1 //===- InputFiles.cpp -----------------------------------------------------===// 2 // 3 // The LLVM Linker 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 10 #include "InputFiles.h" 11 #include "InputSection.h" 12 #include "LinkerScript.h" 13 #include "SymbolTable.h" 14 #include "Symbols.h" 15 #include "SyntheticSections.h" 16 #include "lld/Common/ErrorHandler.h" 17 #include "lld/Common/Memory.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/CodeGen/Analysis.h" 20 #include "llvm/DebugInfo/DWARF/DWARFContext.h" 21 #include "llvm/IR/LLVMContext.h" 22 #include "llvm/IR/Module.h" 23 #include "llvm/LTO/LTO.h" 24 #include "llvm/MC/StringTableBuilder.h" 25 #include "llvm/Object/ELFObjectFile.h" 26 #include "llvm/Support/ARMAttributeParser.h" 27 #include "llvm/Support/ARMBuildAttributes.h" 28 #include "llvm/Support/Path.h" 29 #include "llvm/Support/TarWriter.h" 30 #include "llvm/Support/raw_ostream.h" 31 32 using namespace llvm; 33 using namespace llvm::ELF; 34 using namespace llvm::object; 35 using namespace llvm::sys; 36 using namespace llvm::sys::fs; 37 38 using namespace lld; 39 using namespace lld::elf; 40 41 bool InputFile::IsInGroup; 42 uint32_t InputFile::NextGroupId; 43 std::vector<BinaryFile *> elf::BinaryFiles; 44 std::vector<BitcodeFile *> elf::BitcodeFiles; 45 std::vector<LazyObjFile *> elf::LazyObjFiles; 46 std::vector<InputFile *> elf::ObjectFiles; 47 std::vector<InputFile *> elf::SharedFiles; 48 49 std::unique_ptr<TarWriter> elf::Tar; 50 51 InputFile::InputFile(Kind K, MemoryBufferRef M) 52 : MB(M), GroupId(NextGroupId), FileKind(K) { 53 // All files within the same --{start,end}-group get the same group ID. 54 // Otherwise, a new file will get a new group ID. 55 if (!IsInGroup) 56 ++NextGroupId; 57 } 58 59 Optional<MemoryBufferRef> elf::readFile(StringRef Path) { 60 // The --chroot option changes our virtual root directory. 61 // This is useful when you are dealing with files created by --reproduce. 62 if (!Config->Chroot.empty() && Path.startswith("/")) 63 Path = Saver.save(Config->Chroot + Path); 64 65 log(Path); 66 67 auto MBOrErr = MemoryBuffer::getFile(Path, -1, false); 68 if (auto EC = MBOrErr.getError()) { 69 error("cannot open " + Path + ": " + EC.message()); 70 return None; 71 } 72 73 std::unique_ptr<MemoryBuffer> &MB = *MBOrErr; 74 MemoryBufferRef MBRef = MB->getMemBufferRef(); 75 make<std::unique_ptr<MemoryBuffer>>(std::move(MB)); // take MB ownership 76 77 if (Tar) 78 Tar->append(relativeToRoot(Path), MBRef.getBuffer()); 79 return MBRef; 80 } 81 82 // Concatenates arguments to construct a string representing an error location. 83 static std::string createFileLineMsg(StringRef Path, unsigned Line) { 84 std::string Filename = path::filename(Path); 85 std::string Lineno = ":" + std::to_string(Line); 86 if (Filename == Path) 87 return Filename + Lineno; 88 return Filename + Lineno + " (" + Path.str() + Lineno + ")"; 89 } 90 91 template <class ELFT> 92 static std::string getSrcMsgAux(ObjFile<ELFT> &File, const Symbol &Sym, 93 InputSectionBase &Sec, uint64_t Offset) { 94 // In DWARF, functions and variables are stored to different places. 95 // First, lookup a function for a given offset. 96 if (Optional<DILineInfo> Info = File.getDILineInfo(&Sec, Offset)) 97 return createFileLineMsg(Info->FileName, Info->Line); 98 99 // If it failed, lookup again as a variable. 100 if (Optional<std::pair<std::string, unsigned>> FileLine = 101 File.getVariableLoc(Sym.getName())) 102 return createFileLineMsg(FileLine->first, FileLine->second); 103 104 // File.SourceFile contains STT_FILE symbol, and that is a last resort. 105 return File.SourceFile; 106 } 107 108 std::string InputFile::getSrcMsg(const Symbol &Sym, InputSectionBase &Sec, 109 uint64_t Offset) { 110 if (kind() != ObjKind) 111 return ""; 112 switch (Config->EKind) { 113 default: 114 llvm_unreachable("Invalid kind"); 115 case ELF32LEKind: 116 return getSrcMsgAux(cast<ObjFile<ELF32LE>>(*this), Sym, Sec, Offset); 117 case ELF32BEKind: 118 return getSrcMsgAux(cast<ObjFile<ELF32BE>>(*this), Sym, Sec, Offset); 119 case ELF64LEKind: 120 return getSrcMsgAux(cast<ObjFile<ELF64LE>>(*this), Sym, Sec, Offset); 121 case ELF64BEKind: 122 return getSrcMsgAux(cast<ObjFile<ELF64BE>>(*this), Sym, Sec, Offset); 123 } 124 } 125 126 template <class ELFT> void ObjFile<ELFT>::initializeDwarf() { 127 Dwarf = llvm::make_unique<DWARFContext>(make_unique<LLDDwarfObj<ELFT>>(this)); 128 for (std::unique_ptr<DWARFUnit> &CU : Dwarf->compile_units()) { 129 auto Report = [](Error Err) { 130 handleAllErrors(std::move(Err), 131 [](ErrorInfoBase &Info) { warn(Info.message()); }); 132 }; 133 Expected<const DWARFDebugLine::LineTable *> ExpectedLT = 134 Dwarf->getLineTableForUnit(CU.get(), Report); 135 const DWARFDebugLine::LineTable *LT = nullptr; 136 if (ExpectedLT) 137 LT = *ExpectedLT; 138 else 139 Report(ExpectedLT.takeError()); 140 if (!LT) 141 continue; 142 LineTables.push_back(LT); 143 144 // Loop over variable records and insert them to VariableLoc. 145 for (const auto &Entry : CU->dies()) { 146 DWARFDie Die(CU.get(), &Entry); 147 // Skip all tags that are not variables. 148 if (Die.getTag() != dwarf::DW_TAG_variable) 149 continue; 150 151 // Skip if a local variable because we don't need them for generating 152 // error messages. In general, only non-local symbols can fail to be 153 // linked. 154 if (!dwarf::toUnsigned(Die.find(dwarf::DW_AT_external), 0)) 155 continue; 156 157 // Get the source filename index for the variable. 158 unsigned File = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_file), 0); 159 if (!LT->hasFileAtIndex(File)) 160 continue; 161 162 // Get the line number on which the variable is declared. 163 unsigned Line = dwarf::toUnsigned(Die.find(dwarf::DW_AT_decl_line), 0); 164 165 // Here we want to take the variable name to add it into VariableLoc. 166 // Variable can have regular and linkage name associated. At first, we try 167 // to get linkage name as it can be different, for example when we have 168 // two variables in different namespaces of the same object. Use common 169 // name otherwise, but handle the case when it also absent in case if the 170 // input object file lacks some debug info. 171 StringRef Name = 172 dwarf::toString(Die.find(dwarf::DW_AT_linkage_name), 173 dwarf::toString(Die.find(dwarf::DW_AT_name), "")); 174 if (!Name.empty()) 175 VariableLoc.insert({Name, {LT, File, Line}}); 176 } 177 } 178 } 179 180 // Returns the pair of file name and line number describing location of data 181 // object (variable, array, etc) definition. 