1 //===-- ObjectFileELF.cpp ------------------------------------- -*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "ObjectFileELF.h" 11 12 #include <cassert> 13 #include <algorithm> 14 15 #include "lldb/Core/ArchSpec.h" 16 #include "lldb/Core/DataBuffer.h" 17 #include "lldb/Core/Error.h" 18 #include "lldb/Core/FileSpecList.h" 19 #include "lldb/Core/Log.h" 20 #include "lldb/Core/Module.h" 21 #include "lldb/Core/ModuleSpec.h" 22 #include "lldb/Core/PluginManager.h" 23 #include "lldb/Core/Section.h" 24 #include "lldb/Core/Stream.h" 25 #include "lldb/Core/Timer.h" 26 #include "lldb/Symbol/DWARFCallFrameInfo.h" 27 #include "lldb/Symbol/SymbolContext.h" 28 #include "lldb/Target/SectionLoadList.h" 29 #include "lldb/Target/Target.h" 30 31 #include "llvm/ADT/PointerUnion.h" 32 #include "llvm/ADT/StringRef.h" 33 #include "llvm/Support/MathExtras.h" 34 35 #define CASE_AND_STREAM(s, def, width) \ 36 case def: s->Printf("%-*s", width, #def); break; 37 38 using namespace lldb; 39 using namespace lldb_private; 40 using namespace elf; 41 using namespace llvm::ELF; 42 43 namespace { 44 45 // ELF note owner definitions 46 const char *const LLDB_NT_OWNER_FREEBSD = "FreeBSD"; 47 const char *const LLDB_NT_OWNER_GNU = "GNU"; 48 const char *const LLDB_NT_OWNER_NETBSD = "NetBSD"; 49 const char *const LLDB_NT_OWNER_CSR = "csr"; 50 const char *const LLDB_NT_OWNER_ANDROID = "Android"; 51 52 // ELF note type definitions 53 const elf_word LLDB_NT_FREEBSD_ABI_TAG = 0x01; 54 const elf_word LLDB_NT_FREEBSD_ABI_SIZE = 4; 55 56 const elf_word LLDB_NT_GNU_ABI_TAG = 0x01; 57 const elf_word LLDB_NT_GNU_ABI_SIZE = 16; 58 59 const elf_word LLDB_NT_GNU_BUILD_ID_TAG = 0x03; 60 61 const elf_word LLDB_NT_NETBSD_ABI_TAG = 0x01; 62 const elf_word LLDB_NT_NETBSD_ABI_SIZE = 4; 63 64 // GNU ABI note OS constants 65 const elf_word LLDB_NT_GNU_ABI_OS_LINUX = 0x00; 66 const elf_word LLDB_NT_GNU_ABI_OS_HURD = 0x01; 67 const elf_word LLDB_NT_GNU_ABI_OS_SOLARIS = 0x02; 68 69 //===----------------------------------------------------------------------===// 70 /// @class ELFRelocation 71 /// @brief Generic wrapper for ELFRel and ELFRela. 72 /// 73 /// This helper class allows us to parse both ELFRel and ELFRela relocation 74 /// entries in a generic manner. 75 class ELFRelocation 76 { 77 public: 78 79 /// Constructs an ELFRelocation entry with a personality as given by @p 80 /// type. 81 /// 82 /// @param type Either DT_REL or DT_RELA. Any other value is invalid. 83 ELFRelocation(unsigned type); 84 85 ~ELFRelocation(); 86 87 bool 88 Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset); 89 90 static unsigned 91 RelocType32(const ELFRelocation &rel); 92 93 static unsigned 94 RelocType64(const ELFRelocation &rel); 95 96 static unsigned 97 RelocSymbol32(const ELFRelocation &rel); 98 99 static unsigned 100 RelocSymbol64(const ELFRelocation &rel); 101 102 static unsigned 103 RelocOffset32(const ELFRelocation &rel); 104 105 static unsigned 106 RelocOffset64(const ELFRelocation &rel); 107 108 static unsigned 109 RelocAddend32(const ELFRelocation &rel); 110 111 static unsigned 112 RelocAddend64(const ELFRelocation &rel); 113 114 private: 115 typedef llvm::PointerUnion<ELFRel*, ELFRela*> RelocUnion; 116 117 RelocUnion reloc; 118 }; 119 120 ELFRelocation::ELFRelocation(unsigned type) 121 { 122 if (type == DT_REL || type == SHT_REL) 123 reloc = new ELFRel(); 124 else if (type == DT_RELA || type == SHT_RELA) 125 reloc = new ELFRela(); 126 else { 127 assert(false && "unexpected relocation type"); 128 reloc = static_cast<ELFRel*>(NULL); 129 } 130 } 131 132 ELFRelocation::~ELFRelocation() 133 { 134 if (reloc.is<ELFRel*>()) 135 delete reloc.get<ELFRel*>(); 136 else 137 delete reloc.get<ELFRela*>(); 138 } 139 140 bool 141 ELFRelocation::Parse(const lldb_private::DataExtractor &data, lldb::offset_t *offset) 142 { 143 if (reloc.is<ELFRel*>()) 144 return reloc.get<ELFRel*>()->Parse(data, offset); 145 else 146 return reloc.get<ELFRela*>()->Parse(data, offset); 147 } 148 149 unsigned 150 ELFRelocation::RelocType32(const ELFRelocation &rel) 151 { 152 if (rel.reloc.is<ELFRel*>()) 153 return ELFRel::RelocType32(*rel.reloc.get<ELFRel*>()); 154 else 155 return ELFRela::RelocType32(*rel.reloc.get<ELFRela*>()); 156 } 157 158 unsigned 159 ELFRelocation::RelocType64(const ELFRelocation &rel) 160 { 161 if (rel.reloc.is<ELFRel*>()) 162 return ELFRel::RelocType64(*rel.reloc.get<ELFRel*>()); 163 else 164 return ELFRela::RelocType64(*rel.reloc.get<ELFRela*>()); 165 } 166 167 unsigned 168 ELFRelocation::RelocSymbol32(const ELFRelocation &rel) 169 { 170 if (rel.reloc.is<ELFRel*>()) 171 return ELFRel::RelocSymbol32(*rel.reloc.get<ELFRel*>()); 172 else 173 return ELFRela::RelocSymbol32(*rel.reloc.get<ELFRela*>()); 174 } 175 176 unsigned 177 ELFRelocation::RelocSymbol64(const ELFRelocation &rel) 178 { 179 if (rel.reloc.is<ELFRel*>()) 180 return ELFRel::RelocSymbol64(*rel.reloc.get<ELFRel*>()); 181 else 182 return ELFRela::RelocSymbol64(*rel.reloc.get<ELFRela*>()); 183 } 184 185 unsigned 186 ELFRelocation::RelocOffset32(const ELFRelocation &rel) 187 { 188 if (rel.reloc.is<ELFRel*>()) 189 return rel.reloc.get<ELFRel*>()->r_offset; 190 else 191 return rel.reloc.get<ELFRela*>()->r_offset; 192 } 193 194 unsigned 195 ELFRelocation::RelocOffset64(const ELFRelocation &rel) 196 { 197 if (rel.reloc.is<ELFRel*>()) 198 return rel.reloc.get<ELFRel*>()->r_offset; 199 else 200 return rel.reloc.get<ELFRela*>()->r_offset; 201 } 202 203 unsigned 204 ELFRelocation::RelocAddend32(const ELFRelocation &rel) 205 { 206 if (rel.reloc.is<ELFRel*>()) 207 return 0; 208 else 209 return rel.reloc.get<ELFRela*>()->r_addend; 210 } 211 212 unsigned 213 ELFRelocation::RelocAddend64(const ELFRelocation &rel) 214 { 215 if (rel.reloc.is<ELFRel*>()) 216 return 0; 217 else 218 return rel.reloc.get<ELFRela*>()->r_addend; 219 } 220 221 } // end anonymous namespace 222 223 bool 224 ELFNote::Parse(const DataExtractor &data, lldb::offset_t *offset) 225 { 226 // Read all fields. 227 if (data.GetU32(offset, &n_namesz, 3) == NULL) 228 return false; 229 230 // The name field is required to be nul-terminated, and n_namesz 231 // includes the terminating nul in observed implementations (contrary 232 // to the ELF-64 spec). A special case is needed for cores generated 233 // by some older Linux versions, which write a note named "CORE" 234 // without a nul terminator and n_namesz = 4. 235 if (n_namesz == 4) 236 { 237 char buf[4]; 238 if (data.ExtractBytes (*offset, 4, data.GetByteOrder(), buf) != 4) 239 return false; 240 if (strncmp (buf, "CORE", 4) == 0) 241 { 242 n_name = "CORE"; 243 *offset += 4; 244 return true; 245 } 246 } 247 248 const char *cstr = data.GetCStr(offset, llvm::RoundUpToAlignment (n_namesz, 4)); 249 if (cstr == NULL) 250 { 251 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_SYMBOLS)); 252 if (log) 253 log->Printf("Failed to parse note name lacking nul terminator"); 254 255 return false; 256 } 257 n_name = cstr; 258 return true; 259 } 260 261 static uint32_t 262 kalimbaVariantFromElfFlags(const elf::elf_word e_flags) 263 { 264 const uint32_t dsp_rev = e_flags & 0xFF; 265 uint32_t kal_arch_variant = LLDB_INVALID_CPUTYPE; 266 switch(dsp_rev) 267 { 268 // TODO(mg11) Support more variants 269 case 10: 270 kal_arch_variant = llvm::Triple::KalimbaSubArch_v3; 271 break; 272 case 14: 273 kal_arch_variant = llvm::Triple::KalimbaSubArch_v4; 274 break; 275 case 17: 276 case 20: 277 kal_arch_variant = llvm::Triple::KalimbaSubArch_v5; 278 break; 279 default: 280 break; 281 } 282 return kal_arch_variant; 283 } 284 285 static uint32_t 286 mipsVariantFromElfFlags(const elf::elf_word e_flags, uint32_t endian) 287 { 288 const uint32_t mips_arch = e_flags & llvm::ELF::EF_MIPS_ARCH; 289 uint32_t arch_variant = ArchSpec::eMIPSSubType_unknown; 290 291 switch (mips_arch) 292 { 293 case llvm::ELF::EF_MIPS_ARCH_32: 294 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32el : ArchSpec::eMIPSSubType_mips32; 295 case llvm::ELF::EF_MIPS_ARCH_32R2: 296 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r2el : ArchSpec::eMIPSSubType_mips32r2; 297 case llvm::ELF::EF_MIPS_ARCH_32R6: 298 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips32r6el : ArchSpec::eMIPSSubType_mips32r6; 299 case llvm::ELF::EF_MIPS_ARCH_64: 300 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64el : ArchSpec::eMIPSSubType_mips64; 301 case llvm::ELF::EF_MIPS_ARCH_64R2: 302 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r2el : ArchSpec::eMIPSSubType_mips64r2; 303 case llvm::ELF::EF_MIPS_ARCH_64R6: 304 return (endian == ELFDATA2LSB) ? ArchSpec::eMIPSSubType_mips64r6el : ArchSpec::eMIPSSubType_mips64r6; 305 default: 306 break; 307 } 308 309 return arch_variant; 310 } 311 312 static uint32_t 313 subTypeFromElfHeader(const elf::ELFHeader& header) 314 { 315 if (header.e_machine == llvm::ELF::EM_MIPS) 316 return mipsVariantFromElfFlags (header.e_flags, 317 header.e_ident[EI_DATA]); 318 319 return 320 llvm::ELF::EM_CSR_KALIMBA == header.e_machine ? 321 kalimbaVariantFromElfFlags(header.e_flags) : 322 LLDB_INVALID_CPUTYPE; 323 } 324 325 //! The kalimba toolchain identifies a code section as being 326 //! one with the SHT_PROGBITS set in the section sh_type and the top 327 //! bit in the 32-bit address field set. 328 static lldb::SectionType 329 kalimbaSectionType( 330 const elf::ELFHeader& header, 331 const elf::ELFSectionHeader& sect_hdr) 332 { 333 if (llvm::ELF::EM_CSR_KALIMBA != header.e_machine) 334 { 335 return eSectionTypeOther; 336 } 337 338 if (llvm::ELF::SHT_NOBITS == sect_hdr.sh_type) 339 { 340 return eSectionTypeZeroFill; 341 } 342 343 if (llvm::ELF::SHT_PROGBITS == sect_hdr.sh_type) 344 { 345 const lldb::addr_t KAL_CODE_BIT = 1 << 31; 346 return KAL_CODE_BIT & sect_hdr.sh_addr ? 347 eSectionTypeCode : eSectionTypeData; 348 } 349 350 return eSectionTypeOther; 351 } 352 353 // Arbitrary constant used as UUID prefix for core files. 354 const uint32_t 355 ObjectFileELF::g_core_uuid_magic(0xE210C); 356 357 //------------------------------------------------------------------ 358 // Static methods. 359 //------------------------------------------------------------------ 360 void 361 ObjectFileELF::Initialize() 362 { 363 PluginManager::RegisterPlugin(GetPluginNameStatic(), 364 GetPluginDescriptionStatic(), 365 CreateInstance, 366 CreateMemoryInstance, 367 GetModuleSpecifications); 368 } 369 370 void 371 ObjectFileELF::Terminate() 372 { 373 PluginManager::UnregisterPlugin(CreateInstance); 374 } 375 376 lldb_private::ConstString 377 ObjectFileELF::GetPluginNameStatic() 378 { 379 static ConstString g_name("elf"); 380 return g_name; 381 } 382 383 const char * 384 ObjectFileELF::GetPluginDescriptionStatic() 385 { 386 return "ELF object file reader."; 387 } 388 389 ObjectFile * 390 ObjectFileELF::CreateInstance (const lldb::ModuleSP &module_sp, 391 DataBufferSP &data_sp, 392 lldb::offset_t data_offset, 393 const lldb_private::FileSpec* file, 394 lldb::offset_t file_offset, 395 lldb::offset_t length) 396 { 397 if (!data_sp) 398 { 399 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 400 data_offset = 0; 401 } 402 403 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 404 { 405 const uint8_t *magic = data_sp->GetBytes() + data_offset; 406 if (ELFHeader::MagicBytesMatch(magic)) 407 { 408 // Update the data to contain the entire file if it doesn't already 409 if (data_sp->GetByteSize() < length) { 410 data_sp = file->MemoryMapFileContentsIfLocal(file_offset, length); 411 data_offset = 0; 412 magic = data_sp->GetBytes(); 413 } 414 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 415 if (address_size == 4 || address_size == 8) 416 { 417 std::unique_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, data_offset, file, file_offset, length)); 418 ArchSpec spec; 419 if (objfile_ap->GetArchitecture(spec) && 420 objfile_ap->SetModulesArchitecture(spec)) 421 return objfile_ap.release(); 422 } 423 } 424 } 425 return NULL; 426 } 427 428 429 ObjectFile* 430 ObjectFileELF::CreateMemoryInstance (const lldb::ModuleSP &module_sp, 431 DataBufferSP& data_sp, 432 const lldb::ProcessSP &process_sp, 433 lldb::addr_t header_addr) 434 { 435 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT)) 436 { 437 const uint8_t *magic = data_sp->GetBytes(); 438 if (ELFHeader::MagicBytesMatch(magic)) 439 { 440 unsigned address_size = ELFHeader::AddressSizeInBytes(magic); 441 if (address_size == 4 || address_size == 8) 442 { 443 std::auto_ptr<ObjectFileELF> objfile_ap(new ObjectFileELF(module_sp, data_sp, process_sp, header_addr)); 444 ArchSpec spec; 445 if (objfile_ap->GetArchitecture(spec) && 446 objfile_ap->SetModulesArchitecture(spec)) 447 return objfile_ap.release(); 448 } 449 } 450 } 451 return NULL; 452 } 453 454 bool 455 ObjectFileELF::MagicBytesMatch (DataBufferSP& data_sp, 456 lldb::addr_t data_offset, 457 lldb::addr_t data_length) 458 { 459 if (data_sp && data_sp->GetByteSize() > (llvm::ELF::EI_NIDENT + data_offset)) 460 { 461 const uint8_t *magic = data_sp->GetBytes() + data_offset; 462 return ELFHeader::MagicBytesMatch(magic); 463 } 464 return false; 465 } 466 467 /* 468 * crc function from http://svnweb.freebsd.org/base/head/sys/libkern/crc32.c 469 * 470 * COPYRIGHT (C) 1986 Gary S. Brown. You may use this program, or 471 * code or tables extracted from it, as desired without restriction. 