1 //===-- CommandObjectMemory.cpp ---------------------------------*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include <inttypes.h> 11 12 #include "clang/AST/Decl.h" 13 14 #include "CommandObjectMemory.h" 15 #include "Plugins/ExpressionParser/Clang/ClangPersistentVariables.h" 16 #include "lldb/Core/Debugger.h" 17 #include "lldb/Core/DumpDataExtractor.h" 18 #include "lldb/Core/Module.h" 19 #include "lldb/Core/Section.h" 20 #include "lldb/Core/ValueObjectMemory.h" 21 #include "lldb/DataFormatters/ValueObjectPrinter.h" 22 #include "lldb/Host/OptionParser.h" 23 #include "lldb/Interpreter/CommandInterpreter.h" 24 #include "lldb/Interpreter/CommandReturnObject.h" 25 #include "lldb/Interpreter/OptionArgParser.h" 26 #include "lldb/Interpreter/OptionGroupFormat.h" 27 #include "lldb/Interpreter/OptionGroupOutputFile.h" 28 #include "lldb/Interpreter/OptionGroupValueObjectDisplay.h" 29 #include "lldb/Interpreter/OptionValueString.h" 30 #include "lldb/Interpreter/Options.h" 31 #include "lldb/Symbol/ClangASTContext.h" 32 #include "lldb/Symbol/SymbolFile.h" 33 #include "lldb/Symbol/TypeList.h" 34 #include "lldb/Target/MemoryHistory.h" 35 #include "lldb/Target/MemoryRegionInfo.h" 36 #include "lldb/Target/Process.h" 37 #include "lldb/Target/StackFrame.h" 38 #include "lldb/Target/Thread.h" 39 #include "lldb/Utility/Args.h" 40 #include "lldb/Utility/DataBufferHeap.h" 41 #include "lldb/Utility/DataBufferLLVM.h" 42 #include "lldb/Utility/StreamString.h" 43 44 #include "lldb/lldb-private.h" 45 46 using namespace lldb; 47 using namespace lldb_private; 48 49 static constexpr OptionDefinition g_read_memory_options[] = { 50 // clang-format off 51 {LLDB_OPT_SET_1, false, "num-per-line", 'l', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNumberPerLine, "The number of items per line to display." }, 52 {LLDB_OPT_SET_2, false, "binary", 'b', OptionParser::eNoArgument, nullptr, {}, 0, eArgTypeNone, "If true, memory will be saved as binary. If false, the memory is saved save as an ASCII dump that " 53 "uses the format, size, count and number per line settings." }, 54 {LLDB_OPT_SET_3, true , "type", 't', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeNone, "The name of a type to view memory as." }, 55 {LLDB_OPT_SET_3, false, "offset", 'E', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeCount, "How many elements of the specified type to skip before starting to display data." }, 56 {LLDB_OPT_SET_1 | 57 LLDB_OPT_SET_2 | 58 LLDB_OPT_SET_3, false, "force", 'r', OptionParser::eNoArgument, nullptr, {}, 0, eArgTypeNone, "Necessary if reading over target.max-memory-read-size bytes." }, 59 // clang-format on 60 }; 61 62 class OptionGroupReadMemory : public OptionGroup { 63 public: 64 OptionGroupReadMemory() 65 : m_num_per_line(1, 1), m_output_as_binary(false), m_view_as_type(), 66 m_offset(0, 0) {} 67 68 ~OptionGroupReadMemory() override = default; 69 70 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 71 return llvm::makeArrayRef(g_read_memory_options); 72 } 73 74 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 75 ExecutionContext *execution_context) override { 76 Status error; 77 const int short_option = g_read_memory_options[option_idx].short_option; 78 79 switch (short_option) { 80 case 'l': 81 error = m_num_per_line.SetValueFromString(option_value); 82 if (m_num_per_line.GetCurrentValue() == 0) 83 error.SetErrorStringWithFormat( 84 "invalid value for --num-per-line option '%s'", 85 option_value.str().c_str()); 86 break; 87 88 case 'b': 89 m_output_as_binary = true; 90 break; 91 92 case 't': 93 error = m_view_as_type.SetValueFromString(option_value); 94 break; 95 96 case 'r': 97 m_force = true; 98 break; 99 100 case 'E': 101 error = m_offset.SetValueFromString(option_value); 102 break; 103 104 default: 105 error.SetErrorStringWithFormat("unrecognized short option '%c'", 106 short_option); 107 break; 108 } 109 return error; 110 } 111 112 void OptionParsingStarting(ExecutionContext *execution_context) override { 113 m_num_per_line.Clear(); 114 m_output_as_binary = false; 115 m_view_as_type.Clear(); 116 m_force = false; 117 m_offset.Clear(); 118 } 119 120 Status FinalizeSettings(Target *target, OptionGroupFormat &format_options) { 121 Status error; 122 OptionValueUInt64 &byte_size_value = format_options.GetByteSizeValue(); 123 OptionValueUInt64 &count_value = format_options.GetCountValue(); 124 const bool byte_size_option_set = byte_size_value.OptionWasSet(); 125 const bool num_per_line_option_set = m_num_per_line.OptionWasSet(); 126 const bool count_option_set = format_options.GetCountValue().OptionWasSet(); 127 128 switch (format_options.GetFormat()) { 129 default: 130 break; 131 132 case eFormatBoolean: 133 if (!byte_size_option_set) 134 byte_size_value = 1; 135 if (!num_per_line_option_set) 136 m_num_per_line = 1; 137 if (!count_option_set) 138 format_options.GetCountValue() = 8; 139 break; 140 141 case eFormatCString: 142 break; 143 144 case eFormatInstruction: 145 if (count_option_set) 146 byte_size_value = target->GetArchitecture().GetMaximumOpcodeByteSize(); 147 m_num_per_line = 1; 148 break; 149 150 case eFormatAddressInfo: 151 if (!byte_size_option_set) 152 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 153 m_num_per_line = 1; 154 if (!count_option_set) 155 format_options.GetCountValue() = 8; 156 break; 157 158 case eFormatPointer: 159 byte_size_value = target->GetArchitecture().GetAddressByteSize(); 160 if (!num_per_line_option_set) 161 m_num_per_line = 4; 162 if (!count_option_set) 163 format_options.GetCountValue() = 8; 164 break; 165 166 case eFormatBinary: 167 case eFormatFloat: 168 case eFormatOctal: 169 case eFormatDecimal: 170 case eFormatEnum: 171 case eFormatUnicode16: 172 case eFormatUnicode32: 173 case eFormatUnsigned: 174 case eFormatHexFloat: 175 if (!byte_size_option_set) 176 byte_size_value = 4; 177 if (!num_per_line_option_set) 178 m_num_per_line = 1; 179 if (!count_option_set) 180 format_options.GetCountValue() = 8; 181 break; 182 183 case eFormatBytes: 184 case eFormatBytesWithASCII: 185 if (byte_size_option_set) { 186 if (byte_size_value > 1) 187 error.SetErrorStringWithFormat( 188 "display format (bytes/bytes with ASCII) conflicts with the " 189 "specified byte size %" PRIu64 "\n" 190 "\tconsider using a different display format or don't specify " 191 "the byte size.", 192 byte_size_value.GetCurrentValue()); 193 } else 194 byte_size_value = 1; 195 if (!num_per_line_option_set) 196 m_num_per_line = 16; 197 if (!count_option_set) 198 format_options.GetCountValue() = 32; 199 break; 200 201 case eFormatCharArray: 202 case eFormatChar: 203 case eFormatCharPrintable: 204 if (!byte_size_option_set) 205 byte_size_value = 1; 206 if (!num_per_line_option_set) 207 m_num_per_line = 32; 208 if (!count_option_set) 209 format_options.GetCountValue() = 64; 210 break; 211 212 case eFormatComplex: 213 if (!byte_size_option_set) 214 byte_size_value = 8; 215 if (!num_per_line_option_set) 216 m_num_per_line = 1; 217 if (!count_option_set) 218 format_options.GetCountValue() = 8; 219 break; 220 221 case eFormatComplexInteger: 222 if (!byte_size_option_set) 223 byte_size_value = 8; 224 if (!num_per_line_option_set) 225 m_num_per_line = 1; 226 if (!count_option_set) 227 format_options.GetCountValue() = 8; 228 break; 229 230 case eFormatHex: 231 if (!byte_size_option_set) 232 byte_size_value = 4; 233 if (!num_per_line_option_set) { 234 switch (byte_size_value) { 235 case 1: 236 case 2: 237 m_num_per_line = 8; 238 break; 239 case 4: 240 m_num_per_line = 4; 241 break; 242 case 8: 