182 template <class ELFT> 183 Optional<std::pair<std::string, unsigned>> 184 ObjFile<ELFT>::getVariableLoc(StringRef Name) { 185 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 186 187 // Return if we have no debug information about data object. 188 auto It = VariableLoc.find(Name); 189 if (It == VariableLoc.end()) 190 return None; 191 192 // Take file name string from line table. 193 std::string FileName; 194 if (!It->second.LT->getFileNameByIndex( 195 It->second.File, nullptr, 196 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, FileName)) 197 return None; 198 199 return std::make_pair(FileName, It->second.Line); 200 } 201 202 // Returns source line information for a given offset 203 // using DWARF debug info. 204 template <class ELFT> 205 Optional<DILineInfo> ObjFile<ELFT>::getDILineInfo(InputSectionBase *S, 206 uint64_t Offset) { 207 llvm::call_once(InitDwarfLine, [this]() { initializeDwarf(); }); 208 209 // Use fake address calcuated by adding section file offset and offset in 210 // section. See comments for ObjectInfo class. 211 DILineInfo Info; 212 for (const llvm::DWARFDebugLine::LineTable *LT : LineTables) 213 if (LT->getFileLineInfoForAddress( 214 S->getOffsetInFile() + Offset, nullptr, 215 DILineInfoSpecifier::FileLineInfoKind::AbsoluteFilePath, Info)) 216 return Info; 217 return None; 218 } 219 220 // Returns "<internal>", "foo.a(bar.o)" or "baz.o". 221 std::string lld::toString(const InputFile *F) { 222 if (!F) 223 return "<internal>"; 224 225 if (F->ToStringCache.empty()) { 226 if (F->ArchiveName.empty()) 227 F->ToStringCache = F->getName(); 228 else 229 F->ToStringCache = (F->ArchiveName + "(" + F->getName() + ")").str(); 230 } 231 return F->ToStringCache; 232 } 233 234 template <class ELFT> 235 ELFFileBase<ELFT>::ELFFileBase(Kind K, MemoryBufferRef MB) : InputFile(K, MB) { 236 if (ELFT::TargetEndianness == support::little) 237 EKind = ELFT::Is64Bits ? ELF64LEKind : ELF32LEKind; 238 else 239 EKind = ELFT::Is64Bits ? ELF64BEKind : ELF32BEKind; 240 241 EMachine = getObj().getHeader()->e_machine; 242 OSABI = getObj().getHeader()->e_ident[llvm::ELF::EI_OSABI]; 243 } 244 245 template <class ELFT> 246 typename ELFT::SymRange ELFFileBase<ELFT>::getGlobalELFSyms() { 247 return makeArrayRef(ELFSyms.begin() + FirstGlobal, ELFSyms.end()); 248 } 249 250 template <class ELFT> 251 uint32_t ELFFileBase<ELFT>::getSectionIndex(const Elf_Sym &Sym) const { 252 return CHECK(getObj().getSectionIndex(&Sym, ELFSyms, SymtabSHNDX), this); 253 } 254 255 template <class ELFT> 256 void ELFFileBase<ELFT>::initSymtab(ArrayRef<Elf_Shdr> Sections, 257 const Elf_Shdr *Symtab) { 258 FirstGlobal = Symtab->sh_info; 259 ELFSyms = CHECK(getObj().symbols(Symtab), this); 260 if (FirstGlobal == 0 || FirstGlobal > ELFSyms.size()) 261 fatal(toString(this) + ": invalid sh_info in symbol table"); 262 263 StringTable = 264 CHECK(getObj().getStringTableForSymtab(*Symtab, Sections), this); 265 } 266 267 template <class ELFT> 268 ObjFile<ELFT>::ObjFile(MemoryBufferRef M, StringRef ArchiveName) 269 : ELFFileBase<ELFT>(Base::ObjKind, M) { 270 this->ArchiveName = ArchiveName; 271 } 272 273 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getLocalSymbols() { 274 if (this->Symbols.empty()) 275 return {}; 276 return makeArrayRef(this->Symbols).slice(1, this->FirstGlobal - 1); 277 } 278 279 template <class ELFT> ArrayRef<Symbol *> ObjFile<ELFT>::getGlobalSymbols() { 280 return makeArrayRef(this->Symbols).slice(this->FirstGlobal); 281 } 282 283 template <class ELFT> 284 void ObjFile<ELFT>::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 285 // Read a section table. JustSymbols is usually false. 286 if (this->JustSymbols) 287 initializeJustSymbols(); 288 else 289 initializeSections(ComdatGroups); 290 291 // Read a symbol table. 292 initializeSymbols(); 293 } 294 295 // Sections with SHT_GROUP and comdat bits define comdat section groups. 296 // They are identified and deduplicated by group name. This function 297 // returns a group name. 298 template <class ELFT> 299 StringRef ObjFile<ELFT>::getShtGroupSignature(ArrayRef<Elf_Shdr> Sections, 300 const Elf_Shdr &Sec) { 301 // Group signatures are stored as symbol names in object files. 302 // sh_info contains a symbol index, so we fetch a symbol and read its name. 303 if (this->ELFSyms.empty()) 304 this->initSymtab( 305 Sections, CHECK(object::getSection<ELFT>(Sections, Sec.sh_link), this)); 306 307 const Elf_Sym *Sym = 308 CHECK(object::getSymbol<ELFT>(this->ELFSyms, Sec.sh_info), this); 309 StringRef Signature = CHECK(Sym->getName(this->StringTable), this); 310 311 // As a special case, if a symbol is a section symbol and has no name, 312 // we use a section name as a signature. 313 // 314 // Such SHT_GROUP sections are invalid from the perspective of the ELF 315 // standard, but GNU gold 1.14 (the newest version as of July 2017) or 316 // older produce such sections as outputs for the -r option, so we need 317 // a bug-compatibility. 318 if (Signature.empty() && Sym->getType() == STT_SECTION) 319 return getSectionName(Sec); 320 return Signature; 321 } 322 323 template <class ELFT> bool ObjFile<ELFT>::shouldMerge(const Elf_Shdr &Sec) { 324 // On a regular link we don't merge sections if -O0 (default is -O1). This 325 // sometimes makes the linker significantly faster, although the output will 326 // be bigger. 327 // 328 // Doing the same for -r would create a problem as it would combine sections 329 // with different sh_entsize. One option would be to just copy every SHF_MERGE 330 // section as is to the output. While this would produce a valid ELF file with 331 // usable SHF_MERGE sections, tools like (llvm-)?dwarfdump get confused when 332 // they see two .debug_str. We could have separate logic for combining 333 // SHF_MERGE sections based both on their name and sh_entsize, but that seems 334 // to be more trouble than it is worth. Instead, we just use the regular (-O1) 335 // logic for -r. 336 if (Config->Optimize == 0 && !Config->Relocatable) 337 return false; 338 339 // A mergeable section with size 0 is useless because they don't have 340 // any data to merge. A mergeable string section with size 0 can be 341 // argued as invalid because it doesn't end with a null character. 342 // We'll avoid a mess by handling them as if they were non-mergeable. 