472 */ 473 static uint32_t 474 calc_crc32(uint32_t crc, const void *buf, size_t size) 475 { 476 static const uint32_t g_crc32_tab[] = 477 { 478 0x00000000, 0x77073096, 0xee0e612c, 0x990951ba, 0x076dc419, 0x706af48f, 479 0xe963a535, 0x9e6495a3, 0x0edb8832, 0x79dcb8a4, 0xe0d5e91e, 0x97d2d988, 480 0x09b64c2b, 0x7eb17cbd, 0xe7b82d07, 0x90bf1d91, 0x1db71064, 0x6ab020f2, 481 0xf3b97148, 0x84be41de, 0x1adad47d, 0x6ddde4eb, 0xf4d4b551, 0x83d385c7, 482 0x136c9856, 0x646ba8c0, 0xfd62f97a, 0x8a65c9ec, 0x14015c4f, 0x63066cd9, 483 0xfa0f3d63, 0x8d080df5, 0x3b6e20c8, 0x4c69105e, 0xd56041e4, 0xa2677172, 484 0x3c03e4d1, 0x4b04d447, 0xd20d85fd, 0xa50ab56b, 0x35b5a8fa, 0x42b2986c, 485 0xdbbbc9d6, 0xacbcf940, 0x32d86ce3, 0x45df5c75, 0xdcd60dcf, 0xabd13d59, 486 0x26d930ac, 0x51de003a, 0xc8d75180, 0xbfd06116, 0x21b4f4b5, 0x56b3c423, 487 0xcfba9599, 0xb8bda50f, 0x2802b89e, 0x5f058808, 0xc60cd9b2, 0xb10be924, 488 0x2f6f7c87, 0x58684c11, 0xc1611dab, 0xb6662d3d, 0x76dc4190, 0x01db7106, 489 0x98d220bc, 0xefd5102a, 0x71b18589, 0x06b6b51f, 0x9fbfe4a5, 0xe8b8d433, 490 0x7807c9a2, 0x0f00f934, 0x9609a88e, 0xe10e9818, 0x7f6a0dbb, 0x086d3d2d, 491 0x91646c97, 0xe6635c01, 0x6b6b51f4, 0x1c6c6162, 0x856530d8, 0xf262004e, 492 0x6c0695ed, 0x1b01a57b, 0x8208f4c1, 0xf50fc457, 0x65b0d9c6, 0x12b7e950, 493 0x8bbeb8ea, 0xfcb9887c, 0x62dd1ddf, 0x15da2d49, 0x8cd37cf3, 0xfbd44c65, 494 0x4db26158, 0x3ab551ce, 0xa3bc0074, 0xd4bb30e2, 0x4adfa541, 0x3dd895d7, 495 0xa4d1c46d, 0xd3d6f4fb, 0x4369e96a, 0x346ed9fc, 0xad678846, 0xda60b8d0, 496 0x44042d73, 0x33031de5, 0xaa0a4c5f, 0xdd0d7cc9, 0x5005713c, 0x270241aa, 497 0xbe0b1010, 0xc90c2086, 0x5768b525, 0x206f85b3, 0xb966d409, 0xce61e49f, 498 0x5edef90e, 0x29d9c998, 0xb0d09822, 0xc7d7a8b4, 0x59b33d17, 0x2eb40d81, 499 0xb7bd5c3b, 0xc0ba6cad, 0xedb88320, 0x9abfb3b6, 0x03b6e20c, 0x74b1d29a, 500 0xead54739, 0x9dd277af, 0x04db2615, 0x73dc1683, 0xe3630b12, 0x94643b84, 501 0x0d6d6a3e, 0x7a6a5aa8, 0xe40ecf0b, 0x9309ff9d, 0x0a00ae27, 0x7d079eb1, 502 0xf00f9344, 0x8708a3d2, 0x1e01f268, 0x6906c2fe, 0xf762575d, 0x806567cb, 503 0x196c3671, 0x6e6b06e7, 0xfed41b76, 0x89d32be0, 0x10da7a5a, 0x67dd4acc, 504 0xf9b9df6f, 0x8ebeeff9, 0x17b7be43, 0x60b08ed5, 0xd6d6a3e8, 0xa1d1937e, 505 0x38d8c2c4, 0x4fdff252, 0xd1bb67f1, 0xa6bc5767, 0x3fb506dd, 0x48b2364b, 506 0xd80d2bda, 0xaf0a1b4c, 0x36034af6, 0x41047a60, 0xdf60efc3, 0xa867df55, 507 0x316e8eef, 0x4669be79, 0xcb61b38c, 0xbc66831a, 0x256fd2a0, 0x5268e236, 508 0xcc0c7795, 0xbb0b4703, 0x220216b9, 0x5505262f, 0xc5ba3bbe, 0xb2bd0b28, 509 0x2bb45a92, 0x5cb36a04, 0xc2d7ffa7, 0xb5d0cf31, 0x2cd99e8b, 0x5bdeae1d, 510 0x9b64c2b0, 0xec63f226, 0x756aa39c, 0x026d930a, 0x9c0906a9, 0xeb0e363f, 511 0x72076785, 0x05005713, 0x95bf4a82, 0xe2b87a14, 0x7bb12bae, 0x0cb61b38, 512 0x92d28e9b, 0xe5d5be0d, 0x7cdcefb7, 0x0bdbdf21, 0x86d3d2d4, 0xf1d4e242, 513 0x68ddb3f8, 0x1fda836e, 0x81be16cd, 0xf6b9265b, 0x6fb077e1, 0x18b74777, 514 0x88085ae6, 0xff0f6a70, 0x66063bca, 0x11010b5c, 0x8f659eff, 0xf862ae69, 515 0x616bffd3, 0x166ccf45, 0xa00ae278, 0xd70dd2ee, 0x4e048354, 0x3903b3c2, 516 0xa7672661, 0xd06016f7, 0x4969474d, 0x3e6e77db, 0xaed16a4a, 0xd9d65adc, 517 0x40df0b66, 0x37d83bf0, 0xa9bcae53, 0xdebb9ec5, 0x47b2cf7f, 0x30b5ffe9, 518 0xbdbdf21c, 0xcabac28a, 0x53b39330, 0x24b4a3a6, 0xbad03605, 0xcdd70693, 519 0x54de5729, 0x23d967bf, 0xb3667a2e, 0xc4614ab8, 0x5d681b02, 0x2a6f2b94, 520 0xb40bbe37, 0xc30c8ea1, 0x5a05df1b, 0x2d02ef8d 521 }; 522 const uint8_t *p = (const uint8_t *)buf; 523 524 crc = crc ^ ~0U; 525 while (size--) 526 crc = g_crc32_tab[(crc ^ *p++) & 0xFF] ^ (crc >> 8); 527 return crc ^ ~0U; 528 } 529 530 static uint32_t 531 calc_gnu_debuglink_crc32(const void *buf, size_t size) 532 { 533 return calc_crc32(0U, buf, size); 534 } 535 536 uint32_t 537 ObjectFileELF::CalculateELFNotesSegmentsCRC32 (const ProgramHeaderColl& program_headers, 538 DataExtractor& object_data) 539 { 540 typedef ProgramHeaderCollConstIter Iter; 541 542 uint32_t core_notes_crc = 0; 543 544 for (Iter I = program_headers.begin(); I != program_headers.end(); ++I) 545 { 546 if (I->p_type == llvm::ELF::PT_NOTE) 547 { 548 const elf_off ph_offset = I->p_offset; 549 const size_t ph_size = I->p_filesz; 550 551 DataExtractor segment_data; 552 if (segment_data.SetData(object_data, ph_offset, ph_size) != ph_size) 553 { 554 // The ELF program header contained incorrect data, 555 // probably corefile is incomplete or corrupted. 556 break; 557 } 558 559 core_notes_crc = calc_crc32(core_notes_crc, 560 segment_data.GetDataStart(), 561 segment_data.GetByteSize()); 562 } 563 } 564 565 return core_notes_crc; 566 } 567 568 static const char* 569 OSABIAsCString (unsigned char osabi_byte) 570 { 571 #define _MAKE_OSABI_CASE(x) case x: return #x 572 switch (osabi_byte) 573 { 574 _MAKE_OSABI_CASE(ELFOSABI_NONE); 575 _MAKE_OSABI_CASE(ELFOSABI_HPUX); 576 _MAKE_OSABI_CASE(ELFOSABI_NETBSD); 577 _MAKE_OSABI_CASE(ELFOSABI_GNU); 578 _MAKE_OSABI_CASE(ELFOSABI_HURD); 579 _MAKE_OSABI_CASE(ELFOSABI_SOLARIS); 580 _MAKE_OSABI_CASE(ELFOSABI_AIX); 581 _MAKE_OSABI_CASE(ELFOSABI_IRIX); 582 _MAKE_OSABI_CASE(ELFOSABI_FREEBSD); 583 _MAKE_OSABI_CASE(ELFOSABI_TRU64); 584 _MAKE_OSABI_CASE(ELFOSABI_MODESTO); 585 _MAKE_OSABI_CASE(ELFOSABI_OPENBSD); 586 _MAKE_OSABI_CASE(ELFOSABI_OPENVMS); 587 _MAKE_OSABI_CASE(ELFOSABI_NSK); 588 _MAKE_OSABI_CASE(ELFOSABI_AROS); 589 _MAKE_OSABI_CASE(ELFOSABI_FENIXOS); 590 _MAKE_OSABI_CASE(ELFOSABI_C6000_ELFABI); 591 _MAKE_OSABI_CASE(ELFOSABI_C6000_LINUX); 592 _MAKE_OSABI_CASE(ELFOSABI_ARM); 593 _MAKE_OSABI_CASE(ELFOSABI_STANDALONE); 594 default: 595 return "<unknown-osabi>"; 596 } 597 #undef _MAKE_OSABI_CASE 598 } 599 600 // 601 // WARNING : This function is being deprecated 602 // It's functionality has moved to ArchSpec::SetArchitecture 603 // This function is only being kept to validate the move. 604 // 605 // TODO : Remove this function 606 static bool 607 GetOsFromOSABI (unsigned char osabi_byte, llvm::Triple::OSType &ostype) 608 { 609 switch (osabi_byte) 610 { 611 case ELFOSABI_AIX: ostype = llvm::Triple::OSType::AIX; break; 612 case ELFOSABI_FREEBSD: ostype = llvm::Triple::OSType::FreeBSD; break; 613 case ELFOSABI_GNU: ostype = llvm::Triple::OSType::Linux; break; 614 case ELFOSABI_NETBSD: ostype = llvm::Triple::OSType::NetBSD; break; 615 case ELFOSABI_OPENBSD: ostype = llvm::Triple::OSType::OpenBSD; break; 616 case ELFOSABI_SOLARIS: ostype = llvm::Triple::OSType::Solaris; break; 617 default: 618 ostype = llvm::Triple::OSType::UnknownOS; 619 } 620 return ostype != llvm::Triple::OSType::UnknownOS; 621 } 622 623 size_t 624 ObjectFileELF::GetModuleSpecifications (const lldb_private::FileSpec& file, 625 lldb::DataBufferSP& data_sp, 626 lldb::offset_t data_offset, 627 lldb::offset_t file_offset, 628 lldb::offset_t length, 629 lldb_private::ModuleSpecList &specs) 630 { 631 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 632 633 const size_t initial_count = specs.GetSize(); 634 635 if (ObjectFileELF::MagicBytesMatch(data_sp, 0, data_sp->GetByteSize())) 636 { 637 DataExtractor data; 638 data.SetData(data_sp); 639 elf::ELFHeader header; 640 if (header.Parse(data, &data_offset)) 641 { 642 if (data_sp) 643 { 644 ModuleSpec spec (file); 645 646 const uint32_t sub_type = subTypeFromElfHeader(header); 647 spec.GetArchitecture().SetArchitecture(eArchTypeELF, 648 header.e_machine, 649 sub_type, 650 header.e_ident[EI_OSABI]); 651 652 if (spec.GetArchitecture().IsValid()) 653 { 654 llvm::Triple::OSType ostype; 655 llvm::Triple::VendorType vendor; 656 llvm::Triple::OSType spec_ostype = spec.GetArchitecture ().GetTriple ().getOS (); 657 658 if (log) 659 log->Printf ("ObjectFileELF::%s file '%s' module OSABI: %s", __FUNCTION__, file.GetPath ().c_str (), OSABIAsCString (header.e_ident[EI_OSABI])); 660 661 // SetArchitecture should have set the vendor to unknown 662 vendor = spec.GetArchitecture ().GetTriple ().getVendor (); 663 assert(vendor == llvm::Triple::UnknownVendor); 664 665 // 666 // Validate it is ok to remove GetOsFromOSABI 667 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 668 assert(spec_ostype == ostype); 669 if (spec_ostype != llvm::Triple::OSType::UnknownOS) 670 { 671 if (log) 672 log->Printf ("ObjectFileELF::%s file '%s' set ELF module OS type from ELF header OSABI.", __FUNCTION__, file.GetPath ().c_str ()); 673 } 674 675 // Try to get the UUID from the section list. Usually that's at the end, so 676 // map the file in if we don't have it already. 677 size_t section_header_end = header.e_shoff + header.e_shnum * header.e_shentsize; 678 if (section_header_end > data_sp->GetByteSize()) 679 { 680 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, section_header_end); 681 data.SetData(data_sp); 682 } 683 684 uint32_t gnu_debuglink_crc = 0; 685 std::string gnu_debuglink_file; 686 SectionHeaderColl section_headers; 687 lldb_private::UUID &uuid = spec.GetUUID(); 688 689 GetSectionHeaderInfo(section_headers, data, header, uuid, gnu_debuglink_file, gnu_debuglink_crc, spec.GetArchitecture ()); 690 691 llvm::Triple &spec_triple = spec.GetArchitecture ().GetTriple (); 692 693 if (log) 694 log->Printf ("ObjectFileELF::%s file '%s' module set to triple: %s (architecture %s)", __FUNCTION__, file.GetPath ().c_str (), spec_triple.getTriple ().c_str (), spec.GetArchitecture ().GetArchitectureName ()); 695 696 if (!uuid.IsValid()) 697 { 698 uint32_t core_notes_crc = 0; 699 700 if (!gnu_debuglink_crc) 701 { 702 lldb_private::Timer scoped_timer (__PRETTY_FUNCTION__, 703 "Calculating module crc32 %s with size %" PRIu64 " KiB", 704 file.GetLastPathComponent().AsCString(), 705 (file.GetByteSize()-file_offset)/1024); 706 707 // For core files - which usually don't happen to have a gnu_debuglink, 708 // and are pretty bulky - calculating whole contents crc32 would be too much of luxury. 709 // Thus we will need to fallback to something simpler. 710 if (header.e_type == llvm::ELF::ET_CORE) 711 { 712 size_t program_headers_end = header.e_phoff + header.e_phnum * header.e_phentsize; 713 if (program_headers_end > data_sp->GetByteSize()) 714 { 715 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, program_headers_end); 716 data.SetData(data_sp); 717 } 718 ProgramHeaderColl program_headers; 719 GetProgramHeaderInfo(program_headers, data, header); 720 721 size_t segment_data_end = 0; 722 for (ProgramHeaderCollConstIter I = program_headers.begin(); 723 I != program_headers.end(); ++I) 724 { 725 segment_data_end = std::max<unsigned long long> (I->p_offset + I->p_filesz, segment_data_end); 726 } 727 728 if (segment_data_end > data_sp->GetByteSize()) 729 { 730 data_sp = file.MemoryMapFileContentsIfLocal(file_offset, segment_data_end); 731 data.SetData(data_sp); 732 } 733 734 core_notes_crc = CalculateELFNotesSegmentsCRC32 (program_headers, data); 735 } 736 else 737 { 738 // Need to map entire file into memory to calculate the crc. 739 data_sp = file.MemoryMapFileContentsIfLocal (file_offset, SIZE_MAX); 740 data.SetData(data_sp); 741 gnu_debuglink_crc = calc_gnu_debuglink_crc32 (data.GetDataStart(), data.GetByteSize()); 742 } 743 } 744 if (gnu_debuglink_crc) 745 { 746 // Use 4 bytes of crc from the .gnu_debuglink section. 