243 m_num_per_line = 2; 244 break; 245 default: 246 m_num_per_line = 1; 247 break; 248 } 249 } 250 if (!count_option_set) 251 count_value = 8; 252 break; 253 254 case eFormatVectorOfChar: 255 case eFormatVectorOfSInt8: 256 case eFormatVectorOfUInt8: 257 case eFormatVectorOfSInt16: 258 case eFormatVectorOfUInt16: 259 case eFormatVectorOfSInt32: 260 case eFormatVectorOfUInt32: 261 case eFormatVectorOfSInt64: 262 case eFormatVectorOfUInt64: 263 case eFormatVectorOfFloat16: 264 case eFormatVectorOfFloat32: 265 case eFormatVectorOfFloat64: 266 case eFormatVectorOfUInt128: 267 if (!byte_size_option_set) 268 byte_size_value = 128; 269 if (!num_per_line_option_set) 270 m_num_per_line = 1; 271 if (!count_option_set) 272 count_value = 4; 273 break; 274 } 275 return error; 276 } 277 278 bool AnyOptionWasSet() const { 279 return m_num_per_line.OptionWasSet() || m_output_as_binary || 280 m_view_as_type.OptionWasSet() || m_offset.OptionWasSet(); 281 } 282 283 OptionValueUInt64 m_num_per_line; 284 bool m_output_as_binary; 285 OptionValueString m_view_as_type; 286 bool m_force; 287 OptionValueUInt64 m_offset; 288 }; 289 290 //---------------------------------------------------------------------- 291 // Read memory from the inferior process 292 //---------------------------------------------------------------------- 293 class CommandObjectMemoryRead : public CommandObjectParsed { 294 public: 295 CommandObjectMemoryRead(CommandInterpreter &interpreter) 296 : CommandObjectParsed( 297 interpreter, "memory read", 298 "Read from the memory of the current target process.", nullptr, 299 eCommandRequiresTarget | eCommandProcessMustBePaused), 300 m_option_group(), m_format_options(eFormatBytesWithASCII, 1, 8), 301 m_memory_options(), m_outfile_options(), m_varobj_options(), 302 m_next_addr(LLDB_INVALID_ADDRESS), m_prev_byte_size(0), 303 m_prev_format_options(eFormatBytesWithASCII, 1, 8), 304 m_prev_memory_options(), m_prev_outfile_options(), 305 m_prev_varobj_options() { 306 CommandArgumentEntry arg1; 307 CommandArgumentEntry arg2; 308 CommandArgumentData start_addr_arg; 309 CommandArgumentData end_addr_arg; 310 311 // Define the first (and only) variant of this arg. 312 start_addr_arg.arg_type = eArgTypeAddressOrExpression; 313 start_addr_arg.arg_repetition = eArgRepeatPlain; 314 315 // There is only one variant this argument could be; put it into the 316 // argument entry. 317 arg1.push_back(start_addr_arg); 318 319 // Define the first (and only) variant of this arg. 320 end_addr_arg.arg_type = eArgTypeAddressOrExpression; 321 end_addr_arg.arg_repetition = eArgRepeatOptional; 322 323 // There is only one variant this argument could be; put it into the 324 // argument entry. 325 arg2.push_back(end_addr_arg); 326 327 // Push the data for the first argument into the m_arguments vector. 328 m_arguments.push_back(arg1); 329 m_arguments.push_back(arg2); 330 331 // Add the "--format" and "--count" options to group 1 and 3 332 m_option_group.Append(&m_format_options, 333 OptionGroupFormat::OPTION_GROUP_FORMAT | 334 OptionGroupFormat::OPTION_GROUP_COUNT, 335 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 336 m_option_group.Append(&m_format_options, 337 OptionGroupFormat::OPTION_GROUP_GDB_FMT, 338 LLDB_OPT_SET_1 | LLDB_OPT_SET_3); 339 // Add the "--size" option to group 1 and 2 340 m_option_group.Append(&m_format_options, 341 OptionGroupFormat::OPTION_GROUP_SIZE, 342 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 343 m_option_group.Append(&m_memory_options); 344 m_option_group.Append(&m_outfile_options, LLDB_OPT_SET_ALL, 345 LLDB_OPT_SET_1 | LLDB_OPT_SET_2 | LLDB_OPT_SET_3); 346 m_option_group.Append(&m_varobj_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_3); 347 m_option_group.Finalize(); 348 } 349 350 ~CommandObjectMemoryRead() override = default; 351 352 Options *GetOptions() override { return &m_option_group; } 353 354 const char *GetRepeatCommand(Args ¤t_command_args, 355 uint32_t index) override { 356 return m_cmd_name.c_str(); 357 } 358 359 protected: 360 bool DoExecute(Args &command, CommandReturnObject &result) override { 361 // No need to check "target" for validity as eCommandRequiresTarget ensures 362 // it is valid 363 Target *target = m_exe_ctx.GetTargetPtr(); 364 365 const size_t argc = command.GetArgumentCount(); 366 367 if ((argc == 0 && m_next_addr == LLDB_INVALID_ADDRESS) || argc > 2) { 368 result.AppendErrorWithFormat("%s takes a start address expression with " 369 "an optional end address expression.\n", 370 m_cmd_name.c_str()); 371 result.AppendRawWarning("Expressions should be quoted if they contain " 372 "spaces or other special characters.\n"); 373 result.SetStatus(eReturnStatusFailed); 374 return false; 375 } 376 377 CompilerType clang_ast_type; 378 Status error; 379 380 const char *view_as_type_cstr = 381 m_memory_options.m_view_as_type.GetCurrentValue(); 382 if (view_as_type_cstr && view_as_type_cstr[0]) { 383 // We are viewing memory as a type 384 385 const bool exact_match = false; 386 TypeList type_list; 387 uint32_t reference_count = 0; 388 uint32_t pointer_count = 0; 389 size_t idx; 390 391 #define ALL_KEYWORDS \ 392 KEYWORD("const") \ 393 KEYWORD("volatile") \ 394 KEYWORD("restrict") \ 395 KEYWORD("struct") \ 396 KEYWORD("class") \ 397 KEYWORD("union") 398 399 #define KEYWORD(s) s, 400 static const char *g_keywords[] = {ALL_KEYWORDS}; 401 #undef KEYWORD 402 403 #define KEYWORD(s) (sizeof(s) - 1), 404 static const int g_keyword_lengths[] = {ALL_KEYWORDS}; 405 #undef KEYWORD 406 407 #undef ALL_KEYWORDS 408 409 static size_t g_num_keywords = sizeof(g_keywords) / sizeof(const char *); 410 std::string type_str(view_as_type_cstr); 411 412 // Remove all instances of g_keywords that are followed by spaces 413 for (size_t i = 0; i < g_num_keywords; ++i) { 414 const char *keyword = g_keywords[i]; 415 int keyword_len = g_keyword_lengths[i]; 416 417 idx = 0; 418 while ((idx = type_str.find(keyword, idx)) != std::string::npos) { 419 if (type_str[idx + keyword_len] == ' ' || 420 type_str[idx + keyword_len] == '\t') { 421 type_str.erase(idx, keyword_len + 1); 422 idx = 0; 423 } else { 424 idx += keyword_len; 425 } 426 } 427 } 428 bool done = type_str.empty(); 429 // 430 idx = type_str.find_first_not_of(" \t"); 431 if (idx > 0 && idx != std::string::npos) 432 type_str.erase(0, idx); 433 while (!done) { 434 // Strip trailing spaces 435 if (type_str.empty()) 436 done = true; 437 else { 438 switch (type_str[type_str.size() - 1]) { 439 case '*': 440 ++pointer_count; 441 LLVM_FALLTHROUGH; 442 case ' ': 443 case '\t': 444 type_str.erase(type_str.size() - 1); 445 break; 446 447 case '&': 448 if (reference_count == 0) { 449 reference_count = 1; 450 type_str.erase(type_str.size() - 1); 451 } else { 452 result.AppendErrorWithFormat("invalid type string: '%s'\n", 453 view_as_type_cstr); 454 result.SetStatus(eReturnStatusFailed); 455 return false; 456 } 457 break; 458 459 default: 460 done = true; 461 break; 462 } 463 } 464 } 465 466 llvm::DenseSet<lldb_private::SymbolFile *> searched_symbol_files; 467 ConstString lookup_type_name(type_str.c_str()); 468 StackFrame *frame = m_exe_ctx.GetFramePtr(); 469 ModuleSP search_first; 470 if (frame) { 471 search_first = frame->GetSymbolContext(eSymbolContextModule).module_sp; 472 } 473 target->GetImages().FindTypes(search_first.get(), lookup_type_name, 474 exact_match, 1, searched_symbol_files, 475 type_list); 476 477 if (type_list.GetSize() == 0 && lookup_type_name.GetCString() && 478 *lookup_type_name.GetCString() == '$') { 479 if (ClangPersistentVariables *persistent_vars = 480 llvm::dyn_cast_or_null<ClangPersistentVariables>( 481 target->GetPersistentExpressionStateForLanguage( 482 lldb::eLanguageTypeC))) { 483 clang::TypeDecl *tdecl = llvm::dyn_cast_or_null<clang::TypeDecl>( 484 persistent_vars->GetPersistentDecl( 485 ConstString(lookup_type_name))); 486 487 if (tdecl) { 488 clang_ast_type.SetCompilerType( 489 ClangASTContext::GetASTContext(&tdecl->getASTContext()), 490 reinterpret_cast<lldb::opaque_compiler_type_t>( 491 const_cast<clang::Type *>(tdecl->getTypeForDecl()))); 492 } 493 } 494 } 495 496 if (!clang_ast_type.IsValid()) { 497 if (type_list.GetSize() == 0) { 498 result.AppendErrorWithFormat("unable to find any types that match " 499 "the raw type '%s' for full type '%s'\n", 500 lookup_type_name.GetCString(), 501 view_as_type_cstr); 502 result.SetStatus(eReturnStatusFailed); 503 return false; 504 } else { 505 TypeSP type_sp(type_list.GetTypeAtIndex(0)); 506 clang_ast_type = type_sp->GetFullCompilerType(); 507 } 508 } 509 510 while (pointer_count > 0) { 511 CompilerType pointer_type = clang_ast_type.GetPointerType(); 512 if (pointer_type.IsValid()) 513 clang_ast_type = pointer_type; 514 else { 515 result.AppendError("unable make a pointer type\n"); 516 result.SetStatus(eReturnStatusFailed); 517 return false; 518 } 519 --pointer_count; 520 } 521 522 llvm::Optional<uint64_t> size = clang_ast_type.GetByteSize(nullptr); 523 if (!size) { 524 result.AppendErrorWithFormat( 525 "unable to get the byte size of the type '%s'\n", 526 view_as_type_cstr); 527 result.SetStatus(eReturnStatusFailed); 528 return false; 529 } 530 m_format_options.GetByteSizeValue() = *size; 531 532 if (!m_format_options.GetCountValue().OptionWasSet()) 533 m_format_options.GetCountValue() = 1; 534 } else { 535 error = m_memory_options.FinalizeSettings(target, m_format_options); 536 } 537 538 // Look for invalid combinations of settings 539 if (error.Fail()) { 540 result.AppendError(error.AsCString()); 541 result.SetStatus(eReturnStatusFailed); 542 return false; 543 } 544 545 lldb::addr_t addr; 546 size_t total_byte_size = 0; 547 if (argc == 0) { 548 // Use the last address and byte size and all options as they were if no 549 // options have been set 550 addr = m_next_addr; 551 total_byte_size = m_prev_byte_size; 552 clang_ast_type = m_prev_clang_ast_type; 553 if (!m_format_options.AnyOptionWasSet() && 554 !m_memory_options.AnyOptionWasSet() && 555 !m_outfile_options.AnyOptionWasSet() && 556 !m_varobj_options.AnyOptionWasSet()) { 557 m_format_options = m_prev_format_options; 558 m_memory_options = m_prev_memory_options; 559 m_outfile_options = m_prev_outfile_options; 560 m_varobj_options = m_prev_varobj_options; 561 } 562 } 563 564 size_t item_count = m_format_options.GetCountValue().GetCurrentValue(); 565 566 // TODO For non-8-bit byte addressable architectures this needs to be 567 // revisited to fully support all lldb's range of formatting options. 568 // Furthermore code memory reads (for those architectures) will not be 569 // correctly formatted even w/o formatting options. 570 size_t item_byte_size = 571 target->GetArchitecture().GetDataByteSize() > 1 572 ? target->GetArchitecture().GetDataByteSize() 573 : m_format_options.GetByteSizeValue().GetCurrentValue(); 574 575 const size_t num_per_line = 576 m_memory_options.m_num_per_line.GetCurrentValue(); 577 578 if (total_byte_size == 0) { 579 total_byte_size = item_count * item_byte_size; 580 if (total_byte_size == 0) 581 total_byte_size = 32; 582 } 583 584 if (argc > 0) 585 addr = OptionArgParser::ToAddress(&m_exe_ctx, command[0].ref, 586 LLDB_INVALID_ADDRESS, &error); 587 588 if (addr == LLDB_INVALID_ADDRESS) { 589 result.AppendError("invalid start address expression."); 590 result.AppendError(error.AsCString()); 591 result.SetStatus(eReturnStatusFailed); 592 return false; 593 } 594 595 if (argc == 2) { 596 lldb::addr_t end_addr = OptionArgParser::ToAddress( 597 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, nullptr); 598 if (end_addr == LLDB_INVALID_ADDRESS) { 599 result.AppendError("invalid end address expression."); 600 result.AppendError(error.AsCString()); 601 result.SetStatus(eReturnStatusFailed); 602 return false; 603 } else if (end_addr <= addr) { 604 result.AppendErrorWithFormat( 605 "end address (0x%" PRIx64 606 ") must be greater that the start address (0x%" PRIx64 ").\n", 607 end_addr, addr); 608 result.SetStatus(eReturnStatusFailed); 609 return false; 610 } else if (m_format_options.GetCountValue().OptionWasSet()) { 611 result.AppendErrorWithFormat( 612 "specify either the end address (0x%" PRIx64 613 ") or the count (--count %" PRIu64 "), not both.\n", 614 end_addr, (uint64_t)item_count); 615 result.SetStatus(eReturnStatusFailed); 616 return false; 617 } 618 619 total_byte_size = end_addr - addr; 620 item_count = total_byte_size / item_byte_size; 621 } 622 623 uint32_t max_unforced_size = target->GetMaximumMemReadSize(); 624 625 if (total_byte_size > max_unforced_size && !m_memory_options.m_force) { 626 result.AppendErrorWithFormat( 627 "Normally, \'memory read\' will not read over %" PRIu32 628 " bytes of data.\n", 629 max_unforced_size); 630 result.AppendErrorWithFormat( 631 "Please use --force to override this restriction just once.\n"); 632 result.AppendErrorWithFormat("or set target.max-memory-read-size if you " 633 "will often need a larger limit.\n"); 634 return false; 635 } 636 637 DataBufferSP data_sp; 638 size_t bytes_read = 0; 639 if (clang_ast_type.GetOpaqueQualType()) { 640 // Make sure we don't display our type as ASCII bytes like the default 641 // memory read 642 if (!m_format_options.GetFormatValue().OptionWasSet()) 643 m_format_options.GetFormatValue().SetCurrentValue(eFormatDefault); 644 645 llvm::Optional<uint64_t> size = clang_ast_type.GetByteSize(nullptr); 646 if (!size) { 647 result.AppendError("can't get size of type"); 648 return false; 649 } 650 bytes_read = *size * m_format_options.GetCountValue().GetCurrentValue(); 651 652 if (argc > 0) 653 addr = addr + (*size * m_memory_options.m_offset.GetCurrentValue()); 654 } else if (m_format_options.GetFormatValue().GetCurrentValue() != 655 eFormatCString) { 656 data_sp.reset(new DataBufferHeap(total_byte_size, '\0')); 657 if (data_sp->GetBytes() == nullptr) { 658 result.AppendErrorWithFormat( 659 "can't allocate 0x%" PRIx32 660 " bytes for the memory read buffer, specify a smaller size to read", 661 (uint32_t)total_byte_size); 662 result.SetStatus(eReturnStatusFailed); 663 return false; 664 } 665 666 Address address(addr, nullptr); 667 bytes_read = target->ReadMemory(address, false, data_sp->GetBytes(), 668 data_sp->GetByteSize(), error); 669 if (bytes_read == 0) { 670 const char *error_cstr = error.AsCString(); 671 if (error_cstr && error_cstr[0]) { 672 result.AppendError(error_cstr); 673 } else { 674 result.AppendErrorWithFormat( 675 "failed to read memory from 0x%" PRIx64 ".\n", addr); 676 } 677 result.SetStatus(eReturnStatusFailed); 678 return false; 679 } 680 681 if (bytes_read < total_byte_size) 682 result.AppendWarningWithFormat( 683 "Not all bytes (%" PRIu64 "/%" PRIu64 684 ") were able to be read from 0x%" PRIx64 ".