343 if (Sec.sh_size == 0) 344 return false; 345 346 // Check for sh_entsize. The ELF spec is not clear about the zero 347 // sh_entsize. It says that "the member [sh_entsize] contains 0 if 348 // the section does not hold a table of fixed-size entries". We know 349 // that Rust 1.13 produces a string mergeable section with a zero 350 // sh_entsize. Here we just accept it rather than being picky about it. 351 uint64_t EntSize = Sec.sh_entsize; 352 if (EntSize == 0) 353 return false; 354 if (Sec.sh_size % EntSize) 355 fatal(toString(this) + 356 ": SHF_MERGE section size must be a multiple of sh_entsize"); 357 358 uint64_t Flags = Sec.sh_flags; 359 if (!(Flags & SHF_MERGE)) 360 return false; 361 if (Flags & SHF_WRITE) 362 fatal(toString(this) + ": writable SHF_MERGE section is not supported"); 363 364 return true; 365 } 366 367 // This is for --just-symbols. 368 // 369 // --just-symbols is a very minor feature that allows you to link your 370 // output against other existing program, so that if you load both your 371 // program and the other program into memory, your output can refer the 372 // other program's symbols. 373 // 374 // When the option is given, we link "just symbols". The section table is 375 // initialized with null pointers. 376 template <class ELFT> void ObjFile<ELFT>::initializeJustSymbols() { 377 ArrayRef<Elf_Shdr> ObjSections = CHECK(this->getObj().sections(), this); 378 this->Sections.resize(ObjSections.size()); 379 380 for (const Elf_Shdr &Sec : ObjSections) { 381 if (Sec.sh_type != SHT_SYMTAB) 382 continue; 383 this->initSymtab(ObjSections, &Sec); 384 return; 385 } 386 } 387 388 template <class ELFT> 389 void ObjFile<ELFT>::initializeSections( 390 DenseSet<CachedHashStringRef> &ComdatGroups) { 391 const ELFFile<ELFT> &Obj = this->getObj(); 392 393 ArrayRef<Elf_Shdr> ObjSections = CHECK(Obj.sections(), this); 394 uint64_t Size = ObjSections.size(); 395 this->Sections.resize(Size); 396 this->SectionStringTable = 397 CHECK(Obj.getSectionStringTable(ObjSections), this); 398 399 for (size_t I = 0, E = ObjSections.size(); I < E; I++) { 400 if (this->Sections[I] == &InputSection::Discarded) 401 continue; 402 const Elf_Shdr &Sec = ObjSections[I]; 403 404 if (Sec.sh_type == ELF::SHT_LLVM_CALL_GRAPH_PROFILE) 405 CGProfile = check( 406 this->getObj().template getSectionContentsAsArray<Elf_CGProfile>( 407 &Sec)); 408 409 // SHF_EXCLUDE'ed sections are discarded by the linker. However, 410 // if -r is given, we'll let the final link discard such sections. 411 // This is compatible with GNU. 412 if ((Sec.sh_flags & SHF_EXCLUDE) && !Config->Relocatable) { 413 if (Sec.sh_type == SHT_LLVM_ADDRSIG) { 414 // We ignore the address-significance table if we know that the object 415 // file was created by objcopy or ld -r. This is because these tools 416 // will reorder the symbols in the symbol table, invalidating the data 417 // in the address-significance table, which refers to symbols by index. 418 if (Sec.sh_link != 0) 419 this->AddrsigSec = &Sec; 420 else if (Config->ICF == ICFLevel::Safe) 421 warn(toString(this) + ": --icf=safe is incompatible with object " 422 "files created using objcopy or ld -r"); 423 } 424 this->Sections[I] = &InputSection::Discarded; 425 continue; 426 } 427 428 switch (Sec.sh_type) { 429 case SHT_GROUP: { 430 // De-duplicate section groups by their signatures. 431 StringRef Signature = getShtGroupSignature(ObjSections, Sec); 432 this->Sections[I] = &InputSection::Discarded; 433 434 435 ArrayRef<Elf_Word> Entries = 436 CHECK(Obj.template getSectionContentsAsArray<Elf_Word>(&Sec), this); 437 if (Entries.empty()) 438 fatal(toString(this) + ": empty SHT_GROUP"); 439 440 // The first word of a SHT_GROUP section contains flags. Currently, 441 // the standard defines only "GRP_COMDAT" flag for the COMDAT group. 442 // An group with the empty flag doesn't define anything; such sections 443 // are just skipped. 444 if (Entries[0] == 0) 445 continue; 446 447 if (Entries[0] != GRP_COMDAT) 448 fatal(toString(this) + ": unsupported SHT_GROUP format"); 449 450 bool IsNew = ComdatGroups.insert(CachedHashStringRef(Signature)).second; 451 if (IsNew) { 452 if (Config->Relocatable) 453 this->Sections[I] = createInputSection(Sec); 454 continue; 455 } 456 457 458 // Otherwise, discard group members. 459 for (uint32_t SecIndex : Entries.slice(1)) { 460 if (SecIndex >= Size) 461 fatal(toString(this) + 462 ": invalid section index in group: " + Twine(SecIndex)); 463 this->Sections[SecIndex] = &InputSection::Discarded; 464 } 465 break; 466 } 467 case SHT_SYMTAB: 468 this->initSymtab(ObjSections, &Sec); 469 break; 470 case SHT_SYMTAB_SHNDX: 471 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, ObjSections), this); 472 break; 473 case SHT_STRTAB: 474 case SHT_NULL: 475 break; 476 default: 477 this->Sections[I] = createInputSection(Sec); 478 } 479 480 // .ARM.exidx sections have a reverse dependency on the InputSection they 481 // have a SHF_LINK_ORDER dependency, this is identified by the sh_link. 482 if (Sec.sh_flags & SHF_LINK_ORDER) { 483 InputSectionBase *LinkSec = nullptr; 484 if (Sec.sh_link < this->Sections.size()) 485 LinkSec = this->Sections[Sec.sh_link]; 486 if (!LinkSec) 487 fatal(toString(this) + 488 ": invalid sh_link index: " + Twine(Sec.sh_link)); 489 490 InputSection *IS = cast<InputSection>(this->Sections[I]); 491 LinkSec->DependentSections.push_back(IS); 492 if (!isa<InputSection>(LinkSec)) 493 error("a section " + IS->Name + 494 " with SHF_LINK_ORDER should not refer a non-regular " 495 "section: " + 496 toString(LinkSec)); 497 } 498 } 499 } 500 501 // For ARM only, to set the EF_ARM_ABI_FLOAT_SOFT or EF_ARM_ABI_FLOAT_HARD 502 // flag in the ELF Header we need to look at Tag_ABI_VFP_args to find out how 503 // the input objects have been compiled. 504 static void updateARMVFPArgs(const ARMAttributeParser &Attributes, 505 const InputFile *F) { 506 if (!Attributes.hasAttribute(ARMBuildAttrs::ABI_VFP_args)) 507 // If an ABI tag isn't present then it is implicitly given the value of 0 508 // which maps to ARMBuildAttrs::BaseAAPCS. However many assembler files, 509 // including some in glibc that don't use FP args (and should have value 3) 510 // don't have the attribute so we do not consider an implicit value of 0 511 // as a clash. 512 return; 513 514 unsigned VFPArgs = Attributes.getAttributeValue(ARMBuildAttrs::ABI_VFP_args); 515 ARMVFPArgKind Arg; 516 switch (VFPArgs) { 517 case ARMBuildAttrs::BaseAAPCS: 518 Arg = ARMVFPArgKind::Base; 519 break; 520 case ARMBuildAttrs::HardFPAAPCS: 521 Arg = ARMVFPArgKind::VFP; 522 break; 523 case ARMBuildAttrs::ToolChainFPPCS: 524 // Tool chain specific convention that conforms to neither AAPCS variant. 