU32 (&ase_offset);
1521                             arch_spec.SetFlags (arch_flags);
1522                         }
1523                     }
1524                 }
1525 
1526                 if (name == g_sect_name_gnu_debuglink)
1527                 {
1528                     DataExtractor data;
1529                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1530                     {
1531                         lldb::offset_t gnu_debuglink_offset = 0;
1532                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1533                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1534                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1535                     }
1536                 }
1537 
1538                 // Process ELF note section entries.
1539                 bool is_note_header = (header.sh_type == SHT_NOTE);
1540 
1541                 // The section header ".note.android.ident" is stored as a
1542                 // PROGBITS type header but it is actually a note header.
1543                 static ConstString g_sect_name_android_ident (".note.android.ident");
1544                 if (!is_note_header && name == g_sect_name_android_ident)
1545                     is_note_header = true;
1546 
1547                 if (is_note_header)
1548                 {
1549                     // Allow notes to refine module info.
1550                     DataExtractor data;
1551                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1552                     {
1553                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1554                         if (error.Fail ())
1555                         {
1556                             if (log)
1557                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1558                         }
1559                     }
1560                 }
1561             }
1562 
1563             return section_headers.size();
1564         }
1565     }
1566 
1567     section_headers.clear();
1568     return 0;
1569 }
1570 
1571 size_t
1572 ObjectFileELF::GetProgramHeaderCount()
1573 {
1574     return ParseProgramHeaders();
1575 }
1576 
1577 const elf::ELFProgramHeader *
1578 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1579 {
1580     if (!id || !ParseProgramHeaders())
1581         return NULL;
1582 
1583     if (--id < m_program_headers.size())
1584         return &m_program_headers[id];
1585 
1586     return NULL;
1587 }
1588 
1589 DataExtractor
1590 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1591 {
1592     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1593     if (segment_header == NULL)
1594         return DataExtractor();
1595     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1596 }
1597 
1598 std::string
1599 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1600 {
1601     size_t pos = symbol_name.find('@');
1602     return symbol_name.substr(0, pos).str();
1603 }
1604 
1605 //----------------------------------------------------------------------
1606 // ParseSectionHeaders
1607 //----------------------------------------------------------------------
1608 size_t
1609 ObjectFileELF::ParseSectionHeaders()
1610 {
1611     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1612 }
1613 
1614 const ObjectFileELF::ELFSectionHeaderInfo *
1615 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1616 {
1617     if (!id || !ParseSectionHeaders())
1618         return NULL;
1619 
1620     if (--id < m_section_headers.size())
1621         return &m_section_headers[id];
1622 
1623     return NULL;
1624 }
1625 
1626 lldb::user_id_t
1627 ObjectFileELF::GetSectionIndexByName(const char* name)
1628 {
1629     if (!name || !name[0] || !ParseSectionHeaders())
1630         return 0;
1631     for (size_t i = 1; i < m_section_headers.size(); ++i)
1632         if (m_section_headers[i].section_name == ConstString(name))
1633             return i;
1634     return 0;
1635 }
1636 
1637 void
1638 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1639 {
1640     if (!m_sections_ap.get() && ParseSectionHeaders())
1641     {
1642         m_sections_ap.reset(new SectionList());
1643 
1644         for (SectionHeaderCollIter I = m_section_headers.begin();
1645              I != m_section_headers.end(); ++I)
1646         {
1647             const ELFSectionHeaderInfo &header = *I;
1648 
1649             ConstString& name = I->section_name;
1650             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1651             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1652 
1653             static ConstString g_sect_name_text (".text");
1654             static ConstString g_sect_name_data (".data");
1655             static ConstString g_sect_name_bss (".bss");
1656             static ConstString g_sect_name_tdata (".tdata");
1657             static ConstString g_sect_name_tbss (".tbss");
1658             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1659             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1660             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1661             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1662             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1663             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1664             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1665             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1666             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1667             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1668             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1669             static ConstString g_sect_name_eh_frame (".eh_frame");
1670 
1671             SectionType sect_type = eSectionTypeOther;
1672 
1673             bool is_thread_specific = false;
1674 
1675             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1676             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1677             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1678             else if (name == g_sect_name_tdata)
1679             {
1680                 sect_type = eSectionTypeData;
1681                 is_thread_specific = true;
1682             }
1683             else if (name == g_sect_name_tbss)
1684             {
1685                 sect_type = eSectionTypeZeroFill;
1686                 is_thread_specific = true;
1687             }
1688             // .debug_abbrev – Abbreviations used in the .debug_info section
1689             // .debug_aranges – Lookup table for mapping addresses to compilation units
1690             // .debug_frame – Call frame information
1691             // .debug_info – The core DWARF information section
1692             // .debug_line – Line number information
1693             // .debug_loc – Location lists used in DW_AT_location attributes
1694             // .debug_macinfo – Macro information
1695             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1696             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1697             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1698             // .debug_str – String table used in .debug_info
1699             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1700             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1701             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1702             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1703             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1704             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1705             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1706             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1707             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1708             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1709             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1710             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1711             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1712             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1713             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1714 
1715             switch (header.sh_type)
1716             {
1717                 case SHT_SYMTAB:
1718                     assert (sect_type == eSectionTypeOther);
1719                     sect_type = eSectionTypeELFSymbolTable;
1720                     break;
1721                 case SHT_DYNSYM:
1722                     assert (sect_type == eSectionTypeOther);
1723                     sect_type = eSectionTypeELFDynamicSymbols;
1724                     break;
1725                 case SHT_RELA:
1726                 case SHT_REL:
1727                     assert (sect_type == eSectionTypeOther);
1728                     sect_type = eSectionTypeELFRelocationEntries;
1729                     break;
1730                 case SHT_DYNAMIC:
1731                     assert (sect_type == eSectionTypeOther);
1732                     sect_type = eSectionTypeELFDynamicLinkInfo;
1733                     break;
1734             }
1735 
1736             if (eSectionTypeOther == sect_type)
1737             {
1738                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1739                 // supports linkscripts which (can) give rise to various arbitarily named
1740                 // sections being "Code" or "Data".
