1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 
10 #include "ObjectFileELF.h"
11 
12 #include <cassert>
13 #include <algorithm>
14 
15 #include "lldb/Core/ArchSpec.h"
16 #include "lldb/Core/DataBuffer.h"
17 #include "lldb/Core/Error.h"
18 #include "lldb/Core/FileSpecList.h"
19 #include "lldb/Core/Log.h"
20 #include "lldb/Core/Module.h"
21 #include "lldb/Core/ModuleSpec.h"
22 #include "lldb/Core/PluginManager.h"
23 #include "lldb/Core/Section.h"
24 #include "lldb/Core/Stream.h"
25 #include "lldb/Core/Timer.h"
26 #include "lldb/Symbol/DWARFCallFrameInfo.h"
27 #include "lldb/Symbol/SymbolContext.h"
28 #include "lldb/Target/SectionLoadList.h"
29 #include "lldb/Target/Target.h"
30 
31 #include "llvm/ADT/PointerUnion.h"
32 #include "llvm/ADT/StringRef.h"
33 #include "llvm/Support/MathExtras.h"
34 
35 #define CASE_AND_STREAM(s, def, width)                  \
36     case def: s->Printf("%-*s", width, #def); break;
37 
38 using namespace lldb;
39 using namespace lldb_private;
40 using namespace elf;
41 using namespace llvm::ELF;
42 
43 namespace {
44 
45 // ELF note owner definitions
46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD";
47 const char *const LLDB_NT_OWNER_GNU     = "GNU";
48 const char *const LLDB_NT_OWNER_NETBSD  = "NetBSD";
49 const char *const LLDB_NT_OWNER_CSR     = "csr";
50 const char *const LLDB_NT_OWNER_ANDROID = "Android";
51 
52 // ELF note type definitions
53 const elf_word LLDB_NT_FREEBSD_ABI_TAG  = 0x01;
54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4;
55 
56 const elf_word LLDB_NT_GNU_ABI_TAG      = 0x01;
57 const elf_word LLDB_NT_GNU_ABI_SIZE     = 16;
58 
59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03;
60 
61 const elf_word LLDB_NT_NETBSD_ABI_TAG   = 0x01;
62 const elf_word LLDB_NT_NETBSD_ABI_SIZE  = 4;
63 
64 // GNU ABI note OS constants
65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX   = 0x00;
66 const elf_word LLDB_NT_GNU_ABI_OS_HURD    = 0x01;
67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02;
68 
69 //===----------------------------------------------------------------------===//
70 /// @class ELFRelocation
71 /// @brief Generic wrapper for ELFRel and ELFRela.
72 ///
73 /// This helper class allows us to parse both ELFRel and ELFRela relocation
74 /// entries in a generic manner.
75 class ELFRelocation
76 {
77 public:
78 
79     /// Constructs an ELFRelocation entry with a personality as given by @p
80     /// type.
81     ///
82     /// @param type Either DT_REL or DT_RELA.  Any other value is invalid.
83     ELFRelocation(unsigned type);
84 
85     ~ELFRelocation();
86 
87     bool
88     Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset);
89 
90     static unsigned
91     RelocType32(const ELFRelocation &rel);
92 
93     static unsigned
94     RelocType64(const ELFRelocation &rel);
95 
96     static unsigned
97     RelocSymbol32(const ELFRelocation &rel);
98 
99     static unsigned
100     RelocSymbol64(const ELFRelocation &rel);
101 
102     static unsigned
103     RelocOffset32(const ELFRelocation &rel);
104 
105     static unsigned
106     RelocOffset64(const ELFRelocation &rel);
107 
108     static unsigned
109     RelocAddend32(const ELFRelocation &rel);
110 
111     static unsigned
112     RelocAddend64(const ELFRelocation &rel);
113 
114 private:
115     typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion;
116 
117     RelocUnion reloc;
118 };
119 
120 ELFRelocation::ELFRelocation(unsigned type)
121 {
122     if (type == DT_REL || type == SHT_REL)
123         reloc = new ELFRel();
124     else if (type == DT_RELA || type == SHT_RELA)
125         reloc = new ELFRela();
126     else {
127         assert(false && "unexpected relocation type");
128         reloc = static_cast<ELFRel*>(NULL);
129     }
130 }
131 
132 ELFRelocation::~ELFRelocation()
133 {
134     if (reloc.is<ELFRel*>())
135         delete reloc.get<ELFRel*>();
136     else
137         delete reloc.get<ELFRela*>();
138 }
139 
140 bool
141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset)
142 {
143     if (reloc.is<ELFRel*>())
144         return reloc.get<ELFRel*>()->Parse(data, offset);
145     else
146         return reloc.get<ELFRela*>()->Parse(data, offset);
147 }
148 
149 unsigned
150 ELFRelocation::RelocType32(const ELFRelocation &rel)
151 {
152     if (rel.reloc.is<ELFRel*>())
153         return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>());
154     else
155         return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>());
156 }
157 
158 unsigned
159 ELFRelocation::RelocType64(const ELFRelocation &rel)
160 {
161     if (rel.reloc.is<ELFRel*>())
162         return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>());
163     else
164         return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>());
165 }
166 
167 unsigned
168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel)
169 {
170     if (rel.reloc.is<ELFRel*>())
171         return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>());
172     else
173         return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>());
174 }
175 
176 unsigned
177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel)
178 {
179     if (rel.reloc.is<ELFRel*>())
180         return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>());
181     else
182         return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>());
183 }
184 
185 unsigned
186 ELFRelocation::RelocOffset32(const ELFRelocation &rel)
187 {
188     if (rel.reloc.is<ELFRel*>())
189         return rel.reloc.get<ELFRel*>()->r_offset;
190     else
191         return rel.reloc.get<ELFRela*>()->r_offset;
192 }
193 
194 unsigned
195 ELFRelocation::RelocOffset64(const ELFRelocation &rel)
196 {
197     if (rel.reloc.is<ELFRel*>())
198         return rel.reloc.get<ELFRel*>()->r_offset;
199     else
200         return rel.reloc.get<ELFRela*>()->r_offset;
201 }
202 
203 unsigned
204 ELFRelocation::RelocAddend32(const ELFRelocation &rel)
205 {
206     if (rel.reloc.is<ELFRel*>())
207         return 0;
208     else
209         return rel.reloc.get<ELFRela*>()->r_addend;
210 }
211 
212 unsigned
213 ELFRelocation::RelocAddend64(const ELFRelocation &rel)
214 {
215     if (rel.reloc.is<ELFRel*>())
216         return 0;
217     else
218         return rel.reloc.get<ELFRela*>()->r_addend;
219 }
220 
221 } // end anonymous namespace
222 
223 bool
224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset)
225 {
226     // Read all fields.
227     if (data.GetU32(offset, &n_namesz, 3) == NULL)
228         return false;
229 
230     // The name field is required to be nul-terminated, and n_namesz
231     // includes the terminating nul in observed implementations (contrary
232     // to the ELF-64 spec).  A special case is needed for cores generated
233     // by some older Linux versions, which write a note named "CORE"
234     // without a nul terminator and n_namesz = 4.
235     if (n_namesz == 4)
236     {
237         char buf[4];
238         if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4)
239             return false;
240         if (strncmp (buf, "CORE", 4) == 0)
241         {
242             n_name = "CORE";
243             *offset += 4;
244             return true;
245         }
246     }
247 
248     const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4));
249     if (cstr == NULL)
250     {
251         Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS));
252         if (log)
253             log->Printf("Failed to parse note name lacking nul terminator");
254 
255         return false;
256     }
257     n_name = cstr;
258     return true;
259 }
260 
261 static uint32_t
262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags)
263 {
264     const uint32_t dsp_rev = e_flags & 0xFF;
265     uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE;
266     switch(dsp_rev)
267     {
268         // TODO(mg11) Support more variants
269         case 10:
270             kal_arch_variant = llvm::Triple::KalimbaSubArch_v3;
271             break;
272         case 14:
273             kal_arch_variant = llvm::Triple::KalimbaSubArch_v4;
274             break;
275         case 17:
276         case 20:
277             kal_arch_variant = llvm::Triple::KalimbaSubArch_v5;
278             break;
279         default:
280             break;
281     }
282     return kal_arch_variant;
283 }
284 
285 static uint32_t
286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian)
287 {
288     const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH;
289     uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown;
290 
291     switch (mips_arch)
292     {
293         case llvm::ELF::EF_MIPS_ARCH_32:
294             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32;
295         case llvm::ELF::EF_MIPS_ARCH_32R2:
296             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2;
297         case llvm::ELF::EF_MIPS_ARCH_32R6:
298             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6;
299         case llvm::ELF::EF_MIPS_ARCH_64:
300             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64;
301         case llvm::ELF::EF_MIPS_ARCH_64R2:
302             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2;
303         case llvm::ELF::EF_MIPS_ARCH_64R6:
304             return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6;
305         default:
306             break;
307     }
308 
309     return arch_variant;
310 }
311 
312 static uint32_t
313 subTypeFromElfHeader(const elf::ELFHeader& header)
314 {
315     if (header.e_machine == llvm::ELF::EM_MIPS)
316         return mipsVariantFromElfFlags (header.e_flags,
317             header.e_ident[EI_DATA]);
318 
319     return
320         llvm::ELF::EM_CSR_KALIMBA == header.e_machine ?
321         kalimbaVariantFromElfFlags(header.e_flags) :
322         LLDB_INVALID_CPUTYPE;
323 }
324 
325 //! The kalimba toolchain identifies a code section as being
326 //! one with the SHT_PROGBITS set in the section sh_type and the top
327 //! bit in the 32-bit address field set.
328 static lldb::SectionType
329 kalimbaSectionType(
330     const elf::ELFHeader& header,
331     const elf::ELFSectionHeader& sect_hdr)
332 {
333     if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine)
334     {
335         return eSectionTypeOther;
336     }
337 
338     if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type)
339     {
340         return eSectionTypeZeroFill;
341     }
342 
343     if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type)
344     {
345         const lldb::addr_t KAL_CODE_BIT = 1 << 31;
346         return KAL_CODE_BIT & sect_hdr.sh_addr ?
347              eSectionTypeCode  : eSectionTypeData;
348     }
349 
350     return eSectionTypeOther;
351 }
352 
353 // Arbitrary constant used as UUID prefix for core files.
354 const uint32_t
355 ObjectFileELF::g_core_uuid_magic(0xE210C);
356 
357 //------------------------------------------------------------------
358 // Static methods.
359 //------------------------------------------------------------------
360 void
361 ObjectFileELF::Initialize()
362 {
363     PluginManager::RegisterPlugin(GetPluginNameStatic(),
364                                   GetPluginDescriptionStatic(),
365                                   CreateInstance,
366                                   CreateMemoryInstance,
367                                   GetModuleSpecifications);
368 }
369 
370 void
371 ObjectFileELF::Terminate()
372 {
373     PluginManager::UnregisterPlugin(CreateInstance);
374 }
375 
376 lldb_private::ConstString
377 ObjectFileELF::GetPluginNameStatic()
378 {
379     static ConstString g_name("elf");
380     return g_name;
381 }
382 
383 const char *
384 ObjectFileELF::GetPluginDescriptionStatic()
385 {
386     return "ELF object file reader.";
387 }
388 
389 ObjectFile *
390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp,
391                                DataBufferSP &data_sp,
392                                lldb::offset_t data_offset,
393                                const lldb_private::FileSpec* file,
394                                lldb::offset_t file_offset,
395                                lldb::offset_t length)
396 {
397     if (!data_sp)
398     {
399         data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
400         data_offset = 0;
401     }
402 
403     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
404     {
405         const uint8_t *magic = data_sp->GetBytes() + data_offset;
406         if (ELFHeader::MagicBytesMatch(magic))
407         {
408             // Update the data to contain the entire file if it doesn't already
409             if (data_sp->GetByteSize() < length) {
410                 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length);
411                 data_offset = 0;
412                 magic = data_sp->GetBytes();
413             }
414             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
415             if (address_size == 4 || address_size == 8)
416             {
417                 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length));
418                 ArchSpec spec;
419                 if (objfile_ap->GetArchitecture(spec) &&
420                     objfile_ap->SetModulesArchitecture(spec))
421                     return objfile_ap.release();
422             }
423         }
424     }
425     return NULL;
426 }
427 
428 
429 ObjectFile*
430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp,
431                                      DataBufferSP& data_sp,
432                                      const lldb::ProcessSP &process_sp,
433                                      lldb::addr_t header_addr)
434 {
435     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT))
436     {
437         const uint8_t *magic = data_sp->GetBytes();
438         if (ELFHeader::MagicBytesMatch(magic))
439         {
440             unsigned address_size = ELFHeader::AddressSizeInBytes(magic);
441             if (address_size == 4 || address_size == 8)
442             {
443                 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr));
444                 ArchSpec spec;
445                 if (objfile_ap->GetArchitecture(spec) &&
446                     objfile_ap->SetModulesArchitecture(spec))
447                     return objfile_ap.release();
448             }
449         }
450     }
451     return NULL;
452 }
453 
454 bool
455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp,
456                                   lldb::addr_t data_offset,
457                                   lldb::addr_t data_length)
458 {
459     if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset))
460     {
461         const uint8_t *magic = data_sp->GetBytes() + data_offset;
462         return ELFHeader::MagicBytesMatch(magic);
463     }
464     return false;
465 }
466 
467 /*
468  * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c
469  *
470  *   COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or
471  *   code or tables extracted from it, as desired without restriction.
