1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 BuiltinCC = getTargetCodeGenInfo().getABIInfo().getBuiltinCC(); 127 128 if (LangOpts.ObjC1) 129 createObjCRuntime(); 130 if (LangOpts.OpenCL) 131 createOpenCLRuntime(); 132 if (LangOpts.OpenMP) 133 createOpenMPRuntime(); 134 if (LangOpts.CUDA) 135 createCUDARuntime(); 136 137 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 138 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 139 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 140 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 141 getCXXABI().getMangleContext())); 142 143 // If debug info or coverage generation is enabled, create the CGDebugInfo 144 // object. 145 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 146 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 147 DebugInfo.reset(new CGDebugInfo(*this)); 148 149 Block.GlobalUniqueCount = 0; 150 151 if (C.getLangOpts().ObjC1) 152 ObjCData.reset(new ObjCEntrypoints()); 153 154 if (CodeGenOpts.hasProfileClangUse()) { 155 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 156 CodeGenOpts.ProfileInstrumentUsePath); 157 if (auto E = ReaderOrErr.takeError()) { 158 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 159 "Could not read profile %0: %1"); 160 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 161 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 162 << EI.message(); 163 }); 164 } else 165 PGOReader = std::move(ReaderOrErr.get()); 166 } 167 168 // If coverage mapping generation is enabled, create the 169 // CoverageMappingModuleGen object. 170 if (CodeGenOpts.CoverageMapping) 171 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 172 } 173 174 CodeGenModule::~CodeGenModule() {} 175 176 void CodeGenModule::createObjCRuntime() { 177 // This is just isGNUFamily(), but we want to force implementors of 178 // new ABIs to decide how best to do this. 179 switch (LangOpts.ObjCRuntime.getKind()) { 180 case ObjCRuntime::GNUstep: 181 case ObjCRuntime::GCC: 182 case ObjCRuntime::ObjFW: 183 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 184 return; 185 186 case ObjCRuntime::FragileMacOSX: 187 case ObjCRuntime::MacOSX: 188 case ObjCRuntime::iOS: 189 case ObjCRuntime::WatchOS: 190 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 191 return; 192 } 193 llvm_unreachable("bad runtime kind"); 194 } 195 196 void CodeGenModule::createOpenCLRuntime() { 197 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 198 } 199 200 void CodeGenModule::createOpenMPRuntime() { 201 // Select a specialized code generation class based on the target, if any. 202 // If it does not exist use the default implementation. 203 switch (getTriple().getArch()) { 204 case llvm::Triple::nvptx: 205 case llvm::Triple::nvptx64: 206 assert(getLangOpts().OpenMPIsDevice && 207 "OpenMP NVPTX is only prepared to deal with device code."); 208 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 209 break; 210 default: 211 if (LangOpts.OpenMPSimd) 212 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 213 else 214 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 215 break; 216 } 217 } 218 219 void CodeGenModule::createCUDARuntime() { 220 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 221 } 222 223 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 224 Replacements[Name] = C; 225 } 226 227 void CodeGenModule::applyReplacements() { 228 for (auto &I : Replacements) { 229 StringRef MangledName = I.first(); 230 llvm::Constant *Replacement = I.second; 231 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 232 if (!Entry) 233 continue; 234 auto *OldF = cast<llvm::Function>(Entry); 235 auto *NewF = dyn_cast<llvm::Function>(Replacement); 236 if (!NewF) { 237 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 238 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 239 } else { 240 auto *CE = cast<llvm::ConstantExpr>(Replacement); 241 assert(CE->getOpcode() == llvm::Instruction::BitCast || 242 CE->getOpcode() == llvm::Instruction::GetElementPtr); 243 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 244 } 245 } 246 247 // Replace old with new, but keep the old order. 248 OldF->replaceAllUsesWith(Replacement); 249 if (NewF) { 250 NewF->removeFromParent(); 251 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 252 NewF); 253 } 254 OldF->eraseFromParent(); 255 } 256 } 257 258 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 259 GlobalValReplacements.push_back(std::make_pair(GV, C)); 260 } 261 262 void CodeGenModule::applyGlobalValReplacements() { 263 for (auto &I : GlobalValReplacements) { 264 llvm::GlobalValue *GV = I.first; 265 llvm::Constant *C = I.second; 266 267 GV->replaceAllUsesWith(C); 268 GV->eraseFromParent(); 269 } 270 } 271 272 // This is only used in aliases that we created and we know they have a 273 // linear structure. 274 static const llvm::GlobalObject *getAliasedGlobal( 275 const llvm::GlobalIndirectSymbol &GIS) { 276 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 277 const llvm::Constant *C = &GIS; 278 for (;;) { 279 C = C->stripPointerCasts(); 280 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 281 return GO; 282 // stripPointerCasts will not walk over weak aliases. 283 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 284 if (!GIS2) 285 return nullptr; 286 if (!Visited.insert(GIS2).second) 287 return nullptr; 288 C = GIS2->getIndirectSymbol(); 289 } 290 } 291 292 void CodeGenModule::checkAliases() { 293 // Check if the constructed aliases are well formed. It is really unfortunate 294 // that we have to do this in CodeGen, but we only construct mangled names 295 // and aliases during codegen. 296 bool Error = false; 297 DiagnosticsEngine &Diags = getDiags(); 298 for (const GlobalDecl &GD : Aliases) { 299 const auto *D = cast<ValueDecl>(GD.getDecl()); 300 SourceLocation Location; 301 bool IsIFunc = D->hasAttr<IFuncAttr>(); 302 if (const Attr *A = D->getDefiningAttr()) 303 Location = A->getLocation(); 304 else 305 llvm_unreachable("Not an alias or ifunc?"); 306 StringRef MangledName = getMangledName(GD); 307 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 308 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 309 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 310 if (!GV) { 311 Error = true; 312 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 313 } else if (GV->isDeclaration()) { 314 Error = true; 315 Diags.Report(Location, diag::err_alias_to_undefined) 316 << IsIFunc << IsIFunc; 317 } else if (IsIFunc) { 318 // Check resolver function type. 319 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 320 GV->getType()->getPointerElementType()); 321 assert(FTy); 322 if (!FTy->getReturnType()->isPointerTy()) 323 Diags.Report(Location, diag::err_ifunc_resolver_return); 324 } 325 326 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 327 llvm::GlobalValue *AliaseeGV; 328 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 329 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 330 else 331 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 332 333 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 334 StringRef AliasSection = SA->getName(); 335 if (AliasSection != AliaseeGV->getSection()) 336 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 337 << AliasSection << IsIFunc << IsIFunc; 338 } 339 340 // We have to handle alias to weak aliases in here. LLVM itself disallows 341 // this since the object semantics would not match the IL one. For 342 // compatibility with gcc we implement it by just pointing the alias 343 // to its aliasee's aliasee. We also warn, since the user is probably 344 // expecting the link to be weak. 345 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 346 if (GA->isInterposable()) { 347 Diags.Report(Location, diag::warn_alias_to_weak_alias) 348 << GV->getName() << GA->getName() << IsIFunc; 349 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 350 GA->getIndirectSymbol(), Alias->getType()); 351 Alias->setIndirectSymbol(Aliasee); 352 } 353 } 354 } 355 if (!Error) 356 return; 357 358 for (const GlobalDecl &GD : Aliases) { 359 StringRef MangledName = getMangledName(GD); 360 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 361 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 362 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 363 Alias->eraseFromParent(); 364 } 365 } 366 367 void CodeGenModule::clear() { 368 DeferredDeclsToEmit.clear(); 369 if (OpenMPRuntime) 370 OpenMPRuntime->clear(); 371 } 372 373 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 374 StringRef MainFile) { 375 if (!hasDiagnostics()) 376 return; 377 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 378 if (MainFile.empty()) 379 MainFile = "<stdin>"; 380 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 381 } else { 382 if (Mismatched > 0) 383 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 384 385 if (Missing > 0) 386 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 387 } 388 } 389 390 void CodeGenModule::Release() { 391 EmitDeferred(); 392 EmitVTablesOpportunistically(); 393 applyGlobalValReplacements(); 394 applyReplacements(); 395 checkAliases(); 396 EmitCXXGlobalInitFunc(); 397 EmitCXXGlobalDtorFunc(); 398 EmitCXXThreadLocalInitFunc(); 399 if (ObjCRuntime) 400 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 401 AddGlobalCtor(ObjCInitFunction); 402 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 403 CUDARuntime) { 