1741                 sect_type = kalimbaSectionType(m_header, header);
1742             }
1743 
1744             const uint32_t target_bytes_size =
1745                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1746                 m_arch_spec.GetDataByteSize() :
1747                     eSectionTypeCode == sect_type ?
1748                     m_arch_spec.GetCodeByteSize() : 1;
1749 
1750             elf::elf_xword log2align = (header.sh_addralign==0)
1751                                         ? 0
1752                                         : llvm::Log2_64(header.sh_addralign);
1753             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1754                                               this,               // ObjectFile to which this section belongs and should read section data from.
1755                                               SectionIndex(I),    // Section ID.
1756                                               name,               // Section name.
1757                                               sect_type,          // Section type.
1758                                               header.sh_addr,     // VM address.
1759                                               vm_size,            // VM size in bytes of this section.
1760                                               header.sh_offset,   // Offset of this section in the file.
1761                                               file_size,          // Size of the section as found in the file.
1762                                               log2align,          // Alignment of the section
1763                                               header.sh_flags,    // Flags for this section.
1764                                               target_bytes_size));// Number of host bytes per target byte
1765 
1766             if (is_thread_specific)
1767                 section_sp->SetIsThreadSpecific (is_thread_specific);
1768             m_sections_ap->AddSection(section_sp);
1769         }
1770     }
1771 
1772     if (m_sections_ap.get())
1773     {
1774         if (GetType() == eTypeDebugInfo)
1775         {
1776             static const SectionType g_sections[] =
1777             {
1778                 eSectionTypeDWARFDebugAranges,
1779                 eSectionTypeDWARFDebugInfo,
1780                 eSectionTypeDWARFDebugAbbrev,
1781                 eSectionTypeDWARFDebugFrame,
1782                 eSectionTypeDWARFDebugLine,
1783                 eSectionTypeDWARFDebugStr,
1784                 eSectionTypeDWARFDebugLoc,
1785                 eSectionTypeDWARFDebugMacInfo,
1786                 eSectionTypeDWARFDebugPubNames,
1787                 eSectionTypeDWARFDebugPubTypes,
1788                 eSectionTypeDWARFDebugRanges,
1789                 eSectionTypeELFSymbolTable,
1790             };
1791             SectionList *elf_section_list = m_sections_ap.get();
1792             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1793             {
1794                 SectionType section_type = g_sections[idx];
1795                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1796                 if (section_sp)
1797                 {
1798                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1799                     if (module_section_sp)
1800                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1801                     else
1802                         unified_section_list.AddSection (section_sp);
1803                 }
1804             }
1805         }
1806         else
1807         {
1808             unified_section_list = *m_sections_ap;
1809         }
1810     }
1811 }
1812 
1813 // private
1814 unsigned
1815 ObjectFileELF::ParseSymbols (Symtab *symtab,
1816                              user_id_t start_id,
1817                              SectionList *section_list,
1818                              const size_t num_symbols,
1819                              const DataExtractor &symtab_data,
1820                              const DataExtractor &strtab_data)
1821 {
1822     ELFSymbol symbol;
1823     lldb::offset_t offset = 0;
1824 
1825     static ConstString text_section_name(".text");
1826     static ConstString init_section_name(".init");
1827     static ConstString fini_section_name(".fini");
1828     static ConstString ctors_section_name(".ctors");
1829     static ConstString dtors_section_name(".dtors");
1830 
1831     static ConstString data_section_name(".data");
1832     static ConstString rodata_section_name(".rodata");
1833     static ConstString rodata1_section_name(".rodata1");
1834     static ConstString data2_section_name(".data1");
1835     static ConstString bss_section_name(".bss");
1836     static ConstString opd_section_name(".opd");    // For ppc64
1837 
1838     // On Android the oatdata and the oatexec symbols in system@[email protected] covers the full
1839     // .text section what causes issues with displaying unusable symbol name to the user and very
1840     // slow unwinding speed because the instruction emulation based unwind plans try to emulate all
1841     // instructions in these symbols. Don't add these symbols to the symbol list as they have no
1842     // use for the debugger and they are causing a lot of trouble.
1843     // Filtering can't be restricted to Android because this special object file don't contain the
1844     // note section specifying the environment to Android but the custom extension and file name
1845     // makes it highly unlikely that this will collide with anything else.
1846     bool skip_oatdata_oatexec = m_file.GetFilename() == ConstString("system@[email protected]");
1847 
1848     unsigned i;
1849     for (i = 0; i < num_symbols; ++i)
1850     {
1851         if (symbol.Parse(symtab_data, &offset) == false)
1852             break;
1853 
1854         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1855 
1856         // No need to add non-section symbols that have no names
1857         if (symbol.getType() != STT_SECTION &&
1858             (symbol_name == NULL || symbol_name[0] == '\0'))
1859             continue;
1860 
1861         // Skipping oatdata and oatexec sections if it is requested. See details above the
1862         // definition of skip_oatdata_oatexec for the reasons.
1863         if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0))
1864             continue;
1865 
1866         SectionSP symbol_section_sp;
1867         SymbolType symbol_type = eSymbolTypeInvalid;
1868         Elf64_Half symbol_idx = symbol.st_shndx;
1869 
1870         switch (symbol_idx)
1871         {
1872         case SHN_ABS:
1873             symbol_type = eSymbolTypeAbsolute;
1874             break;
1875         case SHN_UNDEF:
1876             symbol_type = eSymbolTypeUndefined;
1877             break;
1878         default:
1879             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1880             break;
1881         }
1882 
1883         // If a symbol is undefined do not process it further even if it has a STT type
1884         if (symbol_type != eSymbolTypeUndefined)
1885         {
1886             switch (symbol.getType())
1887             {
1888             default:
1889             case STT_NOTYPE:
1890                 // The symbol's type is not specified.