\n", 685 (uint64_t)bytes_read, (uint64_t)total_byte_size, addr); 686 } else { 687 // we treat c-strings as a special case because they do not have a fixed 688 // size 689 if (m_format_options.GetByteSizeValue().OptionWasSet() && 690 !m_format_options.HasGDBFormat()) 691 item_byte_size = m_format_options.GetByteSizeValue().GetCurrentValue(); 692 else 693 item_byte_size = target->GetMaximumSizeOfStringSummary(); 694 if (!m_format_options.GetCountValue().OptionWasSet()) 695 item_count = 1; 696 data_sp.reset(new DataBufferHeap((item_byte_size + 1) * item_count, 697 '\0')); // account for NULLs as necessary 698 if (data_sp->GetBytes() == nullptr) { 699 result.AppendErrorWithFormat( 700 "can't allocate 0x%" PRIx64 701 " bytes for the memory read buffer, specify a smaller size to read", 702 (uint64_t)((item_byte_size + 1) * item_count)); 703 result.SetStatus(eReturnStatusFailed); 704 return false; 705 } 706 uint8_t *data_ptr = data_sp->GetBytes(); 707 auto data_addr = addr; 708 auto count = item_count; 709 item_count = 0; 710 bool break_on_no_NULL = false; 711 while (item_count < count) { 712 std::string buffer; 713 buffer.resize(item_byte_size + 1, 0); 714 Status error; 715 size_t read = target->ReadCStringFromMemory(data_addr, &buffer[0], 716 item_byte_size + 1, error); 717 if (error.Fail()) { 718 result.AppendErrorWithFormat( 719 "failed to read memory from 0x%" PRIx64 ".\n", addr); 720 result.SetStatus(eReturnStatusFailed); 721 return false; 722 } 723 724 if (item_byte_size == read) { 725 result.AppendWarningWithFormat( 726 "unable to find a NULL terminated string at 0x%" PRIx64 727 ".Consider increasing the maximum read length.\n", 728 data_addr); 729 --read; 730 break_on_no_NULL = true; 731 } else 732 ++read; // account for final NULL byte 733 734 memcpy(data_ptr, &buffer[0], read); 735 data_ptr += read; 736 data_addr += read; 737 bytes_read += read; 738 item_count++; // if we break early we know we only read item_count 739 // strings 740 741 if (break_on_no_NULL) 742 break; 743 } 744 data_sp.reset(new DataBufferHeap(data_sp->GetBytes(), bytes_read + 1)); 745 } 746 747 m_next_addr = addr + bytes_read; 748 m_prev_byte_size = bytes_read; 749 m_prev_format_options = m_format_options; 750 m_prev_memory_options = m_memory_options; 751 m_prev_outfile_options = m_outfile_options; 752 m_prev_varobj_options = m_varobj_options; 753 m_prev_clang_ast_type = clang_ast_type; 754 755 StreamFile outfile_stream; 756 Stream *output_stream = nullptr; 757 const FileSpec &outfile_spec = 758 m_outfile_options.GetFile().GetCurrentValue(); 759 760 std::string path = outfile_spec.GetPath(); 761 if (outfile_spec) { 762 763 uint32_t open_options = 764 File::eOpenOptionWrite | File::eOpenOptionCanCreate; 765 const bool append = m_outfile_options.GetAppend().GetCurrentValue(); 766 if (append) 767 open_options |= File::eOpenOptionAppend; 768 769 Status error = FileSystem::Instance().Open(outfile_stream.GetFile(), 770 outfile_spec, open_options); 771 if (error.Success()) { 772 if (m_memory_options.m_output_as_binary) { 773 const size_t bytes_written = 774 outfile_stream.Write(data_sp->GetBytes(), bytes_read); 775 if (bytes_written > 0) { 776 result.GetOutputStream().Printf( 777 "%zi bytes %s to '%s'\n", bytes_written, 778 append ? "appended" : "written", path.c_str()); 779 return true; 780 } else { 781 result.AppendErrorWithFormat("Failed to write %" PRIu64 782 " bytes to '%s'.\n", 783 (uint64_t)bytes_read, path.c_str()); 784 result.SetStatus(eReturnStatusFailed); 785 return false; 786 } 787 } else { 788 // We are going to write ASCII to the file just point the 789 // output_stream to our outfile_stream... 790 output_stream = &outfile_stream; 791 } 792 } else { 793 result.AppendErrorWithFormat("Failed to open file '%s' for %s.\n", 794 path.c_str(), append ? "append" : "write"); 795 result.SetStatus(eReturnStatusFailed); 796 return false; 797 } 798 } else { 799 output_stream = &result.GetOutputStream(); 800 } 801 802 ExecutionContextScope *exe_scope = m_exe_ctx.GetBestExecutionContextScope(); 803 if (clang_ast_type.GetOpaqueQualType()) { 804 for (uint32_t i = 0; i < item_count; ++i) { 805 addr_t item_addr = addr + (i * item_byte_size); 806 Address address(item_addr); 807 StreamString name_strm; 808 name_strm.Printf("0x%" PRIx64, item_addr); 809 ValueObjectSP valobj_sp(ValueObjectMemory::Create( 810 exe_scope, name_strm.GetString(), address, clang_ast_type)); 811 if (valobj_sp) { 812 Format format = m_format_options.GetFormat(); 813 if (format != eFormatDefault) 814 valobj_sp->SetFormat(format); 815 816 DumpValueObjectOptions options(m_varobj_options.GetAsDumpOptions( 817 eLanguageRuntimeDescriptionDisplayVerbosityFull, format)); 818 819 valobj_sp->Dump(*output_stream, options); 820 } else { 821 result.AppendErrorWithFormat( 822 "failed to create a value object for: (%s) %s\n", 823 view_as_type_cstr, name_strm.GetData()); 824 result.SetStatus(eReturnStatusFailed); 825 return false; 826 } 827 } 828 return true; 829 } 830 831 result.SetStatus(eReturnStatusSuccessFinishResult); 832 DataExtractor data(data_sp, target->GetArchitecture().GetByteOrder(), 833 target->GetArchitecture().GetAddressByteSize(), 834 target->GetArchitecture().GetDataByteSize()); 835 836 Format format = m_format_options.GetFormat(); 837 if (((format == eFormatChar) || (format == eFormatCharPrintable)) && 838 (item_byte_size != 1)) { 839 // if a count was not passed, or it is 1 840 if (!m_format_options.GetCountValue().OptionWasSet() || item_count == 1) { 841 // this turns requests such as 842 // memory read -fc -s10 -c1 *charPtrPtr 843 // which make no sense (what is a char of size 10?) into a request for 844 // fetching 10 chars of size 1 from the same memory location 845 format = eFormatCharArray; 846 item_count = item_byte_size; 847 item_byte_size = 1; 848 } else { 849 // here we passed a count, and it was not 1 so we have a byte_size and 850 // a count we could well multiply those, but instead let's just fail 851 result.AppendErrorWithFormat( 852 "reading memory as characters of size %" PRIu64 " is not supported", 853 (uint64_t)item_byte_size); 854 result.SetStatus(eReturnStatusFailed); 855 return false; 856 } 857 } 858 859 assert(output_stream); 860 size_t bytes_dumped = DumpDataExtractor( 861 data, output_stream, 0, format, item_byte_size, item_count, 862 num_per_line / target->GetArchitecture().GetDataByteSize(), addr, 0, 0, 863 exe_scope); 864 m_next_addr = addr + bytes_dumped; 865 output_stream->EOL(); 866 return true; 867 } 868 869 OptionGroupOptions m_option_group; 870 OptionGroupFormat m_format_options; 871 OptionGroupReadMemory m_memory_options; 872 OptionGroupOutputFile m_outfile_options; 873 OptionGroupValueObjectDisplay m_varobj_options; 874 lldb::addr_t m_next_addr; 875 lldb::addr_t m_prev_byte_size; 876 OptionGroupFormat m_prev_format_options; 877 OptionGroupReadMemory m_prev_memory_options; 878 OptionGroupOutputFile m_prev_outfile_options; 879 OptionGroupValueObjectDisplay m_prev_varobj_options; 880 CompilerType m_prev_clang_ast_type; 881 }; 882 883 static constexpr OptionDefinition g_memory_find_option_table[] = { 884 // clang-format off 885 {LLDB_OPT_SET_1, true, "expression", 'e', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeExpression, "Evaluate an expression to obtain a byte pattern."}, 886 {LLDB_OPT_SET_2, true, "string", 's', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeName, "Use text to find a byte pattern."}, 887 {LLDB_OPT_SET_ALL, false, "count", 'c', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeCount, "How many times to perform the search."}, 888 {LLDB_OPT_SET_ALL, false, "dump-offset", 'o', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOffset, "When dumping memory for a match, an offset from the match location to start dumping from."