1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 #include <unordered_map> 15 16 #include "lldb/Core/ArchSpec.h" 17 #include "lldb/Core/DataBuffer.h" 18 #include "lldb/Core/Error.h" 19 #include "lldb/Core/FileSpecList.h" 20 #include "lldb/Core/Log.h" 21 #include "lldb/Core/Module.h" 22 #include "lldb/Core/ModuleSpec.h" 23 #include "lldb/Core/PluginManager.h" 24 #include "lldb/Core/Section.h" 25 #include "lldb/Core/Stream.h" 26 #include "lldb/Core/Timer.h" 27 #include "lldb/Symbol/DWARFCallFrameInfo.h" 28 #include "lldb/Symbol/SymbolContext.h" 29 #include "lldb/Target/SectionLoadList.h" 30 #include "lldb/Target/Target.h" 31 32 #include "llvm/ADT/PointerUnion.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/Support/ARMBuildAttributes.h" 35 #include "llvm/Support/MathExtras.h" 36 #include "llvm/Support/MipsABIFlags.h" 37 38 #define CASE_AND_STREAM(s, def, width) \ 39 case def: s->Printf("%-*s", width, #def); break; 40 41 using namespace lldb; 42 using namespace lldb_private; 43 using namespace elf; 44 using namespace llvm::ELF; 45 46 namespace { 47 48 // ELF note owner definitions 49 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 50 const char *const LLDB_NT_OWNER_GNU = "GNU"; 51 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 52 const char *const LLDB_NT_OWNER_CSR = "csr"; 53 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 54 const char *const LLDB_NT_OWNER_CORE = "CORE"; 55 const char *const LLDB_NT_OWNER_LINUX = "LINUX"; 56 57 // ELF note type definitions 58 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 59 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 60 61 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 63 64 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 65 66 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 67 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 68 69 // GNU ABI note OS constants 70 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 71 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 72 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 73 74 // LLDB_NT_OWNER_CORE and LLDB_NT_OWNER_LINUX note contants 75 #define NT_PRSTATUS 1 76 #define NT_PRFPREG 2 77 #define NT_PRPSINFO 3 78 #define NT_TASKSTRUCT 4 79 #define NT_AUXV 6 80 #define NT_SIGINFO 0x53494749 81 #define NT_FILE 0x46494c45 82 #define NT_PRXFPREG 0x46e62b7f 83 #define NT_PPC_VMX 0x100 84 #define NT_PPC_SPE 0x101 85 #define NT_PPC_VSX 0x102 86 #define NT_386_TLS 0x200 87 #define NT_386_IOPERM 0x201 88 #define NT_X86_XSTATE 0x202 89 #define NT_S390_HIGH_GPRS 0x300 90 #define NT_S390_TIMER 0x301 91 #define NT_S390_TODCMP 0x302 92 #define NT_S390_TODPREG 0x303 93 #define NT_S390_CTRS 0x304 94 #define NT_S390_PREFIX 0x305 95 #define NT_S390_LAST_BREAK 0x306 96 #define NT_S390_SYSTEM_CALL 0x307 97 #define NT_S390_TDB 0x308 98 #define NT_S390_VXRS_LOW 0x309 99 #define NT_S390_VXRS_HIGH 0x30a 100 #define NT_ARM_VFP 0x400 101 #define NT_ARM_TLS 0x401 102 #define NT_ARM_HW_BREAK 0x402 103 #define NT_ARM_HW_WATCH 0x403 104 #define NT_ARM_SYSTEM_CALL 0x404 105 #define NT_METAG_CBUF 0x500 106 #define NT_METAG_RPIPE 0x501 107 #define NT_METAG_TLS 0x502 108 109 //===----------------------------------------------------------------------===// 110 /// @class ELFRelocation 111 /// @brief Generic wrapper for ELFRel and ELFRela. 112 /// 113 /// This helper class allows us to parse both ELFRel and ELFRela relocation 114 /// entries in a generic manner. 115 class ELFRelocation 116 { 117 public: 118 119 /// Constructs an ELFRelocation entry with a personality as given by @p 120 /// type. 121 /// 122 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 123 ELFRelocation(unsigned type); 124 125 ~ELFRelocation(); 126 127 bool 128 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 129 130 static unsigned 131 RelocType32(const ELFRelocation &rel); 132 133 static unsigned 134 RelocType64(const ELFRelocation &rel); 135 136 static unsigned 137 RelocSymbol32(const ELFRelocation &rel); 138 139 static unsigned 140 RelocSymbol64(const ELFRelocation &rel); 141 142 static unsigned 143 RelocOffset32(const ELFRelocation &rel); 144 145 static unsigned 146 RelocOffset64(const ELFRelocation &rel); 147 148 static unsigned 149 RelocAddend32(const ELFRelocation &rel); 150 151 static unsigned 152 RelocAddend64(const ELFRelocation &rel); 153 154 private: 155 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 156 157 RelocUnion reloc; 158 }; 159 160 ELFRelocation::ELFRelocation(unsigned type) 161 { 162 if (type == DT_REL || type == SHT_REL) 163 reloc = new ELFRel(); 164 else if (type == DT_RELA || type == SHT_RELA) 165 reloc = new ELFRela(); 166 else { 167 assert(false && "unexpected relocation type"); 168 reloc = static_cast<ELFRel*>(NULL); 169 } 170 } 171 172 ELFRelocation::~ELFRelocation() 173 { 174 if (reloc.is<ELFRel*>()) 175 delete reloc.get<ELFRel*>(); 176 else 177 delete reloc.get<ELFRela*>(); 178 } 179 180 bool 181 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 182 { 183 if (reloc.is<ELFRel*>()) 184 return reloc.get<ELFRel*>()->Parse(data, offset); 185 else 186 return reloc.get<ELFRela*>()->Parse(data, offset); 187 } 188 189 unsigned 190 ELFRelocation::RelocType32(const ELFRelocation &rel) 191 { 192 if (rel.reloc.is<ELFRel*>()) 193 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 194 else 195 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 196 } 197 198 unsigned 199 ELFRelocation::RelocType64(const ELFRelocation &rel) 200 { 201 if (rel.reloc.is<ELFRel*>()) 202 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 203 else 204 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 205 } 206 207 unsigned 208 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 209 { 210 if (rel.reloc.is<ELFRel*>()) 211 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 212 else 213 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 214 } 215 216 unsigned 217 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 218 { 219 if (rel.reloc.is<ELFRel*>()) 220 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 221 else 222 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 223 } 224 225 unsigned 226 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 227 { 228 if (rel.reloc.is<ELFRel*>()) 229 return rel.reloc.get<ELFRel*>()->r_offset; 230 else 231 return rel.reloc.get<ELFRela*>()->r_offset; 232 } 233 234 unsigned 235 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 236 { 237 if (rel.reloc.is<ELFRel*>()) 238 return rel.reloc.get<ELFRel*>()->r_offset; 239 else 240 return rel.reloc.get<ELFRela*>()->r_offset; 241 } 242 243 unsigned 244 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 245 { 246 if (rel.reloc.is<ELFRel*>()) 247 return 0; 248 else 249 return rel.reloc.get<ELFRela*>()->r_addend; 250 } 251 252 unsigned 253 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 254 { 255 if (rel.reloc.is<ELFRel*>()) 256 return 0; 257 else 258 return rel.reloc.get<ELFRela*>()->r_addend; 259 } 260 261 } // end anonymous namespace 262 263 bool 264 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 265 { 266 // Read all fields. 267 if (data.GetU32(offset, &n_namesz, 3) == NULL) 268 return false; 269 270 // The name field is required to be nul-terminated, and n_namesz 271 // includes the terminating nul in observed implementations (contrary 272 // to the ELF-64 spec). A special case is needed for cores generated 273 // by some older Linux versions, which write a note named "CORE" 274 // without a nul terminator and n_namesz = 4. 275 if (n_namesz == 4) 276 { 277 char buf[4]; 278 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 279 return false; 280 if (strncmp (buf, "CORE", 4) == 0) 281 { 282 n_name = "CORE"; 283 *offset += 4; 284 return true; 285 } 286 } 287 288 const char *cstr = data.GetCStr(offset, llvm::alignTo (n_namesz, 4)); 289 if (cstr == NULL) 290 { 291 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 292 if (log) 293 log->Printf("Failed to parse note name lacking nul terminator"); 294 295 return false; 296 } 297 n_name = cstr; 298 return true; 299 } 300 301 static uint32_t 302 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 303 { 304 const uint32_t dsp_rev = e_flags & 0xFF; 305 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 306 switch(dsp_rev) 307 { 308 // TODO(mg11) Support more variants 309 case 10: 310 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 311 break; 312 case 14: 313 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 314 break; 315 case 17: 316 case 20: 317 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 318 break; 319 default: 320 break; 321 } 322 return kal_arch_variant; 323 } 324 325 static uint32_t 326 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 327 { 328 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 329 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 330 331 switch (mips_arch) 332 { 333 case llvm::ELF::EF_MIPS_ARCH_1: 334 case llvm::ELF::EF_MIPS_ARCH_2: 335 case llvm::ELF::EF_MIPS_ARCH_32: 336 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 337 case llvm::ELF::EF_MIPS_ARCH_32R2: 338 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 339 case llvm::ELF::EF_MIPS_ARCH_32R6: 340 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 341 case llvm::ELF::EF_MIPS_ARCH_3: 342 case llvm::ELF::EF_MIPS_ARCH_4: 343 case llvm::ELF::EF_MIPS_ARCH_5: 344 case llvm::ELF::EF_MIPS_ARCH_64: 345 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 346 case llvm::ELF::EF_MIPS_ARCH_64R2: 347 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 348 case llvm::ELF::EF_MIPS_ARCH_64R6: 349 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 350 default: 351 break; 352 } 353 354 return arch_variant; 355 } 356 357 static uint32_t 358 subTypeFromElfHeader(const elf::ELFHeader& header) 359 { 360 if (header.e_machine == llvm::ELF::EM_MIPS) 361 return mipsVariantFromElfFlags (header.e_flags, 362 header.e_ident[EI_DATA]); 363 364 return 365 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 366 kalimbaVariantFromElfFlags(header.e_flags) : 367 LLDB_INVALID_CPUTYPE; 368 } 369 370 //! The kalimba toolchain identifies a code section as being 371 //! one with the SHT_PROGBITS set in the section sh_type and the top 372 //! bit in the 32-bit address field set. 373 static lldb::SectionType 374 kalimbaSectionType( 375 const elf::ELFHeader& header, 376 const elf::ELFSectionHeader& sect_hdr) 377 { 378 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 379 { 380 return eSectionTypeOther; 381 } 382 383 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 384 { 385 return eSectionTypeZeroFill; 386 } 387 388 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 389 { 390 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 391 return KAL_CODE_BIT & sect_hdr.sh_addr ? 392 eSectionTypeCode : eSectionTypeData; 393 } 394 395 return eSectionTypeOther; 396 } 397 398 // Arbitrary constant used as UUID prefix for core files. 399 const uint32_t 400 ObjectFileELF::g_core_uuid_magic(0xE210C); 401 402 //------------------------------------------------------------------ 403 // Static methods. 404 //------------------------------------------------------------------ 405 void 406 ObjectFileELF::Initialize() 407 { 408 PluginManager::RegisterPlugin(GetPluginNameStatic(), 409 GetPluginDescriptionStatic(), 410 CreateInstance, 411 CreateMemoryInstance, 412 GetModuleSpecifications); 413 } 414 415 void 416 ObjectFileELF::Terminate() 417 { 418 PluginManager::UnregisterPlugin(CreateInstance); 419 } 420 421 lldb_private::ConstString 422 ObjectFileELF::GetPluginNameStatic() 423 { 424 static ConstString g_name("elf"); 425 return g_name; 426 } 427 428 const char * 429 ObjectFileELF::GetPluginDescriptionStatic() 430 { 431 return "ELF object file reader."; 432 } 433 434 ObjectFile * 435 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 436 DataBufferSP &data_sp, 437 lldb::offset_t data_offset, 438 const lldb_private::FileSpec* file, 439 lldb::offset_t file_offset, 440 lldb::offset_t length) 441 { 442 if (!data_sp) 443 { 444 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 445 data_offset = 0; 446 } 447 448 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 449 { 450 const uint8_t *magic = data_sp->GetBytes() + data_offset; 451 if (ELFHeader::MagicBytesMatch(magic)) 452 { 453 // Update the data to contain the entire file if it doesn't already 454 if (data_sp->GetByteSize() < length) { 455 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 456 data_offset = 0; 457 magic = data_sp->GetBytes(); 458 } 459 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 460 if (address_size == 4 || address_size == 8) 461 { 462 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 463 ArchSpec spec; 464 if (objfile_ap->GetArchitecture(spec) && 465 objfile_ap->SetModulesArchitecture(spec)) 466 return objfile_ap.release(); 467 } 468 } 469 } 470 return NULL; 471 } 472 473 474 ObjectFile* 475 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 476 DataBufferSP& data_sp, 477 const lldb::ProcessSP &process_sp, 478 lldb::addr_t header_addr) 479 { 480 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 481 { 482 const uint8_t *magic = data_sp->GetBytes(); 483 if (ELFHeader::MagicBytesMatch(magic)) 484 { 485 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 486 if (address_size == 4 || address_size == 8) 487 { 488 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 489 ArchSpec spec; 490 if (objfile_ap->GetArchitecture(spec) && 491 objfile_ap->SetModulesArchitecture(spec)) 492 return objfile_ap.release(); 493 } 494 } 495 } 496 return NULL; 497 } 498 499 bool 500 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 501 lldb::addr_t data_offset, 502 lldb::addr_t data_length) 503 { 504 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 505 { 506 const uint8_t *magic = data_sp->GetBytes() + data_offset; 507 return ELFHeader::MagicBytesMatch(magic); 508 } 509 return false; 510 } 511 512 /* 513 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 514 * 515 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 516 * code or tables extracted from it, as desired without restriction. 