1 //===-- ValueObject.cpp -----------------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "lldb/Core/ValueObject.h" 11 12 // C Includes 13 #include <stdlib.h> 14 15 // C++ Includes 16 // Other libraries and framework includes 17 #include "llvm/Support/raw_ostream.h" 18 19 // Project includes 20 #include "lldb/Core/DataBufferHeap.h" 21 #include "lldb/Core/Debugger.h" 22 #include "lldb/Core/Log.h" 23 #include "lldb/Core/Module.h" 24 #include "lldb/Core/StreamString.h" 25 #include "lldb/Core/ValueObjectCast.h" 26 #include "lldb/Core/ValueObjectChild.h" 27 #include "lldb/Core/ValueObjectConstResult.h" 28 #include "lldb/Core/ValueObjectDynamicValue.h" 29 #include "lldb/Core/ValueObjectList.h" 30 #include "lldb/Core/ValueObjectMemory.h" 31 #include "lldb/Core/ValueObjectSyntheticFilter.h" 32 33 #include "lldb/DataFormatters/DataVisualization.h" 34 #include "lldb/DataFormatters/StringPrinter.h" 35 #include "lldb/DataFormatters/ValueObjectPrinter.h" 36 37 #include "Plugins/ExpressionParser/Clang/ClangExpressionVariable.h" 38 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 39 40 #include "lldb/Host/Endian.h" 41 42 #include "lldb/Interpreter/CommandInterpreter.h" 43 44 #include "lldb/Symbol/CompilerType.h" 45 #include "lldb/Symbol/ClangASTContext.h" 46 #include "lldb/Symbol/CompileUnit.h" 47 #include "lldb/Symbol/Type.h" 48 49 #include "lldb/Target/ExecutionContext.h" 50 #include "lldb/Target/Language.h" 51 #include "lldb/Target/LanguageRuntime.h" 52 #include "lldb/Target/ObjCLanguageRuntime.h" 53 #include "lldb/Target/Process.h" 54 #include "lldb/Target/RegisterContext.h" 55 #include "lldb/Target/SectionLoadList.h" 56 #include "lldb/Target/Target.h" 57 #include "lldb/Target/Thread.h" 58 59 using namespace lldb; 60 using namespace lldb_private; 61 using namespace lldb_utility; 62 63 static user_id_t g_value_obj_uid = 0; 64 65 //---------------------------------------------------------------------- 66 // ValueObject constructor 67 //---------------------------------------------------------------------- 68 ValueObject::ValueObject (ValueObject &parent) : 69 UserID (++g_value_obj_uid), // Unique identifier for every value object 70 m_parent (&parent), 71 m_root (NULL), 72 m_update_point (parent.GetUpdatePoint ()), 73 m_name (), 74 m_data (), 75 m_value (), 76 m_error (), 77 m_value_str (), 78 m_old_value_str (), 79 m_location_str (), 80 m_summary_str (), 81 m_object_desc_str (), 82 m_validation_result(), 83 m_manager(parent.GetManager()), 84 m_children (), 85 m_synthetic_children (), 86 m_dynamic_value (NULL), 87 m_synthetic_value(NULL), 88 m_deref_valobj(NULL), 89 m_format (eFormatDefault), 90 m_last_format (eFormatDefault), 91 m_last_format_mgr_revision(0), 92 m_type_summary_sp(), 93 m_type_format_sp(), 94 m_synthetic_children_sp(), 95 m_type_validator_sp(), 96 m_user_id_of_forced_summary(), 97 m_address_type_of_ptr_or_ref_children(eAddressTypeInvalid), 98 m_value_checksum(), 99 m_preferred_display_language(lldb::eLanguageTypeUnknown), 100 m_language_flags(0), 101 m_value_is_valid (false), 102 m_value_did_change (false), 103 m_children_count_valid (false), 104 m_old_value_valid (false), 105 m_is_deref_of_parent (false), 106 m_is_array_item_for_pointer(false), 107 m_is_bitfield_for_scalar(false), 108 m_is_child_at_offset(false), 109 m_is_getting_summary(false), 110 m_did_calculate_complete_objc_class_type(false), 111 m_is_synthetic_children_generated(parent.m_is_synthetic_children_generated) 112 { 113 m_manager->ManageObject(this); 114 } 115 116 //---------------------------------------------------------------------- 117 // ValueObject constructor 118 //---------------------------------------------------------------------- 119 ValueObject::ValueObject (ExecutionContextScope *exe_scope, 120 AddressType child_ptr_or_ref_addr_type) : 121 UserID (++g_value_obj_uid), // Unique identifier for every value object 122 m_parent (NULL), 123 m_root (NULL), 124 m_update_point (exe_scope), 125 m_name (), 126 m_data (), 127 m_value (), 128 m_error (), 129 m_value_str (), 130 m_old_value_str (), 131 m_location_str (), 132 m_summary_str (), 133 m_object_desc_str (), 134 m_validation_result(), 135 m_manager(), 136 m_children (), 137 m_synthetic_children (), 138 m_dynamic_value (NULL), 139 m_synthetic_value(NULL), 140 m_deref_valobj(NULL), 141 m_format (eFormatDefault), 142 m_last_format (eFormatDefault), 143 m_last_format_mgr_revision(0), 144 m_type_summary_sp(), 145 m_type_format_sp(), 146 m_synthetic_children_sp(), 147 m_type_validator_sp(), 148 m_user_id_of_forced_summary(), 149 m_address_type_of_ptr_or_ref_children(child_ptr_or_ref_addr_type), 150 m_value_checksum(), 151 m_preferred_display_language(lldb::eLanguageTypeUnknown), 152 m_language_flags(0), 153 m_value_is_valid (false), 154 m_value_did_change (false), 155 m_children_count_valid (false), 156 m_old_value_valid (false), 157 m_is_deref_of_parent (false), 158 m_is_array_item_for_pointer(false), 159 m_is_bitfield_for_scalar(false), 160 m_is_child_at_offset(false), 161 m_is_getting_summary(false), 162 m_did_calculate_complete_objc_class_type(false), 163 m_is_synthetic_children_generated(false) 164 { 165 m_manager = new ValueObjectManager(); 166 m_manager->ManageObject (this); 167 } 168 169 //---------------------------------------------------------------------- 170 // Destructor 171 //---------------------------------------------------------------------- 172 ValueObject::~ValueObject () 173 { 174 } 175 176 bool 177 ValueObject::UpdateValueIfNeeded (bool update_format) 178 { 179 180 bool did_change_formats = false; 181 182 if (update_format) 183 did_change_formats = UpdateFormatsIfNeeded(); 184 185 // If this is a constant value, then our success is predicated on whether 186 // we have an error or not 187 if (GetIsConstant()) 188 { 189 // if you are constant, things might still have changed behind your back 190 // (e.g. you are a frozen object and things have changed deeper than you cared to freeze-dry yourself) 191 // in this case, your value has not changed, but "computed" entries might have, so you might now have 192 // a different summary, or a different object description. clear these so we will recompute them 193 if (update_format && !did_change_formats) 194 ClearUserVisibleData(eClearUserVisibleDataItemsSummary | eClearUserVisibleDataItemsDescription); 195 return m_error.Success(); 196 } 197 198 bool first_update = IsChecksumEmpty(); 199 200 if (NeedsUpdating()) 201 { 202 m_update_point.SetUpdated(); 203 204 // Save the old value using swap to avoid a string copy which 205 // also will clear our m_value_str 206 if (m_value_str.empty()) 207 { 208 m_old_value_valid = false; 209 } 210 else 211 { 212 m_old_value_valid = true; 213 m_old_value_str.swap (m_value_str); 214 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 215 } 216 217 ClearUserVisibleData(); 218 219 if (IsInScope()) 220 { 221 const bool value_was_valid = GetValueIsValid(); 222 SetValueDidChange (false); 223 224 m_error.Clear(); 225 226 // Call the pure virtual function to update the value 227 228 bool need_compare_checksums = false; 229 llvm::SmallVector<uint8_t, 16> old_checksum; 230 231 if (!first_update && CanProvideValue()) 232 { 233 need_compare_checksums = true; 234 old_checksum.resize(m_value_checksum.size()); 235 std::copy(m_value_checksum.begin(), m_value_checksum.end(), old_checksum.begin()); 236 } 237 238 bool success = UpdateValue (); 239 240 SetValueIsValid (success); 241 242 if (success) 243 { 244 const uint64_t max_checksum_size = 128; 245 m_data.Checksum(m_value_checksum, 246 max_checksum_size); 247 } 248 else 249 { 250 need_compare_checksums = false; 251 m_value_checksum.clear(); 252 } 253 254 assert (!need_compare_checksums || (!old_checksum.empty() && !m_value_checksum.empty())); 255 256 if (first_update) 257 SetValueDidChange (false); 258 else if (!m_value_did_change && success == false) 259 { 260 // The value wasn't gotten successfully, so we mark this 261 // as changed if the value used to be valid and now isn't 262 SetValueDidChange (value_was_valid); 263 } 264 else if (need_compare_checksums) 265 { 266 SetValueDidChange(memcmp(&old_checksum[0], &m_value_checksum[0], m_value_checksum.size())); 267 } 268 269 } 270 else 271 { 272 m_error.SetErrorString("out of scope"); 273 } 274 } 275 return m_error.Success(); 276 } 277 278 bool 279 ValueObject::UpdateFormatsIfNeeded() 280 { 281 Log *log(lldb_private::GetLogIfAllCategoriesSet (LIBLLDB_LOG_DATAFORMATTERS)); 282 if (log) 283 log->Printf("[%s %p] checking for FormatManager revisions. ValueObject rev: %d - Global rev: %d", 284 GetName().GetCString(), static_cast<void*>(this), 285 m_last_format_mgr_revision, 286 DataVisualization::GetCurrentRevision()); 287 288 bool any_change = false; 289 290 if ( (m_last_format_mgr_revision != DataVisualization::GetCurrentRevision())) 291 { 292 m_last_format_mgr_revision = DataVisualization::GetCurrentRevision(); 293 any_change = true; 294 295 SetValueFormat(DataVisualization::GetFormat (*this, eNoDynamicValues)); 296 SetSummaryFormat(DataVisualization::GetSummaryFormat (*this, GetDynamicValueType())); 297 #ifndef LLDB_DISABLE_PYTHON 298 SetSyntheticChildren(DataVisualization::GetSyntheticChildren (*this, GetDynamicValueType())); 299 #endif 300 SetValidator(DataVisualization::GetValidator(*this, GetDynamicValueType())); 301 } 302 303 return any_change; 304 } 305 306 void 307 ValueObject::SetNeedsUpdate () 308 { 309 m_update_point.SetNeedsUpdate(); 310 // We have to clear the value string here so ConstResult children will notice if their values are 311 // changed by hand (i.e. with SetValueAsCString). 312 ClearUserVisibleData(eClearUserVisibleDataItemsValue); 313 } 314 315 void 316 ValueObject::ClearDynamicTypeInformation () 317 { 318 m_children_count_valid = false; 319 m_did_calculate_complete_objc_class_type = false; 320 m_last_format_mgr_revision = 0; 321 m_override_type = CompilerType(); 322 SetValueFormat(lldb::TypeFormatImplSP()); 323 SetSummaryFormat(lldb::TypeSummaryImplSP()); 324 SetSyntheticChildren(lldb::SyntheticChildrenSP()); 325 } 326 327 CompilerType 328 ValueObject::MaybeCalculateCompleteType () 329 { 330 CompilerType compiler_type(GetCompilerTypeImpl()); 331 332 if (m_did_calculate_complete_objc_class_type) 333 { 334 if (m_override_type.IsValid()) 335 return m_override_type; 336 else 337 return compiler_type; 338 } 339 340 CompilerType class_type; 341 bool is_pointer_type = false; 342 343 if (ClangASTContext::IsObjCObjectPointerType(compiler_type, &class_type)) 344 { 345 is_pointer_type = true; 346 } 347 else if (ClangASTContext::IsObjCObjectOrInterfaceType(compiler_type)) 348 { 349 class_type = compiler_type; 350 } 351 else 352 { 353 return compiler_type; 354 } 355 356 m_did_calculate_complete_objc_class_type = true; 357 358 if (class_type) 359 { 360 ConstString class_name (class_type.GetConstTypeName()); 361 362 if (class_name) 363 { 364 ProcessSP process_sp(GetUpdatePoint().GetExecutionContextRef().GetProcessSP()); 365 366 if (process_sp) 367 { 368 ObjCLanguageRuntime *objc_language_runtime(process_sp->GetObjCLanguageRuntime()); 369 370 if (objc_language_runtime) 371 { 372 TypeSP complete_objc_class_type_sp = objc_language_runtime->LookupInCompleteClassCache(class_name); 373 374 if (complete_objc_class_type_sp) 375 { 376 CompilerType complete_class(complete_objc_class_type_sp->GetFullCompilerType ()); 377 378 if (complete_class.GetCompleteType()) 379 { 380 if (is_pointer_type) 381 { 382 m_override_type = complete_class.GetPointerType(); 383 } 384 else 385 { 386 m_override_type = complete_class; 387 } 388 389 if (m_override_type.IsValid()) 390 return m_override_type; 391 } 392 } 393 } 394 } 395 } 396 } 397 return compiler_type; 398 } 399 400 CompilerType 401 ValueObject::GetCompilerType () 402 { 403 return MaybeCalculateCompleteType(); 404 } 405 406 TypeImpl 407 ValueObject::GetTypeImpl () 408 { 409 return TypeImpl(GetCompilerType()); 410 } 411 412 DataExtractor & 413 ValueObject::GetDataExtractor () 414 { 415 UpdateValueIfNeeded(false); 416 return m_data; 417 } 418 419 const Error & 420 ValueObject::GetError() 421 { 422 UpdateValueIfNeeded(false); 423 return m_error; 424 } 425 426 const ConstString & 427 ValueObject::GetName() const 428 { 429 return m_name; 430 } 431 432 const char * 433 ValueObject::GetLocationAsCString () 434 { 435 return GetLocationAsCStringImpl(m_value, 436 m_data); 437 } 438 439 const char * 440 ValueObject::GetLocationAsCStringImpl (const Value& value, 441 const DataExtractor& data) 442 { 443 if (UpdateValueIfNeeded(false)) 444 { 445 if (m_location_str.empty()) 446 { 447 StreamString sstr; 448 449 Value::ValueType value_type = value.GetValueType(); 450 451 switch (value_type) 452 { 453 case Value::eValueTypeScalar: 454 case Value::eValueTypeVector: 455 if (value.GetContextType() == Value::eContextTypeRegisterInfo) 456 { 457 RegisterInfo *reg_info = value.GetRegisterInfo(); 458 if (reg_info) 459 { 460 if (reg_info->name) 461 m_location_str = reg_info->name; 462 else if (reg_info->alt_name) 463 m_location_str = reg_info->alt_name; 464 if (m_location_str.empty()) 465 m_location_str = (reg_info->encoding == lldb::eEncodingVector) ? "vector" : "scalar"; 466 } 467 } 468 if (m_location_str.empty()) 469 m_location_str = (value_type == Value::eValueTypeVector) ? "vector" : "scalar"; 470 break; 471 472 case Value::eValueTypeLoadAddress: 473 case Value::eValueTypeFileAddress: 474 case Value::eValueTypeHostAddress: 475 { 476 uint32_t addr_nibble_size = data.GetAddressByteSize() * 2; 477 sstr.Printf("0x%*.*llx", addr_nibble_size, addr_nibble_size, value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS)); 478 m_location_str.swap(sstr.GetString()); 479 } 480 break; 481 } 482 } 483 } 484 return m_location_str.c_str(); 485 } 486 487 Value & 488 ValueObject::GetValue() 489 { 490 return m_value; 491 } 492 493 const Value & 494 ValueObject::GetValue() const 495 { 496 return m_value; 497 } 498 499 bool 500 ValueObject::ResolveValue (Scalar &scalar) 501 { 502 if (UpdateValueIfNeeded(false)) // make sure that you are up to date before returning anything 503 { 504 ExecutionContext exe_ctx (GetExecutionContextRef()); 505 Value tmp_value(m_value); 506 scalar = tmp_value.ResolveValue(&exe_ctx); 507 if (scalar.IsValid()) 508 { 509 const uint32_t bitfield_bit_size = GetBitfieldBitSize(); 510 if (bitfield_bit_size) 511 return scalar.ExtractBitfield (bitfield_bit_size, GetBitfieldBitOffset()); 512 return true; 513 } 514 } 515 return false; 516 } 517 518 bool 519 ValueObject::IsLogicalTrue (Error& error) 520 { 521 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 522 { 523 LazyBool is_logical_true = language->IsLogicalTrue(*this, error); 524 switch (is_logical_true) 525 { 526 case eLazyBoolYes: 527 case eLazyBoolNo: 528 return (is_logical_true == true); 529 case eLazyBoolCalculate: 530 break; 531 } 532 } 533 534 Scalar scalar_value; 535 536 if (!ResolveValue (scalar_value)) 537 { 538 error.SetErrorString("failed to get a scalar result"); 539 return false; 540 } 541 542 bool ret; 543 if (scalar_value.ULongLong(1) == 0) 544 ret = false; 545 else 546 ret = true; 547 error.Clear(); 548 return ret; 549 } 550 551 bool 552 ValueObject::GetValueIsValid () const 553 { 554 return m_value_is_valid; 555 } 556 557 558 void 559 ValueObject::SetValueIsValid (bool b) 560 { 561 m_value_is_valid = b; 562 } 563 564 bool 565 ValueObject::GetValueDidChange () 566 { 567 return m_value_did_change; 568 } 569 570 void 571 ValueObject::SetValueDidChange (bool value_changed) 572 { 573 m_value_did_change = value_changed; 574 } 575 576 ValueObjectSP 577 ValueObject::GetChildAtIndex (size_t idx, bool can_create) 578 { 579 ValueObjectSP child_sp; 580 // We may need to update our value if we are dynamic 581 if (IsPossibleDynamicType ()) 582 UpdateValueIfNeeded(false); 583 if (idx < GetNumChildren()) 584 { 585 // Check if we have already made the child value object? 586 if (can_create && !m_children.HasChildAtIndex(idx)) 587 { 588 // No we haven't created the child at this index, so lets have our 589 // subclass do it and cache the result for quick future access. 