}, 889 // clang-format on 890 }; 891 892 //---------------------------------------------------------------------- 893 // Find the specified data in memory 894 //---------------------------------------------------------------------- 895 class CommandObjectMemoryFind : public CommandObjectParsed { 896 public: 897 class OptionGroupFindMemory : public OptionGroup { 898 public: 899 OptionGroupFindMemory() : OptionGroup(), m_count(1), m_offset(0) {} 900 901 ~OptionGroupFindMemory() override = default; 902 903 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 904 return llvm::makeArrayRef(g_memory_find_option_table); 905 } 906 907 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 908 ExecutionContext *execution_context) override { 909 Status error; 910 const int short_option = 911 g_memory_find_option_table[option_idx].short_option; 912 913 switch (short_option) { 914 case 'e': 915 m_expr.SetValueFromString(option_value); 916 break; 917 918 case 's': 919 m_string.SetValueFromString(option_value); 920 break; 921 922 case 'c': 923 if (m_count.SetValueFromString(option_value).Fail()) 924 error.SetErrorString("unrecognized value for count"); 925 break; 926 927 case 'o': 928 if (m_offset.SetValueFromString(option_value).Fail()) 929 error.SetErrorString("unrecognized value for dump-offset"); 930 break; 931 932 default: 933 error.SetErrorStringWithFormat("unrecognized short option '%c'", 934 short_option); 935 break; 936 } 937 return error; 938 } 939 940 void OptionParsingStarting(ExecutionContext *execution_context) override { 941 m_expr.Clear(); 942 m_string.Clear(); 943 m_count.Clear(); 944 } 945 946 OptionValueString m_expr; 947 OptionValueString m_string; 948 OptionValueUInt64 m_count; 949 OptionValueUInt64 m_offset; 950 }; 951 952 CommandObjectMemoryFind(CommandInterpreter &interpreter) 953 : CommandObjectParsed( 954 interpreter, "memory find", 955 "Find a value in the memory of the current target process.", 956 nullptr, eCommandRequiresProcess | eCommandProcessMustBeLaunched), 957 m_option_group(), m_memory_options() { 958 CommandArgumentEntry arg1; 959 CommandArgumentEntry arg2; 960 CommandArgumentData addr_arg; 961 CommandArgumentData value_arg; 962 963 // Define the first (and only) variant of this arg. 964 addr_arg.arg_type = eArgTypeAddressOrExpression; 965 addr_arg.arg_repetition = eArgRepeatPlain; 966 967 // There is only one variant this argument could be; put it into the 968 // argument entry. 969 arg1.push_back(addr_arg); 970 971 // Define the first (and only) variant of this arg. 972 value_arg.arg_type = eArgTypeAddressOrExpression; 973 value_arg.arg_repetition = eArgRepeatPlain; 974 975 // There is only one variant this argument could be; put it into the 976 // argument entry. 977 arg2.push_back(value_arg); 978 979 // Push the data for the first argument into the m_arguments vector. 980 m_arguments.push_back(arg1); 981 m_arguments.push_back(arg2); 982 983 m_option_group.Append(&m_memory_options); 984 m_option_group.Finalize(); 985 } 986 987 ~CommandObjectMemoryFind() override = default; 988 989 Options *GetOptions() override { return &m_option_group; } 990 991 protected: 992 class ProcessMemoryIterator { 993 public: 994 ProcessMemoryIterator(ProcessSP process_sp, lldb::addr_t base) 995 : m_process_sp(process_sp), m_base_addr(base), m_is_valid(true) { 996 lldbassert(process_sp.get() != nullptr); 997 } 998 999 bool IsValid() { return m_is_valid; } 1000 1001 uint8_t operator[](lldb::addr_t offset) { 1002 if (!IsValid()) 1003 return 0; 1004 1005 uint8_t retval = 0; 1006 Status error; 1007 if (0 == 1008 m_process_sp->ReadMemory(m_base_addr + offset, &retval, 1, error)) { 1009 m_is_valid = false; 1010 return 0; 1011 } 1012 1013 return retval; 1014 } 1015 1016 private: 1017 ProcessSP m_process_sp; 1018 lldb::addr_t m_base_addr; 1019 bool m_is_valid; 1020 }; 1021 bool DoExecute(Args &command, CommandReturnObject &result) override { 1022 // No need to check "process" for validity as eCommandRequiresProcess 1023 // ensures it is valid 1024 Process *process = m_exe_ctx.GetProcessPtr(); 1025 1026 const size_t argc = command.GetArgumentCount(); 1027 1028 if (argc != 2) { 1029 result.AppendError("two addresses needed for memory find"); 1030 return false; 1031 } 1032 1033 Status error; 1034 lldb::addr_t low_addr = OptionArgParser::ToAddress( 1035 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1036 if (low_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1037 result.AppendError("invalid low address"); 1038 return false; 1039 } 1040 lldb::addr_t high_addr = OptionArgParser::ToAddress( 1041 &m_exe_ctx, command[1].ref, LLDB_INVALID_ADDRESS, &error); 1042 if (high_addr == LLDB_INVALID_ADDRESS || error.Fail()) { 1043 result.AppendError("invalid high address"); 1044 return false; 1045 } 1046 1047 if (high_addr <= low_addr) { 1048 result.AppendError( 1049 "starting address must be smaller than ending address"); 1050 return false; 1051 } 1052 1053 lldb::addr_t found_location = LLDB_INVALID_ADDRESS; 1054 1055 DataBufferHeap buffer; 1056 1057 if (m_memory_options.m_string.OptionWasSet()) 1058 buffer.CopyData(m_memory_options.m_string.GetStringValue()); 1059 else if (m_memory_options.m_expr.OptionWasSet()) { 1060 StackFrame *frame = m_exe_ctx.GetFramePtr(); 1061 ValueObjectSP result_sp; 1062 if ((eExpressionCompleted == 1063 process->GetTarget().EvaluateExpression( 1064 m_memory_options.m_expr.GetStringValue(), frame, result_sp)) && 1065 result_sp) { 1066 uint64_t value = result_sp->GetValueAsUnsigned(0); 1067 llvm::Optional<uint64_t> size = 1068 result_sp->GetCompilerType().GetByteSize(nullptr); 1069 if (!size) 1070 return false; 1071 switch (*size) { 1072 case 1: { 1073 uint8_t byte = (uint8_t)value; 1074 buffer.CopyData(&byte, 1); 1075 } break; 1076 case 2: { 1077 uint16_t word = (uint16_t)value; 1078 buffer.CopyData(&word, 2); 1079 } break; 1080 case 4: { 1081 uint32_t lword = (uint32_t)value; 1082 buffer.CopyData(&lword, 4); 1083 } break; 1084 case 8: { 1085 buffer.CopyData(&value, 8); 1086 } break; 1087 case 3: 1088 case 5: 1089 case 6: 1090 case 7: 1091 result.AppendError("unknown type. pass a string instead"); 1092 return false; 1093 default: 1094 result.AppendError( 1095 "result size larger than 8 bytes. pass a string instead"); 1096 return false; 1097 } 1098 } else { 1099 result.AppendError( 1100 "expression evaluation failed. pass a string instead"); 1101 return false; 1102 } 1103 } else { 1104 result.AppendError( 1105 "please pass either a block of text, or an expression to evaluate."); 1106 return false; 1107 } 1108 1109 size_t count = m_memory_options.m_count.GetCurrentValue(); 1110 found_location = low_addr; 1111 bool ever_found = false; 1112 while (count) { 1113 found_location = FastSearch(found_location, high_addr, buffer.GetBytes(), 1114 buffer.GetByteSize()); 1115 if (found_location == LLDB_INVALID_ADDRESS) { 1116 if (!ever_found) { 1117 result.AppendMessage("data not found within the range.\n"); 1118 result.SetStatus(lldb::eReturnStatusSuccessFinishNoResult); 1119 } else 1120 result.AppendMessage("no more matches within the range.