1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 #include "lldb/Core/Address.h" 13 #include "lldb/Core/Module.h" 14 #include "lldb/Core/ValueObjectCast.h" 15 #include "lldb/Core/ValueObjectChild.h" 16 #include "lldb/Core/ValueObjectConstResult.h" 17 #include "lldb/Core/ValueObjectDynamicValue.h" 18 #include "lldb/Core/ValueObjectMemory.h" 19 #include "lldb/Core/ValueObjectSyntheticFilter.h" 20 #include "lldb/DataFormatters/DataVisualization.h" 21 #include "lldb/DataFormatters/DumpValueObjectOptions.h" 22 #include "lldb/DataFormatters/FormatManager.h" 23 #include "lldb/DataFormatters/StringPrinter.h" 24 #include "lldb/DataFormatters/TypeFormat.h" 25 #include "lldb/DataFormatters/TypeSummary.h" 26 #include "lldb/DataFormatters/TypeValidator.h" 27 #include "lldb/DataFormatters/ValueObjectPrinter.h" 28 #include "lldb/Expression/ExpressionVariable.h" 29 #include "lldb/Symbol/ClangASTContext.h" 30 #include "lldb/Symbol/CompileUnit.h" 31 #include "lldb/Symbol/CompilerType.h" 32 #include "lldb/Symbol/Declaration.h" 33 #include "lldb/Symbol/SymbolContext.h" 34 #include "lldb/Symbol/Type.h" 35 #include "lldb/Target/ExecutionContext.h" 36 #include "lldb/Target/Language.h" 37 #include "lldb/Target/LanguageRuntime.h" 38 #include "lldb/Target/ObjCLanguageRuntime.h" 39 #include "lldb/Target/Process.h" 40 #include "lldb/Target/StackFrame.h" 41 #include "lldb/Target/Target.h" 42 #include "lldb/Target/Thread.h" 43 #include "lldb/Target/ThreadList.h" 44 #include "lldb/Utility/DataBuffer.h" 45 #include "lldb/Utility/DataBufferHeap.h" 46 #include "lldb/Utility/Flags.h" 47 #include "lldb/Utility/Log.h" 48 #include "lldb/Utility/Logging.h" 49 #include "lldb/Utility/Scalar.h" 50 #include "lldb/Utility/SharingPtr.h" 51 #include "lldb/Utility/Stream.h" 52 #include "lldb/Utility/StreamString.h" 53 #include "lldb/lldb-private-types.h" 54 55 #include "llvm/Support/Compiler.h" 56 57 #include <algorithm> 58 #include <cstdint> 59 #include <cstdlib> 60 #include <memory> 61 #include <tuple> 62 63 #include <assert.h> 64 #include <inttypes.h> 65 #include <stdio.h> 66 #include <string.h> 67 68 namespace lldb_private { 69 class ExecutionContextScope; 70 } 71 namespace lldb_private { 72 class SymbolContextScope; 73 } 74 75 using namespace lldb; 76 using namespace lldb_private; 77 using namespace lldb_utility; 78 79 static user_id_t g_value_obj_uid = 0; 80 81 //---------------------------------------------------------------------- 82 // ValueObject constructor 83 //---------------------------------------------------------------------- 84 ValueObject::ValueObject(ValueObject &parent) 85 : UserID(++g_value_obj_uid), // Unique identifier for every value object 86 m_parent(&parent), m_root(NULL), m_update_point(parent.GetUpdatePoint()), 87 m_name(), m_data(), m_value(), m_error(), m_value_str(), 88 m_old_value_str(), m_location_str(), m_summary_str(), m_object_desc_str(), 89 m_validation_result(), m_manager(parent.GetManager()), m_children(), 90 m_synthetic_children(), m_dynamic_value(NULL), m_synthetic_value(NULL), 91 m_deref_valobj(NULL), m_format(eFormatDefault), 92 m_last_format(eFormatDefault), m_last_format_mgr_revision(0), 93 m_type_summary_sp(), m_type_format_sp(), m_synthetic_children_sp(), 94 m_type_validator_sp(), m_user_id_of_forced_summary(), 95 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 96 m_value_checksum(), 97 m_preferred_display_language(lldb::eLanguageTypeUnknown), 98 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 99 m_children_count_valid(false), m_old_value_valid(false), 100 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 101 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 102 m_is_getting_summary(false), 103 m_did_calculate_complete_objc_class_type(false), 104 m_is_synthetic_children_generated( 105 parent.m_is_synthetic_children_generated) { 106 m_manager->ManageObject(this); 107 } 108 109 //---------------------------------------------------------------------- 110 // ValueObject constructor 111 //---------------------------------------------------------------------- 112 ValueObject::ValueObject(ExecutionContextScope *exe_scope, 113 AddressType child_ptr_or_ref_addr_type) 114 : UserID(++g_value_obj_uid), // Unique identifier for every value object 115 m_parent(NULL), m_root(NULL), m_update_point(exe_scope), m_name(), 116 m_data(), m_value(), m_error(), m_value_str(), m_old_value_str(), 117 m_location_str(), m_summary_str(), m_object_desc_str(), 118 m_validation_result(), m_manager(), m_children(), m_synthetic_children(), 119 m_dynamic_value(NULL), m_synthetic_value(NULL), m_deref_valobj(NULL), 120 m_format(eFormatDefault), m_last_format(eFormatDefault), 121 m_last_format_mgr_revision(0), m_type_summary_sp(), m_type_format_sp(), 122 m_synthetic_children_sp(), m_type_validator_sp(), 123 m_user_id_of_forced_summary(), 124 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 125 m_value_checksum(), 126 m_preferred_display_language(lldb::eLanguageTypeUnknown), 127 m_language_flags(0), m_value_is_valid(false), m_value_did_change(false), 128 m_children_count_valid(false), m_old_value_valid(false), 129 m_is_deref_of_parent(false), m_is_array_item_for_pointer(false), 130 m_is_bitfield_for_scalar(false), m_is_child_at_offset(false), 131 m_is_getting_summary(false), 132 m_did_calculate_complete_objc_class_type(false), 133 m_is_synthetic_children_generated(false) { 134 m_manager = new ValueObjectManager(); 135 m_manager->ManageObject(this); 136 } 137 138 //---------------------------------------------------------------------- 139 // Destructor 140 //---------------------------------------------------------------------- 141 ValueObject::~ValueObject() {} 142 143 bool ValueObject::UpdateValueIfNeeded(bool update_format) { 144 145 bool did_change_formats = false; 146 147 if (update_format) 148 did_change_formats = UpdateFormatsIfNeeded(); 149 150 // If this is a constant value, then our success is predicated on whether we 151 // have an error or not 152 if (GetIsConstant()) { 153 // if you are constant, things might still have changed behind your back 154 // (e.g. you are a frozen object and things have changed deeper than you 155 // cared to freeze-dry yourself) in this case, your value has not changed, 156 // but "computed" entries might have, so you might now have a different 157 // summary, or a different object description. clear these so we will 158 // recompute them 159 if (update_format && !did_change_formats) 160 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | 161 eClearUserVisibleDataItemsDescription); 162 return m_error.Success(); 163 } 164 165 bool first_update = IsChecksumEmpty(); 166 167 if (NeedsUpdating()) { 168 m_update_point.SetUpdated(); 169 170 // Save the old value using swap to avoid a string copy which also will 171 // clear our m_value_str 172 if (m_value_str.empty()) { 173 m_old_value_valid = false; 174 } else { 175 m_old_value_valid = true; 176 m_old_value_str.swap(m_value_str); 177 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 178 } 179 180 ClearUserVisibleData(); 181 182 if (IsInScope()) { 183 const bool value_was_valid = GetValueIsValid(); 184 SetValueDidChange(false); 185 186 m_error.Clear(); 187 188 // Call the pure virtual function to update the value 189 190 bool need_compare_checksums = false; 191 llvm::SmallVector<uint8_t, 16> old_checksum; 192 193 if (!first_update && CanProvideValue()) { 194 need_compare_checksums = true; 195 old_checksum.resize(m_value_checksum.size()); 196 std::copy(m_value_checksum.begin(), m_value_checksum.end(), 197 old_checksum.begin()); 198 } 199 200 bool success = UpdateValue(); 201 202 SetValueIsValid(success); 203 204 if (success) { 205 const uint64_t max_checksum_size = 128; 206 m_data.Checksum(m_value_checksum, max_checksum_size); 207 } else { 208 need_compare_checksums = false; 209 m_value_checksum.clear(); 210 } 211 212 assert(!need_compare_checksums || 213 (!old_checksum.empty() && !m_value_checksum.empty())); 214 215 if (first_update) 216 SetValueDidChange(false); 217 else if (!m_value_did_change && !success) { 218 // The value wasn't gotten successfully, so we mark this as changed if 219 // the value used to be valid and now isn't 220 SetValueDidChange(value_was_valid); 221 } else if (need_compare_checksums) { 222 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], 223 m_value_checksum.size())); 224 } 225 226 } else { 227 m_error.SetErrorString("out of scope"); 228 } 229 } 230 return m_error.Success(); 231 } 232 233 bool ValueObject::UpdateFormatsIfNeeded() { 234 Log *log(lldb_private::GetLogIfAllCategoriesSet(LIBLLDB_LOG_DATAFORMATTERS)); 235 if (log) 236 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject " 237 "rev: %d - Global rev: %d", 238 GetName().GetCString(), static_cast<void *>(this), 239 m_last_format_mgr_revision, 240 DataVisualization::GetCurrentRevision()); 241 242 bool any_change = false; 243 244 if ((m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) { 245 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 246 any_change = true; 247 248 SetValueFormat(DataVisualization::GetFormat(*this, eNoDynamicValues)); 249 SetSummaryFormat( 250 DataVisualization::GetSummaryFormat(*this, GetDynamicValueType())); 251 #ifndef LLDB_DISABLE_PYTHON 252 SetSyntheticChildren( 253 DataVisualization::GetSyntheticChildren(*this, GetDynamicValueType())); 254 #endif 255 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 256 } 257 258 return any_change; 259 } 260 261 void ValueObject::SetNeedsUpdate() { 262 m_update_point.SetNeedsUpdate(); 263 // We have to clear the value string here so ConstResult children will notice 264 // if their values are changed by hand (i.e. with SetValueAsCString). 265 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 266 } 267 268 void ValueObject::ClearDynamicTypeInformation() { 269 m_children_count_valid = false; 270 m_did_calculate_complete_objc_class_type = false; 271 m_last_format_mgr_revision = 0; 272 m_override_type = CompilerType(); 273 SetValueFormat(lldb::TypeFormatImplSP()); 274 SetSummaryFormat(lldb::TypeSummaryImplSP()); 275 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 276 } 277 278 CompilerType ValueObject::MaybeCalculateCompleteType() { 279 CompilerType compiler_type(GetCompilerTypeImpl()); 280 281 if (m_did_calculate_complete_objc_class_type) { 282 if (m_override_type.IsValid()) 283 return m_override_type; 284 else 285 return compiler_type; 286 } 287 288 CompilerType class_type; 289 bool is_pointer_type = false; 290 291 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) { 292 is_pointer_type = true; 293 } else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) { 294 class_type = compiler_type; 295 } else { 296 return compiler_type; 297 } 298 299 m_did_calculate_complete_objc_class_type = true; 300 301 if (class_type) { 302 ConstString class_name(class_type.GetConstTypeName()); 303 304 if (class_name) { 305 ProcessSP process_sp( 306 GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 307 308 if (process_sp) { 309 ObjCLanguageRuntime *objc_language_runtime( 310 process_sp->GetObjCLanguageRuntime()); 311 312 if (objc_language_runtime) { 313 TypeSP complete_objc_class_type_sp = 314 objc_language_runtime->LookupInCompleteClassCache(class_name); 315 316 if (complete_objc_class_type_sp) { 317 CompilerType complete_class( 318 complete_objc_class_type_sp->GetFullCompilerType()); 319 320 if (complete_class.GetCompleteType()) { 321 if (is_pointer_type) { 322 m_override_type = complete_class.GetPointerType(); 323 } else { 324 m_override_type = complete_class; 325 } 326 327 if (m_override_type.IsValid()) 328 return m_override_type; 329 } 330 } 331 } 332 } 333 } 334 } 335 return compiler_type; 336 } 337 338 CompilerType ValueObject::GetCompilerType() { 339 return MaybeCalculateCompleteType(); 340 } 341 342 TypeImpl ValueObject::GetTypeImpl() { return TypeImpl(GetCompilerType()); } 343 344 DataExtractor &ValueObject::GetDataExtractor() { 345 UpdateValueIfNeeded(false); 346 return m_data; 347 } 348 349 const Status &ValueObject::GetError() { 350 UpdateValueIfNeeded(false); 351 return m_error; 352 } 353 354 const ConstString &ValueObject::GetName() const { return m_name; } 355 356 const char *ValueObject::GetLocationAsCString() { 357 return GetLocationAsCStringImpl(m_value, m_data); 358 } 359 360 const char *ValueObject::GetLocationAsCStringImpl(const Value &value, 361 const DataExtractor &data) { 362 if (UpdateValueIfNeeded(false)) { 363 if (m_location_str.empty()) { 364 StreamString sstr; 365 366 Value::ValueType value_type = value.GetValueType(); 367 368 switch (value_type) { 369 case Value::eValueTypeScalar: 370 case Value::eValueTypeVector: 371 if (value.GetContextType() == Value::eContextTypeRegisterInfo) { 372 RegisterInfo *reg_info = value.GetRegisterInfo(); 373 if (reg_info) { 374 if (reg_info->name) 375 m_location_str = reg_info->name; 376 else if (reg_info->alt_name) 377 m_location_str = reg_info->alt_name; 378 if (m_location_str.empty()) 379 m_location_str = (reg_info->encoding == lldb::eEncodingVector) 380 ? "vector" 381 : "scalar"; 382 } 383 } 384 if (m_location_str.empty()) 385 m_location_str = 386 (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 387 break; 388 389 case Value::eValueTypeLoadAddress: 390 case Value::eValueTypeFileAddress: 391 case Value::eValueTypeHostAddress: { 392 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 393 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, 394 value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 395 m_location_str = sstr.GetString(); 396 } break; 397 } 398 } 399 } 400 return m_location_str.c_str(); 401 } 402 403 Value &ValueObject::GetValue() { return m_value; } 404 405 const Value &ValueObject::GetValue() const { return m_value; } 406 407 bool ValueObject::ResolveValue(Scalar &scalar) { 408 if (UpdateValueIfNeeded( 409 false)) // make sure that you are up to date before returning anything 410 { 411 ExecutionContext exe_ctx(GetExecutionContextRef()); 412 Value tmp_value(m_value); 413 scalar = tmp_value.ResolveValue(&exe_ctx); 414 if (scalar.IsValid()) { 415 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 416 if (bitfield_bit_size) 417 return scalar.ExtractBitfield(bitfield_bit_size, 418 GetBitfieldBitOffset()); 419 return true; 420 } 421 } 422 return false; 423 } 424 425 bool ValueObject::IsLogicalTrue(Status &error) { 426 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 427 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 428 switch (is_logical_true) { 429 case eLazyBoolYes: 430 case eLazyBoolNo: 431 return (is_logical_true == true); 432 case eLazyBoolCalculate: 433 break; 434 } 435 } 436 437 Scalar scalar_value; 438 439 if (!ResolveValue(scalar_value)) { 440 error.SetErrorString("failed to get a scalar result"); 441 return false; 442 } 443 444 bool ret; 445 ret = scalar_value.ULongLong(1) != 0; 446 error.Clear(); 447 return ret; 448 } 449 450 bool ValueObject::GetValueIsValid() const { return m_value_is_valid; } 451 452 void ValueObject::SetValueIsValid(bool b) { m_value_is_valid = b; } 453 454 bool ValueObject::GetValueDidChange() { return m_value_did_change; } 455 456 void ValueObject::SetValueDidChange(bool value_changed) { 457 m_value_did_change = value_changed; 458 } 459 460 ValueObjectSP ValueObject::GetChildAtIndex(size_t idx, bool can_create) { 461 ValueObjectSP child_sp; 462 // We may need to update our value if we are dynamic 463 if (IsPossibleDynamicType()) 464 UpdateValueIfNeeded(false); 465 if (idx < GetNumChildren()) { 466 // Check if we have already made the child value object? 