525 Arg = ARMVFPArgKind::ToolChain; 526 break; 527 case ARMBuildAttrs::CompatibleFPAAPCS: 528 // Object compatible with all conventions. 529 return; 530 default: 531 error(toString(F) + ": unknown Tag_ABI_VFP_args value: " + Twine(VFPArgs)); 532 return; 533 } 534 // Follow ld.bfd and error if there is a mix of calling conventions. 535 if (Config->ARMVFPArgs != Arg && Config->ARMVFPArgs != ARMVFPArgKind::Default) 536 error(toString(F) + ": incompatible Tag_ABI_VFP_args"); 537 else 538 Config->ARMVFPArgs = Arg; 539 } 540 541 // The ARM support in lld makes some use of instructions that are not available 542 // on all ARM architectures. Namely: 543 // - Use of BLX instruction for interworking between ARM and Thumb state. 544 // - Use of the extended Thumb branch encoding in relocation. 545 // - Use of the MOVT/MOVW instructions in Thumb Thunks. 546 // The ARM Attributes section contains information about the architecture chosen 547 // at compile time. We follow the convention that if at least one input object 548 // is compiled with an architecture that supports these features then lld is 549 // permitted to use them. 550 static void updateSupportedARMFeatures(const ARMAttributeParser &Attributes) { 551 if (!Attributes.hasAttribute(ARMBuildAttrs::CPU_arch)) 552 return; 553 auto Arch = Attributes.getAttributeValue(ARMBuildAttrs::CPU_arch); 554 switch (Arch) { 555 case ARMBuildAttrs::Pre_v4: 556 case ARMBuildAttrs::v4: 557 case ARMBuildAttrs::v4T: 558 // Architectures prior to v5 do not support BLX instruction 559 break; 560 case ARMBuildAttrs::v5T: 561 case ARMBuildAttrs::v5TE: 562 case ARMBuildAttrs::v5TEJ: 563 case ARMBuildAttrs::v6: 564 case ARMBuildAttrs::v6KZ: 565 case ARMBuildAttrs::v6K: 566 Config->ARMHasBlx = true; 567 // Architectures used in pre-Cortex processors do not support 568 // The J1 = 1 J2 = 1 Thumb branch range extension, with the exception 569 // of Architecture v6T2 (arm1156t2-s and arm1156t2f-s) that do. 570 break; 571 default: 572 // All other Architectures have BLX and extended branch encoding 573 Config->ARMHasBlx = true; 574 Config->ARMJ1J2BranchEncoding = true; 575 if (Arch != ARMBuildAttrs::v6_M && Arch != ARMBuildAttrs::v6S_M) 576 // All Architectures used in Cortex processors with the exception 577 // of v6-M and v6S-M have the MOVT and MOVW instructions. 578 Config->ARMHasMovtMovw = true; 579 break; 580 } 581 } 582 583 template <class ELFT> 584 InputSectionBase *ObjFile<ELFT>::getRelocTarget(const Elf_Shdr &Sec) { 585 uint32_t Idx = Sec.sh_info; 586 if (Idx >= this->Sections.size()) 587 fatal(toString(this) + ": invalid relocated section index: " + Twine(Idx)); 588 InputSectionBase *Target = this->Sections[Idx]; 589 590 // Strictly speaking, a relocation section must be included in the 591 // group of the section it relocates. However, LLVM 3.3 and earlier 592 // would fail to do so, so we gracefully handle that case. 593 if (Target == &InputSection::Discarded) 594 return nullptr; 595 596 if (!Target) 597 fatal(toString(this) + ": unsupported relocation reference"); 598 return Target; 599 } 600 601 // Create a regular InputSection class that has the same contents 602 // as a given section. 603 static InputSection *toRegularSection(MergeInputSection *Sec) { 604 return make<InputSection>(Sec->File, Sec->Flags, Sec->Type, Sec->Alignment, 605 Sec->data(), Sec->Name); 606 } 607 608 template <class ELFT> 609 InputSectionBase *ObjFile<ELFT>::createInputSection(const Elf_Shdr &Sec) { 610 StringRef Name = getSectionName(Sec); 611 612 switch (Sec.sh_type) { 613 case SHT_ARM_ATTRIBUTES: { 614 if (Config->EMachine != EM_ARM) 615 break; 616 ARMAttributeParser Attributes; 617 ArrayRef<uint8_t> Contents = check(this->getObj().getSectionContents(&Sec)); 618 Attributes.Parse(Contents, /*isLittle*/ Config->EKind == ELF32LEKind); 619 updateSupportedARMFeatures(Attributes); 620 updateARMVFPArgs(Attributes, this); 621 622 // FIXME: Retain the first attribute section we see. The eglibc ARM 623 // dynamic loaders require the presence of an attribute section for dlopen 624 // to work. In a full implementation we would merge all attribute sections. 625 if (In.ARMAttributes == nullptr) { 626 In.ARMAttributes = make<InputSection>(*this, Sec, Name); 627 return In.ARMAttributes; 628 } 629 return &InputSection::Discarded; 630 } 631 case SHT_RELA: 632 case SHT_REL: { 633 // Find a relocation target section and associate this section with that. 634 // Target may have been discarded if it is in a different section group 635 // and the group is discarded, even though it's a violation of the 636 // spec. We handle that situation gracefully by discarding dangling 637 // relocation sections. 638 InputSectionBase *Target = getRelocTarget(Sec); 639 if (!Target) 640 return nullptr; 641 642 // This section contains relocation information. 643 // If -r is given, we do not interpret or apply relocation 644 // but just copy relocation sections to output. 645 if (Config->Relocatable) { 646 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 647 // We want to add a dependency to target, similar like we do for 648 // -emit-relocs below. This is useful for the case when linker script 649 // contains the "/DISCARD/". It is perhaps uncommon to use a script with 650 // -r, but we faced it in the Linux kernel and have to handle such case 651 // and not to crash. 652 Target->DependentSections.push_back(RelocSec); 653 return RelocSec; 654 } 655 656 if (Target->FirstRelocation) 657 fatal(toString(this) + 658 ": multiple relocation sections to one section are not supported"); 659 660 // ELF spec allows mergeable sections with relocations, but they are 661 // rare, and it is in practice hard to merge such sections by contents, 662 // because applying relocations at end of linking changes section 663 // contents. So, we simply handle such sections as non-mergeable ones. 664 // Degrading like this is acceptable because section merging is optional. 665 if (auto *MS = dyn_cast<MergeInputSection>(Target)) { 666 Target = toRegularSection(MS); 667 this->Sections[Sec.sh_info] = Target; 668 } 669 670 if (Sec.sh_type == SHT_RELA) { 671 ArrayRef<Elf_Rela> Rels = CHECK(this->getObj().relas(&Sec), this); 672 Target->FirstRelocation = Rels.begin(); 673 Target->NumRelocations = Rels.size(); 674 Target->AreRelocsRela = true; 675 } else { 676 ArrayRef<Elf_Rel> Rels = CHECK(this->getObj().rels(&Sec), this); 677 Target->FirstRelocation = Rels.begin(); 678 Target->NumRelocations = Rels.size(); 679 Target->AreRelocsRela = false; 680 } 681 assert(isUInt<31>(Target->NumRelocations)); 682 683 // Relocation sections processed by the linker are usually removed 684 // from the output, so returning `nullptr` for the normal case. 685 // However, if -emit-relocs is given, we need to leave them in the output. 