517 */ 518 static uint32_t 519 calc_crc32(uint32_t crc, const void *buf, size_t size) 520 { 521 static const uint32_t g_crc32_tab[] = 522 { 523 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 524 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 525 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 526 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 527 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 528 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 529 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 530 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 531 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 532 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 533 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 534 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 535 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 536 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 537 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 538 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 539 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 540 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 541 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 542 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 543 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 544 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 545 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 546 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 547 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 548 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 549 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 550 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 551 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 552 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 553 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 554 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 555 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 556 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 557 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 558 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 559 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 560 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 561 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 562 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 563 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 564 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 565 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 566 }; 567 const uint8_t *p = (const uint8_t *)buf; 568 569 crc = crc ^ ~0U; 570 while (size--) 571 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 572 return crc ^ ~0U; 573 } 574 575 static uint32_t 576 calc_gnu_debuglink_crc32(const void *buf, size_t size) 577 { 578 return calc_crc32(0U, buf, size); 579 } 580 581 uint32_t 582 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 583 DataExtractor& object_data) 584 { 585 typedef ProgramHeaderCollConstIter Iter; 586 587 uint32_t core_notes_crc = 0; 588 589 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 590 { 591 if (I->p_type == llvm::ELF::PT_NOTE) 592 { 593 const elf_off ph_offset = I->p_offset; 594 const size_t ph_size = I->p_filesz; 595 596 DataExtractor segment_data; 597 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 598 { 599 // The ELF program header contained incorrect data, 600 // probably corefile is incomplete or corrupted. 601 break; 602 } 603 604 core_notes_crc = calc_crc32(core_notes_crc, 605 segment_data.GetDataStart(), 606 segment_data.GetByteSize()); 607 } 608 } 609 610 return core_notes_crc; 611 } 612 613 static const char* 614 OSABIAsCString (unsigned char osabi_byte) 615 { 616 #define _MAKE_OSABI_CASE(x) case x: return #x 617 switch (osabi_byte) 618 { 619 _MAKE_OSABI_CASE(ELFOSABI_NONE); 620 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 621 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 622 _MAKE_OSABI_CASE(ELFOSABI_GNU); 623 _MAKE_OSABI_CASE(ELFOSABI_HURD); 624 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 625 _MAKE_OSABI_CASE(ELFOSABI_AIX); 626 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 627 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 628 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 629 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 630 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 631 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 632 _MAKE_OSABI_CASE(ELFOSABI_NSK); 633 _MAKE_OSABI_CASE(ELFOSABI_AROS); 634 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 635 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 636 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 637 _MAKE_OSABI_CASE(ELFOSABI_ARM); 638 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 639 default: 640 return "<unknown-osabi>"; 641 } 642 #undef _MAKE_OSABI_CASE 643 } 644 645 // 646 // WARNING : This function is being deprecated 647 // It's functionality has moved to ArchSpec::SetArchitecture 648 // This function is only being kept to validate the move. 649 // 650 // TODO : Remove this function 651 static bool 652 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 653 { 654 switch (osabi_byte) 655 { 656 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 657 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 658 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 659 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 660 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 661 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 662 default: 663 ostype = llvm::Triple::OSType::UnknownOS; 664 } 665 return ostype != llvm::Triple::OSType::UnknownOS; 666 } 667 668 size_t 669 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 670 lldb::DataBufferSP& data_sp, 671 lldb::offset_t data_offset, 672 lldb::offset_t file_offset, 673 lldb::offset_t length, 674 lldb_private::ModuleSpecList &specs) 675 { 676 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 677 678 const size_t initial_count = specs.GetSize(); 679 680 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 681 { 682 DataExtractor data; 683 data.SetData(data_sp); 684 elf::ELFHeader header; 685 if (header.Parse(data, &data_offset)) 686 { 687 if (data_sp) 688 { 689 ModuleSpec spec (file); 690 691 const uint32_t sub_type = subTypeFromElfHeader(header); 692 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 693 header.e_machine, 694 sub_type, 695 header.e_ident[EI_OSABI]); 696 697 if (spec.GetArchitecture().IsValid()) 698 { 699 llvm::Triple::OSType ostype; 700 llvm::Triple::VendorType vendor; 701 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 702 703 if (log) 704 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 705 706 // SetArchitecture should have set the vendor to unknown 707 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 708 assert(vendor == llvm::Triple::UnknownVendor); 709 710 // 711 // Validate it is ok to remove GetOsFromOSABI 712 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 713 assert(spec_ostype == ostype); 714 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 715 { 716 if (log) 717 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 718 } 719 720 // Try to get the UUID from the section list. Usually that's at the end, so 721 // map the file in if we don't have it already. 722 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 723 if (section_header_end > data_sp->GetByteSize()) 724 { 725 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 726 data.SetData(data_sp); 727 } 728 729 uint32_t gnu_debuglink_crc = 0; 730 std::string gnu_debuglink_file; 731 SectionHeaderColl section_headers; 732 lldb_private::UUID &uuid = spec.GetUUID(); 733 734 using namespace std::placeholders; 735 const SetDataFunction set_data = std::bind(&ObjectFileELF::SetData, std::cref(data), _1, _2, _3); 736 GetSectionHeaderInfo(section_headers, set_data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 737 738 739 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 740 741 if (log) 742 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 743 744 if (!uuid.IsValid()) 745 { 746 uint32_t core_notes_crc = 0; 747 748 if (!gnu_debuglink_crc) 749 { 750 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 751 "Calculating module crc32 %s with size %" PRIu64 " KiB", 752 file.GetLastPathComponent().AsCString(), 753 (file.GetByteSize()-file_offset)/1024); 754 755 // For core files - which usually don't happen to have a gnu_debuglink, 756 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 757 // Thus we will need to fallback to something simpler. 758 if (header.e_type == llvm::ELF::ET_CORE) 759 { 760 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 761 if (program_headers_end > data_sp->GetByteSize()) 762 { 763 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 764 data.SetData(data_sp); 765 } 766 ProgramHeaderColl program_headers; 767 GetProgramHeaderInfo(program_headers, set_data, header); 768 769 size_t segment_data_end = 0; 770 for (ProgramHeaderCollConstIter I = program_headers.begin(); 771 I != program_headers.end(); ++I) 772 { 773 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 774 } 775 776 if (segment_data_end > data_sp->GetByteSize()) 777 { 778 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 779 data.SetData(data_sp); 780 } 781 782 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 783 } 784 else 785 { 786 // Need to map entire file into memory to calculate the crc. 787 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 788 data.SetData(data_sp); 789 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 790 } 791 } 792 if (gnu_debuglink_crc) 793 { 794 // Use 4 bytes of crc from the .gnu_debuglink section. 795 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 796 uuid.SetBytes (uuidt, sizeof(uuidt)); 797 } 798 else if (core_notes_crc) 799 { 800 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 801 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 802 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 803 uuid.SetBytes (uuidt, sizeof(uuidt)); 804 } 805 } 806 807 specs.Append(spec); 808 } 809 } 810 } 811 } 812 813 return specs.GetSize() - initial_count; 814 } 815 816 //------------------------------------------------------------------ 817 // PluginInterface protocol 818 //------------------------------------------------------------------ 819 lldb_private::ConstString 820 ObjectFileELF::GetPluginName() 821 { 822 return GetPluginNameStatic(); 823 } 824 825 uint32_t 826 ObjectFileELF::GetPluginVersion() 827 { 828 return m_plugin_version; 829 } 830 //------------------------------------------------------------------ 831 // ObjectFile protocol 832 //------------------------------------------------------------------ 833 834 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 835 DataBufferSP& data_sp, 836 lldb::offset_t data_offset, 837 const FileSpec* file, 838 lldb::offset_t file_offset, 839 lldb::offset_t length) : 840 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 841 m_header(), 842 m_uuid(), 843 m_gnu_debuglink_file(), 844 m_gnu_debuglink_crc(0), 845 m_program_headers(), 846 m_section_headers(), 847 m_dynamic_symbols(), 848 m_filespec_ap(), 849 m_entry_point_address(), 850 m_arch_spec() 851 { 852 if (file) 853 m_file = *file; 854 ::memset(&m_header, 0, sizeof(m_header)); 855 } 856 857 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 858 DataBufferSP& header_data_sp, 859 const lldb::ProcessSP &process_sp, 860 addr_t header_addr) : 861 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 862 m_header(), 863 m_uuid(), 864 m_gnu_debuglink_file(), 865 m_gnu_debuglink_crc(0), 866 m_program_headers(), 867 m_section_headers(), 868 m_dynamic_symbols(), 869 m_filespec_ap(), 870 m_entry_point_address(), 871 m_arch_spec() 872 { 873 ::memset(&m_header, 0, sizeof(m_header)); 874 } 875 876 ObjectFileELF::~ObjectFileELF() 877 { 878 } 879 880 bool 881 ObjectFileELF::IsExecutable() const 882 { 883 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 884 } 885 886 bool 887 ObjectFileELF::SetLoadAddress (Target &target, 888 lldb::addr_t value, 889 bool value_is_offset) 890 { 891 ModuleSP module_sp = GetModule(); 892 if (module_sp) 893 { 894 size_t num_loaded_sections = 0; 895 SectionList *section_list = GetSectionList (); 896 if (section_list) 897 { 898 if (!value_is_offset) 899 { 900 bool found_offset = false; 901 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 902 { 903 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 904 if (header == nullptr) 905 continue; 906 907 if (header->p_type != PT_LOAD || header->p_offset != 0) 908 continue; 909 910 value = value - header->p_vaddr; 911 found_offset = true; 912 break; 913 } 914 if (!found_offset) 915 return false; 916 } 917 918 const size_t num_sections = section_list->GetSize(); 919 size_t sect_idx = 0; 920 921 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 922 { 923 // Iterate through the object file sections to find all 924 // of the sections that have SHF_ALLOC in their flag bits. 925 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 926 if (section_sp && section_sp->Test(SHF_ALLOC)) 927 { 928 lldb::addr_t load_addr = section_sp->GetFileAddress(); 929 // We don't want to update the load address of a section with type 930 // eSectionTypeAbsoluteAddress as they already have the absolute load address 931 // already specified 932 if (section_sp->GetType() != eSectionTypeAbsoluteAddress) 933 load_addr += value; 934 935 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 936 // the bytes are the overflow from the addition. 937 if (GetAddressByteSize() == 4) 938 load_addr &= 0xFFFFFFFF; 939 940 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 941 ++num_loaded_sections; 942 } 943 } 944 return num_loaded_sections > 0; 945 } 946 } 947 return false; 948 } 949 950 ByteOrder 951 ObjectFileELF::GetByteOrder() const 952 { 953 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 954 return eByteOrderBig; 955 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 956 return eByteOrderLittle; 957 return eByteOrderInvalid; 958 } 959 960 uint32_t 961 ObjectFileELF::GetAddressByteSize() const 962 { 963 return m_data.GetAddressByteSize(); 964 } 965 966 AddressClass 967 ObjectFileELF::GetAddressClass (addr_t file_addr) 968 { 969 Symtab* symtab = GetSymtab(); 970 if (!symtab) 971 return eAddressClassUnknown; 972 973 // The address class is determined based on the symtab. Ask it from the object file what 974 // contains the symtab information. 975 ObjectFile* symtab_objfile = symtab->GetObjectFile(); 976 if (symtab_objfile != nullptr && symtab_objfile != this) 977 return symtab_objfile->GetAddressClass(file_addr); 978 979 auto res = ObjectFile::GetAddressClass (file_addr); 980 if (res != eAddressClassCode) 981 return res; 982 983 auto ub = m_address_class_map.upper_bound(file_addr); 984 if (ub == m_address_class_map.begin()) 985 { 986 // No entry in the address class map before the address. Return 987 // default address class for an address in a code section. 