467 if (can_create && !m_children.HasChildAtIndex(idx)) { 468 // No we haven't created the child at this index, so lets have our 469 // subclass do it and cache the result for quick future access. 470 m_children.SetChildAtIndex(idx, CreateChildAtIndex(idx, false, 0)); 471 } 472 473 ValueObject *child = m_children.GetChildAtIndex(idx); 474 if (child != NULL) 475 return child->GetSP(); 476 } 477 return child_sp; 478 } 479 480 lldb::ValueObjectSP 481 ValueObject::GetChildAtIndexPath(llvm::ArrayRef<size_t> idxs, 482 size_t *index_of_error) { 483 if (idxs.size() == 0) 484 return GetSP(); 485 ValueObjectSP root(GetSP()); 486 for (size_t idx : idxs) { 487 root = root->GetChildAtIndex(idx, true); 488 if (!root) { 489 if (index_of_error) 490 *index_of_error = idx; 491 return root; 492 } 493 } 494 return root; 495 } 496 497 lldb::ValueObjectSP ValueObject::GetChildAtIndexPath( 498 llvm::ArrayRef<std::pair<size_t, bool>> idxs, size_t *index_of_error) { 499 if (idxs.size() == 0) 500 return GetSP(); 501 ValueObjectSP root(GetSP()); 502 for (std::pair<size_t, bool> idx : idxs) { 503 root = root->GetChildAtIndex(idx.first, idx.second); 504 if (!root) { 505 if (index_of_error) 506 *index_of_error = idx.first; 507 return root; 508 } 509 } 510 return root; 511 } 512 513 lldb::ValueObjectSP 514 ValueObject::GetChildAtNamePath(llvm::ArrayRef<ConstString> names, 515 ConstString *name_of_error) { 516 if (names.size() == 0) 517 return GetSP(); 518 ValueObjectSP root(GetSP()); 519 for (ConstString name : names) { 520 root = root->GetChildMemberWithName(name, true); 521 if (!root) { 522 if (name_of_error) 523 *name_of_error = name; 524 return root; 525 } 526 } 527 return root; 528 } 529 530 lldb::ValueObjectSP ValueObject::GetChildAtNamePath( 531 llvm::ArrayRef<std::pair<ConstString, bool>> names, 532 ConstString *name_of_error) { 533 if (names.size() == 0) 534 return GetSP(); 535 ValueObjectSP root(GetSP()); 536 for (std::pair<ConstString, bool> name : names) { 537 root = root->GetChildMemberWithName(name.first, name.second); 538 if (!root) { 539 if (name_of_error) 540 *name_of_error = name.first; 541 return root; 542 } 543 } 544 return root; 545 } 546 547 size_t ValueObject::GetIndexOfChildWithName(const ConstString &name) { 548 bool omit_empty_base_classes = true; 549 return GetCompilerType().GetIndexOfChildWithName(name.GetCString(), 550 omit_empty_base_classes); 551 } 552 553 ValueObjectSP ValueObject::GetChildMemberWithName(const ConstString &name, 554 bool can_create) { 555 // when getting a child by name, it could be buried inside some base classes 556 // (which really aren't part of the expression path), so we need a vector of 557 // indexes that can get us down to the correct child 558 ValueObjectSP child_sp; 559 560 // We may need to update our value if we are dynamic 561 if (IsPossibleDynamicType()) 562 UpdateValueIfNeeded(false); 563 564 std::vector<uint32_t> child_indexes; 565 bool omit_empty_base_classes = true; 566 const size_t num_child_indexes = 567 GetCompilerType().GetIndexOfChildMemberWithName( 568 name.GetCString(), omit_empty_base_classes, child_indexes); 569 if (num_child_indexes > 0) { 570 std::vector<uint32_t>::const_iterator pos = child_indexes.begin(); 571 std::vector<uint32_t>::const_iterator end = child_indexes.end(); 572 573 child_sp = GetChildAtIndex(*pos, can_create); 574 for (++pos; pos != end; ++pos) { 575 if (child_sp) { 576 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex(*pos, can_create)); 577 child_sp = new_child_sp; 578 } else { 579 child_sp.reset(); 580 } 581 } 582 } 583 return child_sp; 584 } 585 586 size_t ValueObject::GetNumChildren(uint32_t max) { 587 UpdateValueIfNeeded(); 588 589 if (max < UINT32_MAX) { 590 if (m_children_count_valid) { 591 size_t children_count = m_children.GetChildrenCount(); 592 return children_count <= max ? children_count : max; 593 } else 594 return CalculateNumChildren(max); 595 } 596 597 if (!m_children_count_valid) { 598 SetNumChildren(CalculateNumChildren()); 599 } 600 return m_children.GetChildrenCount(); 601 } 602 603 bool ValueObject::MightHaveChildren() { 604 bool has_children = false; 605 const uint32_t type_info = GetTypeInfo(); 606 if (type_info) { 607 if (type_info & (eTypeHasChildren | eTypeIsPointer | eTypeIsReference)) 608 has_children = true; 609 } else { 610 has_children = GetNumChildren() > 0; 611 } 612 return has_children; 613 } 614 615 // Should only be called by ValueObject::GetNumChildren() 616 void ValueObject::SetNumChildren(size_t num_children) { 617 m_children_count_valid = true; 618 m_children.SetChildrenCount(num_children); 619 } 620 621 void ValueObject::SetName(const ConstString &name) { m_name = name; } 622 623 ValueObject *ValueObject::CreateChildAtIndex(size_t idx, 624 bool synthetic_array_member, 625 int32_t synthetic_index) { 626 ValueObject *valobj = NULL; 627 628 bool omit_empty_base_classes = true; 629 bool ignore_array_bounds = synthetic_array_member; 630 std::string child_name_str; 631 uint32_t child_byte_size = 0; 632 int32_t child_byte_offset = 0; 633 uint32_t child_bitfield_bit_size = 0; 634 uint32_t child_bitfield_bit_offset = 0; 635 bool child_is_base_class = false; 636 bool child_is_deref_of_parent = false; 637 uint64_t language_flags = 0; 638 639 const bool transparent_pointers = !synthetic_array_member; 640 CompilerType child_compiler_type; 641 642 ExecutionContext exe_ctx(GetExecutionContextRef()); 643 644 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex( 645 &exe_ctx, idx, transparent_pointers, omit_empty_base_classes, 646 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 647 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 648 child_is_deref_of_parent, this, language_flags); 649 if (child_compiler_type) { 650 if (synthetic_index) 651 child_byte_offset += child_byte_size * synthetic_index; 652 653 ConstString child_name; 654 if (!child_name_str.empty()) 655 child_name.SetCString(child_name_str.c_str()); 656 657 valobj = new ValueObjectChild( 658 *this, child_compiler_type, child_name, child_byte_size, 659 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 660 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 661 language_flags); 662 } 663 664 return valobj; 665 } 666 667 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 668 std::string &destination, 669 lldb::LanguageType lang) { 670 return GetSummaryAsCString(summary_ptr, destination, 671 TypeSummaryOptions().SetLanguage(lang)); 672 } 673 674 bool ValueObject::GetSummaryAsCString(TypeSummaryImpl *summary_ptr, 675 std::string &destination, 676 const TypeSummaryOptions &options) { 677 destination.clear(); 678 679 // ideally we would like to bail out if passing NULL, but if we do so we end 680 // up not providing the summary for function pointers anymore 681 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 682 return false; 683 684 m_is_getting_summary = true; 685 686 TypeSummaryOptions actual_options(options); 687 688 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 689 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 690 691 // this is a hot path in code and we prefer to avoid setting this string all 692 // too often also clearing out other information that we might care to see in 693 // a crash log. might be useful in very specific situations though. 694 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. 695 Summary provider's description is %s", 696 GetTypeName().GetCString(), 697 GetName().GetCString(), 698 summary_ptr->GetDescription().c_str());*/ 699 700 if (UpdateValueIfNeeded(false) && summary_ptr) { 701 if (HasSyntheticValue()) 702 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on 703 // the synthetic children being 704 // up-to-date (e.g. ${svar%#}) 705 summary_ptr->FormatObject(this, destination, actual_options); 706 } 707 m_is_getting_summary = false; 708 return !destination.empty(); 709 } 710 711 const char *ValueObject::GetSummaryAsCString(lldb::LanguageType lang) { 712 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) { 713 TypeSummaryOptions summary_options; 714 summary_options.SetLanguage(lang); 715 GetSummaryAsCString(GetSummaryFormat().get(), m_summary_str, 716 summary_options); 717 } 718 if (m_summary_str.empty()) 719 return NULL; 720 return m_summary_str.c_str(); 721 } 722 723 bool ValueObject::GetSummaryAsCString(std::string &destination, 724 const TypeSummaryOptions &options) { 725 return GetSummaryAsCString(GetSummaryFormat().get(), destination, options); 726 } 727 728 bool ValueObject::IsCStringContainer(bool check_pointer) { 729 CompilerType pointee_or_element_compiler_type; 730 const Flags type_flags(GetTypeInfo(&pointee_or_element_compiler_type)); 731 bool is_char_arr_ptr(type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 732 pointee_or_element_compiler_type.IsCharType()); 733 if (!is_char_arr_ptr) 734 return false; 735 if (!check_pointer) 736 return true; 737 if (type_flags.Test(eTypeIsArray)) 738 return true; 739 addr_t cstr_address = LLDB_INVALID_ADDRESS; 740 AddressType cstr_address_type = eAddressTypeInvalid; 741 cstr_address = GetAddressOf(true, &cstr_address_type); 742 return (cstr_address != LLDB_INVALID_ADDRESS); 743 } 744 745 size_t ValueObject::GetPointeeData(DataExtractor &data, uint32_t item_idx, 746 uint32_t item_count) { 747 CompilerType pointee_or_element_compiler_type; 748 const uint32_t type_info = GetTypeInfo(&pointee_or_element_compiler_type); 749 const bool is_pointer_type = type_info & eTypeIsPointer; 750 const bool is_array_type = type_info & eTypeIsArray; 751 if (!(is_pointer_type || is_array_type)) 752 return 0; 753 754 if (item_count == 0) 755 return 0; 756 757 ExecutionContext exe_ctx(GetExecutionContextRef()); 758 759 llvm::Optional<uint64_t> item_type_size = 760 pointee_or_element_compiler_type.GetByteSize( 761 exe_ctx.GetBestExecutionContextScope()); 762 if (!item_type_size) 763 return 0; 764 const uint64_t bytes = item_count * *item_type_size; 765 const uint64_t offset = item_idx * *item_type_size; 766 767 if (item_idx == 0 && item_count == 1) // simply a deref 768 { 769 if (is_pointer_type) { 770 Status error; 771 ValueObjectSP pointee_sp = Dereference(error); 772 if (error.Fail() || pointee_sp.get() == NULL) 773 return 0; 774 return pointee_sp->GetData(data, error); 775 } else { 776 ValueObjectSP child_sp = GetChildAtIndex(0, true); 777 if (child_sp.get() == NULL) 778 return 0; 779 Status error; 780 return child_sp->GetData(data, error); 781 } 782 return true; 783 } else /* (items > 1) */ 784 { 785 Status error; 786 lldb_private::DataBufferHeap *heap_buf_ptr = NULL; 787 lldb::DataBufferSP data_sp(heap_buf_ptr = 788 new lldb_private::DataBufferHeap()); 789 790 AddressType addr_type; 791 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) 792 : GetAddressOf(true, &addr_type); 793 794 switch (addr_type) { 795 case eAddressTypeFile: { 796 ModuleSP module_sp(GetModule()); 797 if (module_sp) { 798 addr = addr + offset; 799 Address so_addr; 800 module_sp->ResolveFileAddress(addr, so_addr); 801 ExecutionContext exe_ctx(GetExecutionContextRef()); 802 Target *target = exe_ctx.GetTargetPtr(); 803 if (target) { 804 heap_buf_ptr->SetByteSize(bytes); 805 size_t bytes_read = target->ReadMemory( 806 so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 807 if (error.Success()) { 808 data.SetData(data_sp); 809 return bytes_read; 810 } 811 } 812 } 813 } break; 814 case eAddressTypeLoad: { 815 ExecutionContext exe_ctx(GetExecutionContextRef()); 816 Process *process = exe_ctx.GetProcessPtr(); 817 if (process) { 818 heap_buf_ptr->SetByteSize(bytes); 819 size_t bytes_read = process->ReadMemory( 820 addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 821 if (error.Success() || bytes_read > 0) { 822 data.SetData(data_sp); 823 return bytes_read; 824 } 825 } 826 } break; 827 case eAddressTypeHost: { 828 auto max_bytes = 829 GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 830 if (max_bytes && *max_bytes > offset) { 831 size_t bytes_read = std::min<uint64_t>(*max_bytes - offset, bytes); 832 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 833 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 834 break; 835 heap_buf_ptr->CopyData((uint8_t *)(addr + offset), bytes_read); 836 data.SetData(data_sp); 837 return bytes_read; 838 } 839 } break; 840 case eAddressTypeInvalid: 841 break; 842 } 843 } 844 return 0; 845 } 846 847 uint64_t ValueObject::GetData(DataExtractor &data, Status &error) { 848 UpdateValueIfNeeded(false); 849 ExecutionContext exe_ctx(GetExecutionContextRef()); 850 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 851 if (error.Fail()) { 852 if (m_data.GetByteSize()) { 853 data = m_data; 854 error.Clear(); 855 return data.GetByteSize(); 856 } else { 857 return 0; 858 } 859 } 860 data.SetAddressByteSize(m_data.GetAddressByteSize()); 861 data.SetByteOrder(m_data.GetByteOrder()); 862 return data.GetByteSize(); 863 } 864 865 bool ValueObject::SetData(DataExtractor &data, Status &error) { 866 error.Clear(); 867 // Make sure our value is up to date first so that our location and location 868 // type is valid. 