404 if (llvm::Function *CudaCtorFunction = CUDARuntime->makeModuleCtorFunction()) 405 AddGlobalCtor(CudaCtorFunction); 406 if (llvm::Function *CudaDtorFunction = CUDARuntime->makeModuleDtorFunction()) 407 AddGlobalDtor(CudaDtorFunction); 408 } 409 if (OpenMPRuntime) 410 if (llvm::Function *OpenMPRegistrationFunction = 411 OpenMPRuntime->emitRegistrationFunction()) { 412 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 413 OpenMPRegistrationFunction : nullptr; 414 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 415 } 416 if (PGOReader) { 417 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 418 if (PGOStats.hasDiagnostics()) 419 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 420 } 421 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 422 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 423 EmitGlobalAnnotations(); 424 EmitStaticExternCAliases(); 425 EmitDeferredUnusedCoverageMappings(); 426 if (CoverageMapping) 427 CoverageMapping->emit(); 428 if (CodeGenOpts.SanitizeCfiCrossDso) { 429 CodeGenFunction(*this).EmitCfiCheckFail(); 430 CodeGenFunction(*this).EmitCfiCheckStub(); 431 } 432 emitAtAvailableLinkGuard(); 433 emitLLVMUsed(); 434 if (SanStats) 435 SanStats->finish(); 436 437 if (CodeGenOpts.Autolink && 438 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 439 EmitModuleLinkOptions(); 440 } 441 442 // Record mregparm value now so it is visible through rest of codegen. 443 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 444 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 445 CodeGenOpts.NumRegisterParameters); 446 447 if (CodeGenOpts.DwarfVersion) { 448 // We actually want the latest version when there are conflicts. 449 // We can change from Warning to Latest if such mode is supported. 450 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 451 CodeGenOpts.DwarfVersion); 452 } 453 if (CodeGenOpts.EmitCodeView) { 454 // Indicate that we want CodeView in the metadata. 455 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 456 } 457 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 458 // We don't support LTO with 2 with different StrictVTablePointers 459 // FIXME: we could support it by stripping all the information introduced 460 // by StrictVTablePointers. 461 462 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 463 464 llvm::Metadata *Ops[2] = { 465 llvm::MDString::get(VMContext, "StrictVTablePointers"), 466 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 467 llvm::Type::getInt32Ty(VMContext), 1))}; 468 469 getModule().addModuleFlag(llvm::Module::Require, 470 "StrictVTablePointersRequirement", 471 llvm::MDNode::get(VMContext, Ops)); 472 } 473 if (DebugInfo) 474 // We support a single version in the linked module. The LLVM 475 // parser will drop debug info with a different version number 476 // (and warn about it, too). 477 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 478 llvm::DEBUG_METADATA_VERSION); 479 480 // We need to record the widths of enums and wchar_t, so that we can generate 481 // the correct build attributes in the ARM backend. wchar_size is also used by 482 // TargetLibraryInfo. 483 uint64_t WCharWidth = 484 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 485 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 486 487 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 488 if ( Arch == llvm::Triple::arm 489 || Arch == llvm::Triple::armeb 490 || Arch == llvm::Triple::thumb 491 || Arch == llvm::Triple::thumbeb) { 492 // The minimum width of an enum in bytes 493 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 494 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 495 } 496 497 if (CodeGenOpts.SanitizeCfiCrossDso) { 498 // Indicate that we want cross-DSO control flow integrity checks. 499 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 500 } 501 502 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 503 // Indicate whether __nvvm_reflect should be configured to flush denormal 504 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 505 // property.) 506 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 507 LangOpts.CUDADeviceFlushDenormalsToZero ? 1 : 0); 508 } 509 510 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 511 if (LangOpts.OpenCL) { 512 EmitOpenCLMetadata(); 513 // Emit SPIR version. 514 if (getTriple().getArch() == llvm::Triple::spir || 515 getTriple().getArch() == llvm::Triple::spir64) { 516 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 517 // opencl.spir.version named metadata. 518 llvm::Metadata *SPIRVerElts[] = { 519 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 520 Int32Ty, LangOpts.OpenCLVersion / 100)), 521 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 522 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 523 llvm::NamedMDNode *SPIRVerMD = 524 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 525 llvm::LLVMContext &Ctx = TheModule.getContext(); 526 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 527 } 528 } 529 530 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 531 assert(PLevel < 3 && "Invalid PIC Level"); 532 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 533 if (Context.getLangOpts().PIE) 534 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 535 } 536 537 SimplifyPersonality(); 538 539 if (getCodeGenOpts().EmitDeclMetadata) 540 EmitDeclMetadata(); 541 542 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 543 EmitCoverageFile(); 544 545 if (DebugInfo) 546 DebugInfo->finalize(); 547 548 EmitVersionIdentMetadata(); 549 550 EmitTargetMetadata(); 551 } 552 553 void CodeGenModule::EmitOpenCLMetadata() { 554 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 555 // opencl.ocl.version named metadata node. 556 llvm::Metadata *OCLVerElts[] = { 557 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 558 Int32Ty, LangOpts.OpenCLVersion / 100)), 559 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 560 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 561 llvm::NamedMDNode *OCLVerMD = 562 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 563 llvm::LLVMContext &Ctx = TheModule.getContext(); 564 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 565 } 566 567 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 568 // Make sure that this type is translated. 569 Types.UpdateCompletedType(TD); 570 } 571 572 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 573 // Make sure that this type is translated. 574 Types.RefreshTypeCacheForClass(RD); 575 } 576 577 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 578 if (!TBAA) 579 return nullptr; 580 return TBAA->getTypeInfo(QTy); 581 } 582 583 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 584 // Pointee values may have incomplete types, but they shall never be 585 // dereferenced. 586 if (AccessType->isIncompleteType()) 587 return TBAAAccessInfo::getIncompleteInfo(); 588 589 uint64_t Size = Context.getTypeSizeInChars(AccessType).getQuantity(); 590 return TBAAAccessInfo(getTBAATypeInfo(AccessType), Size); 591 } 592 593 TBAAAccessInfo 594 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 595 if (!TBAA) 596 return TBAAAccessInfo(); 597 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 598 } 599 600 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 601 if (!TBAA) 602 return nullptr; 603 return TBAA->getTBAAStructInfo(QTy); 604 } 605 606 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 607 if (!TBAA) 608 return nullptr; 609 return TBAA->getBaseTypeInfo(QTy); 610 } 611 612 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 613 if (!TBAA) 614 return nullptr; 615 return TBAA->getAccessTagInfo(Info); 616 } 617 618 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 619 TBAAAccessInfo TargetInfo) { 620 if (!TBAA) 621 return TBAAAccessInfo(); 622 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 623 } 624 625 TBAAAccessInfo 626 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 627 TBAAAccessInfo InfoB) { 628 if (!TBAA) 629 return TBAAAccessInfo(); 630 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 631 } 632 633 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 634 TBAAAccessInfo TBAAInfo) { 635 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 636 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 637 } 638 639 void CodeGenModule::DecorateInstructionWithInvariantGroup( 640 llvm::Instruction *I, const CXXRecordDecl *RD) { 641 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 642 llvm::MDNode::get(getLLVMContext(), {})); 643 } 644 645 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 646 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 647 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 648 } 649 650 /// ErrorUnsupported - Print out an error that codegen doesn't support the 651 /// specified stmt yet. 652 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 653 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 654 "cannot compile this %0 yet"); 655 std::string Msg = Type; 656 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 657 << Msg << S->getSourceRange(); 658 } 659 660 /// ErrorUnsupported - Print out an error that codegen doesn't support the 661 /// specified decl yet. 662 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 663 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 664 "cannot compile this %0 yet"); 665 std::string Msg = Type; 666 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 667 } 668 669 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 670 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 671 } 672 673 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 674 const NamedDecl *D, 675 ForDefinition_t IsForDefinition) const { 676 // Internal definitions always have default visibility. 