1891                 break;
1892 
1893             case STT_OBJECT:
1894                 // The symbol is associated with a data object, such as a variable,
1895                 // an array, etc.
1896                 symbol_type = eSymbolTypeData;
1897                 break;
1898 
1899             case STT_FUNC:
1900                 // The symbol is associated with a function or other executable code.
1901                 symbol_type = eSymbolTypeCode;
1902                 break;
1903 
1904             case STT_SECTION:
1905                 // The symbol is associated with a section. Symbol table entries of
1906                 // this type exist primarily for relocation and normally have
1907                 // STB_LOCAL binding.
1908                 break;
1909 
1910             case STT_FILE:
1911                 // Conventionally, the symbol's name gives the name of the source
1912                 // file associated with the object file. A file symbol has STB_LOCAL
1913                 // binding, its section index is SHN_ABS, and it precedes the other
1914                 // STB_LOCAL symbols for the file, if it is present.
1915                 symbol_type = eSymbolTypeSourceFile;
1916                 break;
1917 
1918             case STT_GNU_IFUNC:
1919                 // The symbol is associated with an indirect function. The actual
1920                 // function will be resolved if it is referenced.
1921                 symbol_type = eSymbolTypeResolver;
1922                 break;
1923             }
1924         }
1925 
1926         if (symbol_type == eSymbolTypeInvalid)
1927         {
1928             if (symbol_section_sp)
1929             {
1930                 const ConstString &sect_name = symbol_section_sp->GetName();
1931                 if (sect_name == text_section_name ||
1932                     sect_name == init_section_name ||
1933                     sect_name == fini_section_name ||
1934                     sect_name == ctors_section_name ||
1935                     sect_name == dtors_section_name)
1936                 {
1937                     symbol_type = eSymbolTypeCode;
1938                 }
1939                 else if (sect_name == data_section_name ||
1940                          sect_name == data2_section_name ||
1941                          sect_name == rodata_section_name ||
1942                          sect_name == rodata1_section_name ||
1943                          sect_name == bss_section_name)
1944                 {
1945                     symbol_type = eSymbolTypeData;
1946                 }
1947             }
1948         }
1949 
1950         int64_t symbol_value_offset = 0;
1951         uint32_t additional_flags = 0;
1952 
1953         ArchSpec arch;
1954         if (GetArchitecture(arch))
1955         {
1956             if (arch.GetMachine() == llvm::Triple::arm)
1957             {
1958                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1959                 {
1960                     // These are reserved for the specification (e.g.: mapping
1961                     // symbols). We don't want to add them to the symbol table.
1962 
1963                     if (symbol_type == eSymbolTypeCode)
1964                     {
1965                         llvm::StringRef symbol_name_ref(symbol_name);
1966                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1967                         {
1968                             // $a[.<any>]* - marks an ARM instruction sequence
1969                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1970                         }
1971                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1972                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1973                         {
1974                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1975                             // $t[.<any>]* - marks a THUMB instruction sequence
1976                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1977                         }
1978                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1979                         {
1980                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1981                             m_address_class_map[symbol.st_value] = eAddressClassData;
1982                         }
1983                     }
1984 
1985                     continue;
1986                 }
1987             }
1988             else if (arch.GetMachine() == llvm::Triple::aarch64)
1989             {
1990                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1991                 {
1992                     // These are reserved for the specification (e.g.: mapping
1993                     // symbols). We don't want to add them to the symbol table.
1994 
1995                     if (symbol_type == eSymbolTypeCode)
1996                     {
1997                         llvm::StringRef symbol_name_ref(symbol_name);
1998                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1999                         {
2000                             // $x[.<any>]* - marks an A64 instruction sequence
2001                             m_address_class_map[symbol.st_value] = eAddressClassCode;
2002                         }
2003                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
2004                         {
2005                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
2006                             m_address_class_map[symbol.st_value] = eAddressClassData;
2007                         }
2008                     }
2009 
2010                     continue;
2011                 }
2012             }
2013 
2014             if (arch.GetMachine() == llvm::Triple::arm)
2015             {
2016                 if (symbol_type == eSymbolTypeCode)
2017                 {
2018                     if (symbol.st_value & 1)
2019                     {
2020                         // Subtracting 1 from the address effectively unsets
2021                         // the low order bit, which results in the address
2022                         // actually pointing to the beginning of the symbol.
2023                         // This delta will be used below in conjunction with
2024                         // symbol.st_value to produce the final symbol_value
2025                         // that we store in the symtab.
2026                         symbol_value_offset = -1;
2027                         additional_flags = ARM_ELF_SYM_IS_THUMB;
2028                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
2029                     }
2030                     else
2031                     {
2032                         // This address is ARM
2033                         m_address_class_map[symbol.st_value] = eAddressClassCode;
2034                     }
2035                 }
2036             }
2037         }
2038 
2039         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
2040         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
2041         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
2042         {
2043             ModuleSP module_sp(GetModule());
2044             if (module_sp)
2045             {
2046                 SectionList *module_section_list = module_sp->GetSectionList();
2047                 if (module_section_list && module_section_list != section_list)
2048                 {
2049                     const ConstString &sect_name = symbol_section_sp->GetName();
2050                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2051                     if (section_sp && section_sp->GetFileSize())
2052                     {
2053                         symbol_section_sp = section_sp;
2054                     }
2055                 }
2056             }
2057         }
2058 
2059         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2060         // THUMB symbols. See above for more details.