\n"); 1121 break; 1122 } 1123 result.AppendMessageWithFormat("data found at location: 0x%" PRIx64 "\n", 1124 found_location); 1125 1126 DataBufferHeap dumpbuffer(32, 0); 1127 process->ReadMemory( 1128 found_location + m_memory_options.m_offset.GetCurrentValue(), 1129 dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), error); 1130 if (!error.Fail()) { 1131 DataExtractor data(dumpbuffer.GetBytes(), dumpbuffer.GetByteSize(), 1132 process->GetByteOrder(), 1133 process->GetAddressByteSize()); 1134 DumpDataExtractor( 1135 data, &result.GetOutputStream(), 0, lldb::eFormatBytesWithASCII, 1, 1136 dumpbuffer.GetByteSize(), 16, 1137 found_location + m_memory_options.m_offset.GetCurrentValue(), 0, 0); 1138 result.GetOutputStream().EOL(); 1139 } 1140 1141 --count; 1142 found_location++; 1143 ever_found = true; 1144 } 1145 1146 result.SetStatus(lldb::eReturnStatusSuccessFinishResult); 1147 return true; 1148 } 1149 1150 lldb::addr_t FastSearch(lldb::addr_t low, lldb::addr_t high, uint8_t *buffer, 1151 size_t buffer_size) { 1152 const size_t region_size = high - low; 1153 1154 if (region_size < buffer_size) 1155 return LLDB_INVALID_ADDRESS; 1156 1157 std::vector<size_t> bad_char_heuristic(256, buffer_size); 1158 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1159 ProcessMemoryIterator iterator(process_sp, low); 1160 1161 for (size_t idx = 0; idx < buffer_size - 1; idx++) { 1162 decltype(bad_char_heuristic)::size_type bcu_idx = buffer[idx]; 1163 bad_char_heuristic[bcu_idx] = buffer_size - idx - 1; 1164 } 1165 for (size_t s = 0; s <= (region_size - buffer_size);) { 1166 int64_t j = buffer_size - 1; 1167 while (j >= 0 && buffer[j] == iterator[s + j]) 1168 j--; 1169 if (j < 0) 1170 return low + s; 1171 else 1172 s += bad_char_heuristic[iterator[s + buffer_size - 1]]; 1173 } 1174 1175 return LLDB_INVALID_ADDRESS; 1176 } 1177 1178 OptionGroupOptions m_option_group; 1179 OptionGroupFindMemory m_memory_options; 1180 }; 1181 1182 static constexpr OptionDefinition g_memory_write_option_table[] = { 1183 // clang-format off 1184 {LLDB_OPT_SET_1, true, "infile", 'i', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeFilename, "Write memory using the contents of a file."}, 1185 {LLDB_OPT_SET_1, false, "offset", 'o', OptionParser::eRequiredArgument, nullptr, {}, 0, eArgTypeOffset, "Start writing bytes from an offset within the input file."}, 1186 // clang-format on 1187 }; 1188 1189 //---------------------------------------------------------------------- 1190 // Write memory to the inferior process 1191 //---------------------------------------------------------------------- 1192 class CommandObjectMemoryWrite : public CommandObjectParsed { 1193 public: 1194 class OptionGroupWriteMemory : public OptionGroup { 1195 public: 1196 OptionGroupWriteMemory() : OptionGroup() {} 1197 1198 ~OptionGroupWriteMemory() override = default; 1199 1200 llvm::ArrayRef<OptionDefinition> GetDefinitions() override { 1201 return llvm::makeArrayRef(g_memory_write_option_table); 1202 } 1203 1204 Status SetOptionValue(uint32_t option_idx, llvm::StringRef option_value, 1205 ExecutionContext *execution_context) override { 1206 Status error; 1207 const int short_option = 1208 g_memory_write_option_table[option_idx].short_option; 1209 1210 switch (short_option) { 1211 case 'i': 1212 m_infile.SetFile(option_value, FileSpec::Style::native); 1213 FileSystem::Instance().Resolve(m_infile); 1214 if (!FileSystem::Instance().Exists(m_infile)) { 1215 m_infile.Clear(); 1216 error.SetErrorStringWithFormat("input file does not exist: '%s'", 1217 option_value.str().c_str()); 1218 } 1219 break; 1220 1221 case 'o': { 1222 if (option_value.getAsInteger(0, m_infile_offset)) { 1223 m_infile_offset = 0; 1224 error.SetErrorStringWithFormat("invalid offset string '%s'", 1225 option_value.str().c_str()); 1226 } 1227 } break; 1228 1229 default: 1230 error.SetErrorStringWithFormat("unrecognized short option '%c'", 1231 short_option); 1232 break; 1233 } 1234 return error; 1235 } 1236 1237 void OptionParsingStarting(ExecutionContext *execution_context) override { 1238 m_infile.Clear(); 1239 m_infile_offset = 0; 1240 } 1241 1242 FileSpec m_infile; 1243 off_t m_infile_offset; 1244 }; 1245 1246 CommandObjectMemoryWrite(CommandInterpreter &interpreter) 1247 : CommandObjectParsed( 1248 interpreter, "memory write", 1249 "Write to the memory of the current target process.", nullptr, 1250 eCommandRequiresProcess | eCommandProcessMustBeLaunched), 1251 m_option_group(), m_format_options(eFormatBytes, 1, UINT64_MAX), 1252 m_memory_options() { 1253 CommandArgumentEntry arg1; 1254 CommandArgumentEntry arg2; 1255 CommandArgumentData addr_arg; 1256 CommandArgumentData value_arg; 1257 1258 // Define the first (and only) variant of this arg. 1259 addr_arg.arg_type = eArgTypeAddress; 1260 addr_arg.arg_repetition = eArgRepeatPlain; 1261 1262 // There is only one variant this argument could be; put it into the 1263 // argument entry. 1264 arg1.push_back(addr_arg); 1265 1266 // Define the first (and only) variant of this arg. 1267 value_arg.arg_type = eArgTypeValue; 1268 value_arg.arg_repetition = eArgRepeatPlus; 1269 1270 // There is only one variant this argument could be; put it into the 1271 // argument entry. 1272 arg2.push_back(value_arg); 1273 1274 // Push the data for the first argument into the m_arguments vector. 1275 m_arguments.push_back(arg1); 1276 m_arguments.push_back(arg2); 1277 1278 m_option_group.Append(&m_format_options, 1279 OptionGroupFormat::OPTION_GROUP_FORMAT, 1280 LLDB_OPT_SET_1); 1281 m_option_group.Append(&m_format_options, 1282 OptionGroupFormat::OPTION_GROUP_SIZE, 1283 LLDB_OPT_SET_1 | LLDB_OPT_SET_2); 1284 m_option_group.Append(&m_memory_options, LLDB_OPT_SET_ALL, LLDB_OPT_SET_2); 1285 m_option_group.Finalize(); 1286 } 1287 1288 ~CommandObjectMemoryWrite() override = default; 1289 1290 Options *GetOptions() override { return &m_option_group; } 1291 1292 bool UIntValueIsValidForSize(uint64_t uval64, size_t total_byte_size) { 1293 if (total_byte_size > 8) 1294 return false; 1295 1296 if (total_byte_size == 8) 1297 return true; 1298 1299 const uint64_t max = ((uint64_t)1 << (uint64_t)(total_byte_size * 8)) - 1; 1300 return uval64 <= max; 1301 } 1302 1303 bool SIntValueIsValidForSize(int64_t sval64, size_t total_byte_size) { 1304 if (total_byte_size > 8) 1305 return false; 1306 1307 if (total_byte_size == 8) 1308 return true; 1309 1310 const int64_t max = ((int64_t)1 << (uint64_t)(total_byte_size * 8 - 1)) - 1; 1311 const int64_t min = ~(max); 1312 return min <= sval64 && sval64 <= max; 1313 } 1314 1315 protected: 1316 bool DoExecute(Args &command, CommandReturnObject &result) override { 1317 // No need to check "process" for validity as eCommandRequiresProcess 1318 // ensures it is valid 1319 Process *process = m_exe_ctx.GetProcessPtr(); 1320 1321 const size_t argc = command.GetArgumentCount(); 1322 1323 if (m_memory_options.m_infile) { 1324 if (argc < 1) { 1325 result.AppendErrorWithFormat( 1326 "%s takes a destination address when writing file contents.\n", 1327 m_cmd_name.c_str()); 1328 result.SetStatus(eReturnStatusFailed); 1329 return false; 1330 } 1331 } else if (argc < 2) { 1332 result.AppendErrorWithFormat( 1333 "%s takes a destination address and at least one value.