869 if (!UpdateValueIfNeeded(false)) { 870 error.SetErrorString("unable to read value"); 871 return false; 872 } 873 874 uint64_t count = 0; 875 const Encoding encoding = GetCompilerType().GetEncoding(count); 876 877 const size_t byte_size = GetByteSize(); 878 879 Value::ValueType value_type = m_value.GetValueType(); 880 881 switch (value_type) { 882 case Value::eValueTypeScalar: { 883 Status set_error = 884 m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 885 886 if (!set_error.Success()) { 887 error.SetErrorStringWithFormat("unable to set scalar value: %s", 888 set_error.AsCString()); 889 return false; 890 } 891 } break; 892 case Value::eValueTypeLoadAddress: { 893 // If it is a load address, then the scalar value is the storage location 894 // of the data, and we have to shove this value down to that load location. 895 ExecutionContext exe_ctx(GetExecutionContextRef()); 896 Process *process = exe_ctx.GetProcessPtr(); 897 if (process) { 898 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 899 size_t bytes_written = process->WriteMemory( 900 target_addr, data.GetDataStart(), byte_size, error); 901 if (!error.Success()) 902 return false; 903 if (bytes_written != byte_size) { 904 error.SetErrorString("unable to write value to memory"); 905 return false; 906 } 907 } 908 } break; 909 case Value::eValueTypeHostAddress: { 910 // If it is a host address, then we stuff the scalar as a DataBuffer into 911 // the Value's data. 912 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 913 m_data.SetData(buffer_sp, 0); 914 data.CopyByteOrderedData(0, byte_size, 915 const_cast<uint8_t *>(m_data.GetDataStart()), 916 byte_size, m_data.GetByteOrder()); 917 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 918 } break; 919 case Value::eValueTypeFileAddress: 920 case Value::eValueTypeVector: 921 break; 922 } 923 924 // If we have reached this point, then we have successfully changed the 925 // value. 926 SetNeedsUpdate(); 927 return true; 928 } 929 930 static bool CopyStringDataToBufferSP(const StreamString &source, 931 lldb::DataBufferSP &destination) { 932 destination.reset(new DataBufferHeap(source.GetSize() + 1, 0)); 933 memcpy(destination->GetBytes(), source.GetString().data(), source.GetSize()); 934 return true; 935 } 936 937 std::pair<size_t, bool> 938 ValueObject::ReadPointedString(lldb::DataBufferSP &buffer_sp, Status &error, 939 uint32_t max_length, bool honor_array, 940 Format item_format) { 941 bool was_capped = false; 942 StreamString s; 943 ExecutionContext exe_ctx(GetExecutionContextRef()); 944 Target *target = exe_ctx.GetTargetPtr(); 945 946 if (!target) { 947 s << "<no target to read from>"; 948 error.SetErrorString("no target to read from"); 949 CopyStringDataToBufferSP(s, buffer_sp); 950 return {0, was_capped}; 951 } 952 953 if (max_length == 0) 954 max_length = target->GetMaximumSizeOfStringSummary(); 955 956 size_t bytes_read = 0; 957 size_t total_bytes_read = 0; 958 959 CompilerType compiler_type = GetCompilerType(); 960 CompilerType elem_or_pointee_compiler_type; 961 const Flags type_flags(GetTypeInfo(&elem_or_pointee_compiler_type)); 962 if (type_flags.AnySet(eTypeIsArray | eTypeIsPointer) && 963 elem_or_pointee_compiler_type.IsCharType()) { 964 addr_t cstr_address = LLDB_INVALID_ADDRESS; 965 AddressType cstr_address_type = eAddressTypeInvalid; 966 967 size_t cstr_len = 0; 968 bool capped_data = false; 969 const bool is_array = type_flags.Test(eTypeIsArray); 970 if (is_array) { 971 // We have an array 972 uint64_t array_size = 0; 973 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) { 974 cstr_len = array_size; 975 if (cstr_len > max_length) { 976 capped_data = true; 977 cstr_len = max_length; 978 } 979 } 980 cstr_address = GetAddressOf(true, &cstr_address_type); 981 } else { 982 // We have a pointer 983 cstr_address = GetPointerValue(&cstr_address_type); 984 } 985 986 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) { 987 if (cstr_address_type == eAddressTypeHost && is_array) { 988 const char *cstr = GetDataExtractor().PeekCStr(0); 989 if (cstr == nullptr) { 990 s << "<invalid address>"; 991 error.SetErrorString("invalid address"); 992 CopyStringDataToBufferSP(s, buffer_sp); 993 return {0, was_capped}; 994 } 995 buffer_sp.reset(new DataBufferHeap(cstr_len, 0)); 996 memcpy(buffer_sp->GetBytes(), cstr, cstr_len); 997 return {cstr_len, was_capped}; 998 } else { 999 s << "<invalid address>"; 1000 error.SetErrorString("invalid address"); 1001 CopyStringDataToBufferSP(s, buffer_sp); 1002 return {0, was_capped}; 1003 } 1004 } 1005 1006 Address cstr_so_addr(cstr_address); 1007 DataExtractor data; 1008 if (cstr_len > 0 && honor_array) { 1009 // I am using GetPointeeData() here to abstract the fact that some 1010 // ValueObjects are actually frozen pointers in the host but the pointed- 1011 // to data lives in the debuggee, and GetPointeeData() automatically 1012 // takes care of this 1013 GetPointeeData(data, 0, cstr_len); 1014 1015 if ((bytes_read = data.GetByteSize()) > 0) { 1016 total_bytes_read = bytes_read; 1017 for (size_t offset = 0; offset < bytes_read; offset++) 1018 s.Printf("%c", *data.PeekData(offset, 1)); 1019 if (capped_data) 1020 was_capped = true; 1021 } 1022 } else { 1023 cstr_len = max_length; 1024 const size_t k_max_buf_size = 64; 1025 1026 size_t offset = 0; 1027 1028 int cstr_len_displayed = -1; 1029 bool capped_cstr = false; 1030 // I am using GetPointeeData() here to abstract the fact that some 1031 // ValueObjects are actually frozen pointers in the host but the pointed- 1032 // to data lives in the debuggee, and GetPointeeData() automatically 1033 // takes care of this 1034 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) { 1035 total_bytes_read += bytes_read; 1036 const char *cstr = data.PeekCStr(0); 1037 size_t len = strnlen(cstr, k_max_buf_size); 1038 if (cstr_len_displayed < 0) 1039 cstr_len_displayed = len; 1040 1041 if (len == 0) 1042 break; 1043 cstr_len_displayed += len; 1044 if (len > bytes_read) 1045 len = bytes_read; 1046 if (len > cstr_len) 1047 len = cstr_len; 1048 1049 for (size_t offset = 0; offset < bytes_read; offset++) 1050 s.Printf("%c", *data.PeekData(offset, 1)); 1051 1052 if (len < k_max_buf_size) 1053 break; 1054 1055 if (len >= cstr_len) { 1056 capped_cstr = true; 1057 break; 1058 } 1059 1060 cstr_len -= len; 1061 offset += len; 1062 } 1063 1064 if (cstr_len_displayed >= 0) { 1065 if (capped_cstr) 1066 was_capped = true; 1067 } 1068 } 1069 } else { 1070 error.SetErrorString("not a string object"); 1071 s << "<not a string object>"; 1072 } 1073 CopyStringDataToBufferSP(s, buffer_sp); 1074 return {total_bytes_read, was_capped}; 1075 } 1076 1077 std::pair<TypeValidatorResult, std::string> ValueObject::GetValidationStatus() { 1078 if (!UpdateValueIfNeeded(true)) 1079 return {TypeValidatorResult::Success, 1080 ""}; // not the validator's job to discuss update problems 1081 1082 if (m_validation_result.hasValue()) 1083 return m_validation_result.getValue(); 1084 1085 if (!m_type_validator_sp) 1086 return {TypeValidatorResult::Success, ""}; // no validator no failure 1087 1088 auto outcome = m_type_validator_sp->FormatObject(this); 1089 1090 return (m_validation_result = {outcome.m_result, outcome.m_message}) 1091 .getValue(); 1092 } 1093 1094 const char *ValueObject::GetObjectDescription() { 1095 1096 if (!UpdateValueIfNeeded(true)) 1097 return NULL; 1098 1099 if (!m_object_desc_str.empty()) 1100 return m_object_desc_str.c_str(); 1101 1102 ExecutionContext exe_ctx(GetExecutionContextRef()); 1103 Process *process = exe_ctx.GetProcessPtr(); 1104 if (process == NULL) 1105 return NULL; 1106 1107 StreamString s; 1108 1109 LanguageType language = GetObjectRuntimeLanguage(); 1110 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1111 1112 if (runtime == NULL) { 1113 // Aw, hell, if the things a pointer, or even just an integer, let's try 1114 // ObjC anyway... 1115 CompilerType compiler_type = GetCompilerType(); 1116 if (compiler_type) { 1117 bool is_signed; 1118 if (compiler_type.IsIntegerType(is_signed) || 1119 compiler_type.IsPointerType()) { 1120 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1121 } 1122 } 1123 } 1124 1125 if (runtime && runtime->GetObjectDescription(s, *this)) { 1126 m_object_desc_str.append(s.GetString()); 1127 } 1128 1129 if (m_object_desc_str.empty()) 1130 return NULL; 1131 else 1132 return m_object_desc_str.c_str(); 1133 } 1134 1135 bool ValueObject::GetValueAsCString(const lldb_private::TypeFormatImpl &format, 1136 std::string &destination) { 1137 if (UpdateValueIfNeeded(false)) 1138 return format.FormatObject(this, destination); 1139 else 1140 return false; 1141 } 1142 1143 bool ValueObject::GetValueAsCString(lldb::Format format, 1144 std::string &destination) { 1145 return GetValueAsCString(TypeFormatImpl_Format(format), destination); 1146 } 1147 1148 const char *ValueObject::GetValueAsCString() { 1149 if (UpdateValueIfNeeded(true)) { 1150 lldb::TypeFormatImplSP format_sp; 1151 lldb::Format my_format = GetFormat(); 1152 if (my_format == lldb::eFormatDefault) { 1153 if (m_type_format_sp) 1154 format_sp = m_type_format_sp; 1155 else { 1156 if (m_is_bitfield_for_scalar) 1157 my_format = eFormatUnsigned; 1158 else { 1159 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) { 1160 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1161 if (reg_info) 1162 my_format = reg_info->format; 1163 } else { 1164 my_format = GetValue().GetCompilerType().GetFormat(); 1165 } 1166 } 1167 } 1168 } 1169 if (my_format != m_last_format || m_value_str.empty()) { 1170 m_last_format = my_format; 1171 if (!format_sp) 1172 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1173 if (GetValueAsCString(*format_sp.get(), m_value_str)) { 1174 if (!m_value_did_change && m_old_value_valid) { 1175 // The value was gotten successfully, so we consider the value as 1176 // changed if the value string differs 1177 SetValueDidChange(m_old_value_str != m_value_str); 1178 } 1179 } 1180 } 1181 } 1182 if (m_value_str.empty()) 1183 return NULL; 1184 return m_value_str.c_str(); 1185 } 1186 1187 // if > 8bytes, 0 is returned. this method should mostly be used to read 1188 // address values out of pointers 1189 uint64_t ValueObject::GetValueAsUnsigned(uint64_t fail_value, bool *success) { 1190 // If our byte size is zero this is an aggregate type that has children 1191 if (CanProvideValue()) { 1192 Scalar scalar; 1193 if (ResolveValue(scalar)) { 1194 if (success) 1195 *success = true; 1196 return scalar.ULongLong(fail_value); 1197 } 1198 // fallthrough, otherwise... 1199 } 1200 1201 if (success) 1202 *success = false; 1203 return fail_value; 1204 } 1205 1206 int64_t ValueObject::GetValueAsSigned(int64_t fail_value, bool *success) { 1207 // If our byte size is zero this is an aggregate type that has children 1208 if (CanProvideValue()) { 1209 Scalar scalar; 1210 if (ResolveValue(scalar)) { 1211 if (success) 1212 *success = true; 1213 return scalar.SLongLong(fail_value); 1214 } 1215 // fallthrough, otherwise... 1216 } 1217 1218 if (success) 1219 *success = false; 1220 return fail_value; 1221 } 1222 1223 // if any more "special cases" are added to 1224 // ValueObject::DumpPrintableRepresentation() please keep this call up to date 1225 // by returning true for your new special cases. We will eventually move to 1226 // checking this call result before trying to display special cases 1227 bool ValueObject::HasSpecialPrintableRepresentation( 1228 ValueObjectRepresentationStyle val_obj_display, Format custom_format) { 1229 Flags flags(GetTypeInfo()); 1230 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1231 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1232 if (IsCStringContainer(true) && 1233 (custom_format == eFormatCString || custom_format == eFormatCharArray || 1234 custom_format == eFormatChar || custom_format == eFormatVectorOfChar)) 1235 return true; 1236 1237 if (flags.Test(eTypeIsArray)) { 1238 if ((custom_format == eFormatBytes) || 1239 (custom_format == eFormatBytesWithASCII)) 1240 return true; 1241 1242 if ((custom_format == eFormatVectorOfChar) || 1243 (custom_format == eFormatVectorOfFloat32) || 1244 (custom_format == eFormatVectorOfFloat64) || 1245 (custom_format == eFormatVectorOfSInt16) || 1246 (custom_format == eFormatVectorOfSInt32) || 1247 (custom_format == eFormatVectorOfSInt64) || 1248 (custom_format == eFormatVectorOfSInt8) || 1249 (custom_format == eFormatVectorOfUInt128) || 1250 (custom_format == eFormatVectorOfUInt16) || 1251 (custom_format == eFormatVectorOfUInt32) || 1252 (custom_format == eFormatVectorOfUInt64) || 1253 (custom_format == eFormatVectorOfUInt8)) 1254 return true; 1255 } 1256 } 1257 return false; 1258 } 1259 1260 bool ValueObject::DumpPrintableRepresentation( 1261 Stream &s, ValueObjectRepresentationStyle val_obj_display, 1262 Format custom_format, PrintableRepresentationSpecialCases special, 1263 bool do_dump_error) { 1264 1265 Flags flags(GetTypeInfo()); 1266 1267 bool allow_special = 1268 (special == ValueObject::PrintableRepresentationSpecialCases::eAllow); 1269 const bool only_special = false; 1270 1271 if (allow_special) { 1272 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) && 1273 val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) { 1274 // when being asked to get a printable display an array or pointer type 1275 // directly, try to "do the right thing" 1276 1277 if (IsCStringContainer(true) && 1278 (custom_format == eFormatCString || 1279 custom_format == eFormatCharArray || custom_format == eFormatChar || 1280 custom_format == 1281 eFormatVectorOfChar)) // print char[] & char* directly 1282 { 1283 Status error; 1284 lldb::DataBufferSP buffer_sp; 1285 std::pair<size_t, bool> read_string = ReadPointedString( 1286 buffer_sp, error, 0, (custom_format == eFormatVectorOfChar) || 1287 (custom_format == eFormatCharArray)); 1288 lldb_private::formatters::StringPrinter:: 1289 ReadBufferAndDumpToStreamOptions options(*this); 1290 options.SetData(DataExtractor( 1291 buffer_sp, lldb::eByteOrderInvalid, 1292 8)); // none of this matters for a