747 uint32_t uuidt[4] = { gnu_debuglink_crc, 0, 0, 0 }; 748 uuid.SetBytes (uuidt, sizeof(uuidt)); 749 } 750 else if (core_notes_crc) 751 { 752 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it look different form 753 // .gnu_debuglink crc followed by 4 bytes of note segments crc. 754 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 755 uuid.SetBytes (uuidt, sizeof(uuidt)); 756 } 757 } 758 759 specs.Append(spec); 760 } 761 } 762 } 763 } 764 765 return specs.GetSize() - initial_count; 766 } 767 768 //------------------------------------------------------------------ 769 // PluginInterface protocol 770 //------------------------------------------------------------------ 771 lldb_private::ConstString 772 ObjectFileELF::GetPluginName() 773 { 774 return GetPluginNameStatic(); 775 } 776 777 uint32_t 778 ObjectFileELF::GetPluginVersion() 779 { 780 return m_plugin_version; 781 } 782 //------------------------------------------------------------------ 783 // ObjectFile protocol 784 //------------------------------------------------------------------ 785 786 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 787 DataBufferSP& data_sp, 788 lldb::offset_t data_offset, 789 const FileSpec* file, 790 lldb::offset_t file_offset, 791 lldb::offset_t length) : 792 ObjectFile(module_sp, file, file_offset, length, data_sp, data_offset), 793 m_header(), 794 m_uuid(), 795 m_gnu_debuglink_file(), 796 m_gnu_debuglink_crc(0), 797 m_program_headers(), 798 m_section_headers(), 799 m_dynamic_symbols(), 800 m_filespec_ap(), 801 m_entry_point_address(), 802 m_arch_spec() 803 { 804 if (file) 805 m_file = *file; 806 ::memset(&m_header, 0, sizeof(m_header)); 807 } 808 809 ObjectFileELF::ObjectFileELF (const lldb::ModuleSP &module_sp, 810 DataBufferSP& header_data_sp, 811 const lldb::ProcessSP &process_sp, 812 addr_t header_addr) : 813 ObjectFile(module_sp, process_sp, header_addr, header_data_sp), 814 m_header(), 815 m_uuid(), 816 m_gnu_debuglink_file(), 817 m_gnu_debuglink_crc(0), 818 m_program_headers(), 819 m_section_headers(), 820 m_dynamic_symbols(), 821 m_filespec_ap(), 822 m_entry_point_address(), 823 m_arch_spec() 824 { 825 ::memset(&m_header, 0, sizeof(m_header)); 826 } 827 828 ObjectFileELF::~ObjectFileELF() 829 { 830 } 831 832 bool 833 ObjectFileELF::IsExecutable() const 834 { 835 return ((m_header.e_type & ET_EXEC) != 0) || (m_header.e_entry != 0); 836 } 837 838 bool 839 ObjectFileELF::SetLoadAddress (Target &target, 840 lldb::addr_t value, 841 bool value_is_offset) 842 { 843 ModuleSP module_sp = GetModule(); 844 if (module_sp) 845 { 846 size_t num_loaded_sections = 0; 847 SectionList *section_list = GetSectionList (); 848 if (section_list) 849 { 850 if (value_is_offset) 851 { 852 const size_t num_sections = section_list->GetSize(); 853 size_t sect_idx = 0; 854 855 for (sect_idx = 0; sect_idx < num_sections; ++sect_idx) 856 { 857 // Iterate through the object file sections to find all 858 // of the sections that have SHF_ALLOC in their flag bits. 859 SectionSP section_sp (section_list->GetSectionAtIndex (sect_idx)); 860 // if (section_sp && !section_sp->IsThreadSpecific()) 861 if (section_sp && section_sp->Test(SHF_ALLOC)) 862 { 863 lldb::addr_t load_addr = section_sp->GetFileAddress() + value; 864 865 // On 32-bit systems the load address have to fit into 4 bytes. The rest of 866 // the bytes are the overflow from the addition. 867 if (GetAddressByteSize() == 4) 868 load_addr &= 0xFFFFFFFF; 869 870 if (target.GetSectionLoadList().SetSectionLoadAddress (section_sp, load_addr)) 871 ++num_loaded_sections; 872 } 873 } 874 return num_loaded_sections > 0; 875 } 876 else 877 { 878 // Not sure how to slide an ELF file given the base address 879 // of the ELF file in memory 880 } 881 } 882 } 883 return false; // If it changed 884 } 885 886 ByteOrder 887 ObjectFileELF::GetByteOrder() const 888 { 889 if (m_header.e_ident[EI_DATA] == ELFDATA2MSB) 890 return eByteOrderBig; 891 if (m_header.e_ident[EI_DATA] == ELFDATA2LSB) 892 return eByteOrderLittle; 893 return eByteOrderInvalid; 894 } 895 896 uint32_t 897 ObjectFileELF::GetAddressByteSize() const 898 { 899 return m_data.GetAddressByteSize(); 900 } 901 902 // Top 16 bits of the `Symbol` flags are available. 903 #define ARM_ELF_SYM_IS_THUMB (1 << 16) 904 905 AddressClass 906 ObjectFileELF::GetAddressClass (addr_t file_addr) 907 { 908 auto res = ObjectFile::GetAddressClass (file_addr); 909 910 if (res != eAddressClassCode) 911 return res; 912 913 auto ub = m_address_class_map.upper_bound(file_addr); 914 if (ub == m_address_class_map.begin()) 915 { 916 // No entry in the address class map before the address. Return 917 // default address class for an address in a code section. 918 return eAddressClassCode; 919 } 920 921 // Move iterator to the address class entry preceding address 922 --ub; 923 924 return ub->second; 925 } 926 927 size_t 928 ObjectFileELF::SectionIndex(const SectionHeaderCollIter &I) 929 { 930 return std::distance(m_section_headers.begin(), I) + 1u; 931 } 932 933 size_t 934 ObjectFileELF::SectionIndex(const SectionHeaderCollConstIter &I) const 935 { 936 return std::distance(m_section_headers.begin(), I) + 1u; 937 } 938 939 bool 940 ObjectFileELF::ParseHeader() 941 { 942 lldb::offset_t offset = 0; 943 if (!m_header.Parse(m_data, &offset)) 944 return false; 945 946 if (!IsInMemory()) 947 return true; 948 949 // For in memory object files m_data might not contain the full object file. Try to load it 950 // until the end of the "Section header table" what is at the end of the ELF file. 951 addr_t file_size = m_header.e_shoff + m_header.e_shnum * m_header.e_shentsize; 952 if (m_data.GetByteSize() < file_size) 953 { 954 ProcessSP process_sp (m_process_wp.lock()); 955 if (!process_sp) 956 return false; 957 958 DataBufferSP data_sp = ReadMemory(process_sp, m_memory_addr, file_size); 959 if (!data_sp) 960 return false; 961 m_data.SetData(data_sp, 0, file_size); 962 } 963 964 return true; 965 } 966 967 bool 968 ObjectFileELF::GetUUID(lldb_private::UUID* uuid) 969 { 970 // Need to parse the section list to get the UUIDs, so make sure that's been done. 971 if (!ParseSectionHeaders() && GetType() != ObjectFile::eTypeCoreFile) 972 return false; 973 974 if (m_uuid.IsValid()) 975 { 976 // We have the full build id uuid. 977 *uuid = m_uuid; 978 return true; 979 } 980 else if (GetType() == ObjectFile::eTypeCoreFile) 981 { 982 uint32_t core_notes_crc = 0; 983 984 if (!ParseProgramHeaders()) 985 return false; 986 987 core_notes_crc = CalculateELFNotesSegmentsCRC32(m_program_headers, m_data); 988 989 if (core_notes_crc) 990 { 991 // Use 8 bytes - first 4 bytes for *magic* prefix, mainly to make it 992 // look different form .gnu_debuglink crc - followed by 4 bytes of note 993 // segments crc. 994 uint32_t uuidt[4] = { g_core_uuid_magic, core_notes_crc, 0, 0 }; 995 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 996 } 997 } 998 else 999 { 1000 if (!m_gnu_debuglink_crc) 1001 m_gnu_debuglink_crc = calc_gnu_debuglink_crc32 (m_data.GetDataStart(), m_data.GetByteSize()); 1002 if (m_gnu_debuglink_crc) 1003 { 1004 // Use 4 bytes of crc from the .gnu_debuglink section. 1005 uint32_t uuidt[4] = { m_gnu_debuglink_crc, 0, 0, 0 }; 1006 m_uuid.SetBytes (uuidt, sizeof(uuidt)); 1007 } 1008 } 1009 1010 if (m_uuid.IsValid()) 1011 { 1012 *uuid = m_uuid; 1013 return true; 1014 } 1015 1016 return false; 1017 } 1018 1019 lldb_private::FileSpecList 1020 ObjectFileELF::GetDebugSymbolFilePaths() 1021 { 1022 FileSpecList file_spec_list; 1023 1024 if (!m_gnu_debuglink_file.empty()) 1025 { 1026 FileSpec file_spec (m_gnu_debuglink_file.c_str(), false); 1027 file_spec_list.Append (file_spec); 1028 } 1029 return file_spec_list; 1030 } 1031 1032 uint32_t 1033 ObjectFileELF::GetDependentModules(FileSpecList &files) 1034 { 1035 size_t num_modules = ParseDependentModules(); 1036 uint32_t num_specs = 0; 1037 1038 for (unsigned i = 0; i < num_modules; ++i) 1039 { 1040 if (files.AppendIfUnique(m_filespec_ap->GetFileSpecAtIndex(i))) 1041 num_specs++; 1042 } 1043 1044 return num_specs; 1045 } 1046 1047 Address 1048 ObjectFileELF::GetImageInfoAddress(Target *target) 1049 { 1050 if (!ParseDynamicSymbols()) 1051 return Address(); 1052 1053 SectionList *section_list = GetSectionList(); 1054 if (!section_list) 1055 return Address(); 1056 1057 // Find the SHT_DYNAMIC (.dynamic) section. 1058 SectionSP dynsym_section_sp (section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true)); 1059 if (!dynsym_section_sp) 1060 return Address(); 1061 assert (dynsym_section_sp->GetObjectFile() == this); 1062 1063 user_id_t dynsym_id = dynsym_section_sp->GetID(); 1064 const ELFSectionHeaderInfo *dynsym_hdr = GetSectionHeaderByIndex(dynsym_id); 1065 if (!dynsym_hdr) 1066 return Address(); 1067 1068 for (size_t i = 0; i < m_dynamic_symbols.size(); ++i) 1069 { 1070 ELFDynamic &symbol = m_dynamic_symbols[i]; 1071 1072 if (symbol.d_tag == DT_DEBUG) 1073 { 1074 // Compute the offset as the number of previous entries plus the 1075 // size of d_tag. 1076 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1077 return Address(dynsym_section_sp, offset); 1078 } 1079 else if (symbol.d_tag == DT_MIPS_RLD_MAP && target) 1080 { 1081 addr_t offset = i * dynsym_hdr->sh_entsize + GetAddressByteSize(); 1082 addr_t dyn_base = dynsym_section_sp->GetLoadBaseAddress(target); 1083 if (dyn_base == LLDB_INVALID_ADDRESS) 1084 return Address(); 1085 Address addr; 1086 Error error; 1087 if (target->ReadPointerFromMemory(dyn_base + offset, false, error, addr)) 1088 return addr; 1089 } 1090 } 1091 1092 return Address(); 1093 } 1094 1095 lldb_private::Address 1096 ObjectFileELF::GetEntryPointAddress () 1097 { 1098 if (m_entry_point_address.IsValid()) 1099 return m_entry_point_address; 1100 1101 if (!ParseHeader() || !IsExecutable()) 1102 return m_entry_point_address; 1103 1104 SectionList *section_list = GetSectionList(); 1105 addr_t offset = m_header.e_entry; 1106 1107 if (!section_list) 1108 m_entry_point_address.SetOffset(offset); 1109 else 1110 m_entry_point_address.ResolveAddressUsingFileSections(offset, section_list); 1111 return m_entry_point_address; 1112 } 1113 1114 //---------------------------------------------------------------------- 1115 // ParseDependentModules 1116 //---------------------------------------------------------------------- 1117 size_t 1118 ObjectFileELF::ParseDependentModules() 1119 { 1120 if (m_filespec_ap.get()) 1121 return m_filespec_ap->GetSize(); 1122 1123 m_filespec_ap.reset(new FileSpecList()); 1124 1125 if (!ParseSectionHeaders()) 1126 return 0; 1127 1128 SectionList *section_list = GetSectionList(); 1129 if (!section_list) 1130 return 0; 1131 1132 // Find the SHT_DYNAMIC section. 1133 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 1134 if (!dynsym) 1135 return 0; 1136 assert (dynsym->GetObjectFile() == this); 1137 1138 const ELFSectionHeaderInfo *header = GetSectionHeaderByIndex (dynsym->GetID()); 1139 if (!header) 1140 return 0; 1141 // sh_link: section header index of string table used by entries in the section. 1142 Section *dynstr = section_list->FindSectionByID (header->sh_link + 1).get(); 1143 if (!dynstr) 1144 return 0; 1145 1146 DataExtractor dynsym_data; 1147 DataExtractor dynstr_data; 1148 if (ReadSectionData(dynsym, dynsym_data) && 1149 ReadSectionData(dynstr, dynstr_data)) 1150 { 1151 ELFDynamic symbol; 1152 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 1153 lldb::offset_t offset = 0; 1154 1155 // The only type of entries we are concerned with are tagged DT_NEEDED, 1156 // yielding the name of a required library. 1157 while (offset < section_size) 1158 { 1159 if (!symbol.Parse(dynsym_data, &offset)) 1160 break; 1161 1162 if (symbol.d_tag != DT_NEEDED) 1163 continue; 1164 1165 uint32_t str_index = static_cast<uint32_t>(symbol.d_val); 1166 const char *lib_name = dynstr_data.PeekCStr(str_index); 1167 m_filespec_ap->Append(FileSpec(lib_name, true)); 1168 } 1169 } 1170 1171 return m_filespec_ap->GetSize(); 1172 } 1173 1174 //---------------------------------------------------------------------- 1175 // GetProgramHeaderInfo 1176 //---------------------------------------------------------------------- 1177 size_t 1178 ObjectFileELF::GetProgramHeaderInfo(ProgramHeaderColl &program_headers, 1179 DataExtractor &object_data, 1180 const ELFHeader &header) 1181 { 1182 // We have already parsed the program headers 1183 if (!program_headers.empty()) 1184 return program_headers.size(); 1185 1186 // If there are no program headers to read we are done. 1187 if (header.e_phnum == 0) 1188 return 0; 1189 1190 program_headers.resize(header.e_phnum); 1191 if (program_headers.size() != header.e_phnum) 1192 return 0; 1193 1194 const size_t ph_size = header.e_phnum * header.e_phentsize; 1195 const elf_off ph_offset = header.e_phoff; 1196 DataExtractor data; 1197 if (data.SetData(object_data, ph_offset, ph_size) != ph_size) 1198 return 0; 1199 1200 uint32_t idx; 1201 lldb::offset_t offset; 1202 for (idx = 0, offset = 0; idx < header.e_phnum; ++idx) 1203 { 1204 if (program_headers[idx].Parse(data, &offset) == false) 1205 break; 1206 } 1207 1208 if (idx < program_headers.size()) 1209 program_headers.resize(idx); 1210 1211 return program_headers.size(); 1212 1213 } 1214 1215 //---------------------------------------------------------------------- 1216 // ParseProgramHeaders 1217 //---------------------------------------------------------------------- 1218 size_t 1219 ObjectFileELF::ParseProgramHeaders() 1220 { 1221 return GetProgramHeaderInfo(m_program_headers, m_data, m_header); 1222 } 1223 1224 lldb_private::Error 1225 ObjectFileELF::RefineModuleDetailsFromNote (lldb_private::DataExtractor &data, lldb_private::ArchSpec &arch_spec, lldb_private::UUID &uuid) 1226 { 1227 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1228 Error error; 1229 1230 lldb::offset_t offset = 0; 1231 1232 while (true) 1233 { 1234 // Parse the note header. If this fails, bail out. 1235 ELFNote note = ELFNote(); 1236 if (!note.Parse(data, &offset)) 1237 { 1238 // We're done. 1239 return error; 1240 } 1241 1242 // If a tag processor handles the tag, it should set processed to true, and 1243 // the loop will assume the tag processing has moved entirely past the note's payload. 