590 m_children.SetChildAtIndex(idx,CreateChildAtIndex (idx, false, 0)); 591 } 592 593 ValueObject* child = m_children.GetChildAtIndex(idx); 594 if (child != NULL) 595 return child->GetSP(); 596 } 597 return child_sp; 598 } 599 600 ValueObjectSP 601 ValueObject::GetChildAtIndexPath (const std::initializer_list<size_t>& idxs, 602 size_t* index_of_error) 603 { 604 return GetChildAtIndexPath( std::vector<size_t>(idxs), 605 index_of_error ); 606 } 607 608 ValueObjectSP 609 ValueObject::GetChildAtIndexPath (const std::initializer_list< std::pair<size_t, bool> >& idxs, 610 size_t* index_of_error) 611 { 612 return GetChildAtIndexPath( std::vector<std::pair<size_t,bool>>(idxs), 613 index_of_error ); 614 } 615 616 lldb::ValueObjectSP 617 ValueObject::GetChildAtIndexPath (const std::vector<size_t> &idxs, 618 size_t* index_of_error) 619 { 620 if (idxs.size() == 0) 621 return GetSP(); 622 ValueObjectSP root(GetSP()); 623 for (size_t idx : idxs) 624 { 625 root = root->GetChildAtIndex(idx, true); 626 if (!root) 627 { 628 if (index_of_error) 629 *index_of_error = idx; 630 return root; 631 } 632 } 633 return root; 634 } 635 636 lldb::ValueObjectSP 637 ValueObject::GetChildAtIndexPath (const std::vector< std::pair<size_t, bool> > &idxs, 638 size_t* index_of_error) 639 { 640 if (idxs.size() == 0) 641 return GetSP(); 642 ValueObjectSP root(GetSP()); 643 for (std::pair<size_t, bool> idx : idxs) 644 { 645 root = root->GetChildAtIndex(idx.first, idx.second); 646 if (!root) 647 { 648 if (index_of_error) 649 *index_of_error = idx.first; 650 return root; 651 } 652 } 653 return root; 654 } 655 656 lldb::ValueObjectSP 657 ValueObject::GetChildAtNamePath (const std::initializer_list<ConstString> &names, 658 ConstString* name_of_error) 659 { 660 return GetChildAtNamePath( std::vector<ConstString>(names), 661 name_of_error ); 662 } 663 664 lldb::ValueObjectSP 665 ValueObject::GetChildAtNamePath (const std::initializer_list< std::pair<ConstString, bool> > &names, 666 ConstString* name_of_error) 667 { 668 return GetChildAtNamePath( std::vector<std::pair<ConstString,bool>>(names), 669 name_of_error ); 670 } 671 672 lldb::ValueObjectSP 673 ValueObject::GetChildAtNamePath (const std::vector<ConstString> &names, 674 ConstString* name_of_error) 675 { 676 if (names.size() == 0) 677 return GetSP(); 678 ValueObjectSP root(GetSP()); 679 for (ConstString name : names) 680 { 681 root = root->GetChildMemberWithName(name, true); 682 if (!root) 683 { 684 if (name_of_error) 685 *name_of_error = name; 686 return root; 687 } 688 } 689 return root; 690 } 691 692 lldb::ValueObjectSP 693 ValueObject::GetChildAtNamePath (const std::vector< std::pair<ConstString, bool> > &names, 694 ConstString* name_of_error) 695 { 696 if (names.size() == 0) 697 return GetSP(); 698 ValueObjectSP root(GetSP()); 699 for (std::pair<ConstString, bool> name : names) 700 { 701 root = root->GetChildMemberWithName(name.first, name.second); 702 if (!root) 703 { 704 if (name_of_error) 705 *name_of_error = name.first; 706 return root; 707 } 708 } 709 return root; 710 } 711 712 size_t 713 ValueObject::GetIndexOfChildWithName (const ConstString &name) 714 { 715 bool omit_empty_base_classes = true; 716 return GetCompilerType().GetIndexOfChildWithName (name.GetCString(), omit_empty_base_classes); 717 } 718 719 ValueObjectSP 720 ValueObject::GetChildMemberWithName (const ConstString &name, bool can_create) 721 { 722 // when getting a child by name, it could be buried inside some base 723 // classes (which really aren't part of the expression path), so we 724 // need a vector of indexes that can get us down to the correct child 725 ValueObjectSP child_sp; 726 727 // We may need to update our value if we are dynamic 728 if (IsPossibleDynamicType ()) 729 UpdateValueIfNeeded(false); 730 731 std::vector<uint32_t> child_indexes; 732 bool omit_empty_base_classes = true; 733 const size_t num_child_indexes = GetCompilerType().GetIndexOfChildMemberWithName (name.GetCString(), 734 omit_empty_base_classes, 735 child_indexes); 736 if (num_child_indexes > 0) 737 { 738 std::vector<uint32_t>::const_iterator pos = child_indexes.begin (); 739 std::vector<uint32_t>::const_iterator end = child_indexes.end (); 740 741 child_sp = GetChildAtIndex(*pos, can_create); 742 for (++pos; pos != end; ++pos) 743 { 744 if (child_sp) 745 { 746 ValueObjectSP new_child_sp(child_sp->GetChildAtIndex (*pos, can_create)); 747 child_sp = new_child_sp; 748 } 749 else 750 { 751 child_sp.reset(); 752 } 753 754 } 755 } 756 return child_sp; 757 } 758 759 760 size_t 761 ValueObject::GetNumChildren (uint32_t max) 762 { 763 UpdateValueIfNeeded(); 764 765 if (max < UINT32_MAX) 766 { 767 if (m_children_count_valid) 768 { 769 size_t children_count = m_children.GetChildrenCount(); 770 return children_count <= max ? children_count : max; 771 } 772 else 773 return CalculateNumChildren(max); 774 } 775 776 if (!m_children_count_valid) 777 { 778 SetNumChildren (CalculateNumChildren()); 779 } 780 return m_children.GetChildrenCount(); 781 } 782 783 bool 784 ValueObject::MightHaveChildren() 785 { 786 bool has_children = false; 787 const uint32_t type_info = GetTypeInfo(); 788 if (type_info) 789 { 790 if (type_info & (eTypeHasChildren | 791 eTypeIsPointer | 792 eTypeIsReference)) 793 has_children = true; 794 } 795 else 796 { 797 has_children = GetNumChildren () > 0; 798 } 799 return has_children; 800 } 801 802 // Should only be called by ValueObject::GetNumChildren() 803 void 804 ValueObject::SetNumChildren (size_t num_children) 805 { 806 m_children_count_valid = true; 807 m_children.SetChildrenCount(num_children); 808 } 809 810 void 811 ValueObject::SetName (const ConstString &name) 812 { 813 m_name = name; 814 } 815 816 ValueObject * 817 ValueObject::CreateChildAtIndex (size_t idx, bool synthetic_array_member, int32_t synthetic_index) 818 { 819 ValueObject *valobj = NULL; 820 821 bool omit_empty_base_classes = true; 822 bool ignore_array_bounds = synthetic_array_member; 823 std::string child_name_str; 824 uint32_t child_byte_size = 0; 825 int32_t child_byte_offset = 0; 826 uint32_t child_bitfield_bit_size = 0; 827 uint32_t child_bitfield_bit_offset = 0; 828 bool child_is_base_class = false; 829 bool child_is_deref_of_parent = false; 830 uint64_t language_flags = 0; 831 832 const bool transparent_pointers = synthetic_array_member == false; 833 CompilerType child_compiler_type; 834 835 ExecutionContext exe_ctx (GetExecutionContextRef()); 836 837 child_compiler_type = GetCompilerType().GetChildCompilerTypeAtIndex(&exe_ctx, 838 idx, 839 transparent_pointers, 840 omit_empty_base_classes, 841 ignore_array_bounds, 842 child_name_str, 843 child_byte_size, 844 child_byte_offset, 845 child_bitfield_bit_size, 846 child_bitfield_bit_offset, 847 child_is_base_class, 848 child_is_deref_of_parent, 849 this, 850 language_flags); 851 if (child_compiler_type) 852 { 853 if (synthetic_index) 854 child_byte_offset += child_byte_size * synthetic_index; 855 856 ConstString child_name; 857 if (!child_name_str.empty()) 858 child_name.SetCString (child_name_str.c_str()); 859 860 valobj = new ValueObjectChild (*this, 861 child_compiler_type, 862 child_name, 863 child_byte_size, 864 child_byte_offset, 865 child_bitfield_bit_size, 866 child_bitfield_bit_offset, 867 child_is_base_class, 868 child_is_deref_of_parent, 869 eAddressTypeInvalid, 870 language_flags); 871 //if (valobj) 872 // valobj->SetAddressTypeOfChildren(eAddressTypeInvalid); 873 } 874 875 return valobj; 876 } 877 878 bool 879 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 880 std::string& destination, 881 lldb::LanguageType lang) 882 { 883 return GetSummaryAsCString(summary_ptr, destination, TypeSummaryOptions().SetLanguage(lang)); 884 } 885 886 bool 887 ValueObject::GetSummaryAsCString (TypeSummaryImpl* summary_ptr, 888 std::string& destination, 889 const TypeSummaryOptions& options) 890 { 891 destination.clear(); 892 893 // ideally we would like to bail out if passing NULL, but if we do so 894 // we end up not providing the summary for function pointers anymore 895 if (/*summary_ptr == NULL ||*/ m_is_getting_summary) 896 return false; 897 898 m_is_getting_summary = true; 899 900 TypeSummaryOptions actual_options(options); 901 902 if (actual_options.GetLanguage() == lldb::eLanguageTypeUnknown) 903 actual_options.SetLanguage(GetPreferredDisplayLanguage()); 904 905 // this is a hot path in code and we prefer to avoid setting this string all too often also clearing out other 906 // information that we might care to see in a crash log. might be useful in very specific situations though. 907 /*Host::SetCrashDescriptionWithFormat("Trying to fetch a summary for %s %s. Summary provider's description is %s", 908 GetTypeName().GetCString(), 909 GetName().GetCString(), 910 summary_ptr->GetDescription().c_str());*/ 911 912 if (UpdateValueIfNeeded (false) && summary_ptr) 913 { 914 if (HasSyntheticValue()) 915 m_synthetic_value->UpdateValueIfNeeded(); // the summary might depend on the synthetic children being up-to-date (e.g. ${svar%#}) 916 summary_ptr->FormatObject(this, destination, actual_options); 917 } 918 m_is_getting_summary = false; 919 return !destination.empty(); 920 } 921 922 const char * 923 ValueObject::GetSummaryAsCString (lldb::LanguageType lang) 924 { 925 if (UpdateValueIfNeeded(true) && m_summary_str.empty()) 926 { 927 TypeSummaryOptions summary_options; 928 summary_options.SetLanguage(lang); 929 GetSummaryAsCString(GetSummaryFormat().get(), 930 m_summary_str, 931 summary_options); 932 } 933 if (m_summary_str.empty()) 934 return NULL; 935 return m_summary_str.c_str(); 936 } 937 938 bool 939 ValueObject::GetSummaryAsCString (std::string& destination, 940 const TypeSummaryOptions& options) 941 { 942 return GetSummaryAsCString(GetSummaryFormat().get(), 943 destination, 944 options); 945 } 946 947 bool 948 ValueObject::IsCStringContainer(bool check_pointer) 949 { 950 CompilerType pointee_or_element_compiler_type; 951 const Flags type_flags (GetTypeInfo (&pointee_or_element_compiler_type)); 952 bool is_char_arr_ptr (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 953 pointee_or_element_compiler_type.IsCharType ()); 954 if (!is_char_arr_ptr) 955 return false; 956 if (!check_pointer) 957 return true; 958 if (type_flags.Test(eTypeIsArray)) 959 return true; 960 addr_t cstr_address = LLDB_INVALID_ADDRESS; 961 AddressType cstr_address_type = eAddressTypeInvalid; 962 cstr_address = GetAddressOf (true, &cstr_address_type); 963 return (cstr_address != LLDB_INVALID_ADDRESS); 964 } 965 966 size_t 967 ValueObject::GetPointeeData (DataExtractor& data, 968 uint32_t item_idx, 969 uint32_t item_count) 970 { 971 CompilerType pointee_or_element_compiler_type; 972 const uint32_t type_info = GetTypeInfo (&pointee_or_element_compiler_type); 973 const bool is_pointer_type = type_info & eTypeIsPointer; 974 const bool is_array_type = type_info & eTypeIsArray; 975 if (!(is_pointer_type || is_array_type)) 976 return 0; 977 978 if (item_count == 0) 979 return 0; 980 981 ExecutionContext exe_ctx (GetExecutionContextRef()); 982 983 const uint64_t item_type_size = pointee_or_element_compiler_type.GetByteSize(exe_ctx.GetBestExecutionContextScope()); 984 const uint64_t bytes = item_count * item_type_size; 985 const uint64_t offset = item_idx * item_type_size; 986 987 if (item_idx == 0 && item_count == 1) // simply a deref 988 { 989 if (is_pointer_type) 990 { 991 Error error; 992 ValueObjectSP pointee_sp = Dereference(error); 993 if (error.Fail() || pointee_sp.get() == NULL) 994 return 0; 995 return pointee_sp->GetData(data, error); 996 } 997 else 998 { 999 ValueObjectSP child_sp = GetChildAtIndex(0, true); 1000 if (child_sp.get() == NULL) 1001 return 0; 1002 Error error; 1003 return child_sp->GetData(data, error); 1004 } 1005 return true; 1006 } 1007 else /* (items > 1) */ 1008 { 1009 Error error; 1010 lldb_private::DataBufferHeap* heap_buf_ptr = NULL; 1011 lldb::DataBufferSP data_sp(heap_buf_ptr = new lldb_private::DataBufferHeap()); 1012 1013 AddressType addr_type; 1014 lldb::addr_t addr = is_pointer_type ? GetPointerValue(&addr_type) : GetAddressOf(true, &addr_type); 1015 1016 switch (addr_type) 1017 { 1018 case eAddressTypeFile: 1019 { 1020 ModuleSP module_sp (GetModule()); 1021 if (module_sp) 1022 { 1023 addr = addr + offset; 1024 Address so_addr; 1025 module_sp->ResolveFileAddress(addr, so_addr); 1026 ExecutionContext exe_ctx (GetExecutionContextRef()); 1027 Target* target = exe_ctx.GetTargetPtr(); 1028 if (target) 1029 { 1030 heap_buf_ptr->SetByteSize(bytes); 1031 size_t bytes_read = target->ReadMemory(so_addr, false, heap_buf_ptr->GetBytes(), bytes, error); 1032 if (error.Success()) 1033 { 1034 data.SetData(data_sp); 1035 return bytes_read; 1036 } 1037 } 1038 } 1039 } 1040 break; 1041 case eAddressTypeLoad: 1042 { 1043 ExecutionContext exe_ctx (GetExecutionContextRef()); 1044 Process *process = exe_ctx.GetProcessPtr(); 1045 if (process) 1046 { 1047 heap_buf_ptr->SetByteSize(bytes); 1048 size_t bytes_read = process->ReadMemory(addr + offset, heap_buf_ptr->GetBytes(), bytes, error); 1049 if (error.Success() || bytes_read > 0) 1050 { 1051 data.SetData(data_sp); 1052 return bytes_read; 1053 } 1054 } 1055 } 1056 break; 1057 case eAddressTypeHost: 1058 { 1059 const uint64_t max_bytes = GetCompilerType().GetByteSize(exe_ctx.GetBestExecutionContextScope()); 1060 if (max_bytes > offset) 1061 { 1062 size_t bytes_read = std::min<uint64_t>(max_bytes - offset, bytes); 1063 addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1064 if (addr == 0 || addr == LLDB_INVALID_ADDRESS) 1065 break; 1066 heap_buf_ptr->CopyData((uint8_t*)(addr + offset), bytes_read); 1067 data.SetData(data_sp); 1068 return bytes_read; 1069 } 1070 } 1071 break; 1072 case eAddressTypeInvalid: 1073 break; 1074 } 1075 } 1076 return 0; 1077 } 1078 1079 uint64_t 1080 ValueObject::GetData (DataExtractor& data, Error &error) 1081 { 1082 UpdateValueIfNeeded(false); 1083 ExecutionContext exe_ctx (GetExecutionContextRef()); 1084 error = m_value.GetValueAsData(&exe_ctx, data, 0, GetModule().get()); 1085 if (error.Fail()) 1086 { 1087 if (m_data.GetByteSize()) 1088 { 1089 data = m_data; 1090 error.Clear(); 1091 return data.GetByteSize(); 1092 } 1093 else 1094 { 1095 return 0; 1096 } 1097 } 1098 data.SetAddressByteSize(m_data.GetAddressByteSize()); 1099 data.SetByteOrder(m_data.GetByteOrder()); 1100 return data.GetByteSize(); 1101 } 1102 1103 bool 1104 ValueObject::SetData (DataExtractor &data, Error &error) 1105 { 1106 error.Clear(); 1107 // Make sure our value is up to date first so that our location and location 1108 // type is valid. 1109 if (!UpdateValueIfNeeded(false)) 1110 { 1111 error.SetErrorString("unable to read value"); 1112 return false; 1113 } 1114 1115 uint64_t count = 0; 1116 const Encoding encoding = GetCompilerType().GetEncoding(count); 1117 1118 const size_t byte_size = GetByteSize(); 1119 1120 Value::ValueType value_type = m_value.GetValueType(); 1121 1122 switch (value_type) 1123 { 1124 case Value::eValueTypeScalar: 1125 { 1126 Error set_error = m_value.GetScalar().SetValueFromData(data, encoding, byte_size); 1127 1128 if (!set_error.Success()) 1129 { 1130 error.SetErrorStringWithFormat("unable to set scalar value: %s", set_error.AsCString()); 1131 return false; 1132 } 1133 } 1134 break; 1135 case Value::eValueTypeLoadAddress: 1136 { 1137 // If it is a load address, then the scalar value is the storage location 1138 // of the data, and we have to shove this value down to that load location. 1139 ExecutionContext exe_ctx (GetExecutionContextRef()); 1140 Process *process = exe_ctx.GetProcessPtr(); 1141 if (process) 1142 { 1143 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1144 size_t bytes_written = process->WriteMemory(target_addr, 1145 data.GetDataStart(), 1146 byte_size, 1147 error); 1148 if (!error.Success()) 1149 return false; 1150 if (bytes_written != byte_size) 1151 { 1152 error.SetErrorString("unable to write value to memory"); 1153 return false; 1154 } 1155 } 1156 } 1157 break; 1158 case Value::eValueTypeHostAddress: 1159 { 1160 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1161 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1162 m_data.SetData(buffer_sp, 0); 1163 data.CopyByteOrderedData (0, 1164 byte_size, 1165 const_cast<uint8_t *>(m_data.GetDataStart()), 1166 byte_size, 1167 m_data.GetByteOrder()); 1168 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1169 } 1170 break; 1171 case Value::eValueTypeFileAddress: 1172 case Value::eValueTypeVector: 1173 break; 1174 } 1175 1176 // If we have reached this point, then we have successfully changed the value. 