988 return eAddressClassCode; 989 } 990 991 // Move iterator to the address class entry preceding address 992 --ub; 993 994 return ub->second; 995 } 996 997 size_t 998 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 999 { 1000 return std::distance(m_section_headers.begin(), I) + 1u; 1001 } 1002 1003 size_t 1004 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 1005 { 1006 return std::distance(m_section_headers.begin(), I) + 1u; 1007 } 1008 1009 bool 1010 ObjectFileELF::ParseHeader() 1011 { 1012 lldb::offset_t offset = 0; 1013 if (!m_header.Parse(m_data, &offset)) 1014 return false; 1015 1016 if (!IsInMemory()) 1017 return true; 1018 1019 // For in memory object files m_data might not contain the full object file. Try to load it 1020 // until the end of the "Section header table" what is at the end of the ELF file. 1021 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 1022 if (m_data.GetByteSize() < file_size) 1023 { 1024 ProcessSP process_sp (m_process_wp.lock()); 1025 if (!process_sp) 1026 return false; 1027 1028 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1029 if (!data_sp) 1030 return false; 1031 m_data.SetData(data_sp, 0, file_size); 1032 } 1033 1034 return true; 1035 } 1036 1037 bool 1038 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 1039 { 1040 // Need to parse the section list to get the UUIDs, so make sure that's been done. 1041 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 1042 return false; 1043 1044 if (m_uuid.IsValid()) 1045 { 1046 // We have the full build id uuid. 1047 *uuid = m_uuid; 1048 return true; 1049 } 1050 else if (GetType() == ObjectFile::eTypeCoreFile) 1051 { 1052 uint32_t core_notes_crc = 0; 1053 1054 if (!ParseProgramHeaders()) 1055 return false; 1056 1057 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 1058 1059 if (core_notes_crc) 1060 { 1061 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 1062 // look different form .gnu_debuglink crc - followed by 4 bytes of note 1063 // segments crc. 1064 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 1065 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1066 } 1067 } 1068 else 1069 { 1070 if (!m_gnu_debuglink_crc) 1071 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1072 if (m_gnu_debuglink_crc) 1073 { 1074 // Use 4 bytes of crc from the .gnu_debuglink section. 1075 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1076 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1077 } 1078 } 1079 1080 if (m_uuid.IsValid()) 1081 { 1082 *uuid = m_uuid; 1083 return true; 1084 } 1085 1086 return false; 1087 } 1088 1089 lldb_private::FileSpecList 1090 ObjectFileELF::GetDebugSymbolFilePaths() 1091 { 1092 FileSpecList file_spec_list; 1093 1094 if (!m_gnu_debuglink_file.empty()) 1095 { 1096 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1097 file_spec_list.Append (file_spec); 1098 } 1099 return file_spec_list; 1100 } 1101 1102 uint32_t 1103 ObjectFileELF::GetDependentModules(FileSpecList &files) 1104 { 1105 size_t num_modules = ParseDependentModules(); 1106 uint32_t num_specs = 0; 1107 1108 for (unsigned i = 0; i < num_modules; ++i) 1109 { 1110 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1111 num_specs++; 1112 } 1113 1114 return num_specs; 1115 } 1116 1117 Address 1118 ObjectFileELF::GetImageInfoAddress(Target *target) 1119 { 1120 if (!ParseDynamicSymbols()) 1121 return Address(); 1122 1123 SectionList *section_list = GetSectionList(); 1124 if (!section_list) 1125 return Address(); 1126 1127 // Find the SHT_DYNAMIC (.dynamic) section. 1128 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1129 if (!dynsym_section_sp) 1130 return Address(); 1131 assert (dynsym_section_sp->GetObjectFile() == this); 1132 1133 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1134 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1135 if (!dynsym_hdr) 1136 return Address(); 1137 1138 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1139 { 1140 ELFDynamic &symbol = m_dynamic_symbols[i]; 1141 1142 if (symbol.d_tag == DT_DEBUG) 1143 { 1144 // Compute the offset as the number of previous entries plus the 1145 // size of d_tag. 1146 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1147 return Address(dynsym_section_sp, offset); 1148 } 1149 // MIPS executables uses DT_MIPS_RLD_MAP_REL to support PIE. DT_MIPS_RLD_MAP exists in non-PIE. 1150 else if ((symbol.d_tag == DT_MIPS_RLD_MAP || symbol.d_tag == DT_MIPS_RLD_MAP_REL) && target) 1151 { 1152 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1153 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1154 if (dyn_base == LLDB_INVALID_ADDRESS) 1155 return Address(); 1156 1157 Error error; 1158 if (symbol.d_tag == DT_MIPS_RLD_MAP) 1159 { 1160 // DT_MIPS_RLD_MAP tag stores an absolute address of the debug pointer. 1161 Address addr; 1162 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1163 return addr; 1164 } 1165 if (symbol.d_tag == DT_MIPS_RLD_MAP_REL) 1166 { 1167 // DT_MIPS_RLD_MAP_REL tag stores the offset to the debug pointer, relative to the address of the tag. 1168 uint64_t rel_offset; 1169 rel_offset = target->ReadUnsignedIntegerFromMemory(dyn_base + offset, false, GetAddressByteSize(), UINT64_MAX, error); 1170 if (error.Success() && rel_offset != UINT64_MAX) 1171 { 1172 Address addr; 1173 addr_t debug_ptr_address = dyn_base + (offset - GetAddressByteSize()) + rel_offset; 1174 addr.SetOffset (debug_ptr_address); 1175 return addr; 1176 } 1177 } 1178 } 1179 } 1180 1181 return Address(); 1182 } 1183 1184 lldb_private::Address 1185 ObjectFileELF::GetEntryPointAddress () 1186 { 1187 if (m_entry_point_address.IsValid()) 1188 return m_entry_point_address; 1189 1190 if (!ParseHeader() || !IsExecutable()) 1191 return m_entry_point_address; 1192 1193 SectionList *section_list = GetSectionList(); 1194 addr_t offset = m_header.e_entry; 1195 1196 if (!section_list) 1197 m_entry_point_address.SetOffset(offset); 1198 else 1199 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1200 return m_entry_point_address; 1201 } 1202 1203 //---------------------------------------------------------------------- 1204 // ParseDependentModules 1205 //---------------------------------------------------------------------- 1206 size_t 1207 ObjectFileELF::ParseDependentModules() 1208 { 1209 if (m_filespec_ap.get()) 1210 return m_filespec_ap->GetSize(); 1211 1212 m_filespec_ap.reset(new FileSpecList()); 1213 1214 if (!ParseSectionHeaders()) 1215 return 0; 1216 1217 SectionList *section_list = GetSectionList(); 1218 if (!section_list) 1219 return 0; 1220 1221 // Find the SHT_DYNAMIC section. 1222 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1223 if (!dynsym) 1224 return 0; 1225 assert (dynsym->GetObjectFile() == this); 1226 1227 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1228 if (!header) 1229 return 0; 1230 // sh_link: section header index of string table used by entries in the section. 1231 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1232 if (!dynstr) 1233 return 0; 1234 1235 DataExtractor dynsym_data; 1236 DataExtractor dynstr_data; 1237 if (ReadSectionData(dynsym, dynsym_data) && 1238 ReadSectionData(dynstr, dynstr_data)) 1239 { 1240 ELFDynamic symbol; 1241 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1242 lldb::offset_t offset = 0; 1243 1244 // The only type of entries we are concerned with are tagged DT_NEEDED, 1245 // yielding the name of a required library. 1246 while (offset < section_size) 1247 { 1248 if (!symbol.Parse(dynsym_data, &offset)) 1249 break; 1250 1251 if (symbol.d_tag != DT_NEEDED) 1252 continue; 1253 1254 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1255 const char *lib_name = dynstr_data.PeekCStr(str_index); 1256 m_filespec_ap->Append(FileSpec(lib_name, true)); 1257 } 1258 } 1259 1260 return m_filespec_ap->GetSize(); 1261 } 1262 1263 //---------------------------------------------------------------------- 1264 // GetProgramHeaderInfo 1265 //---------------------------------------------------------------------- 1266 size_t 1267 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1268 const SetDataFunction &set_data, 1269 const ELFHeader &header) 1270 { 1271 // We have already parsed the program headers 1272 if (!program_headers.empty()) 1273 return program_headers.size(); 1274 1275 // If there are no program headers to read we are done. 1276 if (header.e_phnum == 0) 1277 return 0; 1278 1279 program_headers.resize(header.e_phnum); 1280 if (program_headers.size() != header.e_phnum) 1281 return 0; 1282 1283 const size_t ph_size = header.e_phnum * header.e_phentsize; 1284 const elf_off ph_offset = header.e_phoff; 1285 DataExtractor data; 1286 if (set_data(data, ph_offset, ph_size) != ph_size) 1287 return 0; 1288 1289 uint32_t idx; 1290 lldb::offset_t offset; 1291 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1292 { 1293 if (program_headers[idx].Parse(data, &offset) == false) 1294 break; 1295 } 1296 1297 if (idx < program_headers.size()) 1298 program_headers.resize(idx); 1299 1300 return program_headers.size(); 1301 1302 } 1303 1304 //---------------------------------------------------------------------- 1305 // ParseProgramHeaders 1306 //---------------------------------------------------------------------- 1307 size_t 1308 ObjectFileELF::ParseProgramHeaders() 1309 { 1310 using namespace std::placeholders; 1311 return GetProgramHeaderInfo(m_program_headers, 1312 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1313 m_header); 1314 } 1315 1316 lldb_private::Error 1317 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1318 { 1319 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1320 Error error; 1321 1322 lldb::offset_t offset = 0; 1323 1324 while (true) 1325 { 1326 // Parse the note header. If this fails, bail out. 1327 const lldb::offset_t note_offset = offset; 1328 ELFNote note = ELFNote(); 1329 if (!note.Parse(data, &offset)) 1330 { 1331 // We're done. 1332 return error; 1333 } 1334 1335 if (log) 1336 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1337 1338 // Process FreeBSD ELF notes. 1339 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1340 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1341 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1342 { 1343 // Pull out the min version info. 1344 uint32_t version_info; 1345 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1346 { 1347 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1348 return error; 1349 } 1350 1351 // Convert the version info into a major/minor number. 1352 const uint32_t version_major = version_info / 100000; 1353 const uint32_t version_minor = (version_info / 1000) % 100; 1354 1355 char os_name[32]; 1356 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1357 1358 // Set the elf OS version to FreeBSD. Also clear the vendor. 1359 arch_spec.GetTriple ().setOSName (os_name); 1360 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1361 1362 if (log) 1363 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1364 } 1365 // Process GNU ELF notes. 1366 else if (note.n_name == LLDB_NT_OWNER_GNU) 1367 { 1368 switch (note.n_type) 1369 { 1370 case LLDB_NT_GNU_ABI_TAG: 1371 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1372 { 1373 // Pull out the min OS version supporting the ABI. 1374 uint32_t version_info[4]; 1375 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1376 { 1377 error.SetErrorString ("failed to read GNU ABI note payload"); 1378 return error; 1379 } 1380 1381 // Set the OS per the OS field. 1382 switch (version_info[0]) 1383 { 1384 case LLDB_NT_GNU_ABI_OS_LINUX: 1385 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1386 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1387 if (log) 1388 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1389 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1390 break; 1391 case LLDB_NT_GNU_ABI_OS_HURD: 1392 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1393 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1394 if (log) 1395 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1396 break; 1397 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1398 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1399 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1400 if (log) 1401 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1402 break; 1403 default: 1404 if (log) 1405 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1406 break; 1407 } 1408 } 1409 break; 1410 1411 case LLDB_NT_GNU_BUILD_ID_TAG: 1412 // Only bother processing this if we don't already have the uuid set. 1413 if (!uuid.IsValid()) 1414 { 1415 // 16 bytes is UUID|MD5, 20 bytes is SHA1. Other linkers may produce a build-id of a different 1416 // length. Accept it as long as it's at least 4 bytes as it will be better than our own crc32. 1417 if (note.n_descsz >= 4 && note.n_descsz <= 20) 1418 { 1419 uint8_t uuidbuf[20]; 1420 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1421 { 1422 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1423 return error; 1424 } 1425 1426 // Save the build id as the UUID for the module. 1427 uuid.SetBytes (uuidbuf, note.n_descsz); 1428 } 1429 } 1430 break; 1431 } 1432 } 1433 // Process NetBSD ELF notes. 1434 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1435 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1436 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1437 { 1438 // Pull out the min version info. 1439 uint32_t version_info; 1440 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1441 { 1442 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1443 return error; 1444 } 1445 1446 // Set the elf OS version to NetBSD. Also clear the vendor. 1447 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1448 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1449 1450 if (log) 1451 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1452 } 1453 // Process CSR kalimba notes 1454 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1455 (note.n_name == LLDB_NT_OWNER_CSR)) 1456 { 1457 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1458 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1459 1460 // TODO At some point the description string could be processed. 1461 // It could provide a steer towards the kalimba variant which 1462 // this ELF targets. 