1244 // Otherwise, leave it false and the end of the loop will handle the offset properly. 1245 bool processed = false; 1246 1247 if (log) 1248 log->Printf ("ObjectFileELF::%s parsing note name='%s', type=%" PRIu32, __FUNCTION__, note.n_name.c_str (), note.n_type); 1249 1250 // Process FreeBSD ELF notes. 1251 if ((note.n_name == LLDB_NT_OWNER_FREEBSD) && 1252 (note.n_type == LLDB_NT_FREEBSD_ABI_TAG) && 1253 (note.n_descsz == LLDB_NT_FREEBSD_ABI_SIZE)) 1254 { 1255 // We'll consume the payload below. 1256 processed = true; 1257 1258 // Pull out the min version info. 1259 uint32_t version_info; 1260 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1261 { 1262 error.SetErrorString ("failed to read FreeBSD ABI note payload"); 1263 return error; 1264 } 1265 1266 // Convert the version info into a major/minor number. 1267 const uint32_t version_major = version_info / 100000; 1268 const uint32_t version_minor = (version_info / 1000) % 100; 1269 1270 char os_name[32]; 1271 snprintf (os_name, sizeof (os_name), "freebsd%" PRIu32 ".%" PRIu32, version_major, version_minor); 1272 1273 // Set the elf OS version to FreeBSD. Also clear the vendor. 1274 arch_spec.GetTriple ().setOSName (os_name); 1275 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1276 1277 if (log) 1278 log->Printf ("ObjectFileELF::%s detected FreeBSD %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_major, version_minor, static_cast<uint32_t> (version_info % 1000)); 1279 } 1280 // Process GNU ELF notes. 1281 else if (note.n_name == LLDB_NT_OWNER_GNU) 1282 { 1283 switch (note.n_type) 1284 { 1285 case LLDB_NT_GNU_ABI_TAG: 1286 if (note.n_descsz == LLDB_NT_GNU_ABI_SIZE) 1287 { 1288 // We'll consume the payload below. 1289 processed = true; 1290 1291 // Pull out the min OS version supporting the ABI. 1292 uint32_t version_info[4]; 1293 if (data.GetU32 (&offset, &version_info[0], note.n_descsz / 4) == nullptr) 1294 { 1295 error.SetErrorString ("failed to read GNU ABI note payload"); 1296 return error; 1297 } 1298 1299 // Set the OS per the OS field. 1300 switch (version_info[0]) 1301 { 1302 case LLDB_NT_GNU_ABI_OS_LINUX: 1303 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Linux); 1304 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1305 if (log) 1306 log->Printf ("ObjectFileELF::%s detected Linux, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1307 // FIXME we have the minimal version number, we could be propagating that. version_info[1] = OS Major, version_info[2] = OS Minor, version_info[3] = Revision. 1308 break; 1309 case LLDB_NT_GNU_ABI_OS_HURD: 1310 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::UnknownOS); 1311 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1312 if (log) 1313 log->Printf ("ObjectFileELF::%s detected Hurd (unsupported), min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1314 break; 1315 case LLDB_NT_GNU_ABI_OS_SOLARIS: 1316 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::Solaris); 1317 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1318 if (log) 1319 log->Printf ("ObjectFileELF::%s detected Solaris, min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[1], version_info[2], version_info[3]); 1320 break; 1321 default: 1322 if (log) 1323 log->Printf ("ObjectFileELF::%s unrecognized OS in note, id %" PRIu32 ", min version %" PRIu32 ".%" PRIu32 ".%" PRIu32, __FUNCTION__, version_info[0], version_info[1], version_info[2], version_info[3]); 1324 break; 1325 } 1326 } 1327 break; 1328 1329 case LLDB_NT_GNU_BUILD_ID_TAG: 1330 // Only bother processing this if we don't already have the uuid set. 1331 if (!uuid.IsValid()) 1332 { 1333 // We'll consume the payload below. 1334 processed = true; 1335 1336 // 16 bytes is UUID|MD5, 20 bytes is SHA1 1337 if ((note.n_descsz == 16 || note.n_descsz == 20)) 1338 { 1339 uint8_t uuidbuf[20]; 1340 if (data.GetU8 (&offset, &uuidbuf, note.n_descsz) == nullptr) 1341 { 1342 error.SetErrorString ("failed to read GNU_BUILD_ID note payload"); 1343 return error; 1344 } 1345 1346 // Save the build id as the UUID for the module. 1347 uuid.SetBytes (uuidbuf, note.n_descsz); 1348 } 1349 } 1350 break; 1351 } 1352 } 1353 // Process NetBSD ELF notes. 1354 else if ((note.n_name == LLDB_NT_OWNER_NETBSD) && 1355 (note.n_type == LLDB_NT_NETBSD_ABI_TAG) && 1356 (note.n_descsz == LLDB_NT_NETBSD_ABI_SIZE)) 1357 { 1358 1359 // We'll consume the payload below. 1360 processed = true; 1361 1362 // Pull out the min version info. 1363 uint32_t version_info; 1364 if (data.GetU32 (&offset, &version_info, 1) == nullptr) 1365 { 1366 error.SetErrorString ("failed to read NetBSD ABI note payload"); 1367 return error; 1368 } 1369 1370 // Set the elf OS version to NetBSD. Also clear the vendor. 1371 arch_spec.GetTriple ().setOS (llvm::Triple::OSType::NetBSD); 1372 arch_spec.GetTriple ().setVendor (llvm::Triple::VendorType::UnknownVendor); 1373 1374 if (log) 1375 log->Printf ("ObjectFileELF::%s detected NetBSD, min version constant %" PRIu32, __FUNCTION__, version_info); 1376 } 1377 // Process CSR kalimba notes 1378 else if ((note.n_type == LLDB_NT_GNU_ABI_TAG) && 1379 (note.n_name == LLDB_NT_OWNER_CSR)) 1380 { 1381 // We'll consume the payload below. 1382 processed = true; 1383 arch_spec.GetTriple().setOS(llvm::Triple::OSType::UnknownOS); 1384 arch_spec.GetTriple().setVendor(llvm::Triple::VendorType::CSR); 1385 1386 // TODO At some point the description string could be processed. 1387 // It could provide a steer towards the kalimba variant which 1388 // this ELF targets. 1389 if(note.n_descsz) 1390 { 1391 const char *cstr = data.GetCStr(&offset, llvm::RoundUpToAlignment (note.n_descsz, 4)); 1392 (void)cstr; 1393 } 1394 } 1395 else if (note.n_name == LLDB_NT_OWNER_ANDROID) 1396 { 1397 arch_spec.GetTriple().setOS(llvm::Triple::OSType::Linux); 1398 arch_spec.GetTriple().setEnvironment(llvm::Triple::EnvironmentType::Android); 1399 } 1400 1401 if (!processed) 1402 offset += llvm::RoundUpToAlignment(note.n_descsz, 4); 1403 } 1404 1405 return error; 1406 } 1407 1408 1409 //---------------------------------------------------------------------- 1410 // GetSectionHeaderInfo 1411 //---------------------------------------------------------------------- 1412 size_t 1413 ObjectFileELF::GetSectionHeaderInfo(SectionHeaderColl §ion_headers, 1414 lldb_private::DataExtractor &object_data, 1415 const elf::ELFHeader &header, 1416 lldb_private::UUID &uuid, 1417 std::string &gnu_debuglink_file, 1418 uint32_t &gnu_debuglink_crc, 1419 ArchSpec &arch_spec) 1420 { 1421 // Don't reparse the section headers if we already did that. 1422 if (!section_headers.empty()) 1423 return section_headers.size(); 1424 1425 // Only initialize the arch_spec to okay defaults if they're not already set. 1426 // We'll refine this with note data as we parse the notes. 1427 if (arch_spec.GetTriple ().getOS () == llvm::Triple::OSType::UnknownOS) 1428 { 1429 llvm::Triple::OSType ostype; 1430 llvm::Triple::OSType spec_ostype; 1431 const uint32_t sub_type = subTypeFromElfHeader(header); 1432 arch_spec.SetArchitecture (eArchTypeELF, header.e_machine, sub_type, header.e_ident[EI_OSABI]); 1433 // 1434 // Validate if it is ok to remove GetOsFromOSABI 1435 GetOsFromOSABI (header.e_ident[EI_OSABI], ostype); 1436 spec_ostype = arch_spec.GetTriple ().getOS (); 1437 assert(spec_ostype == ostype); 1438 } 1439 1440 // If there are no section headers we are done. 1441 if (header.e_shnum == 0) { 1442 #if 0 1443 if (arch_spec.GetTriple().getOS() == llvm::Triple::OSType::UnknownOS) 1444 arch_spec.GetTriple().setOSName(HostInfo::GetOSString().data()); 1445 #endif 1446 return 0; 1447 } 1448 1449 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_MODULES)); 1450 1451 section_headers.resize(header.e_shnum); 1452 if (section_headers.size() != header.e_shnum) 1453 return 0; 1454 1455 const size_t sh_size = header.e_shnum * header.e_shentsize; 1456 const elf_off sh_offset = header.e_shoff; 1457 DataExtractor sh_data; 1458 if (sh_data.SetData (object_data, sh_offset, sh_size) != sh_size) 1459 return 0; 1460 1461 uint32_t idx; 1462 lldb::offset_t offset; 1463 for (idx = 0, offset = 0; idx < header.e_shnum; ++idx) 1464 { 1465 if (section_headers[idx].Parse(sh_data, &offset) == false) 1466 break; 1467 } 1468 if (idx < section_headers.size()) 1469 section_headers.resize(idx); 1470 1471 const unsigned strtab_idx = header.e_shstrndx; 1472 if (strtab_idx && strtab_idx < section_headers.size()) 1473 { 1474 const ELFSectionHeaderInfo &sheader = section_headers[strtab_idx]; 1475 const size_t byte_size = sheader.sh_size; 1476 const Elf64_Off offset = sheader.sh_offset; 1477 lldb_private::DataExtractor shstr_data; 1478 1479 if (shstr_data.SetData (object_data, offset, byte_size) == byte_size) 1480 { 1481 for (SectionHeaderCollIter I = section_headers.begin(); 1482 I != section_headers.end(); ++I) 1483 { 1484 static ConstString g_sect_name_gnu_debuglink (".gnu_debuglink"); 1485 const ELFSectionHeaderInfo &header = *I; 1486 const uint64_t section_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1487 ConstString name(shstr_data.PeekCStr(I->sh_name)); 1488 1489 I->section_name = name; 1490 1491 if (name == g_sect_name_gnu_debuglink) 1492 { 1493 DataExtractor data; 1494 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1495 { 1496 lldb::offset_t gnu_debuglink_offset = 0; 1497 gnu_debuglink_file = data.GetCStr (&gnu_debuglink_offset); 1498 gnu_debuglink_offset = llvm::RoundUpToAlignment (gnu_debuglink_offset, 4); 1499 data.GetU32 (&gnu_debuglink_offset, &gnu_debuglink_crc, 1); 1500 } 1501 } 1502 1503 // Process ELF note section entries. 1504 bool is_note_header = (header.sh_type == SHT_NOTE); 1505 1506 // The section header ".note.android.ident" is stored as a 1507 // PROGBITS type header but it is actually a note header. 1508 static ConstString g_sect_name_android_ident (".note.android.ident"); 1509 if (!is_note_header && name == g_sect_name_android_ident) 1510 is_note_header = true; 1511 1512 if (is_note_header) 1513 { 1514 // Allow notes to refine module info. 1515 DataExtractor data; 1516 if (section_size && (data.SetData (object_data, header.sh_offset, section_size) == section_size)) 1517 { 1518 Error error = RefineModuleDetailsFromNote (data, arch_spec, uuid); 1519 if (error.Fail ()) 1520 { 1521 if (log) 1522 log->Printf ("ObjectFileELF::%s ELF note processing failed: %s", __FUNCTION__, error.AsCString ()); 1523 } 1524 } 1525 } 1526 } 1527 1528 return section_headers.size(); 1529 } 1530 } 1531 1532 section_headers.clear(); 1533 return 0; 1534 } 1535 1536 size_t 1537 ObjectFileELF::GetProgramHeaderCount() 1538 { 1539 return ParseProgramHeaders(); 1540 } 1541 1542 const elf::ELFProgramHeader * 1543 ObjectFileELF::GetProgramHeaderByIndex(lldb::user_id_t id) 1544 { 1545 if (!id || !ParseProgramHeaders()) 1546 return NULL; 1547 1548 if (--id < m_program_headers.size()) 1549 return &m_program_headers[id]; 1550 1551 return NULL; 1552 } 1553 1554 DataExtractor 1555 ObjectFileELF::GetSegmentDataByIndex(lldb::user_id_t id) 1556 { 1557 const elf::ELFProgramHeader *segment_header = GetProgramHeaderByIndex(id); 1558 if (segment_header == NULL) 1559 return DataExtractor(); 1560 return DataExtractor(m_data, segment_header->p_offset, segment_header->p_filesz); 1561 } 1562 1563 std::string 1564 ObjectFileELF::StripLinkerSymbolAnnotations(llvm::StringRef symbol_name) const 1565 { 1566 size_t pos = symbol_name.find("@"); 1567 return symbol_name.substr(0, pos).str(); 1568 } 1569 1570 //---------------------------------------------------------------------- 1571 // ParseSectionHeaders 1572 //---------------------------------------------------------------------- 1573 size_t 1574 ObjectFileELF::ParseSectionHeaders() 1575 { 1576 return GetSectionHeaderInfo(m_section_headers, m_data, m_header, m_uuid, m_gnu_debuglink_file, m_gnu_debuglink_crc, m_arch_spec); 1577 } 1578 1579 const ObjectFileELF::ELFSectionHeaderInfo * 1580 ObjectFileELF::GetSectionHeaderByIndex(lldb::user_id_t id) 1581 { 1582 if (!id || !ParseSectionHeaders()) 1583 return NULL; 1584 1585 if (--id < m_section_headers.size()) 1586 return &m_section_headers[id]; 1587 1588 return NULL; 1589 } 1590 1591 lldb::user_id_t 1592 ObjectFileELF::GetSectionIndexByName(const char* name) 1593 { 1594 if (!name || !name[0] || !ParseSectionHeaders()) 1595 return 0; 1596 for (size_t i = 1; i < m_section_headers.size(); ++i) 1597 if (m_section_headers[i].section_name == ConstString(name)) 1598 return i; 1599 return 0; 1600 } 1601 1602 void 1603 ObjectFileELF::CreateSections(SectionList &unified_section_list) 1604 { 1605 if (!m_sections_ap.get() && ParseSectionHeaders()) 1606 { 1607 m_sections_ap.reset(new SectionList()); 1608 1609 for (SectionHeaderCollIter I = m_section_headers.begin(); 1610 I != m_section_headers.end(); ++I) 1611 { 1612 const ELFSectionHeaderInfo &header = *I; 1613 1614 ConstString& name = I->section_name; 1615 const uint64_t file_size = header.sh_type == SHT_NOBITS ? 