1177 SetNeedsUpdate(); 1178 return true; 1179 } 1180 1181 static bool 1182 CopyStringDataToBufferSP(const StreamString& source, 1183 lldb::DataBufferSP& destination) 1184 { 1185 destination.reset(new DataBufferHeap(source.GetSize()+1,0)); 1186 memcpy(destination->GetBytes(), source.GetString().c_str(), source.GetSize()); 1187 return true; 1188 } 1189 1190 std::pair<size_t,bool> 1191 ValueObject::ReadPointedString (lldb::DataBufferSP& buffer_sp, 1192 Error& error, 1193 uint32_t max_length, 1194 bool honor_array, 1195 Format item_format) 1196 { 1197 bool was_capped = false; 1198 StreamString s; 1199 ExecutionContext exe_ctx (GetExecutionContextRef()); 1200 Target* target = exe_ctx.GetTargetPtr(); 1201 1202 if (!target) 1203 { 1204 s << "<no target to read from>"; 1205 error.SetErrorString("no target to read from"); 1206 CopyStringDataToBufferSP(s, buffer_sp); 1207 return {0,was_capped}; 1208 } 1209 1210 if (max_length == 0) 1211 max_length = target->GetMaximumSizeOfStringSummary(); 1212 1213 size_t bytes_read = 0; 1214 size_t total_bytes_read = 0; 1215 1216 CompilerType compiler_type = GetCompilerType(); 1217 CompilerType elem_or_pointee_compiler_type; 1218 const Flags type_flags (GetTypeInfo (&elem_or_pointee_compiler_type)); 1219 if (type_flags.AnySet (eTypeIsArray | eTypeIsPointer) && 1220 elem_or_pointee_compiler_type.IsCharType ()) 1221 { 1222 addr_t cstr_address = LLDB_INVALID_ADDRESS; 1223 AddressType cstr_address_type = eAddressTypeInvalid; 1224 1225 size_t cstr_len = 0; 1226 bool capped_data = false; 1227 if (type_flags.Test (eTypeIsArray)) 1228 { 1229 // We have an array 1230 uint64_t array_size = 0; 1231 if (compiler_type.IsArrayType(NULL, &array_size, NULL)) 1232 { 1233 cstr_len = array_size; 1234 if (cstr_len > max_length) 1235 { 1236 capped_data = true; 1237 cstr_len = max_length; 1238 } 1239 } 1240 cstr_address = GetAddressOf (true, &cstr_address_type); 1241 } 1242 else 1243 { 1244 // We have a pointer 1245 cstr_address = GetPointerValue (&cstr_address_type); 1246 } 1247 1248 if (cstr_address == 0 || cstr_address == LLDB_INVALID_ADDRESS) 1249 { 1250 s << "<invalid address>"; 1251 error.SetErrorString("invalid address"); 1252 CopyStringDataToBufferSP(s, buffer_sp); 1253 return {0,was_capped}; 1254 } 1255 1256 Address cstr_so_addr (cstr_address); 1257 DataExtractor data; 1258 if (cstr_len > 0 && honor_array) 1259 { 1260 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1261 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1262 GetPointeeData(data, 0, cstr_len); 1263 1264 if ((bytes_read = data.GetByteSize()) > 0) 1265 { 1266 total_bytes_read = bytes_read; 1267 for (size_t offset = 0; offset < bytes_read; offset++) 1268 s.Printf("%c", *data.PeekData(offset, 1)); 1269 if (capped_data) 1270 was_capped = true; 1271 } 1272 } 1273 else 1274 { 1275 cstr_len = max_length; 1276 const size_t k_max_buf_size = 64; 1277 1278 size_t offset = 0; 1279 1280 int cstr_len_displayed = -1; 1281 bool capped_cstr = false; 1282 // I am using GetPointeeData() here to abstract the fact that some ValueObjects are actually frozen pointers in the host 1283 // but the pointed-to data lives in the debuggee, and GetPointeeData() automatically takes care of this 1284 while ((bytes_read = GetPointeeData(data, offset, k_max_buf_size)) > 0) 1285 { 1286 total_bytes_read += bytes_read; 1287 const char *cstr = data.PeekCStr(0); 1288 size_t len = strnlen (cstr, k_max_buf_size); 1289 if (cstr_len_displayed < 0) 1290 cstr_len_displayed = len; 1291 1292 if (len == 0) 1293 break; 1294 cstr_len_displayed += len; 1295 if (len > bytes_read) 1296 len = bytes_read; 1297 if (len > cstr_len) 1298 len = cstr_len; 1299 1300 for (size_t offset = 0; offset < bytes_read; offset++) 1301 s.Printf("%c", *data.PeekData(offset, 1)); 1302 1303 if (len < k_max_buf_size) 1304 break; 1305 1306 if (len >= cstr_len) 1307 { 1308 capped_cstr = true; 1309 break; 1310 } 1311 1312 cstr_len -= len; 1313 offset += len; 1314 } 1315 1316 if (cstr_len_displayed >= 0) 1317 { 1318 if (capped_cstr) 1319 was_capped = true; 1320 } 1321 } 1322 } 1323 else 1324 { 1325 error.SetErrorString("not a string object"); 1326 s << "<not a string object>"; 1327 } 1328 CopyStringDataToBufferSP(s, buffer_sp); 1329 return {total_bytes_read,was_capped}; 1330 } 1331 1332 std::pair<TypeValidatorResult, std::string> 1333 ValueObject::GetValidationStatus () 1334 { 1335 if (!UpdateValueIfNeeded(true)) 1336 return {TypeValidatorResult::Success,""}; // not the validator's job to discuss update problems 1337 1338 if (m_validation_result.hasValue()) 1339 return m_validation_result.getValue(); 1340 1341 if (!m_type_validator_sp) 1342 return {TypeValidatorResult::Success,""}; // no validator no failure 1343 1344 auto outcome = m_type_validator_sp->FormatObject(this); 1345 1346 return (m_validation_result = {outcome.m_result,outcome.m_message}).getValue(); 1347 } 1348 1349 const char * 1350 ValueObject::GetObjectDescription () 1351 { 1352 1353 if (!UpdateValueIfNeeded (true)) 1354 return NULL; 1355 1356 if (!m_object_desc_str.empty()) 1357 return m_object_desc_str.c_str(); 1358 1359 ExecutionContext exe_ctx (GetExecutionContextRef()); 1360 Process *process = exe_ctx.GetProcessPtr(); 1361 if (process == NULL) 1362 return NULL; 1363 1364 StreamString s; 1365 1366 LanguageType language = GetObjectRuntimeLanguage(); 1367 LanguageRuntime *runtime = process->GetLanguageRuntime(language); 1368 1369 if (runtime == NULL) 1370 { 1371 // Aw, hell, if the things a pointer, or even just an integer, let's try ObjC anyway... 1372 CompilerType compiler_type = GetCompilerType(); 1373 if (compiler_type) 1374 { 1375 bool is_signed; 1376 if (compiler_type.IsIntegerType (is_signed) || compiler_type.IsPointerType ()) 1377 { 1378 runtime = process->GetLanguageRuntime(eLanguageTypeObjC); 1379 } 1380 } 1381 } 1382 1383 if (runtime && runtime->GetObjectDescription(s, *this)) 1384 { 1385 m_object_desc_str.append (s.GetData()); 1386 } 1387 1388 if (m_object_desc_str.empty()) 1389 return NULL; 1390 else 1391 return m_object_desc_str.c_str(); 1392 } 1393 1394 bool 1395 ValueObject::GetValueAsCString (const lldb_private::TypeFormatImpl& format, 1396 std::string& destination) 1397 { 1398 if (UpdateValueIfNeeded(false)) 1399 return format.FormatObject(this,destination); 1400 else 1401 return false; 1402 } 1403 1404 bool 1405 ValueObject::GetValueAsCString (lldb::Format format, 1406 std::string& destination) 1407 { 1408 return GetValueAsCString(TypeFormatImpl_Format(format),destination); 1409 } 1410 1411 const char * 1412 ValueObject::GetValueAsCString () 1413 { 1414 if (UpdateValueIfNeeded(true)) 1415 { 1416 lldb::TypeFormatImplSP format_sp; 1417 lldb::Format my_format = GetFormat(); 1418 if (my_format == lldb::eFormatDefault) 1419 { 1420 if (m_type_format_sp) 1421 format_sp = m_type_format_sp; 1422 else 1423 { 1424 if (m_is_bitfield_for_scalar) 1425 my_format = eFormatUnsigned; 1426 else 1427 { 1428 if (m_value.GetContextType() == Value::eContextTypeRegisterInfo) 1429 { 1430 const RegisterInfo *reg_info = m_value.GetRegisterInfo(); 1431 if (reg_info) 1432 my_format = reg_info->format; 1433 } 1434 else 1435 { 1436 my_format = GetValue().GetCompilerType().GetFormat(); 1437 } 1438 } 1439 } 1440 } 1441 if (my_format != m_last_format || m_value_str.empty()) 1442 { 1443 m_last_format = my_format; 1444 if (!format_sp) 1445 format_sp.reset(new TypeFormatImpl_Format(my_format)); 1446 if (GetValueAsCString(*format_sp.get(), m_value_str)) 1447 { 1448 if (!m_value_did_change && m_old_value_valid) 1449 { 1450 // The value was gotten successfully, so we consider the 1451 // value as changed if the value string differs 1452 SetValueDidChange (m_old_value_str != m_value_str); 1453 } 1454 } 1455 } 1456 } 1457 if (m_value_str.empty()) 1458 return NULL; 1459 return m_value_str.c_str(); 1460 } 1461 1462 // if > 8bytes, 0 is returned. this method should mostly be used 1463 // to read address values out of pointers 1464 uint64_t 1465 ValueObject::GetValueAsUnsigned (uint64_t fail_value, bool *success) 1466 { 1467 // If our byte size is zero this is an aggregate type that has children 1468 if (CanProvideValue()) 1469 { 1470 Scalar scalar; 1471 if (ResolveValue (scalar)) 1472 { 1473 if (success) 1474 *success = true; 1475 return scalar.ULongLong(fail_value); 1476 } 1477 // fallthrough, otherwise... 1478 } 1479 1480 if (success) 1481 *success = false; 1482 return fail_value; 1483 } 1484 1485 int64_t 1486 ValueObject::GetValueAsSigned (int64_t fail_value, bool *success) 1487 { 1488 // If our byte size is zero this is an aggregate type that has children 1489 if (CanProvideValue()) 1490 { 1491 Scalar scalar; 1492 if (ResolveValue (scalar)) 1493 { 1494 if (success) 1495 *success = true; 1496 return scalar.SLongLong(fail_value); 1497 } 1498 // fallthrough, otherwise... 1499 } 1500 1501 if (success) 1502 *success = false; 1503 return fail_value; 1504 } 1505 1506 // if any more "special cases" are added to ValueObject::DumpPrintableRepresentation() please keep 1507 // this call up to date by returning true for your new special cases. We will eventually move 1508 // to checking this call result before trying to display special cases 1509 bool 1510 ValueObject::HasSpecialPrintableRepresentation(ValueObjectRepresentationStyle val_obj_display, 1511 Format custom_format) 1512 { 1513 Flags flags(GetTypeInfo()); 1514 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1515 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1516 { 1517 if (IsCStringContainer(true) && 1518 (custom_format == eFormatCString || 1519 custom_format == eFormatCharArray || 1520 custom_format == eFormatChar || 1521 custom_format == eFormatVectorOfChar)) 1522 return true; 1523 1524 if (flags.Test(eTypeIsArray)) 1525 { 1526 if ((custom_format == eFormatBytes) || 1527 (custom_format == eFormatBytesWithASCII)) 1528 return true; 1529 1530 if ((custom_format == eFormatVectorOfChar) || 1531 (custom_format == eFormatVectorOfFloat32) || 1532 (custom_format == eFormatVectorOfFloat64) || 1533 (custom_format == eFormatVectorOfSInt16) || 1534 (custom_format == eFormatVectorOfSInt32) || 1535 (custom_format == eFormatVectorOfSInt64) || 1536 (custom_format == eFormatVectorOfSInt8) || 1537 (custom_format == eFormatVectorOfUInt128) || 1538 (custom_format == eFormatVectorOfUInt16) || 1539 (custom_format == eFormatVectorOfUInt32) || 1540 (custom_format == eFormatVectorOfUInt64) || 1541 (custom_format == eFormatVectorOfUInt8)) 1542 return true; 1543 } 1544 } 1545 return false; 1546 } 1547 1548 bool 1549 ValueObject::DumpPrintableRepresentation(Stream& s, 1550 ValueObjectRepresentationStyle val_obj_display, 1551 Format custom_format, 1552 PrintableRepresentationSpecialCases special, 1553 bool do_dump_error) 1554 { 1555 1556 Flags flags(GetTypeInfo()); 1557 1558 bool allow_special = ((special & ePrintableRepresentationSpecialCasesAllow) == ePrintableRepresentationSpecialCasesAllow); 1559 bool only_special = ((special & ePrintableRepresentationSpecialCasesOnly) == ePrintableRepresentationSpecialCasesOnly); 1560 1561 if (allow_special) 1562 { 1563 if (flags.AnySet(eTypeIsArray | eTypeIsPointer) 1564 && val_obj_display == ValueObject::eValueObjectRepresentationStyleValue) 1565 { 1566 // when being asked to get a printable display an array or pointer type directly, 1567 // try to "do the right thing" 1568 1569 if (IsCStringContainer(true) && 1570 (custom_format == eFormatCString || 1571 custom_format == eFormatCharArray || 1572 custom_format == eFormatChar || 1573 custom_format == eFormatVectorOfChar)) // print char[] & char* directly 1574 { 1575 Error error; 1576 lldb::DataBufferSP buffer_sp; 1577 std::pair<size_t, bool> read_string = ReadPointedString(buffer_sp, 1578 error, 1579 0, 1580 (custom_format == eFormatVectorOfChar) || 1581 (custom_format == eFormatCharArray)); 1582 lldb_private::formatters::StringPrinter::ReadBufferAndDumpToStreamOptions options(*this); 1583 options.SetData(DataExtractor(buffer_sp, lldb::eByteOrderInvalid, 8)); // none of this matters for a string - pass some defaults 1584 options.SetStream(&s); 1585 options.SetPrefixToken(0); 1586 options.SetQuote('"'); 1587 options.SetSourceSize(buffer_sp->GetByteSize()); 1588 options.SetIsTruncated(read_string.second); 1589 formatters::StringPrinter::ReadBufferAndDumpToStream<lldb_private::formatters::StringPrinter::StringElementType::ASCII>(options); 1590 return !error.Fail(); 1591 } 1592 1593 if (custom_format == eFormatEnum) 1594 return false; 1595 1596 // this only works for arrays, because I have no way to know when 1597 // the pointed memory ends, and no special \0 end of data marker 1598 if (flags.Test(eTypeIsArray)) 1599 { 1600 if ((custom_format == eFormatBytes) || 1601 (custom_format == eFormatBytesWithASCII)) 1602 { 1603 const size_t count = GetNumChildren(); 1604 1605 s << '['; 1606 for (size_t low = 0; low < count; low++) 1607 { 1608 1609 if (low) 1610 s << ','; 1611 1612 ValueObjectSP child = GetChildAtIndex(low,true); 1613 if (!child.get()) 1614 { 1615 s << "<invalid child>"; 1616 continue; 1617 } 1618 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, custom_format); 1619 } 1620 1621 s << ']'; 1622 1623 return true; 1624 } 1625 1626 if ((custom_format == eFormatVectorOfChar) || 1627 (custom_format == eFormatVectorOfFloat32) || 1628 (custom_format == eFormatVectorOfFloat64) || 1629 (custom_format == eFormatVectorOfSInt16) || 1630 (custom_format == eFormatVectorOfSInt32) || 1631 (custom_format == eFormatVectorOfSInt64) || 1632 (custom_format == eFormatVectorOfSInt8) || 1633 (custom_format == eFormatVectorOfUInt128) || 1634 (custom_format == eFormatVectorOfUInt16) || 1635 (custom_format == eFormatVectorOfUInt32) || 1636 (custom_format == eFormatVectorOfUInt64) || 1637 (custom_format == eFormatVectorOfUInt8)) // arrays of bytes, bytes with ASCII or any vector format should be printed directly 1638 { 1639 const size_t count = GetNumChildren(); 1640 1641 Format format = FormatManager::GetSingleItemFormat(custom_format); 1642 1643 s << '['; 1644 for (size_t low = 0; low < count; low++) 1645 { 1646 1647 if (low) 1648 s << ','; 1649 1650 ValueObjectSP child = GetChildAtIndex(low,true); 1651 if (!child.get()) 1652 { 1653 s << "<invalid child>"; 1654 continue; 1655 } 1656 child->DumpPrintableRepresentation(s, ValueObject::eValueObjectRepresentationStyleValue, format); 1657 } 1658 1659 s << ']'; 1660 1661 return true; 1662 } 1663 } 1664 1665 if ((custom_format == eFormatBoolean) || 1666 (custom_format == eFormatBinary) || 1667 (custom_format == eFormatChar) || 1668 (custom_format == eFormatCharPrintable) || 1669 (custom_format == eFormatComplexFloat) || 1670 (custom_format == eFormatDecimal) || 1671 (custom_format == eFormatHex) || 1672 (custom_format == eFormatHexUppercase) || 1673 (custom_format == eFormatFloat) || 1674 (custom_format == eFormatOctal) || 1675 (custom_format == eFormatOSType) || 1676 (custom_format == eFormatUnicode16) || 1677 (custom_format == eFormatUnicode32) || 1678 (custom_format == eFormatUnsigned) || 1679 (custom_format == eFormatPointer) || 1680 (custom_format == eFormatComplexInteger) || 1681 (custom_format == eFormatComplex) || 1682 (custom_format == eFormatDefault)) // use the [] operator 1683 return false; 1684 } 1685 } 1686 1687 if (only_special) 1688 return false; 1689 1690 bool var_success = false; 1691 1692 { 1693 const char *cstr = NULL; 1694 1695 // this is a local stream that we are using to ensure that the data pointed to by cstr survives 1696 // long enough for us to copy it to its destination - it is necessary to