677 if (GV->hasLocalLinkage()) { 678 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 679 return; 680 } 681 682 // Set visibility for definitions. 683 LinkageInfo LV = D->getLinkageAndVisibility(); 684 if (LV.isVisibilityExplicit() || 685 (IsForDefinition && !GV->hasAvailableExternallyLinkage())) 686 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 687 } 688 689 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 690 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 691 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 692 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 693 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 694 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 695 } 696 697 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 698 CodeGenOptions::TLSModel M) { 699 switch (M) { 700 case CodeGenOptions::GeneralDynamicTLSModel: 701 return llvm::GlobalVariable::GeneralDynamicTLSModel; 702 case CodeGenOptions::LocalDynamicTLSModel: 703 return llvm::GlobalVariable::LocalDynamicTLSModel; 704 case CodeGenOptions::InitialExecTLSModel: 705 return llvm::GlobalVariable::InitialExecTLSModel; 706 case CodeGenOptions::LocalExecTLSModel: 707 return llvm::GlobalVariable::LocalExecTLSModel; 708 } 709 llvm_unreachable("Invalid TLS model!"); 710 } 711 712 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 713 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 714 715 llvm::GlobalValue::ThreadLocalMode TLM; 716 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 717 718 // Override the TLS model if it is explicitly specified. 719 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 720 TLM = GetLLVMTLSModel(Attr->getModel()); 721 } 722 723 GV->setThreadLocalMode(TLM); 724 } 725 726 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 727 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 728 729 // Some ABIs don't have constructor variants. Make sure that base and 730 // complete constructors get mangled the same. 731 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 732 if (!getTarget().getCXXABI().hasConstructorVariants()) { 733 CXXCtorType OrigCtorType = GD.getCtorType(); 734 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 735 if (OrigCtorType == Ctor_Base) 736 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 737 } 738 } 739 740 auto FoundName = MangledDeclNames.find(CanonicalGD); 741 if (FoundName != MangledDeclNames.end()) 742 return FoundName->second; 743 744 const auto *ND = cast<NamedDecl>(GD.getDecl()); 745 SmallString<256> Buffer; 746 StringRef Str; 747 if (getCXXABI().getMangleContext().shouldMangleDeclName(ND)) { 748 llvm::raw_svector_ostream Out(Buffer); 749 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 750 getCXXABI().getMangleContext().mangleCXXCtor(D, GD.getCtorType(), Out); 751 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 752 getCXXABI().getMangleContext().mangleCXXDtor(D, GD.getDtorType(), Out); 753 else 754 getCXXABI().getMangleContext().mangleName(ND, Out); 755 Str = Out.str(); 756 } else { 757 IdentifierInfo *II = ND->getIdentifier(); 758 assert(II && "Attempt to mangle unnamed decl."); 759 const auto *FD = dyn_cast<FunctionDecl>(ND); 760 761 if (FD && 762 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 763 llvm::raw_svector_ostream Out(Buffer); 764 Out << "__regcall3__" << II->getName(); 765 Str = Out.str(); 766 } else { 767 Str = II->getName(); 768 } 769 } 770 771 // Keep the first result in the case of a mangling collision. 772 auto Result = Manglings.insert(std::make_pair(Str, GD)); 773 return MangledDeclNames[CanonicalGD] = Result.first->first(); 774 } 775 776 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 777 const BlockDecl *BD) { 778 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 779 const Decl *D = GD.getDecl(); 780 781 SmallString<256> Buffer; 782 llvm::raw_svector_ostream Out(Buffer); 783 if (!D) 784 MangleCtx.mangleGlobalBlock(BD, 785 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 786 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 787 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 788 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 789 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 790 else 791 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 792 793 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 794 return Result.first->first(); 795 } 796 797 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 798 return getModule().getNamedValue(Name); 799 } 800 801 /// AddGlobalCtor - Add a function to the list that will be called before 802 /// main() runs. 803 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 804 llvm::Constant *AssociatedData) { 805 // FIXME: Type coercion of void()* types. 806 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 807 } 808 809 /// AddGlobalDtor - Add a function to the list that will be called 810 /// when the module is unloaded. 811 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 812 // FIXME: Type coercion of void()* types. 813 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 814 } 815 816 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 817 if (Fns.empty()) return; 818 819 // Ctor function type is void()*. 820 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 821 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 822 823 // Get the type of a ctor entry, { i32, void ()*, i8* }. 824 llvm::StructType *CtorStructTy = llvm::StructType::get( 825 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 826 827 // Construct the constructor and destructor arrays. 828 ConstantInitBuilder builder(*this); 829 auto ctors = builder.beginArray(CtorStructTy); 830 for (const auto &I : Fns) { 831 auto ctor = ctors.beginStruct(CtorStructTy); 832 ctor.addInt(Int32Ty, I.Priority); 833 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 834 if (I.AssociatedData) 835 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 836 else 837 ctor.addNullPointer(VoidPtrTy); 838 ctor.finishAndAddTo(ctors); 839 } 840 841 auto list = 842 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 843 /*constant*/ false, 844 llvm::GlobalValue::AppendingLinkage); 845 846 // The LTO linker doesn't seem to like it when we set an alignment 847 // on appending variables. Take it off as a workaround. 848 list->setAlignment(0); 849 850 Fns.clear(); 851 } 852 853 llvm::GlobalValue::LinkageTypes 854 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 855 const auto *D = cast<FunctionDecl>(GD.getDecl()); 856 857 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 858 859 if (isa<CXXDestructorDecl>(D) && 860 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 861 GD.getDtorType())) { 862 // Destructor variants in the Microsoft C++ ABI are always internal or 863 // linkonce_odr thunks emitted on an as-needed basis. 864 return Linkage == GVA_Internal ? llvm::GlobalValue::InternalLinkage 865 : llvm::GlobalValue::LinkOnceODRLinkage; 866 } 867 868 if (isa<CXXConstructorDecl>(D) && 869 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 870 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 871 // Our approach to inheriting constructors is fundamentally different from 872 // that used by the MS ABI, so keep our inheriting constructor thunks 873 // internal rather than trying to pick an unambiguous mangling for them. 874 return llvm::GlobalValue::InternalLinkage; 875 } 876 877 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 878 } 879 880 void CodeGenModule::setFunctionDLLStorageClass(GlobalDecl GD, llvm::Function *F) { 881 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 882 883 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(FD)) { 884 if (getCXXABI().useThunkForDtorVariant(Dtor, GD.getDtorType())) { 885 // Don't dllexport/import destructor thunks. 886 F->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 887 return; 888 } 889 } 890 891 if (FD->hasAttr<DLLImportAttr>()) 892 F->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 893 else if (FD->hasAttr<DLLExportAttr>()) 894 F->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 895 else 896 F->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 897 } 898 899 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 900 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 901 if (!MDS) return nullptr; 902 903 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 904 } 905 906 void CodeGenModule::setFunctionDefinitionAttributes(const FunctionDecl *D, 907 llvm::Function *F) { 908 setNonAliasAttributes(D, F); 909 } 910 911 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 912 const CGFunctionInfo &Info, 913 llvm::Function *F) { 914 unsigned CallingConv; 915 llvm::AttributeList PAL; 916 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 917 F->setAttributes(PAL); 918 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 919 } 920 921 /// Determines whether the language options require us to model 922 /// unwind exceptions. We treat -fexceptions as mandating this 923 /// except under the fragile ObjC ABI with only ObjC exceptions 924 /// enabled. This means, for example, that C with -fexceptions 925 /// enables this. 926 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 927 // If exceptions are completely disabled, obviously this is false. 