686 // (Some post link analysis tools need this information.) 687 if (Config->EmitRelocs) { 688 InputSection *RelocSec = make<InputSection>(*this, Sec, Name); 689 // We will not emit relocation section if target was discarded. 690 Target->DependentSections.push_back(RelocSec); 691 return RelocSec; 692 } 693 return nullptr; 694 } 695 } 696 697 // The GNU linker uses .note.GNU-stack section as a marker indicating 698 // that the code in the object file does not expect that the stack is 699 // executable (in terms of NX bit). If all input files have the marker, 700 // the GNU linker adds a PT_GNU_STACK segment to tells the loader to 701 // make the stack non-executable. Most object files have this section as 702 // of 2017. 703 // 704 // But making the stack non-executable is a norm today for security 705 // reasons. Failure to do so may result in a serious security issue. 706 // Therefore, we make LLD always add PT_GNU_STACK unless it is 707 // explicitly told to do otherwise (by -z execstack). Because the stack 708 // executable-ness is controlled solely by command line options, 709 // .note.GNU-stack sections are simply ignored. 710 if (Name == ".note.GNU-stack") 711 return &InputSection::Discarded; 712 713 // Split stacks is a feature to support a discontiguous stack, 714 // commonly used in the programming language Go. For the details, 715 // see https://gcc.gnu.org/wiki/SplitStacks. An object file compiled 716 // for split stack will include a .note.GNU-split-stack section. 717 if (Name == ".note.GNU-split-stack") { 718 if (Config->Relocatable) { 719 error("cannot mix split-stack and non-split-stack in a relocatable link"); 720 return &InputSection::Discarded; 721 } 722 this->SplitStack = true; 723 return &InputSection::Discarded; 724 } 725 726 // An object file cmpiled for split stack, but where some of the 727 // functions were compiled with the no_split_stack_attribute will 728 // include a .note.GNU-no-split-stack section. 729 if (Name == ".note.GNU-no-split-stack") { 730 this->SomeNoSplitStack = true; 731 return &InputSection::Discarded; 732 } 733 734 // The linkonce feature is a sort of proto-comdat. Some glibc i386 object 735 // files contain definitions of symbol "__x86.get_pc_thunk.bx" in linkonce 736 // sections. Drop those sections to avoid duplicate symbol errors. 737 // FIXME: This is glibc PR20543, we should remove this hack once that has been 738 // fixed for a while. 739 if (Name == ".gnu.linkonce.t.__x86.get_pc_thunk.bx" || 740 Name == ".gnu.linkonce.t.__i686.get_pc_thunk.bx") 741 return &InputSection::Discarded; 742 743 // If we are creating a new .build-id section, strip existing .build-id 744 // sections so that the output won't have more than one .build-id. 745 // This is not usually a problem because input object files normally don't 746 // have .build-id sections, but you can create such files by 747 // "ld.{bfd,gold,lld} -r --build-id", and we want to guard against it. 748 if (Name == ".note.gnu.build-id" && Config->BuildId != BuildIdKind::None) 749 return &InputSection::Discarded; 750 751 // The linker merges EH (exception handling) frames and creates a 752 // .eh_frame_hdr section for runtime. So we handle them with a special 753 // class. For relocatable outputs, they are just passed through. 754 if (Name == ".eh_frame" && !Config->Relocatable) 755 return make<EhInputSection>(*this, Sec, Name); 756 757 if (shouldMerge(Sec)) 758 return make<MergeInputSection>(*this, Sec, Name); 759 return make<InputSection>(*this, Sec, Name); 760 } 761 762 template <class ELFT> 763 StringRef ObjFile<ELFT>::getSectionName(const Elf_Shdr &Sec) { 764 return CHECK(this->getObj().getSectionName(&Sec, SectionStringTable), this); 765 } 766 767 template <class ELFT> void ObjFile<ELFT>::initializeSymbols() { 768 this->Symbols.reserve(this->ELFSyms.size()); 769 for (const Elf_Sym &Sym : this->ELFSyms) 770 this->Symbols.push_back(createSymbol(&Sym)); 771 } 772 773 template <class ELFT> Symbol *ObjFile<ELFT>::createSymbol(const Elf_Sym *Sym) { 774 int Binding = Sym->getBinding(); 775 776 uint32_t SecIdx = this->getSectionIndex(*Sym); 777 if (SecIdx >= this->Sections.size()) 778 fatal(toString(this) + ": invalid section index: " + Twine(SecIdx)); 779 780 InputSectionBase *Sec = this->Sections[SecIdx]; 781 uint8_t StOther = Sym->st_other; 782 uint8_t Type = Sym->getType(); 783 uint64_t Value = Sym->st_value; 784 uint64_t Size = Sym->st_size; 785 786 if (Binding == STB_LOCAL) { 787 if (Sym->getType() == STT_FILE) 788 SourceFile = CHECK(Sym->getName(this->StringTable), this); 789 790 if (this->StringTable.size() <= Sym->st_name) 791 fatal(toString(this) + ": invalid symbol name offset"); 792 793 StringRefZ Name = this->StringTable.data() + Sym->st_name; 794 if (Sym->st_shndx == SHN_UNDEF) 795 return make<Undefined>(this, Name, Binding, StOther, Type); 796 797 return make<Defined>(this, Name, Binding, StOther, Type, Value, Size, Sec); 798 } 799 800 StringRef Name = CHECK(Sym->getName(this->StringTable), this); 801 802 switch (Sym->st_shndx) { 803 case SHN_UNDEF: 804 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 805 /*CanOmitFromDynSym=*/false, this); 806 case SHN_COMMON: 807 if (Value == 0 || Value >= UINT32_MAX) 808 fatal(toString(this) + ": common symbol '" + Name + 809 "' has invalid alignment: " + Twine(Value)); 810 return Symtab->addCommon(Name, Size, Value, Binding, StOther, Type, *this); 811 } 812 813 switch (Binding) { 814 default: 815 fatal(toString(this) + ": unexpected binding: " + Twine(Binding)); 816 case STB_GLOBAL: 817 case STB_WEAK: 818 case STB_GNU_UNIQUE: 819 if (Sec == &InputSection::Discarded) 820 return Symtab->addUndefined<ELFT>(Name, Binding, StOther, Type, 821 /*CanOmitFromDynSym=*/false, this); 822 return Symtab->addDefined(Name, StOther, Type, Value, Size, Binding, Sec, 823 this); 824 } 825 } 826 827 ArchiveFile::ArchiveFile(std::unique_ptr<Archive> &&File) 828 : InputFile(ArchiveKind, File->getMemoryBufferRef()), 829 File(std::move(File)) {} 830 831 template <class ELFT> void ArchiveFile::parse() { 832 for (const Archive::Symbol &Sym : File->symbols()) 833 Symtab->addLazyArchive<ELFT>(Sym.getName(), *this, Sym); 834 } 835 836 // Returns a buffer pointing to a member file containing a given symbol. 