have this temporary storage 1697 // area for cases where our desired output is not backed by some other longer-term storage 1698 StreamString strm; 1699 1700 if (custom_format != eFormatInvalid) 1701 SetFormat(custom_format); 1702 1703 switch(val_obj_display) 1704 { 1705 case eValueObjectRepresentationStyleValue: 1706 cstr = GetValueAsCString(); 1707 break; 1708 1709 case eValueObjectRepresentationStyleSummary: 1710 cstr = GetSummaryAsCString(); 1711 break; 1712 1713 case eValueObjectRepresentationStyleLanguageSpecific: 1714 cstr = GetObjectDescription(); 1715 break; 1716 1717 case eValueObjectRepresentationStyleLocation: 1718 cstr = GetLocationAsCString(); 1719 break; 1720 1721 case eValueObjectRepresentationStyleChildrenCount: 1722 strm.Printf("%" PRIu64 "", (uint64_t)GetNumChildren()); 1723 cstr = strm.GetString().c_str(); 1724 break; 1725 1726 case eValueObjectRepresentationStyleType: 1727 cstr = GetTypeName().AsCString(); 1728 break; 1729 1730 case eValueObjectRepresentationStyleName: 1731 cstr = GetName().AsCString(); 1732 break; 1733 1734 case eValueObjectRepresentationStyleExpressionPath: 1735 GetExpressionPath(strm, false); 1736 cstr = strm.GetString().c_str(); 1737 break; 1738 } 1739 1740 if (!cstr) 1741 { 1742 if (val_obj_display == eValueObjectRepresentationStyleValue) 1743 cstr = GetSummaryAsCString(); 1744 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1745 { 1746 if (!CanProvideValue()) 1747 { 1748 strm.Printf("%s @ %s", GetTypeName().AsCString(), GetLocationAsCString()); 1749 cstr = strm.GetString().c_str(); 1750 } 1751 else 1752 cstr = GetValueAsCString(); 1753 } 1754 } 1755 1756 if (cstr) 1757 s.PutCString(cstr); 1758 else 1759 { 1760 if (m_error.Fail()) 1761 { 1762 if (do_dump_error) 1763 s.Printf("<%s>", m_error.AsCString()); 1764 else 1765 return false; 1766 } 1767 else if (val_obj_display == eValueObjectRepresentationStyleSummary) 1768 s.PutCString("<no summary available>"); 1769 else if (val_obj_display == eValueObjectRepresentationStyleValue) 1770 s.PutCString("<no value available>"); 1771 else if (val_obj_display == eValueObjectRepresentationStyleLanguageSpecific) 1772 s.PutCString("<not a valid Objective-C object>"); // edit this if we have other runtimes that support a description 1773 else 1774 s.PutCString("<no printable representation>"); 1775 } 1776 1777 // we should only return false here if we could not do *anything* 1778 // even if we have an error message as output, that's a success 1779 // from our callers' perspective, so return true 1780 var_success = true; 1781 1782 if (custom_format != eFormatInvalid) 1783 SetFormat(eFormatDefault); 1784 } 1785 1786 return var_success; 1787 } 1788 1789 addr_t 1790 ValueObject::GetAddressOf (bool scalar_is_load_address, AddressType *address_type) 1791 { 1792 // Can't take address of a bitfield 1793 if (IsBitfield()) 1794 return LLDB_INVALID_ADDRESS; 1795 1796 if (!UpdateValueIfNeeded(false)) 1797 return LLDB_INVALID_ADDRESS; 1798 1799 switch (m_value.GetValueType()) 1800 { 1801 case Value::eValueTypeScalar: 1802 case Value::eValueTypeVector: 1803 if (scalar_is_load_address) 1804 { 1805 if(address_type) 1806 *address_type = eAddressTypeLoad; 1807 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1808 } 1809 break; 1810 1811 case Value::eValueTypeLoadAddress: 1812 case Value::eValueTypeFileAddress: 1813 { 1814 if(address_type) 1815 *address_type = m_value.GetValueAddressType (); 1816 return m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1817 } 1818 break; 1819 case Value::eValueTypeHostAddress: 1820 { 1821 if(address_type) 1822 *address_type = m_value.GetValueAddressType (); 1823 return LLDB_INVALID_ADDRESS; 1824 } 1825 break; 1826 } 1827 if (address_type) 1828 *address_type = eAddressTypeInvalid; 1829 return LLDB_INVALID_ADDRESS; 1830 } 1831 1832 addr_t 1833 ValueObject::GetPointerValue (AddressType *address_type) 1834 { 1835 addr_t address = LLDB_INVALID_ADDRESS; 1836 if(address_type) 1837 *address_type = eAddressTypeInvalid; 1838 1839 if (!UpdateValueIfNeeded(false)) 1840 return address; 1841 1842 switch (m_value.GetValueType()) 1843 { 1844 case Value::eValueTypeScalar: 1845 case Value::eValueTypeVector: 1846 address = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1847 break; 1848 1849 case Value::eValueTypeHostAddress: 1850 case Value::eValueTypeLoadAddress: 1851 case Value::eValueTypeFileAddress: 1852 { 1853 lldb::offset_t data_offset = 0; 1854 address = m_data.GetPointer(&data_offset); 1855 } 1856 break; 1857 } 1858 1859 if (address_type) 1860 *address_type = GetAddressTypeOfChildren(); 1861 1862 return address; 1863 } 1864 1865 bool 1866 ValueObject::SetValueFromCString (const char *value_str, Error& error) 1867 { 1868 error.Clear(); 1869 // Make sure our value is up to date first so that our location and location 1870 // type is valid. 1871 if (!UpdateValueIfNeeded(false)) 1872 { 1873 error.SetErrorString("unable to read value"); 1874 return false; 1875 } 1876 1877 uint64_t count = 0; 1878 const Encoding encoding = GetCompilerType().GetEncoding (count); 1879 1880 const size_t byte_size = GetByteSize(); 1881 1882 Value::ValueType value_type = m_value.GetValueType(); 1883 1884 if (value_type == Value::eValueTypeScalar) 1885 { 1886 // If the value is already a scalar, then let the scalar change itself: 1887 m_value.GetScalar().SetValueFromCString (value_str, encoding, byte_size); 1888 } 1889 else if (byte_size <= 16) 1890 { 1891 // If the value fits in a scalar, then make a new scalar and again let the 1892 // scalar code do the conversion, then figure out where to put the new value. 1893 Scalar new_scalar; 1894 error = new_scalar.SetValueFromCString (value_str, encoding, byte_size); 1895 if (error.Success()) 1896 { 1897 switch (value_type) 1898 { 1899 case Value::eValueTypeLoadAddress: 1900 { 1901 // If it is a load address, then the scalar value is the storage location 1902 // of the data, and we have to shove this value down to that load location. 1903 ExecutionContext exe_ctx (GetExecutionContextRef()); 1904 Process *process = exe_ctx.GetProcessPtr(); 1905 if (process) 1906 { 1907 addr_t target_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 1908 size_t bytes_written = process->WriteScalarToMemory (target_addr, 1909 new_scalar, 1910 byte_size, 1911 error); 1912 if (!error.Success()) 1913 return false; 1914 if (bytes_written != byte_size) 1915 { 1916 error.SetErrorString("unable to write value to memory"); 1917 return false; 1918 } 1919 } 1920 } 1921 break; 1922 case Value::eValueTypeHostAddress: 1923 { 1924 // If it is a host address, then we stuff the scalar as a DataBuffer into the Value's data. 1925 DataExtractor new_data; 1926 new_data.SetByteOrder (m_data.GetByteOrder()); 1927 1928 DataBufferSP buffer_sp (new DataBufferHeap(byte_size, 0)); 1929 m_data.SetData(buffer_sp, 0); 1930 bool success = new_scalar.GetData(new_data); 1931 if (success) 1932 { 1933 new_data.CopyByteOrderedData (0, 1934 byte_size, 1935 const_cast<uint8_t *>(m_data.GetDataStart()), 1936 byte_size, 1937 m_data.GetByteOrder()); 1938 } 1939 m_value.GetScalar() = (uintptr_t)m_data.GetDataStart(); 1940 1941 } 1942 break; 1943 case Value::eValueTypeFileAddress: 1944 case Value::eValueTypeScalar: 1945 case Value::eValueTypeVector: 1946 break; 1947 } 1948 } 1949 else 1950 { 1951 return false; 1952 } 1953 } 1954 else 1955 { 1956 // We don't support setting things bigger than a scalar at present. 1957 error.SetErrorString("unable to write aggregate data type"); 1958 return false; 1959 } 1960 1961 // If we have reached this point, then we have successfully changed the value. 1962 SetNeedsUpdate(); 1963 return true; 1964 } 1965 1966 bool 1967 ValueObject::GetDeclaration (Declaration &decl) 1968 { 1969 decl.Clear(); 1970 return false; 1971 } 1972 1973 ConstString 1974 ValueObject::GetTypeName() 1975 { 1976 return GetCompilerType().GetConstTypeName(); 1977 } 1978 1979 ConstString 1980 ValueObject::GetDisplayTypeName() 1981 { 1982 return GetTypeName(); 1983 } 1984 1985 ConstString 1986 ValueObject::GetQualifiedTypeName() 1987 { 1988 return GetCompilerType().GetConstQualifiedTypeName(); 1989 } 1990 1991 1992 LanguageType 1993 ValueObject::GetObjectRuntimeLanguage () 1994 { 1995 return GetCompilerType().GetMinimumLanguage (); 1996 } 1997 1998 void 1999 ValueObject::AddSyntheticChild (const ConstString &key, ValueObject *valobj) 2000 { 2001 m_synthetic_children[key] = valobj; 2002 } 2003 2004 ValueObjectSP 2005 ValueObject::GetSyntheticChild (const ConstString &key) const 2006 { 2007 ValueObjectSP synthetic_child_sp; 2008 std::map<ConstString, ValueObject *>::const_iterator pos = m_synthetic_children.find (key); 2009 if (pos != m_synthetic_children.end()) 2010 synthetic_child_sp = pos->second->GetSP(); 2011 return synthetic_child_sp; 2012 } 2013 2014 uint32_t 2015 ValueObject::GetTypeInfo (CompilerType *pointee_or_element_compiler_type) 2016 { 2017 return GetCompilerType().GetTypeInfo (pointee_or_element_compiler_type); 2018 } 2019 2020 bool 2021 ValueObject::IsPointerType () 2022 { 2023 return GetCompilerType().IsPointerType(); 2024 } 2025 2026 bool 2027 ValueObject::IsArrayType () 2028 { 2029 return GetCompilerType().IsArrayType (NULL, NULL, NULL); 2030 } 2031 2032 bool 2033 ValueObject::IsScalarType () 2034 { 2035 return GetCompilerType().IsScalarType (); 2036 } 2037 2038 bool 2039 ValueObject::IsIntegerType (bool &is_signed) 2040 { 2041 return GetCompilerType().IsIntegerType (is_signed); 2042 } 2043 2044 bool 2045 ValueObject::IsPointerOrReferenceType () 2046 { 2047 return GetCompilerType().IsPointerOrReferenceType (); 2048 } 2049 2050 bool 2051 ValueObject::IsPossibleDynamicType () 2052 { 2053 ExecutionContext exe_ctx (GetExecutionContextRef()); 2054 Process *process = exe_ctx.GetProcessPtr(); 2055 if (process) 2056 return process->IsPossibleDynamicValue(*this); 2057 else 2058 return GetCompilerType().IsPossibleDynamicType (NULL, true, true); 2059 } 2060 2061 bool 2062 ValueObject::IsRuntimeSupportValue () 2063 { 2064 Process *process(GetProcessSP().get()); 2065 if (process) 2066 { 2067 LanguageRuntime *runtime = process->GetLanguageRuntime(GetObjectRuntimeLanguage()); 2068 if (!runtime) 2069 runtime = process->GetObjCLanguageRuntime(); 2070 if (runtime) 2071 return runtime->IsRuntimeSupportValue(*this); 2072 } 2073 return false; 2074 } 2075 2076 bool 2077 ValueObject::IsNilReference () 2078 { 2079 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2080 { 2081 return language->IsNilReference(*this); 2082 } 2083 return false; 2084 } 2085 2086 bool 2087 ValueObject::IsUninitializedReference () 2088 { 2089 if (Language *language = Language::FindPlugin(GetObjectRuntimeLanguage())) 2090 { 2091 return language->IsUninitializedReference(*this); 2092 } 2093 return false; 2094 } 2095 2096 // This allows you to create an array member using and index 2097 // that doesn't not fall in the normal bounds of the array. 2098 // Many times structure can be defined as: 2099 // struct Collection 2100 // { 2101 // uint32_t item_count; 2102 // Item item_array[0]; 2103 // }; 2104 // The size of the "item_array" is 1, but many times in practice 2105 // there are more items in "item_array". 2106 2107 ValueObjectSP 2108 ValueObject::GetSyntheticArrayMember (size_t index, bool can_create) 2109 { 2110 ValueObjectSP synthetic_child_sp; 2111 if (IsPointerType () || IsArrayType()) 2112 { 2113 char index_str[64]; 2114 snprintf(index_str, sizeof(index_str), "[%" PRIu64 "]", (uint64_t)index); 2115 ConstString index_const_str(index_str); 2116 // Check if we have already created a synthetic array member in this 2117 // valid object. If we have we will re-use it. 2118 synthetic_child_sp = GetSyntheticChild (index_const_str); 2119 if (!synthetic_child_sp) 2120 { 2121 ValueObject *synthetic_child; 2122 // We haven't made a synthetic array member for INDEX yet, so 2123 // lets make one and cache it for any future reference. 2124 synthetic_child = CreateChildAtIndex(0, true, index); 2125 2126 // Cache the value if we got one back... 2127 if (synthetic_child) 2128 { 2129 AddSyntheticChild(index_const_str, synthetic_child); 2130 synthetic_child_sp = synthetic_child->GetSP(); 2131 synthetic_child_sp->SetName(ConstString(index_str)); 2132 synthetic_child_sp->m_is_array_item_for_pointer = true; 2133 } 2134 } 2135 } 2136 return synthetic_child_sp; 2137 } 2138 2139 ValueObjectSP 2140 ValueObject::GetSyntheticBitFieldChild (uint32_t from, uint32_t to, bool can_create) 2141 { 2142 ValueObjectSP synthetic_child_sp; 2143 if (IsScalarType ()) 2144 { 2145 char index_str[64]; 2146 snprintf(index_str, sizeof(index_str), "[%i-%i]", from, to); 2147 ConstString index_const_str(index_str); 2148 // Check if we have already created a synthetic array member in this 2149 // valid object. If we have we will re-use it. 2150 synthetic_child_sp = GetSyntheticChild (index_const_str); 2151 if (!synthetic_child_sp) 2152 { 2153 uint32_t bit_field_size = to - from + 1; 2154 uint32_t bit_field_offset = from; 2155 if (GetDataExtractor().GetByteOrder() == eByteOrderBig) 2156 bit_field_offset = GetByteSize() * 8 - bit_field_size - bit_field_offset; 2157 // We haven't made a synthetic array member for INDEX yet, so 2158 // lets make one and cache it for any future reference. 2159 ValueObjectChild *synthetic_child = new ValueObjectChild (*this, 2160 GetCompilerType(), 2161 index_const_str, 2162 GetByteSize(), 2163 0, 2164 bit_field_size, 2165 bit_field_offset, 2166 false, 2167 false, 2168 eAddressTypeInvalid, 2169 0); 2170 2171 // Cache the value if we got one back... 2172 if (synthetic_child) 2173 { 2174 AddSyntheticChild(index_const_str, synthetic_child); 2175 synthetic_child_sp = synthetic_child->GetSP(); 2176 synthetic_child_sp->SetName(ConstString(index_str)); 2177 synthetic_child_sp->m_is_bitfield_for_scalar = true; 2178 } 2179 } 2180 } 2181 return synthetic_child_sp; 2182 } 2183 2184 ValueObjectSP 2185 ValueObject::GetSyntheticChildAtOffset(uint32_t offset, 2186 const CompilerType& type, 2187 bool can_create, 2188 ConstString name_const_str) 2189 { 2190 2191 ValueObjectSP synthetic_child_sp; 2192 2193 if (name_const_str.IsEmpty()) 2194 { 2195 char name_str[64]; 2196 snprintf(name_str, sizeof(name_str), "@%i", offset); 2197 name_const_str.SetCString(name_str); 2198 } 2199 2200 // Check if we have already created a synthetic array member in this 2201 // valid object. If we have we will re-use it. 2202 synthetic_child_sp = GetSyntheticChild (name_const_str); 2203 2204 if (synthetic_child_sp.get()) 2205 return synthetic_child_sp; 2206 2207 if (!can_create) 2208 return ValueObjectSP(); 2209 2210 ExecutionContext exe_ctx (GetExecutionContextRef()); 2211 2212 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2213 type, 2214 name_const_str, 2215 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2216 offset, 2217 0, 2218 0, 2219 false, 2220 false, 2221 eAddressTypeInvalid, 2222 0); 2223 if (synthetic_child) 2224 { 2225 AddSyntheticChild(name_const_str, synthetic_child); 2226 synthetic_child_sp = synthetic_child->GetSP(); 2227 synthetic_child_sp->SetName(name_const_str); 2228 synthetic_child_sp->m_is_child_at_offset = true; 2229 } 2230 return synthetic_child_sp; 2231 } 2232 2233 ValueObjectSP 2234 ValueObject::GetSyntheticBase (uint32_t offset, 2235 const CompilerType& type, 2236 bool can_create, 2237 ConstString name_const_str) 2238 { 2239 ValueObjectSP synthetic_child_sp; 2240 2241 if (name_const_str.IsEmpty()) 2242 { 2243 char name_str[128]; 2244 snprintf(name_str, sizeof(name_str), "base%s@%i", type.GetTypeName().AsCString("<unknown>"), offset); 2245 name_const_str.SetCString(name_str); 2246 } 2247 2248 // Check if we have already created a synthetic array member in this 2249 // valid object. If we have we will re-use it. 2250 synthetic_child_sp = GetSyntheticChild (name_const_str); 2251 2252 if (synthetic_child_sp.get()) 2253 return synthetic_child_sp; 2254 2255 if (!can_create) 2256 return ValueObjectSP(); 2257 2258 const bool is_base_class = true; 2259 2260 ExecutionContext exe_ctx (GetExecutionContextRef()); 2261 2262 ValueObjectChild *synthetic_child = new ValueObjectChild(*this, 2263 type, 2264 name_const_str, 2265 type.GetByteSize(exe_ctx.GetBestExecutionContextScope()), 2266 offset, 2267 0, 2268 0, 2269 is_base_class, 2270 false, 2271 eAddressTypeInvalid, 2272 0); 2273 if (synthetic_child) 2274 { 2275 AddSyntheticChild(name_const_str, synthetic_child); 2276 synthetic_child_sp = synthetic_child->GetSP(); 2277 synthetic_child_sp->SetName(name_const_str); 2278 } 2279 return synthetic_child_sp; 2280 } 2281 2282 2283 // your expression path needs to have a leading . or -> 2284 // (unless it somehow "looks like" an array, in which case it has 2285 // a leading [ symbol). while the [ is meaningful and should be shown 2286 // to the user, . and -> are just parser design, but by no means 2287 // added information for the user.. strip them off 2288 static const char* 2289 SkipLeadingExpressionPathSeparators(const char* expression) 2290 { 2291 if (!expression || !expression[0]) 2292 return expression; 2293 if (expression[0] == '.') 