928 if (!LangOpts.Exceptions) return false; 929 930 // If C++ exceptions are enabled, this is true. 931 if (LangOpts.CXXExceptions) return true; 932 933 // If ObjC exceptions are enabled, this depends on the ABI. 934 if (LangOpts.ObjCExceptions) { 935 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 936 } 937 938 return true; 939 } 940 941 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 942 llvm::Function *F) { 943 llvm::AttrBuilder B; 944 945 if (CodeGenOpts.UnwindTables) 946 B.addAttribute(llvm::Attribute::UWTable); 947 948 if (!hasUnwindExceptions(LangOpts)) 949 B.addAttribute(llvm::Attribute::NoUnwind); 950 951 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 952 B.addAttribute(llvm::Attribute::StackProtect); 953 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 954 B.addAttribute(llvm::Attribute::StackProtectStrong); 955 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 956 B.addAttribute(llvm::Attribute::StackProtectReq); 957 958 if (!D) { 959 // If we don't have a declaration to control inlining, the function isn't 960 // explicitly marked as alwaysinline for semantic reasons, and inlining is 961 // disabled, mark the function as noinline. 962 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 963 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 964 B.addAttribute(llvm::Attribute::NoInline); 965 966 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 967 return; 968 } 969 970 // Track whether we need to add the optnone LLVM attribute, 971 // starting with the default for this optimization level. 972 bool ShouldAddOptNone = 973 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 974 // We can't add optnone in the following cases, it won't pass the verifier. 975 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 976 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 977 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 978 979 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 980 B.addAttribute(llvm::Attribute::OptimizeNone); 981 982 // OptimizeNone implies noinline; we should not be inlining such functions. 983 B.addAttribute(llvm::Attribute::NoInline); 984 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 985 "OptimizeNone and AlwaysInline on same function!"); 986 987 // We still need to handle naked functions even though optnone subsumes 988 // much of their semantics. 989 if (D->hasAttr<NakedAttr>()) 990 B.addAttribute(llvm::Attribute::Naked); 991 992 // OptimizeNone wins over OptimizeForSize and MinSize. 993 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 994 F->removeFnAttr(llvm::Attribute::MinSize); 995 } else if (D->hasAttr<NakedAttr>()) { 996 // Naked implies noinline: we should not be inlining such functions. 997 B.addAttribute(llvm::Attribute::Naked); 998 B.addAttribute(llvm::Attribute::NoInline); 999 } else if (D->hasAttr<NoDuplicateAttr>()) { 1000 B.addAttribute(llvm::Attribute::NoDuplicate); 1001 } else if (D->hasAttr<NoInlineAttr>()) { 1002 B.addAttribute(llvm::Attribute::NoInline); 1003 } else if (D->hasAttr<AlwaysInlineAttr>() && 1004 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1005 // (noinline wins over always_inline, and we can't specify both in IR) 1006 B.addAttribute(llvm::Attribute::AlwaysInline); 1007 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1008 // If we're not inlining, then force everything that isn't always_inline to 1009 // carry an explicit noinline attribute. 1010 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1011 B.addAttribute(llvm::Attribute::NoInline); 1012 } else { 1013 // Otherwise, propagate the inline hint attribute and potentially use its 1014 // absence to mark things as noinline. 1015 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1016 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1017 return Redecl->isInlineSpecified(); 1018 })) { 1019 B.addAttribute(llvm::Attribute::InlineHint); 1020 } else if (CodeGenOpts.getInlining() == 1021 CodeGenOptions::OnlyHintInlining && 1022 !FD->isInlined() && 1023 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1024 B.addAttribute(llvm::Attribute::NoInline); 1025 } 1026 } 1027 } 1028 1029 // Add other optimization related attributes if we are optimizing this 1030 // function. 1031 if (!D->hasAttr<OptimizeNoneAttr>()) { 1032 if (D->hasAttr<ColdAttr>()) { 1033 if (!ShouldAddOptNone) 1034 B.addAttribute(llvm::Attribute::OptimizeForSize); 1035 B.addAttribute(llvm::Attribute::Cold); 1036 } 1037 1038 if (D->hasAttr<MinSizeAttr>()) 1039 B.addAttribute(llvm::Attribute::MinSize); 1040 } 1041 1042 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1043 1044 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1045 if (alignment) 1046 F->setAlignment(alignment); 1047 1048 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1049 // reserve a bit for differentiating between virtual and non-virtual member 1050 // functions. If the current target's C++ ABI requires this and this is a 1051 // member function, set its alignment accordingly. 1052 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1053 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1054 F->setAlignment(2); 1055 } 1056 1057 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1058 if (CodeGenOpts.SanitizeCfiCrossDso) 1059 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1060 CreateFunctionTypeMetadata(FD, F); 1061 } 1062 1063 void CodeGenModule::SetCommonAttributes(const Decl *D, 1064 llvm::GlobalValue *GV) { 1065 if (const auto *ND = dyn_cast_or_null<NamedDecl>(D)) 1066 setGlobalVisibility(GV, ND, ForDefinition); 1067 else 1068 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1069 1070 if (D && D->hasAttr<UsedAttr>()) 1071 addUsedGlobal(GV); 1072 } 1073 1074 void CodeGenModule::setAliasAttributes(const Decl *D, 1075 llvm::GlobalValue *GV) { 1076 SetCommonAttributes(D, GV); 1077 1078 // Process the dllexport attribute based on whether the original definition 1079 // (not necessarily the aliasee) was exported. 1080 if (D->hasAttr<DLLExportAttr>()) 1081 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 1082 } 1083 1084 void CodeGenModule::setNonAliasAttributes(const Decl *D, 1085 llvm::GlobalObject *GO) { 1086 SetCommonAttributes(D, GO); 1087 1088 if (D) { 1089 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1090 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1091 GV->addAttribute("bss-section", SA->getName()); 1092 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1093 GV->addAttribute("data-section", SA->getName()); 1094 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1095 GV->addAttribute("rodata-section", SA->getName()); 1096 } 1097 1098 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1099 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1100 if (!D->getAttr<SectionAttr>()) 1101 F->addFnAttr("implicit-section-name", SA->getName()); 1102 } 1103 1104 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 1105 GO->setSection(SA->getName()); 1106 } 1107 1108 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this, ForDefinition); 1109 } 1110 1111 void CodeGenModule::SetInternalFunctionAttributes(const Decl *D, 1112 llvm::Function *F, 1113 const CGFunctionInfo &FI) { 1114 SetLLVMFunctionAttributes(D, FI, F); 1115 SetLLVMFunctionAttributesForDefinition(D, F); 1116 1117 F->setLinkage(llvm::Function::InternalLinkage); 1118 1119 setNonAliasAttributes(D, F); 1120 } 1121 1122 static void setLinkageForGV(llvm::GlobalValue *GV, 1123 const NamedDecl *ND) { 1124 // Set linkage and visibility in case we never see a definition. 1125 LinkageInfo LV = ND->getLinkageAndVisibility(); 1126 if (!isExternallyVisible(LV.getLinkage())) { 1127 // Don't set internal linkage on declarations. 1128 } else { 1129 if (ND->hasAttr<DLLImportAttr>()) { 1130 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1131 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 1132 } else if (ND->hasAttr<DLLExportAttr>()) { 1133 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 1134 } else if (ND->hasAttr<WeakAttr>() || ND->isWeakImported()) { 1135 // "extern_weak" is overloaded in LLVM; we probably should have 1136 // separate linkage types for this. 1137 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1138 } 1139 } 1140 } 1141 1142 void CodeGenModule::CreateFunctionTypeMetadata(const FunctionDecl *FD, 1143 llvm::Function *F) { 1144 // Only if we are checking indirect calls. 1145 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1146 return; 1147 1148 // Non-static class methods are handled via vtable pointer checks elsewhere. 1149 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1150 return; 1151 1152 // Additionally, if building with cross-DSO support... 1153 if (CodeGenOpts.SanitizeCfiCrossDso) { 1154 // Skip available_externally functions. They won't be codegen'ed in the 1155 // current module anyway. 1156 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1157 return; 1158 } 1159 1160 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1161 F->addTypeMetadata(0, MD); 1162 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1163 1164 // Emit a hash-based bit set entry for cross-DSO calls. 