472  */
473 static uint32_t
474 calc_crc32(uint32_t crc, const void *buf, size_t size)
475 {
476     static const uint32_t g_crc32_tab[] =
477     {
478         0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f,
479         0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988,
480         0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2,
481         0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7,
482         0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9,
483         0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172,
484         0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c,
485         0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59,
486         0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423,
487         0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924,
488         0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106,
489         0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433,
490         0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d,
491         0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e,
492         0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950,
493         0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65,
494         0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7,
495         0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0,
496         0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa,
497         0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f,
498         0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81,
499         0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a,
500         0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84,
501         0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1,
502         0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb,
503         0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc,
504         0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e,
505         0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b,
506         0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55,
507         0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236,
508         0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28,
509         0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d,
510         0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f,
511         0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38,
512         0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242,
513         0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777,
514         0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69,
515         0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2,
516         0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc,
517         0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9,
518         0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693,
519         0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94,
520         0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d
521     };
522     const uint8_t *p = (const uint8_t *)buf;
523 
524     crc = crc ^ ~0U;
525     while (size--)
526         crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8);
527     return crc ^ ~0U;
528 }
529 
530 static uint32_t
531 calc_gnu_debuglink_crc32(const void *buf, size_t size)
532 {
533     return calc_crc32(0U, buf, size);
534 }
535 
536 uint32_t
537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers,
538                                                DataExtractor& object_data)
539 {
540     typedef ProgramHeaderCollConstIter Iter;
541 
542     uint32_t core_notes_crc = 0;
543 
544     for (Iter I = program_headers.begin(); I != program_headers.end(); ++I)
545     {
546         if (I->p_type == llvm::ELF::PT_NOTE)
547         {
548             const elf_off ph_offset = I->p_offset;
549             const size_t ph_size = I->p_filesz;
550 
551             DataExtractor segment_data;
552             if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size)
553             {
554                 // The ELF program header contained incorrect data,
555                 // probably corefile is incomplete or corrupted.
556                 break;
557             }
558 
559             core_notes_crc = calc_crc32(core_notes_crc,
560                                         segment_data.GetDataStart(),
561                                         segment_data.GetByteSize());
562         }
563     }
564 
565     return core_notes_crc;
566 }
567 
568 static const char*
569 OSABIAsCString (unsigned char osabi_byte)
570 {
571 #define _MAKE_OSABI_CASE(x) case x: return #x
572     switch (osabi_byte)
573     {
574         _MAKE_OSABI_CASE(ELFOSABI_NONE);
575         _MAKE_OSABI_CASE(ELFOSABI_HPUX);
576         _MAKE_OSABI_CASE(ELFOSABI_NETBSD);
577         _MAKE_OSABI_CASE(ELFOSABI_GNU);
578         _MAKE_OSABI_CASE(ELFOSABI_HURD);
579         _MAKE_OSABI_CASE(ELFOSABI_SOLARIS);
580         _MAKE_OSABI_CASE(ELFOSABI_AIX);
581         _MAKE_OSABI_CASE(ELFOSABI_IRIX);
582         _MAKE_OSABI_CASE(ELFOSABI_FREEBSD);
583         _MAKE_OSABI_CASE(ELFOSABI_TRU64);
584         _MAKE_OSABI_CASE(ELFOSABI_MODESTO);
585         _MAKE_OSABI_CASE(ELFOSABI_OPENBSD);
586         _MAKE_OSABI_CASE(ELFOSABI_OPENVMS);
587         _MAKE_OSABI_CASE(ELFOSABI_NSK);
588         _MAKE_OSABI_CASE(ELFOSABI_AROS);
589         _MAKE_OSABI_CASE(ELFOSABI_FENIXOS);
590         _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI);
591         _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX);
592         _MAKE_OSABI_CASE(ELFOSABI_ARM);
593         _MAKE_OSABI_CASE(ELFOSABI_STANDALONE);
594         default:
595             return "<unknown-osabi>";
596     }
597 #undef _MAKE_OSABI_CASE
598 }
599 
600 //
601 // WARNING : This function is being deprecated
602 // It's functionality has moved to ArchSpec::SetArchitecture
603 // This function is only being kept to validate the move.
604 //
605 // TODO : Remove this function
606 static bool
607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype)
608 {
609     switch (osabi_byte)
610     {
611         case ELFOSABI_AIX:      ostype = llvm::Triple::OSType::AIX; break;
612         case ELFOSABI_FREEBSD:  ostype = llvm::Triple::OSType::FreeBSD; break;
613         case ELFOSABI_GNU:      ostype = llvm::Triple::OSType::Linux; break;
614         case ELFOSABI_NETBSD:   ostype = llvm::Triple::OSType::NetBSD; break;
615         case ELFOSABI_OPENBSD:  ostype = llvm::Triple::OSType::OpenBSD; break;
616         case ELFOSABI_SOLARIS:  ostype = llvm::Triple::OSType::Solaris; break;
617         default:
618             ostype = llvm::Triple::OSType::UnknownOS;
619     }
620     return ostype != llvm::Triple::OSType::UnknownOS;
621 }
622 
623 size_t
624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file,
625                                         lldb::DataBufferSP& data_sp,
626                                         lldb::offset_t data_offset,
627                                         lldb::offset_t file_offset,
628                                         lldb::offset_t length,
629                                         lldb_private::ModuleSpecList &specs)
630 {
631     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
632 
633     const size_t initial_count = specs.GetSize();
634 
635     if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize()))
636     {
637         DataExtractor data;
638         data.SetData(data_sp);
639         elf::ELFHeader header;
640         if (header.Parse(data, &data_offset))
641         {
642             if (data_sp)
643             {
644                 ModuleSpec spec (file);
645 
646                 const uint32_t sub_type = subTypeFromElfHeader(header);
647                 spec.GetArchitecture().SetArchitecture(eArchTypeELF,
648                                                        header.e_machine,
649                                                        sub_type,
650                                                        header.e_ident[EI_OSABI]);
651 
652                 if (spec.GetArchitecture().IsValid())
653                 {
654                     llvm::Triple::OSType ostype;
655                     llvm::Triple::VendorType vendor;
656                     llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS ();
657 
658                     if (log)
659                         log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI]));
660 
661                     // SetArchitecture should have set the vendor to unknown
662                     vendor = spec.GetArchitecture ().GetTriple ().getVendor ();
663                     assert(vendor == llvm::Triple::UnknownVendor);
664 
665                     //
666                     // Validate it is ok to remove GetOsFromOSABI
667                     GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
668                     assert(spec_ostype == ostype);
669                     if (spec_ostype != llvm::Triple::OSType::UnknownOS)
670                     {
671                         if (log)
672                             log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ());
673                     }
674 
675                     // Try to get the UUID from the section list. Usually that's at the end, so
676                     // map the file in if we don't have it already.
677                     size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize;
678                     if (section_header_end > data_sp->GetByteSize())
679                     {
680                         data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end);
681                         data.SetData(data_sp);
682                     }
683 
684                     uint32_t gnu_debuglink_crc = 0;
685                     std::string gnu_debuglink_file;
686                     SectionHeaderColl section_headers;
687                     lldb_private::UUID &uuid = spec.GetUUID();
688 
689                     GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ());
690 
691                     llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple ();
692 
693                     if (log)
694                         log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ());
695 
696                     if (!uuid.IsValid())
697                     {
698                         uint32_t core_notes_crc = 0;
699 
700                         if (!gnu_debuglink_crc)
701                         {
702                             lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__,
703                                                               "Calculating module crc32 %s with size %" PRIu64 " KiB",
704                                                               file.GetLastPathComponent().AsCString(),
705                                                               (file.GetByteSize()-file_offset)/1024);
706 
707                             // For core files - which usually don't happen to have a gnu_debuglink,
708                             // and are pretty bulky - calculating whole contents crc32 would be too much of luxury.
709                             // Thus we will need to fallback to something simpler.
710                             if (header.e_type == llvm::ELF::ET_CORE)
711                             {
712                                 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize;
713                                 if (program_headers_end > data_sp->GetByteSize())
714                                 {
715                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end);
716                                     data.SetData(data_sp);
717                                 }
718                                 ProgramHeaderColl program_headers;
719                                 GetProgramHeaderInfo(program_headers, data, header);
720 
721                                 size_t segment_data_end = 0;
722                                 for (ProgramHeaderCollConstIter I = program_headers.begin();
723                                      I != program_headers.end(); ++I)
724                                 {
725                                      segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end);
726                                 }
727 
728                                 if (segment_data_end > data_sp->GetByteSize())
729                                 {
730                                     data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end);
731                                     data.SetData(data_sp);
732                                 }
733 
734                                 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data);
735                             }
736                             else
737                             {
738                                 // Need to map entire file into memory to calculate the crc.
739                                 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX);
740                                 data.SetData(data_sp);
741                                 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize());
742                             }
743                         }
744                         if (gnu_debuglink_crc)
745                         {
746                             // Use 4 bytes of crc from the .gnu_debuglink section.
747                             uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 };
748                             uuid.SetBytes (uuidt, sizeof(uuidt));
749                         }
750                         else if (core_notes_crc)
751                         {
752                             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form
753                             // .gnu_debuglink crc followed by 4 bytes of note segments crc.
754                             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
755                             uuid.SetBytes (uuidt, sizeof(uuidt));
756                         }
757                     }
758 
759                     specs.Append(spec);
760                 }
761             }
762         }
763     }
764 
765     return specs.GetSize() - initial_count;
766 }
767 
768 //------------------------------------------------------------------
769 // PluginInterface protocol
770 //------------------------------------------------------------------
771 lldb_private::ConstString
772 ObjectFileELF::GetPluginName()
773 {
774     return GetPluginNameStatic();
775 }
776 
777 uint32_t
778 ObjectFileELF::GetPluginVersion()
779 {
780     return m_plugin_version;
781 }
782 //------------------------------------------------------------------
783 // ObjectFile protocol
784 //------------------------------------------------------------------
785 
786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
787                               DataBufferSP& data_sp,
788                               lldb::offset_t data_offset,
789                               const FileSpec* file,
790                               lldb::offset_t file_offset,
791                               lldb::offset_t length) :
792     ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset),
793     m_header(),
794     m_uuid(),
795     m_gnu_debuglink_file(),
796     m_gnu_debuglink_crc(0),
797     m_program_headers(),
798     m_section_headers(),
799     m_dynamic_symbols(),
800     m_filespec_ap(),
801     m_entry_point_address(),
802     m_arch_spec()
803 {
804     if (file)
805         m_file = *file;
806     ::memset(&m_header, 0, sizeof(m_header));
807 }
808 
809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp,
810                               DataBufferSP& header_data_sp,
811                               const lldb::ProcessSP &process_sp,
812                               addr_t header_addr) :
813     ObjectFile(module_sp, process_sp, header_addr, header_data_sp),
814     m_header(),
815     m_uuid(),
816     m_gnu_debuglink_file(),
817     m_gnu_debuglink_crc(0),
818     m_program_headers(),
819     m_section_headers(),
820     m_dynamic_symbols(),
821     m_filespec_ap(),
822     m_entry_point_address(),
823     m_arch_spec()
824 {
825     ::memset(&m_header, 0, sizeof(m_header));
826 }
827 
828 ObjectFileELF::~ObjectFileELF()
829 {
830 }
831 
832 bool
833 ObjectFileELF::IsExecutable() const
834 {
835     return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0);
836 }
837 
838 bool
839 ObjectFileELF::SetLoadAddress (Target &target,
840                                lldb::addr_t value,
841                                bool value_is_offset)
842 {
843     ModuleSP module_sp = GetModule();
844     if (module_sp)
845     {
846         size_t num_loaded_sections = 0;
847         SectionList *section_list = GetSectionList ();
848         if (section_list)
849         {
850             if (value_is_offset)
851             {
852                 const size_t num_sections = section_list->GetSize();
853                 size_t sect_idx = 0;
854 
855                 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx)
856                 {
857                     // Iterate through the object file sections to find all
858                     // of the sections that have SHF_ALLOC in their flag bits.