2294 return expression+1; 2295 if (expression[0] == '-' && expression[1] == '>') 2296 return expression+2; 2297 return expression; 2298 } 2299 2300 ValueObjectSP 2301 ValueObject::GetSyntheticExpressionPathChild(const char* expression, bool can_create) 2302 { 2303 ValueObjectSP synthetic_child_sp; 2304 ConstString name_const_string(expression); 2305 // Check if we have already created a synthetic array member in this 2306 // valid object. If we have we will re-use it. 2307 synthetic_child_sp = GetSyntheticChild (name_const_string); 2308 if (!synthetic_child_sp) 2309 { 2310 // We haven't made a synthetic array member for expression yet, so 2311 // lets make one and cache it for any future reference. 2312 synthetic_child_sp = GetValueForExpressionPath(expression, 2313 NULL, NULL, NULL, 2314 GetValueForExpressionPathOptions().SetSyntheticChildrenTraversal(GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None)); 2315 2316 // Cache the value if we got one back... 2317 if (synthetic_child_sp.get()) 2318 { 2319 // FIXME: this causes a "real" child to end up with its name changed to the contents of expression 2320 AddSyntheticChild(name_const_string, synthetic_child_sp.get()); 2321 synthetic_child_sp->SetName(ConstString(SkipLeadingExpressionPathSeparators(expression))); 2322 } 2323 } 2324 return synthetic_child_sp; 2325 } 2326 2327 void 2328 ValueObject::CalculateSyntheticValue (bool use_synthetic) 2329 { 2330 if (use_synthetic == false) 2331 return; 2332 2333 TargetSP target_sp(GetTargetSP()); 2334 if (target_sp && target_sp->GetEnableSyntheticValue() == false) 2335 { 2336 m_synthetic_value = NULL; 2337 return; 2338 } 2339 2340 lldb::SyntheticChildrenSP current_synth_sp(m_synthetic_children_sp); 2341 2342 if (!UpdateFormatsIfNeeded() && m_synthetic_value) 2343 return; 2344 2345 if (m_synthetic_children_sp.get() == NULL) 2346 return; 2347 2348 if (current_synth_sp == m_synthetic_children_sp && m_synthetic_value) 2349 return; 2350 2351 m_synthetic_value = new ValueObjectSynthetic(*this, m_synthetic_children_sp); 2352 } 2353 2354 void 2355 ValueObject::CalculateDynamicValue (DynamicValueType use_dynamic) 2356 { 2357 if (use_dynamic == eNoDynamicValues) 2358 return; 2359 2360 if (!m_dynamic_value && !IsDynamic()) 2361 { 2362 ExecutionContext exe_ctx (GetExecutionContextRef()); 2363 Process *process = exe_ctx.GetProcessPtr(); 2364 if (process && process->IsPossibleDynamicValue(*this)) 2365 { 2366 ClearDynamicTypeInformation (); 2367 m_dynamic_value = new ValueObjectDynamicValue (*this, use_dynamic); 2368 } 2369 } 2370 } 2371 2372 ValueObjectSP 2373 ValueObject::GetDynamicValue (DynamicValueType use_dynamic) 2374 { 2375 if (use_dynamic == eNoDynamicValues) 2376 return ValueObjectSP(); 2377 2378 if (!IsDynamic() && m_dynamic_value == NULL) 2379 { 2380 CalculateDynamicValue(use_dynamic); 2381 } 2382 if (m_dynamic_value) 2383 return m_dynamic_value->GetSP(); 2384 else 2385 return ValueObjectSP(); 2386 } 2387 2388 ValueObjectSP 2389 ValueObject::GetStaticValue() 2390 { 2391 return GetSP(); 2392 } 2393 2394 lldb::ValueObjectSP 2395 ValueObject::GetNonSyntheticValue () 2396 { 2397 return GetSP(); 2398 } 2399 2400 ValueObjectSP 2401 ValueObject::GetSyntheticValue (bool use_synthetic) 2402 { 2403 if (use_synthetic == false) 2404 return ValueObjectSP(); 2405 2406 CalculateSyntheticValue(use_synthetic); 2407 2408 if (m_synthetic_value) 2409 return m_synthetic_value->GetSP(); 2410 else 2411 return ValueObjectSP(); 2412 } 2413 2414 bool 2415 ValueObject::HasSyntheticValue() 2416 { 2417 UpdateFormatsIfNeeded(); 2418 2419 if (m_synthetic_children_sp.get() == NULL) 2420 return false; 2421 2422 CalculateSyntheticValue(true); 2423 2424 if (m_synthetic_value) 2425 return true; 2426 else 2427 return false; 2428 } 2429 2430 bool 2431 ValueObject::GetBaseClassPath (Stream &s) 2432 { 2433 if (IsBaseClass()) 2434 { 2435 bool parent_had_base_class = GetParent() && GetParent()->GetBaseClassPath (s); 2436 CompilerType compiler_type = GetCompilerType(); 2437 std::string cxx_class_name; 2438 bool this_had_base_class = ClangASTContext::GetCXXClassName (compiler_type, cxx_class_name); 2439 if (this_had_base_class) 2440 { 2441 if (parent_had_base_class) 2442 s.PutCString("::"); 2443 s.PutCString(cxx_class_name.c_str()); 2444 } 2445 return parent_had_base_class || this_had_base_class; 2446 } 2447 return false; 2448 } 2449 2450 2451 ValueObject * 2452 ValueObject::GetNonBaseClassParent() 2453 { 2454 if (GetParent()) 2455 { 2456 if (GetParent()->IsBaseClass()) 2457 return GetParent()->GetNonBaseClassParent(); 2458 else 2459 return GetParent(); 2460 } 2461 return NULL; 2462 } 2463 2464 2465 bool 2466 ValueObject::IsBaseClass (uint32_t& depth) 2467 { 2468 if (!IsBaseClass()) 2469 { 2470 depth = 0; 2471 return false; 2472 } 2473 if (GetParent()) 2474 { 2475 GetParent()->IsBaseClass(depth); 2476 depth = depth + 1; 2477 return true; 2478 } 2479 // TODO: a base of no parent? weird.. 2480 depth = 1; 2481 return true; 2482 } 2483 2484 void 2485 ValueObject::GetExpressionPath (Stream &s, bool qualify_cxx_base_classes, GetExpressionPathFormat epformat) 2486 { 2487 // synthetic children do not actually "exist" as part of the hierarchy, and sometimes they are consed up in ways 2488 // that don't make sense from an underlying language/API standpoint. So, use a special code path here to return 2489 // something that can hopefully be used in expression 2490 if (m_is_synthetic_children_generated) 2491 { 2492 UpdateValueIfNeeded(); 2493 2494 if (m_value.GetValueType() == Value::eValueTypeLoadAddress) 2495 { 2496 if (IsPointerOrReferenceType()) 2497 { 2498 s.Printf("((%s)0x%" PRIx64 ")", 2499 GetTypeName().AsCString("void"), 2500 GetValueAsUnsigned(0)); 2501 return; 2502 } 2503 else 2504 { 2505 uint64_t load_addr = m_value.GetScalar().ULongLong(LLDB_INVALID_ADDRESS); 2506 if (load_addr != LLDB_INVALID_ADDRESS) 2507 { 2508 s.Printf("(*( (%s *)0x%" PRIx64 "))", 2509 GetTypeName().AsCString("void"), 2510 load_addr); 2511 return; 2512 } 2513 } 2514 } 2515 2516 if (CanProvideValue()) 2517 { 2518 s.Printf("((%s)%s)", 2519 GetTypeName().AsCString("void"), 2520 GetValueAsCString()); 2521 return; 2522 } 2523 2524 return; 2525 } 2526 2527 const bool is_deref_of_parent = IsDereferenceOfParent (); 2528 2529 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2530 { 2531 // this is the original format of GetExpressionPath() producing code like *(a_ptr).memberName, which is entirely 2532 // fine, until you put this into StackFrame::GetValueForVariableExpressionPath() which prefers to see a_ptr->memberName. 2533 // the eHonorPointers mode is meant to produce strings in this latter format 2534 s.PutCString("*("); 2535 } 2536 2537 ValueObject* parent = GetParent(); 2538 2539 if (parent) 2540 parent->GetExpressionPath (s, qualify_cxx_base_classes, epformat); 2541 2542 // if we are a deref_of_parent just because we are synthetic array 2543 // members made up to allow ptr[%d] syntax to work in variable 2544 // printing, then add our name ([%d]) to the expression path 2545 if (m_is_array_item_for_pointer && epformat == eGetExpressionPathFormatHonorPointers) 2546 s.PutCString(m_name.AsCString()); 2547 2548 if (!IsBaseClass()) 2549 { 2550 if (!is_deref_of_parent) 2551 { 2552 ValueObject *non_base_class_parent = GetNonBaseClassParent(); 2553 if (non_base_class_parent && !non_base_class_parent->GetName().IsEmpty()) 2554 { 2555 CompilerType non_base_class_parent_compiler_type = non_base_class_parent->GetCompilerType(); 2556 if (non_base_class_parent_compiler_type) 2557 { 2558 if (parent && parent->IsDereferenceOfParent() && epformat == eGetExpressionPathFormatHonorPointers) 2559 { 2560 s.PutCString("->"); 2561 } 2562 else 2563 { 2564 const uint32_t non_base_class_parent_type_info = non_base_class_parent_compiler_type.GetTypeInfo(); 2565 2566 if (non_base_class_parent_type_info & eTypeIsPointer) 2567 { 2568 s.PutCString("->"); 2569 } 2570 else if ((non_base_class_parent_type_info & eTypeHasChildren) && 2571 !(non_base_class_parent_type_info & eTypeIsArray)) 2572 { 2573 s.PutChar('.'); 2574 } 2575 } 2576 } 2577 } 2578 2579 const char *name = GetName().GetCString(); 2580 if (name) 2581 { 2582 if (qualify_cxx_base_classes) 2583 { 2584 if (GetBaseClassPath (s)) 2585 s.PutCString("::"); 2586 } 2587 s.PutCString(name); 2588 } 2589 } 2590 } 2591 2592 if (is_deref_of_parent && epformat == eGetExpressionPathFormatDereferencePointers) 2593 { 2594 s.PutChar(')'); 2595 } 2596 } 2597 2598 ValueObjectSP 2599 ValueObject::GetValueForExpressionPath(const char* expression, 2600 const char** first_unparsed, 2601 ExpressionPathScanEndReason* reason_to_stop, 2602 ExpressionPathEndResultType* final_value_type, 2603 const GetValueForExpressionPathOptions& options, 2604 ExpressionPathAftermath* final_task_on_target) 2605 { 2606 2607 const char* dummy_first_unparsed; 2608 ExpressionPathScanEndReason dummy_reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnknown; 2609 ExpressionPathEndResultType dummy_final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2610 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2611 2612 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2613 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2614 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2615 final_value_type ? final_value_type : &dummy_final_value_type, 2616 options, 2617 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2618 2619 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2620 return ret_val; 2621 2622 if (ret_val.get() && ((final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain)) // I can only deref and takeaddress of plain objects 2623 { 2624 if ( (final_task_on_target ? *final_task_on_target : dummy_final_task_on_target) == ValueObject::eExpressionPathAftermathDereference) 2625 { 2626 Error error; 2627 ValueObjectSP final_value = ret_val->Dereference(error); 2628 if (error.Fail() || !final_value.get()) 2629 { 2630 if (reason_to_stop) 2631 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2632 if (final_value_type) 2633 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2634 return ValueObjectSP(); 2635 } 2636 else 2637 { 2638 if (final_task_on_target) 2639 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2640 return final_value; 2641 } 2642 } 2643 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2644 { 2645 Error error; 2646 ValueObjectSP final_value = ret_val->AddressOf(error); 2647 if (error.Fail() || !final_value.get()) 2648 { 2649 if (reason_to_stop) 2650 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2651 if (final_value_type) 2652 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2653 return ValueObjectSP(); 2654 } 2655 else 2656 { 2657 if (final_task_on_target) 2658 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2659 return final_value; 2660 } 2661 } 2662 } 2663 return ret_val; // final_task_on_target will still have its original value, so you know I did not do it 2664 } 2665 2666 int 2667 ValueObject::GetValuesForExpressionPath(const char* expression, 2668 ValueObjectListSP& list, 2669 const char** first_unparsed, 2670 ExpressionPathScanEndReason* reason_to_stop, 2671 ExpressionPathEndResultType* final_value_type, 2672 const GetValueForExpressionPathOptions& options, 2673 ExpressionPathAftermath* final_task_on_target) 2674 { 2675 const char* dummy_first_unparsed; 2676 ExpressionPathScanEndReason dummy_reason_to_stop; 2677 ExpressionPathEndResultType dummy_final_value_type; 2678 ExpressionPathAftermath dummy_final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2679 2680 ValueObjectSP ret_val = GetValueForExpressionPath_Impl(expression, 2681 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2682 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2683 final_value_type ? final_value_type : &dummy_final_value_type, 2684 options, 2685 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2686 2687 if (!ret_val.get()) // if there are errors, I add nothing to the list 2688 return 0; 2689 2690 if ( (reason_to_stop ? *reason_to_stop : dummy_reason_to_stop) != eExpressionPathScanEndReasonArrayRangeOperatorMet) 2691 { 2692 // I need not expand a range, just post-process the final value and return 2693 if (!final_task_on_target || *final_task_on_target == ValueObject::eExpressionPathAftermathNothing) 2694 { 2695 list->Append(ret_val); 2696 return 1; 2697 } 2698 if (ret_val.get() && (final_value_type ? *final_value_type : dummy_final_value_type) == eExpressionPathEndResultTypePlain) // I can only deref and takeaddress of plain objects 2699 { 2700 if (*final_task_on_target == ValueObject::eExpressionPathAftermathDereference) 2701 { 2702 Error error; 2703 ValueObjectSP final_value = ret_val->Dereference(error); 2704 if (error.Fail() || !final_value.get()) 2705 { 2706 if (reason_to_stop) 2707 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 2708 if (final_value_type) 2709 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2710 return 0; 2711 } 2712 else 2713 { 2714 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2715 list->Append(final_value); 2716 return 1; 2717 } 2718 } 2719 if (*final_task_on_target == ValueObject::eExpressionPathAftermathTakeAddress) 2720 { 2721 Error error; 2722 ValueObjectSP final_value = ret_val->AddressOf(error); 2723 if (error.Fail() || !final_value.get()) 2724 { 2725 if (reason_to_stop) 2726 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonTakingAddressFailed; 2727 if (final_value_type) 2728 *final_value_type = ValueObject::eExpressionPathEndResultTypeInvalid; 2729 return 0; 2730 } 2731 else 2732 { 2733 *final_task_on_target = ValueObject::eExpressionPathAftermathNothing; 2734 list->Append(final_value); 2735 return 1; 2736 } 2737 } 2738 } 2739 } 2740 else 2741 { 2742 return ExpandArraySliceExpression(first_unparsed ? *first_unparsed : dummy_first_unparsed, 2743 first_unparsed ? first_unparsed : &dummy_first_unparsed, 2744 ret_val, 2745 list, 2746 reason_to_stop ? reason_to_stop : &dummy_reason_to_stop, 2747 final_value_type ? final_value_type : &dummy_final_value_type, 2748 options, 2749 final_task_on_target ? final_task_on_target : &dummy_final_task_on_target); 2750 } 2751 // in any non-covered case, just do the obviously right thing 2752 list->Append(ret_val); 2753 return 1; 2754 } 2755 2756 ValueObjectSP 2757 ValueObject::GetValueForExpressionPath_Impl(const char* expression_cstr, 2758 const char** first_unparsed, 2759 ExpressionPathScanEndReason* reason_to_stop, 2760 ExpressionPathEndResultType* final_result, 2761 const GetValueForExpressionPathOptions& options, 2762 ExpressionPathAftermath* what_next) 2763 { 2764 ValueObjectSP root = GetSP(); 2765 2766 if (!root.get()) 2767 return ValueObjectSP(); 2768 2769 *first_unparsed = expression_cstr; 2770 2771 while (true) 2772 { 2773 2774 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 2775 2776 CompilerType root_compiler_type = root->GetCompilerType(); 2777 CompilerType pointee_compiler_type; 2778 Flags pointee_compiler_type_info; 2779 2780 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 2781 if (pointee_compiler_type) 2782 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 2783 2784 if (!expression_cstr || *expression_cstr == '\0') 2785 { 2786 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2787 return root; 2788 } 2789 2790 switch (*expression_cstr) 2791 { 2792 case '-': 2793 { 2794 if (options.m_check_dot_vs_arrow_syntax && 2795 root_compiler_type_info.Test(eTypeIsPointer) ) // if you are trying to use -> on a non-pointer and I must catch the error 2796 { 2797 *first_unparsed = expression_cstr; 2798 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrowInsteadOfDot; 2799 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2800 return ValueObjectSP(); 2801 } 2802 if (root_compiler_type_info.Test(eTypeIsObjC) && // if yo are trying to extract an ObjC IVar when this is forbidden 2803 root_compiler_type_info.Test(eTypeIsPointer) && 2804 options.m_no_fragile_ivar) 2805 { 2806 *first_unparsed = expression_cstr; 2807 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonFragileIVarNotAllowed; 2808 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2809 return ValueObjectSP(); 2810 } 2811 if (expression_cstr[1] != '>') 2812 { 2813 *first_unparsed = expression_cstr; 2814 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 2815 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2816 return ValueObjectSP(); 2817 } 2818 expression_cstr++; // skip the - 2819 } 2820 LLVM_FALLTHROUGH; 2821 case '.': // or fallthrough from -> 2822 { 2823 if (options.m_check_dot_vs_arrow_syntax && *expression_cstr == '.' && 2824 root_compiler_type_info.Test(eTypeIsPointer)) // if you are trying to use . on a pointer and I must catch the error 2825 { 2826 *first_unparsed = expression_cstr; 2827 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDotInsteadOfArrow; 2828 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2829 return ValueObjectSP(); 2830 } 2831 expression_cstr++; // skip . 