\n", 1334 m_cmd_name.c_str()); 1335 result.SetStatus(eReturnStatusFailed); 1336 return false; 1337 } 1338 1339 StreamString buffer( 1340 Stream::eBinary, 1341 process->GetTarget().GetArchitecture().GetAddressByteSize(), 1342 process->GetTarget().GetArchitecture().GetByteOrder()); 1343 1344 OptionValueUInt64 &byte_size_value = m_format_options.GetByteSizeValue(); 1345 size_t item_byte_size = byte_size_value.GetCurrentValue(); 1346 1347 Status error; 1348 lldb::addr_t addr = OptionArgParser::ToAddress( 1349 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1350 1351 if (addr == LLDB_INVALID_ADDRESS) { 1352 result.AppendError("invalid address expression\n"); 1353 result.AppendError(error.AsCString()); 1354 result.SetStatus(eReturnStatusFailed); 1355 return false; 1356 } 1357 1358 if (m_memory_options.m_infile) { 1359 size_t length = SIZE_MAX; 1360 if (item_byte_size > 1) 1361 length = item_byte_size; 1362 auto data_sp = FileSystem::Instance().CreateDataBuffer( 1363 m_memory_options.m_infile.GetPath(), length, 1364 m_memory_options.m_infile_offset); 1365 if (data_sp) { 1366 length = data_sp->GetByteSize(); 1367 if (length > 0) { 1368 Status error; 1369 size_t bytes_written = 1370 process->WriteMemory(addr, data_sp->GetBytes(), length, error); 1371 1372 if (bytes_written == length) { 1373 // All bytes written 1374 result.GetOutputStream().Printf( 1375 "%" PRIu64 " bytes were written to 0x%" PRIx64 "\n", 1376 (uint64_t)bytes_written, addr); 1377 result.SetStatus(eReturnStatusSuccessFinishResult); 1378 } else if (bytes_written > 0) { 1379 // Some byte written 1380 result.GetOutputStream().Printf( 1381 "%" PRIu64 " bytes of %" PRIu64 1382 " requested were written to 0x%" PRIx64 "\n", 1383 (uint64_t)bytes_written, (uint64_t)length, addr); 1384 result.SetStatus(eReturnStatusSuccessFinishResult); 1385 } else { 1386 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1387 " failed: %s.\n", 1388 addr, error.AsCString()); 1389 result.SetStatus(eReturnStatusFailed); 1390 } 1391 } 1392 } else { 1393 result.AppendErrorWithFormat("Unable to read contents of file.\n"); 1394 result.SetStatus(eReturnStatusFailed); 1395 } 1396 return result.Succeeded(); 1397 } else if (item_byte_size == 0) { 1398 if (m_format_options.GetFormat() == eFormatPointer) 1399 item_byte_size = buffer.GetAddressByteSize(); 1400 else 1401 item_byte_size = 1; 1402 } 1403 1404 command.Shift(); // shift off the address argument 1405 uint64_t uval64; 1406 int64_t sval64; 1407 bool success = false; 1408 for (auto &entry : command) { 1409 switch (m_format_options.GetFormat()) { 1410 case kNumFormats: 1411 case eFormatFloat: // TODO: add support for floats soon 1412 case eFormatCharPrintable: 1413 case eFormatBytesWithASCII: 1414 case eFormatComplex: 1415 case eFormatEnum: 1416 case eFormatUnicode16: 1417 case eFormatUnicode32: 1418 case eFormatVectorOfChar: 1419 case eFormatVectorOfSInt8: 1420 case eFormatVectorOfUInt8: 1421 case eFormatVectorOfSInt16: 1422 case eFormatVectorOfUInt16: 1423 case eFormatVectorOfSInt32: 1424 case eFormatVectorOfUInt32: 1425 case eFormatVectorOfSInt64: 1426 case eFormatVectorOfUInt64: 1427 case eFormatVectorOfFloat16: 1428 case eFormatVectorOfFloat32: 1429 case eFormatVectorOfFloat64: 1430 case eFormatVectorOfUInt128: 1431 case eFormatOSType: 1432 case eFormatComplexInteger: 1433 case eFormatAddressInfo: 1434 case eFormatHexFloat: 1435 case eFormatInstruction: 1436 case eFormatVoid: 1437 result.AppendError("unsupported format for writing memory"); 1438 result.SetStatus(eReturnStatusFailed); 1439 return false; 1440 1441 case eFormatDefault: 1442 case eFormatBytes: 1443 case eFormatHex: 1444 case eFormatHexUppercase: 1445 case eFormatPointer: 1446 { 1447 // Decode hex bytes 1448 // Be careful, getAsInteger with a radix of 16 rejects "0xab" so we 1449 // have to special case that: 1450 bool success = false; 1451 if (entry.ref.startswith("0x")) 1452 success = !entry.ref.getAsInteger(0, uval64); 1453 if (!success) 1454 success = !entry.ref.getAsInteger(16, uval64); 1455 if (!success) { 1456 result.AppendErrorWithFormat( 1457 "'%s' is not a valid hex string value.\n", entry.c_str()); 1458 result.SetStatus(eReturnStatusFailed); 1459 return false; 1460 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1461 result.AppendErrorWithFormat("Value 0x%" PRIx64 1462 " is too large to fit in a %" PRIu64 1463 " byte unsigned integer value.\n", 1464 uval64, (uint64_t)item_byte_size); 1465 result.SetStatus(eReturnStatusFailed); 1466 return false; 1467 } 1468 buffer.PutMaxHex64(uval64, item_byte_size); 1469 break; 1470 } 1471 case eFormatBoolean: 1472 uval64 = OptionArgParser::ToBoolean(entry.ref, false, &success); 1473 if (!success) { 1474 result.AppendErrorWithFormat( 1475 "'%s' is not a valid boolean string value.\n", entry.c_str()); 1476 result.SetStatus(eReturnStatusFailed); 1477 return false; 1478 } 1479 buffer.PutMaxHex64(uval64, item_byte_size); 1480 break; 1481 1482 case eFormatBinary: 1483 if (entry.ref.getAsInteger(2, uval64)) { 1484 result.AppendErrorWithFormat( 1485 "'%s' is not a valid binary string value.\n", entry.c_str()); 1486 result.SetStatus(eReturnStatusFailed); 1487 return false; 1488 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1489 result.AppendErrorWithFormat("Value 0x%" PRIx64 1490 " is too large to fit in a %" PRIu64 1491 " byte unsigned integer value.\n", 1492 uval64, (uint64_t)item_byte_size); 1493 result.SetStatus(eReturnStatusFailed); 1494 return false; 1495 } 1496 buffer.PutMaxHex64(uval64, item_byte_size); 1497 break; 1498 1499 case eFormatCharArray: 1500 case eFormatChar: 1501 case eFormatCString: { 1502 if (entry.ref.empty()) 1503 break; 1504 1505 size_t len = entry.ref.size(); 1506 // Include the NULL for C strings... 1507 if (m_format_options.GetFormat() == eFormatCString) 1508 ++len; 1509 Status error; 1510 if (process->WriteMemory(addr, entry.c_str(), len, error) == len) { 1511 addr += len; 1512 } else { 1513 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1514 " failed: %s.\n", 1515 addr, error.AsCString()); 1516 result.SetStatus(eReturnStatusFailed); 1517 return false; 1518 } 1519 break; 1520 } 1521 case eFormatDecimal: 1522 if (entry.ref.getAsInteger(0, sval64)) { 1523 result.AppendErrorWithFormat( 1524 "'%s' is not a valid signed decimal value.\n", entry.c_str()); 1525 result.SetStatus(eReturnStatusFailed); 1526 return false; 1527 } else if (!SIntValueIsValidForSize(sval64, item_byte_size)) { 1528 result.AppendErrorWithFormat( 1529 "Value %" PRIi64 " is too large or small to fit in a %" PRIu64 1530 " byte signed integer value.\n", 1531 sval64, (uint64_t)item_byte_size); 1532 result.SetStatus(eReturnStatusFailed); 1533 return false; 1534 } 1535 buffer.PutMaxHex64(sval64, item_byte_size); 1536 break; 1537 1538 case eFormatUnsigned: 1539 1540 if (!entry.ref.getAsInteger(0, uval64)) { 1541 result.AppendErrorWithFormat( 1542 "'%s' is not a valid unsigned decimal string value.\n", 1543 entry.c_str()); 1544 result.SetStatus(eReturnStatusFailed); 1545 return false; 1546 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1547 result.AppendErrorWithFormat("Value %" PRIu64 1548 " is too large to fit in a %" PRIu64 1549 " byte unsigned integer value.\n", 1550 uval64, (uint64_t)item_byte_size); 1551 result.SetStatus(eReturnStatusFailed); 1552 return false; 1553 } 1554 buffer.PutMaxHex64(uval64, item_byte_size); 1555 break; 1556 1557 case eFormatOctal: 1558 if (entry.ref.getAsInteger(8, uval64)) { 1559 result.AppendErrorWithFormat( 1560 "'%s' is not a valid octal string value.\n", entry.c_str()); 1561 result.SetStatus(eReturnStatusFailed); 1562 return false; 1563 } else if (!UIntValueIsValidForSize(uval64, item_byte_size)) { 1564 result.AppendErrorWithFormat("Value %" PRIo64 1565 " is too large to fit in a %" PRIu64 1566 " byte unsigned integer value.\n", 1567 uval64, (uint64_t)item_byte_size); 1568 result.SetStatus(eReturnStatusFailed); 1569 return false; 1570 } 1571 buffer.PutMaxHex64(uval64, item_byte_size); 1572 break; 1573 } 1574 } 1575 1576 if (!buffer.GetString().empty()) { 1577 Status error; 1578 if (process->WriteMemory(addr, buffer.GetString().data(), 1579 buffer.GetString().size(), 1580 error) == buffer.GetString().size()) 1581 return true; 1582 else { 1583 result.AppendErrorWithFormat("Memory write to 0x%" PRIx64 1584 " failed: %s.