string - pass some defaults 1293 options.SetStream(&s); 1294 options.SetPrefixToken(0); 1295 options.SetQuote('"'); 1296 options.SetSourceSize(buffer_sp->GetByteSize()); 1297 options.SetIsTruncated(read_string.second); 1298 formatters::StringPrinter::ReadBufferAndDumpToStream< 1299 lldb_private::formatters::StringPrinter::StringElementType::ASCII>( 1300 options); 1301 return !error.Fail(); 1302 } 1303 1304 if (custom_format == eFormatEnum) 1305 return false; 1306 1307 // this only works for arrays, because I have no way to know when the 1308 // pointed memory ends, and no special \0 end of data marker 1309 if (flags.Test(eTypeIsArray)) { 1310 if ((custom_format == eFormatBytes) || 1311 (custom_format == eFormatBytesWithASCII)) { 1312 const size_t count = GetNumChildren(); 1313 1314 s << '['; 1315 for (size_t low = 0; low < count; low++) { 1316 1317 if (low) 1318 s << ','; 1319 1320 ValueObjectSP child = GetChildAtIndex(low, true); 1321 if (!child.get()) { 1322 s << "<invalid child>"; 1323 continue; 1324 } 1325 child->DumpPrintableRepresentation( 1326 s, ValueObject::eValueObjectRepresentationStyleValue, 1327 custom_format); 1328 } 1329 1330 s << ']'; 1331 1332 return true; 1333 } 1334 1335 if ((custom_format == eFormatVectorOfChar) || 1336 (custom_format == eFormatVectorOfFloat32) || 1337 (custom_format == eFormatVectorOfFloat64) || 1338 (custom_format == eFormatVectorOfSInt16) || 1339 (custom_format == eFormatVectorOfSInt32) || 1340 (custom_format == eFormatVectorOfSInt64) || 1341 (custom_format == eFormatVectorOfSInt8) || 1342 (custom_format == eFormatVectorOfUInt128) || 1343 (custom_format == eFormatVectorOfUInt16) || 1344 (custom_format == eFormatVectorOfUInt32) || 1345 (custom_format == eFormatVectorOfUInt64) || 1346 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes 1347 // with ASCII or any vector 1348 // format should be printed 1349 // directly 1350 { 1351 const size_t count = GetNumChildren(); 1352 1353 Format format = FormatManager::GetSingleItemFormat(custom_format); 1354 1355 s << '['; 1356 for (size_t low = 0; low < count; low++) { 1357 1358 if (low) 1359 s << ','; 1360 1361 ValueObjectSP child = GetChildAtIndex(low, true); 1362 if (!child.get()) { 1363 s << "<invalid child>"; 1364 continue; 1365 } 1366 child->DumpPrintableRepresentation( 1367 s, ValueObject::eValueObjectRepresentationStyleValue, format); 1368 } 1369 1370 s << ']'; 1371 1372 return true; 1373 } 1374 } 1375 1376 if ((custom_format == eFormatBoolean) || 1377 (custom_format == eFormatBinary) || (custom_format == eFormatChar) || 1378 (custom_format == eFormatCharPrintable) || 1379 (custom_format == eFormatComplexFloat) || 1380 (custom_format == eFormatDecimal) || (custom_format == eFormatHex) || 1381 (custom_format == eFormatHexUppercase) || 1382 (custom_format == eFormatFloat) || (custom_format == eFormatOctal) || 1383 (custom_format == eFormatOSType) || 1384 (custom_format == eFormatUnicode16) || 1385 (custom_format == eFormatUnicode32) || 1386 (custom_format == eFormatUnsigned) || 1387 (custom_format == eFormatPointer) || 1388 (custom_format == eFormatComplexInteger) || 1389 (custom_format == eFormatComplex) || 1390 (custom_format == eFormatDefault)) // use the [] operator 1391 return false; 1392 } 1393 } 1394 1395 if (only_special) 1396 return false; 1397 1398 bool var_success = false; 1399 1400 { 1401 llvm::StringRef str; 1402 1403 // this is a local stream that we are using to ensure that the data pointed 1404 // to by cstr survives long enough for us to copy it to its destination - 1405 // it is necessary to have this temporary storage area for cases where our 1406 // desired output is not backed by some other longer-term storage 1407 StreamString strm; 1408 1409 if (custom_format != eFormatInvalid) 1410 SetFormat(custom_format); 1411 1412 switch (val_obj_display) { 1413 case eValueObjectRepresentationStyleValue: 1414 str = GetValueAsCString(); 1415 break; 1416 1417 case eValueObjectRepresentationStyleSummary: 1418 str = GetSummaryAsCString(); 1419 break; 1420 1421 case eValueObjectRepresentationStyleLanguageSpecific: 1422 str = GetObjectDescription(); 1423 break; 1424 1425 case eValueObjectRepresentationStyleLocation: 1426 str = GetLocationAsCString(); 1427 break; 1428 1429 case eValueObjectRepresentationStyleChildrenCount: 1430 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1431 str = strm.GetString(); 1432 break; 1433 1434 case eValueObjectRepresentationStyleType: 1435 str = GetTypeName().GetStringRef(); 1436 break; 1437 1438 case eValueObjectRepresentationStyleName: 1439 str = GetName().GetStringRef(); 1440 break; 1441 1442 case eValueObjectRepresentationStyleExpressionPath: 1443 GetExpressionPath(strm, false); 1444 str = strm.GetString(); 1445 break; 1446 } 1447 1448 if (str.empty()) { 1449 if (val_obj_display == eValueObjectRepresentationStyleValue) 1450 str = GetSummaryAsCString(); 1451 else if (val_obj_display == eValueObjectRepresentationStyleSummary) { 1452 if (!CanProvideValue()) { 1453 strm.Printf("%s @ %s", GetTypeName().AsCString(), 1454 GetLocationAsCString()); 1455 str = strm.GetString(); 1456 } else 1457 str = GetValueAsCString(); 1458 } 1459 } 1460 1461 if (!str.empty()) 1462 s << str; 1463 else { 1464 if (m_error.Fail()) { 1465 if (do_dump_error) 1466 s.Printf("<%s>", m_error.AsCString()); 1467 else 1468 return false; 1469 } else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1470 s.PutCString("<no summary available>"); 1471 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1472 s.PutCString("<no value available>"); 1473 else if (val_obj_display == 1474 eValueObjectRepresentationStyleLanguageSpecific) 1475 s.PutCString("<not a valid Objective-C object>"); // edit this if we 1476 // have other runtimes 1477 // that support a 1478 // description 1479 else 1480 s.PutCString("<no printable representation>"); 1481 } 1482 1483 // we should only return false here if we could not do *anything* even if 1484 // we have an error message as output, that's a success from our callers' 1485 // perspective, so return true 1486 var_success = true; 1487 1488 if (custom_format != eFormatInvalid) 1489 SetFormat(eFormatDefault); 1490 } 1491 1492 return var_success; 1493 } 1494 1495 addr_t ValueObject::GetAddressOf(bool scalar_is_load_address, 1496 AddressType *address_type) { 1497 // Can't take address of a bitfield 1498 if (IsBitfield()) 1499 return LLDB_INVALID_ADDRESS; 1500 1501 if (!UpdateValueIfNeeded(false)) 1502 return LLDB_INVALID_ADDRESS; 1503 1504 switch (m_value.GetValueType()) { 1505 case Value::eValueTypeScalar: 1506 case Value::eValueTypeVector: 1507 if (scalar_is_load_address) { 1508 if (address_type) 1509 *address_type = eAddressTypeLoad; 1510 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1511 } 1512 break; 1513 1514 case Value::eValueTypeLoadAddress: 1515 case Value::eValueTypeFileAddress: { 1516 if (address_type) 1517 *address_type = m_value.GetValueAddressType(); 1518 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1519 } break; 1520 case Value::eValueTypeHostAddress: { 1521 if (address_type) 1522 *address_type = m_value.GetValueAddressType(); 1523 return LLDB_INVALID_ADDRESS; 1524 } break; 1525 } 1526 if (address_type) 1527 *address_type = eAddressTypeInvalid; 1528 return LLDB_INVALID_ADDRESS; 1529 } 1530 1531 addr_t ValueObject::GetPointerValue(AddressType *address_type) { 1532 addr_t address = LLDB_INVALID_ADDRESS; 1533 if (address_type) 1534 *address_type = eAddressTypeInvalid; 1535 1536 if (!UpdateValueIfNeeded(false)) 1537 return address; 1538 1539 switch (m_value.GetValueType()) { 1540 case Value::eValueTypeScalar: 1541 case Value::eValueTypeVector: 1542 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1543 break; 1544 1545 case Value::eValueTypeHostAddress: 1546 case Value::eValueTypeLoadAddress: 1547 case Value::eValueTypeFileAddress: { 1548 lldb::offset_t data_offset = 0; 1549 address = m_data.GetPointer(&data_offset); 1550 } break; 1551 } 1552 1553 if (address_type) 1554 *address_type = GetAddressTypeOfChildren(); 1555 1556 return address; 1557 } 1558 1559 bool ValueObject::SetValueFromCString(const char *value_str, Status &error) { 1560 error.Clear(); 1561 // Make sure our value is up to date first so that our location and location 1562 // type is valid. 1563 if (!UpdateValueIfNeeded(false)) { 1564 error.SetErrorString("unable to read value"); 1565 return false; 1566 } 1567 1568 uint64_t count = 0; 1569 const Encoding encoding = GetCompilerType().GetEncoding(count); 1570 1571 const size_t byte_size = GetByteSize(); 1572 1573 Value::ValueType value_type = m_value.GetValueType(); 1574 1575 if (value_type == Value::eValueTypeScalar) { 1576 // If the value is already a scalar, then let the scalar change itself: 1577 m_value.GetScalar().SetValueFromCString(value_str, encoding, byte_size); 1578 } else if (byte_size <= 16) { 1579 // If the value fits in a scalar, then make a new scalar and again let the 1580 // scalar code do the conversion, then figure out where to put the new 1581 // value. 1582 Scalar new_scalar; 1583 error = new_scalar.SetValueFromCString(value_str, encoding, byte_size); 1584 if (error.Success()) { 1585 switch (value_type) { 1586 case Value::eValueTypeLoadAddress: { 1587 // If it is a load address, then the scalar value is the storage 1588 // location of the data, and we have to shove this value down to that 1589 // load location. 1590 ExecutionContext exe_ctx(GetExecutionContextRef()); 1591 Process *process = exe_ctx.GetProcessPtr(); 1592 if (process) { 1593 addr_t target_addr = 1594 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1595 size_t bytes_written = process->WriteScalarToMemory( 1596 target_addr, new_scalar, byte_size, error); 1597 if (!error.Success()) 1598 return false; 1599 if (bytes_written != byte_size) { 1600 error.SetErrorString("unable to write value to memory"); 1601 return false; 1602 } 1603 } 1604 } break; 1605 case Value::eValueTypeHostAddress: { 1606 // If it is a host address, then we stuff the scalar as a DataBuffer 1607 // into the Value's data. 1608 DataExtractor new_data; 1609 new_data.SetByteOrder(m_data.GetByteOrder()); 1610 1611 DataBufferSP buffer_sp(new DataBufferHeap(byte_size, 0)); 1612 m_data.SetData(buffer_sp, 0); 1613 bool success = new_scalar.GetData(new_data); 1614 if (success) { 1615 new_data.CopyByteOrderedData( 1616 0, byte_size, const_cast<uint8_t *>(m_data.GetDataStart()), 1617 byte_size, m_data.GetByteOrder()); 1618 } 1619 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1620 1621 } break; 1622 case Value::eValueTypeFileAddress: 1623 case Value::eValueTypeScalar: 1624 case Value::eValueTypeVector: 1625 break; 1626 } 1627 } else { 1628 return false; 1629 } 1630 } else { 1631 // We don't support setting things bigger than a scalar at present. 1632 error.SetErrorString("unable to write aggregate data type"); 1633 return false; 1634 } 1635 1636 // If we have reached this point, then we have successfully changed the 1637 // value. 1638 SetNeedsUpdate(); 1639 return true; 1640 } 1641 1642 bool ValueObject::GetDeclaration(Declaration &decl) { 1643 decl.Clear(); 1644 return false; 1645 } 1646 1647 ConstString ValueObject::GetTypeName() { 1648 return GetCompilerType().GetConstTypeName(); 1649 } 1650 1651 ConstString ValueObject::GetDisplayTypeName() { return GetTypeName(); } 1652 1653 ConstString ValueObject::GetQualifiedTypeName() { 1654 return GetCompilerType().GetConstQualifiedTypeName(); 1655 } 1656 1657 LanguageType ValueObject::GetObjectRuntimeLanguage() { 1658 return GetCompilerType().GetMinimumLanguage(); 1659 } 1660 1661 void ValueObject::AddSyntheticChild(const ConstString &key, 1662 ValueObject *valobj) { 1663 m_synthetic_children[key] = valobj; 1664 } 1665 1666 ValueObjectSP ValueObject::GetSyntheticChild(const ConstString &key) const { 1667 ValueObjectSP synthetic_child_sp; 1668 std::map<ConstString, ValueObject *>::const_iterator pos = 1669 m_synthetic_children.find(key); 1670 if (pos != m_synthetic_children.end()) 1671 synthetic_child_sp = pos->second->GetSP(); 1672 return synthetic_child_sp; 1673 } 1674 1675 uint32_t 1676 ValueObject::GetTypeInfo(CompilerType *pointee_or_element_compiler_type) { 1677 return GetCompilerType().GetTypeInfo(pointee_or_element_compiler_type); 1678 } 1679 1680 bool ValueObject::IsPointerType() { return GetCompilerType().IsPointerType(); } 1681 1682 bool ValueObject::IsArrayType() { 1683 return GetCompilerType().IsArrayType(NULL, NULL, NULL); 1684 } 1685 1686 bool ValueObject::IsScalarType() { return GetCompilerType().IsScalarType(); } 1687 1688 bool ValueObject::IsIntegerType(bool &is_signed) { 1689 return GetCompilerType().IsIntegerType(is_signed); 1690 } 1691 1692 bool ValueObject::IsPointerOrReferenceType() { 1693 return GetCompilerType().IsPointerOrReferenceType(); 1694 } 1695 1696 bool ValueObject::IsPossibleDynamicType() { 1697 ExecutionContext exe_ctx(GetExecutionContextRef()); 1698 Process *process = exe_ctx.GetProcessPtr(); 1699 if (process) 1700 return process->IsPossibleDynamicValue(*this); 1701 else 1702 return GetCompilerType().IsPossibleDynamicType(NULL, true, true); 1703 } 1704 1705 bool ValueObject::IsRuntimeSupportValue() { 1706 Process *process(GetProcessSP().get()); 1707 if (process) { 1708 LanguageRuntime *runtime = 1709 process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 1710 if (!runtime) 1711 runtime = process->GetObjCLanguageRuntime(); 1712 if (runtime) 1713 return runtime->IsRuntimeSupportValue(*this); 1714 } 1715 return false; 1716 } 1717 1718 bool ValueObject::IsNilReference() { 1719 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1720 return language->IsNilReference(*this); 1721 } 1722 return false; 1723 } 1724 1725 bool ValueObject::IsUninitializedReference() { 1726 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) { 1727 return language->IsUninitializedReference(*this); 1728 } 1729 return false; 1730 } 1731 1732 // This allows you to create an array member using and index that doesn't not 1733 // fall in the normal bounds of the array. Many times structure can be defined 1734 // as: struct Collection { 1735 // uint32_t item_count; 1736 // Item item_array[0]; 1737 // }; 1738 // The size of the "item_array" is 1, but many times in practice there are more 1739 // items in "item_array". 