1165 if (CodeGenOpts.SanitizeCfiCrossDso) 1166 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1167 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1168 } 1169 1170 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1171 bool IsIncompleteFunction, 1172 bool IsThunk, 1173 ForDefinition_t IsForDefinition) { 1174 1175 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1176 // If this is an intrinsic function, set the function's attributes 1177 // to the intrinsic's attributes. 1178 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1179 return; 1180 } 1181 1182 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1183 1184 if (!IsIncompleteFunction) { 1185 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1186 // Setup target-specific attributes. 1187 if (!IsForDefinition) 1188 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this, 1189 NotForDefinition); 1190 } 1191 1192 // Add the Returned attribute for "this", except for iOS 5 and earlier 1193 // where substantial code, including the libstdc++ dylib, was compiled with 1194 // GCC and does not actually return "this". 1195 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1196 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1197 assert(!F->arg_empty() && 1198 F->arg_begin()->getType() 1199 ->canLosslesslyBitCastTo(F->getReturnType()) && 1200 "unexpected this return"); 1201 F->addAttribute(1, llvm::Attribute::Returned); 1202 } 1203 1204 // Only a few attributes are set on declarations; these may later be 1205 // overridden by a definition. 1206 1207 setLinkageForGV(F, FD); 1208 setGlobalVisibility(F, FD, NotForDefinition); 1209 1210 if (FD->getAttr<PragmaClangTextSectionAttr>()) { 1211 F->addFnAttr("implicit-section-name"); 1212 } 1213 1214 if (const SectionAttr *SA = FD->getAttr<SectionAttr>()) 1215 F->setSection(SA->getName()); 1216 1217 if (FD->isReplaceableGlobalAllocationFunction()) { 1218 // A replaceable global allocation function does not act like a builtin by 1219 // default, only if it is invoked by a new-expression or delete-expression. 1220 F->addAttribute(llvm::AttributeList::FunctionIndex, 1221 llvm::Attribute::NoBuiltin); 1222 1223 // A sane operator new returns a non-aliasing pointer. 1224 // FIXME: Also add NonNull attribute to the return value 1225 // for the non-nothrow forms? 1226 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1227 if (getCodeGenOpts().AssumeSaneOperatorNew && 1228 (Kind == OO_New || Kind == OO_Array_New)) 1229 F->addAttribute(llvm::AttributeList::ReturnIndex, 1230 llvm::Attribute::NoAlias); 1231 } 1232 1233 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1234 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1235 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1236 if (MD->isVirtual()) 1237 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1238 1239 // Don't emit entries for function declarations in the cross-DSO mode. This 1240 // is handled with better precision by the receiving DSO. 1241 if (!CodeGenOpts.SanitizeCfiCrossDso) 1242 CreateFunctionTypeMetadata(FD, F); 1243 1244 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1245 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1246 } 1247 1248 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1249 assert(!GV->isDeclaration() && 1250 "Only globals with definition can force usage."); 1251 LLVMUsed.emplace_back(GV); 1252 } 1253 1254 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1255 assert(!GV->isDeclaration() && 1256 "Only globals with definition can force usage."); 1257 LLVMCompilerUsed.emplace_back(GV); 1258 } 1259 1260 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1261 std::vector<llvm::WeakTrackingVH> &List) { 1262 // Don't create llvm.used if there is no need. 1263 if (List.empty()) 1264 return; 1265 1266 // Convert List to what ConstantArray needs. 1267 SmallVector<llvm::Constant*, 8> UsedArray; 1268 UsedArray.resize(List.size()); 1269 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1270 UsedArray[i] = 1271 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1272 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1273 } 1274 1275 if (UsedArray.empty()) 1276 return; 1277 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1278 1279 auto *GV = new llvm::GlobalVariable( 1280 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1281 llvm::ConstantArray::get(ATy, UsedArray), Name); 1282 1283 GV->setSection("llvm.metadata"); 1284 } 1285 1286 void CodeGenModule::emitLLVMUsed() { 1287 emitUsed(*this, "llvm.used", LLVMUsed); 1288 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1289 } 1290 1291 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1292 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1293 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1294 } 1295 1296 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1297 llvm::SmallString<32> Opt; 1298 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1299 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1300 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1301 } 1302 1303 void CodeGenModule::AddDependentLib(StringRef Lib) { 1304 llvm::SmallString<24> Opt; 1305 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1306 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1307 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1308 } 1309 1310 /// \brief Add link options implied by the given module, including modules 1311 /// it depends on, using a postorder walk. 1312 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1313 SmallVectorImpl<llvm::MDNode *> &Metadata, 1314 llvm::SmallPtrSet<Module *, 16> &Visited) { 1315 // Import this module's parent. 1316 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1317 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1318 } 1319 1320 // Import this module's dependencies. 1321 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1322 if (Visited.insert(Mod->Imports[I - 1]).second) 1323 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1324 } 1325 1326 // Add linker options to link against the libraries/frameworks 1327 // described by this module. 1328 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1329 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1330 // Link against a framework. Frameworks are currently Darwin only, so we 1331 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1332 if (Mod->LinkLibraries[I-1].IsFramework) { 1333 llvm::Metadata *Args[2] = { 1334 llvm::MDString::get(Context, "-framework"), 1335 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1336 1337 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1338 continue; 1339 } 1340 1341 // Link against a library. 1342 llvm::SmallString<24> Opt; 1343 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1344 Mod->LinkLibraries[I-1].Library, Opt); 1345 auto *OptString = llvm::MDString::get(Context, Opt); 1346 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1347 } 1348 } 1349 1350 void CodeGenModule::EmitModuleLinkOptions() { 1351 // Collect the set of all of the modules we want to visit to emit link 1352 // options, which is essentially the imported modules and all of their 1353 // non-explicit child modules. 1354 llvm::SetVector<clang::Module *> LinkModules; 1355 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1356 SmallVector<clang::Module *, 16> Stack; 1357 1358 // Seed the stack with imported modules. 1359 for (Module *M : ImportedModules) { 1360 // Do not add any link flags when an implementation TU of a module imports 1361 // a header of that same module. 1362 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1363 !getLangOpts().isCompilingModule()) 1364 continue; 1365 if (Visited.insert(M).second) 1366 Stack.push_back(M); 1367 } 1368 1369 // Find all of the modules to import, making a little effort to prune 1370 // non-leaf modules. 1371 while (!Stack.empty()) { 1372 clang::Module *Mod = Stack.pop_back_val(); 1373 1374 bool AnyChildren = false; 1375 1376 // Visit the submodules of this module. 1377 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1378 SubEnd = Mod->submodule_end(); 1379 Sub != SubEnd; ++Sub) { 1380 // Skip explicit children; they need to be explicitly imported to be 1381 // linked against. 1382 if ((*Sub)->IsExplicit) 1383 continue; 1384 1385 if (Visited.insert(*Sub).second) { 1386 Stack.push_back(*Sub); 1387 AnyChildren = true; 1388 } 1389 } 1390 1391 // We didn't find any children, so add this module to the list of 1392 // modules to link against. 1393 if (!AnyChildren) { 1394 LinkModules.insert(Mod); 1395 } 1396 } 1397 1398 // Add link options for all of the imported modules in reverse topological 1399 // order. We don't do anything to try to order import link flags with respect 1400 // to linker options inserted by things like #pragma comment(). 1401 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1402 Visited.clear(); 1403 for (Module *M : LinkModules) 1404 if (Visited.insert(M).second) 1405 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1406 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1407 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1408 1409 // Add the linker options metadata flag. 1410 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1411 for (auto *MD : LinkerOptionsMetadata) 1412 NMD->addOperand(MD); 1413 } 1414 1415 void CodeGenModule::EmitDeferred() { 1416 // Emit code for any potentially referenced deferred decls. Since a 1417 // previously unused static decl may become used during the generation of code 1418 // for a static function, iterate until no changes are made. 1419 1420 if (!DeferredVTables.empty()) { 1421 EmitDeferredVTables(); 1422 1423 // Emitting a vtable doesn't directly cause more vtables to 1424 // become deferred, although it can cause functions to be 1425 // emitted that then need those vtables. 