\n", 1585 addr, error.AsCString()); 1586 result.SetStatus(eReturnStatusFailed); 1587 return false; 1588 } 1589 } 1590 return true; 1591 } 1592 1593 OptionGroupOptions m_option_group; 1594 OptionGroupFormat m_format_options; 1595 OptionGroupWriteMemory m_memory_options; 1596 }; 1597 1598 //---------------------------------------------------------------------- 1599 // Get malloc/free history of a memory address. 1600 //---------------------------------------------------------------------- 1601 class CommandObjectMemoryHistory : public CommandObjectParsed { 1602 public: 1603 CommandObjectMemoryHistory(CommandInterpreter &interpreter) 1604 : CommandObjectParsed( 1605 interpreter, "memory history", "Print recorded stack traces for " 1606 "allocation/deallocation events " 1607 "associated with an address.", 1608 nullptr, 1609 eCommandRequiresTarget | eCommandRequiresProcess | 1610 eCommandProcessMustBePaused | eCommandProcessMustBeLaunched) { 1611 CommandArgumentEntry arg1; 1612 CommandArgumentData addr_arg; 1613 1614 // Define the first (and only) variant of this arg. 1615 addr_arg.arg_type = eArgTypeAddress; 1616 addr_arg.arg_repetition = eArgRepeatPlain; 1617 1618 // There is only one variant this argument could be; put it into the 1619 // argument entry. 1620 arg1.push_back(addr_arg); 1621 1622 // Push the data for the first argument into the m_arguments vector. 1623 m_arguments.push_back(arg1); 1624 } 1625 1626 ~CommandObjectMemoryHistory() override = default; 1627 1628 const char *GetRepeatCommand(Args ¤t_command_args, 1629 uint32_t index) override { 1630 return m_cmd_name.c_str(); 1631 } 1632 1633 protected: 1634 bool DoExecute(Args &command, CommandReturnObject &result) override { 1635 const size_t argc = command.GetArgumentCount(); 1636 1637 if (argc == 0 || argc > 1) { 1638 result.AppendErrorWithFormat("%s takes an address expression", 1639 m_cmd_name.c_str()); 1640 result.SetStatus(eReturnStatusFailed); 1641 return false; 1642 } 1643 1644 Status error; 1645 lldb::addr_t addr = OptionArgParser::ToAddress( 1646 &m_exe_ctx, command[0].ref, LLDB_INVALID_ADDRESS, &error); 1647 1648 if (addr == LLDB_INVALID_ADDRESS) { 1649 result.AppendError("invalid address expression"); 1650 result.AppendError(error.AsCString()); 1651 result.SetStatus(eReturnStatusFailed); 1652 return false; 1653 } 1654 1655 Stream *output_stream = &result.GetOutputStream(); 1656 1657 const ProcessSP &process_sp = m_exe_ctx.GetProcessSP(); 1658 const MemoryHistorySP &memory_history = 1659 MemoryHistory::FindPlugin(process_sp); 1660 1661 if (!memory_history) { 1662 result.AppendError("no available memory history provider"); 1663 result.SetStatus(eReturnStatusFailed); 1664 return false; 1665 } 1666 1667 HistoryThreads thread_list = memory_history->GetHistoryThreads(addr); 1668 1669 const bool stop_format = false; 1670 for (auto thread : thread_list) { 1671 thread->GetStatus(*output_stream, 0, UINT32_MAX, 0, stop_format); 1672 } 1673 1674 result.SetStatus(eReturnStatusSuccessFinishResult); 1675 1676 return true; 1677 } 1678 }; 1679 1680 //------------------------------------------------------------------------- 1681 // CommandObjectMemoryRegion 1682 //------------------------------------------------------------------------- 1683 #pragma mark CommandObjectMemoryRegion 1684 1685 class CommandObjectMemoryRegion : public CommandObjectParsed { 1686 public: 1687 CommandObjectMemoryRegion(CommandInterpreter &interpreter) 1688 : CommandObjectParsed(interpreter, "memory region", 1689 "Get information on the memory region containing " 1690 "an address in the current target process.", 1691 "memory region ADDR", 1692 eCommandRequiresProcess | eCommandTryTargetAPILock | 1693 eCommandProcessMustBeLaunched), 1694 m_prev_end_addr(LLDB_INVALID_ADDRESS) {} 1695 1696 ~CommandObjectMemoryRegion() override = default; 1697 1698 protected: 1699 bool DoExecute(Args &command, CommandReturnObject &result) override { 1700 ProcessSP process_sp = m_exe_ctx.GetProcessSP(); 1701 if (process_sp) { 1702 Status error; 1703 lldb::addr_t load_addr = m_prev_end_addr; 1704 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1705 1706 const size_t argc = command.GetArgumentCount(); 1707 if (argc > 1 || (argc == 0 && load_addr == LLDB_INVALID_ADDRESS)) { 1708 result.AppendErrorWithFormat("'%s' takes one argument:\nUsage: %s\n", 1709 m_cmd_name.c_str(), m_cmd_syntax.c_str()); 1710 result.SetStatus(eReturnStatusFailed); 1711 } else { 1712 if (command.GetArgumentCount() == 1) { 1713 auto load_addr_str = command[0].ref; 1714 load_addr = OptionArgParser::ToAddress(&m_exe_ctx, load_addr_str, 1715 LLDB_INVALID_ADDRESS, &error); 1716 if (error.Fail() || load_addr == LLDB_INVALID_ADDRESS) { 1717 result.AppendErrorWithFormat( 1718 "invalid address argument \"%s\": %s\n", command[0].c_str(), 1719 error.AsCString()); 1720 result.SetStatus(eReturnStatusFailed); 1721 } 1722 } 1723 1724 lldb_private::MemoryRegionInfo range_info; 1725 error = process_sp->GetMemoryRegionInfo(load_addr, range_info); 1726 if (error.Success()) { 1727 lldb_private::Address addr; 1728 ConstString name = range_info.GetName(); 1729 ConstString section_name; 1730 if (process_sp->GetTarget().ResolveLoadAddress(load_addr, addr)) { 1731 SectionSP section_sp(addr.GetSection()); 1732 if (section_sp) { 1733 // Got the top most section, not the deepest section 1734 while (section_sp->GetParent()) 1735 section_sp = section_sp->GetParent(); 1736 section_name = section_sp->GetName(); 1737 } 1738 } 1739 result.AppendMessageWithFormat( 1740 "[0x%16.16" PRIx64 "-0x%16.16" PRIx64 ") %c%c%c%s%s%s%s\n", 1741 range_info.GetRange().GetRangeBase(), 1742 range_info.GetRange().GetRangeEnd(), 1743 range_info.GetReadable() ? 'r' : '-', 1744 range_info.GetWritable() ? 'w' : '-', 1745 range_info.GetExecutable() ? 'x' : '-', 1746 name ? " " : "", name.AsCString(""), 1747 section_name ? " " : "", section_name.AsCString("")); 1748 m_prev_end_addr = range_info.GetRange().GetRangeEnd(); 1749 result.SetStatus(eReturnStatusSuccessFinishResult); 1750 } else { 1751 result.SetStatus(eReturnStatusFailed); 1752 result.AppendErrorWithFormat("%s\n", error.AsCString()); 1753 } 1754 } 1755 } else { 1756 m_prev_end_addr = LLDB_INVALID_ADDRESS; 1757 result.AppendError("invalid process"); 1758 result.SetStatus(eReturnStatusFailed); 1759 } 1760 return result.Succeeded(); 1761 } 1762 1763 const char *GetRepeatCommand(Args ¤t_command_args, 1764 uint32_t index) override { 1765 // If we repeat this command, repeat it without any arguments so we can 1766 // show the next memory range 1767 return m_cmd_name.c_str(); 1768 } 1769 1770 lldb::addr_t m_prev_end_addr; 1771 }; 1772 1773 //------------------------------------------------------------------------- 1774 // CommandObjectMemory 1775 //------------------------------------------------------------------------- 1776 1777 CommandObjectMemory::CommandObjectMemory(CommandInterpreter &interpreter) 1778 : CommandObjectMultiword( 1779 interpreter, "memory", 1780 "Commands for operating on memory in the current target process.", 1781 "memory <subcommand> [<subcommand-options>]") { 1782 LoadSubCommand("find", 1783 CommandObjectSP(new CommandObjectMemoryFind(interpreter))); 1784 LoadSubCommand("read", 1785 CommandObjectSP(new CommandObjectMemoryRead(interpreter))); 1786 LoadSubCommand("write", 1787 CommandObjectSP(new CommandObjectMemoryWrite(interpreter))); 1788 LoadSubCommand("history", 1789 CommandObjectSP(new CommandObjectMemoryHistory(interpreter))); 1790 LoadSubCommand("region", 1791 CommandObjectSP(new CommandObjectMemoryRegion(interpreter))); 1792 } 1793 1794 CommandObjectMemory::~CommandObjectMemory() = default; 1795