0 : header.sh_size; 1616 const uint64_t vm_size = header.sh_flags & SHF_ALLOC ? header.sh_size : 0; 1617 1618 static ConstString g_sect_name_text (".text"); 1619 static ConstString g_sect_name_data (".data"); 1620 static ConstString g_sect_name_bss (".bss"); 1621 static ConstString g_sect_name_tdata (".tdata"); 1622 static ConstString g_sect_name_tbss (".tbss"); 1623 static ConstString g_sect_name_dwarf_debug_abbrev (".debug_abbrev"); 1624 static ConstString g_sect_name_dwarf_debug_aranges (".debug_aranges"); 1625 static ConstString g_sect_name_dwarf_debug_frame (".debug_frame"); 1626 static ConstString g_sect_name_dwarf_debug_info (".debug_info"); 1627 static ConstString g_sect_name_dwarf_debug_line (".debug_line"); 1628 static ConstString g_sect_name_dwarf_debug_loc (".debug_loc"); 1629 static ConstString g_sect_name_dwarf_debug_macinfo (".debug_macinfo"); 1630 static ConstString g_sect_name_dwarf_debug_pubnames (".debug_pubnames"); 1631 static ConstString g_sect_name_dwarf_debug_pubtypes (".debug_pubtypes"); 1632 static ConstString g_sect_name_dwarf_debug_ranges (".debug_ranges"); 1633 static ConstString g_sect_name_dwarf_debug_str (".debug_str"); 1634 static ConstString g_sect_name_eh_frame (".eh_frame"); 1635 1636 SectionType sect_type = eSectionTypeOther; 1637 1638 bool is_thread_specific = false; 1639 1640 if (name == g_sect_name_text) sect_type = eSectionTypeCode; 1641 else if (name == g_sect_name_data) sect_type = eSectionTypeData; 1642 else if (name == g_sect_name_bss) sect_type = eSectionTypeZeroFill; 1643 else if (name == g_sect_name_tdata) 1644 { 1645 sect_type = eSectionTypeData; 1646 is_thread_specific = true; 1647 } 1648 else if (name == g_sect_name_tbss) 1649 { 1650 sect_type = eSectionTypeZeroFill; 1651 is_thread_specific = true; 1652 } 1653 // .debug_abbrev – Abbreviations used in the .debug_info section 1654 // .debug_aranges – Lookup table for mapping addresses to compilation units 1655 // .debug_frame – Call frame information 1656 // .debug_info – The core DWARF information section 1657 // .debug_line – Line number information 1658 // .debug_loc – Location lists used in DW_AT_location attributes 1659 // .debug_macinfo – Macro information 1660 // .debug_pubnames – Lookup table for mapping object and function names to compilation units 1661 // .debug_pubtypes – Lookup table for mapping type names to compilation units 1662 // .debug_ranges – Address ranges used in DW_AT_ranges attributes 1663 // .debug_str – String table used in .debug_info 1664 // MISSING? .gnu_debugdata - "mini debuginfo / MiniDebugInfo" section, http://sourceware.org/gdb/onlinedocs/gdb/MiniDebugInfo.html 1665 // MISSING? .debug-index - http://src.chromium.org/viewvc/chrome/trunk/src/build/gdb-add-index?pathrev=144644 1666 // MISSING? .debug_types - Type descriptions from DWARF 4? See http://gcc.gnu.org/wiki/DwarfSeparateTypeInfo 1667 else if (name == g_sect_name_dwarf_debug_abbrev) sect_type = eSectionTypeDWARFDebugAbbrev; 1668 else if (name == g_sect_name_dwarf_debug_aranges) sect_type = eSectionTypeDWARFDebugAranges; 1669 else if (name == g_sect_name_dwarf_debug_frame) sect_type = eSectionTypeDWARFDebugFrame; 1670 else if (name == g_sect_name_dwarf_debug_info) sect_type = eSectionTypeDWARFDebugInfo; 1671 else if (name == g_sect_name_dwarf_debug_line) sect_type = eSectionTypeDWARFDebugLine; 1672 else if (name == g_sect_name_dwarf_debug_loc) sect_type = eSectionTypeDWARFDebugLoc; 1673 else if (name == g_sect_name_dwarf_debug_macinfo) sect_type = eSectionTypeDWARFDebugMacInfo; 1674 else if (name == g_sect_name_dwarf_debug_pubnames) sect_type = eSectionTypeDWARFDebugPubNames; 1675 else if (name == g_sect_name_dwarf_debug_pubtypes) sect_type = eSectionTypeDWARFDebugPubTypes; 1676 else if (name == g_sect_name_dwarf_debug_ranges) sect_type = eSectionTypeDWARFDebugRanges; 1677 else if (name == g_sect_name_dwarf_debug_str) sect_type = eSectionTypeDWARFDebugStr; 1678 else if (name == g_sect_name_eh_frame) sect_type = eSectionTypeEHFrame; 1679 1680 switch (header.sh_type) 1681 { 1682 case SHT_SYMTAB: 1683 assert (sect_type == eSectionTypeOther); 1684 sect_type = eSectionTypeELFSymbolTable; 1685 break; 1686 case SHT_DYNSYM: 1687 assert (sect_type == eSectionTypeOther); 1688 sect_type = eSectionTypeELFDynamicSymbols; 1689 break; 1690 case SHT_RELA: 1691 case SHT_REL: 1692 assert (sect_type == eSectionTypeOther); 1693 sect_type = eSectionTypeELFRelocationEntries; 1694 break; 1695 case SHT_DYNAMIC: 1696 assert (sect_type == eSectionTypeOther); 1697 sect_type = eSectionTypeELFDynamicLinkInfo; 1698 break; 1699 } 1700 1701 if (eSectionTypeOther == sect_type) 1702 { 1703 // the kalimba toolchain assumes that ELF section names are free-form. It does 1704 // supports linkscripts which (can) give rise to various arbitarily named 1705 // sections being "Code" or "Data". 1706 sect_type = kalimbaSectionType(m_header, header); 1707 } 1708 1709 const uint32_t target_bytes_size = 1710 (eSectionTypeData == sect_type || eSectionTypeZeroFill == sect_type) ? 1711 m_arch_spec.GetDataByteSize() : 1712 eSectionTypeCode == sect_type ? 1713 m_arch_spec.GetCodeByteSize() : 1; 1714 1715 elf::elf_xword log2align = (header.sh_addralign==0) 1716 ? 0 1717 : llvm::Log2_64(header.sh_addralign); 1718 SectionSP section_sp (new Section(GetModule(), // Module to which this section belongs. 1719 this, // ObjectFile to which this section belongs and should read section data from. 1720 SectionIndex(I), // Section ID. 1721 name, // Section name. 1722 sect_type, // Section type. 1723 header.sh_addr, // VM address. 1724 vm_size, // VM size in bytes of this section. 1725 header.sh_offset, // Offset of this section in the file. 1726 file_size, // Size of the section as found in the file. 1727 log2align, // Alignment of the section 1728 header.sh_flags, // Flags for this section. 1729 target_bytes_size));// Number of host bytes per target byte 1730 1731 if (is_thread_specific) 1732 section_sp->SetIsThreadSpecific (is_thread_specific); 1733 m_sections_ap->AddSection(section_sp); 1734 } 1735 } 1736 1737 if (m_sections_ap.get()) 1738 { 1739 if (GetType() == eTypeDebugInfo) 1740 { 1741 static const SectionType g_sections[] = 1742 { 1743 eSectionTypeDWARFDebugAranges, 1744 eSectionTypeDWARFDebugInfo, 1745 eSectionTypeDWARFDebugAbbrev, 1746 eSectionTypeDWARFDebugFrame, 1747 eSectionTypeDWARFDebugLine, 1748 eSectionTypeDWARFDebugStr, 1749 eSectionTypeDWARFDebugLoc, 1750 eSectionTypeDWARFDebugMacInfo, 1751 eSectionTypeDWARFDebugPubNames, 1752 eSectionTypeDWARFDebugPubTypes, 1753 eSectionTypeDWARFDebugRanges, 1754 eSectionTypeELFSymbolTable, 1755 }; 1756 SectionList *elf_section_list = m_sections_ap.get(); 1757 for (size_t idx = 0; idx < sizeof(g_sections) / sizeof(g_sections[0]); ++idx) 1758 { 1759 SectionType section_type = g_sections[idx]; 1760 SectionSP section_sp (elf_section_list->FindSectionByType (section_type, true)); 1761 if (section_sp) 1762 { 1763 SectionSP module_section_sp (unified_section_list.FindSectionByType (section_type, true)); 1764 if (module_section_sp) 1765 unified_section_list.ReplaceSection (module_section_sp->GetID(), section_sp); 1766 else 1767 unified_section_list.AddSection (section_sp); 1768 } 1769 } 1770 } 1771 else 1772 { 1773 unified_section_list = *m_sections_ap; 1774 } 1775 } 1776 } 1777 1778 // private 1779 unsigned 1780 ObjectFileELF::ParseSymbols (Symtab *symtab, 1781 user_id_t start_id, 1782 SectionList *section_list, 1783 const size_t num_symbols, 1784 const DataExtractor &symtab_data, 1785 const DataExtractor &strtab_data) 1786 { 1787 ELFSymbol symbol; 1788 lldb::offset_t offset = 0; 1789 1790 static ConstString text_section_name(".text"); 1791 static ConstString init_section_name(".init"); 1792 static ConstString fini_section_name(".fini"); 1793 static ConstString ctors_section_name(".ctors"); 1794 static ConstString dtors_section_name(".dtors"); 1795 1796 static ConstString data_section_name(".data"); 1797 static ConstString rodata_section_name(".rodata"); 1798 static ConstString rodata1_section_name(".rodata1"); 1799 static ConstString data2_section_name(".data1"); 1800 static ConstString bss_section_name(".bss"); 1801 static ConstString opd_section_name(".opd"); // For ppc64 1802 1803 //StreamFile strm(stdout, false); 1804 unsigned i; 1805 for (i = 0; i < num_symbols; ++i) 1806 { 1807 if (symbol.Parse(symtab_data, &offset) == false) 1808 break; 1809 1810 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 1811 1812 // No need to add non-section symbols that have no names 1813 if (symbol.getType() != STT_SECTION && 1814 (symbol_name == NULL || symbol_name[0] == '\0')) 1815 continue; 1816 1817 //symbol.Dump (&strm, i, &strtab_data, section_list); 1818 1819 SectionSP symbol_section_sp; 1820 SymbolType symbol_type = eSymbolTypeInvalid; 1821 Elf64_Half symbol_idx = symbol.st_shndx; 1822 1823 switch (symbol_idx) 1824 { 1825 case SHN_ABS: 1826 symbol_type = eSymbolTypeAbsolute; 1827 break; 1828 case SHN_UNDEF: 1829 symbol_type = eSymbolTypeUndefined; 1830 break; 1831 default: 1832 symbol_section_sp = section_list->GetSectionAtIndex(symbol_idx); 1833 break; 1834 } 1835 1836 // If a symbol is undefined do not process it further even if it has a STT type 1837 if (symbol_type != eSymbolTypeUndefined) 1838 { 1839 switch (symbol.getType()) 1840 { 1841 default: 1842 case STT_NOTYPE: 1843 // The symbol's type is not specified. 1844 break; 1845 1846 case STT_OBJECT: 1847 // The symbol is associated with a data object, such as a variable, 1848 // an array, etc. 1849 symbol_type = eSymbolTypeData; 1850 break; 1851 1852 case STT_FUNC: 1853 // The symbol is associated with a function or other executable code. 1854 symbol_type = eSymbolTypeCode; 1855 break; 1856 1857 case STT_SECTION: 1858 // The symbol is associated with a section. Symbol table entries of 1859 // this type exist primarily for relocation and normally have 1860 // STB_LOCAL binding. 1861 break; 1862 1863 case STT_FILE: 1864 // Conventionally, the symbol's name gives the name of the source 1865 // file associated with the object file. A file symbol has STB_LOCAL 1866 // binding, its section index is SHN_ABS, and it precedes the other 1867 // STB_LOCAL symbols for the file, if it is present. 1868 symbol_type = eSymbolTypeSourceFile; 1869 break; 1870 1871 case STT_GNU_IFUNC: 1872 // The symbol is associated with an indirect function. The actual 1873 // function will be resolved if it is referenced. 1874 symbol_type = eSymbolTypeResolver; 1875 break; 1876 } 1877 } 1878 1879 if (symbol_type == eSymbolTypeInvalid) 1880 { 1881 if (symbol_section_sp) 1882 { 1883 const ConstString §_name = symbol_section_sp->GetName(); 1884 if (sect_name == text_section_name || 1885 sect_name == init_section_name || 1886 sect_name == fini_section_name || 1887 sect_name == ctors_section_name || 1888 sect_name == dtors_section_name) 1889 { 1890 symbol_type = eSymbolTypeCode; 1891 } 1892 else if (sect_name == data_section_name || 1893 sect_name == data2_section_name || 1894 sect_name == rodata_section_name || 1895 sect_name == rodata1_section_name || 1896 sect_name == bss_section_name) 1897 { 1898 symbol_type = eSymbolTypeData; 1899 } 1900 } 1901 } 1902 1903 int64_t symbol_value_offset = 0; 1904 uint32_t additional_flags = 0; 1905 1906 ArchSpec arch; 1907 if (GetArchitecture(arch)) 1908 { 1909 if (arch.GetMachine() == llvm::Triple::arm) 1910 { 1911 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1912 { 1913 // These are reserved for the specification (e.g.: mapping 1914 // symbols). We don't want to add them to the symbol table. 1915 1916 if (symbol_type == eSymbolTypeCode) 1917 { 1918 llvm::StringRef symbol_name_ref(symbol_name); 1919 if (symbol_name_ref == "$a" || symbol_name_ref.startswith("$a.")) 1920 { 1921 // $a[.