1426 assert(DeferredVTables.empty()); 1427 } 1428 1429 // Stop if we're out of both deferred vtables and deferred declarations. 1430 if (DeferredDeclsToEmit.empty()) 1431 return; 1432 1433 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1434 // work, it will not interfere with this. 1435 std::vector<GlobalDecl> CurDeclsToEmit; 1436 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1437 1438 for (GlobalDecl &D : CurDeclsToEmit) { 1439 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1440 // to get GlobalValue with exactly the type we need, not something that 1441 // might had been created for another decl with the same mangled name but 1442 // different type. 1443 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1444 GetAddrOfGlobal(D, ForDefinition)); 1445 1446 // In case of different address spaces, we may still get a cast, even with 1447 // IsForDefinition equal to true. Query mangled names table to get 1448 // GlobalValue. 1449 if (!GV) 1450 GV = GetGlobalValue(getMangledName(D)); 1451 1452 // Make sure GetGlobalValue returned non-null. 1453 assert(GV); 1454 1455 // Check to see if we've already emitted this. This is necessary 1456 // for a couple of reasons: first, decls can end up in the 1457 // deferred-decls queue multiple times, and second, decls can end 1458 // up with definitions in unusual ways (e.g. by an extern inline 1459 // function acquiring a strong function redefinition). Just 1460 // ignore these cases. 1461 if (!GV->isDeclaration()) 1462 continue; 1463 1464 // Otherwise, emit the definition and move on to the next one. 1465 EmitGlobalDefinition(D, GV); 1466 1467 // If we found out that we need to emit more decls, do that recursively. 1468 // This has the advantage that the decls are emitted in a DFS and related 1469 // ones are close together, which is convenient for testing. 1470 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1471 EmitDeferred(); 1472 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1473 } 1474 } 1475 } 1476 1477 void CodeGenModule::EmitVTablesOpportunistically() { 1478 // Try to emit external vtables as available_externally if they have emitted 1479 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1480 // is not allowed to create new references to things that need to be emitted 1481 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1482 1483 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1484 && "Only emit opportunistic vtables with optimizations"); 1485 1486 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1487 assert(getVTables().isVTableExternal(RD) && 1488 "This queue should only contain external vtables"); 1489 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1490 VTables.GenerateClassData(RD); 1491 } 1492 OpportunisticVTables.clear(); 1493 } 1494 1495 void CodeGenModule::EmitGlobalAnnotations() { 1496 if (Annotations.empty()) 1497 return; 1498 1499 // Create a new global variable for the ConstantStruct in the Module. 1500 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1501 Annotations[0]->getType(), Annotations.size()), Annotations); 1502 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1503 llvm::GlobalValue::AppendingLinkage, 1504 Array, "llvm.global.annotations"); 1505 gv->setSection(AnnotationSection); 1506 } 1507 1508 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1509 llvm::Constant *&AStr = AnnotationStrings[Str]; 1510 if (AStr) 1511 return AStr; 1512 1513 // Not found yet, create a new global. 1514 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1515 auto *gv = 1516 new llvm::GlobalVariable(getModule(), s->getType(), true, 1517 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1518 gv->setSection(AnnotationSection); 1519 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1520 AStr = gv; 1521 return gv; 1522 } 1523 1524 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1525 SourceManager &SM = getContext().getSourceManager(); 1526 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1527 if (PLoc.isValid()) 1528 return EmitAnnotationString(PLoc.getFilename()); 1529 return EmitAnnotationString(SM.getBufferName(Loc)); 1530 } 1531 1532 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1533 SourceManager &SM = getContext().getSourceManager(); 1534 PresumedLoc PLoc = SM.getPresumedLoc(L); 1535 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1536 SM.getExpansionLineNumber(L); 1537 return llvm::ConstantInt::get(Int32Ty, LineNo); 1538 } 1539 1540 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1541 const AnnotateAttr *AA, 1542 SourceLocation L) { 1543 // Get the globals for file name, annotation, and the line number. 1544 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1545 *UnitGV = EmitAnnotationUnit(L), 1546 *LineNoCst = EmitAnnotationLineNo(L); 1547 1548 // Create the ConstantStruct for the global annotation. 1549 llvm::Constant *Fields[4] = { 1550 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1551 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1552 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1553 LineNoCst 1554 }; 1555 return llvm::ConstantStruct::getAnon(Fields); 1556 } 1557 1558 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1559 llvm::GlobalValue *GV) { 1560 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1561 // Get the struct elements for these annotations. 1562 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1563 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1564 } 1565 1566 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1567 llvm::Function *Fn, 1568 SourceLocation Loc) const { 1569 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1570 // Blacklist by function name. 1571 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1572 return true; 1573 // Blacklist by location. 1574 if (Loc.isValid()) 1575 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1576 // If location is unknown, this may be a compiler-generated function. Assume 1577 // it's located in the main file. 1578 auto &SM = Context.getSourceManager(); 1579 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1580 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1581 } 1582 return false; 1583 } 1584 1585 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1586 SourceLocation Loc, QualType Ty, 1587 StringRef Category) const { 1588 // For now globals can be blacklisted only in ASan and KASan. 1589 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1590 (SanitizerKind::Address | SanitizerKind::KernelAddress | SanitizerKind::HWAddress); 1591 if (!EnabledAsanMask) 1592 return false; 1593 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1594 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1595 return true; 1596 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1597 return true; 1598 // Check global type. 1599 if (!Ty.isNull()) { 1600 // Drill down the array types: if global variable of a fixed type is 1601 // blacklisted, we also don't instrument arrays of them. 1602 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1603 Ty = AT->getElementType(); 1604 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1605 // We allow to blacklist only record types (classes, structs etc.) 1606 if (Ty->isRecordType()) { 1607 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1608 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1609 return true; 1610 } 1611 } 1612 return false; 1613 } 1614 1615 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1616 StringRef Category) const { 1617 if (!LangOpts.XRayInstrument) 1618 return false; 1619 const auto &XRayFilter = getContext().getXRayFilter(); 1620 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1621 auto Attr = XRayFunctionFilter::ImbueAttribute::NONE; 1622 if (Loc.isValid()) 1623 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1624 if (Attr == ImbueAttr::NONE) 1625 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1626 switch (Attr) { 1627 case ImbueAttr::NONE: 1628 return false; 1629 case ImbueAttr::ALWAYS: 1630 Fn->addFnAttr("function-instrument", "xray-always"); 1631 break; 1632 case ImbueAttr::ALWAYS_ARG1: 1633 Fn->addFnAttr("function-instrument", "xray-always"); 1634 Fn->addFnAttr("xray-log-args", "1"); 1635 break; 1636 case ImbueAttr::NEVER: 1637 Fn->addFnAttr("function-instrument", "xray-never"); 1638 break; 1639 } 1640 return true; 1641 } 1642 1643 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1644 // Never defer when EmitAllDecls is specified. 1645 if (LangOpts.EmitAllDecls) 1646 return true; 1647 1648 return getContext().DeclMustBeEmitted(Global); 1649 } 1650 1651 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1652 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1653 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1654 // Implicit template instantiations may change linkage if they are later 1655 // explicitly instantiated, so they should not be emitted eagerly. 