1740 1741 ValueObjectSP ValueObject::GetSyntheticArrayMember(size_t index, 1742 bool can_create) { 1743 ValueObjectSP synthetic_child_sp; 1744 if (IsPointerType() || IsArrayType()) { 1745 char index_str[64]; 1746 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 1747 ConstString index_const_str(index_str); 1748 // Check if we have already created a synthetic array member in this valid 1749 // object. If we have we will re-use it. 1750 synthetic_child_sp = GetSyntheticChild(index_const_str); 1751 if (!synthetic_child_sp) { 1752 ValueObject *synthetic_child; 1753 // We haven't made a synthetic array member for INDEX yet, so lets make 1754 // one and cache it for any future reference. 1755 synthetic_child = CreateChildAtIndex(0, true, index); 1756 1757 // Cache the value if we got one back... 1758 if (synthetic_child) { 1759 AddSyntheticChild(index_const_str, synthetic_child); 1760 synthetic_child_sp = synthetic_child->GetSP(); 1761 synthetic_child_sp->SetName(ConstString(index_str)); 1762 synthetic_child_sp->m_is_array_item_for_pointer = true; 1763 } 1764 } 1765 } 1766 return synthetic_child_sp; 1767 } 1768 1769 ValueObjectSP ValueObject::GetSyntheticBitFieldChild(uint32_t from, uint32_t to, 1770 bool can_create) { 1771 ValueObjectSP synthetic_child_sp; 1772 if (IsScalarType()) { 1773 char index_str[64]; 1774 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 1775 ConstString index_const_str(index_str); 1776 // Check if we have already created a synthetic array member in this valid 1777 // object. If we have we will re-use it. 1778 synthetic_child_sp = GetSyntheticChild(index_const_str); 1779 if (!synthetic_child_sp) { 1780 uint32_t bit_field_size = to - from + 1; 1781 uint32_t bit_field_offset = from; 1782 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 1783 bit_field_offset = 1784 GetByteSize() * 8 - bit_field_size - bit_field_offset; 1785 // We haven't made a synthetic array member for INDEX yet, so lets make 1786 // one and cache it for any future reference. 1787 ValueObjectChild *synthetic_child = new ValueObjectChild( 1788 *this, GetCompilerType(), index_const_str, GetByteSize(), 0, 1789 bit_field_size, bit_field_offset, false, false, eAddressTypeInvalid, 1790 0); 1791 1792 // Cache the value if we got one back... 1793 if (synthetic_child) { 1794 AddSyntheticChild(index_const_str, synthetic_child); 1795 synthetic_child_sp = synthetic_child->GetSP(); 1796 synthetic_child_sp->SetName(ConstString(index_str)); 1797 synthetic_child_sp->m_is_bitfield_for_scalar = true; 1798 } 1799 } 1800 } 1801 return synthetic_child_sp; 1802 } 1803 1804 ValueObjectSP ValueObject::GetSyntheticChildAtOffset( 1805 uint32_t offset, const CompilerType &type, bool can_create, 1806 ConstString name_const_str) { 1807 1808 ValueObjectSP synthetic_child_sp; 1809 1810 if (name_const_str.IsEmpty()) { 1811 char name_str[64]; 1812 snprintf(name_str, sizeof(name_str), "@%i", offset); 1813 name_const_str.SetCString(name_str); 1814 } 1815 1816 // Check if we have already created a synthetic array member in this valid 1817 // object. If we have we will re-use it. 1818 synthetic_child_sp = GetSyntheticChild(name_const_str); 1819 1820 if (synthetic_child_sp.get()) 1821 return synthetic_child_sp; 1822 1823 if (!can_create) 1824 return {}; 1825 1826 ExecutionContext exe_ctx(GetExecutionContextRef()); 1827 llvm::Optional<uint64_t> size = 1828 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1829 if (!size) 1830 return {}; 1831 ValueObjectChild *synthetic_child = 1832 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1833 false, false, eAddressTypeInvalid, 0); 1834 if (synthetic_child) { 1835 AddSyntheticChild(name_const_str, synthetic_child); 1836 synthetic_child_sp = synthetic_child->GetSP(); 1837 synthetic_child_sp->SetName(name_const_str); 1838 synthetic_child_sp->m_is_child_at_offset = true; 1839 } 1840 return synthetic_child_sp; 1841 } 1842 1843 ValueObjectSP ValueObject::GetSyntheticBase(uint32_t offset, 1844 const CompilerType &type, 1845 bool can_create, 1846 ConstString name_const_str) { 1847 ValueObjectSP synthetic_child_sp; 1848 1849 if (name_const_str.IsEmpty()) { 1850 char name_str[128]; 1851 snprintf(name_str, sizeof(name_str), "base%s@%i", 1852 type.GetTypeName().AsCString("<unknown>"), offset); 1853 name_const_str.SetCString(name_str); 1854 } 1855 1856 // Check if we have already created a synthetic array member in this valid 1857 // object. If we have we will re-use it. 1858 synthetic_child_sp = GetSyntheticChild(name_const_str); 1859 1860 if (synthetic_child_sp.get()) 1861 return synthetic_child_sp; 1862 1863 if (!can_create) 1864 return {}; 1865 1866 const bool is_base_class = true; 1867 1868 ExecutionContext exe_ctx(GetExecutionContextRef()); 1869 llvm::Optional<uint64_t> size = 1870 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1871 if (!size) 1872 return {}; 1873 ValueObjectChild *synthetic_child = 1874 new ValueObjectChild(*this, type, name_const_str, *size, offset, 0, 0, 1875 is_base_class, false, eAddressTypeInvalid, 0); 1876 if (synthetic_child) { 1877 AddSyntheticChild(name_const_str, synthetic_child); 1878 synthetic_child_sp = synthetic_child->GetSP(); 1879 synthetic_child_sp->SetName(name_const_str); 1880 } 1881 return synthetic_child_sp; 1882 } 1883 1884 // your expression path needs to have a leading . or -> (unless it somehow 1885 // "looks like" an array, in which case it has a leading [ symbol). while the [ 1886 // is meaningful and should be shown to the user, . and -> are just parser 1887 // design, but by no means added information for the user.. strip them off 1888 static const char *SkipLeadingExpressionPathSeparators(const char *expression) { 1889 if (!expression || !expression[0]) 1890 return expression; 1891 if (expression[0] == '.') 1892 return expression + 1; 1893 if (expression[0] == '-' && expression[1] == '>') 1894 return expression + 2; 1895 return expression; 1896 } 1897 1898 ValueObjectSP 1899 ValueObject::GetSyntheticExpressionPathChild(const char *expression, 1900 bool can_create) { 1901 ValueObjectSP synthetic_child_sp; 1902 ConstString name_const_string(expression); 1903 // Check if we have already created a synthetic array member in this valid 1904 // object. If we have we will re-use it. 1905 synthetic_child_sp = GetSyntheticChild(name_const_string); 1906 if (!synthetic_child_sp) { 1907 // We haven't made a synthetic array member for expression yet, so lets 1908 // make one and cache it for any future reference. 1909 synthetic_child_sp = GetValueForExpressionPath( 1910 expression, NULL, NULL, 1911 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal( 1912 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 1913 None)); 1914 1915 // Cache the value if we got one back... 1916 if (synthetic_child_sp.get()) { 1917 // FIXME: this causes a "real" child to end up with its name changed to 1918 // the contents of expression 1919 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 1920 synthetic_child_sp->SetName( 1921 ConstString(SkipLeadingExpressionPathSeparators(expression))); 1922 } 1923 } 1924 return synthetic_child_sp; 1925 } 1926 1927 void ValueObject::CalculateSyntheticValue(bool use_synthetic) { 1928 if (!use_synthetic) 1929 return; 1930 1931 TargetSP target_sp(GetTargetSP()); 1932 if (target_sp && !target_sp->GetEnableSyntheticValue()) { 1933 m_synthetic_value = NULL; 1934 return; 1935 } 1936 1937 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 1938 1939 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 1940 return; 1941 1942 if (m_synthetic_children_sp.get() == NULL) 1943 return; 1944 1945 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 1946 return; 1947 1948 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 1949 } 1950 1951 void ValueObject::CalculateDynamicValue(DynamicValueType use_dynamic) { 1952 if (use_dynamic == eNoDynamicValues) 1953 return; 1954 1955 if (!m_dynamic_value && !IsDynamic()) { 1956 ExecutionContext exe_ctx(GetExecutionContextRef()); 1957 Process *process = exe_ctx.GetProcessPtr(); 1958 if (process && process->IsPossibleDynamicValue(*this)) { 1959 ClearDynamicTypeInformation(); 1960 m_dynamic_value = new ValueObjectDynamicValue(*this, use_dynamic); 1961 } 1962 } 1963 } 1964 1965 ValueObjectSP ValueObject::GetDynamicValue(DynamicValueType use_dynamic) { 1966 if (use_dynamic == eNoDynamicValues) 1967 return ValueObjectSP(); 1968 1969 if (!IsDynamic() && m_dynamic_value == NULL) { 1970 CalculateDynamicValue(use_dynamic); 1971 } 1972 if (m_dynamic_value) 1973 return m_dynamic_value->GetSP(); 1974 else 1975 return ValueObjectSP(); 1976 } 1977 1978 ValueObjectSP ValueObject::GetStaticValue() { return GetSP(); } 1979 1980 lldb::ValueObjectSP ValueObject::GetNonSyntheticValue() { return GetSP(); } 1981 1982 ValueObjectSP ValueObject::GetSyntheticValue(bool use_synthetic) { 1983 if (!use_synthetic) 1984 return ValueObjectSP(); 1985 1986 CalculateSyntheticValue(use_synthetic); 1987 1988 if (m_synthetic_value) 1989 return m_synthetic_value->GetSP(); 1990 else 1991 return ValueObjectSP(); 1992 } 1993 1994 bool ValueObject::HasSyntheticValue() { 1995 UpdateFormatsIfNeeded(); 1996 1997 if (m_synthetic_children_sp.get() == NULL) 1998 return false; 1999 2000 CalculateSyntheticValue(true); 2001 2002 return m_synthetic_value != nullptr; 2003 } 2004 2005 bool ValueObject::GetBaseClassPath(Stream &s) { 2006 if (IsBaseClass()) { 2007 bool parent_had_base_class = 2008 GetParent() && GetParent()->GetBaseClassPath(s); 2009 CompilerType compiler_type = GetCompilerType(); 2010 std::string cxx_class_name; 2011 bool this_had_base_class = 2012 ClangASTContext::GetCXXClassName(compiler_type, cxx_class_name); 2013 if (this_had_base_class) { 2014 if (parent_had_base_class) 2015 s.PutCString("::"); 2016 s.PutCString(cxx_class_name); 2017 } 2018 return parent_had_base_class || this_had_base_class; 2019 } 2020 return false; 2021 } 2022 2023 ValueObject *ValueObject::GetNonBaseClassParent() { 2024 if (GetParent()) { 2025 if (GetParent()->IsBaseClass()) 2026 return GetParent()->GetNonBaseClassParent(); 2027 else 2028 return GetParent(); 2029 } 2030 return NULL; 2031 } 2032 2033 bool ValueObject::IsBaseClass(uint32_t &depth) { 2034 if (!IsBaseClass()) { 2035 depth = 0; 2036 return false; 2037 } 2038 if (GetParent()) { 2039 GetParent()->IsBaseClass(depth); 2040 depth = depth + 1; 2041 return true; 2042 } 2043 // TODO: a base of no parent? weird.. 2044 depth = 1; 2045 return true; 2046 } 2047 2048 void ValueObject::GetExpressionPath(Stream &s, bool qualify_cxx_base_classes, 2049 GetExpressionPathFormat epformat) { 2050 // synthetic children do not actually "exist" as part of the hierarchy, and 2051 // sometimes they are consed up in ways that don't make sense from an 2052 // underlying language/API standpoint. So, use a special code path here to 2053 // return something that can hopefully be used in expression 2054 if (m_is_synthetic_children_generated) { 2055 UpdateValueIfNeeded(); 2056 2057 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) { 2058 if (IsPointerOrReferenceType()) { 2059 s.Printf("((%s)0x%" PRIx64 ")", GetTypeName().AsCString("void"), 2060 GetValueAsUnsigned(0)); 2061 return; 2062 } else { 2063 uint64_t load_addr = 2064 m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2065 if (load_addr != LLDB_INVALID_ADDRESS) { 2066 s.Printf("(*( (%s *)0x%" PRIx64 "))", GetTypeName().AsCString("void"), 2067 load_addr); 2068 return; 2069 } 2070 } 2071 } 2072 2073 if (CanProvideValue()) { 2074 s.Printf("((%s)%s)", GetTypeName().AsCString("void"), 2075 GetValueAsCString()); 2076 return; 2077 } 2078 2079 return; 2080 } 2081 2082 const bool is_deref_of_parent = IsDereferenceOfParent(); 2083 2084 if (is_deref_of_parent && 2085 epformat == eGetExpressionPathFormatDereferencePointers) { 2086 // this is the original format of GetExpressionPath() producing code like 2087 // *(a_ptr).memberName, which is entirely fine, until you put this into 2088 // StackFrame::GetValueForVariableExpressionPath() which prefers to see 2089 // a_ptr->memberName. the eHonorPointers mode is meant to produce strings 2090 // in this latter format 2091 s.PutCString("*("); 2092 } 2093 2094 ValueObject *parent = GetParent(); 2095 2096 if (parent) 2097 parent->GetExpressionPath(s, qualify_cxx_base_classes, epformat); 2098 2099 // if we are a deref_of_parent just because we are synthetic array members 2100 // made up to allow ptr[%d] syntax to work in variable printing, then add our 2101 // name ([%d]) to the expression path 2102 if (m_is_array_item_for_pointer && 2103 epformat == eGetExpressionPathFormatHonorPointers) 2104 s.PutCString(m_name.AsCString()); 2105 2106 if (!IsBaseClass()) { 2107 if (!is_deref_of_parent) { 2108 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2109 if (non_base_class_parent && 2110 !non_base_class_parent->GetName().IsEmpty()) { 2111 CompilerType non_base_class_parent_compiler_type = 2112 non_base_class_parent->GetCompilerType(); 2113 if (non_base_class_parent_compiler_type) { 2114 if (parent && parent->IsDereferenceOfParent() && 2115 epformat == eGetExpressionPathFormatHonorPointers) { 2116 s.PutCString("->"); 2117 } else { 2118 const uint32_t non_base_class_parent_type_info = 2119 non_base_class_parent_compiler_type.GetTypeInfo(); 2120 2121 if (non_base_class_parent_type_info & eTypeIsPointer) { 2122 s.PutCString("->"); 2123 } else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2124 !