1463 if(note.n_descsz) 1464 { 1465 const char *cstr = data.GetCStr(&offset, llvm::alignTo (note.n_descsz, 4)); 1466 (void)cstr; 1467 } 1468 } 1469 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1470 { 1471 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1472 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1473 } 1474 else if (note.n_name == LLDB_NT_OWNER_LINUX) 1475 { 1476 // This is sometimes found in core files and usually contains extended register info 1477 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1478 } 1479 else if (note.n_name == LLDB_NT_OWNER_CORE) 1480 { 1481 // Parse the NT_FILE to look for stuff in paths to shared libraries 1482 // As the contents look like: 1483 // count = 0x000000000000000a (10) 1484 // page_size = 0x0000000000001000 (4096) 1485 // Index start end file_ofs path 1486 // ===== ------------------ ------------------ ------------------ ------------------------------------- 1487 // [ 0] 0x0000000000400000 0x0000000000401000 0x0000000000000000 /tmp/a.out 1488 // [ 1] 0x0000000000600000 0x0000000000601000 0x0000000000000000 /tmp/a.out 1489 // [ 2] 0x0000000000601000 0x0000000000602000 0x0000000000000001 /tmp/a.out 1490 // [ 3] 0x00007fa79c9ed000 0x00007fa79cba8000 0x0000000000000000 /lib/x86_64-linux-gnu/libc-2.19.so 1491 // [ 4] 0x00007fa79cba8000 0x00007fa79cda7000 0x00000000000001bb /lib/x86_64-linux-gnu/libc-2.19.so 1492 // [ 5] 0x00007fa79cda7000 0x00007fa79cdab000 0x00000000000001ba /lib/x86_64-linux-gnu/libc-2.19.so 1493 // [ 6] 0x00007fa79cdab000 0x00007fa79cdad000 0x00000000000001be /lib/x86_64-linux-gnu/libc-2.19.so 1494 // [ 7] 0x00007fa79cdb2000 0x00007fa79cdd5000 0x0000000000000000 /lib/x86_64-linux-gnu/ld-2.19.so 1495 // [ 8] 0x00007fa79cfd4000 0x00007fa79cfd5000 0x0000000000000022 /lib/x86_64-linux-gnu/ld-2.19.so 1496 // [ 9] 0x00007fa79cfd5000 0x00007fa79cfd6000 0x0000000000000023 /lib/x86_64-linux-gnu/ld-2.19.so 1497 if (note.n_type == NT_FILE) 1498 { 1499 uint64_t count = data.GetU64(&offset); 1500 offset += 8 + 3*8*count; // Skip page size and all start/end/file_ofs 1501 for (size_t i=0; i<count; ++i) 1502 { 1503 llvm::StringRef path(data.GetCStr(&offset)); 1504 if (path.startswith("/lib/x86_64-linux-gnu")) 1505 { 1506 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1507 break; 1508 } 1509 } 1510 } 1511 } 1512 1513 // Calculate the offset of the next note just in case "offset" has been used 1514 // to poke at the contents of the note data 1515 offset = note_offset + note.GetByteSize(); 1516 } 1517 1518 return error; 1519 } 1520 1521 void 1522 ObjectFileELF::ParseARMAttributes(DataExtractor &data, uint64_t length, ArchSpec &arch_spec) 1523 { 1524 lldb::offset_t Offset = 0; 1525 1526 uint8_t FormatVersion = data.GetU8(&Offset); 1527 if (FormatVersion != llvm::ARMBuildAttrs::Format_Version) 1528 return; 1529 1530 Offset = Offset + sizeof(uint32_t); // Section Length 1531 llvm::StringRef VendorName = data.GetCStr(&Offset); 1532 1533 if (VendorName != "aeabi") 1534 return; 1535 1536 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment) 1537 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1538 1539 while (Offset < length) 1540 { 1541 uint8_t Tag = data.GetU8(&Offset); 1542 uint32_t Size = data.GetU32(&Offset); 1543 1544 if (Tag != llvm::ARMBuildAttrs::File || Size == 0) 1545 continue; 1546 1547 while (Offset < length) 1548 { 1549 uint64_t Tag = data.GetULEB128(&Offset); 1550 switch (Tag) 1551 { 1552 default: 1553 if (Tag < 32) 1554 data.GetULEB128(&Offset); 1555 else if (Tag % 2 == 0) 1556 data.GetULEB128(&Offset); 1557 else 1558 data.GetCStr(&Offset); 1559 1560 break; 1561 1562 case llvm::ARMBuildAttrs::CPU_raw_name: 1563 case llvm::ARMBuildAttrs::CPU_name: 1564 data.GetCStr(&Offset); 1565 1566 break; 1567 1568 case llvm::ARMBuildAttrs::ABI_VFP_args: 1569 { 1570 uint64_t VFPArgs = data.GetULEB128(&Offset); 1571 1572 if (VFPArgs == llvm::ARMBuildAttrs::BaseAAPCS) 1573 { 1574 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1575 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABIHF) 1576 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABI); 1577 1578 arch_spec.SetFlags(ArchSpec::eARM_abi_soft_float); 1579 } 1580 else if (VFPArgs == llvm::ARMBuildAttrs::HardFPAAPCS) 1581 { 1582 if (arch_spec.GetTriple().getEnvironment() == llvm::Triple::UnknownEnvironment || 1583 arch_spec.GetTriple().getEnvironment() == llvm::Triple::EABI) 1584 arch_spec.GetTriple().setEnvironment(llvm::Triple::EABIHF); 1585 1586 arch_spec.SetFlags(ArchSpec::eARM_abi_hard_float); 1587 } 1588 1589 break; 1590 } 1591 } 1592 } 1593 } 1594 } 1595 1596 //---------------------------------------------------------------------- 1597 // GetSectionHeaderInfo 1598 //---------------------------------------------------------------------- 1599 size_t 1600 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1601 const SetDataFunction &set_data, 1602 const elf::ELFHeader &header, 1603 lldb_private::UUID &uuid, 1604 std::string &gnu_debuglink_file, 1605 uint32_t &gnu_debuglink_crc, 1606 ArchSpec &arch_spec) 1607 { 1608 // Don't reparse the section headers if we already did that. 1609 if (!section_headers.empty()) 1610 return section_headers.size(); 1611 1612 // Only initialize the arch_spec to okay defaults if they're not already set. 1613 // We'll refine this with note data as we parse the notes. 1614 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1615 { 1616 llvm::Triple::OSType ostype; 1617 llvm::Triple::OSType spec_ostype; 1618 const uint32_t sub_type = subTypeFromElfHeader(header); 1619 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1620 // 1621 // Validate if it is ok to remove GetOsFromOSABI 1622 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1623 spec_ostype = arch_spec.GetTriple ().getOS (); 1624 assert(spec_ostype == ostype); 1625 } 1626 1627 if (arch_spec.GetMachine() == llvm::Triple::mips || arch_spec.GetMachine() == llvm::Triple::mipsel 1628 || arch_spec.GetMachine() == llvm::Triple::mips64 || arch_spec.GetMachine() == llvm::Triple::mips64el) 1629 { 1630 switch (header.e_flags & llvm::ELF::EF_MIPS_ARCH_ASE) 1631 { 1632 case llvm::ELF::EF_MIPS_MICROMIPS: 1633 arch_spec.SetFlags (ArchSpec::eMIPSAse_micromips); 1634 break; 1635 case llvm::ELF::EF_MIPS_ARCH_ASE_M16: 1636 arch_spec.SetFlags (ArchSpec::eMIPSAse_mips16); 1637 break; 1638 case llvm::ELF::EF_MIPS_ARCH_ASE_MDMX: 1639 arch_spec.SetFlags (ArchSpec::eMIPSAse_mdmx); 1640 break; 1641 default: 1642 break; 1643 } 1644 } 1645 1646 if (arch_spec.GetMachine() == llvm::Triple::arm || 1647 arch_spec.GetMachine() == llvm::Triple::thumb) 1648 { 1649 if (header.e_flags & llvm::ELF::EF_ARM_SOFT_FLOAT) 1650 arch_spec.SetFlags (ArchSpec::eARM_abi_soft_float); 1651 else if (header.e_flags & llvm::ELF::EF_ARM_VFP_FLOAT) 1652 arch_spec.SetFlags (ArchSpec::eARM_abi_hard_float); 1653 } 1654 1655 // If there are no section headers we are done. 1656 if (header.e_shnum == 0) { 1657 #if 0 1658 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1659 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1660 #endif 1661 return 0; 1662 } 1663 1664 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1665 1666 section_headers.resize(header.e_shnum); 1667 if (section_headers.size() != header.e_shnum) 1668 return 0; 1669 1670 const size_t sh_size = header.e_shnum * header.e_shentsize; 1671 const elf_off sh_offset = header.e_shoff; 1672 DataExtractor sh_data; 1673 if (set_data (sh_data, sh_offset, sh_size) != sh_size) 1674 return 0; 1675 1676 uint32_t idx; 1677 lldb::offset_t offset; 1678 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1679 { 1680 if (section_headers[idx].Parse(sh_data, &offset) == false) 1681 break; 1682 } 1683 if (idx < section_headers.size()) 1684 section_headers.resize(idx); 1685 1686 const unsigned strtab_idx = header.e_shstrndx; 1687 if (strtab_idx && strtab_idx < section_headers.size()) 1688 { 1689 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1690 const size_t byte_size = sheader.sh_size; 1691 const Elf64_Off offset = sheader.sh_offset; 1692 lldb_private::DataExtractor shstr_data; 1693 1694 if (set_data (shstr_data, offset, byte_size) == byte_size) 1695 { 1696 for (SectionHeaderCollIter I = section_headers.begin(); 1697 I != section_headers.end(); ++I) 1698 { 1699 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1700 const ELFSectionHeaderInfo &sheader = *I; 1701 const uint64_t section_size = sheader.sh_type == SHT_NOBITS ? 0 : sheader.sh_size; 1702 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1703 1704 I->section_name = name; 1705 1706 if (arch_spec.IsMIPS()) 1707 { 1708 uint32_t arch_flags = arch_spec.GetFlags (); 1709 DataExtractor data; 1710 if (sheader.sh_type == SHT_MIPS_ABIFLAGS) 1711 { 1712 1713 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1714 { 1715 // MIPS ASE Mask is at offset 12 in MIPS.abiflags section 1716 lldb::offset_t offset = 12; // MIPS ABI Flags Version: 0 1717 arch_flags |= data.GetU32 (&offset); 1718 1719 // The floating point ABI is at offset 7 1720 offset = 7; 1721 switch (data.GetU8 (&offset)) 1722 { 1723 case llvm::Mips::Val_GNU_MIPS_ABI_FP_ANY : 1724 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_ANY; 1725 break; 1726 case llvm::Mips::Val_GNU_MIPS_ABI_FP_DOUBLE : 1727 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_DOUBLE; 1728 break; 1729 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SINGLE : 1730 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SINGLE; 1731 break; 1732 case llvm::Mips::Val_GNU_MIPS_ABI_FP_SOFT : 1733 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_SOFT; 1734 break; 1735 case llvm::Mips::Val_GNU_MIPS_ABI_FP_OLD_64 : 1736 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_OLD_64; 1737 break; 1738 case llvm::Mips::Val_GNU_MIPS_ABI_FP_XX : 1739 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_XX; 1740 break; 1741 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64 : 1742 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64; 1743 break; 1744 case llvm::Mips::Val_GNU_MIPS_ABI_FP_64A : 1745 arch_flags |= lldb_private::ArchSpec::eMIPS_ABI_FP_64A; 1746 break; 1747 } 1748 } 1749 } 1750 // Settings appropriate ArchSpec ABI Flags 1751 switch(header.e_flags & llvm::ELF::EF_MIPS_ABI) 1752 { 1753 case llvm::ELF::EF_MIPS_ABI_O32: 1754 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O32; 1755 break; 1756 case EF_MIPS_ABI_O64: 1757 arch_flags |= lldb_private::ArchSpec::eMIPSABI_O64; 1758 break; 1759 case EF_MIPS_ABI_EABI32: 1760 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI32; 1761 break; 1762 case EF_MIPS_ABI_EABI64: 1763 arch_flags |= lldb_private::ArchSpec::eMIPSABI_EABI64; 1764 break; 1765 default: 1766 // ABI Mask doesn't cover N32 and N64 ABI. 1767 if (header.e_ident[EI_CLASS] == llvm::ELF::ELFCLASS64) 1768 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N64; 1769 else if (header.e_flags && llvm::ELF::EF_MIPS_ABI2) 1770 arch_flags |= lldb_private::ArchSpec::eMIPSABI_N32; 1771 break; 1772 } 1773 arch_spec.SetFlags (arch_flags); 1774 } 1775 1776 if (arch_spec.GetMachine() == llvm::Triple::arm || arch_spec.GetMachine() == llvm::Triple::thumb) 1777 { 1778 DataExtractor data; 1779 1780 if (sheader.sh_type == SHT_ARM_ATTRIBUTES && section_size != 0 && 1781 set_data(data, sheader.sh_offset, section_size) == section_size) 1782 ParseARMAttributes(data, section_size, arch_spec); 1783 } 1784 1785 if (name == g_sect_name_gnu_debuglink) 1786 { 1787 DataExtractor data; 1788 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1789 { 1790 lldb::offset_t gnu_debuglink_offset = 0; 1791 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1792 gnu_debuglink_offset = llvm::alignTo (gnu_debuglink_offset, 4); 1793 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1794 } 1795 } 1796 1797 // Process ELF note section entries. 1798 bool is_note_header = (sheader.sh_type == SHT_NOTE); 1799 1800 // The section header ".note.android.ident" is stored as a 1801 // PROGBITS type header but it is actually a note header. 1802 static ConstString g_sect_name_android_ident (".note.android.ident"); 1803 if (!is_note_header && name == g_sect_name_android_ident) 1804 is_note_header = true; 1805 1806 if (is_note_header) 1807 { 1808 // Allow notes to refine module info. 1809 DataExtractor data; 1810 if (section_size && (set_data (data, sheader.sh_offset, section_size) == section_size)) 1811 { 1812 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1813 if (error.Fail ()) 1814 { 1815 if (log) 1816 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1817 } 1818 } 1819 } 1820 } 1821 1822 // Make any unknown triple components to be unspecified unknowns. 