<any>]* - marks an ARM instruction sequence 1922 m_address_class_map[symbol.st_value] = eAddressClassCode; 1923 } 1924 else if (symbol_name_ref == "$b" || symbol_name_ref.startswith("$b.") || 1925 symbol_name_ref == "$t" || symbol_name_ref.startswith("$t.")) 1926 { 1927 // $b[.<any>]* - marks a THUMB BL instruction sequence 1928 // $t[.<any>]* - marks a THUMB instruction sequence 1929 m_address_class_map[symbol.st_value] = eAddressClassCodeAlternateISA; 1930 } 1931 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1932 { 1933 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1934 m_address_class_map[symbol.st_value] = eAddressClassData; 1935 } 1936 } 1937 1938 continue; 1939 } 1940 } 1941 else if (arch.GetMachine() == llvm::Triple::aarch64) 1942 { 1943 if (symbol.getBinding() == STB_LOCAL && symbol_name && symbol_name[0] == '$') 1944 { 1945 // These are reserved for the specification (e.g.: mapping 1946 // symbols). We don't want to add them to the symbol table. 1947 1948 if (symbol_type == eSymbolTypeCode) 1949 { 1950 llvm::StringRef symbol_name_ref(symbol_name); 1951 if (symbol_name_ref == "$x" || symbol_name_ref.startswith("$x.")) 1952 { 1953 // $x[.<any>]* - marks an A64 instruction sequence 1954 m_address_class_map[symbol.st_value] = eAddressClassCode; 1955 } 1956 else if (symbol_name_ref == "$d" || symbol_name_ref.startswith("$d.")) 1957 { 1958 // $d[.<any>]* - marks a data item sequence (e.g. lit pool) 1959 m_address_class_map[symbol.st_value] = eAddressClassData; 1960 } 1961 } 1962 1963 continue; 1964 } 1965 } 1966 1967 if (arch.GetMachine() == llvm::Triple::arm) 1968 { 1969 if (symbol_type == eSymbolTypeCode) 1970 { 1971 if (symbol.st_value & 1) 1972 { 1973 // Subtracting 1 from the address effectively unsets 1974 // the low order bit, which results in the address 1975 // actually pointing to the beginning of the symbol. 1976 // This delta will be used below in conjunction with 1977 // symbol.st_value to produce the final symbol_value 1978 // that we store in the symtab. 1979 symbol_value_offset = -1; 1980 additional_flags = ARM_ELF_SYM_IS_THUMB; 1981 m_address_class_map[symbol.st_value^1] = eAddressClassCodeAlternateISA; 1982 } 1983 else 1984 { 1985 // This address is ARM 1986 m_address_class_map[symbol.st_value] = eAddressClassCode; 1987 } 1988 } 1989 } 1990 } 1991 1992 // If the symbol section we've found has no data (SHT_NOBITS), then check the module section 1993 // list. This can happen if we're parsing the debug file and it has no .text section, for example. 1994 if (symbol_section_sp && (symbol_section_sp->GetFileSize() == 0)) 1995 { 1996 ModuleSP module_sp(GetModule()); 1997 if (module_sp) 1998 { 1999 SectionList *module_section_list = module_sp->GetSectionList(); 2000 if (module_section_list && module_section_list != section_list) 2001 { 2002 const ConstString §_name = symbol_section_sp->GetName(); 2003 lldb::SectionSP section_sp (module_section_list->FindSectionByName (sect_name)); 2004 if (section_sp && section_sp->GetFileSize()) 2005 { 2006 symbol_section_sp = section_sp; 2007 } 2008 } 2009 } 2010 } 2011 2012 // symbol_value_offset may contain 0 for ARM symbols or -1 for 2013 // THUMB symbols. See above for more details. 2014 uint64_t symbol_value = symbol.st_value + symbol_value_offset; 2015 if (symbol_section_sp && CalculateType() != ObjectFile::Type::eTypeObjectFile) 2016 symbol_value -= symbol_section_sp->GetFileAddress(); 2017 bool is_global = symbol.getBinding() == STB_GLOBAL; 2018 uint32_t flags = symbol.st_other << 8 | symbol.st_info | additional_flags; 2019 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2020 2021 llvm::StringRef symbol_ref(symbol_name); 2022 2023 // Symbol names may contain @VERSION suffixes. Find those and strip them temporarily. 2024 size_t version_pos = symbol_ref.find('@'); 2025 bool has_suffix = version_pos != llvm::StringRef::npos; 2026 llvm::StringRef symbol_bare = symbol_ref.substr(0, version_pos); 2027 Mangled mangled(ConstString(symbol_bare), is_mangled); 2028 2029 // Now append the suffix back to mangled and unmangled names. Only do it if the 2030 // demangling was sucessful (string is not empty). 2031 if (has_suffix) 2032 { 2033 llvm::StringRef suffix = symbol_ref.substr(version_pos); 2034 2035 llvm::StringRef mangled_name = mangled.GetMangledName().GetStringRef(); 2036 if (! mangled_name.empty()) 2037 mangled.SetMangledName( ConstString((mangled_name + suffix).str()) ); 2038 2039 llvm::StringRef demangled_name = mangled.GetDemangledName().GetStringRef(); 2040 if (! demangled_name.empty()) 2041 mangled.SetDemangledName( ConstString((demangled_name + suffix).str()) ); 2042 } 2043 2044 Symbol dc_symbol( 2045 i + start_id, // ID is the original symbol table index. 2046 mangled, 2047 symbol_type, // Type of this symbol 2048 is_global, // Is this globally visible? 2049 false, // Is this symbol debug info? 2050 false, // Is this symbol a trampoline? 2051 false, // Is this symbol artificial? 2052 AddressRange( 2053 symbol_section_sp, // Section in which this symbol is defined or null. 2054 symbol_value, // Offset in section or symbol value. 2055 symbol.st_size), // Size in bytes of this symbol. 2056 symbol.st_size != 0, // Size is valid if it is not 0 2057 has_suffix, // Contains linker annotations? 2058 flags); // Symbol flags. 2059 symtab->AddSymbol(dc_symbol); 2060 } 2061 return i; 2062 } 2063 2064 unsigned 2065 ObjectFileELF::ParseSymbolTable(Symtab *symbol_table, user_id_t start_id, lldb_private::Section *symtab) 2066 { 2067 if (symtab->GetObjectFile() != this) 2068 { 2069 // If the symbol table section is owned by a different object file, have it do the 2070 // parsing. 2071 ObjectFileELF *obj_file_elf = static_cast<ObjectFileELF *>(symtab->GetObjectFile()); 2072 return obj_file_elf->ParseSymbolTable (symbol_table, start_id, symtab); 2073 } 2074 2075 // Get section list for this object file. 2076 SectionList *section_list = m_sections_ap.get(); 2077 if (!section_list) 2078 return 0; 2079 2080 user_id_t symtab_id = symtab->GetID(); 2081 const ELFSectionHeaderInfo *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2082 assert(symtab_hdr->sh_type == SHT_SYMTAB || 2083 symtab_hdr->sh_type == SHT_DYNSYM); 2084 2085 // sh_link: section header index of associated string table. 2086 // Section ID's are ones based. 2087 user_id_t strtab_id = symtab_hdr->sh_link + 1; 2088 Section *strtab = section_list->FindSectionByID(strtab_id).get(); 2089 2090 if (symtab && strtab) 2091 { 2092 assert (symtab->GetObjectFile() == this); 2093 assert (strtab->GetObjectFile() == this); 2094 2095 DataExtractor symtab_data; 2096 DataExtractor strtab_data; 2097 if (ReadSectionData(symtab, symtab_data) && 2098 ReadSectionData(strtab, strtab_data)) 2099 { 2100 size_t num_symbols = symtab_data.GetByteSize() / symtab_hdr->sh_entsize; 2101 2102 return ParseSymbols(symbol_table, start_id, section_list, 2103 num_symbols, symtab_data, strtab_data); 2104 } 2105 } 2106 2107 return 0; 2108 } 2109 2110 size_t 2111 ObjectFileELF::ParseDynamicSymbols() 2112 { 2113 if (m_dynamic_symbols.size()) 2114 return m_dynamic_symbols.size(); 2115 2116 SectionList *section_list = GetSectionList(); 2117 if (!section_list) 2118 return 0; 2119 2120 // Find the SHT_DYNAMIC section. 2121 Section *dynsym = section_list->FindSectionByType (eSectionTypeELFDynamicLinkInfo, true).get(); 2122 if (!dynsym) 2123 return 0; 2124 assert (dynsym->GetObjectFile() == this); 2125 2126 ELFDynamic symbol; 2127 DataExtractor dynsym_data; 2128 if (ReadSectionData(dynsym, dynsym_data)) 2129 { 2130 const lldb::offset_t section_size = dynsym_data.GetByteSize(); 2131 lldb::offset_t cursor = 0; 2132 2133 while (cursor < section_size) 2134 { 2135 if (!symbol.Parse(dynsym_data, &cursor)) 2136 break; 2137 2138 m_dynamic_symbols.push_back(symbol); 2139 } 2140 } 2141 2142 return m_dynamic_symbols.size(); 2143 } 2144 2145 const ELFDynamic * 2146 ObjectFileELF::FindDynamicSymbol(unsigned tag) 2147 { 2148 if (!ParseDynamicSymbols()) 2149 return NULL; 2150 2151 DynamicSymbolCollIter I = m_dynamic_symbols.begin(); 2152 DynamicSymbolCollIter E = m_dynamic_symbols.end(); 2153 for ( ; I != E; ++I) 2154 { 2155 ELFDynamic *symbol = &*I; 2156 2157 if (symbol->d_tag == tag) 2158 return symbol; 2159 } 2160 2161 return NULL; 2162 } 2163 2164 unsigned 2165 ObjectFileELF::PLTRelocationType() 2166 { 2167 // DT_PLTREL 2168 // This member specifies the type of relocation entry to which the 2169 // procedure linkage table refers. The d_val member holds DT_REL or 2170 // DT_RELA, as appropriate. All relocations in a procedure linkage table 2171 // must use the same relocation. 2172 const ELFDynamic *symbol = FindDynamicSymbol(DT_PLTREL); 2173 2174 if (symbol) 2175 return symbol->d_val; 2176 2177 return 0; 2178 } 2179 2180 // Returns the size of the normal plt entries and the offset of the first normal plt entry. The 2181 // 0th entry in the plt table is ususally a resolution entry which have different size in some 2182 // architectures then the rest of the plt entries. 2183 static std::pair<uint64_t, uint64_t> 2184 GetPltEntrySizeAndOffset(const ELFSectionHeader* rel_hdr, const ELFSectionHeader* plt_hdr) 2185 { 2186 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2187 2188 // Clang 3.3 sets entsize to 4 for 32-bit binaries, but the plt entries are 16 bytes. 2189 // So round the entsize up by the alignment if addralign is set. 2190 elf_xword plt_entsize = plt_hdr->sh_addralign ? 2191 llvm::RoundUpToAlignment (plt_hdr->sh_entsize, plt_hdr->sh_addralign) : plt_hdr->sh_entsize; 2192 2193 if (plt_entsize == 0) 2194 { 2195 // The linker haven't set the plt_hdr->sh_entsize field. Try to guess the size of the plt 2196 // entries based on the number of entries and the size of the plt section with the 2197 // asumption that the size of the 0th entry is at least as big as the size of the normal 2198 // entries and it isn't mutch bigger then that. 2199 if (plt_hdr->sh_addralign) 2200 plt_entsize = plt_hdr->sh_size / plt_hdr->sh_addralign / (num_relocations + 1) * plt_hdr->sh_addralign; 2201 else 2202 plt_entsize = plt_hdr->sh_size / (num_relocations + 1); 2203 } 2204 2205 elf_xword plt_offset = plt_hdr->sh_size - num_relocations * plt_entsize; 2206 2207 return std::make_pair(plt_entsize, plt_offset); 2208 } 2209 2210 static unsigned 2211 ParsePLTRelocations(Symtab *symbol_table, 2212 user_id_t start_id, 2213 unsigned rel_type, 2214 const ELFHeader *hdr, 2215 const ELFSectionHeader *rel_hdr, 2216 const ELFSectionHeader *plt_hdr, 2217 const ELFSectionHeader *sym_hdr, 2218 const lldb::SectionSP &plt_section_sp, 2219 DataExtractor &rel_data, 2220 DataExtractor &symtab_data, 2221 DataExtractor &strtab_data) 2222 { 2223 ELFRelocation rel(rel_type); 2224 ELFSymbol symbol; 2225 lldb::offset_t offset = 0; 2226 2227 uint64_t plt_offset, plt_entsize; 2228 std::tie(plt_entsize, plt_offset) = GetPltEntrySizeAndOffset(rel_hdr, plt_hdr); 2229 const elf_xword num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2230 2231 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2232 reloc_info_fn reloc_type; 2233 reloc_info_fn reloc_symbol; 2234 2235 if (hdr->Is32Bit()) 2236 { 2237 reloc_type = ELFRelocation::RelocType32; 2238 reloc_symbol = ELFRelocation::RelocSymbol32; 2239 } 2240 else 2241 { 2242 reloc_type = ELFRelocation::RelocType64; 2243 reloc_symbol = ELFRelocation::RelocSymbol64; 2244 } 2245 2246 unsigned slot_type = hdr->GetRelocationJumpSlotType(); 2247 unsigned i; 2248 for (i = 0; i < num_relocations; ++i) 2249 { 2250 if (rel.Parse(rel_data, &offset) == false) 2251 break; 2252 2253 if (reloc_type(rel) != slot_type) 2254 continue; 2255 2256 lldb::offset_t symbol_offset = reloc_symbol(rel) * sym_hdr->sh_entsize; 2257 if (!symbol.Parse(symtab_data, &symbol_offset)) 2258 break; 2259 2260 const char *symbol_name = strtab_data.PeekCStr(symbol.st_name); 2261 bool is_mangled = symbol_name ? (symbol_name[0] == '_' && symbol_name[1] == 'Z') : false; 2262 uint64_t plt_index = plt_offset + i * plt_entsize; 2263 2264 Symbol jump_symbol( 2265 i + start_id, // Symbol table index 2266 symbol_name, // symbol name. 2267 is_mangled, // is the symbol name mangled? 2268 eSymbolTypeTrampoline, // Type of this symbol 2269 false, // Is this globally visible? 2270 false, // Is this symbol debug info? 2271 true, // Is this symbol a trampoline? 2272 true, // Is this symbol artificial? 2273 plt_section_sp, // Section in which this symbol is defined or null. 2274 plt_index, // Offset in section or symbol value. 2275 plt_entsize, // Size in bytes of this symbol. 2276 true, // Size is valid 2277 false, // Contains linker annotations? 2278 0); // Symbol flags. 