837 InputFile *ArchiveFile::fetch(const Archive::Symbol &Sym) { 838 Archive::Child C = 839 CHECK(Sym.getMember(), toString(this) + 840 ": could not get the member for symbol " + 841 Sym.getName()); 842 843 if (!Seen.insert(C.getChildOffset()).second) 844 return nullptr; 845 846 MemoryBufferRef MB = 847 CHECK(C.getMemoryBufferRef(), 848 toString(this) + 849 ": could not get the buffer for the member defining symbol " + 850 Sym.getName()); 851 852 if (Tar && C.getParent()->isThin()) 853 Tar->append(relativeToRoot(CHECK(C.getFullName(), this)), MB.getBuffer()); 854 855 InputFile *File = createObjectFile( 856 MB, getName(), C.getParent()->isThin() ? 0 : C.getChildOffset()); 857 File->GroupId = GroupId; 858 return File; 859 } 860 861 template <class ELFT> 862 SharedFile<ELFT>::SharedFile(MemoryBufferRef M, StringRef DefaultSoName) 863 : ELFFileBase<ELFT>(Base::SharedKind, M), SoName(DefaultSoName), 864 IsNeeded(!Config->AsNeeded) {} 865 866 // Partially parse the shared object file so that we can call 867 // getSoName on this object. 868 template <class ELFT> void SharedFile<ELFT>::parseDynamic() { 869 const Elf_Shdr *DynamicSec = nullptr; 870 const ELFFile<ELFT> Obj = this->getObj(); 871 ArrayRef<Elf_Shdr> Sections = CHECK(Obj.sections(), this); 872 873 // Search for .dynsym, .dynamic, .symtab, .gnu.version and .gnu.version_d. 874 for (const Elf_Shdr &Sec : Sections) { 875 switch (Sec.sh_type) { 876 default: 877 continue; 878 case SHT_DYNSYM: 879 this->initSymtab(Sections, &Sec); 880 break; 881 case SHT_DYNAMIC: 882 DynamicSec = &Sec; 883 break; 884 case SHT_SYMTAB_SHNDX: 885 this->SymtabSHNDX = CHECK(Obj.getSHNDXTable(Sec, Sections), this); 886 break; 887 case SHT_GNU_versym: 888 this->VersymSec = &Sec; 889 break; 890 case SHT_GNU_verdef: 891 this->VerdefSec = &Sec; 892 break; 893 } 894 } 895 896 if (this->VersymSec && this->ELFSyms.empty()) 897 error("SHT_GNU_versym should be associated with symbol table"); 898 899 // Search for a DT_SONAME tag to initialize this->SoName. 900 if (!DynamicSec) 901 return; 902 ArrayRef<Elf_Dyn> Arr = 903 CHECK(Obj.template getSectionContentsAsArray<Elf_Dyn>(DynamicSec), this); 904 for (const Elf_Dyn &Dyn : Arr) { 905 if (Dyn.d_tag == DT_NEEDED) { 906 uint64_t Val = Dyn.getVal(); 907 if (Val >= this->StringTable.size()) 908 fatal(toString(this) + ": invalid DT_NEEDED entry"); 909 DtNeeded.push_back(this->StringTable.data() + Val); 910 } else if (Dyn.d_tag == DT_SONAME) { 911 uint64_t Val = Dyn.getVal(); 912 if (Val >= this->StringTable.size()) 913 fatal(toString(this) + ": invalid DT_SONAME entry"); 914 SoName = this->StringTable.data() + Val; 915 } 916 } 917 } 918 919 // Parses ".gnu.version" section which is a parallel array for the symbol table. 920 // If a given file doesn't have ".gnu.version" section, returns VER_NDX_GLOBAL. 921 template <class ELFT> std::vector<uint32_t> SharedFile<ELFT>::parseVersyms() { 922 size_t Size = this->ELFSyms.size() - this->FirstGlobal; 923 if (!VersymSec) 924 return std::vector<uint32_t>(Size, VER_NDX_GLOBAL); 925 926 const char *Base = this->MB.getBuffer().data(); 927 const Elf_Versym *Versym = 928 reinterpret_cast<const Elf_Versym *>(Base + VersymSec->sh_offset) + 929 this->FirstGlobal; 930 931 std::vector<uint32_t> Ret(Size); 932 for (size_t I = 0; I < Size; ++I) 933 Ret[I] = Versym[I].vs_index; 934 return Ret; 935 } 936 937 // Parse the version definitions in the object file if present. Returns a vector 938 // whose nth element contains a pointer to the Elf_Verdef for version identifier 939 // n. Version identifiers that are not definitions map to nullptr. 940 template <class ELFT> 941 std::vector<const typename ELFT::Verdef *> SharedFile<ELFT>::parseVerdefs() { 942 if (!VerdefSec) 943 return {}; 944 945 // We cannot determine the largest verdef identifier without inspecting 946 // every Elf_Verdef, but both bfd and gold assign verdef identifiers 947 // sequentially starting from 1, so we predict that the largest identifier 948 // will be VerdefCount. 949 unsigned VerdefCount = VerdefSec->sh_info; 950 std::vector<const Elf_Verdef *> Verdefs(VerdefCount + 1); 951 952 // Build the Verdefs array by following the chain of Elf_Verdef objects 953 // from the start of the .gnu.version_d section. 954 const char *Base = this->MB.getBuffer().data(); 955 const char *Verdef = Base + VerdefSec->sh_offset; 956 for (unsigned I = 0; I != VerdefCount; ++I) { 957 auto *CurVerdef = reinterpret_cast<const Elf_Verdef *>(Verdef); 958 Verdef += CurVerdef->vd_next; 959 unsigned VerdefIndex = CurVerdef->vd_ndx; 960 Verdefs.resize(VerdefIndex + 1); 961 Verdefs[VerdefIndex] = CurVerdef; 962 } 963 964 return Verdefs; 965 } 966 967 // We do not usually care about alignments of data in shared object 968 // files because the loader takes care of it. However, if we promote a 969 // DSO symbol to point to .bss due to copy relocation, we need to keep 970 // the original alignment requirements. We infer it in this function. 971 template <class ELFT> 972 uint32_t SharedFile<ELFT>::getAlignment(ArrayRef<Elf_Shdr> Sections, 973 const Elf_Sym &Sym) { 974 uint64_t Ret = UINT64_MAX; 975 if (Sym.st_value) 976 Ret = 1ULL << countTrailingZeros((uint64_t)Sym.st_value); 977 if (0 < Sym.st_shndx && Sym.st_shndx < Sections.size()) 978 Ret = std::min<uint64_t>(Ret, Sections[Sym.st_shndx].sh_addralign); 979 return (Ret > UINT32_MAX) ? 0 : Ret; 980 } 981 982 // Fully parse the shared object file. This must be called after parseDynamic(). 983 // 984 // This function parses symbol versions. If a DSO has version information, 985 // the file has a ".gnu.version_d" section which contains symbol version 986 // definitions. Each symbol is associated to one version through a table in 987 // ".gnu.version" section. That table is a parallel array for the symbol 988 // table, and each table entry contains an index in ".gnu.version_d". 989 // 990 // The special index 0 is reserved for VERF_NDX_LOCAL and 1 is for 991 // VER_NDX_GLOBAL. There's no table entry for these special versions in 992 // ".gnu.version_d". 993 // 994 // The file format for symbol versioning is perhaps a bit more complicated 995 // than necessary, but you can easily understand the code if you wrap your 996 // head around the data structure described above. 