859                     SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx));
860                     // if (section_sp && !section_sp->IsThreadSpecific())
861                     if (section_sp && section_sp->Test(SHF_ALLOC))
862                     {
863                         lldb::addr_t load_addr = section_sp->GetFileAddress() + value;
864 
865                         // On 32-bit systems the load address have to fit into 4 bytes. The rest of
866                         // the bytes are the overflow from the addition.
867                         if (GetAddressByteSize() == 4)
868                             load_addr &= 0xFFFFFFFF;
869 
870                         if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr))
871                             ++num_loaded_sections;
872                     }
873                 }
874                 return num_loaded_sections > 0;
875             }
876             else
877             {
878                 // Not sure how to slide an ELF file given the base address
879                 // of the ELF file in memory
880             }
881         }
882     }
883     return false; // If it changed
884 }
885 
886 ByteOrder
887 ObjectFileELF::GetByteOrder() const
888 {
889     if (m_header.e_ident[EI_DATA] == ELFDATA2MSB)
890         return eByteOrderBig;
891     if (m_header.e_ident[EI_DATA] == ELFDATA2LSB)
892         return eByteOrderLittle;
893     return eByteOrderInvalid;
894 }
895 
896 uint32_t
897 ObjectFileELF::GetAddressByteSize() const
898 {
899     return m_data.GetAddressByteSize();
900 }
901 
902 // Top 16 bits of the `Symbol` flags are available.
903 #define ARM_ELF_SYM_IS_THUMB    (1 << 16)
904 
905 AddressClass
906 ObjectFileELF::GetAddressClass (addr_t file_addr)
907 {
908     auto res = ObjectFile::GetAddressClass (file_addr);
909 
910     if (res != eAddressClassCode)
911         return res;
912 
913     auto ub = m_address_class_map.upper_bound(file_addr);
914     if (ub == m_address_class_map.begin())
915     {
916         // No entry in the address class map before the address. Return
917         // default address class for an address in a code section.
918         return eAddressClassCode;
919     }
920 
921     // Move iterator to the address class entry preceding address
922     --ub;
923 
924     return ub->second;
925 }
926 
927 size_t
928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I)
929 {
930     return std::distance(m_section_headers.begin(), I) + 1u;
931 }
932 
933 size_t
934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const
935 {
936     return std::distance(m_section_headers.begin(), I) + 1u;
937 }
938 
939 bool
940 ObjectFileELF::ParseHeader()
941 {
942     lldb::offset_t offset = 0;
943     if (!m_header.Parse(m_data, &offset))
944         return false;
945 
946     if (!IsInMemory())
947         return true;
948 
949     // For in memory object files m_data might not contain the full object file. Try to load it
950     // until the end of the "Section header table" what is at the end of the ELF file.
951     addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize;
952     if (m_data.GetByteSize() < file_size)
953     {
954         ProcessSP process_sp (m_process_wp.lock());
955         if (!process_sp)
956             return false;
957 
958         DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size);
959         if (!data_sp)
960             return false;
961         m_data.SetData(data_sp, 0, file_size);
962     }
963 
964     return true;
965 }
966 
967 bool
968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid)
969 {
970     // Need to parse the section list to get the UUIDs, so make sure that's been done.
971     if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile)
972         return false;
973 
974     if (m_uuid.IsValid())
975     {
976         // We have the full build id uuid.
977         *uuid = m_uuid;
978         return true;
979     }
980     else if (GetType() == ObjectFile::eTypeCoreFile)
981     {
982         uint32_t core_notes_crc = 0;
983 
984         if (!ParseProgramHeaders())
985             return false;
986 
987         core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data);
988 
989         if (core_notes_crc)
990         {
991             // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it
992             // look different form .gnu_debuglink crc - followed by 4 bytes of note
993             // segments crc.
994             uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 };
995             m_uuid.SetBytes (uuidt, sizeof(uuidt));
996         }
997     }
998     else
999     {
1000         if (!m_gnu_debuglink_crc)
1001             m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize());
1002         if (m_gnu_debuglink_crc)
1003         {
1004             // Use 4 bytes of crc from the .gnu_debuglink section.
1005             uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 };
1006             m_uuid.SetBytes (uuidt, sizeof(uuidt));
1007         }
1008     }
1009 
1010     if (m_uuid.IsValid())
1011     {
1012         *uuid = m_uuid;
1013         return true;
1014     }
1015 
1016     return false;
1017 }
1018 
1019 lldb_private::FileSpecList
1020 ObjectFileELF::GetDebugSymbolFilePaths()
1021 {
1022     FileSpecList file_spec_list;
1023 
1024     if (!m_gnu_debuglink_file.empty())
1025     {
1026         FileSpec file_spec (m_gnu_debuglink_file.c_str(), false);
1027         file_spec_list.Append (file_spec);
1028     }
1029     return file_spec_list;
1030 }
1031 
1032 uint32_t
1033 ObjectFileELF::GetDependentModules(FileSpecList &files)
1034 {
1035     size_t num_modules = ParseDependentModules();
1036     uint32_t num_specs = 0;
1037 
1038     for (unsigned i = 0; i < num_modules; ++i)
1039     {
1040         if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i)))
1041             num_specs++;
1042     }
1043 
1044     return num_specs;
1045 }
1046 
1047 Address
1048 ObjectFileELF::GetImageInfoAddress(Target *target)
1049 {
1050     if (!ParseDynamicSymbols())
1051         return Address();
1052 
1053     SectionList *section_list = GetSectionList();
1054     if (!section_list)
1055         return Address();
1056 
1057     // Find the SHT_DYNAMIC (.dynamic) section.
1058     SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true));
1059     if (!dynsym_section_sp)
1060         return Address();
1061     assert (dynsym_section_sp->GetObjectFile() == this);
1062 
1063     user_id_t dynsym_id = dynsym_section_sp->GetID();
1064     const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id);
1065     if (!dynsym_hdr)
1066         return Address();
1067 
1068     for (size_t i = 0; i < m_dynamic_symbols.size(); ++i)
1069     {
1070         ELFDynamic &symbol = m_dynamic_symbols[i];
1071 
1072         if (symbol.d_tag == DT_DEBUG)
1073         {
1074             // Compute the offset as the number of previous entries plus the
1075             // size of d_tag.
1076             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1077             return Address(dynsym_section_sp, offset);
1078         }
1079         else if (symbol.d_tag == DT_MIPS_RLD_MAP && target)
1080         {
1081             addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize();
1082             addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target);
1083             if (dyn_base == LLDB_INVALID_ADDRESS)
1084                 return Address();
1085             Address addr;
1086             Error error;
1087             if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr))
1088                 return addr;
1089         }
1090     }
1091 
1092     return Address();
1093 }
1094 
1095 lldb_private::Address
1096 ObjectFileELF::GetEntryPointAddress ()
1097 {
1098     if (m_entry_point_address.IsValid())
1099         return m_entry_point_address;
1100 
1101     if (!ParseHeader() || !IsExecutable())
1102         return m_entry_point_address;
1103 
1104     SectionList *section_list = GetSectionList();
1105     addr_t offset = m_header.e_entry;
1106 
1107     if (!section_list)
1108         m_entry_point_address.SetOffset(offset);
1109     else
1110         m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list);
1111     return m_entry_point_address;
1112 }
1113 
1114 //----------------------------------------------------------------------
1115 // ParseDependentModules
1116 //----------------------------------------------------------------------
1117 size_t
1118 ObjectFileELF::ParseDependentModules()
1119 {
1120     if (m_filespec_ap.get())
1121         return m_filespec_ap->GetSize();
1122 
1123     m_filespec_ap.reset(new FileSpecList());
1124 
1125     if (!ParseSectionHeaders())
1126         return 0;
1127 
1128     SectionList *section_list = GetSectionList();
1129     if (!section_list)
1130         return 0;
1131 
1132     // Find the SHT_DYNAMIC section.
1133     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
1134     if (!dynsym)
1135         return 0;
1136     assert (dynsym->GetObjectFile() == this);
1137 
1138     const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID());
1139     if (!header)
1140         return 0;
1141     // sh_link: section header index of string table used by entries in the section.
1142     Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get();
1143     if (!dynstr)
1144         return 0;
1145 
1146     DataExtractor dynsym_data;
1147     DataExtractor dynstr_data;
1148     if (ReadSectionData(dynsym, dynsym_data) &&
1149         ReadSectionData(dynstr, dynstr_data))
1150     {
1151         ELFDynamic symbol;
1152         const lldb::offset_t section_size = dynsym_data.GetByteSize();
1153         lldb::offset_t offset = 0;
1154 
1155         // The only type of entries we are concerned with are tagged DT_NEEDED,
1156         // yielding the name of a required library.
1157         while (offset < section_size)
1158         {
1159             if (!symbol.Parse(dynsym_data, &offset))
1160                 break;
1161 
1162             if (symbol.d_tag != DT_NEEDED)
1163                 continue;
1164 
1165             uint32_t str_index = static_cast<uint32_t>(symbol.d_val);
1166             const char *lib_name = dynstr_data.PeekCStr(str_index);
1167             m_filespec_ap->Append(FileSpec(lib_name, true));
1168         }
1169     }
1170 
1171     return m_filespec_ap->GetSize();
1172 }
1173 
1174 //----------------------------------------------------------------------
1175 // GetProgramHeaderInfo
1176 //----------------------------------------------------------------------
1177 size_t
1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers,
1179                                     DataExtractor &object_data,
1180                                     const ELFHeader &header)
1181 {
1182     // We have already parsed the program headers
1183     if (!program_headers.empty())
1184         return program_headers.size();
1185 
1186     // If there are no program headers to read we are done.
1187     if (header.e_phnum == 0)
1188         return 0;
1189 
1190     program_headers.resize(header.e_phnum);
1191     if (program_headers.size() != header.e_phnum)
1192         return 0;
1193 
1194     const size_t ph_size = header.e_phnum * header.e_phentsize;
1195     const elf_off ph_offset = header.e_phoff;
1196     DataExtractor data;
1197     if (data.SetData(object_data, ph_offset, ph_size) != ph_size)
1198         return 0;
1199 
1200     uint32_t idx;
1201     lldb::offset_t offset;
1202     for (idx = 0, offset = 0; idx < header.e_phnum; ++idx)
1203     {
1204         if (program_headers[idx].Parse(data, &offset) == false)
1205             break;
1206     }
1207 
1208     if (idx < program_headers.size())
1209         program_headers.resize(idx);
1210 
1211     return program_headers.size();
1212 
1213 }
1214 
1215 //----------------------------------------------------------------------
1216 // ParseProgramHeaders
1217 //----------------------------------------------------------------------
1218 size_t
1219 ObjectFileELF::ParseProgramHeaders()
1220 {
1221     return GetProgramHeaderInfo(m_program_headers, m_data, m_header);
1222 }
1223 
1224 lldb_private::Error
1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid)
1226 {
1227     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1228     Error error;
1229 
1230     lldb::offset_t offset = 0;
1231 
1232     while (true)
1233     {
1234         // Parse the note header.  If this fails, bail out.
1235         ELFNote note = ELFNote();
1236         if (!note.Parse(data, &offset))
1237         {
1238             // We're done.
1239             return error;
1240         }
1241 
1242         // If a tag processor handles the tag, it should set processed to true, and
1243         // the loop will assume the tag processing has moved entirely past the note's payload.
1244         // Otherwise, leave it false and the end of the loop will handle the offset properly.
1245         bool processed = false;
1246 
1247         if (log)
1248             log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type);
1249 
1250         // Process FreeBSD ELF notes.
1251         if ((note.n_name == LLDB_NT_OWNER_FREEBSD) &&
1252             (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) &&
1253             (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE))
1254         {
1255             // We'll consume the payload below.
1256             processed = true;
1257 
1258             // Pull out the min version info.
1259             uint32_t version_info;
1260             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1261             {
1262                 error.SetErrorString ("failed to read FreeBSD ABI note payload");
1263                 return error;
1264             }
1265 
1266             // Convert the version info into a major/minor number.