1656 return false; 1657 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1658 if (Context.getInlineVariableDefinitionKind(VD) == 1659 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1660 // A definition of an inline constexpr static data member may change 1661 // linkage later if it's redeclared outside the class. 1662 return false; 1663 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1664 // codegen for global variables, because they may be marked as threadprivate. 1665 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 1666 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global)) 1667 return false; 1668 1669 return true; 1670 } 1671 1672 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 1673 const CXXUuidofExpr* E) { 1674 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 1675 // well-formed. 1676 StringRef Uuid = E->getUuidStr(); 1677 std::string Name = "_GUID_" + Uuid.lower(); 1678 std::replace(Name.begin(), Name.end(), '-', '_'); 1679 1680 // The UUID descriptor should be pointer aligned. 1681 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 1682 1683 // Look for an existing global. 1684 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 1685 return ConstantAddress(GV, Alignment); 1686 1687 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 1688 assert(Init && "failed to initialize as constant"); 1689 1690 auto *GV = new llvm::GlobalVariable( 1691 getModule(), Init->getType(), 1692 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 1693 if (supportsCOMDAT()) 1694 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 1695 return ConstantAddress(GV, Alignment); 1696 } 1697 1698 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 1699 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 1700 assert(AA && "No alias?"); 1701 1702 CharUnits Alignment = getContext().getDeclAlign(VD); 1703 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 1704 1705 // See if there is already something with the target's name in the module. 1706 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 1707 if (Entry) { 1708 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 1709 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 1710 return ConstantAddress(Ptr, Alignment); 1711 } 1712 1713 llvm::Constant *Aliasee; 1714 if (isa<llvm::FunctionType>(DeclTy)) 1715 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 1716 GlobalDecl(cast<FunctionDecl>(VD)), 1717 /*ForVTable=*/false); 1718 else 1719 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 1720 llvm::PointerType::getUnqual(DeclTy), 1721 nullptr); 1722 1723 auto *F = cast<llvm::GlobalValue>(Aliasee); 1724 F->setLinkage(llvm::Function::ExternalWeakLinkage); 1725 WeakRefReferences.insert(F); 1726 1727 return ConstantAddress(Aliasee, Alignment); 1728 } 1729 1730 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 1731 const auto *Global = cast<ValueDecl>(GD.getDecl()); 1732 1733 // Weak references don't produce any output by themselves. 1734 if (Global->hasAttr<WeakRefAttr>()) 1735 return; 1736 1737 // If this is an alias definition (which otherwise looks like a declaration) 1738 // emit it now. 1739 if (Global->hasAttr<AliasAttr>()) 1740 return EmitAliasDefinition(GD); 1741 1742 // IFunc like an alias whose value is resolved at runtime by calling resolver. 1743 if (Global->hasAttr<IFuncAttr>()) 1744 return emitIFuncDefinition(GD); 1745 1746 // If this is CUDA, be selective about which declarations we emit. 1747 if (LangOpts.CUDA) { 1748 if (LangOpts.CUDAIsDevice) { 1749 if (!Global->hasAttr<CUDADeviceAttr>() && 1750 !Global->hasAttr<CUDAGlobalAttr>() && 1751 !Global->hasAttr<CUDAConstantAttr>() && 1752 !Global->hasAttr<CUDASharedAttr>()) 1753 return; 1754 } else { 1755 // We need to emit host-side 'shadows' for all global 1756 // device-side variables because the CUDA runtime needs their 1757 // size and host-side address in order to provide access to 1758 // their device-side incarnations. 1759 1760 // So device-only functions are the only things we skip. 1761 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 1762 Global->hasAttr<CUDADeviceAttr>()) 1763 return; 1764 1765 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 1766 "Expected Variable or Function"); 1767 } 1768 } 1769 1770 if (LangOpts.OpenMP) { 1771 // If this is OpenMP device, check if it is legal to emit this global 1772 // normally. 1773 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 1774 return; 1775 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 1776 if (MustBeEmitted(Global)) 1777 EmitOMPDeclareReduction(DRD); 1778 return; 1779 } 1780 } 1781 1782 // Ignore declarations, they will be emitted on their first use. 1783 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 1784 // Forward declarations are emitted lazily on first use. 1785 if (!FD->doesThisDeclarationHaveABody()) { 1786 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 1787 return; 1788 1789 StringRef MangledName = getMangledName(GD); 1790 1791 // Compute the function info and LLVM type. 1792 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 1793 llvm::Type *Ty = getTypes().GetFunctionType(FI); 1794 1795 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 1796 /*DontDefer=*/false); 1797 return; 1798 } 1799 } else { 1800 const auto *VD = cast<VarDecl>(Global); 1801 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 1802 // We need to emit device-side global CUDA variables even if a 1803 // variable does not have a definition -- we still need to define 1804 // host-side shadow for it. 1805 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 1806 !VD->hasDefinition() && 1807 (VD->hasAttr<CUDAConstantAttr>() || 1808 VD->hasAttr<CUDADeviceAttr>()); 1809 if (!MustEmitForCuda && 1810 VD->isThisDeclarationADefinition() != VarDecl::Definition && 1811 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 1812 // If this declaration may have caused an inline variable definition to 1813 // change linkage, make sure that it's emitted. 1814 if (Context.getInlineVariableDefinitionKind(VD) == 1815 ASTContext::InlineVariableDefinitionKind::Strong) 1816 GetAddrOfGlobalVar(VD); 1817 return; 1818 } 1819 } 1820 1821 // Defer code generation to first use when possible, e.g. if this is an inline 1822 // function. If the global must always be emitted, do it eagerly if possible 1823 // to benefit from cache locality. 1824 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 1825 // Emit the definition if it can't be deferred. 1826 EmitGlobalDefinition(GD); 1827 return; 1828 } 1829 1830 // If we're deferring emission of a C++ variable with an 1831 // initializer, remember the order in which it appeared in the file. 1832 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 1833 cast<VarDecl>(Global)->hasInit()) { 1834 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 1835 CXXGlobalInits.push_back(nullptr); 1836 } 1837 1838 StringRef MangledName = getMangledName(GD); 1839 if (GetGlobalValue(MangledName) != nullptr) { 1840 // The value has already been used and should therefore be emitted. 1841 addDeferredDeclToEmit(GD); 1842 } else if (MustBeEmitted(Global)) { 1843 // The value must be emitted, but cannot be emitted eagerly. 1844 assert(!MayBeEmittedEagerly(Global)); 1845 addDeferredDeclToEmit(GD); 1846 } else { 1847 // Otherwise, remember that we saw a deferred decl with this name. The 1848 // first use of the mangled name will cause it to move into 1849 // DeferredDeclsToEmit. 1850 DeferredDecls[MangledName] = GD; 1851 } 1852 } 1853 1854 // Check if T is a class type with a destructor that's not dllimport. 1855 static bool HasNonDllImportDtor(QualType T) { 1856 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 1857 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1858 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 1859 return true; 1860 1861 return false; 1862 } 1863 1864 namespace { 1865 struct FunctionIsDirectlyRecursive : 1866 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 1867 const StringRef Name; 1868 const Builtin::Context &BI; 1869 bool Result; 1870 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 1871 Name(N), BI(C), Result(false) { 1872 } 1873 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 1874 1875 bool TraverseCallExpr(CallExpr *E) { 1876 const FunctionDecl *FD = E->getDirectCallee(); 1877 if (!FD) 1878 return true; 1879 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1880 if (Attr && Name == Attr->getLabel()) { 1881 Result = true; 1882 return false; 1883 } 1884 unsigned BuiltinID = FD->getBuiltinID(); 1885 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 1886 return true; 1887 StringRef BuiltinName = BI.getName(BuiltinID); 1888 if (BuiltinName.startswith("__builtin_") && 1889 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 1890 Result = true; 1891 return false; 1892 } 1893 return true; 1894 } 1895 }; 1896 1897 // Make sure we're not referencing non-imported vars or functions. 1898 struct DLLImportFunctionVisitor 1899 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 1900 bool SafeToInline = true; 1901 1902 bool shouldVisitImplicitCode() const { return true; } 1903 1904 bool VisitVarDecl(VarDecl *VD) { 1905 if (VD->getTLSKind()) { 1906 // A thread-local variable cannot be imported. 