(non_base_class_parent_type_info & eTypeIsArray)) { 2125 s.PutChar('.'); 2126 } 2127 } 2128 } 2129 } 2130 2131 const char *name = GetName().GetCString(); 2132 if (name) { 2133 if (qualify_cxx_base_classes) { 2134 if (GetBaseClassPath(s)) 2135 s.PutCString("::"); 2136 } 2137 s.PutCString(name); 2138 } 2139 } 2140 } 2141 2142 if (is_deref_of_parent && 2143 epformat == eGetExpressionPathFormatDereferencePointers) { 2144 s.PutChar(')'); 2145 } 2146 } 2147 2148 ValueObjectSP ValueObject::GetValueForExpressionPath( 2149 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2150 ExpressionPathEndResultType *final_value_type, 2151 const GetValueForExpressionPathOptions &options, 2152 ExpressionPathAftermath *final_task_on_target) { 2153 2154 ExpressionPathScanEndReason dummy_reason_to_stop = 2155 ValueObject::eExpressionPathScanEndReasonUnknown; 2156 ExpressionPathEndResultType dummy_final_value_type = 2157 ValueObject::eExpressionPathEndResultTypeInvalid; 2158 ExpressionPathAftermath dummy_final_task_on_target = 2159 ValueObject::eExpressionPathAftermathNothing; 2160 2161 ValueObjectSP ret_val = GetValueForExpressionPath_Impl( 2162 expression, reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2163 final_value_type ? final_value_type : &dummy_final_value_type, options, 2164 final_task_on_target ? final_task_on_target 2165 : &dummy_final_task_on_target); 2166 2167 if (!final_task_on_target || 2168 *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2169 return ret_val; 2170 2171 if (ret_val.get() && 2172 ((final_value_type ? *final_value_type : dummy_final_value_type) == 2173 eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress 2174 // of plain objects 2175 { 2176 if ((final_task_on_target ? *final_task_on_target 2177 : dummy_final_task_on_target) == 2178 ValueObject::eExpressionPathAftermathDereference) { 2179 Status error; 2180 ValueObjectSP final_value = ret_val->Dereference(error); 2181 if (error.Fail() || !final_value.get()) { 2182 if (reason_to_stop) 2183 *reason_to_stop = 2184 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2185 if (final_value_type) 2186 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2187 return ValueObjectSP(); 2188 } else { 2189 if (final_task_on_target) 2190 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2191 return final_value; 2192 } 2193 } 2194 if (*final_task_on_target == 2195 ValueObject::eExpressionPathAftermathTakeAddress) { 2196 Status error; 2197 ValueObjectSP final_value = ret_val->AddressOf(error); 2198 if (error.Fail() || !final_value.get()) { 2199 if (reason_to_stop) 2200 *reason_to_stop = 2201 ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2202 if (final_value_type) 2203 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2204 return ValueObjectSP(); 2205 } else { 2206 if (final_task_on_target) 2207 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2208 return final_value; 2209 } 2210 } 2211 } 2212 return ret_val; // final_task_on_target will still have its original value, so 2213 // you know I did not do it 2214 } 2215 2216 ValueObjectSP ValueObject::GetValueForExpressionPath_Impl( 2217 llvm::StringRef expression, ExpressionPathScanEndReason *reason_to_stop, 2218 ExpressionPathEndResultType *final_result, 2219 const GetValueForExpressionPathOptions &options, 2220 ExpressionPathAftermath *what_next) { 2221 ValueObjectSP root = GetSP(); 2222 2223 if (!root) 2224 return nullptr; 2225 2226 llvm::StringRef remainder = expression; 2227 2228 while (true) { 2229 llvm::StringRef temp_expression = remainder; 2230 2231 CompilerType root_compiler_type = root->GetCompilerType(); 2232 CompilerType pointee_compiler_type; 2233 Flags pointee_compiler_type_info; 2234 2235 Flags root_compiler_type_info( 2236 root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2237 if (pointee_compiler_type) 2238 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2239 2240 if (temp_expression.empty()) { 2241 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2242 return root; 2243 } 2244 2245 switch (temp_expression.front()) { 2246 case '-': { 2247 temp_expression = temp_expression.drop_front(); 2248 if (options.m_check_dot_vs_arrow_syntax && 2249 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2250 // use -> on a 2251 // non-pointer and I 2252 // must catch the error 2253 { 2254 *reason_to_stop = 2255 ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2256 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2257 return ValueObjectSP(); 2258 } 2259 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to 2260 // extract an ObjC IVar 2261 // when this is forbidden 2262 root_compiler_type_info.Test(eTypeIsPointer) && 2263 options.m_no_fragile_ivar) { 2264 *reason_to_stop = 2265 ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2266 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2267 return ValueObjectSP(); 2268 } 2269 if (!temp_expression.startswith(">")) { 2270 *reason_to_stop = 2271 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2272 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2273 return ValueObjectSP(); 2274 } 2275 } 2276 LLVM_FALLTHROUGH; 2277 case '.': // or fallthrough from -> 2278 { 2279 if (options.m_check_dot_vs_arrow_syntax && 2280 temp_expression.front() == '.' && 2281 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to 2282 // use . on a pointer 2283 // and I must catch the 2284 // error 2285 { 2286 *reason_to_stop = 2287 ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2288 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2289 return nullptr; 2290 } 2291 temp_expression = temp_expression.drop_front(); // skip . or > 2292 2293 size_t next_sep_pos = temp_expression.find_first_of("-.[", 1); 2294 ConstString child_name; 2295 if (next_sep_pos == llvm::StringRef::npos) // if no other separator just 2296 // expand this last layer 2297 { 2298 child_name.SetString(temp_expression); 2299 ValueObjectSP child_valobj_sp = 2300 root->GetChildMemberWithName(child_name, true); 2301 2302 if (child_valobj_sp.get()) // we know we are done, so just return 2303 { 2304 *reason_to_stop = 2305 ValueObject::eExpressionPathScanEndReasonEndOfString; 2306 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2307 return child_valobj_sp; 2308 } else { 2309 switch (options.m_synthetic_children_traversal) { 2310 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2311 None: 2312 break; 2313 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2314 FromSynthetic: 2315 if (root->IsSynthetic()) { 2316 child_valobj_sp = root->GetNonSyntheticValue(); 2317 if (child_valobj_sp.get()) 2318 child_valobj_sp = 2319 child_valobj_sp->GetChildMemberWithName(child_name, true); 2320 } 2321 break; 2322 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2323 ToSynthetic: 2324 if (!root->IsSynthetic()) { 2325 child_valobj_sp = root->GetSyntheticValue(); 2326 if (child_valobj_sp.get()) 2327 child_valobj_sp = 2328 child_valobj_sp->GetChildMemberWithName(child_name, true); 2329 } 2330 break; 2331 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2332 Both: 2333 if (root->IsSynthetic()) { 2334 child_valobj_sp = root->GetNonSyntheticValue(); 2335 if (child_valobj_sp.get()) 2336 child_valobj_sp = 2337 child_valobj_sp->GetChildMemberWithName(child_name, true); 2338 } else { 2339 child_valobj_sp = root->GetSyntheticValue(); 2340 if (child_valobj_sp.get()) 2341 child_valobj_sp = 2342 child_valobj_sp->GetChildMemberWithName(child_name, true); 2343 } 2344 break; 2345 } 2346 } 2347 2348 // if we are here and options.m_no_synthetic_children is true, 2349 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2350 // branch, and return an error 2351 if (child_valobj_sp.get()) // if it worked, just return 2352 { 2353 *reason_to_stop = 2354 ValueObject::eExpressionPathScanEndReasonEndOfString; 2355 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2356 return child_valobj_sp; 2357 } else { 2358 *reason_to_stop = 2359 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2360 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2361 return nullptr; 2362 } 2363 } else // other layers do expand 2364 { 2365 llvm::StringRef next_separator = temp_expression.substr(next_sep_pos); 2366 2367 child_name.SetString(temp_expression.slice(0, next_sep_pos)); 2368 2369 ValueObjectSP child_valobj_sp = 2370 root->GetChildMemberWithName(child_name, true); 2371 if (child_valobj_sp.get()) // store the new root and move on 2372 { 2373 root = child_valobj_sp; 2374 remainder = next_separator; 2375 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2376 continue; 2377 } else { 2378 switch (options.m_synthetic_children_traversal) { 2379 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2380 None: 2381 break; 2382 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2383 FromSynthetic: 2384 if (root->IsSynthetic()) { 2385 child_valobj_sp = root->GetNonSyntheticValue(); 2386 if (child_valobj_sp.get()) 2387 child_valobj_sp = 2388 child_valobj_sp->GetChildMemberWithName(child_name, true); 2389 } 2390 break; 2391 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2392 ToSynthetic: 2393 if (!root->IsSynthetic()) { 2394 child_valobj_sp = root->GetSyntheticValue(); 2395 if (child_valobj_sp.get()) 2396 child_valobj_sp = 2397 child_valobj_sp->GetChildMemberWithName(child_name, true); 2398 } 2399 break; 2400 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2401 Both: 2402 if (root->IsSynthetic()) { 2403 child_valobj_sp = root->GetNonSyntheticValue(); 2404 if (child_valobj_sp.get()) 2405 child_valobj_sp = 2406 child_valobj_sp->GetChildMemberWithName(child_name, true); 2407 } else { 2408 child_valobj_sp = root->GetSyntheticValue(); 2409 if (child_valobj_sp.get()) 2410 child_valobj_sp = 2411 child_valobj_sp->GetChildMemberWithName(child_name, true); 2412 } 2413 break; 2414 } 2415 } 2416 2417 // if we are here and options.m_no_synthetic_children is true, 2418 // child_valobj_sp is going to be a NULL SP, so we hit the "else" 2419 // branch, and return an error 2420 if (child_valobj_sp.get()) // if it worked, move on 2421 { 2422 root = child_valobj_sp; 2423 remainder = next_separator; 2424 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2425 continue; 2426 } else { 2427 *reason_to_stop = 2428 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2429 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2430 return nullptr; 2431 } 2432 } 2433 break; 2434 } 2435 case '[': { 2436 if (!root_compiler_type_info.Test(eTypeIsArray) && 2437 !root_compiler_type_info.Test(eTypeIsPointer) && 2438 !root_compiler_type_info.Test( 2439 eTypeIsVector)) // if this is not a T[] nor a T* 2440 { 2441 if (!root_compiler_type_info.Test( 2442 eTypeIsScalar)) // if this is not even a scalar... 2443 { 2444 if (options.m_synthetic_children_traversal == 2445 GetValueForExpressionPathOptions::SyntheticChildrenTraversal:: 2446 None) // ...only chance left is synthetic 2447 { 2448 *reason_to_stop = 2449 ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2450 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2451 return ValueObjectSP(); 2452 } 2453 } else if (!options.m_allow_bitfields_syntax) // if this is a scalar, 2454 // check that we can 2455 // expand bitfields 2456 { 2457 *reason_to_stop = 2458 ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2459 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2460 return ValueObjectSP(); 2461 } 2462 } 2463 if (temp_expression[1] == 2464 ']') // if this is an unbounded range it only works for arrays 2465 { 2466 if (!root_compiler_type_info.Test(eTypeIsArray)) { 2467 *reason_to_stop = 2468 ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2469 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2470 return nullptr; 2471 } else // even if something follows, we cannot expand unbounded ranges, 2472 // just let the caller do it 2473 { 2474 *reason_to_stop = 2475 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2476 *final_result = 2477 ValueObject::eExpressionPathEndResultTypeUnboundedRange; 2478 return root; 2479 } 2480 } 2481 2482 size_t close_bracket_position = temp_expression.find(']', 1); 2483 if (close_bracket_position == 2484 llvm::StringRef::npos) // if there is no ], this is a syntax error 2485 { 2486 *reason_to_stop = 2487 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2488 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2489 return nullptr; 2490 } 2491 2492 llvm::StringRef bracket_expr = 2493 temp_expression.slice(1, close_bracket_position); 2494 2495 // If this was an empty expression it would have been caught by the if 2496 // above. 2497 assert(!bracket_expr.empty()); 2498 2499 if (!bracket_expr.contains('-')) { 2500 // if no separator, this is of the form [N]. Note that this cannot be 2501 // an unbounded range of the form [], because that case was handled 2502 // above with an unconditional return. 2503 unsigned long index = 0; 2504 if (bracket_expr.getAsInteger(0, index)) { 2505 *reason_to_stop = 2506 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2507 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2508 return nullptr; 2509 } 2510 2511 // from here on we do have a valid index 2512 if (root_compiler_type_info.Test(eTypeIsArray)) { 2513 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 2514 if (!child_valobj_sp) 2515 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 2516 if (!child_valobj_sp) 2517 if (root->HasSyntheticValue() && 2518 root->GetSyntheticValue()->GetNumChildren() > index) 2519 child_valobj_sp = 2520 root->GetSyntheticValue()->GetChildAtIndex(index, true); 2521 if (child_valobj_sp) { 2522 root = child_valobj_sp; 2523 remainder = 2524 temp_expression.substr(close_bracket_position + 1); // skip ] 2525 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2526 continue; 2527 } else { 2528 *reason_to_stop = 2529 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2530 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2531 return nullptr; 2532 } 2533 } else if (root_compiler_type_info.Test(eTypeIsPointer)) { 2534 if (*what_next == 2535 ValueObject:: 2536 eExpressionPathAftermathDereference && // if this is a 2537 // ptr-to-scalar, I 2538 // am accessing it 2539 // by index and I 2540 // would have 2541 // deref'ed anyway, 2542 // then do it now 2543 // and use this as 2544 // a bitfield 2545 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2546 Status error; 2547 root = root->Dereference(error); 2548 if (error.Fail() || !root) { 2549 *reason_to_stop = 2550 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2551 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2552 return nullptr; 2553 } else { 2554 *what_next = eExpressionPathAftermathNothing; 2555 continue; 2556 } 2557 } else { 2558 if (root->GetCompilerType().GetMinimumLanguage() == 2559 eLanguageTypeObjC && 2560 pointee_compiler_type_info.AllClear(eTypeIsPointer) && 2561 root->HasSyntheticValue() && 2562 (options.m_synthetic_children_traversal == 2563 GetValueForExpressionPathOptions:: 2564 