1267             const uint32_t version_major = version_info / 100000;
1268             const uint32_t version_minor = (version_info / 1000) % 100;
1269 
1270             char os_name[32];
1271             snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor);
1272 
1273             // Set the elf OS version to FreeBSD.  Also clear the vendor.
1274             arch_spec.GetTriple ().setOSName (os_name);
1275             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1276 
1277             if (log)
1278                 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000));
1279         }
1280         // Process GNU ELF notes.
1281         else if (note.n_name == LLDB_NT_OWNER_GNU)
1282         {
1283             switch (note.n_type)
1284             {
1285                 case LLDB_NT_GNU_ABI_TAG:
1286                     if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE)
1287                     {
1288                         // We'll consume the payload below.
1289                         processed = true;
1290 
1291                         // Pull out the min OS version supporting the ABI.
1292                         uint32_t version_info[4];
1293                         if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr)
1294                         {
1295                             error.SetErrorString ("failed to read GNU ABI note payload");
1296                             return error;
1297                         }
1298 
1299                         // Set the OS per the OS field.
1300                         switch (version_info[0])
1301                         {
1302                             case LLDB_NT_GNU_ABI_OS_LINUX:
1303                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux);
1304                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1305                                 if (log)
1306                                     log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1307                                 // FIXME we have the minimal version number, we could be propagating that.  version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision.
1308                                 break;
1309                             case LLDB_NT_GNU_ABI_OS_HURD:
1310                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS);
1311                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1312                                 if (log)
1313                                     log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1314                                 break;
1315                             case LLDB_NT_GNU_ABI_OS_SOLARIS:
1316                                 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris);
1317                                 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1318                                 if (log)
1319                                     log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]);
1320                                 break;
1321                             default:
1322                                 if (log)
1323                                     log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]);
1324                                 break;
1325                         }
1326                     }
1327                     break;
1328 
1329                 case LLDB_NT_GNU_BUILD_ID_TAG:
1330                     // Only bother processing this if we don't already have the uuid set.
1331                     if (!uuid.IsValid())
1332                     {
1333                         // We'll consume the payload below.
1334                         processed = true;
1335 
1336                         // 16 bytes is UUID|MD5, 20 bytes is SHA1
1337                         if ((note.n_descsz == 16 || note.n_descsz == 20))
1338                         {
1339                             uint8_t uuidbuf[20];
1340                             if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr)
1341                             {
1342                                 error.SetErrorString ("failed to read GNU_BUILD_ID note payload");
1343                                 return error;
1344                             }
1345 
1346                             // Save the build id as the UUID for the module.
1347                             uuid.SetBytes (uuidbuf, note.n_descsz);
1348                         }
1349                     }
1350                     break;
1351             }
1352         }
1353         // Process NetBSD ELF notes.
1354         else if ((note.n_name == LLDB_NT_OWNER_NETBSD) &&
1355                  (note.n_type == LLDB_NT_NETBSD_ABI_TAG) &&
1356                  (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE))
1357         {
1358 
1359             // We'll consume the payload below.
1360             processed = true;
1361 
1362             // Pull out the min version info.
1363             uint32_t version_info;
1364             if (data.GetU32 (&offset, &version_info, 1) == nullptr)
1365             {
1366                 error.SetErrorString ("failed to read NetBSD ABI note payload");
1367                 return error;
1368             }
1369 
1370             // Set the elf OS version to NetBSD.  Also clear the vendor.
1371             arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD);
1372             arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor);
1373 
1374             if (log)
1375                 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info);
1376         }
1377         // Process CSR kalimba notes
1378         else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) &&
1379                 (note.n_name == LLDB_NT_OWNER_CSR))
1380         {
1381             // We'll consume the payload below.
1382             processed = true;
1383             arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS);
1384             arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR);
1385 
1386             // TODO At some point the description string could be processed.
1387             // It could provide a steer towards the kalimba variant which
1388             // this ELF targets.
1389             if(note.n_descsz)
1390             {
1391                 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4));
1392                 (void)cstr;
1393             }
1394         }
1395         else if (note.n_name == LLDB_NT_OWNER_ANDROID)
1396         {
1397             arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux);
1398             arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android);
1399         }
1400 
1401         if (!processed)
1402             offset += llvm::RoundUpToAlignment(note.n_descsz, 4);
1403     }
1404 
1405     return error;
1406 }
1407 
1408 
1409 //----------------------------------------------------------------------
1410 // GetSectionHeaderInfo
1411 //----------------------------------------------------------------------
1412 size_t
1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl &section_headers,
1414                                     lldb_private::DataExtractor &object_data,
1415                                     const elf::ELFHeader &header,
1416                                     lldb_private::UUID &uuid,
1417                                     std::string &gnu_debuglink_file,
1418                                     uint32_t &gnu_debuglink_crc,
1419                                     ArchSpec &arch_spec)
1420 {
1421     // Don't reparse the section headers if we already did that.
1422     if (!section_headers.empty())
1423         return section_headers.size();
1424 
1425     // Only initialize the arch_spec to okay defaults if they're not already set.
1426     // We'll refine this with note data as we parse the notes.
1427     if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS)
1428     {
1429         llvm::Triple::OSType ostype;
1430         llvm::Triple::OSType spec_ostype;
1431         const uint32_t sub_type = subTypeFromElfHeader(header);
1432         arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]);
1433         //
1434         // Validate if it is ok to remove GetOsFromOSABI
1435         GetOsFromOSABI (header.e_ident[EI_OSABI], ostype);
1436         spec_ostype = arch_spec.GetTriple ().getOS ();
1437         assert(spec_ostype == ostype);
1438     }
1439 
1440     // If there are no section headers we are done.
1441     if (header.e_shnum == 0) {
1442 #if 0
1443         if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS)
1444             arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data());
1445 #endif
1446         return 0;
1447     }
1448 
1449     Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES));
1450 
1451     section_headers.resize(header.e_shnum);
1452     if (section_headers.size() != header.e_shnum)
1453         return 0;
1454 
1455     const size_t sh_size = header.e_shnum * header.e_shentsize;
1456     const elf_off sh_offset = header.e_shoff;
1457     DataExtractor sh_data;
1458     if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size)
1459         return 0;
1460 
1461     uint32_t idx;
1462     lldb::offset_t offset;
1463     for (idx = 0, offset = 0; idx < header.e_shnum; ++idx)
1464     {
1465         if (section_headers[idx].Parse(sh_data, &offset) == false)
1466             break;
1467     }
1468     if (idx < section_headers.size())
1469         section_headers.resize(idx);
1470 
1471     const unsigned strtab_idx = header.e_shstrndx;
1472     if (strtab_idx && strtab_idx < section_headers.size())
1473     {
1474         const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx];
1475         const size_t byte_size = sheader.sh_size;
1476         const Elf64_Off offset = sheader.sh_offset;
1477         lldb_private::DataExtractor shstr_data;
1478 
1479         if (shstr_data.SetData (object_data, offset, byte_size) == byte_size)
1480         {
1481             for (SectionHeaderCollIter I = section_headers.begin();
1482                  I != section_headers.end(); ++I)
1483             {
1484                 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink");
1485                 const ELFSectionHeaderInfo &header = *I;
1486                 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1487                 ConstString name(shstr_data.PeekCStr(I->sh_name));
1488 
1489                 I->section_name = name;
1490 
1491                 if (name == g_sect_name_gnu_debuglink)
1492                 {
1493                     DataExtractor data;
1494                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1495                     {
1496                         lldb::offset_t gnu_debuglink_offset = 0;
1497                         gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset);
1498                         gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4);
1499                         data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1);
1500                     }
1501                 }
1502 
1503                 // Process ELF note section entries.
1504                 bool is_note_header = (header.sh_type == SHT_NOTE);
1505 
1506                 // The section header ".note.android.ident" is stored as a
1507                 // PROGBITS type header but it is actually a note header.
1508                 static ConstString g_sect_name_android_ident (".note.android.ident");
1509                 if (!is_note_header && name == g_sect_name_android_ident)
1510                     is_note_header = true;
1511 
1512                 if (is_note_header)
1513                 {
1514                     // Allow notes to refine module info.
1515                     DataExtractor data;
1516                     if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size))
1517                     {
1518                         Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid);
1519                         if (error.Fail ())
1520                         {
1521                             if (log)
1522                                 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ());
1523                         }
1524                     }
1525                 }
1526             }
1527 
1528             return section_headers.size();
1529         }
1530     }
1531 
1532     section_headers.clear();
1533     return 0;
1534 }
1535 
1536 size_t
1537 ObjectFileELF::GetProgramHeaderCount()
1538 {
1539     return ParseProgramHeaders();
1540 }
1541 
1542 const elf::ELFProgramHeader *
1543 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id)
1544 {
1545     if (!id || !ParseProgramHeaders())
1546         return NULL;
1547 
1548     if (--id < m_program_headers.size())
1549         return &m_program_headers[id];
1550 
1551     return NULL;
1552 }
1553 
1554 DataExtractor
1555 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id)
1556 {
1557     const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id);
1558     if (segment_header == NULL)
1559         return DataExtractor();
1560     return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz);
1561 }
1562 
1563 std::string
1564 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const
1565 {
1566     size_t pos = symbol_name.find("@");
1567     return symbol_name.substr(0, pos).str();
1568 }
1569 
1570 //----------------------------------------------------------------------
1571 // ParseSectionHeaders
1572 //----------------------------------------------------------------------
1573 size_t
1574 ObjectFileELF::ParseSectionHeaders()
1575 {
1576     return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec);
1577 }
1578 
1579 const ObjectFileELF::ELFSectionHeaderInfo *
1580 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id)
1581 {
1582     if (!id || !ParseSectionHeaders())
1583         return NULL;
1584 
1585     if (--id < m_section_headers.size())
1586         return &m_section_headers[id];
1587 
1588     return NULL;
1589 }
1590 
1591 lldb::user_id_t
1592 ObjectFileELF::GetSectionIndexByName(const char* name)
1593 {
1594     if (!name || !name[0] || !ParseSectionHeaders())
1595         return 0;
1596     for (size_t i = 1; i < m_section_headers.size(); ++i)
1597         if (m_section_headers[i].section_name == ConstString(name))
1598             return i;
1599     return 0;
1600 }
1601 
1602 void
1603 ObjectFileELF::CreateSections(SectionList &unified_section_list)
1604 {
1605     if (!m_sections_ap.get() && ParseSectionHeaders())
1606     {
1607         m_sections_ap.reset(new SectionList());
1608 
1609         for (SectionHeaderCollIter I = m_section_headers.begin();
1610              I != m_section_headers.end(); ++I)
1611         {
1612             const ELFSectionHeaderInfo &header = *I;
1613 
1614             ConstString& name = I->section_name;
1615             const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size;
1616             const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0;
1617 
1618             static ConstString g_sect_name_text (".text");
1619             static ConstString g_sect_name_data (".data");
1620             static ConstString g_sect_name_bss (".bss");
1621             static ConstString g_sect_name_tdata (".tdata");
1622             static ConstString g_sect_name_tbss (".tbss");
1623             static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev");
1624             static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges");
1625             static ConstString g_sect_name_dwarf_debug_frame (".debug_frame");
1626             static ConstString g_sect_name_dwarf_debug_info (".debug_info");
1627             static ConstString g_sect_name_dwarf_debug_line (".debug_line");
1628             static ConstString g_sect_name_dwarf_debug_loc (".debug_loc");
1629             static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo");
1630             static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames");
1631             static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes");
1632             static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges");
1633             static ConstString g_sect_name_dwarf_debug_str (".debug_str");
1634             static ConstString g_sect_name_eh_frame (".eh_frame");
1635 
1636             SectionType sect_type = eSectionTypeOther;
1637 
1638             bool is_thread_specific = false;
1639 
1640             if      (name == g_sect_name_text)                  sect_type = eSectionTypeCode;
1641             else if (name == g_sect_name_data)                  sect_type = eSectionTypeData;
1642             else if (name == g_sect_name_bss)                   sect_type = eSectionTypeZeroFill;
1643             else if (name == g_sect_name_tdata)
1644             {
1645                 sect_type = eSectionTypeData;
1646                 is_thread_specific = true;
1647             }
1648             else if (name == g_sect_name_tbss)
1649             {
1650                 sect_type = eSectionTypeZeroFill;
1651                 is_thread_specific = true;
1652             }
1653             // .debug_abbrev – Abbreviations used in the .debug_info section
1654             // .debug_aranges – Lookup table for mapping addresses to compilation units
1655             // .debug_frame – Call frame information
1656             // .debug_info – The core DWARF information section
1657             // .debug_line – Line number information
1658             // .debug_loc – Location lists used in DW_AT_location attributes
1659             // .debug_macinfo – Macro information
1660             // .debug_pubnames – Lookup table for mapping object and function names to compilation units
1661             // .debug_pubtypes – Lookup table for mapping type names to compilation units
1662             // .debug_ranges – Address ranges used in DW_AT_ranges attributes
1663             // .debug_str – String table used in .debug_info
1664             // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html
1665             // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644
1666             // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo
1667             else if (name == g_sect_name_dwarf_debug_abbrev)    sect_type = eSectionTypeDWARFDebugAbbrev;
1668             else if (name == g_sect_name_dwarf_debug_aranges)   sect_type = eSectionTypeDWARFDebugAranges;
1669             else if (name == g_sect_name_dwarf_debug_frame)     sect_type = eSectionTypeDWARFDebugFrame;
1670             else if (name == g_sect_name_dwarf_debug_info)      sect_type = eSectionTypeDWARFDebugInfo;
1671             else if (name == g_sect_name_dwarf_debug_line)      sect_type = eSectionTypeDWARFDebugLine;
1672             else if (name == g_sect_name_dwarf_debug_loc)       sect_type = eSectionTypeDWARFDebugLoc;
1673             else if (name == g_sect_name_dwarf_debug_macinfo)   sect_type = eSectionTypeDWARFDebugMacInfo;
1674             else if (name == g_sect_name_dwarf_debug_pubnames)  sect_type = eSectionTypeDWARFDebugPubNames;
1675             else if (name == g_sect_name_dwarf_debug_pubtypes)  sect_type = eSectionTypeDWARFDebugPubTypes;
1676             else if (name == g_sect_name_dwarf_debug_ranges)    sect_type = eSectionTypeDWARFDebugRanges;
1677             else if (name == g_sect_name_dwarf_debug_str)       sect_type = eSectionTypeDWARFDebugStr;
1678             else if (name == g_sect_name_eh_frame)              sect_type = eSectionTypeEHFrame;
1679 
1680             switch (header.sh_type)
1681             {
1682                 case SHT_SYMTAB:
1683                     assert (sect_type == eSectionTypeOther);
1684                     sect_type = eSectionTypeELFSymbolTable;
1685                     break;
1686                 case SHT_DYNSYM:
1687                     assert (sect_type == eSectionTypeOther);
1688                     sect_type = eSectionTypeELFDynamicSymbols;
1689                     break;
1690                 case SHT_RELA:
1691                 case SHT_REL:
1692                     assert (sect_type == eSectionTypeOther);
1693                     sect_type = eSectionTypeELFRelocationEntries;
1694                     break;
1695                 case SHT_DYNAMIC:
1696                     assert (sect_type == eSectionTypeOther);
1697                     sect_type = eSectionTypeELFDynamicLinkInfo;
1698                     break;
1699             }
1700 
1701             if (eSectionTypeOther == sect_type)
1702             {
1703                 // the kalimba toolchain assumes that ELF section names are free-form. It does
1704                 // supports linkscripts which (can) give rise to various arbitarily named
1705                 // sections being "Code" or "Data".