997 template <class ELFT> void SharedFile<ELFT>::parseRest() { 998 Verdefs = parseVerdefs(); // parse .gnu.version_d 999 std::vector<uint32_t> Versyms = parseVersyms(); // parse .gnu.version 1000 ArrayRef<Elf_Shdr> Sections = CHECK(this->getObj().sections(), this); 1001 1002 // System libraries can have a lot of symbols with versions. Using a 1003 // fixed buffer for computing the versions name (foo@ver) can save a 1004 // lot of allocations. 1005 SmallString<0> VersionedNameBuffer; 1006 1007 // Add symbols to the symbol table. 1008 ArrayRef<Elf_Sym> Syms = this->getGlobalELFSyms(); 1009 for (size_t I = 0; I < Syms.size(); ++I) { 1010 const Elf_Sym &Sym = Syms[I]; 1011 1012 // ELF spec requires that all local symbols precede weak or global 1013 // symbols in each symbol table, and the index of first non-local symbol 1014 // is stored to sh_info. If a local symbol appears after some non-local 1015 // symbol, that's a violation of the spec. 1016 StringRef Name = CHECK(Sym.getName(this->StringTable), this); 1017 if (Sym.getBinding() == STB_LOCAL) { 1018 warn("found local symbol '" + Name + 1019 "' in global part of symbol table in file " + toString(this)); 1020 continue; 1021 } 1022 1023 if (Sym.isUndefined()) { 1024 Symbol *S = Symtab->addUndefined<ELFT>(Name, Sym.getBinding(), 1025 Sym.st_other, Sym.getType(), 1026 /*CanOmitFromDynSym=*/false, this); 1027 S->ExportDynamic = true; 1028 continue; 1029 } 1030 1031 // MIPS BFD linker puts _gp_disp symbol into DSO files and incorrectly 1032 // assigns VER_NDX_LOCAL to this section global symbol. Here is a 1033 // workaround for this bug. 1034 uint32_t Idx = Versyms[I] & ~VERSYM_HIDDEN; 1035 if (Config->EMachine == EM_MIPS && Idx == VER_NDX_LOCAL && 1036 Name == "_gp_disp") 1037 continue; 1038 1039 uint64_t Alignment = getAlignment(Sections, Sym); 1040 if (!(Versyms[I] & VERSYM_HIDDEN)) 1041 Symtab->addShared(Name, *this, Sym, Alignment, Idx); 1042 1043 // Also add the symbol with the versioned name to handle undefined symbols 1044 // with explicit versions. 1045 if (Idx == VER_NDX_GLOBAL) 1046 continue; 1047 1048 if (Idx >= Verdefs.size() || Idx == VER_NDX_LOCAL) { 1049 error("corrupt input file: version definition index " + Twine(Idx) + 1050 " for symbol " + Name + " is out of bounds\n>>> defined in " + 1051 toString(this)); 1052 continue; 1053 } 1054 1055 StringRef VerName = 1056 this->StringTable.data() + Verdefs[Idx]->getAux()->vda_name; 1057 VersionedNameBuffer.clear(); 1058 Name = (Name + "@" + VerName).toStringRef(VersionedNameBuffer); 1059 Symtab->addShared(Saver.save(Name), *this, Sym, Alignment, Idx); 1060 } 1061 } 1062 1063 static ELFKind getBitcodeELFKind(const Triple &T) { 1064 if (T.isLittleEndian()) 1065 return T.isArch64Bit() ? ELF64LEKind : ELF32LEKind; 1066 return T.isArch64Bit() ? ELF64BEKind : ELF32BEKind; 1067 } 1068 1069 static uint8_t getBitcodeMachineKind(StringRef Path, const Triple &T) { 1070 switch (T.getArch()) { 1071 case Triple::aarch64: 1072 return EM_AARCH64; 1073 case Triple::amdgcn: 1074 case Triple::r600: 1075 return EM_AMDGPU; 1076 case Triple::arm: 1077 case Triple::thumb: 1078 return EM_ARM; 1079 case Triple::avr: 1080 return EM_AVR; 1081 case Triple::mips: 1082 case Triple::mipsel: 1083 case Triple::mips64: 1084 case Triple::mips64el: 1085 return EM_MIPS; 1086 case Triple::msp430: 1087 return EM_MSP430; 1088 case Triple::ppc: 1089 return EM_PPC; 1090 case Triple::ppc64: 1091 case Triple::ppc64le: 1092 return EM_PPC64; 1093 case Triple::x86: 1094 return T.isOSIAMCU() ? EM_IAMCU : EM_386; 1095 case Triple::x86_64: 1096 return EM_X86_64; 1097 default: 1098 error(Path + ": could not infer e_machine from bitcode target triple " + 1099 T.str()); 1100 return EM_NONE; 1101 } 1102 } 1103 1104 BitcodeFile::BitcodeFile(MemoryBufferRef MB, StringRef ArchiveName, 1105 uint64_t OffsetInArchive) 1106 : InputFile(BitcodeKind, MB) { 1107 this->ArchiveName = ArchiveName; 1108 1109 std::string Path = MB.getBufferIdentifier().str(); 1110 if (Config->ThinLTOIndexOnly) 1111 Path = replaceThinLTOSuffix(MB.getBufferIdentifier()); 1112 1113 // ThinLTO assumes that all MemoryBufferRefs given to it have a unique 1114 // name. If two archives define two members with the same name, this 1115 // causes a collision which result in only one of the objects being taken 1116 // into consideration at LTO time (which very likely causes undefined 1117 // symbols later in the link stage). So we append file offset to make 1118 // filename unique. 1119 MemoryBufferRef MBRef( 1120 MB.getBuffer(), 1121 Saver.save(ArchiveName + Path + 1122 (ArchiveName.empty() ? "" : utostr(OffsetInArchive)))); 1123 1124 Obj = CHECK(lto::InputFile::create(MBRef), this); 1125 1126 Triple T(Obj->getTargetTriple()); 1127 EKind = getBitcodeELFKind(T); 1128 EMachine = getBitcodeMachineKind(MB.getBufferIdentifier(), T); 1129 } 1130 1131 static uint8_t mapVisibility(GlobalValue::VisibilityTypes GvVisibility) { 1132 switch (GvVisibility) { 1133 case GlobalValue::DefaultVisibility: 1134 return STV_DEFAULT; 1135 case GlobalValue::HiddenVisibility: 1136 return STV_HIDDEN; 1137 case GlobalValue::ProtectedVisibility: 1138 return STV_PROTECTED; 1139 } 1140 llvm_unreachable("unknown visibility"); 1141 } 1142 1143 template <class ELFT> 1144 static Symbol *createBitcodeSymbol(const std::vector<bool> &KeptComdats, 1145 const lto::InputFile::Symbol &ObjSym, 1146 BitcodeFile &F) { 1147 StringRef Name = Saver.save(ObjSym.getName()); 1148 uint32_t Binding = ObjSym.isWeak() ? STB_WEAK : STB_GLOBAL; 1149 1150 uint8_t Type = ObjSym.isTLS() ? STT_TLS : STT_NOTYPE; 1151 uint8_t Visibility = mapVisibility(ObjSym.getVisibility()); 1152 bool CanOmitFromDynSym = ObjSym.canBeOmittedFromSymbolTable(); 1153 1154 int C = ObjSym.getComdatIndex(); 1155 if (C != -1 && !KeptComdats[C]) 1156 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1157 CanOmitFromDynSym, &F); 1158 1159 if (ObjSym.isUndefined()) 1160 return Symtab->addUndefined<ELFT>(Name, Binding, Visibility, Type, 1161 CanOmitFromDynSym, &F); 1162 1163 if (ObjSym.isCommon()) 1164 return Symtab->addCommon(Name, ObjSym.getCommonSize(), 1165 ObjSym.getCommonAlignment(), Binding, Visibility, 1166 STT_OBJECT, F); 1167 1168 return Symtab->addBitcode(Name, Binding, Visibility, Type, CanOmitFromDynSym, 1169 F); 1170 } 1171 1172 template <class ELFT> 1173 void BitcodeFile::parse(DenseSet<CachedHashStringRef> &ComdatGroups) { 1174 std::vector<bool> KeptComdats; 1175 for (StringRef S : Obj->getComdatTable()) 1176 KeptComdats.push_back(ComdatGroups.insert(CachedHashStringRef(S)).second); 