2832 const char *next_separator = strpbrk(expression_cstr+1,"-.["); 2833 ConstString child_name; 2834 if (!next_separator) // if no other separator just expand this last layer 2835 { 2836 child_name.SetCString (expression_cstr); 2837 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2838 2839 if (child_valobj_sp.get()) // we know we are done, so just return 2840 { 2841 *first_unparsed = ""; 2842 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2843 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2844 return child_valobj_sp; 2845 } 2846 else 2847 { 2848 switch (options.m_synthetic_children_traversal) 2849 { 2850 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2851 break; 2852 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2853 if (root->IsSynthetic()) 2854 { 2855 child_valobj_sp = root->GetNonSyntheticValue(); 2856 if (child_valobj_sp.get()) 2857 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2858 } 2859 break; 2860 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2861 if (!root->IsSynthetic()) 2862 { 2863 child_valobj_sp = root->GetSyntheticValue(); 2864 if (child_valobj_sp.get()) 2865 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2866 } 2867 break; 2868 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2869 if (root->IsSynthetic()) 2870 { 2871 child_valobj_sp = root->GetNonSyntheticValue(); 2872 if (child_valobj_sp.get()) 2873 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2874 } 2875 else 2876 { 2877 child_valobj_sp = root->GetSyntheticValue(); 2878 if (child_valobj_sp.get()) 2879 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2880 } 2881 break; 2882 } 2883 } 2884 2885 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2886 // so we hit the "else" branch, and return an error 2887 if(child_valobj_sp.get()) // if it worked, just return 2888 { 2889 *first_unparsed = ""; 2890 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 2891 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2892 return child_valobj_sp; 2893 } 2894 else 2895 { 2896 *first_unparsed = expression_cstr; 2897 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2898 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2899 return ValueObjectSP(); 2900 } 2901 } 2902 else // other layers do expand 2903 { 2904 child_name.SetCStringWithLength(expression_cstr, next_separator - expression_cstr); 2905 ValueObjectSP child_valobj_sp = root->GetChildMemberWithName(child_name, true); 2906 if (child_valobj_sp.get()) // store the new root and move on 2907 { 2908 root = child_valobj_sp; 2909 *first_unparsed = next_separator; 2910 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2911 continue; 2912 } 2913 else 2914 { 2915 switch (options.m_synthetic_children_traversal) 2916 { 2917 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None: 2918 break; 2919 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::FromSynthetic: 2920 if (root->IsSynthetic()) 2921 { 2922 child_valobj_sp = root->GetNonSyntheticValue(); 2923 if (child_valobj_sp.get()) 2924 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2925 } 2926 break; 2927 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic: 2928 if (!root->IsSynthetic()) 2929 { 2930 child_valobj_sp = root->GetSyntheticValue(); 2931 if (child_valobj_sp.get()) 2932 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2933 } 2934 break; 2935 case GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both: 2936 if (root->IsSynthetic()) 2937 { 2938 child_valobj_sp = root->GetNonSyntheticValue(); 2939 if (child_valobj_sp.get()) 2940 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2941 } 2942 else 2943 { 2944 child_valobj_sp = root->GetSyntheticValue(); 2945 if (child_valobj_sp.get()) 2946 child_valobj_sp = child_valobj_sp->GetChildMemberWithName(child_name, true); 2947 } 2948 break; 2949 } 2950 } 2951 2952 // if we are here and options.m_no_synthetic_children is true, child_valobj_sp is going to be a NULL SP, 2953 // so we hit the "else" branch, and return an error 2954 if(child_valobj_sp.get()) // if it worked, move on 2955 { 2956 root = child_valobj_sp; 2957 *first_unparsed = next_separator; 2958 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 2959 continue; 2960 } 2961 else 2962 { 2963 *first_unparsed = expression_cstr; 2964 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 2965 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2966 return ValueObjectSP(); 2967 } 2968 } 2969 break; 2970 } 2971 case '[': 2972 { 2973 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer) && !root_compiler_type_info.Test(eTypeIsVector)) // if this is not a T[] nor a T* 2974 { 2975 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar... 2976 { 2977 if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::None) // ...only chance left is synthetic 2978 { 2979 *first_unparsed = expression_cstr; 2980 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 2981 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2982 return ValueObjectSP(); 2983 } 2984 } 2985 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 2986 { 2987 *first_unparsed = expression_cstr; 2988 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 2989 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 2990 return ValueObjectSP(); 2991 } 2992 } 2993 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 2994 { 2995 if (!root_compiler_type_info.Test(eTypeIsArray)) 2996 { 2997 *first_unparsed = expression_cstr; 2998 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 2999 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3000 return ValueObjectSP(); 3001 } 3002 else // even if something follows, we cannot expand unbounded ranges, just let the caller do it 3003 { 3004 *first_unparsed = expression_cstr+2; 3005 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3006 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3007 return root; 3008 } 3009 } 3010 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3011 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3012 if (!close_bracket_position) // if there is no ], this is a syntax error 3013 { 3014 *first_unparsed = expression_cstr; 3015 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3016 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3017 return ValueObjectSP(); 3018 } 3019 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3020 { 3021 char *end = NULL; 3022 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3023 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3024 { 3025 *first_unparsed = expression_cstr; 3026 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3027 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3028 return ValueObjectSP(); 3029 } 3030 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3031 { 3032 if (root_compiler_type_info.Test(eTypeIsArray)) 3033 { 3034 *first_unparsed = expression_cstr+2; 3035 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3036 *final_result = ValueObject::eExpressionPathEndResultTypeUnboundedRange; 3037 return root; 3038 } 3039 else 3040 { 3041 *first_unparsed = expression_cstr; 3042 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3043 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3044 return ValueObjectSP(); 3045 } 3046 } 3047 // from here on we do have a valid index 3048 if (root_compiler_type_info.Test(eTypeIsArray)) 3049 { 3050 ValueObjectSP child_valobj_sp = root->GetChildAtIndex(index, true); 3051 if (!child_valobj_sp) 3052 child_valobj_sp = root->GetSyntheticArrayMember(index, true); 3053 if (!child_valobj_sp) 3054 if (root->HasSyntheticValue() && root->GetSyntheticValue()->GetNumChildren() > index) 3055 child_valobj_sp = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3056 if (child_valobj_sp) 3057 { 3058 root = child_valobj_sp; 3059 *first_unparsed = end+1; // skip ] 3060 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3061 continue; 3062 } 3063 else 3064 { 3065 *first_unparsed = expression_cstr; 3066 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3067 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3068 return ValueObjectSP(); 3069 } 3070 } 3071 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3072 { 3073 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3074 pointee_compiler_type_info.Test(eTypeIsScalar)) 3075 { 3076 Error error; 3077 root = root->Dereference(error); 3078 if (error.Fail() || !root.get()) 3079 { 3080 *first_unparsed = expression_cstr; 3081 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3082 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3083 return ValueObjectSP(); 3084 } 3085 else 3086 { 3087 *what_next = eExpressionPathAftermathNothing; 3088 continue; 3089 } 3090 } 3091 else 3092 { 3093 if (root->GetCompilerType().GetMinimumLanguage() == eLanguageTypeObjC 3094 && pointee_compiler_type_info.AllClear(eTypeIsPointer) 3095 && root->HasSyntheticValue() 3096 && (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3097 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both)) 3098 { 3099 root = root->GetSyntheticValue()->GetChildAtIndex(index, true); 3100 } 3101 else 3102 root = root->GetSyntheticArrayMember(index, true); 3103 if (!root.get()) 3104 { 3105 *first_unparsed = expression_cstr; 3106 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3107 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3108 return ValueObjectSP(); 3109 } 3110 else 3111 { 3112 *first_unparsed = end+1; // skip ] 3113 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3114 continue; 3115 } 3116 } 3117 } 3118 else if (root_compiler_type_info.Test(eTypeIsScalar)) 3119 { 3120 root = root->GetSyntheticBitFieldChild(index, index, true); 3121 if (!root.get()) 3122 { 3123 *first_unparsed = expression_cstr; 3124 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3125 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3126 return ValueObjectSP(); 3127 } 3128 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3129 { 3130 *first_unparsed = end+1; // skip ] 3131 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3132 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3133 return root; 3134 } 3135 } 3136 else if (root_compiler_type_info.Test(eTypeIsVector)) 3137 { 3138 root = root->GetChildAtIndex(index, true); 3139 if (!root.get()) 3140 { 3141 *first_unparsed = expression_cstr; 3142 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3143 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3144 return ValueObjectSP(); 3145 } 3146 else 3147 { 3148 *first_unparsed = end+1; // skip ] 3149 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3150 continue; 3151 } 3152 } 3153 else if (options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::ToSynthetic || 3154 options.m_synthetic_children_traversal == GetValueForExpressionPathOptions::SyntheticChildrenTraversal::Both) 3155 { 3156 if (root->HasSyntheticValue()) 3157 root = root->GetSyntheticValue(); 3158 else if (!root->IsSynthetic()) 3159 { 3160 *first_unparsed = expression_cstr; 3161 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3162 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3163 return ValueObjectSP(); 3164 } 3165 // if we are here, then root itself is a synthetic VO.. should be good to go 3166 3167 if (!root.get()) 3168 { 3169 *first_unparsed = expression_cstr; 3170 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonSyntheticValueMissing; 3171 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3172 return ValueObjectSP(); 3173 } 3174 root = root->GetChildAtIndex(index, true); 3175 if (!root.get()) 3176 { 3177 *first_unparsed = expression_cstr; 3178 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3179 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3180 return ValueObjectSP(); 3181 } 3182 else 3183 { 3184 *first_unparsed = end+1; // skip ] 3185 *final_result = ValueObject::eExpressionPathEndResultTypePlain; 3186 continue; 3187 } 3188 } 3189 else 3190 { 3191 *first_unparsed = expression_cstr; 3192 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3193 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3194 return ValueObjectSP(); 3195 } 3196 } 3197 else // we have a low and a high index 3198 { 3199 char *end = NULL; 3200 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3201 if (!end || end != separator_position) // if something weird is in our way return an error 3202 { 3203 *first_unparsed = expression_cstr; 3204 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3205 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3206 return ValueObjectSP(); 3207 } 3208 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3209 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3210 { 3211 *first_unparsed = expression_cstr; 3212 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3213 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3214 return ValueObjectSP(); 3215 } 3216 if (index_lower > index_higher) // swap indices if required 3217 { 3218 unsigned long temp = index_lower; 3219 index_lower = index_higher; 3220 index_higher = temp; 3221 } 3222 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3223 { 3224 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3225 if (!root.get()) 3226 { 3227 *first_unparsed = expression_cstr; 3228 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3229 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3230 return ValueObjectSP(); 3231 } 3232 else 3233 { 3234 *first_unparsed = end+1; // skip ] 3235 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonBitfieldRangeOperatorMet; 3236 *final_result = ValueObject::eExpressionPathEndResultTypeBitfield; 3237 return root; 3238 } 3239 } 3240 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3241 *what_next == ValueObject::eExpressionPathAftermathDereference && 3242 pointee_compiler_type_info.Test(eTypeIsScalar)) 3243 { 3244 Error error; 3245 root = root->Dereference(error); 3246 if (error.Fail() || !root.get()) 3247 { 3248 *first_unparsed = expression_cstr; 3249 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3250 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3251 return ValueObjectSP(); 3252 } 3253 else 3254 { 3255 *what_next = ValueObject::eExpressionPathAftermathNothing; 3256 continue; 3257 } 3258 } 3259 else 3260 { 3261 *first_unparsed = expression_cstr; 3262 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonArrayRangeOperatorMet; 3263 *final_result = ValueObject::eExpressionPathEndResultTypeBoundedRange; 3264 return root; 3265 } 3266 } 3267 break; 3268 } 3269 default: // some non-separator is in the way 3270 { 3271 *first_unparsed = expression_cstr; 3272 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3273 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3274 return ValueObjectSP(); 3275 break; 3276 } 3277 } 3278 } 3279 } 3280 3281 int 3282 ValueObject::ExpandArraySliceExpression(const char* expression_cstr, 3283 const char** first_unparsed, 3284 ValueObjectSP root, 3285 ValueObjectListSP& list, 3286 ExpressionPathScanEndReason* reason_to_stop, 3287 ExpressionPathEndResultType* final_result, 3288 const GetValueForExpressionPathOptions& options, 3289 ExpressionPathAftermath* what_next) 3290 { 3291 if (!root.get()) 3292 return 0; 3293 3294 *first_unparsed = expression_cstr; 3295 3296 while (true) 3297 { 3298 3299 const char* expression_cstr = *first_unparsed; // hide the top level expression_cstr 3300 3301 CompilerType root_compiler_type = root->GetCompilerType(); 3302 CompilerType pointee_compiler_type; 3303 Flags pointee_compiler_type_info; 3304 Flags root_compiler_type_info(root_compiler_type.GetTypeInfo(&pointee_compiler_type)); 3305 if (pointee_compiler_type) 3306 pointee_compiler_type_info.Reset(pointee_compiler_type.GetTypeInfo()); 3307 3308 if (!expression_cstr || *expression_cstr == '\0') 3309 { 3310 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEndOfString; 3311 list->Append(root); 3312 return 1; 3313 } 3314 3315 switch (*expression_cstr) 3316 { 3317 case '[': 3318 { 3319 if (!root_compiler_type_info.Test(eTypeIsArray) && !root_compiler_type_info.Test(eTypeIsPointer)) // if this is not a T[] nor a T* 3320 { 3321 if (!root_compiler_type_info.Test(eTypeIsScalar)) // if this is not even a scalar, this syntax is just plain wrong! 