1706                 sect_type = kalimbaSectionType(m_header, header);
1707             }
1708 
1709             const uint32_t target_bytes_size =
1710                 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ?
1711                 m_arch_spec.GetDataByteSize() :
1712                     eSectionTypeCode == sect_type ?
1713                     m_arch_spec.GetCodeByteSize() : 1;
1714 
1715             elf::elf_xword log2align = (header.sh_addralign==0)
1716                                         ? 0
1717                                         : llvm::Log2_64(header.sh_addralign);
1718             SectionSP section_sp (new Section(GetModule(),        // Module to which this section belongs.
1719                                               this,               // ObjectFile to which this section belongs and should read section data from.
1720                                               SectionIndex(I),    // Section ID.
1721                                               name,               // Section name.
1722                                               sect_type,          // Section type.
1723                                               header.sh_addr,     // VM address.
1724                                               vm_size,            // VM size in bytes of this section.
1725                                               header.sh_offset,   // Offset of this section in the file.
1726                                               file_size,          // Size of the section as found in the file.
1727                                               log2align,          // Alignment of the section
1728                                               header.sh_flags,    // Flags for this section.
1729                                               target_bytes_size));// Number of host bytes per target byte
1730 
1731             if (is_thread_specific)
1732                 section_sp->SetIsThreadSpecific (is_thread_specific);
1733             m_sections_ap->AddSection(section_sp);
1734         }
1735     }
1736 
1737     if (m_sections_ap.get())
1738     {
1739         if (GetType() == eTypeDebugInfo)
1740         {
1741             static const SectionType g_sections[] =
1742             {
1743                 eSectionTypeDWARFDebugAranges,
1744                 eSectionTypeDWARFDebugInfo,
1745                 eSectionTypeDWARFDebugAbbrev,
1746                 eSectionTypeDWARFDebugFrame,
1747                 eSectionTypeDWARFDebugLine,
1748                 eSectionTypeDWARFDebugStr,
1749                 eSectionTypeDWARFDebugLoc,
1750                 eSectionTypeDWARFDebugMacInfo,
1751                 eSectionTypeDWARFDebugPubNames,
1752                 eSectionTypeDWARFDebugPubTypes,
1753                 eSectionTypeDWARFDebugRanges,
1754                 eSectionTypeELFSymbolTable,
1755             };
1756             SectionList *elf_section_list = m_sections_ap.get();
1757             for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx)
1758             {
1759                 SectionType section_type = g_sections[idx];
1760                 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true));
1761                 if (section_sp)
1762                 {
1763                     SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true));
1764                     if (module_section_sp)
1765                         unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp);
1766                     else
1767                         unified_section_list.AddSection (section_sp);
1768                 }
1769             }
1770         }
1771         else
1772         {
1773             unified_section_list = *m_sections_ap;
1774         }
1775     }
1776 }
1777 
1778 // private
1779 unsigned
1780 ObjectFileELF::ParseSymbols (Symtab *symtab,
1781                              user_id_t start_id,
1782                              SectionList *section_list,
1783                              const size_t num_symbols,
1784                              const DataExtractor &symtab_data,
1785                              const DataExtractor &strtab_data)
1786 {
1787     ELFSymbol symbol;
1788     lldb::offset_t offset = 0;
1789 
1790     static ConstString text_section_name(".text");
1791     static ConstString init_section_name(".init");
1792     static ConstString fini_section_name(".fini");
1793     static ConstString ctors_section_name(".ctors");
1794     static ConstString dtors_section_name(".dtors");
1795 
1796     static ConstString data_section_name(".data");
1797     static ConstString rodata_section_name(".rodata");
1798     static ConstString rodata1_section_name(".rodata1");
1799     static ConstString data2_section_name(".data1");
1800     static ConstString bss_section_name(".bss");
1801     static ConstString opd_section_name(".opd");    // For ppc64
1802 
1803     //StreamFile strm(stdout, false);
1804     unsigned i;
1805     for (i = 0; i < num_symbols; ++i)
1806     {
1807         if (symbol.Parse(symtab_data, &offset) == false)
1808             break;
1809 
1810         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
1811 
1812         // No need to add non-section symbols that have no names
1813         if (symbol.getType() != STT_SECTION &&
1814             (symbol_name == NULL || symbol_name[0] == '\0'))
1815             continue;
1816 
1817         //symbol.Dump (&strm, i, &strtab_data, section_list);
1818 
1819         SectionSP symbol_section_sp;
1820         SymbolType symbol_type = eSymbolTypeInvalid;
1821         Elf64_Half symbol_idx = symbol.st_shndx;
1822 
1823         switch (symbol_idx)
1824         {
1825         case SHN_ABS:
1826             symbol_type = eSymbolTypeAbsolute;
1827             break;
1828         case SHN_UNDEF:
1829             symbol_type = eSymbolTypeUndefined;
1830             break;
1831         default:
1832             symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx);
1833             break;
1834         }
1835 
1836         // If a symbol is undefined do not process it further even if it has a STT type
1837         if (symbol_type != eSymbolTypeUndefined)
1838         {
1839             switch (symbol.getType())
1840             {
1841             default:
1842             case STT_NOTYPE:
1843                 // The symbol's type is not specified.
1844                 break;
1845 
1846             case STT_OBJECT:
1847                 // The symbol is associated with a data object, such as a variable,
1848                 // an array, etc.
1849                 symbol_type = eSymbolTypeData;
1850                 break;
1851 
1852             case STT_FUNC:
1853                 // The symbol is associated with a function or other executable code.
1854                 symbol_type = eSymbolTypeCode;
1855                 break;
1856 
1857             case STT_SECTION:
1858                 // The symbol is associated with a section. Symbol table entries of
1859                 // this type exist primarily for relocation and normally have
1860                 // STB_LOCAL binding.
1861                 break;
1862 
1863             case STT_FILE:
1864                 // Conventionally, the symbol's name gives the name of the source
1865                 // file associated with the object file. A file symbol has STB_LOCAL
1866                 // binding, its section index is SHN_ABS, and it precedes the other
1867                 // STB_LOCAL symbols for the file, if it is present.
1868                 symbol_type = eSymbolTypeSourceFile;
1869                 break;
1870 
1871             case STT_GNU_IFUNC:
1872                 // The symbol is associated with an indirect function. The actual
1873                 // function will be resolved if it is referenced.
1874                 symbol_type = eSymbolTypeResolver;
1875                 break;
1876             }
1877         }
1878 
1879         if (symbol_type == eSymbolTypeInvalid)
1880         {
1881             if (symbol_section_sp)
1882             {
1883                 const ConstString &sect_name = symbol_section_sp->GetName();
1884                 if (sect_name == text_section_name ||
1885                     sect_name == init_section_name ||
1886                     sect_name == fini_section_name ||
1887                     sect_name == ctors_section_name ||
1888                     sect_name == dtors_section_name)
1889                 {
1890                     symbol_type = eSymbolTypeCode;
1891                 }
1892                 else if (sect_name == data_section_name ||
1893                          sect_name == data2_section_name ||
1894                          sect_name == rodata_section_name ||
1895                          sect_name == rodata1_section_name ||
1896                          sect_name == bss_section_name)
1897                 {
1898                     symbol_type = eSymbolTypeData;
1899                 }
1900             }
1901         }
1902 
1903         int64_t symbol_value_offset = 0;
1904         uint32_t additional_flags = 0;
1905 
1906         ArchSpec arch;
1907         if (GetArchitecture(arch))
1908         {
1909             if (arch.GetMachine() == llvm::Triple::arm)
1910             {
1911                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1912                 {
1913                     // These are reserved for the specification (e.g.: mapping
1914                     // symbols). We don't want to add them to the symbol table.
1915 
1916                     if (symbol_type == eSymbolTypeCode)
1917                     {
1918                         llvm::StringRef symbol_name_ref(symbol_name);
1919                         if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a."))
1920                         {
1921                             // $a[.<any>]* - marks an ARM instruction sequence
1922                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1923                         }
1924                         else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") ||
1925                                  symbol_name_ref == "$t" || symbol_name_ref.startswith("$t."))
1926                         {
1927                             // $b[.<any>]* - marks a THUMB BL instruction sequence
1928                             // $t[.<any>]* - marks a THUMB instruction sequence
1929                             m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA;
1930                         }
1931                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1932                         {
1933                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1934                             m_address_class_map[symbol.st_value] = eAddressClassData;
1935                         }
1936                     }
1937 
1938                     continue;
1939                 }
1940             }
1941             else if (arch.GetMachine() == llvm::Triple::aarch64)
1942             {
1943                 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$')
1944                 {
1945                     // These are reserved for the specification (e.g.: mapping
1946                     // symbols). We don't want to add them to the symbol table.
1947 
1948                     if (symbol_type == eSymbolTypeCode)
1949                     {
1950                         llvm::StringRef symbol_name_ref(symbol_name);
1951                         if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x."))
1952                         {
1953                             // $x[.<any>]* - marks an A64 instruction sequence
1954                             m_address_class_map[symbol.st_value] = eAddressClassCode;
1955                         }
1956                         else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d."))