2061         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2062         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2063             symbol_value -= symbol_section_sp->GetFileAddress();
2064         bool is_global = symbol.getBinding() == STB_GLOBAL;
2065         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2066         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2067 
2068         llvm::StringRef symbol_ref(symbol_name);
2069 
2070         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2071         size_t version_pos = symbol_ref.find('@');
2072         bool has_suffix = version_pos != llvm::StringRef::npos;
2073         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2074         Mangled mangled(ConstString(symbol_bare), is_mangled);
2075 
2076         // Now append the suffix back to mangled and unmangled names. Only do it if the
2077         // demangling was sucessful (string is not empty).
2078         if (has_suffix)
2079         {
2080             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2081 
2082             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2083             if (! mangled_name.empty())
2084                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2085 
2086             ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown);
2087             llvm::StringRef demangled_name = demangled.GetStringRef();
2088             if (!demangled_name.empty())
2089                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2090         }
2091 
2092         Symbol dc_symbol(
2093             i + start_id,       // ID is the original symbol table index.
2094             mangled,
2095             symbol_type,        // Type of this symbol
2096             is_global,          // Is this globally visible?
2097             false,              // Is this symbol debug info?
2098             false,              // Is this symbol a trampoline?
2099             false,              // Is this symbol artificial?
2100             AddressRange(
2101                 symbol_section_sp,  // Section in which this symbol is defined or null.
2102                 symbol_value,       // Offset in section or symbol value.
2103                 symbol.st_size),    // Size in bytes of this symbol.
2104             symbol.st_size != 0,    // Size is valid if it is not 0
2105             has_suffix,             // Contains linker annotations?
2106             flags);                 // Symbol flags.
2107         symtab->AddSymbol(dc_symbol);
2108     }
2109     return i;
2110 }
2111 
2112 unsigned
2113 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2114 {
2115     if (symtab->GetObjectFile() != this)
2116     {
2117         // If the symbol table section is owned by a different object file, have it do the
2118         // parsing.
2119         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2120         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2121     }
2122 
2123     // Get section list for this object file.
2124     SectionList *section_list = m_sections_ap.get();
2125     if (!section_list)
2126         return 0;
2127 
2128     user_id_t symtab_id = symtab->GetID();
2129     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2130     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2131            symtab_hdr->sh_type == SHT_DYNSYM);
2132 
2133     // sh_link: section header index of associated string table.
2134     // Section ID's are ones based.
2135     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2136     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2137 
2138     if (symtab && strtab)
2139     {
2140         assert (symtab->GetObjectFile() == this);
2141         assert (strtab->GetObjectFile() == this);
2142 
2143         DataExtractor symtab_data;
2144         DataExtractor strtab_data;
2145         if (ReadSectionData(symtab, symtab_data) &&
2146             ReadSectionData(strtab, strtab_data))
2147         {
2148             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2149 
2150             return ParseSymbols(symbol_table, start_id, section_list,
2151                                 num_symbols, symtab_data, strtab_data);
2152         }
2153     }
2154 
2155     return 0;
2156 }
2157 
2158 size_t
2159 ObjectFileELF::ParseDynamicSymbols()
2160 {
2161     if (m_dynamic_symbols.size())
2162         return m_dynamic_symbols.size();
2163 
2164     SectionList *section_list = GetSectionList();
2165     if (!section_list)
2166         return 0;
2167 
2168     // Find the SHT_DYNAMIC section.
2169     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2170     if (!dynsym)
2171         return 0;
2172     assert (dynsym->GetObjectFile() == this);
2173 
2174     ELFDynamic symbol;
2175     DataExtractor dynsym_data;
2176     if (ReadSectionData(dynsym, dynsym_data))
2177     {
2178         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2179         lldb::offset_t cursor = 0;
2180 
2181         while (cursor < section_size)
2182         {
2183             if (!symbol.Parse(dynsym_data, &cursor))
2184                 break;
2185 
2186             m_dynamic_symbols.push_back(symbol);
2187         }
2188     }
2189 
2190     return m_dynamic_symbols.size();
2191 }
2192 
2193 const ELFDynamic *
2194 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2195 {
2196     if (!ParseDynamicSymbols())
2197         return NULL;
2198 
2199     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2200     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2201     for ( ; I != E; ++I)
2202     {
2203         ELFDynamic *symbol = &*I;
2204 
2205         if (symbol->d_tag == tag)
2206             return symbol;
2207     }
2208 
2209     return NULL;
2210 }
2211 
2212 unsigned
2213 ObjectFileELF::PLTRelocationType()
2214 {
2215     // DT_PLTREL
2216     //  This member specifies the type of relocation entry to which the
2217     //  procedure linkage table refers. The d_val member holds DT_REL or
2218     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2219     //  must use the same relocation.
2220     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2221 
2222     if (symbol)
2223         return symbol->d_val;
2224 
2225     return 0;
2226 }
2227 
2228 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2229 // 0th entry in the plt table is ususally a resolution entry which have different size in some
2230 // architectures then the rest of the plt entries.
2231 static std::pair<uint64_t, uint64_t>
2232 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2233 {
2234     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2235 
2236     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2237     // So round the entsize up by the alignment if addralign is set.
2238     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2239         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2240 
2241     if (plt_entsize == 0)
2242     {
2243         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2244         // entries based on the number of entries and the size of the plt section with the
2245         // asumption that the size of the 0th entry is at least as big as the size of the normal
2246         // entries and it isn't mutch bigger then that.