3322 { 3323 *first_unparsed = expression_cstr; 3324 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorInvalid; 3325 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3326 return 0; 3327 } 3328 else if (!options.m_allow_bitfields_syntax) // if this is a scalar, check that we can expand bitfields 3329 { 3330 *first_unparsed = expression_cstr; 3331 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorNotAllowed; 3332 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3333 return 0; 3334 } 3335 } 3336 if (*(expression_cstr+1) == ']') // if this is an unbounded range it only works for arrays 3337 { 3338 if (!root_compiler_type_info.Test(eTypeIsArray)) 3339 { 3340 *first_unparsed = expression_cstr; 3341 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3342 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3343 return 0; 3344 } 3345 else // expand this into list 3346 { 3347 const size_t max_index = root->GetNumChildren() - 1; 3348 for (size_t index = 0; index < max_index; index++) 3349 { 3350 ValueObjectSP child = 3351 root->GetChildAtIndex(index, true); 3352 list->Append(child); 3353 } 3354 *first_unparsed = expression_cstr+2; 3355 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3356 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3357 return max_index; // tell me number of items I added to the VOList 3358 } 3359 } 3360 const char *separator_position = ::strchr(expression_cstr+1,'-'); 3361 const char *close_bracket_position = ::strchr(expression_cstr+1,']'); 3362 if (!close_bracket_position) // if there is no ], this is a syntax error 3363 { 3364 *first_unparsed = expression_cstr; 3365 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3366 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3367 return 0; 3368 } 3369 if (!separator_position || separator_position > close_bracket_position) // if no separator, this is either [] or [N] 3370 { 3371 char *end = NULL; 3372 unsigned long index = ::strtoul (expression_cstr+1, &end, 0); 3373 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3374 { 3375 *first_unparsed = expression_cstr; 3376 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3377 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3378 return 0; 3379 } 3380 if (end - expression_cstr == 1) // if this is [], only return a valid value for arrays 3381 { 3382 if (root_compiler_type_info.Test(eTypeIsArray)) 3383 { 3384 const size_t max_index = root->GetNumChildren() - 1; 3385 for (size_t index = 0; index < max_index; index++) 3386 { 3387 ValueObjectSP child = 3388 root->GetChildAtIndex(index, true); 3389 list->Append(child); 3390 } 3391 *first_unparsed = expression_cstr+2; 3392 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3393 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3394 return max_index; // tell me number of items I added to the VOList 3395 } 3396 else 3397 { 3398 *first_unparsed = expression_cstr; 3399 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonEmptyRangeNotAllowed; 3400 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3401 return 0; 3402 } 3403 } 3404 // from here on we do have a valid index 3405 if (root_compiler_type_info.Test(eTypeIsArray)) 3406 { 3407 root = root->GetChildAtIndex(index, true); 3408 if (!root.get()) 3409 { 3410 *first_unparsed = expression_cstr; 3411 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3412 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3413 return 0; 3414 } 3415 else 3416 { 3417 list->Append(root); 3418 *first_unparsed = end+1; // skip ] 3419 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3420 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3421 return 1; 3422 } 3423 } 3424 else if (root_compiler_type_info.Test(eTypeIsPointer)) 3425 { 3426 if (*what_next == ValueObject::eExpressionPathAftermathDereference && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3427 pointee_compiler_type_info.Test(eTypeIsScalar)) 3428 { 3429 Error error; 3430 root = root->Dereference(error); 3431 if (error.Fail() || !root.get()) 3432 { 3433 *first_unparsed = expression_cstr; 3434 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3435 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3436 return 0; 3437 } 3438 else 3439 { 3440 *what_next = eExpressionPathAftermathNothing; 3441 continue; 3442 } 3443 } 3444 else 3445 { 3446 root = root->GetSyntheticArrayMember(index, true); 3447 if (!root.get()) 3448 { 3449 *first_unparsed = expression_cstr; 3450 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3451 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3452 return 0; 3453 } 3454 else 3455 { 3456 list->Append(root); 3457 *first_unparsed = end+1; // skip ] 3458 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3459 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3460 return 1; 3461 } 3462 } 3463 } 3464 else /*if (ClangASTContext::IsScalarType(root_compiler_type))*/ 3465 { 3466 root = root->GetSyntheticBitFieldChild(index, index, true); 3467 if (!root.get()) 3468 { 3469 *first_unparsed = expression_cstr; 3470 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3471 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3472 return 0; 3473 } 3474 else // we do not know how to expand members of bitfields, so we just return and let the caller do any further processing 3475 { 3476 list->Append(root); 3477 *first_unparsed = end+1; // skip ] 3478 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3479 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3480 return 1; 3481 } 3482 } 3483 } 3484 else // we have a low and a high index 3485 { 3486 char *end = NULL; 3487 unsigned long index_lower = ::strtoul (expression_cstr+1, &end, 0); 3488 if (!end || end != separator_position) // if something weird is in our way return an error 3489 { 3490 *first_unparsed = expression_cstr; 3491 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3492 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3493 return 0; 3494 } 3495 unsigned long index_higher = ::strtoul (separator_position+1, &end, 0); 3496 if (!end || end != close_bracket_position) // if something weird is in our way return an error 3497 { 3498 *first_unparsed = expression_cstr; 3499 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3500 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3501 return 0; 3502 } 3503 if (index_lower > index_higher) // swap indices if required 3504 { 3505 unsigned long temp = index_lower; 3506 index_lower = index_higher; 3507 index_higher = temp; 3508 } 3509 if (root_compiler_type_info.Test(eTypeIsScalar)) // expansion only works for scalars 3510 { 3511 root = root->GetSyntheticBitFieldChild(index_lower, index_higher, true); 3512 if (!root.get()) 3513 { 3514 *first_unparsed = expression_cstr; 3515 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonNoSuchChild; 3516 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3517 return 0; 3518 } 3519 else 3520 { 3521 list->Append(root); 3522 *first_unparsed = end+1; // skip ] 3523 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3524 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3525 return 1; 3526 } 3527 } 3528 else if (root_compiler_type_info.Test(eTypeIsPointer) && // if this is a ptr-to-scalar, I am accessing it by index and I would have deref'ed anyway, then do it now and use this as a bitfield 3529 *what_next == ValueObject::eExpressionPathAftermathDereference && 3530 pointee_compiler_type_info.Test(eTypeIsScalar)) 3531 { 3532 Error error; 3533 root = root->Dereference(error); 3534 if (error.Fail() || !root.get()) 3535 { 3536 *first_unparsed = expression_cstr; 3537 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonDereferencingFailed; 3538 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3539 return 0; 3540 } 3541 else 3542 { 3543 *what_next = ValueObject::eExpressionPathAftermathNothing; 3544 continue; 3545 } 3546 } 3547 else 3548 { 3549 for (unsigned long index = index_lower; 3550 index <= index_higher; index++) 3551 { 3552 ValueObjectSP child = 3553 root->GetChildAtIndex(index, true); 3554 list->Append(child); 3555 } 3556 *first_unparsed = end+1; 3557 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonRangeOperatorExpanded; 3558 *final_result = ValueObject::eExpressionPathEndResultTypeValueObjectList; 3559 return index_higher-index_lower+1; // tell me number of items I added to the VOList 3560 } 3561 } 3562 break; 3563 } 3564 default: // some non-[ separator, or something entirely wrong, is in the way 3565 { 3566 *first_unparsed = expression_cstr; 3567 *reason_to_stop = ValueObject::eExpressionPathScanEndReasonUnexpectedSymbol; 3568 *final_result = ValueObject::eExpressionPathEndResultTypeInvalid; 3569 return 0; 3570 break; 3571 } 3572 } 3573 } 3574 } 3575 3576 void 3577 ValueObject::LogValueObject (Log *log) 3578 { 3579 if (log) 3580 return LogValueObject (log, DumpValueObjectOptions(*this)); 3581 } 3582 3583 void 3584 ValueObject::LogValueObject (Log *log, const DumpValueObjectOptions& options) 3585 { 3586 if (log) 3587 { 3588 StreamString s; 3589 Dump (s, options); 3590 if (s.GetSize()) 3591 log->PutCString(s.GetData()); 3592 } 3593 } 3594 3595 void 3596 ValueObject::Dump (Stream &s) 3597 { 3598 Dump (s, DumpValueObjectOptions(*this)); 3599 } 3600 3601 void 3602 ValueObject::Dump (Stream &s, 3603 const DumpValueObjectOptions& options) 3604 { 3605 ValueObjectPrinter printer(this,&s,options); 3606 printer.PrintValueObject(); 3607 } 3608 3609 ValueObjectSP 3610 ValueObject::CreateConstantValue (const ConstString &name) 3611 { 3612 ValueObjectSP valobj_sp; 3613 3614 if (UpdateValueIfNeeded(false) && m_error.Success()) 3615 { 3616 ExecutionContext exe_ctx (GetExecutionContextRef()); 3617 3618 DataExtractor data; 3619 data.SetByteOrder (m_data.GetByteOrder()); 3620 data.SetAddressByteSize(m_data.GetAddressByteSize()); 3621 3622 if (IsBitfield()) 3623 { 3624 Value v(Scalar(GetValueAsUnsigned(UINT64_MAX))); 3625 m_error = v.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3626 } 3627 else 3628 m_error = m_value.GetValueAsData (&exe_ctx, data, 0, GetModule().get()); 3629 3630 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3631 GetCompilerType(), 3632 name, 3633 data, 3634 GetAddressOf()); 3635 } 3636 3637 if (!valobj_sp) 3638 { 3639 ExecutionContext exe_ctx (GetExecutionContextRef()); 3640 valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), m_error); 3641 } 3642 return valobj_sp; 3643 } 3644 3645 ValueObjectSP 3646 ValueObject::GetQualifiedRepresentationIfAvailable (lldb::DynamicValueType dynValue, 3647 bool synthValue) 3648 { 3649 ValueObjectSP result_sp(GetSP()); 3650 3651 switch (dynValue) 3652 { 3653 case lldb::eDynamicCanRunTarget: 3654 case lldb::eDynamicDontRunTarget: 3655 { 3656 if (!result_sp->IsDynamic()) 3657 { 3658 if (result_sp->GetDynamicValue(dynValue)) 3659 result_sp = result_sp->GetDynamicValue(dynValue); 3660 } 3661 } 3662 break; 3663 case lldb::eNoDynamicValues: 3664 { 3665 if (result_sp->IsDynamic()) 3666 { 3667 if (result_sp->GetStaticValue()) 3668 result_sp = result_sp->GetStaticValue(); 3669 } 3670 } 3671 break; 3672 } 3673 3674 if (synthValue) 3675 { 3676 if (!result_sp->IsSynthetic()) 3677 { 3678 if (result_sp->GetSyntheticValue()) 3679 result_sp = result_sp->GetSyntheticValue(); 3680 } 3681 } 3682 else 3683 { 3684 if (result_sp->IsSynthetic()) 3685 { 3686 if (result_sp->GetNonSyntheticValue()) 3687 result_sp = result_sp->GetNonSyntheticValue(); 3688 } 3689 } 3690 3691 return result_sp; 3692 } 3693 3694 lldb::addr_t 3695 ValueObject::GetCPPVTableAddress (AddressType &address_type) 3696 { 3697 CompilerType pointee_type; 3698 CompilerType this_type(GetCompilerType()); 3699 uint32_t type_info = this_type.GetTypeInfo(&pointee_type); 3700 if (type_info) 3701 { 3702 bool ptr_or_ref = false; 3703 if (type_info & (eTypeIsPointer | eTypeIsReference)) 3704 { 3705 ptr_or_ref = true; 3706 type_info = pointee_type.GetTypeInfo(); 3707 } 3708 3709 const uint32_t cpp_class = eTypeIsClass | eTypeIsCPlusPlus; 3710 if ((type_info & cpp_class) == cpp_class) 3711 { 3712 if (ptr_or_ref) 3713 { 3714 address_type = GetAddressTypeOfChildren(); 3715 return GetValueAsUnsigned(LLDB_INVALID_ADDRESS); 3716 } 3717 else 3718 return GetAddressOf (false, &address_type); 3719 } 3720 } 3721 3722 address_type = eAddressTypeInvalid; 3723 return LLDB_INVALID_ADDRESS; 3724 } 3725 3726 ValueObjectSP 3727 ValueObject::Dereference (Error &error) 3728 { 3729 if (m_deref_valobj) 3730 return m_deref_valobj->GetSP(); 3731 3732 const bool is_pointer_or_reference_type = IsPointerOrReferenceType(); 3733 if (is_pointer_or_reference_type) 3734 { 3735 bool omit_empty_base_classes = true; 3736 bool ignore_array_bounds = false; 3737 3738 std::string child_name_str; 3739 uint32_t child_byte_size = 0; 3740 int32_t child_byte_offset = 0; 3741 uint32_t child_bitfield_bit_size = 0; 3742 uint32_t child_bitfield_bit_offset = 0; 3743 bool child_is_base_class = false; 3744 bool child_is_deref_of_parent = false; 3745 const bool transparent_pointers = false; 3746 CompilerType compiler_type = GetCompilerType(); 3747 CompilerType child_compiler_type; 3748 uint64_t language_flags; 3749 3750 ExecutionContext exe_ctx (GetExecutionContextRef()); 3751 3752 child_compiler_type = compiler_type.GetChildCompilerTypeAtIndex (&exe_ctx, 3753 0, 3754 transparent_pointers, 3755 omit_empty_base_classes, 3756 ignore_array_bounds, 3757 child_name_str, 3758 child_byte_size, 3759 child_byte_offset, 3760 child_bitfield_bit_size, 3761 child_bitfield_bit_offset, 3762 child_is_base_class, 3763 child_is_deref_of_parent, 3764 this, 3765 language_flags); 3766 if (child_compiler_type && child_byte_size) 3767 { 3768 ConstString child_name; 3769 if (!child_name_str.empty()) 3770 child_name.SetCString (child_name_str.c_str()); 3771 3772 m_deref_valobj = new ValueObjectChild (*this, 3773 child_compiler_type, 3774 child_name, 3775 child_byte_size, 3776 child_byte_offset, 3777 child_bitfield_bit_size, 3778 child_bitfield_bit_offset, 3779 child_is_base_class, 3780 child_is_deref_of_parent, 3781 eAddressTypeInvalid, 