1957                         {
1958                             // $d[.<any>]* - marks a data item sequence (e.g. lit pool)
1959                             m_address_class_map[symbol.st_value] = eAddressClassData;
1960                         }
1961                     }
1962 
1963                     continue;
1964                 }
1965             }
1966 
1967             if (arch.GetMachine() == llvm::Triple::arm)
1968             {
1969                 if (symbol_type == eSymbolTypeCode)
1970                 {
1971                     if (symbol.st_value & 1)
1972                     {
1973                         // Subtracting 1 from the address effectively unsets
1974                         // the low order bit, which results in the address
1975                         // actually pointing to the beginning of the symbol.
1976                         // This delta will be used below in conjunction with
1977                         // symbol.st_value to produce the final symbol_value
1978                         // that we store in the symtab.
1979                         symbol_value_offset = -1;
1980                         additional_flags = ARM_ELF_SYM_IS_THUMB;
1981                         m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA;
1982                     }
1983                     else
1984                     {
1985                         // This address is ARM
1986                         m_address_class_map[symbol.st_value] = eAddressClassCode;
1987                     }
1988                 }
1989             }
1990         }
1991 
1992         // If the symbol section we've found has no data (SHT_NOBITS), then check the module section
1993         // list. This can happen if we're parsing the debug file and it has no .text section, for example.
1994         if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0))
1995         {
1996             ModuleSP module_sp(GetModule());
1997             if (module_sp)
1998             {
1999                 SectionList *module_section_list = module_sp->GetSectionList();
2000                 if (module_section_list && module_section_list != section_list)
2001                 {
2002                     const ConstString &sect_name = symbol_section_sp->GetName();
2003                     lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name));
2004                     if (section_sp && section_sp->GetFileSize())
2005                     {
2006                         symbol_section_sp = section_sp;
2007                     }
2008                 }
2009             }
2010         }
2011 
2012         // symbol_value_offset may contain 0 for ARM symbols or -1 for
2013         // THUMB symbols. See above for more details.
2014         uint64_t symbol_value = symbol.st_value + symbol_value_offset;
2015         if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile)
2016             symbol_value -= symbol_section_sp->GetFileAddress();
2017         bool is_global = symbol.getBinding() == STB_GLOBAL;
2018         uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags;
2019         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2020 
2021         llvm::StringRef symbol_ref(symbol_name);
2022 
2023         // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily.
2024         size_t version_pos = symbol_ref.find('@');
2025         bool has_suffix = version_pos != llvm::StringRef::npos;
2026         llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos);
2027         Mangled mangled(ConstString(symbol_bare), is_mangled);
2028 
2029         // Now append the suffix back to mangled and unmangled names. Only do it if the
2030         // demangling was sucessful (string is not empty).
2031         if (has_suffix)
2032         {
2033             llvm::StringRef suffix = symbol_ref.substr(version_pos);
2034 
2035             llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef();
2036             if (! mangled_name.empty())
2037                 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) );
2038 
2039             llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef();
2040             if (! demangled_name.empty())
2041                 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) );
2042         }
2043 
2044         Symbol dc_symbol(
2045             i + start_id,       // ID is the original symbol table index.
2046             mangled,
2047             symbol_type,        // Type of this symbol
2048             is_global,          // Is this globally visible?
2049             false,              // Is this symbol debug info?
2050             false,              // Is this symbol a trampoline?
2051             false,              // Is this symbol artificial?
2052             AddressRange(
2053                 symbol_section_sp,  // Section in which this symbol is defined or null.
2054                 symbol_value,       // Offset in section or symbol value.
2055                 symbol.st_size),    // Size in bytes of this symbol.
2056             symbol.st_size != 0,    // Size is valid if it is not 0
2057             has_suffix,             // Contains linker annotations?
2058             flags);                 // Symbol flags.
2059         symtab->AddSymbol(dc_symbol);
2060     }
2061     return i;
2062 }
2063 
2064 unsigned
2065 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab)
2066 {
2067     if (symtab->GetObjectFile() != this)
2068     {
2069         // If the symbol table section is owned by a different object file, have it do the
2070         // parsing.
2071         ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile());
2072         return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab);
2073     }
2074 
2075     // Get section list for this object file.
2076     SectionList *section_list = m_sections_ap.get();
2077     if (!section_list)
2078         return 0;
2079 
2080     user_id_t symtab_id = symtab->GetID();
2081     const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2082     assert(symtab_hdr->sh_type == SHT_SYMTAB ||
2083            symtab_hdr->sh_type == SHT_DYNSYM);
2084 
2085     // sh_link: section header index of associated string table.
2086     // Section ID's are ones based.
2087     user_id_t strtab_id = symtab_hdr->sh_link + 1;
2088     Section *strtab = section_list->FindSectionByID(strtab_id).get();
2089 
2090     if (symtab && strtab)
2091     {
2092         assert (symtab->GetObjectFile() == this);
2093         assert (strtab->GetObjectFile() == this);
2094 
2095         DataExtractor symtab_data;
2096         DataExtractor strtab_data;
2097         if (ReadSectionData(symtab, symtab_data) &&
2098             ReadSectionData(strtab, strtab_data))
2099         {
2100             size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize;
2101 
2102             return ParseSymbols(symbol_table, start_id, section_list,
2103                                 num_symbols, symtab_data, strtab_data);
2104         }
2105     }
2106 
2107     return 0;
2108 }
2109 
2110 size_t
2111 ObjectFileELF::ParseDynamicSymbols()
2112 {
2113     if (m_dynamic_symbols.size())
2114         return m_dynamic_symbols.size();
2115 
2116     SectionList *section_list = GetSectionList();
2117     if (!section_list)
2118         return 0;
2119 
2120     // Find the SHT_DYNAMIC section.
2121     Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get();
2122     if (!dynsym)
2123         return 0;
2124     assert (dynsym->GetObjectFile() == this);
2125 
2126     ELFDynamic symbol;
2127     DataExtractor dynsym_data;
2128     if (ReadSectionData(dynsym, dynsym_data))
2129     {
2130         const lldb::offset_t section_size = dynsym_data.GetByteSize();
2131         lldb::offset_t cursor = 0;
2132 
2133         while (cursor < section_size)
2134         {
2135             if (!symbol.Parse(dynsym_data, &cursor))
2136                 break;
2137 
2138             m_dynamic_symbols.push_back(symbol);
2139         }
2140     }
2141 
2142     return m_dynamic_symbols.size();
2143 }
2144 
2145 const ELFDynamic *
2146 ObjectFileELF::FindDynamicSymbol(unsigned tag)
2147 {
2148     if (!ParseDynamicSymbols())
2149         return NULL;
2150 
2151     DynamicSymbolCollIter I = m_dynamic_symbols.begin();
2152     DynamicSymbolCollIter E = m_dynamic_symbols.end();
2153     for ( ; I != E; ++I)
2154     {
2155         ELFDynamic *symbol = &*I;
2156 
2157         if (symbol->d_tag == tag)
2158             return symbol;
2159     }
2160 
2161     return NULL;
2162 }
2163 
2164 unsigned
2165 ObjectFileELF::PLTRelocationType()
2166 {
2167     // DT_PLTREL
2168     //  This member specifies the type of relocation entry to which the
2169     //  procedure linkage table refers. The d_val member holds DT_REL or
2170     //  DT_RELA, as appropriate. All relocations in a procedure linkage table
2171     //  must use the same relocation.
2172     const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL);
2173 
2174     if (symbol)
2175         return symbol->d_val;
2176 
2177     return 0;
2178 }
2179 
2180 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The
2181 // 0th entry in the plt table is ususally a resolution entry which have different size in some
2182 // architectures then the rest of the plt entries.
2183 static std::pair<uint64_t, uint64_t>
2184 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr)
2185 {
2186     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2187 
2188     // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes.
2189     // So round the entsize up by the alignment if addralign is set.
2190     elf_xword plt_entsize = plt_hdr->sh_addralign ?
2191         llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize;
2192 
2193     if (plt_entsize == 0)
2194     {
2195         // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt
2196         // entries based on the number of entries and the size of the plt section with the
2197         // asumption that the size of the 0th entry is at least as big as the size of the normal
2198         // entries and it isn't mutch bigger then that.
2199         if (plt_hdr->sh_addralign)
2200             plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign;
2201         else
2202             plt_entsize = plt_hdr->sh_size / (num_relocations + 1);
2203     }
2204 
2205     elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize;
2206 
2207     return std::make_pair(plt_entsize, plt_offset);
2208 }
2209 
2210 static unsigned
2211 ParsePLTRelocations(Symtab *symbol_table,
2212                     user_id_t start_id,
2213                     unsigned rel_type,
2214                     const ELFHeader *hdr,
2215                     const ELFSectionHeader *rel_hdr,
2216                     const ELFSectionHeader *plt_hdr,
2217                     const ELFSectionHeader *sym_hdr,
2218                     const lldb::SectionSP &plt_section_sp,
2219                     DataExtractor &rel_data,
2220                     DataExtractor &symtab_data,
2221                     DataExtractor &strtab_data)
2222 {
2223     ELFRelocation rel(rel_type);
2224     ELFSymbol symbol;
2225     lldb::offset_t offset = 0;
2226 
2227     uint64_t plt_offset, plt_entsize;
2228     std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr);
2229     const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2230 
2231     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2232     reloc_info_fn reloc_type;
2233     reloc_info_fn reloc_symbol;
2234 
2235     if (hdr->Is32Bit())
2236     {
2237         reloc_type = ELFRelocation::RelocType32;
2238         reloc_symbol = ELFRelocation::RelocSymbol32;
2239     }
2240     else
2241     {
2242         reloc_type = ELFRelocation::RelocType64;
2243         reloc_symbol = ELFRelocation::RelocSymbol64;
2244     }
2245 
2246     unsigned slot_type = hdr->GetRelocationJumpSlotType();
2247     unsigned i;
2248     for (i = 0; i < num_relocations; ++i)
2249     {
2250         if (rel.Parse(rel_data, &offset) == false)
2251             break;
2252 
2253         if (reloc_type(rel) != slot_type)
2254             continue;
2255 
2256         lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize;
2257         if (!symbol.Parse(symtab_data, &symbol_offset))
2258             break;
2259 
2260         const char *symbol_name = strtab_data.PeekCStr(symbol.st_name);
2261         bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false;
2262         uint64_t plt_index = plt_offset + i * plt_entsize;
2263 
2264         Symbol jump_symbol(
2265             i + start_id,    // Symbol table index
2266             symbol_name,     // symbol name.
2267             is_mangled,      // is the symbol name mangled?
2268             eSymbolTypeTrampoline, // Type of this symbol
2269             false,           // Is this globally visible?
2270             false,           // Is this symbol debug info?
2271             true,            // Is this symbol a trampoline?
2272             true,            // Is this symbol artificial?
2273             plt_section_sp,  // Section in which this symbol is defined or null.
2274             plt_index,       // Offset in section or symbol value.
2275             plt_entsize,     // Size in bytes of this symbol.
2276             true,            // Size is valid
2277             false,           // Contains linker annotations?
2278             0);              // Symbol flags.
2279 
2280         symbol_table->AddSymbol(jump_symbol);
2281     }
2282 
2283     return i;
2284 }
2285 
2286 unsigned
2287 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table,
2288                                       user_id_t start_id,
2289                                       const ELFSectionHeaderInfo *rel_hdr,
2290                                       user_id_t rel_id)
2291 {
2292     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2293 
2294     // The link field points to the associated symbol table. The info field
2295     // points to the section holding the plt.
2296     user_id_t symtab_id = rel_hdr->sh_link;
2297     user_id_t plt_id = rel_hdr->sh_info;
2298 
2299     // If the link field doesn't point to the appropriate symbol name table then
2300     // try to find it by name as some compiler don't fill in the link fields.
2301     if (!symtab_id)
2302         symtab_id = GetSectionIndexByName(".dynsym");
2303     if (!plt_id)
2304         plt_id = GetSectionIndexByName(".plt");
2305 
2306     if (!symtab_id || !plt_id)
2307         return 0;
2308 
2309     // Section ID's are ones based;
2310     symtab_id++;
2311     plt_id++;
2312 
2313     const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id);
2314     if (!plt_hdr)
2315         return 0;
2316 
2317     const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id);
2318     if (!sym_hdr)
2319         return 0;
2320 
2321     SectionList *section_list = m_sections_ap.get();
2322     if (!section_list)
2323         return 0;
2324 
2325     Section *rel_section = section_list->FindSectionByID(rel_id).get();
2326     if (!rel_section)
2327         return 0;
2328 
2329     SectionSP plt_section_sp (section_list->FindSectionByID(plt_id));
2330     if (!plt_section_sp)
2331         return 0;
2332 
2333     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2334     if (!symtab)
2335         return 0;
2336 
2337     // sh_link points to associated string table.