1823 if (arch_spec.GetTriple().getVendor() == llvm::Triple::UnknownVendor) 1824 arch_spec.GetTriple().setVendorName (llvm::StringRef()); 1825 if (arch_spec.GetTriple().getOS() == llvm::Triple::UnknownOS) 1826 arch_spec.GetTriple().setOSName (llvm::StringRef()); 1827 1828 return section_headers.size(); 1829 } 1830 } 1831 1832 section_headers.clear(); 1833 return 0; 1834 } 1835 1836 size_t 1837 ObjectFileELF::GetProgramHeaderCount() 1838 { 1839 return ParseProgramHeaders(); 1840 } 1841 1842 const elf::ELFProgramHeader * 1843 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1844 { 1845 if (!id || !ParseProgramHeaders()) 1846 return NULL; 1847 1848 if (--id < m_program_headers.size()) 1849 return &m_program_headers[id]; 1850 1851 return NULL; 1852 } 1853 1854 DataExtractor 1855 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1856 { 1857 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1858 if (segment_header == NULL) 1859 return DataExtractor(); 1860 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1861 } 1862 1863 std::string 1864 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1865 { 1866 size_t pos = symbol_name.find('@'); 1867 return symbol_name.substr(0, pos).str(); 1868 } 1869 1870 //---------------------------------------------------------------------- 1871 // ParseSectionHeaders 1872 //---------------------------------------------------------------------- 1873 size_t 1874 ObjectFileELF::ParseSectionHeaders() 1875 { 1876 using namespace std::placeholders; 1877 1878 return GetSectionHeaderInfo(m_section_headers, 1879 std::bind(&ObjectFileELF::SetDataWithReadMemoryFallback, this, _1, _2, _3), 1880 m_header, 1881 m_uuid, 1882 m_gnu_debuglink_file, 1883 m_gnu_debuglink_crc, 1884 m_arch_spec); 1885 } 1886 1887 lldb::offset_t 1888 ObjectFileELF::SetData(const lldb_private::DataExtractor &src, lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1889 { 1890 return dst.SetData(src, offset, length); 1891 } 1892 1893 lldb::offset_t 1894 ObjectFileELF::SetDataWithReadMemoryFallback(lldb_private::DataExtractor &dst, lldb::offset_t offset, lldb::offset_t length) 1895 { 1896 if (offset + length <= m_data.GetByteSize()) 1897 return dst.SetData(m_data, offset, length); 1898 1899 const auto process_sp = m_process_wp.lock(); 1900 if (process_sp != nullptr) 1901 { 1902 addr_t file_size = offset + length; 1903 1904 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 1905 if (!data_sp) 1906 return false; 1907 m_data.SetData(data_sp, 0, file_size); 1908 } 1909 1910 return dst.SetData(m_data, offset, length); 1911 } 1912 1913 const ObjectFileELF::ELFSectionHeaderInfo * 1914 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1915 { 1916 if (!id || !ParseSectionHeaders()) 1917 return NULL; 1918 1919 if (--id < m_section_headers.size()) 1920 return &m_section_headers[id]; 1921 1922 return NULL; 1923 } 1924 1925 lldb::user_id_t 1926 ObjectFileELF::GetSectionIndexByName(const char* name) 1927 { 1928 if (!name || !name[0] || !ParseSectionHeaders()) 1929 return 0; 1930 for (size_t i = 1; i < m_section_headers.size(); ++i) 1931 if (m_section_headers[i].section_name == ConstString(name)) 1932 return i; 1933 return 0; 1934 } 1935 1936 void 1937 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1938 { 1939 if (!m_sections_ap.get() && ParseSectionHeaders()) 1940 { 1941 m_sections_ap.reset(new SectionList()); 1942 1943 for (SectionHeaderCollIter I = m_section_headers.begin(); 1944 I != m_section_headers.end(); ++I) 1945 { 1946 const ELFSectionHeaderInfo &header = *I; 1947 1948 ConstString& name = I->section_name; 1949 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1950 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1951 1952 static ConstString g_sect_name_text (".text"); 1953 static ConstString g_sect_name_data (".data"); 1954 static ConstString g_sect_name_bss (".bss"); 1955 static ConstString g_sect_name_tdata (".tdata"); 1956 static ConstString g_sect_name_tbss (".tbss"); 1957 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1958 static ConstString g_sect_name_dwarf_debug_addr (".debug_addr"); 1959 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1960 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1961 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1962 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1963 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1964 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1965 static ConstString g_sect_name_dwarf_debug_macro (".debug_macro"); 1966 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1967 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1968 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1969 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1970 static ConstString g_sect_name_dwarf_debug_str_offsets (".debug_str_offsets"); 1971 static ConstString g_sect_name_dwarf_debug_abbrev_dwo (".debug_abbrev.dwo"); 1972 static ConstString g_sect_name_dwarf_debug_info_dwo (".debug_info.dwo"); 1973 static ConstString g_sect_name_dwarf_debug_line_dwo (".debug_line.dwo"); 1974 static ConstString g_sect_name_dwarf_debug_macro_dwo (".debug_macro.dwo"); 1975 static ConstString g_sect_name_dwarf_debug_loc_dwo (".debug_loc.dwo"); 1976 static ConstString g_sect_name_dwarf_debug_str_dwo (".debug_str.dwo"); 1977 static ConstString g_sect_name_dwarf_debug_str_offsets_dwo (".debug_str_offsets.dwo"); 1978 static ConstString g_sect_name_eh_frame (".eh_frame"); 1979 static ConstString g_sect_name_arm_exidx (".ARM.exidx"); 1980 static ConstString g_sect_name_arm_extab (".ARM.extab"); 1981 static ConstString g_sect_name_go_symtab (".gosymtab"); 1982 1983 SectionType sect_type = eSectionTypeOther; 1984 1985 bool is_thread_specific = false; 1986 1987 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1988 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1989 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1990 else if (name == g_sect_name_tdata) 1991 { 1992 sect_type = eSectionTypeData; 1993 is_thread_specific = true; 1994 } 1995 else if (name == g_sect_name_tbss) 1996 { 1997 sect_type = eSectionTypeZeroFill; 1998 is_thread_specific = true; 1999 } 2000 // .debug_abbrev – Abbreviations used in the .debug_info section 2001 // .debug_aranges – Lookup table for mapping addresses to compilation units 2002 // .debug_frame – Call frame information 2003 // .debug_info – The core DWARF information section 2004 // .debug_line – Line number information 2005 // .debug_loc – Location lists used in DW_AT_location attributes 2006 // .debug_macinfo – Macro information 2007 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 2008 // .debug_pubtypes – Lookup table for mapping type names to compilation units 2009 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 2010 // .debug_str – String table used in .debug_info 2011 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 2012 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 2013 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 2014 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 2015 else if (name == g_sect_name_dwarf_debug_addr) sect_type = eSectionTypeDWARFDebugAddr; 2016 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 2017 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 2018 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 2019 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 2020 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 2021 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 2022 else if (name == g_sect_name_dwarf_debug_macro) sect_type = eSectionTypeDWARFDebugMacro; 2023 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 2024 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 2025 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 2026 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 2027 else if (name == g_sect_name_dwarf_debug_str_offsets) sect_type = eSectionTypeDWARFDebugStrOffsets; 2028 else if (name == g_sect_name_dwarf_debug_abbrev_dwo) sect_type = eSectionTypeDWARFDebugAbbrev; 2029 else if (name == g_sect_name_dwarf_debug_info_dwo) sect_type = eSectionTypeDWARFDebugInfo; 2030 else if (name == g_sect_name_dwarf_debug_line_dwo) sect_type = eSectionTypeDWARFDebugLine; 2031 else if (name == g_sect_name_dwarf_debug_macro_dwo) sect_type = eSectionTypeDWARFDebugMacro; 2032 else if (name == g_sect_name_dwarf_debug_loc_dwo) sect_type = eSectionTypeDWARFDebugLoc; 2033 else if (name == g_sect_name_dwarf_debug_str_dwo) sect_type = eSectionTypeDWARFDebugStr; 2034 else if (name == g_sect_name_dwarf_debug_str_offsets_dwo) sect_type = eSectionTypeDWARFDebugStrOffsets; 2035 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 2036 else if (name == g_sect_name_arm_exidx) sect_type = eSectionTypeARMexidx; 2037 else if (name == g_sect_name_arm_extab) sect_type = eSectionTypeARMextab; 2038 else if (name == g_sect_name_go_symtab) sect_type = eSectionTypeGoSymtab; 2039 2040 const uint32_t permissions = ((header.sh_flags & SHF_ALLOC) ? ePermissionsReadable : 0) | 2041 ((header.sh_flags & SHF_WRITE) ? ePermissionsWritable : 0) | 2042 ((header.sh_flags & SHF_EXECINSTR) ? ePermissionsExecutable : 0); 2043 switch (header.sh_type) 2044 { 2045 case SHT_SYMTAB: 2046 assert (sect_type == eSectionTypeOther); 2047 sect_type = eSectionTypeELFSymbolTable; 2048 break; 2049 case SHT_DYNSYM: 2050 assert (sect_type == eSectionTypeOther); 2051 sect_type = eSectionTypeELFDynamicSymbols; 2052 break; 2053 case SHT_RELA: 2054 case SHT_REL: 2055 assert (sect_type == eSectionTypeOther); 2056 sect_type = eSectionTypeELFRelocationEntries; 2057 break; 2058 case SHT_DYNAMIC: 2059 assert (sect_type == eSectionTypeOther); 2060 sect_type = eSectionTypeELFDynamicLinkInfo; 2061 break; 2062 } 2063 2064 if (eSectionTypeOther == sect_type) 2065 { 2066 // the kalimba toolchain assumes that ELF section names are free-form. It does 2067 // support linkscripts which (can) give rise to various arbitrarily named 2068 // sections being "Code" or "Data". 2069 sect_type = kalimbaSectionType(m_header, header); 2070 } 2071 2072 const uint32_t target_bytes_size = 2073 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 2074 m_arch_spec.GetDataByteSize() : 2075 eSectionTypeCode == sect_type ? 2076 m_arch_spec.GetCodeByteSize() : 1; 2077 2078 elf::elf_xword log2align = (header.sh_addralign==0) 2079 ? 0 2080 : llvm::Log2_64(header.sh_addralign); 2081 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 2082 this, // ObjectFile to which this section belongs and should read section data from. 2083 SectionIndex(I), // Section ID. 2084 name, // Section name. 2085 sect_type, // Section type. 2086 header.sh_addr, // VM address. 2087 vm_size, // VM size in bytes of this section. 2088 header.sh_offset, // Offset of this section in the file. 2089 file_size, // Size of the section as found in the file. 2090 log2align, // Alignment of the section 2091 header.sh_flags, // Flags for this section. 2092 target_bytes_size));// Number of host bytes per target byte 2093 2094 section_sp->SetPermissions(permissions); 2095 if (is_thread_specific) 2096 section_sp->SetIsThreadSpecific (is_thread_specific); 2097 m_sections_ap->AddSection(section_sp); 2098 } 2099 } 2100 2101 if (m_sections_ap.get()) 2102 { 2103 if (GetType() == eTypeDebugInfo) 2104 { 2105 static const SectionType g_sections[] = 2106 { 2107 eSectionTypeDWARFDebugAbbrev, 2108 eSectionTypeDWARFDebugAddr, 2109 eSectionTypeDWARFDebugAranges, 2110 eSectionTypeDWARFDebugFrame, 2111 eSectionTypeDWARFDebugInfo, 2112 eSectionTypeDWARFDebugLine, 2113 eSectionTypeDWARFDebugLoc, 2114 eSectionTypeDWARFDebugMacInfo, 2115 eSectionTypeDWARFDebugPubNames, 2116 eSectionTypeDWARFDebugPubTypes, 2117 eSectionTypeDWARFDebugRanges, 2118 eSectionTypeDWARFDebugStr, 2119 eSectionTypeDWARFDebugStrOffsets, 2120 eSectionTypeELFSymbolTable, 2121 }; 2122 SectionList *elf_section_list = m_sections_ap.get(); 2123 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 2124 { 2125 SectionType section_type = g_sections[idx]; 2126 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 2127 if (section_sp) 2128 { 2129 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 2130 if (module_section_sp) 2131 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 2132 else 2133 unified_section_list.AddSection (section_sp); 2134 } 2135 } 2136 } 2137 else 2138 { 2139 unified_section_list = *m_sections_ap; 2140 } 2141 } 2142 } 2143 2144 // Find the arm/aarch64 mapping symbol character in the given symbol name. Mapping symbols have the 2145 // form of "$<char>[.<any>]*". Additionally we recognize cases when the mapping symbol prefixed by 2146 // an arbitrary string because if a symbol prefix added to each symbol in the object file with 2147 // objcopy then the mapping symbols are also prefixed. 2148 static char 2149 FindArmAarch64MappingSymbol(const char* symbol_name) 2150 { 2151 if (!symbol_name) 2152 return '\0'; 2153 2154 const char* dollar_pos = ::strchr(symbol_name, '$'); 2155 if (!dollar_pos || dollar_pos[1] == '\0') 2156 return '\0'; 2157 2158 if (dollar_pos[2] == '\0' || dollar_pos[2] == '.') 2159 return dollar_pos[1]; 2160 return '\0'; 2161 } 2162 2163 #define STO_MIPS_ISA (3 << 6) 2164 #define STO_MICROMIPS (2 << 6) 2165 #define IS_MICROMIPS(ST_OTHER) (((ST_OTHER) & STO_MIPS_ISA) == STO_MICROMIPS) 2166 2167 // private 2168 unsigned 2169 ObjectFileELF::ParseSymbols (Symtab *symtab, 2170 user_id_t start_id, 2171 SectionList *section_list, 2172 const size_t num_symbols, 2173 const DataExtractor &symtab_data, 2174 const DataExtractor &strtab_data) 2175 { 2176 ELFSymbol symbol; 2177 lldb::offset_t offset = 0; 2178 2179 static ConstString text_section_name(".text"); 2180 static ConstString init_section_name(".init"); 2181 static ConstString fini_section_name(".fini"); 2182 static ConstString ctors_section_name(".ctors"); 2183 static ConstString dtors_section_name(".dtors"); 2184 2185 static ConstString data_section_name(".data"); 2186 static ConstString rodata_section_name(".rodata"); 2187 static ConstString rodata1_section_name(".rodata1"); 2188 static ConstString data2_section_name(".data1"); 2189 static ConstString bss_section_name(".bss"); 2190 static ConstString opd_section_name(".opd"); // For ppc64 2191 2192 // On Android the oatdata and the oatexec symbols in the oat and odex files covers the full 2193 // .text section what causes issues with displaying unusable symbol name to the user and very 2194 // slow unwinding speed because the instruction emulation based unwind plans try to emulate all 2195 // instructions in these symbols. Don't add these symbols to the symbol list as they have no 2196 // use for the debugger and they are causing a lot of trouble. 2197 // Filtering can't be restricted to Android because this special object file don't contain the 2198 // note section specifying the environment to Android but the custom extension and file name 2199 // makes it highly unlikely that this will collide with anything else. 2200 ConstString file_extension = m_file.GetFileNameExtension(); 2201 bool skip_oatdata_oatexec = file_extension == ConstString("oat") || file_extension == ConstString("odex"); 2202 2203 ArchSpec arch; 2204 GetArchitecture(arch); 2205 ModuleSP module_sp(GetModule()); 2206 SectionList* module_section_list = module_sp ? module_sp->GetSectionList() : nullptr; 2207 2208 // Local cache to avoid doing a FindSectionByName for each symbol. The "const char*" key must 2209 // came from a ConstString object so they can be compared by pointer 2210 std::unordered_map<const char*, lldb::SectionSP> section_name_to_section; 2211 2212 unsigned i; 2213 for (i = 0; i < num_symbols; ++i) 2214 { 2215 if (symbol.Parse(symtab_data, &offset) == false) 2216 break; 2217 2218 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2219 2220 // No need to add non-section symbols that have no names 2221 if (symbol.getType() != STT_SECTION && 2222 (symbol_name == NULL || symbol_name[0] == '\0')) 2223 continue; 2224 2225 // Skipping oatdata and oatexec sections if it is requested. See details above the 2226 // definition of skip_oatdata_oatexec for the reasons. 