1177 1178 for (const lto::InputFile::Symbol &ObjSym : Obj->symbols()) 1179 Symbols.push_back(createBitcodeSymbol<ELFT>(KeptComdats, ObjSym, *this)); 1180 } 1181 1182 static ELFKind getELFKind(MemoryBufferRef MB) { 1183 unsigned char Size; 1184 unsigned char Endian; 1185 std::tie(Size, Endian) = getElfArchType(MB.getBuffer()); 1186 1187 if (Endian != ELFDATA2LSB && Endian != ELFDATA2MSB) 1188 fatal(MB.getBufferIdentifier() + ": invalid data encoding"); 1189 if (Size != ELFCLASS32 && Size != ELFCLASS64) 1190 fatal(MB.getBufferIdentifier() + ": invalid file class"); 1191 1192 size_t BufSize = MB.getBuffer().size(); 1193 if ((Size == ELFCLASS32 && BufSize < sizeof(Elf32_Ehdr)) || 1194 (Size == ELFCLASS64 && BufSize < sizeof(Elf64_Ehdr))) 1195 fatal(MB.getBufferIdentifier() + ": file is too short"); 1196 1197 if (Size == ELFCLASS32) 1198 return (Endian == ELFDATA2LSB) ? ELF32LEKind : ELF32BEKind; 1199 return (Endian == ELFDATA2LSB) ? ELF64LEKind : ELF64BEKind; 1200 } 1201 1202 void BinaryFile::parse() { 1203 ArrayRef<uint8_t> Data = arrayRefFromStringRef(MB.getBuffer()); 1204 auto *Section = make<InputSection>(this, SHF_ALLOC | SHF_WRITE, SHT_PROGBITS, 1205 8, Data, ".data"); 1206 Sections.push_back(Section); 1207 1208 // For each input file foo that is embedded to a result as a binary 1209 // blob, we define _binary_foo_{start,end,size} symbols, so that 1210 // user programs can access blobs by name. Non-alphanumeric 1211 // characters in a filename are replaced with underscore. 1212 std::string S = "_binary_" + MB.getBufferIdentifier().str(); 1213 for (size_t I = 0; I < S.size(); ++I) 1214 if (!isAlnum(S[I])) 1215 S[I] = '_'; 1216 1217 Symtab->addDefined(Saver.save(S + "_start"), STV_DEFAULT, STT_OBJECT, 0, 0, 1218 STB_GLOBAL, Section, nullptr); 1219 Symtab->addDefined(Saver.save(S + "_end"), STV_DEFAULT, STT_OBJECT, 1220 Data.size(), 0, STB_GLOBAL, Section, nullptr); 1221 Symtab->addDefined(Saver.save(S + "_size"), STV_DEFAULT, STT_OBJECT, 1222 Data.size(), 0, STB_GLOBAL, nullptr, nullptr); 1223 } 1224 1225 InputFile *elf::createObjectFile(MemoryBufferRef MB, StringRef ArchiveName, 1226 uint64_t OffsetInArchive) { 1227 if (isBitcode(MB)) 1228 return make<BitcodeFile>(MB, ArchiveName, OffsetInArchive); 1229 1230 switch (getELFKind(MB)) { 1231 case ELF32LEKind: 1232 return make<ObjFile<ELF32LE>>(MB, ArchiveName); 1233 case ELF32BEKind: 1234 return make<ObjFile<ELF32BE>>(MB, ArchiveName); 1235 case ELF64LEKind: 1236 return make<ObjFile<ELF64LE>>(MB, ArchiveName); 1237 case ELF64BEKind: 1238 return make<ObjFile<ELF64BE>>(MB, ArchiveName); 1239 default: 1240 llvm_unreachable("getELFKind"); 1241 } 1242 } 1243 1244 InputFile *elf::createSharedFile(MemoryBufferRef MB, StringRef DefaultSoName) { 1245 switch (getELFKind(MB)) { 1246 case ELF32LEKind: 1247 return make<SharedFile<ELF32LE>>(MB, DefaultSoName); 1248 case ELF32BEKind: 1249 return make<SharedFile<ELF32BE>>(MB, DefaultSoName); 1250 case ELF64LEKind: 1251 return make<SharedFile<ELF64LE>>(MB, DefaultSoName); 1252 case ELF64BEKind: 1253 return make<SharedFile<ELF64BE>>(MB, DefaultSoName); 1254 default: 1255 llvm_unreachable("getELFKind"); 1256 } 1257 } 1258 1259 MemoryBufferRef LazyObjFile::getBuffer() { 1260 if (AddedToLink) 1261 return MemoryBufferRef(); 1262 AddedToLink = true; 1263 return MB; 1264 } 1265 1266 InputFile *LazyObjFile::fetch() { 1267 MemoryBufferRef MBRef = getBuffer(); 1268 if (MBRef.getBuffer().empty()) 1269 return nullptr; 1270 1271 InputFile *File = createObjectFile(MBRef, ArchiveName, OffsetInArchive); 1272 File->GroupId = GroupId; 1273 return File; 1274 } 1275 1276 template <class ELFT> void LazyObjFile::parse() { 1277 // A lazy object file wraps either a bitcode file or an ELF file. 1278 if (isBitcode(this->MB)) { 1279 std::unique_ptr<lto::InputFile> Obj = 1280 CHECK(lto::InputFile::create(this->MB), this); 1281 for (const lto::InputFile::Symbol &Sym : Obj->symbols()) 1282 if (!Sym.isUndefined()) 1283 Symtab->addLazyObject<ELFT>(Saver.save(Sym.getName()), *this); 1284 return; 1285 } 1286 1287 if (getELFKind(this->MB) != Config->EKind) { 1288 error("incompatible file: " + this->MB.getBufferIdentifier()); 1289 return; 1290 } 1291 1292 ELFFile<ELFT> Obj = check(ELFFile<ELFT>::create(MB.getBuffer())); 1293 ArrayRef<typename ELFT::Shdr> Sections = CHECK(Obj.sections(), this); 1294 1295 for (const typename ELFT::Shdr &Sec : Sections) { 1296 if (Sec.sh_type != SHT_SYMTAB) 1297 continue; 1298 1299 typename ELFT::SymRange Syms = CHECK(Obj.symbols(&Sec), this); 1300 uint32_t FirstGlobal = Sec.sh_info; 1301 StringRef StringTable = 1302 CHECK(Obj.getStringTableForSymtab(Sec, Sections), this); 1303 1304 for (const typename ELFT::Sym &Sym : Syms.slice(FirstGlobal)) 1305 if (Sym.st_shndx != SHN_UNDEF) 1306 Symtab->addLazyObject<ELFT>(CHECK(Sym.getName(StringTable), this), 1307 *this); 1308 return; 1309 } 1310 } 1311 1312 std::string elf::replaceThinLTOSuffix(StringRef Path) { 1313 StringRef Suffix = Config->ThinLTOObjectSuffixReplace.first; 1314 StringRef Repl = Config->ThinLTOObjectSuffixReplace.second; 1315 1316 if (Path.consume_back(Suffix)) 1317 return (Path + Repl).str(); 1318 return Path; 1319 } 1320 1321 template void ArchiveFile::parse<ELF32LE>(); 1322 template void ArchiveFile::parse<ELF32BE>(); 1323 template void ArchiveFile::parse<ELF64LE>(); 1324 template void ArchiveFile::parse<ELF64BE>(); 1325 1326 template void BitcodeFile::parse<ELF32LE>(DenseSet<CachedHashStringRef> &); 1327 template void BitcodeFile::parse<ELF32BE>(DenseSet<CachedHashStringRef> &); 1328 template void BitcodeFile::parse<ELF64LE>(DenseSet<CachedHashStringRef> &); 1329 template void BitcodeFile::parse<ELF64BE>(DenseSet<CachedHashStringRef> &); 1330 1331 template void LazyObjFile::parse<ELF32LE>(); 1332 template void LazyObjFile::parse<ELF32BE>(); 1333 template void LazyObjFile::parse<ELF64LE>(); 1334 template void LazyObjFile::parse<ELF64BE>(); 1335 1336 template class elf::ELFFileBase<ELF32LE>; 1337 template class elf::ELFFileBase<ELF32BE>; 1338 template class elf::ELFFileBase<ELF64LE>; 1339 template class elf::ELFFileBase<ELF64BE>; 1340 1341 template class elf::ObjFile<ELF32LE>; 1342 template class elf::ObjFile<ELF32BE>; 1343 template class elf::ObjFile<ELF64LE>; 1344 template class elf::ObjFile<ELF64BE>; 1345 1346 template class elf::SharedFile<ELF32LE>; 1347 template class elf::SharedFile<ELF32BE>; 1348 template class elf::SharedFile<ELF64LE>; 1349 template class elf::SharedFile<ELF64BE>; 1350