SyntheticChildrenTraversal::ToSynthetic || 2565 options.m_synthetic_children_traversal == 2566 GetValueForExpressionPathOptions:: 2567 SyntheticChildrenTraversal::Both)) { 2568 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 2569 } else 2570 root = root->GetSyntheticArrayMember(index, true); 2571 if (!root) { 2572 *reason_to_stop = 2573 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2574 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2575 return nullptr; 2576 } else { 2577 remainder = 2578 temp_expression.substr(close_bracket_position + 1); // skip ] 2579 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2580 continue; 2581 } 2582 } 2583 } else if (root_compiler_type_info.Test(eTypeIsScalar)) { 2584 root = root->GetSyntheticBitFieldChild(index, index, true); 2585 if (!root) { 2586 *reason_to_stop = 2587 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2588 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2589 return nullptr; 2590 } else // we do not know how to expand members of bitfields, so we 2591 // just return and let the caller do any further processing 2592 { 2593 *reason_to_stop = ValueObject:: 2594 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2595 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2596 return root; 2597 } 2598 } else if (root_compiler_type_info.Test(eTypeIsVector)) { 2599 root = root->GetChildAtIndex(index, true); 2600 if (!root) { 2601 *reason_to_stop = 2602 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2603 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2604 return ValueObjectSP(); 2605 } else { 2606 remainder = 2607 temp_expression.substr(close_bracket_position + 1); // skip ] 2608 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2609 continue; 2610 } 2611 } else if (options.m_synthetic_children_traversal == 2612 GetValueForExpressionPathOptions:: 2613 SyntheticChildrenTraversal::ToSynthetic || 2614 options.m_synthetic_children_traversal == 2615 GetValueForExpressionPathOptions:: 2616 SyntheticChildrenTraversal::Both) { 2617 if (root->HasSyntheticValue()) 2618 root = root->GetSyntheticValue(); 2619 else if (!root->IsSynthetic()) { 2620 *reason_to_stop = 2621 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2622 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2623 return nullptr; 2624 } 2625 // if we are here, then root itself is a synthetic VO.. should be 2626 // good to go 2627 2628 if (!root) { 2629 *reason_to_stop = 2630 ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 2631 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2632 return nullptr; 2633 } 2634 root = root->GetChildAtIndex(index, true); 2635 if (!root) { 2636 *reason_to_stop = 2637 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2638 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2639 return nullptr; 2640 } else { 2641 remainder = 2642 temp_expression.substr(close_bracket_position + 1); // skip ] 2643 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2644 continue; 2645 } 2646 } else { 2647 *reason_to_stop = 2648 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2649 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2650 return nullptr; 2651 } 2652 } else { 2653 // we have a low and a high index 2654 llvm::StringRef sleft, sright; 2655 unsigned long low_index, high_index; 2656 std::tie(sleft, sright) = bracket_expr.split('-'); 2657 if (sleft.getAsInteger(0, low_index) || 2658 sright.getAsInteger(0, high_index)) { 2659 *reason_to_stop = 2660 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2661 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2662 return nullptr; 2663 } 2664 2665 if (low_index > high_index) // swap indices if required 2666 std::swap(low_index, high_index); 2667 2668 if (root_compiler_type_info.Test( 2669 eTypeIsScalar)) // expansion only works for scalars 2670 { 2671 root = root->GetSyntheticBitFieldChild(low_index, high_index, true); 2672 if (!root) { 2673 *reason_to_stop = 2674 ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2675 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2676 return nullptr; 2677 } else { 2678 *reason_to_stop = ValueObject:: 2679 eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 2680 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 2681 return root; 2682 } 2683 } else if (root_compiler_type_info.Test( 2684 eTypeIsPointer) && // if this is a ptr-to-scalar, I am 2685 // accessing it by index and I would 2686 // have deref'ed anyway, then do it 2687 // now and use this as a bitfield 2688 *what_next == 2689 ValueObject::eExpressionPathAftermathDereference && 2690 pointee_compiler_type_info.Test(eTypeIsScalar)) { 2691 Status error; 2692 root = root->Dereference(error); 2693 if (error.Fail() || !root) { 2694 *reason_to_stop = 2695 ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2696 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2697 return nullptr; 2698 } else { 2699 *what_next = ValueObject::eExpressionPathAftermathNothing; 2700 continue; 2701 } 2702 } else { 2703 *reason_to_stop = 2704 ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 2705 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 2706 return root; 2707 } 2708 } 2709 break; 2710 } 2711 default: // some non-separator is in the way 2712 { 2713 *reason_to_stop = 2714 ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2715 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2716 return nullptr; 2717 } 2718 } 2719 } 2720 } 2721 2722 void ValueObject::LogValueObject(Log *log) { 2723 if (log) 2724 return LogValueObject(log, DumpValueObjectOptions(*this)); 2725 } 2726 2727 void ValueObject::LogValueObject(Log *log, 2728 const DumpValueObjectOptions &options) { 2729 if (log) { 2730 StreamString s; 2731 Dump(s, options); 2732 if (s.GetSize()) 2733 log->PutCString(s.GetData()); 2734 } 2735 } 2736 2737 void ValueObject::Dump(Stream &s) { Dump(s, DumpValueObjectOptions(*this)); } 2738 2739 void ValueObject::Dump(Stream &s, const DumpValueObjectOptions &options) { 2740 ValueObjectPrinter printer(this, &s, options); 2741 printer.PrintValueObject(); 2742 } 2743 2744 ValueObjectSP ValueObject::CreateConstantValue(const ConstString &name) { 2745 ValueObjectSP valobj_sp; 2746 2747 if (UpdateValueIfNeeded(false) && m_error.Success()) { 2748 ExecutionContext exe_ctx(GetExecutionContextRef()); 2749 2750 DataExtractor data; 2751 data.SetByteOrder(m_data.GetByteOrder()); 2752 data.SetAddressByteSize(m_data.GetAddressByteSize()); 2753 2754 if (IsBitfield()) { 2755 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 2756 m_error = v.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2757 } else 2758 m_error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 2759 2760 valobj_sp = ValueObjectConstResult::Create( 2761 exe_ctx.GetBestExecutionContextScope(), GetCompilerType(), name, data, 2762 GetAddressOf()); 2763 } 2764 2765 if (!valobj_sp) { 2766 ExecutionContext exe_ctx(GetExecutionContextRef()); 2767 valobj_sp = ValueObjectConstResult::Create( 2768 exe_ctx.GetBestExecutionContextScope(), m_error); 2769 } 2770 return valobj_sp; 2771 } 2772 2773 ValueObjectSP ValueObject::GetQualifiedRepresentationIfAvailable( 2774 lldb::DynamicValueType dynValue, bool synthValue) { 2775 ValueObjectSP result_sp(GetSP()); 2776 2777 switch (dynValue) { 2778 case lldb::eDynamicCanRunTarget: 2779 case lldb::eDynamicDontRunTarget: { 2780 if (!result_sp->IsDynamic()) { 2781 if (result_sp->GetDynamicValue(dynValue)) 2782 result_sp = result_sp->GetDynamicValue(dynValue); 2783 } 2784 } break; 2785 case lldb::eNoDynamicValues: { 2786 if (result_sp->IsDynamic()) { 2787 if (result_sp->GetStaticValue()) 2788 result_sp = result_sp->GetStaticValue(); 2789 } 2790 } break; 2791 } 2792 2793 if (synthValue) { 2794 if (!result_sp->IsSynthetic()) { 2795 if (result_sp->GetSyntheticValue()) 2796 result_sp = result_sp->GetSyntheticValue(); 2797 } 2798 } else { 2799 if (result_sp->IsSynthetic()) { 2800 if (result_sp->GetNonSyntheticValue()) 2801 result_sp = result_sp->GetNonSyntheticValue(); 2802 } 2803 } 2804 2805 return result_sp; 2806 } 2807 2808 ValueObjectSP ValueObject::Dereference(Status &error) { 2809 if (m_deref_valobj) 2810 return m_deref_valobj->GetSP(); 2811 2812 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 2813 if (is_pointer_or_reference_type) { 2814 bool omit_empty_base_classes = true; 2815 bool ignore_array_bounds = false; 2816 2817 std::string child_name_str; 2818 uint32_t child_byte_size = 0; 2819 int32_t child_byte_offset = 0; 2820 uint32_t child_bitfield_bit_size = 0; 2821 uint32_t child_bitfield_bit_offset = 0; 2822 bool child_is_base_class = false; 2823 bool child_is_deref_of_parent = false; 2824 const bool transparent_pointers = false; 2825 CompilerType compiler_type = GetCompilerType(); 2826 CompilerType child_compiler_type; 2827 uint64_t language_flags; 2828 2829 ExecutionContext exe_ctx(GetExecutionContextRef()); 2830 2831 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex( 2832 &exe_ctx, 0, transparent_pointers, omit_empty_base_classes, 2833 ignore_array_bounds, child_name_str, child_byte_size, child_byte_offset, 2834 child_bitfield_bit_size, child_bitfield_bit_offset, child_is_base_class, 2835 child_is_deref_of_parent, this, language_flags); 2836 if (child_compiler_type && child_byte_size) { 2837 ConstString child_name; 2838 if (!child_name_str.empty()) 2839 child_name.SetCString(child_name_str.c_str()); 2840 2841 m_deref_valobj = new ValueObjectChild( 2842 *this, child_compiler_type, child_name, child_byte_size, 2843 child_byte_offset, child_bitfield_bit_size, child_bitfield_bit_offset, 2844 child_is_base_class, child_is_deref_of_parent, eAddressTypeInvalid, 2845 language_flags); 2846 } 2847 } else if (HasSyntheticValue()) { 2848 m_deref_valobj = 2849 GetSyntheticValue() 2850 ->GetChildMemberWithName(ConstString("$$dereference$$"), true) 2851 .get(); 2852 } 2853 2854 if (m_deref_valobj) { 2855 error.Clear(); 2856 return m_deref_valobj->GetSP(); 2857 } else { 2858 StreamString strm; 2859 GetExpressionPath(strm, true); 2860 2861 if (is_pointer_or_reference_type) 2862 error.SetErrorStringWithFormat("dereference failed: (%s) %s", 2863 GetTypeName().AsCString("<invalid type>"), 2864 strm.GetData()); 2865 else 2866 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", 2867 GetTypeName().AsCString("<invalid type>"), 2868 strm.GetData()); 2869 return ValueObjectSP(); 2870 } 2871 } 2872 2873 ValueObjectSP ValueObject::AddressOf(Status &error) { 2874 if (m_addr_of_valobj_sp) 2875 return m_addr_of_valobj_sp; 2876 2877 AddressType address_type = eAddressTypeInvalid; 2878 const bool scalar_is_load_address = false; 2879 addr_t addr = GetAddressOf(scalar_is_load_address, &address_type); 2880 error.Clear(); 2881 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) { 2882 switch (address_type) { 2883 case eAddressTypeInvalid: { 2884 StreamString expr_path_strm; 2885 GetExpressionPath(expr_path_strm, true); 2886 error.SetErrorStringWithFormat("'%s' is not in memory", 2887 expr_path_strm.GetData()); 2888 } break; 2889 2890 case eAddressTypeFile: 2891 case eAddressTypeLoad: { 2892 CompilerType compiler_type = GetCompilerType(); 2893 if (compiler_type) { 2894 std::string name(1, '&'); 2895 name.append(m_name.AsCString("")); 2896 ExecutionContext exe_ctx(GetExecutionContextRef()); 2897 m_addr_of_valobj_sp = ValueObjectConstResult::Create( 2898 exe_ctx.GetBestExecutionContextScope(), 2899 compiler_type.GetPointerType(), ConstString(name.c_str()), addr, 2900 eAddressTypeInvalid, m_data.GetAddressByteSize()); 2901 } 2902 } break; 2903 default: 2904 break; 2905 } 2906 } else { 2907 StreamString expr_path_strm; 2908 GetExpressionPath(expr_path_strm, true); 2909 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", 2910 expr_path_strm.GetData()); 2911 } 2912 2913 return m_addr_of_valobj_sp; 2914 } 2915 2916 ValueObjectSP ValueObject::Cast(const CompilerType &compiler_type) { 2917 return ValueObjectCast::Create(*this, GetName(), compiler_type); 2918 } 2919 2920 lldb::ValueObjectSP ValueObject::Clone(const ConstString &new_name) { 2921 return ValueObjectCast::Create(*this, new_name, GetCompilerType()); 2922 } 2923 2924 ValueObjectSP ValueObject::CastPointerType(const char *name, 2925 CompilerType &compiler_type) { 2926 ValueObjectSP valobj_sp; 2927 AddressType address_type; 2928 addr_t ptr_value = GetPointerValue(&address_type); 2929 2930 if (ptr_value != LLDB_INVALID_ADDRESS) { 2931 Address ptr_addr(ptr_value); 2932 ExecutionContext exe_ctx(GetExecutionContextRef()); 2933 valobj_sp = ValueObjectMemory::Create( 2934 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, compiler_type); 2935 } 2936 return valobj_sp; 2937 } 2938 2939 ValueObjectSP ValueObject::CastPointerType(const char *name, TypeSP &type_sp) { 2940 ValueObjectSP valobj_sp; 2941 AddressType address_type; 2942 addr_t ptr_value = GetPointerValue(&address_type); 2943 2944 if (ptr_value != LLDB_INVALID_ADDRESS) { 2945 Address ptr_addr(ptr_value); 2946 ExecutionContext exe_ctx(GetExecutionContextRef()); 2947 valobj_sp = ValueObjectMemory::Create( 2948 exe_ctx.GetBestExecutionContextScope(), name, ptr_addr, type_sp); 2949 } 2950 return valobj_sp; 2951 } 2952 2953 ValueObject::EvaluationPoint::EvaluationPoint() 2954 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) {} 2955 2956 ValueObject::EvaluationPoint::EvaluationPoint(ExecutionContextScope *exe_scope, 2957 bool use_selected) 2958 : m_mod_id(), m_exe_ctx_ref(), m_needs_update(true) { 2959 ExecutionContext exe_ctx(exe_scope); 2960 TargetSP target_sp(exe_ctx.GetTargetSP()); 2961 if (target_sp) { 2962 m_exe_ctx_ref.SetTargetSP(target_sp); 2963 ProcessSP process_sp(exe_ctx.GetProcessSP()); 2964 if (!process_sp) 2965 process_sp = target_sp->GetProcessSP(); 2966 2967 if (process_sp) { 2968 m_mod_id = process_sp->GetModID(); 2969 m_exe_ctx_ref.SetProcessSP(process_sp); 2970 2971 ThreadSP thread_sp(exe_ctx.GetThreadSP()); 2972 2973 if (!thread_sp) { 2974 if (use_selected) 2975 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 2976 } 2977 2978 if (thread_sp) { 2979 m_exe_ctx_ref.SetThreadSP(thread_sp); 2980 2981 StackFrameSP frame_sp(exe_ctx.GetFrameSP()); 2982 if (!frame_sp) { 2983 if (use_selected) 2984 frame_sp = thread_sp->GetSelectedFrame(); 2985 } 2986 if (frame_sp) 2987 m_exe_ctx_ref.SetFrameSP(frame_sp); 2988 } 2989 } 2990 } 2991 } 2992 2993 ValueObject::EvaluationPoint::EvaluationPoint( 2994 const ValueObject::EvaluationPoint &rhs) 2995 : m_mod_id(), m_exe_ctx_ref(rhs.m_exe_ctx_ref), m_needs_update(true) {} 2996 2997 ValueObject::EvaluationPoint::~EvaluationPoint() {} 2998 2999 // This function checks the EvaluationPoint against the current process state. 