2338     Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get();
2339     if (!strtab)
2340         return 0;
2341 
2342     DataExtractor rel_data;
2343     if (!ReadSectionData(rel_section, rel_data))
2344         return 0;
2345 
2346     DataExtractor symtab_data;
2347     if (!ReadSectionData(symtab, symtab_data))
2348         return 0;
2349 
2350     DataExtractor strtab_data;
2351     if (!ReadSectionData(strtab, strtab_data))
2352         return 0;
2353 
2354     unsigned rel_type = PLTRelocationType();
2355     if (!rel_type)
2356         return 0;
2357 
2358     return ParsePLTRelocations (symbol_table,
2359                                 start_id,
2360                                 rel_type,
2361                                 &m_header,
2362                                 rel_hdr,
2363                                 plt_hdr,
2364                                 sym_hdr,
2365                                 plt_section_sp,
2366                                 rel_data,
2367                                 symtab_data,
2368                                 strtab_data);
2369 }
2370 
2371 unsigned
2372 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr,
2373                 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr,
2374                 DataExtractor &rel_data, DataExtractor &symtab_data,
2375                 DataExtractor &debug_data, Section* rel_section)
2376 {
2377     ELFRelocation rel(rel_hdr->sh_type);
2378     lldb::addr_t offset = 0;
2379     const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize;
2380     typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel);
2381     reloc_info_fn reloc_type;
2382     reloc_info_fn reloc_symbol;
2383 
2384     if (hdr->Is32Bit())
2385     {
2386         reloc_type = ELFRelocation::RelocType32;
2387         reloc_symbol = ELFRelocation::RelocSymbol32;
2388     }
2389     else
2390     {
2391         reloc_type = ELFRelocation::RelocType64;
2392         reloc_symbol = ELFRelocation::RelocSymbol64;
2393     }
2394 
2395     for (unsigned i = 0; i < num_relocations; ++i)
2396     {
2397         if (rel.Parse(rel_data, &offset) == false)
2398             break;
2399 
2400         Symbol* symbol = NULL;
2401 
2402         if (hdr->Is32Bit())
2403         {
2404             switch (reloc_type(rel)) {
2405             case R_386_32:
2406             case R_386_PC32:
2407             default:
2408                 assert(false && "unexpected relocation type");
2409             }
2410         } else {
2411             switch (reloc_type(rel)) {
2412             case R_X86_64_64:
2413             {
2414                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2415                 if (symbol)
2416                 {
2417                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2418                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2419                     uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel));
2420                     *dst = value + ELFRelocation::RelocAddend64(rel);
2421                 }
2422                 break;
2423             }
2424             case R_X86_64_32:
2425             case R_X86_64_32S:
2426             {
2427                 symbol = symtab->FindSymbolByID(reloc_symbol(rel));
2428                 if (symbol)
2429                 {
2430                     addr_t value = symbol->GetAddressRef().GetFileAddress();
2431                     value += ELFRelocation::RelocAddend32(rel);
2432                     assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) ||
2433                            (reloc_type(rel) == R_X86_64_32S &&
2434                             ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN)));
2435                     uint32_t truncated_addr = (value & 0xFFFFFFFF);
2436                     DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer();
2437                     uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel));
2438                     *dst = truncated_addr;
2439                 }
2440                 break;
2441             }
2442             case R_X86_64_PC32:
2443             default:
2444                 assert(false && "unexpected relocation type");
2445             }
2446         }
2447     }
2448 
2449     return 0;
2450 }
2451 
2452 unsigned
2453 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id)
2454 {
2455     assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL);
2456 
2457     // Parse in the section list if needed.
2458     SectionList *section_list = GetSectionList();
2459     if (!section_list)
2460         return 0;
2461 
2462     // Section ID's are ones based.
2463     user_id_t symtab_id = rel_hdr->sh_link + 1;
2464     user_id_t debug_id = rel_hdr->sh_info + 1;
2465 
2466     const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id);
2467     if (!symtab_hdr)
2468         return 0;
2469 
2470     const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id);
2471     if (!debug_hdr)
2472         return 0;
2473 
2474     Section *rel = section_list->FindSectionByID(rel_id).get();
2475     if (!rel)
2476         return 0;
2477 
2478     Section *symtab = section_list->FindSectionByID(symtab_id).get();
2479     if (!symtab)
2480         return 0;
2481 
2482     Section *debug = section_list->FindSectionByID(debug_id).get();
2483     if (!debug)
2484         return 0;
2485 
2486     DataExtractor rel_data;
2487     DataExtractor symtab_data;
2488     DataExtractor debug_data;
2489 
2490     if (ReadSectionData(rel, rel_data) &&
2491         ReadSectionData(symtab, symtab_data) &&
2492         ReadSectionData(debug, debug_data))
2493     {
2494         RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr,
2495                         rel_data, symtab_data, debug_data, debug);
2496     }
2497 
2498     return 0;
2499 }
2500 
2501 Symtab *
2502 ObjectFileELF::GetSymtab()
2503 {
2504     ModuleSP module_sp(GetModule());
2505     if (!module_sp)
2506         return NULL;
2507 
2508     // We always want to use the main object file so we (hopefully) only have one cached copy
2509     // of our symtab, dynamic sections, etc.
2510     ObjectFile *module_obj_file = module_sp->GetObjectFile();
2511     if (module_obj_file && module_obj_file != this)
2512         return module_obj_file->GetSymtab();
2513 
2514     if (m_symtab_ap.get() == NULL)
2515     {
2516         SectionList *section_list = module_sp->GetSectionList();
2517         if (!section_list)
2518             return NULL;
2519 
2520         uint64_t symbol_id = 0;
2521         lldb_private::Mutex::Locker locker(module_sp->GetMutex());
2522 
2523         m_symtab_ap.reset(new Symtab(this));
2524 
2525         // Sharable objects and dynamic executables usually have 2 distinct symbol
2526         // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller
2527         // version of the symtab that only contains global symbols. The information found
2528         // in the dynsym is therefore also found in the symtab, while the reverse is not
2529         // necessarily true.
2530         Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get();
2531         if (!symtab)
2532         {
2533             // The symtab section is non-allocable and can be stripped, so if it doesn't exist
2534             // then use the dynsym section which should always be there.
2535             symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get();
2536         }
2537         if (symtab)
2538             symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab);
2539 
2540         // DT_JMPREL
2541         //      If present, this entry's d_ptr member holds the address of relocation
2542         //      entries associated solely with the procedure linkage table. Separating
2543         //      these relocation entries lets the dynamic linker ignore them during
2544         //      process initialization, if lazy binding is enabled. If this entry is
2545         //      present, the related entries of types DT_PLTRELSZ and DT_PLTREL must
2546         //      also be present.
2547         const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL);
2548         if (symbol)
2549         {
2550             // Synthesize trampoline symbols to help navigate the PLT.
2551             addr_t addr = symbol->d_ptr;
2552             Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get();
2553             if (reloc_section)
2554             {
2555                 user_id_t reloc_id = reloc_section->GetID();
2556                 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id);
2557                 assert(reloc_header);
2558 
2559                 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id);
2560             }
2561         }
2562         m_symtab_ap->CalculateSymbolSizes();
2563     }
2564 
2565     for (SectionHeaderCollIter I = m_section_headers.begin();
2566          I != m_section_headers.end(); ++I)
2567     {
2568         if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL)
2569         {
2570             if (CalculateType() == eTypeObjectFile)
2571             {
2572                 const char *section_name = I->section_name.AsCString("");
2573                 if (strstr(section_name, ".rela.debug") ||
2574                     strstr(section_name, ".rel.debug"))
2575                 {
2576                     const ELFSectionHeader &reloc_header = *I;
2577                     user_id_t reloc_id = SectionIndex(I);
2578                     RelocateDebugSections(&reloc_header, reloc_id);
2579                 }
2580             }
2581         }
2582     }
2583     return m_symtab_ap.get();
2584 }
2585 
2586 Symbol *
2587 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique)
2588 {
2589     if (!m_symtab_ap.get())
2590         return nullptr; // GetSymtab() should be called first.
2591 
2592     const SectionList *section_list = GetSectionList();
2593     if (!section_list)
2594         return nullptr;
2595 
2596     if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo())
2597     {
2598         AddressRange range;
2599         if (eh_frame->GetAddressRange (so_addr, range))
2600         {
2601             const addr_t file_addr = range.GetBaseAddress().GetFileAddress();
2602             Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr;
2603             if (symbol)
2604                 return symbol;
2605 
2606             // Note that a (stripped) symbol won't be found by GetSymtab()...
2607             lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr);
2608             if (eh_sym_section_sp.get())
2609             {
2610                 addr_t section_base = eh_sym_section_sp->GetFileAddress();
2611                 addr_t offset = file_addr - section_base;
2612                 uint64_t symbol_id = m_symtab_ap->GetNumSymbols();
2613 
2614                 Symbol eh_symbol(
2615                         symbol_id,            // Symbol table index.
2616                         "???",                // Symbol name.
2617                         false,                // Is the symbol name mangled?
2618                         eSymbolTypeCode,      // Type of this symbol.
2619                         true,                 // Is this globally visible?
2620                         false,                // Is this symbol debug info?
2621                         false,                // Is this symbol a trampoline?
2622                         true,                 // Is this symbol artificial?
2623                         eh_sym_section_sp,    // Section in which this symbol is defined or null.
2624                         offset,               // Offset in section or symbol value.
2625                         range.GetByteSize(),  // Size in bytes of this symbol.
2626                         true,                 // Size is valid.
2627                         false,                // Contains linker annotations?
2628                         0);                   // Symbol flags.
2629                 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol))
2630                     return m_symtab_ap->SymbolAtIndex(symbol_id);
2631             }
2632         }
2633     }
2634     return nullptr;
2635 }
2636 
2637 
2638 bool
2639 ObjectFileELF::IsStripped ()
2640 {
2641     // TODO: determine this for ELF
2642     return false;
2643 }
2644 
2645 //===----------------------------------------------------------------------===//
2646 // Dump
2647 //
2648 // Dump the specifics of the runtime file container (such as any headers
2649 // segments, sections, etc).