2279 2280 symbol_table->AddSymbol(jump_symbol); 2281 } 2282 2283 return i; 2284 } 2285 2286 unsigned 2287 ObjectFileELF::ParseTrampolineSymbols(Symtab *symbol_table, 2288 user_id_t start_id, 2289 const ELFSectionHeaderInfo *rel_hdr, 2290 user_id_t rel_id) 2291 { 2292 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2293 2294 // The link field points to the associated symbol table. The info field 2295 // points to the section holding the plt. 2296 user_id_t symtab_id = rel_hdr->sh_link; 2297 user_id_t plt_id = rel_hdr->sh_info; 2298 2299 // If the link field doesn't point to the appropriate symbol name table then 2300 // try to find it by name as some compiler don't fill in the link fields. 2301 if (!symtab_id) 2302 symtab_id = GetSectionIndexByName(".dynsym"); 2303 if (!plt_id) 2304 plt_id = GetSectionIndexByName(".plt"); 2305 2306 if (!symtab_id || !plt_id) 2307 return 0; 2308 2309 // Section ID's are ones based; 2310 symtab_id++; 2311 plt_id++; 2312 2313 const ELFSectionHeaderInfo *plt_hdr = GetSectionHeaderByIndex(plt_id); 2314 if (!plt_hdr) 2315 return 0; 2316 2317 const ELFSectionHeaderInfo *sym_hdr = GetSectionHeaderByIndex(symtab_id); 2318 if (!sym_hdr) 2319 return 0; 2320 2321 SectionList *section_list = m_sections_ap.get(); 2322 if (!section_list) 2323 return 0; 2324 2325 Section *rel_section = section_list->FindSectionByID(rel_id).get(); 2326 if (!rel_section) 2327 return 0; 2328 2329 SectionSP plt_section_sp (section_list->FindSectionByID(plt_id)); 2330 if (!plt_section_sp) 2331 return 0; 2332 2333 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2334 if (!symtab) 2335 return 0; 2336 2337 // sh_link points to associated string table. 2338 Section *strtab = section_list->FindSectionByID(sym_hdr->sh_link + 1).get(); 2339 if (!strtab) 2340 return 0; 2341 2342 DataExtractor rel_data; 2343 if (!ReadSectionData(rel_section, rel_data)) 2344 return 0; 2345 2346 DataExtractor symtab_data; 2347 if (!ReadSectionData(symtab, symtab_data)) 2348 return 0; 2349 2350 DataExtractor strtab_data; 2351 if (!ReadSectionData(strtab, strtab_data)) 2352 return 0; 2353 2354 unsigned rel_type = PLTRelocationType(); 2355 if (!rel_type) 2356 return 0; 2357 2358 return ParsePLTRelocations (symbol_table, 2359 start_id, 2360 rel_type, 2361 &m_header, 2362 rel_hdr, 2363 plt_hdr, 2364 sym_hdr, 2365 plt_section_sp, 2366 rel_data, 2367 symtab_data, 2368 strtab_data); 2369 } 2370 2371 unsigned 2372 ObjectFileELF::RelocateSection(Symtab* symtab, const ELFHeader *hdr, const ELFSectionHeader *rel_hdr, 2373 const ELFSectionHeader *symtab_hdr, const ELFSectionHeader *debug_hdr, 2374 DataExtractor &rel_data, DataExtractor &symtab_data, 2375 DataExtractor &debug_data, Section* rel_section) 2376 { 2377 ELFRelocation rel(rel_hdr->sh_type); 2378 lldb::addr_t offset = 0; 2379 const unsigned num_relocations = rel_hdr->sh_size / rel_hdr->sh_entsize; 2380 typedef unsigned (*reloc_info_fn)(const ELFRelocation &rel); 2381 reloc_info_fn reloc_type; 2382 reloc_info_fn reloc_symbol; 2383 2384 if (hdr->Is32Bit()) 2385 { 2386 reloc_type = ELFRelocation::RelocType32; 2387 reloc_symbol = ELFRelocation::RelocSymbol32; 2388 } 2389 else 2390 { 2391 reloc_type = ELFRelocation::RelocType64; 2392 reloc_symbol = ELFRelocation::RelocSymbol64; 2393 } 2394 2395 for (unsigned i = 0; i < num_relocations; ++i) 2396 { 2397 if (rel.Parse(rel_data, &offset) == false) 2398 break; 2399 2400 Symbol* symbol = NULL; 2401 2402 if (hdr->Is32Bit()) 2403 { 2404 switch (reloc_type(rel)) { 2405 case R_386_32: 2406 case R_386_PC32: 2407 default: 2408 assert(false && "unexpected relocation type"); 2409 } 2410 } else { 2411 switch (reloc_type(rel)) { 2412 case R_X86_64_64: 2413 { 2414 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2415 if (symbol) 2416 { 2417 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2418 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2419 uint64_t* dst = reinterpret_cast<uint64_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset64(rel)); 2420 *dst = value + ELFRelocation::RelocAddend64(rel); 2421 } 2422 break; 2423 } 2424 case R_X86_64_32: 2425 case R_X86_64_32S: 2426 { 2427 symbol = symtab->FindSymbolByID(reloc_symbol(rel)); 2428 if (symbol) 2429 { 2430 addr_t value = symbol->GetAddressRef().GetFileAddress(); 2431 value += ELFRelocation::RelocAddend32(rel); 2432 assert((reloc_type(rel) == R_X86_64_32 && (value <= UINT32_MAX)) || 2433 (reloc_type(rel) == R_X86_64_32S && 2434 ((int64_t)value <= INT32_MAX && (int64_t)value >= INT32_MIN))); 2435 uint32_t truncated_addr = (value & 0xFFFFFFFF); 2436 DataBufferSP& data_buffer_sp = debug_data.GetSharedDataBuffer(); 2437 uint32_t* dst = reinterpret_cast<uint32_t*>(data_buffer_sp->GetBytes() + rel_section->GetFileOffset() + ELFRelocation::RelocOffset32(rel)); 2438 *dst = truncated_addr; 2439 } 2440 break; 2441 } 2442 case R_X86_64_PC32: 2443 default: 2444 assert(false && "unexpected relocation type"); 2445 } 2446 } 2447 } 2448 2449 return 0; 2450 } 2451 2452 unsigned 2453 ObjectFileELF::RelocateDebugSections(const ELFSectionHeader *rel_hdr, user_id_t rel_id) 2454 { 2455 assert(rel_hdr->sh_type == SHT_RELA || rel_hdr->sh_type == SHT_REL); 2456 2457 // Parse in the section list if needed. 2458 SectionList *section_list = GetSectionList(); 2459 if (!section_list) 2460 return 0; 2461 2462 // Section ID's are ones based. 2463 user_id_t symtab_id = rel_hdr->sh_link + 1; 2464 user_id_t debug_id = rel_hdr->sh_info + 1; 2465 2466 const ELFSectionHeader *symtab_hdr = GetSectionHeaderByIndex(symtab_id); 2467 if (!symtab_hdr) 2468 return 0; 2469 2470 const ELFSectionHeader *debug_hdr = GetSectionHeaderByIndex(debug_id); 2471 if (!debug_hdr) 2472 return 0; 2473 2474 Section *rel = section_list->FindSectionByID(rel_id).get(); 2475 if (!rel) 2476 return 0; 2477 2478 Section *symtab = section_list->FindSectionByID(symtab_id).get(); 2479 if (!symtab) 2480 return 0; 2481 2482 Section *debug = section_list->FindSectionByID(debug_id).get(); 2483 if (!debug) 2484 return 0; 2485 2486 DataExtractor rel_data; 2487 DataExtractor symtab_data; 2488 DataExtractor debug_data; 2489 2490 if (ReadSectionData(rel, rel_data) && 2491 ReadSectionData(symtab, symtab_data) && 2492 ReadSectionData(debug, debug_data)) 2493 { 2494 RelocateSection(m_symtab_ap.get(), &m_header, rel_hdr, symtab_hdr, debug_hdr, 2495 rel_data, symtab_data, debug_data, debug); 2496 } 2497 2498 return 0; 2499 } 2500 2501 Symtab * 2502 ObjectFileELF::GetSymtab() 2503 { 2504 ModuleSP module_sp(GetModule()); 2505 if (!module_sp) 2506 return NULL; 2507 2508 // We always want to use the main object file so we (hopefully) only have one cached copy 2509 // of our symtab, dynamic sections, etc. 2510 ObjectFile *module_obj_file = module_sp->GetObjectFile(); 2511 if (module_obj_file && module_obj_file != this) 2512 return module_obj_file->GetSymtab(); 2513 2514 if (m_symtab_ap.get() == NULL) 2515 { 2516 SectionList *section_list = module_sp->GetSectionList(); 2517 if (!section_list) 2518 return NULL; 2519 2520 uint64_t symbol_id = 0; 2521 lldb_private::Mutex::Locker locker(module_sp->GetMutex()); 2522 2523 m_symtab_ap.reset(new Symtab(this)); 2524 2525 // Sharable objects and dynamic executables usually have 2 distinct symbol 2526 // tables, one named ".symtab", and the other ".dynsym". The dynsym is a smaller 2527 // version of the symtab that only contains global symbols. The information found 2528 // in the dynsym is therefore also found in the symtab, while the reverse is not 2529 // necessarily true. 2530 Section *symtab = section_list->FindSectionByType (eSectionTypeELFSymbolTable, true).get(); 2531 if (!symtab) 2532 { 2533 // The symtab section is non-allocable and can be stripped, so if it doesn't exist 2534 // then use the dynsym section which should always be there. 2535 symtab = section_list->FindSectionByType (eSectionTypeELFDynamicSymbols, true).get(); 2536 } 2537 if (symtab) 2538 symbol_id += ParseSymbolTable (m_symtab_ap.get(), symbol_id, symtab); 2539 2540 // DT_JMPREL 2541 // If present, this entry's d_ptr member holds the address of relocation 2542 // entries associated solely with the procedure linkage table. Separating 2543 // these relocation entries lets the dynamic linker ignore them during 2544 // process initialization, if lazy binding is enabled. If this entry is 2545 // present, the related entries of types DT_PLTRELSZ and DT_PLTREL must 2546 // also be present. 2547 const ELFDynamic *symbol = FindDynamicSymbol(DT_JMPREL); 2548 if (symbol) 2549 { 2550 // Synthesize trampoline symbols to help navigate the PLT. 2551 addr_t addr = symbol->d_ptr; 2552 Section *reloc_section = section_list->FindSectionContainingFileAddress(addr).get(); 2553 if (reloc_section) 2554 { 2555 user_id_t reloc_id = reloc_section->GetID(); 2556 const ELFSectionHeaderInfo *reloc_header = GetSectionHeaderByIndex(reloc_id); 2557 assert(reloc_header); 2558 2559 ParseTrampolineSymbols (m_symtab_ap.get(), symbol_id, reloc_header, reloc_id); 2560 } 2561 } 2562 m_symtab_ap->CalculateSymbolSizes(); 2563 } 2564 2565 for (SectionHeaderCollIter I = m_section_headers.begin(); 2566 I != m_section_headers.end(); ++I) 2567 { 2568 if (I->sh_type == SHT_RELA || I->sh_type == SHT_REL) 2569 { 2570 if (CalculateType() == eTypeObjectFile) 2571 { 2572 const char *section_name = I->section_name.AsCString(""); 2573 if (strstr(section_name, ".rela.debug") || 2574 strstr(section_name, ".rel.debug")) 2575 { 2576 const ELFSectionHeader &reloc_header = *I; 2577 user_id_t reloc_id = SectionIndex(I); 2578 RelocateDebugSections(&reloc_header, reloc_id); 2579 } 2580 } 2581 } 2582 } 2583 return m_symtab_ap.get(); 2584 } 2585 2586 Symbol * 2587 ObjectFileELF::ResolveSymbolForAddress(const Address& so_addr, bool verify_unique) 2588 { 2589 if (!m_symtab_ap.get()) 2590 return nullptr; // GetSymtab() should be called first. 2591 2592 const SectionList *section_list = GetSectionList(); 2593 if (!section_list) 2594 return nullptr; 2595 2596 if (DWARFCallFrameInfo *eh_frame = GetUnwindTable().GetEHFrameInfo()) 2597 { 2598 AddressRange range; 2599 if (eh_frame->GetAddressRange (so_addr, range)) 2600 { 2601 const addr_t file_addr = range.GetBaseAddress().GetFileAddress(); 2602 Symbol * symbol = verify_unique ? m_symtab_ap->FindSymbolContainingFileAddress(file_addr) : nullptr; 2603 if (symbol) 2604 return symbol; 2605 2606 // Note that a (stripped) symbol won't be found by GetSymtab()... 2607 lldb::SectionSP eh_sym_section_sp = section_list->FindSectionContainingFileAddress(file_addr); 2608 if (eh_sym_section_sp.get()) 2609 { 2610 addr_t section_base = eh_sym_section_sp->GetFileAddress(); 2611 addr_t offset = file_addr - section_base; 2612 uint64_t symbol_id = m_symtab_ap->GetNumSymbols(); 2613 2614 Symbol eh_symbol( 2615 symbol_id, // Symbol table index. 2616 "???", // Symbol name. 2617 false, // Is the symbol name mangled? 2618 eSymbolTypeCode, // Type of this symbol. 2619 true, // Is this globally visible? 2620 false, // Is this symbol debug info? 2621 false, // Is this symbol a trampoline? 2622 true, // Is this symbol artificial? 2623 eh_sym_section_sp, // Section in which this symbol is defined or null. 2624 offset, // Offset in section or symbol value. 2625 range.GetByteSize(), // Size in bytes of this symbol. 2626 true, // Size is valid. 2627 false, // Contains linker annotations? 2628 0); // Symbol flags. 2629 if (symbol_id == m_symtab_ap->AddSymbol(eh_symbol)) 2630 return m_symtab_ap->SymbolAtIndex(symbol_id); 2631 } 2632 } 2633 } 2634 return nullptr; 2635 } 2636 2637 2638 bool 2639 ObjectFileELF::IsStripped () 2640 { 2641 // TODO: determine this for ELF 2642 return false; 2643 } 2644 2645 //===----------------------------------------------------------------------===// 2646 // Dump 2647 // 2648 // Dump the specifics of the runtime file container (such as any headers 2649 // segments, sections, etc). 