2227 if (skip_oatdata_oatexec && (::strcmp(symbol_name, "oatdata") == 0 || ::strcmp(symbol_name, "oatexec") == 0)) 2228 continue; 2229 2230 SectionSP symbol_section_sp; 2231 SymbolType symbol_type = eSymbolTypeInvalid; 2232 Elf64_Half section_idx = symbol.st_shndx; 2233 2234 switch (section_idx) 2235 { 2236 case SHN_ABS: 2237 symbol_type = eSymbolTypeAbsolute; 2238 break; 2239 case SHN_UNDEF: 2240 symbol_type = eSymbolTypeUndefined; 2241 break; 2242 default: 2243 symbol_section_sp = section_list->GetSectionAtIndex(section_idx); 2244 break; 2245 } 2246 2247 // If a symbol is undefined do not process it further even if it has a STT type 2248 if (symbol_type != eSymbolTypeUndefined) 2249 { 2250 switch (symbol.getType()) 2251 { 2252 default: 2253 case STT_NOTYPE: 2254 // The symbol's type is not specified. 2255 break; 2256 2257 case STT_OBJECT: 2258 // The symbol is associated with a data object, such as a variable, 2259 // an array, etc. 2260 symbol_type = eSymbolTypeData; 2261 break; 2262 2263 case STT_FUNC: 2264 // The symbol is associated with a function or other executable code. 2265 symbol_type = eSymbolTypeCode; 2266 break; 2267 2268 case STT_SECTION: 2269 // The symbol is associated with a section. Symbol table entries of 2270 // this type exist primarily for relocation and normally have 2271 // STB_LOCAL binding. 2272 break; 2273 2274 case STT_FILE: 2275 // Conventionally, the symbol's name gives the name of the source 2276 // file associated with the object file. A file symbol has STB_LOCAL 2277 // binding, its section index is SHN_ABS, and it precedes the other 2278 // STB_LOCAL symbols for the file, if it is present. 2279 symbol_type = eSymbolTypeSourceFile; 2280 break; 2281 2282 case STT_GNU_IFUNC: 2283 // The symbol is associated with an indirect function. The actual 2284 // function will be resolved if it is referenced. 2285 symbol_type = eSymbolTypeResolver; 2286 break; 2287 } 2288 } 2289 2290 if (symbol_type == eSymbolTypeInvalid && symbol.getType() != STT_SECTION) 2291 { 2292 if (symbol_section_sp) 2293 { 2294 const ConstString §_name = symbol_section_sp->GetName(); 2295 if (sect_name == text_section_name || 2296 sect_name == init_section_name || 2297 sect_name == fini_section_name || 2298 sect_name == ctors_section_name || 2299 sect_name == dtors_section_name) 2300 { 2301 symbol_type = eSymbolTypeCode; 2302 } 2303 else if (sect_name == data_section_name || 2304 sect_name == data2_section_name || 2305 sect_name == rodata_section_name || 2306 sect_name == rodata1_section_name || 2307 sect_name == bss_section_name) 2308 { 2309 symbol_type = eSymbolTypeData; 2310 } 2311 } 2312 } 2313 2314 int64_t symbol_value_offset = 0; 2315 uint32_t additional_flags = 0; 2316 2317 if (arch.IsValid()) 2318 { 2319 if (arch.GetMachine() == llvm::Triple::arm) 2320 { 2321 if (symbol.getBinding() == STB_LOCAL) 2322 { 2323 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2324 if (symbol_type == eSymbolTypeCode) 2325 { 2326 switch (mapping_symbol) 2327 { 2328 case 'a': 2329 // $a[.<any>]* - marks an ARM instruction sequence 2330 m_address_class_map[symbol.st_value] = eAddressClassCode; 2331 break; 2332 case 'b': 2333 case 't': 2334 // $b[.<any>]* - marks a THUMB BL instruction sequence 2335 // $t[.<any>]* - marks a THUMB instruction sequence 2336 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2337 break; 2338 case 'd': 2339 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2340 m_address_class_map[symbol.st_value] = eAddressClassData; 2341 break; 2342 } 2343 } 2344 if (mapping_symbol) 2345 continue; 2346 } 2347 } 2348 else if (arch.GetMachine() == llvm::Triple::aarch64) 2349 { 2350 if (symbol.getBinding() == STB_LOCAL) 2351 { 2352 char mapping_symbol = FindArmAarch64MappingSymbol(symbol_name); 2353 if (symbol_type == eSymbolTypeCode) 2354 { 2355 switch (mapping_symbol) 2356 { 2357 case 'x': 2358 // $x[.<any>]* - marks an A64 instruction sequence 2359 m_address_class_map[symbol.st_value] = eAddressClassCode; 2360 break; 2361 case 'd': 2362 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 2363 m_address_class_map[symbol.st_value] = eAddressClassData; 2364 break; 2365 } 2366 } 2367 if (mapping_symbol) 2368 continue; 2369 } 2370 } 2371 2372 if (arch.GetMachine() == llvm::Triple::arm) 2373 { 2374 if (symbol_type == eSymbolTypeCode) 2375 { 2376 if (symbol.st_value & 1) 2377 { 2378 // Subtracting 1 from the address effectively unsets 2379 // the low order bit, which results in the address 2380 // actually pointing to the beginning of the symbol. 2381 // This delta will be used below in conjunction with 2382 // symbol.st_value to produce the final symbol_value 2383 // that we store in the symtab. 2384 symbol_value_offset = -1; 2385 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 2386 } 2387 else 2388 { 2389 // This address is ARM 2390 m_address_class_map[symbol.st_value] = eAddressClassCode; 2391 } 2392 } 2393 } 2394 2395 /* 2396 * MIPS: 2397 * The bit #0 of an address is used for ISA mode (1 for microMIPS, 0 for MIPS). 2398 * This allows processer to switch between microMIPS and MIPS without any need 2399 * for special mode-control register. However, apart from .debug_line, none of 2400 * the ELF/DWARF sections set the ISA bit (for symbol or section). Use st_other 2401 * flag to check whether the symbol is microMIPS and then set the address class 2402 * accordingly. 2403 */ 2404 const llvm::Triple::ArchType llvm_arch = arch.GetMachine(); 2405 if (llvm_arch == llvm::Triple::mips || llvm_arch == llvm::Triple::mipsel 2406 || llvm_arch == llvm::Triple::mips64 || llvm_arch == llvm::Triple::mips64el) 2407 { 2408 if (IS_MICROMIPS(symbol.st_other)) 2409 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2410 else if ((symbol.st_value & 1) && (symbol_type == eSymbolTypeCode)) 2411 { 2412 symbol.st_value = symbol.st_value & (~1ull); 2413 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 2414 } 2415 else 2416 { 2417 if (symbol_type == eSymbolTypeCode) 2418 m_address_class_map[symbol.st_value] = eAddressClassCode; 2419 else if (symbol_type == eSymbolTypeData) 2420 m_address_class_map[symbol.st_value] = eAddressClassData; 2421 else 2422 m_address_class_map[symbol.st_value] = eAddressClassUnknown; 2423 } 2424 } 2425 } 2426 2427 // symbol_value_offset may contain 0 for ARM symbols or -1 for THUMB symbols. See above for 2428 // more details. 2429 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2430 2431 if (symbol_section_sp == nullptr && section_idx == SHN_ABS && symbol.st_size != 0) 2432 { 2433 // We don't have a section for a symbol with non-zero size. Create a new section for it 2434 // so the address range covered by the symbol is also covered by the module (represented 2435 // through the section list). It is needed so module lookup for the addresses covered 2436 // by this symbol will be successfull. This case happens for absolute symbols. 2437 ConstString fake_section_name(std::string(".absolute.") + symbol_name); 2438 symbol_section_sp = std::make_shared<Section>(module_sp, 2439 this, 2440 SHN_ABS, 2441 fake_section_name, 2442 eSectionTypeAbsoluteAddress, 2443 symbol_value, 2444 symbol.st_size, 2445 0, 0, 0, 2446 SHF_ALLOC); 2447 2448 module_section_list->AddSection(symbol_section_sp); 2449 section_list->AddSection(symbol_section_sp); 2450 } 2451 2452 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2453 symbol_value -= symbol_section_sp->GetFileAddress(); 2454 2455 if (symbol_section_sp && module_section_list && module_section_list != section_list) 2456 { 2457 const ConstString §_name = symbol_section_sp->GetName(); 2458 auto section_it = section_name_to_section.find(sect_name.GetCString()); 2459 if (section_it == section_name_to_section.end()) 2460 section_it = section_name_to_section.emplace( 2461 sect_name.GetCString(), 2462 module_section_list->FindSectionByName (sect_name)).first; 2463 if (section_it->second && section_it->second->GetFileSize()) 2464 symbol_section_sp = section_it->second; 2465 } 2466 2467 bool is_global = symbol.getBinding() == STB_GLOBAL; 2468 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2469 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2470 2471 llvm::StringRef symbol_ref(symbol_name); 2472 2473 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2474 size_t version_pos = symbol_ref.find('@'); 2475 bool has_suffix = version_pos != llvm::StringRef::npos; 2476 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2477 Mangled mangled(ConstString(symbol_bare), is_mangled); 2478 2479 // Now append the suffix back to mangled and unmangled names. Only do it if the 2480 // demangling was successful (string is not empty). 2481 if (has_suffix) 2482 { 2483 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2484 2485 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2486 if (! mangled_name.empty()) 2487 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2488 2489 ConstString demangled = mangled.GetDemangledName(lldb::eLanguageTypeUnknown); 2490 llvm::StringRef demangled_name = demangled.GetStringRef(); 2491 if (!demangled_name.empty()) 2492 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2493 } 2494 2495 // In ELF all symbol should have a valid size but it is not true for some function symbols 2496 // coming from hand written assembly. As none of the function symbol should have 0 size we 2497 // try to calculate the size for these symbols in the symtab with saying that their original 2498 // size is not valid. 2499 bool symbol_size_valid = symbol.st_size != 0 || symbol.getType() != STT_FUNC; 2500 2501 Symbol dc_symbol( 2502 i + start_id, // ID is the original symbol table index. 2503 mangled, 2504 symbol_type, // Type of this symbol 2505 is_global, // Is this globally visible? 2506 false, // Is this symbol debug info? 2507 false, // Is this symbol a trampoline? 2508 false, // Is this symbol artificial? 2509 AddressRange( 2510 symbol_section_sp, // Section in which this symbol is defined or null. 2511 symbol_value, // Offset in section or symbol value. 2512 symbol.st_size), // Size in bytes of this symbol. 2513 symbol_size_valid, // Symbol size is valid 2514 has_suffix, // Contains linker annotations? 2515 flags); // Symbol flags. 2516 symtab->AddSymbol(dc_symbol); 2517 } 2518 return i; 2519 } 2520 2521 unsigned 2522 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, 2523 user_id_t start_id, 2524 lldb_private::Section *symtab) 2525 { 2526 if (symtab->GetObjectFile() != this) 2527 { 2528 // If the symbol table section is owned by a different object file, have it do the 2529 // parsing. 2530 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2531 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2532 } 2533 2534 // Get section list for this object file. 2535 SectionList *section_list = m_sections_ap.get(); 2536 if (!section_list) 2537 return 0; 2538 2539 user_id_t symtab_id = symtab->GetID(); 2540 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2541 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2542 symtab_hdr->sh_type == SHT_DYNSYM); 2543 2544 // sh_link: section header index of associated string table. 2545 // Section ID's are ones based. 2546 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2547 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2548 2549 if (symtab && strtab) 2550 { 2551 assert (symtab->GetObjectFile() == this); 2552 assert (strtab->GetObjectFile() == this); 2553 2554 DataExtractor symtab_data; 2555 DataExtractor strtab_data; 2556 if (ReadSectionData(symtab, symtab_data) && 2557 ReadSectionData(strtab, strtab_data)) 2558 { 2559 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2560 2561 return ParseSymbols(symbol_table, start_id, section_list, 2562 num_symbols, symtab_data, strtab_data); 2563 } 2564 } 2565 2566 return 0; 2567 } 2568 2569 size_t 2570 ObjectFileELF::ParseDynamicSymbols() 2571 { 2572 if (m_dynamic_symbols.size()) 2573 return m_dynamic_symbols.size(); 2574 2575 SectionList *section_list = GetSectionList(); 2576 if (!section_list) 2577 return 0; 2578 2579 // Find the SHT_DYNAMIC section. 2580 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2581 if (!dynsym) 2582 return 0; 2583 assert (dynsym->GetObjectFile() == this); 2584 2585 ELFDynamic symbol; 2586 DataExtractor dynsym_data; 2587 if (ReadSectionData(dynsym, dynsym_data)) 2588 { 2589 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2590 lldb::offset_t cursor = 0; 2591 2592 while (cursor < section_size) 2593 { 2594 if (!symbol.Parse(dynsym_data, &cursor)) 2595 break; 2596 2597 m_dynamic_symbols.push_back(symbol); 2598 } 2599 } 2600 2601 return m_dynamic_symbols.size(); 2602 } 2603 2604 const ELFDynamic * 2605 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2606 { 2607 if (!ParseDynamicSymbols()) 2608 return NULL; 2609 2610 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2611 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2612 for ( ; I != E; ++I) 2613 { 2614 ELFDynamic *symbol = &*I; 2615 2616 if (symbol->d_tag == tag) 2617 return symbol; 2618 } 2619 2620 return NULL; 2621 } 2622 2623 unsigned 2624 ObjectFileELF::PLTRelocationType() 2625 { 2626 // DT_PLTREL 2627 // This member specifies the type of relocation entry to which the 2628 // procedure linkage table refers. The d_val member holds DT_REL or 2629 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2630 // must use the same relocation. 2631 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2632 2633 if (symbol) 2634 return symbol->d_val; 2635 2636 return 0; 2637 } 2638 2639 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2640 // 0th entry in the plt table is usually a resolution entry which have different size in some 2641 // architectures then the rest of the plt entries. 2642 static std::pair<uint64_t, uint64_t> 2643 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2644 { 2645 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2646 2647 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2648 // So round the entsize up by the alignment if addralign is set. 2649 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2650 llvm::alignTo (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2651 2652 // Some linkers e.g ld for arm, fill plt_hdr->sh_entsize field incorrectly. 