3782 language_flags); 3783 } 3784 } 3785 3786 if (m_deref_valobj) 3787 { 3788 error.Clear(); 3789 return m_deref_valobj->GetSP(); 3790 } 3791 else 3792 { 3793 StreamString strm; 3794 GetExpressionPath(strm, true); 3795 3796 if (is_pointer_or_reference_type) 3797 error.SetErrorStringWithFormat("dereference failed: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3798 else 3799 error.SetErrorStringWithFormat("not a pointer or reference type: (%s) %s", GetTypeName().AsCString("<invalid type>"), strm.GetString().c_str()); 3800 return ValueObjectSP(); 3801 } 3802 } 3803 3804 ValueObjectSP 3805 ValueObject::AddressOf (Error &error) 3806 { 3807 if (m_addr_of_valobj_sp) 3808 return m_addr_of_valobj_sp; 3809 3810 AddressType address_type = eAddressTypeInvalid; 3811 const bool scalar_is_load_address = false; 3812 addr_t addr = GetAddressOf (scalar_is_load_address, &address_type); 3813 error.Clear(); 3814 if (addr != LLDB_INVALID_ADDRESS && address_type != eAddressTypeHost) 3815 { 3816 switch (address_type) 3817 { 3818 case eAddressTypeInvalid: 3819 { 3820 StreamString expr_path_strm; 3821 GetExpressionPath(expr_path_strm, true); 3822 error.SetErrorStringWithFormat("'%s' is not in memory", expr_path_strm.GetString().c_str()); 3823 } 3824 break; 3825 3826 case eAddressTypeFile: 3827 case eAddressTypeLoad: 3828 { 3829 CompilerType compiler_type = GetCompilerType(); 3830 if (compiler_type) 3831 { 3832 std::string name (1, '&'); 3833 name.append (m_name.AsCString("")); 3834 ExecutionContext exe_ctx (GetExecutionContextRef()); 3835 m_addr_of_valobj_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 3836 compiler_type.GetPointerType(), 3837 ConstString (name.c_str()), 3838 addr, 3839 eAddressTypeInvalid, 3840 m_data.GetAddressByteSize()); 3841 } 3842 } 3843 break; 3844 default: 3845 break; 3846 } 3847 } 3848 else 3849 { 3850 StreamString expr_path_strm; 3851 GetExpressionPath(expr_path_strm, true); 3852 error.SetErrorStringWithFormat("'%s' doesn't have a valid address", expr_path_strm.GetString().c_str()); 3853 } 3854 3855 return m_addr_of_valobj_sp; 3856 } 3857 3858 ValueObjectSP 3859 ValueObject::Cast (const CompilerType &compiler_type) 3860 { 3861 return ValueObjectCast::Create (*this, GetName(), compiler_type); 3862 } 3863 3864 ValueObjectSP 3865 ValueObject::CastPointerType (const char *name, CompilerType &compiler_type) 3866 { 3867 ValueObjectSP valobj_sp; 3868 AddressType address_type; 3869 addr_t ptr_value = GetPointerValue (&address_type); 3870 3871 if (ptr_value != LLDB_INVALID_ADDRESS) 3872 { 3873 Address ptr_addr (ptr_value); 3874 ExecutionContext exe_ctx (GetExecutionContextRef()); 3875 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3876 name, 3877 ptr_addr, 3878 compiler_type); 3879 } 3880 return valobj_sp; 3881 } 3882 3883 ValueObjectSP 3884 ValueObject::CastPointerType (const char *name, TypeSP &type_sp) 3885 { 3886 ValueObjectSP valobj_sp; 3887 AddressType address_type; 3888 addr_t ptr_value = GetPointerValue (&address_type); 3889 3890 if (ptr_value != LLDB_INVALID_ADDRESS) 3891 { 3892 Address ptr_addr (ptr_value); 3893 ExecutionContext exe_ctx (GetExecutionContextRef()); 3894 valobj_sp = ValueObjectMemory::Create (exe_ctx.GetBestExecutionContextScope(), 3895 name, 3896 ptr_addr, 3897 type_sp); 3898 } 3899 return valobj_sp; 3900 } 3901 3902 ValueObject::EvaluationPoint::EvaluationPoint () : 3903 m_mod_id(), 3904 m_exe_ctx_ref(), 3905 m_needs_update (true) 3906 { 3907 } 3908 3909 ValueObject::EvaluationPoint::EvaluationPoint (ExecutionContextScope *exe_scope, bool use_selected): 3910 m_mod_id(), 3911 m_exe_ctx_ref(), 3912 m_needs_update (true) 3913 { 3914 ExecutionContext exe_ctx(exe_scope); 3915 TargetSP target_sp (exe_ctx.GetTargetSP()); 3916 if (target_sp) 3917 { 3918 m_exe_ctx_ref.SetTargetSP (target_sp); 3919 ProcessSP process_sp (exe_ctx.GetProcessSP()); 3920 if (!process_sp) 3921 process_sp = target_sp->GetProcessSP(); 3922 3923 if (process_sp) 3924 { 3925 m_mod_id = process_sp->GetModID(); 3926 m_exe_ctx_ref.SetProcessSP (process_sp); 3927 3928 ThreadSP thread_sp (exe_ctx.GetThreadSP()); 3929 3930 if (!thread_sp) 3931 { 3932 if (use_selected) 3933 thread_sp = process_sp->GetThreadList().GetSelectedThread(); 3934 } 3935 3936 if (thread_sp) 3937 { 3938 m_exe_ctx_ref.SetThreadSP(thread_sp); 3939 3940 StackFrameSP frame_sp (exe_ctx.GetFrameSP()); 3941 if (!frame_sp) 3942 { 3943 if (use_selected) 3944 frame_sp = thread_sp->GetSelectedFrame(); 3945 } 3946 if (frame_sp) 3947 m_exe_ctx_ref.SetFrameSP(frame_sp); 3948 } 3949 } 3950 } 3951 } 3952 3953 ValueObject::EvaluationPoint::EvaluationPoint (const ValueObject::EvaluationPoint &rhs) : 3954 m_mod_id(), 3955 m_exe_ctx_ref(rhs.m_exe_ctx_ref), 3956 m_needs_update (true) 3957 { 3958 } 3959 3960 ValueObject::EvaluationPoint::~EvaluationPoint () 3961 { 3962 } 3963 3964 // This function checks the EvaluationPoint against the current process state. If the current 3965 // state matches the evaluation point, or the evaluation point is already invalid, then we return 3966 // false, meaning "no change". If the current state is different, we update our state, and return 3967 // true meaning "yes, change". If we did see a change, we also set m_needs_update to true, so 3968 // future calls to NeedsUpdate will return true. 3969 // exe_scope will be set to the current execution context scope. 3970 3971 bool 3972 ValueObject::EvaluationPoint::SyncWithProcessState(bool accept_invalid_exe_ctx) 3973 { 3974 // Start with the target, if it is NULL, then we're obviously not going to get any further: 3975 const bool thread_and_frame_only_if_stopped = true; 3976 ExecutionContext exe_ctx(m_exe_ctx_ref.Lock(thread_and_frame_only_if_stopped)); 3977 3978 if (exe_ctx.GetTargetPtr() == NULL) 3979 return false; 3980 3981 // If we don't have a process nothing can change. 3982 Process *process = exe_ctx.GetProcessPtr(); 3983 if (process == NULL) 3984 return false; 3985 3986 // If our stop id is the current stop ID, nothing has changed: 3987 ProcessModID current_mod_id = process->GetModID(); 3988 3989 // If the current stop id is 0, either we haven't run yet, or the process state has been cleared. 3990 // In either case, we aren't going to be able to sync with the process state. 3991 if (current_mod_id.GetStopID() == 0) 3992 return false; 3993 3994 bool changed = false; 3995 const bool was_valid = m_mod_id.IsValid(); 3996 if (was_valid) 3997 { 3998 if (m_mod_id == current_mod_id) 3999 { 4000 // Everything is already up to date in this object, no need to 4001 // update the execution context scope. 4002 changed = false; 4003 } 4004 else 4005 { 4006 m_mod_id = current_mod_id; 4007 m_needs_update = true; 4008 changed = true; 4009 } 4010 } 4011 4012 // Now re-look up the thread and frame in case the underlying objects have gone away & been recreated. 4013 // That way we'll be sure to return a valid exe_scope. 4014 // If we used to have a thread or a frame but can't find it anymore, then mark ourselves as invalid. 4015 4016 if (!accept_invalid_exe_ctx) 4017 { 4018 if (m_exe_ctx_ref.HasThreadRef()) 4019 { 4020 ThreadSP thread_sp (m_exe_ctx_ref.GetThreadSP()); 4021 if (thread_sp) 4022 { 4023 if (m_exe_ctx_ref.HasFrameRef()) 4024 { 4025 StackFrameSP frame_sp (m_exe_ctx_ref.GetFrameSP()); 4026 if (!frame_sp) 4027 { 4028 // We used to have a frame, but now it is gone 4029 SetInvalid(); 4030 changed = was_valid; 4031 } 4032 } 4033 } 4034 else 4035 { 4036 // We used to have a thread, but now it is gone 4037 SetInvalid(); 4038 changed = was_valid; 4039 } 4040 } 4041 } 4042 4043 return changed; 4044 } 4045 4046 void 4047 ValueObject::EvaluationPoint::SetUpdated () 4048 { 4049 ProcessSP process_sp(m_exe_ctx_ref.GetProcessSP()); 4050 if (process_sp) 4051 m_mod_id = process_sp->GetModID(); 4052 m_needs_update = false; 4053 } 4054 4055 4056 4057 void 4058 ValueObject::ClearUserVisibleData(uint32_t clear_mask) 4059 { 4060 if ((clear_mask & eClearUserVisibleDataItemsValue) == eClearUserVisibleDataItemsValue) 4061 m_value_str.clear(); 4062 4063 if ((clear_mask & eClearUserVisibleDataItemsLocation) == eClearUserVisibleDataItemsLocation) 4064 m_location_str.clear(); 4065 4066 if ((clear_mask & eClearUserVisibleDataItemsSummary) == eClearUserVisibleDataItemsSummary) 4067 m_summary_str.clear(); 4068 4069 if ((clear_mask & eClearUserVisibleDataItemsDescription) == eClearUserVisibleDataItemsDescription) 4070 m_object_desc_str.clear(); 4071 4072 if ((clear_mask & eClearUserVisibleDataItemsSyntheticChildren) == eClearUserVisibleDataItemsSyntheticChildren) 4073 { 4074 if (m_synthetic_value) 4075 m_synthetic_value = NULL; 4076 } 4077 4078 if ((clear_mask & eClearUserVisibleDataItemsValidator) == eClearUserVisibleDataItemsValidator) 4079 m_validation_result.reset(); 4080 } 4081 4082 SymbolContextScope * 4083 ValueObject::GetSymbolContextScope() 4084 { 4085 if (m_parent) 4086 { 4087 if (!m_parent->IsPointerOrReferenceType()) 4088 return m_parent->GetSymbolContextScope(); 4089 } 4090 return NULL; 4091 } 4092 4093 lldb::ValueObjectSP 4094 ValueObject::CreateValueObjectFromExpression (const char* name, 4095 const char* expression, 4096 const ExecutionContext& exe_ctx) 4097 { 4098 return CreateValueObjectFromExpression(name, expression, exe_ctx, EvaluateExpressionOptions()); 4099 } 4100 4101 4102 lldb::ValueObjectSP 4103 ValueObject::CreateValueObjectFromExpression (const char* name, 4104 const char* expression, 4105 const ExecutionContext& exe_ctx, 4106 const EvaluateExpressionOptions& options) 4107 { 4108 lldb::ValueObjectSP retval_sp; 4109 lldb::TargetSP target_sp(exe_ctx.GetTargetSP()); 4110 if (!target_sp) 4111 return retval_sp; 4112 if (!expression || !*expression) 4113 return retval_sp; 4114 target_sp->EvaluateExpression (expression, 4115 exe_ctx.GetFrameSP().get(), 4116 retval_sp, 4117 options); 4118 if (retval_sp && name && *name) 4119 retval_sp->SetName(ConstString(name)); 4120 return retval_sp; 4121 } 4122 4123 lldb::ValueObjectSP 4124 ValueObject::CreateValueObjectFromAddress (const char* name, 4125 uint64_t address, 4126 const ExecutionContext& exe_ctx, 4127 CompilerType type) 4128 { 4129 if (type) 4130 { 4131 CompilerType pointer_type(type.GetPointerType()); 4132 if (pointer_type) 4133 { 4134 lldb::DataBufferSP buffer(new lldb_private::DataBufferHeap(&address,sizeof(lldb::addr_t))); 4135 lldb::ValueObjectSP ptr_result_valobj_sp(ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4136 pointer_type, 4137 ConstString(name), 4138 buffer, 4139 exe_ctx.GetByteOrder(), 4140 exe_ctx.GetAddressByteSize())); 4141 if (ptr_result_valobj_sp) 4142 { 4143 ptr_result_valobj_sp->GetValue().SetValueType(Value::eValueTypeLoadAddress); 4144 Error err; 4145 ptr_result_valobj_sp = ptr_result_valobj_sp->Dereference(err); 4146 if (ptr_result_valobj_sp && name && *name) 4147 ptr_result_valobj_sp->SetName(ConstString(name)); 4148 } 4149 return ptr_result_valobj_sp; 4150 } 4151 } 4152 return lldb::ValueObjectSP(); 4153 } 4154 4155 lldb::ValueObjectSP 4156 ValueObject::CreateValueObjectFromData (const char* name, 4157 const DataExtractor& data, 4158 const ExecutionContext& exe_ctx, 4159 CompilerType type) 4160 { 4161 lldb::ValueObjectSP new_value_sp; 4162 new_value_sp = ValueObjectConstResult::Create (exe_ctx.GetBestExecutionContextScope(), 4163 type, 4164 ConstString(name), 4165 data, 4166 LLDB_INVALID_ADDRESS); 4167 new_value_sp->SetAddressTypeOfChildren(eAddressTypeLoad); 4168 if (new_value_sp && name && *name) 4169 new_value_sp->SetName(ConstString(name)); 4170 return new_value_sp; 4171 } 4172 4173 ModuleSP 4174 ValueObject::GetModule () 4175 { 4176 ValueObject* root(GetRoot()); 4177 if (root != this) 4178 return root->GetModule(); 4179 return lldb::ModuleSP(); 4180 } 4181 4182 ValueObject* 4183 ValueObject::GetRoot () 4184 { 4185 if (m_root) 4186 return m_root; 4187 return (m_root = FollowParentChain( [] (ValueObject* vo) -> bool { 4188 return (vo->m_parent != nullptr); 4189 })); 4190 } 4191 4192 ValueObject* 4193 ValueObject::FollowParentChain (std::function<bool(ValueObject*)> f) 4194 { 4195 ValueObject* vo = this; 4196 while (vo) 4197 { 4198 if (f(vo) == false) 4199 break; 4200 vo = vo->m_parent; 4201 } 4202 return vo; 4203 } 4204 4205 AddressType 4206 ValueObject::GetAddressTypeOfChildren() 4207 { 4208 if (m_address_type_of_ptr_or_ref_children == eAddressTypeInvalid) 4209 { 4210 ValueObject* root(GetRoot()); 4211 if (root != this) 4212 return root->GetAddressTypeOfChildren(); 4213 } 4214 return m_address_type_of_ptr_or_ref_children; 4215 } 4216 4217 lldb::DynamicValueType 4218 ValueObject::GetDynamicValueType () 4219 { 4220 ValueObject* with_dv_info = this; 4221 while (with_dv_info) 4222 { 4223 if (with_dv_info->HasDynamicValueTypeInfo()) 4224 return with_dv_info->GetDynamicValueTypeImpl(); 4225 with_dv_info = with_dv_info->m_parent; 4226 } 4227 return lldb::eNoDynamicValues; 4228 } 4229 4230 lldb::Format 4231 ValueObject::GetFormat () const 4232 { 4233 const ValueObject* with_fmt_info = this; 4234 while (with_fmt_info) 4235 { 4236 if (with_fmt_info->m_format != lldb::eFormatDefault) 4237 return with_fmt_info->m_format; 4238 with_fmt_info = with_fmt_info->m_parent; 4239 } 4240 return m_format; 4241 } 4242 4243 lldb::LanguageType 4244 ValueObject::GetPreferredDisplayLanguage () 4245 { 4246 lldb::LanguageType type = m_preferred_display_language; 4247 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4248 { 4249 if (GetRoot()) 4250 { 4251 if (GetRoot() == this) 4252 { 4253 if (StackFrameSP frame_sp = GetFrameSP()) 4254 { 4255 const SymbolContext& sc(frame_sp->GetSymbolContext(eSymbolContextCompUnit)); 4256 if (CompileUnit* cu = sc.comp_unit) 4257 type = cu->GetLanguage(); 4258 } 4259 } 4260 else 4261 { 4262 type = GetRoot()->GetPreferredDisplayLanguage(); 4263 } 4264 } 4265 } 4266 return (m_preferred_display_language = type); // only compute it once 4267 } 4268 4269 void 4270 ValueObject::SetPreferredDisplayLanguage (lldb::LanguageType lt) 4271 { 4272 m_preferred_display_language = lt; 4273 } 4274 4275 void 4276 ValueObject::SetPreferredDisplayLanguageIfNeeded (lldb::LanguageType lt) 4277 { 4278 if (m_preferred_display_language == lldb::eLanguageTypeUnknown) 4279 SetPreferredDisplayLanguage(lt); 4280 } 4281 4282 bool 4283 ValueObject::CanProvideValue () 4284 { 4285 // we need to support invalid types as providers of values because some bare-board 4286 // debugging scenarios have no notion of types, but still manage to have raw numeric 4287 // values for things like registers. sigh. 4288 const CompilerType &type(GetCompilerType()); 4289 return (false == type.IsValid()) || (0 != (type.GetTypeInfo() & eTypeHasValue)); 4290 } 4291 4292 bool 4293 ValueObject::IsChecksumEmpty () 4294 { 4295 return m_value_checksum.empty(); 4296 } 4297 4298 ValueObjectSP 4299 ValueObject::Persist () 4300 { 4301 if (!UpdateValueIfNeeded()) 4302 return nullptr; 4303 4304 TargetSP target_sp(GetTargetSP()); 4305 if (!target_sp) 4306 return nullptr; 4307 4308 PersistentExpressionState *persistent_state = target_sp->GetPersistentExpressionStateForLanguage(GetPreferredDisplayLanguage()); 4309 4310 if (!persistent_state) 4311 return nullptr; 4312 4313 ConstString name(persistent_state->GetNextPersistentVariableName()); 4314 4315 ValueObjectSP const_result_sp = ValueObjectConstResult::Create (target_sp.get(), GetValue(), name); 4316 4317 ExpressionVariableSP clang_var_sp = persistent_state->CreatePersistentVariable(const_result_sp); 4318 clang_var_sp->m_live_sp = clang_var_sp->m_frozen_sp; 4319 clang_var_sp->m_flags |= ExpressionVariable::EVIsProgramReference; 4320 4321 return clang_var_sp->GetValueObject(); 4322 } 4323 4324 bool 4325 ValueObject::IsSyntheticChildrenGenerated () 4326 { 4327 return m_is_synthetic_children_generated; 4328 } 4329 4330 void 4331 ValueObject::SetSyntheticChildrenGenerated (bool b) 4332 { 4333 m_is_synthetic_children_generated = b; 4334 } 4335 4336 uint64_t 4337 ValueObject::GetLanguageFlags () 4338 { 4339 return m_language_flags; 4340 } 4341 4342 void 4343 ValueObject::SetLanguageFlags (uint64_t flags) 4344 { 4345 m_language_flags = flags; 4346 } 4347