2650 //---------------------------------------------------------------------- 2651 void 2652 ObjectFileELF::Dump(Stream *s) 2653 { 2654 DumpELFHeader(s, m_header); 2655 s->EOL(); 2656 DumpELFProgramHeaders(s); 2657 s->EOL(); 2658 DumpELFSectionHeaders(s); 2659 s->EOL(); 2660 SectionList *section_list = GetSectionList(); 2661 if (section_list) 2662 section_list->Dump(s, NULL, true, UINT32_MAX); 2663 Symtab *symtab = GetSymtab(); 2664 if (symtab) 2665 symtab->Dump(s, NULL, eSortOrderNone); 2666 s->EOL(); 2667 DumpDependentModules(s); 2668 s->EOL(); 2669 } 2670 2671 //---------------------------------------------------------------------- 2672 // DumpELFHeader 2673 // 2674 // Dump the ELF header to the specified output stream 2675 //---------------------------------------------------------------------- 2676 void 2677 ObjectFileELF::DumpELFHeader(Stream *s, const ELFHeader &header) 2678 { 2679 s->PutCString("ELF Header\n"); 2680 s->Printf("e_ident[EI_MAG0 ] = 0x%2.2x\n", header.e_ident[EI_MAG0]); 2681 s->Printf("e_ident[EI_MAG1 ] = 0x%2.2x '%c'\n", 2682 header.e_ident[EI_MAG1], header.e_ident[EI_MAG1]); 2683 s->Printf("e_ident[EI_MAG2 ] = 0x%2.2x '%c'\n", 2684 header.e_ident[EI_MAG2], header.e_ident[EI_MAG2]); 2685 s->Printf("e_ident[EI_MAG3 ] = 0x%2.2x '%c'\n", 2686 header.e_ident[EI_MAG3], header.e_ident[EI_MAG3]); 2687 2688 s->Printf("e_ident[EI_CLASS ] = 0x%2.2x\n", header.e_ident[EI_CLASS]); 2689 s->Printf("e_ident[EI_DATA ] = 0x%2.2x ", header.e_ident[EI_DATA]); 2690 DumpELFHeader_e_ident_EI_DATA(s, header.e_ident[EI_DATA]); 2691 s->Printf ("\ne_ident[EI_VERSION] = 0x%2.2x\n", header.e_ident[EI_VERSION]); 2692 s->Printf ("e_ident[EI_PAD ] = 0x%2.2x\n", header.e_ident[EI_PAD]); 2693 2694 s->Printf("e_type = 0x%4.4x ", header.e_type); 2695 DumpELFHeader_e_type(s, header.e_type); 2696 s->Printf("\ne_machine = 0x%4.4x\n", header.e_machine); 2697 s->Printf("e_version = 0x%8.8x\n", header.e_version); 2698 s->Printf("e_entry = 0x%8.8" PRIx64 "\n", header.e_entry); 2699 s->Printf("e_phoff = 0x%8.8" PRIx64 "\n", header.e_phoff); 2700 s->Printf("e_shoff = 0x%8.8" PRIx64 "\n", header.e_shoff); 2701 s->Printf("e_flags = 0x%8.8x\n", header.e_flags); 2702 s->Printf("e_ehsize = 0x%4.4x\n", header.e_ehsize); 2703 s->Printf("e_phentsize = 0x%4.4x\n", header.e_phentsize); 2704 s->Printf("e_phnum = 0x%4.4x\n", header.e_phnum); 2705 s->Printf("e_shentsize = 0x%4.4x\n", header.e_shentsize); 2706 s->Printf("e_shnum = 0x%4.4x\n", header.e_shnum); 2707 s->Printf("e_shstrndx = 0x%4.4x\n", header.e_shstrndx); 2708 } 2709 2710 //---------------------------------------------------------------------- 2711 // DumpELFHeader_e_type 2712 // 2713 // Dump an token value for the ELF header member e_type 2714 //---------------------------------------------------------------------- 2715 void 2716 ObjectFileELF::DumpELFHeader_e_type(Stream *s, elf_half e_type) 2717 { 2718 switch (e_type) 2719 { 2720 case ET_NONE: *s << "ET_NONE"; break; 2721 case ET_REL: *s << "ET_REL"; break; 2722 case ET_EXEC: *s << "ET_EXEC"; break; 2723 case ET_DYN: *s << "ET_DYN"; break; 2724 case ET_CORE: *s << "ET_CORE"; break; 2725 default: 2726 break; 2727 } 2728 } 2729 2730 //---------------------------------------------------------------------- 2731 // DumpELFHeader_e_ident_EI_DATA 2732 // 2733 // Dump an token value for the ELF header member e_ident[EI_DATA] 2734 //---------------------------------------------------------------------- 2735 void 2736 ObjectFileELF::DumpELFHeader_e_ident_EI_DATA(Stream *s, unsigned char ei_data) 2737 { 2738 switch (ei_data) 2739 { 2740 case ELFDATANONE: *s << "ELFDATANONE"; break; 2741 case ELFDATA2LSB: *s << "ELFDATA2LSB - Little Endian"; break; 2742 case ELFDATA2MSB: *s << "ELFDATA2MSB - Big Endian"; break; 2743 default: 2744 break; 2745 } 2746 } 2747 2748 2749 //---------------------------------------------------------------------- 2750 // DumpELFProgramHeader 2751 // 2752 // Dump a single ELF program header to the specified output stream 2753 //---------------------------------------------------------------------- 2754 void 2755 ObjectFileELF::DumpELFProgramHeader(Stream *s, const ELFProgramHeader &ph) 2756 { 2757 DumpELFProgramHeader_p_type(s, ph.p_type); 2758 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, ph.p_offset, ph.p_vaddr, ph.p_paddr); 2759 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64 " %8.8x (", ph.p_filesz, ph.p_memsz, ph.p_flags); 2760 2761 DumpELFProgramHeader_p_flags(s, ph.p_flags); 2762 s->Printf(") %8.8" PRIx64, ph.p_align); 2763 } 2764 2765 //---------------------------------------------------------------------- 2766 // DumpELFProgramHeader_p_type 2767 // 2768 // Dump an token value for the ELF program header member p_type which 2769 // describes the type of the program header 2770 // ---------------------------------------------------------------------- 2771 void 2772 ObjectFileELF::DumpELFProgramHeader_p_type(Stream *s, elf_word p_type) 2773 { 2774 const int kStrWidth = 15; 2775 switch (p_type) 2776 { 2777 CASE_AND_STREAM(s, PT_NULL , kStrWidth); 2778 CASE_AND_STREAM(s, PT_LOAD , kStrWidth); 2779 CASE_AND_STREAM(s, PT_DYNAMIC , kStrWidth); 2780 CASE_AND_STREAM(s, PT_INTERP , kStrWidth); 2781 CASE_AND_STREAM(s, PT_NOTE , kStrWidth); 2782 CASE_AND_STREAM(s, PT_SHLIB , kStrWidth); 2783 CASE_AND_STREAM(s, PT_PHDR , kStrWidth); 2784 CASE_AND_STREAM(s, PT_TLS , kStrWidth); 2785 CASE_AND_STREAM(s, PT_GNU_EH_FRAME, kStrWidth); 2786 default: 2787 s->Printf("0x%8.8x%*s", p_type, kStrWidth - 10, ""); 2788 break; 2789 } 2790 } 2791 2792 2793 //---------------------------------------------------------------------- 2794 // DumpELFProgramHeader_p_flags 2795 // 2796 // Dump an token value for the ELF program header member p_flags 2797 //---------------------------------------------------------------------- 2798 void 2799 ObjectFileELF::DumpELFProgramHeader_p_flags(Stream *s, elf_word p_flags) 2800 { 2801 *s << ((p_flags & PF_X) ? "PF_X" : " ") 2802 << (((p_flags & PF_X) && (p_flags & PF_W)) ? '+' : ' ') 2803 << ((p_flags & PF_W) ? "PF_W" : " ") 2804 << (((p_flags & PF_W) && (p_flags & PF_R)) ? '+' : ' ') 2805 << ((p_flags & PF_R) ? "PF_R" : " "); 2806 } 2807 2808 //---------------------------------------------------------------------- 2809 // DumpELFProgramHeaders 2810 // 2811 // Dump all of the ELF program header to the specified output stream 2812 //---------------------------------------------------------------------- 2813 void 2814 ObjectFileELF::DumpELFProgramHeaders(Stream *s) 2815 { 2816 if (!ParseProgramHeaders()) 2817 return; 2818 2819 s->PutCString("Program Headers\n"); 2820 s->PutCString("IDX p_type p_offset p_vaddr p_paddr " 2821 "p_filesz p_memsz p_flags p_align\n"); 2822 s->PutCString("==== --------------- -------- -------- -------- " 2823 "-------- -------- ------------------------- --------\n"); 2824 2825 uint32_t idx = 0; 2826 for (ProgramHeaderCollConstIter I = m_program_headers.begin(); 2827 I != m_program_headers.end(); ++I, ++idx) 2828 { 2829 s->Printf("[%2u] ", idx); 2830 ObjectFileELF::DumpELFProgramHeader(s, *I); 2831 s->EOL(); 2832 } 2833 } 2834 2835 //---------------------------------------------------------------------- 2836 // DumpELFSectionHeader 2837 // 2838 // Dump a single ELF section header to the specified output stream 2839 //---------------------------------------------------------------------- 2840 void 2841 ObjectFileELF::DumpELFSectionHeader(Stream *s, const ELFSectionHeaderInfo &sh) 2842 { 2843 s->Printf("%8.8x ", sh.sh_name); 2844 DumpELFSectionHeader_sh_type(s, sh.sh_type); 2845 s->Printf(" %8.8" PRIx64 " (", sh.sh_flags); 2846 DumpELFSectionHeader_sh_flags(s, sh.sh_flags); 2847 s->Printf(") %8.8" PRIx64 " %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addr, sh.sh_offset, sh.sh_size); 2848 s->Printf(" %8.8x %8.8x", sh.sh_link, sh.sh_info); 2849 s->Printf(" %8.8" PRIx64 " %8.8" PRIx64, sh.sh_addralign, sh.sh_entsize); 2850 } 2851 2852 //---------------------------------------------------------------------- 2853 // DumpELFSectionHeader_sh_type 2854 // 2855 // Dump an token value for the ELF section header member sh_type which 2856 // describes the type of the section 2857 //---------------------------------------------------------------------- 2858 void 2859 ObjectFileELF::DumpELFSectionHeader_sh_type(Stream *s, elf_word sh_type) 2860 { 2861 const int kStrWidth = 12; 2862 switch (sh_type) 2863 { 2864 CASE_AND_STREAM(s, SHT_NULL , kStrWidth); 2865 CASE_AND_STREAM(s, SHT_PROGBITS , kStrWidth); 2866 CASE_AND_STREAM(s, SHT_SYMTAB , kStrWidth); 2867 CASE_AND_STREAM(s, SHT_STRTAB , kStrWidth); 2868 CASE_AND_STREAM(s, SHT_RELA , kStrWidth); 2869 CASE_AND_STREAM(s, SHT_HASH , kStrWidth); 2870 CASE_AND_STREAM(s, SHT_DYNAMIC , kStrWidth); 2871 CASE_AND_STREAM(s, SHT_NOTE , kStrWidth); 2872 CASE_AND_STREAM(s, SHT_NOBITS , kStrWidth); 2873 CASE_AND_STREAM(s, SHT_REL , kStrWidth); 2874 CASE_AND_STREAM(s, SHT_SHLIB , kStrWidth); 2875 CASE_AND_STREAM(s, SHT_DYNSYM , kStrWidth); 2876 CASE_AND_STREAM(s, SHT_LOPROC , kStrWidth); 2877 CASE_AND_STREAM(s, SHT_HIPROC , kStrWidth); 2878 CASE_AND_STREAM(s, SHT_LOUSER , kStrWidth); 2879 CASE_AND_STREAM(s, SHT_HIUSER , kStrWidth); 2880 default: 2881 s->Printf("0x%8.8x%*s", sh_type, kStrWidth - 10, ""); 2882 break; 2883 } 2884 } 2885 2886 //---------------------------------------------------------------------- 2887 // DumpELFSectionHeader_sh_flags 2888 // 2889 // Dump an token value for the ELF section header member sh_flags 2890 //---------------------------------------------------------------------- 2891 void 2892 ObjectFileELF::DumpELFSectionHeader_sh_flags(Stream *s, elf_xword sh_flags) 2893 { 2894 *s << ((sh_flags & SHF_WRITE) ? "WRITE" : " ") 2895 << (((sh_flags & SHF_WRITE) && (sh_flags & SHF_ALLOC)) ? '+' : ' ') 2896 << ((sh_flags & SHF_ALLOC) ? "ALLOC" : " ") 2897 << (((sh_flags & SHF_ALLOC) && (sh_flags & SHF_EXECINSTR)) ? '+' : ' ') 2898 << ((sh_flags & SHF_EXECINSTR) ? "EXECINSTR" : " "); 2899 } 2900 2901 //---------------------------------------------------------------------- 2902 // DumpELFSectionHeaders 2903 // 2904 // Dump all of the ELF section header to the specified output stream 2905 //---------------------------------------------------------------------- 2906 void 2907 ObjectFileELF::DumpELFSectionHeaders(Stream *s) 2908 { 2909 if (!ParseSectionHeaders()) 2910 return; 2911 2912 s->PutCString("Section Headers\n"); 2913 s->PutCString("IDX name type flags " 2914 "addr offset size link info addralgn " 2915 "entsize Name\n"); 2916 s->PutCString("==== -------- ------------ -------------------------------- " 2917 "-------- -------- -------- -------- -------- -------- " 2918 "-------- ====================\n"); 2919 2920 uint32_t idx = 0; 2921 for (SectionHeaderCollConstIter I = m_section_headers.begin(); 2922 I != m_section_headers.end(); ++I, ++idx) 2923 { 2924 s->Printf("[%2u] ", idx); 2925 ObjectFileELF::DumpELFSectionHeader(s, *I); 2926 const char* section_name = I->section_name.AsCString(""); 2927 if (section_name) 2928 *s << ' ' << section_name << "\n"; 2929 } 2930 } 2931 2932 void 2933 ObjectFileELF::DumpDependentModules(lldb_private::Stream *s) 2934 { 2935 size_t num_modules = ParseDependentModules(); 2936 2937 if (num_modules > 0) 2938 { 2939 s->PutCString("Dependent Modules:\n"); 2940 for (unsigned i = 0; i < num_modules; ++i) 2941 { 2942 const FileSpec &spec = m_filespec_ap->GetFileSpecAtIndex(i); 2943 s->Printf(" %s\n", spec.GetFilename().GetCString()); 2944 } 2945 } 2946 } 2947 2948 bool 2949 ObjectFileELF::GetArchitecture (ArchSpec &arch) 2950 { 2951 if (!ParseHeader()) 2952 return false; 2953 2954 if (m_section_headers.empty()) 2955 { 2956 // Allow elf notes to be parsed which may affect the detected architecture. 2957 ParseSectionHeaders(); 2958 } 2959 2960 arch = m_arch_spec; 2961 return true; 2962 } 2963 2964 ObjectFile::Type 2965 ObjectFileELF::CalculateType() 2966 { 2967 switch (m_header.e_type) 2968 { 2969 case llvm::ELF::ET_NONE: 2970 // 0 - No file type 2971 return eTypeUnknown; 2972 2973 case llvm::ELF::ET_REL: 2974 // 1 - Relocatable file 2975 return eTypeObjectFile; 2976 2977 case llvm::ELF::ET_EXEC: 2978 // 2 - Executable file 2979 return eTypeExecutable; 2980 2981 case llvm::ELF::ET_DYN: 2982 // 3 - Shared object file 2983 return eTypeSharedLibrary; 2984 2985 case ET_CORE: 2986 // 4 - Core file 2987 return eTypeCoreFile; 2988 2989 default: 2990 break; 2991 } 2992 return eTypeUnknown; 2993 } 2994 2995 ObjectFile::Strata 2996 ObjectFileELF::CalculateStrata() 2997 { 2998 switch (m_header.e_type) 2999 { 3000 case llvm::ELF::ET_NONE: 3001 // 0 - No file type 3002 return eStrataUnknown; 3003 3004 case llvm::ELF::ET_REL: 3005 // 1 - Relocatable file 3006 return eStrataUnknown; 3007 3008 case llvm::ELF::ET_EXEC: 3009 // 2 - Executable file 3010 // TODO: is there any way to detect that an executable is a kernel 3011 // related executable by inspecting the program headers, section 3012 // headers, symbols, or any other flag bits??? 3013 return eStrataUser; 3014 3015 case llvm::ELF::ET_DYN: 3016 // 3 - Shared object file 3017 // TODO: is there any way to detect that an shared library is a kernel 3018 // related executable by inspecting the program headers, section 3019 // headers, symbols, or any other flag bits??? 3020 return eStrataUnknown; 3021 3022 case ET_CORE: 3023 // 4 - Core file 3024 // TODO: is there any way to detect that an core file is a kernel 3025 // related executable by inspecting the program headers, section 3026 // headers, symbols, or any other flag bits??? 3027 return eStrataUnknown; 3028 3029 default: 3030 break; 3031 } 3032 return eStrataUnknown; 3033 } 3034 3035