2653 // PLT entries relocation code in general requires multiple instruction and 2654 // should be greater than 4 bytes in most cases. Try to guess correct size just in case. 2655 if (plt_entsize <= 4) 2656 { 2657 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2658 // entries based on the number of entries and the size of the plt section with the 2659 // assumption that the size of the 0th entry is at least as big as the size of the normal 2660 // entries and it isn't much bigger then that. 2661 if (plt_hdr->sh_addralign) 2662 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2663 else 2664 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2665 } 2666 2667 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2668 2669 return std::make_pair(plt_entsize, plt_offset); 2670 } 2671 2672 static unsigned 2673 ParsePLTRelocations(Symtab *symbol_table, 2674 user_id_t start_id, 2675 unsigned rel_type, 2676 const ELFHeader *hdr, 2677 const ELFSectionHeader *rel_hdr, 2678 const ELFSectionHeader *plt_hdr, 2679 const ELFSectionHeader *sym_hdr, 2680 const lldb::SectionSP &plt_section_sp, 2681 DataExtractor &rel_data, 2682 DataExtractor &symtab_data, 2683 DataExtractor &strtab_data) 2684 { 2685 ELFRelocation rel(rel_type); 2686 ELFSymbol symbol; 2687 lldb::offset_t offset = 0; 2688 2689 uint64_t plt_offset, plt_entsize; 2690 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2691 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2692 2693 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2694 reloc_info_fn reloc_type; 2695 reloc_info_fn reloc_symbol; 2696 2697 if (hdr->Is32Bit()) 2698 { 2699 reloc_type = ELFRelocation::RelocType32; 2700 reloc_symbol = ELFRelocation::RelocSymbol32; 2701 } 2702 else 2703 { 2704 reloc_type = ELFRelocation::RelocType64; 2705 reloc_symbol = ELFRelocation::RelocSymbol64; 2706 } 2707 2708 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2709 unsigned i; 2710 for (i = 0; i < num_relocations; ++i) 2711 { 2712 if (rel.Parse(rel_data, &offset) == false) 2713 break; 2714 2715 if (reloc_type(rel) != slot_type) 2716 continue; 2717 2718 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2719 if (!symbol.Parse(symtab_data, &symbol_offset)) 2720 break; 2721 2722 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2723 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2724 uint64_t plt_index = plt_offset + i * plt_entsize; 2725 2726 Symbol jump_symbol( 2727 i + start_id, // Symbol table index 2728 symbol_name, // symbol name. 2729 is_mangled, // is the symbol name mangled? 2730 eSymbolTypeTrampoline, // Type of this symbol 2731 false, // Is this globally visible? 2732 false, // Is this symbol debug info? 2733 true, // Is this symbol a trampoline? 2734 true, // Is this symbol artificial? 2735 plt_section_sp, // Section in which this symbol is defined or null. 2736 plt_index, // Offset in section or symbol value. 2737 plt_entsize, // Size in bytes of this symbol. 2738 true, // Size is valid 2739 false, // Contains linker annotations? 2740 0); // Symbol flags. 2741 2742 symbol_table->AddSymbol(jump_symbol); 2743 } 2744 2745 return i; 2746 } 2747 2748 unsigned 2749 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2750 user_id_t start_id, 2751 const ELFSectionHeaderInfo *rel_hdr, 2752 user_id_t rel_id) 2753 { 2754 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2755 2756 // The link field points to the associated symbol table. 2757 user_id_t symtab_id = rel_hdr->sh_link; 2758 2759 // If the link field doesn't point to the appropriate symbol name table then 2760 // try to find it by name as some compiler don't fill in the link fields. 2761 if (!symtab_id) 2762 symtab_id = GetSectionIndexByName(".dynsym"); 2763 2764 // Get PLT section. We cannot use rel_hdr->sh_info, since current linkers 2765 // point that to the .got.plt or .got section instead of .plt. 2766 user_id_t plt_id = GetSectionIndexByName(".plt"); 2767 2768 if (!symtab_id || !plt_id) 2769 return 0; 2770 2771 // Section ID's are ones based; 2772 symtab_id++; 2773 plt_id++; 2774 2775 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2776 if (!plt_hdr) 2777 return 0; 2778 2779 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2780 if (!sym_hdr) 2781 return 0; 2782 2783 SectionList *section_list = m_sections_ap.get(); 2784 if (!section_list) 2785 return 0; 2786 2787 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2788 if (!rel_section) 2789 return 0; 2790 2791 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2792 if (!plt_section_sp) 2793 return 0; 2794 2795 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2796 if (!symtab) 2797 return 0; 2798 2799 // sh_link points to associated string table. 2800 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2801 if (!strtab) 2802 return 0; 2803 2804 DataExtractor rel_data; 2805 if (!ReadSectionData(rel_section, rel_data)) 2806 return 0; 2807 2808 DataExtractor symtab_data; 2809 if (!ReadSectionData(symtab, symtab_data)) 2810 return 0; 2811 2812 DataExtractor strtab_data; 2813 if (!ReadSectionData(strtab, strtab_data)) 2814 return 0; 2815 2816 unsigned rel_type = PLTRelocationType(); 2817 if (!rel_type) 2818 return 0; 2819 2820 return ParsePLTRelocations (symbol_table, 2821 start_id, 2822 rel_type, 2823 &m_header, 2824 rel_hdr, 2825 plt_hdr, 2826 sym_hdr, 2827 plt_section_sp, 2828 rel_data, 2829 symtab_data, 2830 strtab_data); 2831 } 2832 2833 unsigned 2834 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2835 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2836 DataExtractor &rel_data, DataExtractor &symtab_data, 2837 DataExtractor &debug_data, Section* rel_section) 2838 { 2839 ELFRelocation rel(rel_hdr->sh_type); 2840 lldb::addr_t offset = 0; 2841 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2842 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2843 reloc_info_fn reloc_type; 2844 reloc_info_fn reloc_symbol; 2845 2846 if (hdr->Is32Bit()) 2847 { 2848 reloc_type = ELFRelocation::RelocType32; 2849 reloc_symbol = ELFRelocation::RelocSymbol32; 2850 } 2851 else 2852 { 2853 reloc_type = ELFRelocation::RelocType64; 2854 reloc_symbol = ELFRelocation::RelocSymbol64; 2855 } 2856 2857 for (unsigned i = 0; i < num_relocations; ++i) 2858 { 2859 if (rel.Parse(rel_data, &offset) == false) 2860 break; 2861 2862 Symbol* symbol = NULL; 2863 2864 if (hdr->Is32Bit()) 2865 { 2866 switch (reloc_type(rel)) { 2867 case R_386_32: 2868 case R_386_PC32: 2869 default: 2870 assert(false && "unexpected relocation type"); 2871 } 2872 } else { 2873 switch (reloc_type(rel)) { 2874 case R_X86_64_64: 2875 { 2876 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2877 if (symbol) 2878 { 2879 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2880 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2881 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2882 *dst = value + ELFRelocation::RelocAddend64(rel); 2883 } 2884 break; 2885 } 2886 case R_X86_64_32: 2887 case R_X86_64_32S: 2888 { 2889 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2890 if (symbol) 2891 { 2892 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2893 value += ELFRelocation::RelocAddend32(rel); 2894 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2895 (reloc_type(rel) == R_X86_64_32S && 2896 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2897 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2898 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2899 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2900 *dst = truncated_addr; 2901 } 2902 break; 2903 } 2904 case R_X86_64_PC32: 2905 default: 2906 assert(false && "unexpected relocation type"); 2907 } 2908 } 2909 } 2910 2911 return 0; 2912 } 2913 2914 unsigned 2915 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2916 { 2917 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2918 2919 // Parse in the section list if needed. 2920 SectionList *section_list = GetSectionList(); 2921 if (!section_list) 2922 return 0; 2923 2924 // Section ID's are ones based. 2925 user_id_t symtab_id = rel_hdr->sh_link + 1; 2926 user_id_t debug_id = rel_hdr->sh_info + 1; 2927 2928 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2929 if (!symtab_hdr) 2930 return 0; 2931 2932 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2933 if (!debug_hdr) 2934 return 0; 2935 2936 Section *rel = section_list->FindSectionByID(rel_id).get(); 2937 if (!rel) 2938 return 0; 2939 2940 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2941 if (!symtab) 2942 return 0; 2943 2944 Section *debug = section_list->FindSectionByID(debug_id).get(); 2945 if (!debug) 2946 return 0; 2947 2948 DataExtractor rel_data; 2949 DataExtractor symtab_data; 2950 DataExtractor debug_data; 2951 2952 if (ReadSectionData(rel, rel_data) && 2953 ReadSectionData(symtab, symtab_data) && 2954 ReadSectionData(debug, debug_data)) 2955 { 2956 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2957 rel_data, symtab_data, debug_data, debug); 2958 } 2959 2960 return 0; 2961 } 2962 2963 Symtab * 2964 ObjectFileELF::GetSymtab() 2965 { 2966 ModuleSP module_sp(GetModule()); 2967 if (!module_sp) 2968 return NULL; 2969 2970 // We always want to use the main object file so we (hopefully) only have one cached copy 2971 // of our symtab, dynamic sections, etc. 2972 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2973 if (module_obj_file && module_obj_file != this) 2974 return module_obj_file->GetSymtab(); 2975 2976 if (m_symtab_ap.get() == NULL) 2977 { 2978 SectionList *section_list = module_sp->GetSectionList(); 2979 if (!section_list) 2980 return NULL; 2981 2982 uint64_t symbol_id = 0; 2983 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 2984 2985 // Sharable objects and dynamic executables usually have 2 distinct symbol 2986 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2987 // version of the symtab that only contains global symbols. The information found 2988 // in the dynsym is therefore also found in the symtab, while the reverse is not 2989 // necessarily true. 2990 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2991 if (!symtab) 2992 { 2993 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2994 // then use the dynsym section which should always be there. 2995 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2996 } 2997 if (symtab) 2998 { 2999 m_symtab_ap.reset(new Symtab(symtab->GetObjectFile())); 3000 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 3001 } 3002 3003 // DT_JMPREL 3004 // If present, this entry's d_ptr member holds the address of relocation 3005 // entries associated solely with the procedure linkage table. Separating 3006 // these relocation entries lets the dynamic linker ignore them during 3007 // process initialization, if lazy binding is enabled. If this entry is 3008 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 3009 // also be present. 3010 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 3011 if (symbol) 3012 { 3013 // Synthesize trampoline symbols to help navigate the PLT. 3014 addr_t addr = symbol->d_ptr; 3015 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 3016 if (reloc_section) 3017 { 3018 user_id_t reloc_id = reloc_section->GetID(); 3019 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 3020 assert(reloc_header); 3021 3022 if (m_symtab_ap == nullptr) 3023 m_symtab_ap.reset(new Symtab(reloc_section->GetObjectFile())); 3024 3025 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 3026 } 3027 } 3028 3029 DWARFCallFrameInfo* eh_frame = GetUnwindTable().GetEHFrameInfo(); 3030 if (eh_frame) 3031 { 3032 if (m_symtab_ap == nullptr) 3033 m_symtab_ap.reset(new Symtab(this)); 3034 ParseUnwindSymbols (m_symtab_ap.get(), eh_frame); 3035 } 3036 3037 // If we still don't have any symtab then create an empty instance to avoid do the section 3038 // lookup next time. 3039 if (m_symtab_ap == nullptr) 3040 m_symtab_ap.reset(new Symtab(this)); 3041 3042 m_symtab_ap->CalculateSymbolSizes(); 3043 } 3044 3045 for (SectionHeaderCollIter I = m_section_headers.begin(); 3046 I != m_section_headers.end(); ++I) 3047 { 3048 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 3049 { 3050 if (CalculateType() == eTypeObjectFile) 3051 { 3052 const char *section_name = I->section_name.AsCString(""); 3053 if (strstr(section_name, ".rela.debug") || 3054 strstr(section_name, ".rel.debug")) 3055 { 3056 const ELFSectionHeader &reloc_header = *I; 3057 user_id_t reloc_id = SectionIndex(I); 3058 RelocateDebugSections(&reloc_header, reloc_id); 3059 } 3060 } 3061 } 3062 } 3063 return m_symtab_ap.get(); 3064 } 3065 3066 void 3067 ObjectFileELF::ParseUnwindSymbols(Symtab *symbol_table, DWARFCallFrameInfo* eh_frame) 3068 { 3069 SectionList* section_list = GetSectionList(); 3070 if (!section_list) 3071 return; 3072 3073 // First we save the new symbols into a separate list and add them to the symbol table after 3074 // we colleced all symbols we want to add. This is neccessary because adding a new symbol 3075 // invalidates the internal index of the symtab what causing the next lookup to be slow because 3076 // it have to recalculate the index first. 3077 std::vector<Symbol> new_symbols; 3078 3079 eh_frame->ForEachFDEEntries( 3080 [this, symbol_table, section_list, &new_symbols](lldb::addr_t file_addr, 3081 uint32_t size, 3082 dw_offset_t) { 3083 Symbol* symbol = symbol_table->FindSymbolAtFileAddress(file_addr); 3084 if (symbol) 3085 { 3086 if (!symbol->GetByteSizeIsValid()) 3087 { 3088 symbol->SetByteSize(size); 3089 symbol->SetSizeIsSynthesized(true); 3090 } 3091 } 3092 else 3093 { 3094 SectionSP section_sp = section_list->FindSectionContainingFileAddress(file_addr); 3095 if (section_sp) 3096 { 3097 addr_t offset = file_addr - section_sp->GetFileAddress(); 3098 const char* symbol_name = GetNextSyntheticSymbolName().GetCString(); 3099 uint64_t symbol_id = symbol_table->GetNumSymbols(); 3100 Symbol eh_symbol( 3101 symbol_id, // Symbol table index. 3102 symbol_name, // Symbol name. 3103 false, // Is the symbol name mangled? 3104 eSymbolTypeCode, // Type of this symbol. 3105 true, // Is this globally visible? 3106 false, // Is this symbol debug info? 3107 false, // Is this symbol a trampoline? 3108 true, // Is this symbol artificial? 3109 section_sp, // Section in which this symbol is defined or null. 3110 offset, // Offset in section or symbol value. 3111 0, // Size: Don't specify the size as an FDE can 3112 false, // Size is valid: cover multiple symbols. 3113 false, // Contains linker annotations? 3114 0); // Symbol flags. 3115 new_symbols.push_back(eh_symbol); 3116 } 3117 } 3118 return true; 3119 }); 3120 3121 for (const Symbol& s : new_symbols) 3122 symbol_table->AddSymbol(s); 3123 } 3124 3125 bool 3126 ObjectFileELF::IsStripped () 3127 { 3128 // TODO: determine this for ELF 3129 return false; 3130 } 3131 3132 //===----------------------------------------------------------------------===// 3133 // Dump 3134 // 3135 // Dump the specifics of the runtime file container (such as any headers 3136 // segments, sections, etc). 