2247         if (plt_hdr->sh_addralign)
2248             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2249         else
2250             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2251     }
2252 
2253     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2254 
2255     return std::make_pair(plt_entsize, plt_offset);
2256 }
2257 
2258 static unsigned
2259 ParsePLTRelocations(Symtab *symbol_table,
2260                     user_id_t start_id,
2261                     unsigned rel_type,
2262                     const ELFHeader *hdr,
2263                     const ELFSectionHeader *rel_hdr,
2264                     const ELFSectionHeader *plt_hdr,
2265                     const ELFSectionHeader *sym_hdr,
2266                     const lldb::SectionSP &plt_section_sp,
2267                     DataExtractor &rel_data,
2268                     DataExtractor &symtab_data,
2269                     DataExtractor &strtab_data)
2270 {
2271     ELFRelocation rel(rel_type);
2272     ELFSymbol symbol;
2273     lldb::offset_t offset = 0;
2274 
2275     uint64_t plt_offset, plt_entsize;
2276     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2277     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2278 
2279     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2280     reloc_info_fn reloc_type;
2281     reloc_info_fn reloc_symbol;
2282 
2283     if (hdr->Is32Bit())
2284     {
2285         reloc_type = ELFRelocation::RelocType32;
2286         reloc_symbol = ELFRelocation::RelocSymbol32;
2287     }
2288     else
2289     {
2290         reloc_type = ELFRelocation::RelocType64;
2291         reloc_symbol = ELFRelocation::RelocSymbol64;
2292     }
2293 
2294     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2295     unsigned i;
2296     for (i = 0; i < num_relocations; ++i)
2297     {
2298         if (rel.Parse(rel_data, &offset) == false)
2299             break;
2300 
2301         if (reloc_type(rel) != slot_type)
2302             continue;
2303 
2304         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2305         if (!symbol.Parse(symtab_data, &symbol_offset))
2306             break;
2307 
2308         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2309         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2310         uint64_t plt_index = plt_offset + i * plt_entsize;
2311 
2312         Symbol jump_symbol(
2313             i + start_id,    // Symbol table index
2314             symbol_name,     // symbol name.
2315             is_mangled,      // is the symbol name mangled?
2316             eSymbolTypeTrampoline, // Type of this symbol
2317             false,           // Is this globally visible?
2318             false,           // Is this symbol debug info?
2319             true,            // Is this symbol a trampoline?
2320             true,            // Is this symbol artificial?
2321             plt_section_sp,  // Section in which this symbol is defined or null.
2322             plt_index,       // Offset in section or symbol value.
2323             plt_entsize,     // Size in bytes of this symbol.
2324             true,            // Size is valid
2325             false,           // Contains linker annotations?
2326             0);              // Symbol flags.
2327 
2328         symbol_table->AddSymbol(jump_symbol);
2329     }
2330 
2331     return i;
2332 }
2333 
2334 unsigned
2335 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2336                                       user_id_t start_id,
2337                                       const ELFSectionHeaderInfo *rel_hdr,
2338                                       user_id_t rel_id)
2339 {
2340     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2341 
2342     // The link field points to the associated symbol table. The info field
2343     // points to the section holding the plt.
2344     user_id_t symtab_id = rel_hdr->sh_link;
2345     user_id_t plt_id = rel_hdr->sh_info;
2346 
2347     // If the link field doesn't point to the appropriate symbol name table then
2348     // try to find it by name as some compiler don't fill in the link fields.
2349     if (!symtab_id)
2350         symtab_id = GetSectionIndexByName(".dynsym");
2351     if (!plt_id)
2352         plt_id = GetSectionIndexByName(".plt");
2353 
2354     if (!symtab_id || !plt_id)
2355         return 0;
2356 
2357     // Section ID's are ones based;
2358     symtab_id++;
2359     plt_id++;
2360 
2361     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2362     if (!plt_hdr)
2363         return 0;
2364 
2365     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2366     if (!sym_hdr)
2367         return 0;
2368 
2369     SectionList *section_list = m_sections_ap.get();
2370     if (!section_list)
2371         return 0;
2372 
2373     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2374     if (!rel_section)
2375         return 0;
2376 
2377     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2378     if (!plt_section_sp)
2379         return 0;
2380 
2381     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2382     if (!symtab)
2383         return 0;
2384 
2385     // sh_link points to associated string table.
2386     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2387     if (!strtab)
2388         return 0;
2389 
2390     DataExtractor rel_data;
2391     if (!ReadSectionData(rel_section, rel_data))
2392         return 0;
2393 
2394     DataExtractor symtab_data;
2395     if (!ReadSectionData(symtab, symtab_data))
2396         return 0;
2397 
2398     DataExtractor strtab_data;
2399     if (!ReadSectionData(strtab, strtab_data))
2400         return 0;
2401 
2402     unsigned rel_type = PLTRelocationType();
2403     if (!rel_type)
2404         return 0;
2405 
2406     return ParsePLTRelocations (symbol_table,
2407                                 start_id,
2408                                 rel_type,
2409                                 &m_header,
2410                                 rel_hdr,
2411                                 plt_hdr,
2412                                 sym_hdr,
2413                                 plt_section_sp,
2414                                 rel_data,
2415                                 symtab_data,
2416                                 strtab_data);
2417 }
2418 
2419 unsigned
2420 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2421                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2422                 DataExtractor &rel_data, DataExtractor &symtab_data,
2423                 DataExtractor &debug_data, Section* rel_section)
2424 {
2425     ELFRelocation rel(rel_hdr->sh_type);
2426     lldb::addr_t offset = 0;
2427     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2428     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2429     reloc_info_fn reloc_type;
2430     reloc_info_fn reloc_symbol;
2431 
2432     if (hdr->Is32Bit())
2433     {
2434         reloc_type = ELFRelocation::RelocType32;
2435         reloc_symbol = ELFRelocation::RelocSymbol32;
2436     }
2437     else
2438     {
2439         reloc_type = ELFRelocation::RelocType64;
2440         reloc_symbol = ELFRelocation::RelocSymbol64;
2441     }
2442 
2443     for (unsigned i = 0; i < num_relocations; ++i)
2444     {
2445         if (rel.Parse(rel_data, &offset) == false)
2446             break;
2447 
2448         Symbol* symbol = NULL;
2449 
2450         if (hdr->Is32Bit())
2451         {
2452             switch (reloc_type(rel)) {
2453             case R_386_32:
2454             case R_386_PC32:
2455             default:
2456                 assert(false && "unexpected relocation type");
2457             }
2458         } else {
2459             switch (reloc_type(rel)) {
2460             case R_X86_64_64:
2461             {
2462                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2463                 if (symbol)
2464                 {
2465                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2466                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2467                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2468                     *dst = value + ELFRelocation::RelocAddend64(rel);
2469                 }
2470                 break;
2471             }
2472             case R_X86_64_32:
2473             case R_X86_64_32S:
2474             {
2475                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2476                 if (symbol)
2477                 {
2478                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2479                     value += ELFRelocation::RelocAddend32(rel);
2480                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2481                            (reloc_type(rel) == R_X86_64_32S &&
2482                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2483                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2484                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2485                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2486                     *dst = truncated_addr;
2487                 }
2488                 break;
2489             }
2490             case R_X86_64_PC32:
2491             default:
2492                 assert(false && "unexpected relocation type");
2493             }
2494         }
2495     }
2496 
2497     return 0;
2498 }
2499 
2500 unsigned
2501 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2502 {
2503     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2504 
2505     // Parse in the section list if needed.