3000 // If the current state matches the evaluation point, or the evaluation point 3001 // is already invalid, then we return false, meaning "no change". If the 3002 // current state is different, we update our state, and return true meaning 3003 // "yes, change". If we did see a change, we also set m_needs_update to true, 3004 // so future calls to NeedsUpdate will return true. exe_scope will be set to 3005 // the current execution context scope. 3006 3007 bool ValueObject::EvaluationPoint::SyncWithProcessState( 3008 bool accept_invalid_exe_ctx) { 3009 // Start with the target, if it is NULL, then we're obviously not going to 3010 // get any further: 3011 const bool thread_and_frame_only_if_stopped = true; 3012 ExecutionContext exe_ctx( 3013 m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3014 3015 if (exe_ctx.GetTargetPtr() == NULL) 3016 return false; 3017 3018 // If we don't have a process nothing can change. 3019 Process *process = exe_ctx.GetProcessPtr(); 3020 if (process == NULL) 3021 return false; 3022 3023 // If our stop id is the current stop ID, nothing has changed: 3024 ProcessModID current_mod_id = process->GetModID(); 3025 3026 // If the current stop id is 0, either we haven't run yet, or the process 3027 // state has been cleared. In either case, we aren't going to be able to sync 3028 // with the process state. 3029 if (current_mod_id.GetStopID() == 0) 3030 return false; 3031 3032 bool changed = false; 3033 const bool was_valid = m_mod_id.IsValid(); 3034 if (was_valid) { 3035 if (m_mod_id == current_mod_id) { 3036 // Everything is already up to date in this object, no need to update the 3037 // execution context scope. 3038 changed = false; 3039 } else { 3040 m_mod_id = current_mod_id; 3041 m_needs_update = true; 3042 changed = true; 3043 } 3044 } 3045 3046 // Now re-look up the thread and frame in case the underlying objects have 3047 // gone away & been recreated. That way we'll be sure to return a valid 3048 // exe_scope. If we used to have a thread or a frame but can't find it 3049 // anymore, then mark ourselves as invalid. 3050 3051 if (!accept_invalid_exe_ctx) { 3052 if (m_exe_ctx_ref.HasThreadRef()) { 3053 ThreadSP thread_sp(m_exe_ctx_ref.GetThreadSP()); 3054 if (thread_sp) { 3055 if (m_exe_ctx_ref.HasFrameRef()) { 3056 StackFrameSP frame_sp(m_exe_ctx_ref.GetFrameSP()); 3057 if (!frame_sp) { 3058 // We used to have a frame, but now it is gone 3059 SetInvalid(); 3060 changed = was_valid; 3061 } 3062 } 3063 } else { 3064 // We used to have a thread, but now it is gone 3065 SetInvalid(); 3066 changed = was_valid; 3067 } 3068 } 3069 } 3070 3071 return changed; 3072 } 3073 3074 void ValueObject::EvaluationPoint::SetUpdated() { 3075 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 3076 if (process_sp) 3077 m_mod_id = process_sp->GetModID(); 3078 m_needs_update = false; 3079 } 3080 3081 void ValueObject::ClearUserVisibleData(uint32_t clear_mask) { 3082 if ((clear_mask & eClearUserVisibleDataItemsValue) == 3083 eClearUserVisibleDataItemsValue) 3084 m_value_str.clear(); 3085 3086 if ((clear_mask & eClearUserVisibleDataItemsLocation) == 3087 eClearUserVisibleDataItemsLocation) 3088 m_location_str.clear(); 3089 3090 if ((clear_mask & eClearUserVisibleDataItemsSummary) == 3091 eClearUserVisibleDataItemsSummary) 3092 m_summary_str.clear(); 3093 3094 if ((clear_mask & eClearUserVisibleDataItemsDescription) == 3095 eClearUserVisibleDataItemsDescription) 3096 m_object_desc_str.clear(); 3097 3098 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == 3099 eClearUserVisibleDataItemsSyntheticChildren) { 3100 if (m_synthetic_value) 3101 m_synthetic_value = NULL; 3102 } 3103 3104 if ((clear_mask & eClearUserVisibleDataItemsValidator) == 3105 eClearUserVisibleDataItemsValidator) 3106 m_validation_result.reset(); 3107 } 3108 3109 SymbolContextScope *ValueObject::GetSymbolContextScope() { 3110 if (m_parent) { 3111 if (!m_parent->IsPointerOrReferenceType()) 3112 return m_parent->GetSymbolContextScope(); 3113 } 3114 return NULL; 3115 } 3116 3117 lldb::ValueObjectSP 3118 ValueObject::CreateValueObjectFromExpression(llvm::StringRef name, 3119 llvm::StringRef expression, 3120 const ExecutionContext &exe_ctx) { 3121 return CreateValueObjectFromExpression(name, expression, exe_ctx, 3122 EvaluateExpressionOptions()); 3123 } 3124 3125 lldb::ValueObjectSP ValueObject::CreateValueObjectFromExpression( 3126 llvm::StringRef name, llvm::StringRef expression, 3127 const ExecutionContext &exe_ctx, const EvaluateExpressionOptions &options) { 3128 lldb::ValueObjectSP retval_sp; 3129 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 3130 if (!target_sp) 3131 return retval_sp; 3132 if (expression.empty()) 3133 return retval_sp; 3134 target_sp->EvaluateExpression(expression, exe_ctx.GetFrameSP().get(), 3135 retval_sp, options); 3136 if (retval_sp && !name.empty()) 3137 retval_sp->SetName(ConstString(name)); 3138 return retval_sp; 3139 } 3140 3141 lldb::ValueObjectSP ValueObject::CreateValueObjectFromAddress( 3142 llvm::StringRef name, uint64_t address, const ExecutionContext &exe_ctx, 3143 CompilerType type) { 3144 if (type) { 3145 CompilerType pointer_type(type.GetPointerType()); 3146 if (pointer_type) { 3147 lldb::DataBufferSP buffer( 3148 new lldb_private::DataBufferHeap(&address, sizeof(lldb::addr_t))); 3149 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create( 3150 exe_ctx.GetBestExecutionContextScope(), pointer_type, 3151 ConstString(name), buffer, exe_ctx.GetByteOrder(), 3152 exe_ctx.GetAddressByteSize())); 3153 if (ptr_result_valobj_sp) { 3154 ptr_result_valobj_sp->GetValue().SetValueType( 3155 Value::eValueTypeLoadAddress); 3156 Status err; 3157 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 3158 if (ptr_result_valobj_sp && !name.empty()) 3159 ptr_result_valobj_sp->SetName(ConstString(name)); 3160 } 3161 return ptr_result_valobj_sp; 3162 } 3163 } 3164 return lldb::ValueObjectSP(); 3165 } 3166 3167 lldb::ValueObjectSP ValueObject::CreateValueObjectFromData( 3168 llvm::StringRef name, const DataExtractor &data, 3169 const ExecutionContext &exe_ctx, CompilerType type) { 3170 lldb::ValueObjectSP new_value_sp; 3171 new_value_sp = ValueObjectConstResult::Create( 3172 exe_ctx.GetBestExecutionContextScope(), type, ConstString(name), data, 3173 LLDB_INVALID_ADDRESS); 3174 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 3175 if (new_value_sp && !name.empty()) 3176 new_value_sp->SetName(ConstString(name)); 3177 return new_value_sp; 3178 } 3179 3180 ModuleSP ValueObject::GetModule() { 3181 ValueObject *root(GetRoot()); 3182 if (root != this) 3183 return root->GetModule(); 3184 return lldb::ModuleSP(); 3185 } 3186 3187 ValueObject *ValueObject::GetRoot() { 3188 if (m_root) 3189 return m_root; 3190 return (m_root = FollowParentChain([](ValueObject *vo) -> bool { 3191 return (vo->m_parent != nullptr); 3192 })); 3193 } 3194 3195 ValueObject * 3196 ValueObject::FollowParentChain(std::function<bool(ValueObject *)> f) { 3197 ValueObject *vo = this; 3198 while (vo) { 3199 if (!f(vo)) 3200 break; 3201 vo = vo->m_parent; 3202 } 3203 return vo; 3204 } 3205 3206 AddressType ValueObject::GetAddressTypeOfChildren() { 3207 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) { 3208 ValueObject *root(GetRoot()); 3209 if (root != this) 3210 return root->GetAddressTypeOfChildren(); 3211 } 3212 return m_address_type_of_ptr_or_ref_children; 3213 } 3214 3215 lldb::DynamicValueType ValueObject::GetDynamicValueType() { 3216 ValueObject *with_dv_info = this; 3217 while (with_dv_info) { 3218 if (with_dv_info->HasDynamicValueTypeInfo()) 3219 return with_dv_info->GetDynamicValueTypeImpl(); 3220 with_dv_info = with_dv_info->m_parent; 3221 } 3222 return lldb::eNoDynamicValues; 3223 } 3224 3225 lldb::Format ValueObject::GetFormat() const { 3226 const ValueObject *with_fmt_info = this; 3227 while (with_fmt_info) { 3228 if (with_fmt_info->m_format != lldb::eFormatDefault) 3229 return with_fmt_info->m_format; 3230 with_fmt_info = with_fmt_info->m_parent; 3231 } 3232 return m_format; 3233 } 3234 3235 lldb::LanguageType ValueObject::GetPreferredDisplayLanguage() { 3236 lldb::LanguageType type = m_preferred_display_language; 3237 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) { 3238 if (GetRoot()) { 3239 if (GetRoot() == this) { 3240 if (StackFrameSP frame_sp = GetFrameSP()) { 3241 const SymbolContext &sc( 3242 frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 3243 if (CompileUnit *cu = sc.comp_unit) 3244 type = cu->GetLanguage(); 3245 } 3246 } else { 3247 type = GetRoot()->GetPreferredDisplayLanguage(); 3248 } 3249 } 3250 } 3251 return (m_preferred_display_language = type); // only compute it once 3252 } 3253 3254 void ValueObject::SetPreferredDisplayLanguage(lldb::LanguageType lt) { 3255 m_preferred_display_language = lt; 3256 } 3257 3258 void ValueObject::SetPreferredDisplayLanguageIfNeeded(lldb::LanguageType lt) { 3259 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 3260 SetPreferredDisplayLanguage(lt); 3261 } 3262 3263 bool ValueObject::CanProvideValue() { 3264 // we need to support invalid types as providers of values because some bare- 3265 // board debugging scenarios have no notion of types, but still manage to 3266 // have raw numeric values for things like registers. sigh. 3267 const CompilerType &type(GetCompilerType()); 3268 return (!type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 3269 } 3270 3271 bool ValueObject::IsChecksumEmpty() { return m_value_checksum.empty(); } 3272 3273 ValueObjectSP ValueObject::Persist() { 3274 if (!UpdateValueIfNeeded()) 3275 return nullptr; 3276 3277 TargetSP target_sp(GetTargetSP()); 3278 if (!target_sp) 3279 return nullptr; 3280 3281 PersistentExpressionState *persistent_state = 3282 target_sp->GetPersistentExpressionStateForLanguage( 3283 GetPreferredDisplayLanguage()); 3284 3285 if (!persistent_state) 3286 return nullptr; 3287 3288 auto prefix = persistent_state->GetPersistentVariablePrefix(); 3289 ConstString name = 3290 persistent_state->GetNextPersistentVariableName(*target_sp, prefix); 3291 3292 ValueObjectSP const_result_sp = 3293 ValueObjectConstResult::Create(target_sp.get(), GetValue(), name); 3294 3295 ExpressionVariableSP clang_var_sp = 3296 persistent_state->CreatePersistentVariable(const_result_sp); 3297 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 3298 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 3299 3300 return clang_var_sp->GetValueObject(); 3301 } 3302 3303 bool ValueObject::IsSyntheticChildrenGenerated() { 3304 return m_is_synthetic_children_generated; 3305 } 3306 3307 void ValueObject::SetSyntheticChildrenGenerated(bool b) { 3308 m_is_synthetic_children_generated = b; 3309 } 3310 3311 uint64_t ValueObject::GetLanguageFlags() { return m_language_flags; } 3312 3313 void ValueObject::SetLanguageFlags(uint64_t flags) { m_language_flags = flags; } 3314 3315 ValueObjectManager::ValueObjectManager(lldb::ValueObjectSP in_valobj_sp, 3316 lldb::DynamicValueType use_dynamic, 3317 bool use_synthetic) : m_root_valobj_sp(), 3318 m_user_valobj_sp(), m_use_dynamic(use_dynamic), m_stop_id(UINT32_MAX), 3319 m_use_synthetic(use_synthetic) { 3320 if (!in_valobj_sp) 3321 return; 3322 // If the user passes in a value object that is dynamic or synthetic, then 3323 // water it down to the static type. 3324 m_root_valobj_sp = in_valobj_sp->GetQualifiedRepresentationIfAvailable(lldb::eNoDynamicValues, false); 3325 } 3326 3327 bool ValueObjectManager::IsValid() const { 3328 if (!m_root_valobj_sp) 3329 return false; 3330 lldb::TargetSP target_sp = GetTargetSP(); 3331 if (target_sp) 3332 return target_sp->IsValid(); 3333 return false; 3334 } 3335 3336 lldb::ValueObjectSP ValueObjectManager::GetSP() { 3337 lldb::ProcessSP process_sp = GetProcessSP(); 3338 if (!process_sp) 3339 return lldb::ValueObjectSP(); 3340 3341 const uint32_t current_stop_id = process_sp->GetLastNaturalStopID(); 3342 if (current_stop_id == m_stop_id) 3343 return m_user_valobj_sp; 3344 3345 m_stop_id = current_stop_id; 3346 3347 if (!m_root_valobj_sp) { 3348 m_user_valobj_sp.reset(); 3349 return m_root_valobj_sp; 3350 } 3351 3352 m_user_valobj_sp = m_root_valobj_sp; 3353 3354 if (m_use_dynamic != lldb::eNoDynamicValues) { 3355 lldb::ValueObjectSP dynamic_sp = m_user_valobj_sp->GetDynamicValue(m_use_dynamic); 3356 if (dynamic_sp) 3357 m_user_valobj_sp = dynamic_sp; 3358 } 3359 3360 if (m_use_synthetic) { 3361 lldb::ValueObjectSP synthetic_sp = m_user_valobj_sp->GetSyntheticValue(m_use_synthetic); 3362 if (synthetic_sp) 3363 m_user_valobj_sp = synthetic_sp; 3364 } 3365 3366 return m_user_valobj_sp; 3367 } 3368 3369 void ValueObjectManager::SetUseDynamic(lldb::DynamicValueType use_dynamic) { 3370 if (use_dynamic != m_use_dynamic) { 3371 m_use_dynamic = use_dynamic; 3372 m_user_valobj_sp.reset(); 3373 m_stop_id = UINT32_MAX; 3374 } 3375 } 3376 3377 void ValueObjectManager::SetUseSynthetic(bool use_synthetic) { 3378 if (m_use_synthetic != use_synthetic) { 3379 m_use_synthetic = use_synthetic; 3380 m_user_valobj_sp.reset(); 3381 m_stop_id = UINT32_MAX; 3382 } 3383 } 3384 3385 lldb::TargetSP ValueObjectManager::GetTargetSP() const { 3386 if (!m_root_valobj_sp) 3387 return m_root_valobj_sp->GetTargetSP(); 3388 return lldb::TargetSP(); 3389 } 3390 3391 lldb::ProcessSP ValueObjectManager::GetProcessSP() const { 3392 if (m_root_valobj_sp) 3393 return m_root_valobj_sp->GetProcessSP(); 3394 return lldb::ProcessSP(); 3395 } 3396 3397 lldb::ThreadSP ValueObjectManager::GetThreadSP() const { 3398 if (m_root_valobj_sp) 3399 return m_root_valobj_sp->GetThreadSP(); 3400 return lldb::ThreadSP(); 3401 } 3402 3403 lldb::StackFrameSP ValueObjectManager::GetFrameSP() const { 3404 if (m_root_valobj_sp) 3405 return m_root_valobj_sp->GetFrameSP(); 3406 return lldb::StackFrameSP(); 3407 } 3408 3409