3137 //---------------------------------------------------------------------- 3138 void 3139 ObjectFileELF::Dump(Stream *s) 3140 { 3141 ModuleSP module_sp(GetModule()); 3142 if (!module_sp) 3143 { 3144 return; 3145 } 3146 3147 std::lock_guard<std::recursive_mutex> guard(module_sp->GetMutex()); 3148 s->Printf("%p: ", static_cast<void *>(this)); 3149 s->Indent(); 3150 s->PutCString("ObjectFileELF"); 3151 3152 ArchSpec header_arch; 3153 GetArchitecture(header_arch); 3154 3155 *s << ", file = '" << m_file << "', arch = " << header_arch.GetArchitectureName() << "\n"; 3156 3157 DumpELFHeader(s, m_header); 3158 s->EOL(); 3159 DumpELFProgramHeaders(s); 3160 s->EOL(); 3161 DumpELFSectionHeaders(s); 3162 s->EOL(); 3163 SectionList *section_list = GetSectionList(); 3164 if (section_list) 3165 section_list->Dump(s, NULL, true, UINT32_MAX); 3166 Symtab *symtab = GetSymtab(); 3167 if (symtab) 3168 symtab->Dump(s, NULL, eSortOrderNone); 3169 s->EOL(); 3170 DumpDependentModules(s); 3171 s->EOL(); 3172 } 3173 3174 //---------------------------------------------------------------------- 3175 // DumpELFHeader 3176 // 3177 // Dump the ELF header to the specified output stream 3178 //---------------------------------------------------------------------- 3179 void 3180 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 3181 { 3182 s->PutCString("ELF Header\n"); 3183 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 3184 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 3185 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 3186 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 3187 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 3188 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 3189 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 3190 3191 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 3192 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 3193 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 3194 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 3195 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 3196 3197 s->Printf("e_type = 0x%4.4x ", header.e_type); 3198 DumpELFHeader_e_type(s, header.e_type); 3199 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 3200 s->Printf("e_version = 0x%8.8x\n", header.e_version); 3201 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 3202 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 3203 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 3204 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 3205 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 3206 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 3207 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 3208 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 3209 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 3210 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 3211 } 3212 3213 //---------------------------------------------------------------------- 3214 // DumpELFHeader_e_type 3215 // 3216 // Dump an token value for the ELF header member e_type 3217 //---------------------------------------------------------------------- 3218 void 3219 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 3220 { 3221 switch (e_type) 3222 { 3223 case ET_NONE: *s << "ET_NONE"; break; 3224 case ET_REL: *s << "ET_REL"; break; 3225 case ET_EXEC: *s << "ET_EXEC"; break; 3226 case ET_DYN: *s << "ET_DYN"; break; 3227 case ET_CORE: *s << "ET_CORE"; break; 3228 default: 3229 break; 3230 } 3231 } 3232 3233 //---------------------------------------------------------------------- 3234 // DumpELFHeader_e_ident_EI_DATA 3235 // 3236 // Dump an token value for the ELF header member e_ident[EI_DATA] 3237 //---------------------------------------------------------------------- 3238 void 3239 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 3240 { 3241 switch (ei_data) 3242 { 3243 case ELFDATANONE: *s << "ELFDATANONE"; break; 3244 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 3245 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 3246 default: 3247 break; 3248 } 3249 } 3250 3251 3252 //---------------------------------------------------------------------- 3253 // DumpELFProgramHeader 3254 // 3255 // Dump a single ELF program header to the specified output stream 3256 //---------------------------------------------------------------------- 3257 void 3258 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 3259 { 3260 DumpELFProgramHeader_p_type(s, ph.p_type); 3261 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 3262 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 3263 3264 DumpELFProgramHeader_p_flags(s, ph.p_flags); 3265 s->Printf(") %8.8" PRIx64, ph.p_align); 3266 } 3267 3268 //---------------------------------------------------------------------- 3269 // DumpELFProgramHeader_p_type 3270 // 3271 // Dump an token value for the ELF program header member p_type which 3272 // describes the type of the program header 3273 // ---------------------------------------------------------------------- 3274 void 3275 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 3276 { 3277 const int kStrWidth = 15; 3278 switch (p_type) 3279 { 3280 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 3281 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 3282 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 3283 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 3284 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 3285 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 3286 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 3287 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 3288 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 3289 default: 3290 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 3291 break; 3292 } 3293 } 3294 3295 3296 //---------------------------------------------------------------------- 3297 // DumpELFProgramHeader_p_flags 3298 // 3299 // Dump an token value for the ELF program header member p_flags 3300 //---------------------------------------------------------------------- 3301 void 3302 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 3303 { 3304 *s << ((p_flags & PF_X) ? "PF_X" : " ") 3305 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 3306 << ((p_flags & PF_W) ? "PF_W" : " ") 3307 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 3308 << ((p_flags & PF_R) ? "PF_R" : " "); 3309 } 3310 3311 //---------------------------------------------------------------------- 3312 // DumpELFProgramHeaders 3313 // 3314 // Dump all of the ELF program header to the specified output stream 3315 //---------------------------------------------------------------------- 3316 void 3317 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 3318 { 3319 if (!ParseProgramHeaders()) 3320 return; 3321 3322 s->PutCString("Program Headers\n"); 3323 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 3324 "p_filesz p_memsz p_flags p_align\n"); 3325 s->PutCString("==== --------------- -------- -------- -------- " 3326 "-------- -------- ------------------------- --------\n"); 3327 3328 uint32_t idx = 0; 3329 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 3330 I != m_program_headers.end(); ++I, ++idx) 3331 { 3332 s->Printf("[%2u] ", idx); 3333 ObjectFileELF::DumpELFProgramHeader(s, *I); 3334 s->EOL(); 3335 } 3336 } 3337 3338 //---------------------------------------------------------------------- 3339 // DumpELFSectionHeader 3340 // 3341 // Dump a single ELF section header to the specified output stream 3342 //---------------------------------------------------------------------- 3343 void 3344 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 3345 { 3346 s->Printf("%8.8x ", sh.sh_name); 3347 DumpELFSectionHeader_sh_type(s, sh.sh_type); 3348 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 3349 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 3350 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 3351 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 3352 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 3353 } 3354 3355 //---------------------------------------------------------------------- 3356 // DumpELFSectionHeader_sh_type 3357 // 3358 // Dump an token value for the ELF section header member sh_type which 3359 // describes the type of the section 3360 //---------------------------------------------------------------------- 3361 void 3362 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 3363 { 3364 const int kStrWidth = 12; 3365 switch (sh_type) 3366 { 3367 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 3368 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 3369 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 3370 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 3371 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 3372 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 3373 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 3374 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 3375 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 3376 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 3377 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 3378 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 3379 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 3380 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 3381 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 3382 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 3383 default: 3384 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 3385 break; 3386 } 3387 } 3388 3389 //---------------------------------------------------------------------- 3390 // DumpELFSectionHeader_sh_flags 3391 // 3392 // Dump an token value for the ELF section header member sh_flags 3393 //---------------------------------------------------------------------- 3394 void 3395 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 3396 { 3397 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 3398 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 3399 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 3400 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 3401 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 3402 } 3403 3404 //---------------------------------------------------------------------- 3405 // DumpELFSectionHeaders 3406 // 3407 // Dump all of the ELF section header to the specified output stream 3408 //---------------------------------------------------------------------- 3409 void 3410 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 3411 { 3412 if (!ParseSectionHeaders()) 3413 return; 3414 3415 s->PutCString("Section Headers\n"); 3416 s->PutCString("IDX name type flags " 3417 "addr offset size link info addralgn " 3418 "entsize Name\n"); 3419 s->PutCString("==== -------- ------------ -------------------------------- " 3420 "-------- -------- -------- -------- -------- -------- " 3421 "-------- ====================\n"); 3422 3423 uint32_t idx = 0; 3424 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 3425 I != m_section_headers.end(); ++I, ++idx) 3426 { 3427 s->Printf("[%2u] ", idx); 3428 ObjectFileELF::DumpELFSectionHeader(s, *I); 3429 const char* section_name = I->section_name.AsCString(""); 3430 if (section_name) 3431 *s << ' ' << section_name << "\n"; 3432 } 3433 } 3434 3435 void 3436 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 3437 { 3438 size_t num_modules = ParseDependentModules(); 3439 3440 if (num_modules > 0) 3441 { 3442 s->PutCString("Dependent Modules:\n"); 3443 for (unsigned i = 0; i < num_modules; ++i) 3444 { 3445 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 3446 s->Printf(" %s\n", spec.GetFilename().GetCString()); 3447 } 3448 } 3449 } 3450 3451 bool 3452 ObjectFileELF::GetArchitecture (ArchSpec &arch) 3453 { 3454 if (!ParseHeader()) 3455 return false; 3456 3457 if (m_section_headers.empty()) 3458 { 3459 // Allow elf notes to be parsed which may affect the detected architecture. 3460 ParseSectionHeaders(); 3461 } 3462 3463 if (CalculateType() == eTypeCoreFile && m_arch_spec.TripleOSIsUnspecifiedUnknown()) 3464 { 3465 // Core files don't have section headers yet they have PT_NOTE program headers 3466 // that might shed more light on the architecture 3467 if (ParseProgramHeaders()) 3468 { 3469 for (size_t i = 0, count = GetProgramHeaderCount(); i < count; ++i) 3470 { 3471 const elf::ELFProgramHeader* header = GetProgramHeaderByIndex(i); 3472 if (header && header->p_type == PT_NOTE && header->p_offset != 0 && header->p_filesz > 0) 3473 { 3474 DataExtractor data; 3475 if (data.SetData (m_data, header->p_offset, header->p_filesz) == header->p_filesz) 3476 { 3477 lldb_private::UUID uuid; 3478 RefineModuleDetailsFromNote (data, m_arch_spec, uuid); 3479 } 3480 } 3481 } 3482 } 3483 } 3484 arch = m_arch_spec; 3485 return true; 3486 } 3487 3488 ObjectFile::Type 3489 ObjectFileELF::CalculateType() 3490 { 3491 switch (m_header.e_type) 3492 { 3493 case llvm::ELF::ET_NONE: 3494 // 0 - No file type 3495 return eTypeUnknown; 3496 3497 case llvm::ELF::ET_REL: 3498 // 1 - Relocatable file 3499 return eTypeObjectFile; 3500 3501 case llvm::ELF::ET_EXEC: 3502 // 2 - Executable file 3503 return eTypeExecutable; 3504 3505 case llvm::ELF::ET_DYN: 3506 // 3 - Shared object file 3507 return eTypeSharedLibrary; 3508 3509 case ET_CORE: 3510 // 4 - Core file 3511 return eTypeCoreFile; 3512 3513 default: 3514 break; 3515 } 3516 return eTypeUnknown; 3517 } 3518 3519 ObjectFile::Strata 3520 ObjectFileELF::CalculateStrata() 3521 { 3522 switch (m_header.e_type) 3523 { 3524 case llvm::ELF::ET_NONE: 3525 // 0 - No file type 3526 return eStrataUnknown; 3527 3528 case llvm::ELF::ET_REL: 3529 // 1 - Relocatable file 3530 return eStrataUnknown; 3531 3532 case llvm::ELF::ET_EXEC: 3533 // 2 - Executable file 3534 // TODO: is there any way to detect that an executable is a kernel 3535 // related executable by inspecting the program headers, section 3536 // headers, symbols, or any other flag bits??? 3537 return eStrataUser; 3538 3539 case llvm::ELF::ET_DYN: 3540 // 3 - Shared object file 3541 // TODO: is there any way to detect that an shared library is a kernel 3542 // related executable by inspecting the program headers, section 3543 // headers, symbols, or any other flag bits??? 3544 return eStrataUnknown; 3545 3546 case ET_CORE: 3547 // 4 - Core file 3548 // TODO: is there any way to detect that an core file is a kernel 3549 // related executable by inspecting the program headers, section 3550 // headers, symbols, or any other flag bits??? 3551 return eStrataUnknown; 3552 3553 default: 3554 break; 3555 } 3556 return eStrataUnknown; 3557 } 3558 3559