2506     SectionList *section_list = GetSectionList();
2507     if (!section_list)
2508         return 0;
2509 
2510     // Section ID's are ones based.
2511     user_id_t symtab_id = rel_hdr->sh_link + 1;
2512     user_id_t debug_id = rel_hdr->sh_info + 1;
2513 
2514     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2515     if (!symtab_hdr)
2516         return 0;
2517 
2518     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2519     if (!debug_hdr)
2520         return 0;
2521 
2522     Section *rel = section_list->FindSectionByID(rel_id).get();
2523     if (!rel)
2524         return 0;
2525 
2526     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2527     if (!symtab)
2528         return 0;
2529 
2530     Section *debug = section_list->FindSectionByID(debug_id).get();
2531     if (!debug)
2532         return 0;
2533 
2534     DataExtractor rel_data;
2535     DataExtractor symtab_data;
2536     DataExtractor debug_data;
2537 
2538     if (ReadSectionData(rel, rel_data) &&
2539         ReadSectionData(symtab, symtab_data) &&
2540         ReadSectionData(debug, debug_data))
2541     {
2542         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2543                         rel_data, symtab_data, debug_data, debug);
2544     }
2545 
2546     return 0;
2547 }
2548 
2549 Symtab *
2550 ObjectFileELF::GetSymtab()
2551 {
2552     ModuleSP module_sp(GetModule());
2553     if (!module_sp)
2554         return NULL;
2555 
2556     // We always want to use the main object file so we (hopefully) only have one cached copy
2557     // of our symtab, dynamic sections, etc.
2558     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2559     if (module_obj_file && module_obj_file != this)
2560         return module_obj_file->GetSymtab();
2561 
2562     if (m_symtab_ap.get() == NULL)
2563     {
2564         SectionList *section_list = module_sp->GetSectionList();
2565         if (!section_list)
2566             return NULL;
2567 
2568         uint64_t symbol_id = 0;
2569         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2570 
2571         m_symtab_ap.reset(new Symtab(this));
2572 
2573         // Sharable objects and dynamic executables usually have 2 distinct symbol
2574         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2575         // version of the symtab that only contains global symbols. The information found
2576         // in the dynsym is therefore also found in the symtab, while the reverse is not
2577         // necessarily true.
2578         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2579         if (!symtab)
2580         {
2581             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2582             // then use the dynsym section which should always be there.
2583             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2584         }
2585         if (symtab)
2586             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2587 
2588         // DT_JMPREL
2589         //      If present, this entry's d_ptr member holds the address of relocation
2590         //      entries associated solely with the procedure linkage table. Separating
2591         //      these relocation entries lets the dynamic linker ignore them during
2592         //      process initialization, if lazy binding is enabled. If this entry is
2593         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2594         //      also be present.
2595         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2596         if (symbol)
2597         {
2598             // Synthesize trampoline symbols to help navigate the PLT.
2599             addr_t addr = symbol->d_ptr;
2600             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2601             if (reloc_section)
2602             {
2603                 user_id_t reloc_id = reloc_section->GetID();
2604                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2605                 assert(reloc_header);
2606 
2607                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2608             }
2609         }
2610         m_symtab_ap->CalculateSymbolSizes();
2611     }
2612 
2613     for (SectionHeaderCollIter I = m_section_headers.begin();
2614          I != m_section_headers.end(); ++I)
2615     {
2616         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2617         {
2618             if (CalculateType() == eTypeObjectFile)
2619             {
2620                 const char *section_name = I->section_name.AsCString("");
2621                 if (strstr(section_name, ".rela.debug") ||
2622                     strstr(section_name, ".rel.debug"))
2623                 {
2624                     const ELFSectionHeader &reloc_header = *I;
2625                     user_id_t reloc_id = SectionIndex(I);
2626                     RelocateDebugSections(&reloc_header, reloc_id);
2627                 }
2628             }
2629         }
2630     }
2631     return m_symtab_ap.get();
2632 }
2633 
2634 Symbol *
2635 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2636 {
2637     if (!m_symtab_ap.get())
2638         return nullptr; // GetSymtab() should be called first.
2639 
2640     const SectionList *section_list = GetSectionList();
2641     if (!section_list)
2642         return nullptr;
2643 
2644     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2645     {
2646         AddressRange range;
2647         if (eh_frame->GetAddressRange (so_addr, range))
2648         {
2649             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2650             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2651             if (symbol)
2652                 return symbol;
2653 
2654             // Note that a (stripped) symbol won't be found by GetSymtab()...