2650 //----------------------------------------------------------------------
2651 void
2652 ObjectFileELF::Dump(Stream *s)
2653 {
2654     DumpELFHeader(s, m_header);
2655     s->EOL();
2656     DumpELFProgramHeaders(s);
2657     s->EOL();
2658     DumpELFSectionHeaders(s);
2659     s->EOL();
2660     SectionList *section_list = GetSectionList();
2661     if (section_list)
2662         section_list->Dump(s, NULL, true, UINT32_MAX);
2663     Symtab *symtab = GetSymtab();
2664     if (symtab)
2665         symtab->Dump(s, NULL, eSortOrderNone);
2666     s->EOL();
2667     DumpDependentModules(s);
2668     s->EOL();
2669 }
2670 
2671 //----------------------------------------------------------------------
2672 // DumpELFHeader
2673 //
2674 // Dump the ELF header to the specified output stream
2675 //----------------------------------------------------------------------
2676 void
2677 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header)
2678 {
2679     s->PutCString("ELF Header\n");
2680     s->Printf("e_ident[EI_MAG0   ] = 0x%2.2x\n", header.e_ident[EI_MAG0]);
2681     s->Printf("e_ident[EI_MAG1   ] = 0x%2.2x '%c'\n",
2682               header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]);
2683     s->Printf("e_ident[EI_MAG2   ] = 0x%2.2x '%c'\n",
2684               header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]);
2685     s->Printf("e_ident[EI_MAG3   ] = 0x%2.2x '%c'\n",
2686               header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]);
2687 
2688     s->Printf("e_ident[EI_CLASS  ] = 0x%2.2x\n", header.e_ident[EI_CLASS]);
2689     s->Printf("e_ident[EI_DATA   ] = 0x%2.2x ", header.e_ident[EI_DATA]);
2690     DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]);
2691     s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]);
2692     s->Printf ("e_ident[EI_PAD    ] = 0x%2.2x\n", header.e_ident[EI_PAD]);
2693 
2694     s->Printf("e_type      = 0x%4.4x ", header.e_type);
2695     DumpELFHeader_e_type(s, header.e_type);
2696     s->Printf("\ne_machine   = 0x%4.4x\n", header.e_machine);
2697     s->Printf("e_version   = 0x%8.8x\n", header.e_version);
2698     s->Printf("e_entry     = 0x%8.8" PRIx64 "\n", header.e_entry);
2699     s->Printf("e_phoff     = 0x%8.8" PRIx64 "\n", header.e_phoff);
2700     s->Printf("e_shoff     = 0x%8.8" PRIx64 "\n", header.e_shoff);
2701     s->Printf("e_flags     = 0x%8.8x\n", header.e_flags);
2702     s->Printf("e_ehsize    = 0x%4.4x\n", header.e_ehsize);
2703     s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize);
2704     s->Printf("e_phnum     = 0x%4.4x\n", header.e_phnum);
2705     s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize);
2706     s->Printf("e_shnum     = 0x%4.4x\n", header.e_shnum);
2707     s->Printf("e_shstrndx  = 0x%4.4x\n", header.e_shstrndx);
2708 }
2709 
2710 //----------------------------------------------------------------------
2711 // DumpELFHeader_e_type
2712 //
2713 // Dump an token value for the ELF header member e_type
2714 //----------------------------------------------------------------------
2715 void
2716 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type)
2717 {
2718     switch (e_type)
2719     {
2720     case ET_NONE:   *s << "ET_NONE"; break;
2721     case ET_REL:    *s << "ET_REL"; break;
2722     case ET_EXEC:   *s << "ET_EXEC"; break;
2723     case ET_DYN:    *s << "ET_DYN"; break;
2724     case ET_CORE:   *s << "ET_CORE"; break;
2725     default:
2726         break;
2727     }
2728 }
2729 
2730 //----------------------------------------------------------------------
2731 // DumpELFHeader_e_ident_EI_DATA
2732 //
2733 // Dump an token value for the ELF header member e_ident[EI_DATA]
2734 //----------------------------------------------------------------------
2735 void
2736 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data)
2737 {
2738     switch (ei_data)
2739     {
2740     case ELFDATANONE:   *s << "ELFDATANONE"; break;
2741     case ELFDATA2LSB:   *s << "ELFDATA2LSB - Little Endian"; break;
2742     case ELFDATA2MSB:   *s << "ELFDATA2MSB - Big Endian"; break;
2743     default:
2744         break;
2745     }
2746 }
2747 
2748 
2749 //----------------------------------------------------------------------
2750 // DumpELFProgramHeader
2751 //
2752 // Dump a single ELF program header to the specified output stream
2753 //----------------------------------------------------------------------
2754 void
2755 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph)
2756 {
2757     DumpELFProgramHeader_p_type(s, ph.p_type);
2758     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr);
2759     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags);
2760 
2761     DumpELFProgramHeader_p_flags(s, ph.p_flags);
2762     s->Printf(") %8.8" PRIx64, ph.p_align);
2763 }
2764 
2765 //----------------------------------------------------------------------
2766 // DumpELFProgramHeader_p_type
2767 //
2768 // Dump an token value for the ELF program header member p_type which
2769 // describes the type of the program header
2770 // ----------------------------------------------------------------------
2771 void
2772 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type)
2773 {
2774     const int kStrWidth = 15;
2775     switch (p_type)
2776     {
2777     CASE_AND_STREAM(s, PT_NULL        , kStrWidth);
2778     CASE_AND_STREAM(s, PT_LOAD        , kStrWidth);
2779     CASE_AND_STREAM(s, PT_DYNAMIC     , kStrWidth);
2780     CASE_AND_STREAM(s, PT_INTERP      , kStrWidth);
2781     CASE_AND_STREAM(s, PT_NOTE        , kStrWidth);
2782     CASE_AND_STREAM(s, PT_SHLIB       , kStrWidth);
2783     CASE_AND_STREAM(s, PT_PHDR        , kStrWidth);
2784     CASE_AND_STREAM(s, PT_TLS         , kStrWidth);
2785     CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth);
2786     default:
2787         s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, "");
2788         break;
2789     }
2790 }
2791 
2792 
2793 //----------------------------------------------------------------------
2794 // DumpELFProgramHeader_p_flags
2795 //
2796 // Dump an token value for the ELF program header member p_flags
2797 //----------------------------------------------------------------------
2798 void
2799 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags)
2800 {
2801     *s  << ((p_flags & PF_X) ? "PF_X" : "    ")
2802         << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ')
2803         << ((p_flags & PF_W) ? "PF_W" : "    ")
2804         << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ')
2805         << ((p_flags & PF_R) ? "PF_R" : "    ");
2806 }
2807 
2808 //----------------------------------------------------------------------
2809 // DumpELFProgramHeaders
2810 //
2811 // Dump all of the ELF program header to the specified output stream
2812 //----------------------------------------------------------------------
2813 void
2814 ObjectFileELF::DumpELFProgramHeaders(Stream *s)
2815 {
2816     if (!ParseProgramHeaders())
2817         return;
2818 
2819     s->PutCString("Program Headers\n");
2820     s->PutCString("IDX  p_type          p_offset p_vaddr  p_paddr  "
2821                   "p_filesz p_memsz  p_flags                   p_align\n");
2822     s->PutCString("==== --------------- -------- -------- -------- "
2823                   "-------- -------- ------------------------- --------\n");
2824 
2825     uint32_t idx = 0;
2826     for (ProgramHeaderCollConstIter I = m_program_headers.begin();
2827          I != m_program_headers.end(); ++I, ++idx)
2828     {
2829         s->Printf("[%2u] ", idx);
2830         ObjectFileELF::DumpELFProgramHeader(s, *I);
2831         s->EOL();
2832     }
2833 }
2834 
2835 //----------------------------------------------------------------------
2836 // DumpELFSectionHeader
2837 //
2838 // Dump a single ELF section header to the specified output stream
2839 //----------------------------------------------------------------------
2840 void
2841 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh)
2842 {
2843     s->Printf("%8.8x ", sh.sh_name);
2844     DumpELFSectionHeader_sh_type(s, sh.sh_type);
2845     s->Printf(" %8.8" PRIx64 " (", sh.sh_flags);
2846     DumpELFSectionHeader_sh_flags(s, sh.sh_flags);
2847     s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size);
2848     s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info);
2849     s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize);
2850 }
2851 
2852 //----------------------------------------------------------------------
2853 // DumpELFSectionHeader_sh_type
2854 //
2855 // Dump an token value for the ELF section header member sh_type which
2856 // describes the type of the section
2857 //----------------------------------------------------------------------
2858 void
2859 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type)
2860 {
2861     const int kStrWidth = 12;
2862     switch (sh_type)
2863     {
2864     CASE_AND_STREAM(s, SHT_NULL     , kStrWidth);
2865     CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth);
2866     CASE_AND_STREAM(s, SHT_SYMTAB   , kStrWidth);
2867     CASE_AND_STREAM(s, SHT_STRTAB   , kStrWidth);
2868     CASE_AND_STREAM(s, SHT_RELA     , kStrWidth);
2869     CASE_AND_STREAM(s, SHT_HASH     , kStrWidth);
2870     CASE_AND_STREAM(s, SHT_DYNAMIC  , kStrWidth);
2871     CASE_AND_STREAM(s, SHT_NOTE     , kStrWidth);
2872     CASE_AND_STREAM(s, SHT_NOBITS   , kStrWidth);
2873     CASE_AND_STREAM(s, SHT_REL      , kStrWidth);
2874     CASE_AND_STREAM(s, SHT_SHLIB    , kStrWidth);
2875     CASE_AND_STREAM(s, SHT_DYNSYM   , kStrWidth);
2876     CASE_AND_STREAM(s, SHT_LOPROC   , kStrWidth);
2877     CASE_AND_STREAM(s, SHT_HIPROC   , kStrWidth);
2878     CASE_AND_STREAM(s, SHT_LOUSER   , kStrWidth);
2879     CASE_AND_STREAM(s, SHT_HIUSER   , kStrWidth);
2880     default:
2881         s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, "");
2882         break;
2883     }
2884 }
2885 
2886 //----------------------------------------------------------------------
2887 // DumpELFSectionHeader_sh_flags
2888 //
2889 // Dump an token value for the ELF section header member sh_flags
2890 //----------------------------------------------------------------------
2891 void
2892 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags)
2893 {
2894     *s  << ((sh_flags & SHF_WRITE) ? "WRITE" : "     ")
2895         << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ')
2896         << ((sh_flags & SHF_ALLOC) ? "ALLOC" : "     ")
2897         << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ')
2898         << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : "         ");
2899 }
2900 
2901 //----------------------------------------------------------------------
2902 // DumpELFSectionHeaders
2903 //
2904 // Dump all of the ELF section header to the specified output stream
2905 //----------------------------------------------------------------------
2906 void
2907 ObjectFileELF::DumpELFSectionHeaders(Stream *s)
2908 {
2909     if (!ParseSectionHeaders())
2910         return;
2911 
2912     s->PutCString("Section Headers\n");
2913     s->PutCString("IDX  name     type         flags                            "
2914                   "addr     offset   size     link     info     addralgn "
2915                   "entsize  Name\n");
2916     s->PutCString("==== -------- ------------ -------------------------------- "
2917                   "-------- -------- -------- -------- -------- -------- "
2918                   "-------- ====================\n");
2919 
2920     uint32_t idx = 0;
2921     for (SectionHeaderCollConstIter I = m_section_headers.begin();
2922          I != m_section_headers.end(); ++I, ++idx)
2923     {
2924         s->Printf("[%2u] ", idx);
2925         ObjectFileELF::DumpELFSectionHeader(s, *I);
2926         const char* section_name = I->section_name.AsCString("");
2927         if (section_name)
2928             *s << ' ' << section_name << "\n";
2929     }
2930 }
2931 
2932 void
2933 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s)
2934 {
2935     size_t num_modules = ParseDependentModules();
2936 
2937     if (num_modules > 0)
2938     {
2939         s->PutCString("Dependent Modules:\n");
2940         for (unsigned i = 0; i < num_modules; ++i)
2941         {
2942             const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i);
2943             s->Printf("   %s\n", spec.GetFilename().GetCString());
2944         }
2945     }
2946 }
2947 
2948 bool
2949 ObjectFileELF::GetArchitecture (ArchSpec &arch)
2950 {
2951     if (!ParseHeader())
2952         return false;
2953 
2954     if (m_section_headers.empty())
2955     {
2956         // Allow elf notes to be parsed which may affect the detected architecture.
2957         ParseSectionHeaders();
2958     }
2959 
2960     arch = m_arch_spec;
2961     return true;
2962 }
2963 
2964 ObjectFile::Type
2965 ObjectFileELF::CalculateType()
2966 {
2967     switch (m_header.e_type)
2968     {
2969         case llvm::ELF::ET_NONE:
2970             // 0 - No file type
2971             return eTypeUnknown;
2972 
2973         case llvm::ELF::ET_REL:
2974             // 1 - Relocatable file
2975             return eTypeObjectFile;
2976 
2977         case llvm::ELF::ET_EXEC:
2978             // 2 - Executable file
2979             return eTypeExecutable;
2980 
2981         case llvm::ELF::ET_DYN:
2982             // 3 - Shared object file
2983             return eTypeSharedLibrary;
2984 
2985         case ET_CORE:
2986             // 4 - Core file
2987             return eTypeCoreFile;
2988 
2989         default:
2990             break;
2991     }
2992     return eTypeUnknown;
2993 }
2994 
2995 ObjectFile::Strata
2996 ObjectFileELF::CalculateStrata()
2997 {
2998     switch (m_header.e_type)
2999     {
3000         case llvm::ELF::ET_NONE:
3001             // 0 - No file type
3002             return eStrataUnknown;
3003 
3004         case llvm::ELF::ET_REL:
3005             // 1 - Relocatable file
3006             return eStrataUnknown;
3007 
3008         case llvm::ELF::ET_EXEC:
3009             // 2 - Executable file
3010             // TODO: is there any way to detect that an executable is a kernel
3011             // related executable by inspecting the program headers, section
3012             // headers, symbols, or any other flag bits???
3013             return eStrataUser;
3014 
3015         case llvm::ELF::ET_DYN:
3016             // 3 - Shared object file
3017             // TODO: is there any way to detect that an shared library is a kernel
3018             // related executable by inspecting the program headers, section
3019             // headers, symbols, or any other flag bits???
3020             return eStrataUnknown;
3021 
3022         case ET_CORE:
3023             // 4 - Core file
3024             // TODO: is there any way to detect that an core file is a kernel
3025             // related executable by inspecting the program headers, section
3026             // headers, symbols, or any other flag bits???
3027             return eStrataUnknown;
3028 
3029         default:
3030             break;
3031     }
3032     return eStrataUnknown;
3033 }
3034 
3035