2655             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2656             if (eh_sym_section_sp.get())
2657             {
2658                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2659                 addr_t offset = file_addr - section_base;
2660                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2661 
2662                 Symbol eh_symbol(
2663                         symbol_id,            // Symbol table index.
2664                         "???",                // Symbol name.
2665                         false,                // Is the symbol name mangled?
2666                         eSymbolTypeCode,      // Type of this symbol.
2667                         true,                 // Is this globally visible?
2668                         false,                // Is this symbol debug info?
2669                         false,                // Is this symbol a trampoline?
2670                         true,                 // Is this symbol artificial?
2671                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2672                         offset,               // Offset in section or symbol value.
2673                         range.GetByteSize(),  // Size in bytes of this symbol.
2674                         true,                 // Size is valid.
2675                         false,                // Contains linker annotations?
2676                         0);                   // Symbol flags.
2677                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2678                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2679             }
2680         }
2681     }
2682     return nullptr;
2683 }
2684 
2685 
2686 bool
2687 ObjectFileELF::IsStripped ()
2688 {
2689     // TODO: determine this for ELF
2690     return false;
2691 }
2692 
2693 //===----------------------------------------------------------------------===//
2694 // Dump
2695 //
2696 // Dump the specifics of the runtime file container (such as any headers
2697 // segments, sections, etc).
2698 //----------------------------------------------------------------------
2699 void
2700 ObjectFileELF::Dump(Stream *s)
2701 {
2702     DumpELFHeader(s, m_header);
2703     s->EOL();
2704     DumpELFProgramHeaders(s);
2705     s->EOL();
2706     DumpELFSectionHeaders(s);
2707     s->EOL();
2708     SectionList *section_list = GetSectionList();
2709     if (section_list)
2710         section_list->Dump(s, NULL, true, UINT32_MAX);
2711     Symtab *symtab = GetSymtab();
2712     if (symtab)
2713         symtab->Dump(s, NULL, eSortOrderNone);
2714     s->EOL();
2715     DumpDependentModules(s);
2716     s->EOL();
2717 }
2718 
2719 //----------------------------------------------------------------------
2720 // DumpELFHeader
2721 //
2722 // Dump the ELF header to the specified output stream
2723 //----------------------------------------------------------------------
2724 void
2725 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2726 {
2727     s->PutCString("ELF Header\n");
2728     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2729     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2730               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2731     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2732               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2733     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2734               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2735 
2736     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2737     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2738     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2739     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2740     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2741 
2742     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2743     DumpELFHeader_e_type(s, header.e_type);
2744     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2745     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2746     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2747     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2748     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2749     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2750     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2751     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2752     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2753     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2754     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2755     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2756 }
2757 
2758 //----------------------------------------------------------------------
2759 // DumpELFHeader_e_type
2760 //
2761 // Dump an token value for the ELF header member e_type
2762 //----------------------------------------------------------------------
2763 void
2764 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2765 {
2766     switch (e_type)
2767     {
2768     case ET_NONE:   *s << "ET_NONE"; break;
2769     case ET_REL:    *s << "ET_REL"; break;
2770     case ET_EXEC:   *s << "ET_EXEC"; break;
2771     case ET_DYN:    *s << "ET_DYN"; break;
2772     case ET_CORE:   *s << "ET_CORE"; break;
2773     default:
2774         break;
2775     }
2776 }
2777 
2778 //----------------------------------------------------------------------
2779 // DumpELFHeader_e_ident_EI_DATA
2780 //
2781 // Dump an token value for the ELF header member e_ident[EI_DATA]
2782 //----------------------------------------------------------------------
2783 void
2784 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2785 {
2786     switch (ei_data)
2787     {
2788     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2789     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2790     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2791     default:
2792         break;
2793     }
2794 }
2795 
2796 
2797 //----------------------------------------------------------------------
2798 // DumpELFProgramHeader
2799 //
2800 // Dump a single ELF program header to the specified output stream
2801 //----------------------------------------------------------------------
2802 void
2803 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2804 {
2805     DumpELFProgramHeader_p_type(s, ph.p_type);
2806     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2807     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2808 
2809     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2810     s->Printf(") %8.8" PRIx64, ph.p_align);
2811 }
2812 
2813 //----------------------------------------------------------------------
2814 // DumpELFProgramHeader_p_type
2815 //
2816 // Dump an token value for the ELF program header member p_type which
2817 // describes the type of the program header
2818 // ----------------------------------------------------------------------
2819 void
2820 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2821 {
2822     const int kStrWidth = 15;
2823     switch (p_type)
2824     {
2825     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2826     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2827     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2828     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2829     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2830     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2831     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2832     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2833     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2834     default:
2835         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2836         break;
2837     }
2838 }
2839 
2840 
2841 //----------------------------------------------------------------------
2842 // DumpELFProgramHeader_p_flags
2843 //
2844 // Dump an token value for the ELF program header member p_flags
2845 //----------------------------------------------------------------------
2846 void
2847 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2848 {
2849     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2850         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2851         << ((p_flags & PF_W) ? "PF_W" : "    ")
2852         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2853         << ((p_flags & PF_R) ? "PF_R" : "    ");
2854 }
2855 
2856 //----------------------------------------------------------------------
2857 // DumpELFProgramHeaders
2858 //
2859 // Dump all of the ELF program header to the specified output stream
2860 //----------------------------------------------------------------------
2861 void
2862 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2863 {
2864     if (!ParseProgramHeaders())
2865         return;
2866 
2867     s->PutCString("Program Headers\n");
2868     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2869                   "p_filesz p_memsz  p_flags                   p_align\n");
2870     s->PutCString("==== --------------- -------- -------- -------- "
2871                   "-------- -------- ------------------------- --------\n");
2872 
2873     uint32_t idx = 0;
2874     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2875          I != m_program_headers.end(); ++I, ++idx)
2876     {
2877         s->Printf("[%2u] ", idx);
2878         ObjectFileELF::DumpELFProgramHeader(s, *I);
2879         s->EOL();
2880     }
2881 }
2882 
2883 //----------------------------------------------------------------------
2884 // DumpELFSectionHeader
2885 //
2886 // Dump a single ELF section header to the specified output stream
2887 //----------------------------------------------------------------------
2888 void
2889 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2890 {
2891     s->Printf("%8.8x ", sh.sh_name);
2892     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2893     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2894     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2895     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2896     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2897     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2898 }
2899 
2900 //----------------------------------------------------------------------
2901 // DumpELFSectionHeader_sh_type
2902 //
2903 // Dump an token value for the ELF section header member sh_type which
2904 // describes the type of the section
2905 //----------------------------------------------------------------------
2906 void
2907 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2908 {
2909     const int kStrWidth = 12;
2910     switch (sh_type)
2911     {
2912     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2913     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2914     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2915     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2916     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2917     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2918     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2919     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2920     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2921     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2922     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2923     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2924     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2925     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2926     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2927     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2928     default:
2929         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2930         break;
2931     }
2932 }
2933 
2934 //----------------------------------------------------------------------
2935 // DumpELFSectionHeader_sh_flags
2936 //
2937 // Dump an token value for the ELF section header member sh_flags
2938 //----------------------------------------------------------------------
2939 void
2940 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2941 {
2942     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2943         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2944         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2945         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2946         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2947 }
2948 
2949 //----------------------------------------------------------------------
2950 // DumpELFSectionHeaders
2951 //
2952 // Dump all of the ELF section header to the specified output stream
2953 //----------------------------------------------------------------------
2954 void
2955 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2956 {
2957     if (!ParseSectionHeaders())
2958         return;
2959 
2960     s->PutCString("Section Headers\n");
2961     s->PutCString("IDX  name     type         flags                            "
2962                   "addr     offset   size     link     info     addralgn "
2963                   "entsize  Name\n");
2964     s->PutCString("==== -------- ------------ -------------------------------- "
2965                   "-------- -------- -------- -------- -------- -------- "
2966                   "-------- ====================\n");
2967 
2968     uint32_t idx = 0;
2969     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2970          I != m_section_headers.end(); ++I, ++idx)
2971     {
2972         s->Printf("[%2u] ", idx);
2973         ObjectFileELF::DumpELFSectionHeader(s, *I);
2974         const char* section_name = I->section_name.AsCString("");
2975         if (section_name)
2976             *s << ' ' << section_name << "\n";
2977     }
2978 }
2979 
2980 void
2981 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2982 {
2983     size_t num_modules = ParseDependentModules();
2984 
2985     if (num_modules > 0)
2986     {
2987         s->PutCString("Dependent Modules:\n");
2988         for (unsigned i = 0; i < num_modules; ++i)
2989         {
2990             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2991             s->Printf("   %s\n", spec.GetFilename().GetCString());
2992         }
2993     }
2994 }
2995 
2996 bool
2997 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2998 {
2999     if (!ParseHeader())
3000         return false;
3001 
3002     if (m_section_headers.empty())
3003     {
3004         // Allow elf notes to be parsed which may affect the detected architecture.
3005         ParseSectionHeaders();
3006     }
3007 
3008     arch = m_arch_spec;
3009     return true;
3010 }
3011 
3012 ObjectFile::Type
3013 ObjectFileELF::CalculateType()
3014 {
3015     switch (m_header.e_type)
3016     {
3017         case llvm::ELF::ET_NONE:
3018             // 0 - No file type
3019             return eTypeUnknown;
3020 
3021         case llvm::ELF::ET_REL:
3022             // 1 - Relocatable file
3023             return eTypeObjectFile;
3024 
3025         case llvm::ELF::ET_EXEC:
3026             // 2 - Executable file
3027             return eTypeExecutable;
3028 
3029         case llvm::ELF::ET_DYN:
3030             // 3 - Shared object file
3031             return eTypeSharedLibrary;
3032 
3033         case ET_CORE:
3034             // 4 - Core file
3035             return eTypeCoreFile;
3036 
3037         default:
3038             break;
3039     }
3040     return eTypeUnknown;
3041 }
3042 
3043 ObjectFile::Strata
3044 ObjectFileELF::CalculateStrata()
3045 {
3046     switch (m_header.e_type)
3047     {
3048         case llvm::ELF::ET_NONE:
3049             // 0 - No file type
3050             return eStrataUnknown;
3051 
3052         case llvm::ELF::ET_REL:
3053             // 1 - Relocatable file
3054             return eStrataUnknown;
3055 
3056         case llvm::ELF::ET_EXEC:
3057             // 2 - Executable file
3058             // TODO: is there any way to detect that an executable is a kernel
3059             // related executable by inspecting the program headers, section
3060             // headers, symbols, or any other flag bits???
3061             return eStrataUser;
3062 
3063         case llvm::ELF::ET_DYN:
3064             // 3 - Shared object file
3065             // TODO: is there any way to detect that an shared library is a kernel
3066             // related executable by inspecting the program headers, section
3067             // headers, symbols, or any other flag bits???
3068             return eStrataUnknown;
3069 
3070         case ET_CORE:
3071             // 4 - Core file
3072             // TODO: is there any way to detect that an core file is a kernel
3073             // related executable by inspecting the program headers, section
3074             // headers, symbols, or any other flag bits???
3075             return eStrataUnknown;
3076 
3077         default:
3078             break;
3079     }
3080     return eStrataUnknown;
3081 }
3082 
3083