1907 SafeToInline = false; 1908 return SafeToInline; 1909 } 1910 1911 // A variable definition might imply a destructor call. 1912 if (VD->isThisDeclarationADefinition()) 1913 SafeToInline = !HasNonDllImportDtor(VD->getType()); 1914 1915 return SafeToInline; 1916 } 1917 1918 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 1919 if (const auto *D = E->getTemporary()->getDestructor()) 1920 SafeToInline = D->hasAttr<DLLImportAttr>(); 1921 return SafeToInline; 1922 } 1923 1924 bool VisitDeclRefExpr(DeclRefExpr *E) { 1925 ValueDecl *VD = E->getDecl(); 1926 if (isa<FunctionDecl>(VD)) 1927 SafeToInline = VD->hasAttr<DLLImportAttr>(); 1928 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 1929 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 1930 return SafeToInline; 1931 } 1932 1933 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 1934 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 1935 return SafeToInline; 1936 } 1937 1938 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 1939 CXXMethodDecl *M = E->getMethodDecl(); 1940 if (!M) { 1941 // Call through a pointer to member function. This is safe to inline. 1942 SafeToInline = true; 1943 } else { 1944 SafeToInline = M->hasAttr<DLLImportAttr>(); 1945 } 1946 return SafeToInline; 1947 } 1948 1949 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 1950 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 1951 return SafeToInline; 1952 } 1953 1954 bool VisitCXXNewExpr(CXXNewExpr *E) { 1955 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 1956 return SafeToInline; 1957 } 1958 }; 1959 } 1960 1961 // isTriviallyRecursive - Check if this function calls another 1962 // decl that, because of the asm attribute or the other decl being a builtin, 1963 // ends up pointing to itself. 1964 bool 1965 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 1966 StringRef Name; 1967 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 1968 // asm labels are a special kind of mangling we have to support. 1969 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 1970 if (!Attr) 1971 return false; 1972 Name = Attr->getLabel(); 1973 } else { 1974 Name = FD->getName(); 1975 } 1976 1977 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 1978 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 1979 return Walker.Result; 1980 } 1981 1982 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 1983 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 1984 return true; 1985 const auto *F = cast<FunctionDecl>(GD.getDecl()); 1986 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 1987 return false; 1988 1989 if (F->hasAttr<DLLImportAttr>()) { 1990 // Check whether it would be safe to inline this dllimport function. 1991 DLLImportFunctionVisitor Visitor; 1992 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 1993 if (!Visitor.SafeToInline) 1994 return false; 1995 1996 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 1997 // Implicit destructor invocations aren't captured in the AST, so the 1998 // check above can't see them. Check for them manually here. 1999 for (const Decl *Member : Dtor->getParent()->decls()) 2000 if (isa<FieldDecl>(Member)) 2001 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2002 return false; 2003 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2004 if (HasNonDllImportDtor(B.getType())) 2005 return false; 2006 } 2007 } 2008 2009 // PR9614. Avoid cases where the source code is lying to us. An available 2010 // externally function should have an equivalent function somewhere else, 2011 // but a function that calls itself is clearly not equivalent to the real 2012 // implementation. 2013 // This happens in glibc's btowc and in some configure checks. 2014 return !isTriviallyRecursive(F); 2015 } 2016 2017 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2018 return CodeGenOpts.OptimizationLevel > 0; 2019 } 2020 2021 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2022 const auto *D = cast<ValueDecl>(GD.getDecl()); 2023 2024 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2025 Context.getSourceManager(), 2026 "Generating code for declaration"); 2027 2028 if (isa<FunctionDecl>(D)) { 2029 // At -O0, don't generate IR for functions with available_externally 2030 // linkage. 2031 if (!shouldEmitFunction(GD)) 2032 return; 2033 2034 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2035 // Make sure to emit the definition(s) before we emit the thunks. 2036 // This is necessary for the generation of certain thunks. 2037 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2038 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2039 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2040 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2041 else 2042 EmitGlobalFunctionDefinition(GD, GV); 2043 2044 if (Method->isVirtual()) 2045 getVTables().EmitThunks(GD); 2046 2047 return; 2048 } 2049 2050 return EmitGlobalFunctionDefinition(GD, GV); 2051 } 2052 2053 if (const auto *VD = dyn_cast<VarDecl>(D)) 2054 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2055 2056 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2057 } 2058 2059 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2060 llvm::Function *NewFn); 2061 2062 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2063 /// module, create and return an llvm Function with the specified type. If there 2064 /// is something in the module with the specified name, return it potentially 2065 /// bitcasted to the right type. 2066 /// 2067 /// If D is non-null, it specifies a decl that correspond to this. This is used 2068 /// to set the attributes on the function when it is first created. 2069 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2070 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2071 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2072 ForDefinition_t IsForDefinition) { 2073 const Decl *D = GD.getDecl(); 2074 2075 // Lookup the entry, lazily creating it if necessary. 2076 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2077 if (Entry) { 2078 if (WeakRefReferences.erase(Entry)) { 2079 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2080 if (FD && !FD->hasAttr<WeakAttr>()) 2081 Entry->setLinkage(llvm::Function::ExternalLinkage); 2082 } 2083 2084 // Handle dropped DLL attributes. 2085 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2086 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2087 2088 // If there are two attempts to define the same mangled name, issue an 2089 // error. 2090 if (IsForDefinition && !Entry->isDeclaration()) { 2091 GlobalDecl OtherGD; 2092 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2093 // to make sure that we issue an error only once. 2094 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2095 (GD.getCanonicalDecl().getDecl() != 2096 OtherGD.getCanonicalDecl().getDecl()) && 2097 DiagnosedConflictingDefinitions.insert(GD).second) { 2098 getDiags().Report(D->getLocation(), 2099 diag::err_duplicate_mangled_name); 2100 getDiags().Report(OtherGD.getDecl()->getLocation(), 2101 diag::note_previous_definition); 2102 } 2103 } 2104 2105 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2106 (Entry->getType()->getElementType() == Ty)) { 2107 return Entry; 2108 } 2109 2110 // Make sure the result is of the correct type. 2111 // (If function is requested for a definition, we always need to create a new 2112 // function, not just return a bitcast.) 2113 if (!IsForDefinition) 2114 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2115 } 2116 2117 // This function doesn't have a complete type (for example, the return 2118 // type is an incomplete struct). Use a fake type instead, and make 2119 // sure not to try to set attributes. 2120 bool IsIncompleteFunction = false; 2121 2122 llvm::FunctionType *FTy; 2123 if (isa<llvm::FunctionType>(Ty)) { 2124 FTy = cast<llvm::FunctionType>(Ty); 2125 } else { 2126 FTy = llvm::FunctionType::get(VoidTy, false); 2127 IsIncompleteFunction = true; 2128 } 2129 2130 llvm::Function *F = 2131 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2132 Entry ? StringRef() : MangledName, &getModule()); 2133 2134 // If we already created a function with the same mangled name (but different 2135 // type) before, take its name and add it to the list of functions to be 2136 // replaced with F at the end of CodeGen. 2137 // 2138 // This happens if there is a prototype for a function (e.g. "int f()") and 2139 // then a definition of a different type (e.g. "int f(int x)"). 2140 if (Entry) { 2141 F->takeName(Entry); 2142 2143 // This might be an implementation of a function without a prototype, in 2144 // which case, try to do special replacement of calls which match the new 2145 // prototype. The really key thing here is that we also potentially drop 2146 // arguments from the call site so as to make a direct call, which makes the 2147 // inliner happier and suppresses a number of optimizer warnings (!) about 2148 // dropping arguments. 2149 if (!Entry->use_empty()) { 2150 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2151 Entry->removeDeadConstantUsers(); 2152 } 2153 2154 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2155 F, Entry->getType()->getElementType()->getPointerTo()); 2156 addGlobalValReplacement(Entry, BC); 2157 } 2158 2159 assert(F->getName() == MangledName && "name was uniqued!"); 2160 if (D) 2161 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk, 2162 IsForDefinition); 2163 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2164 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2165 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2166 } 2167 2168 if (!DontDefer) { 2169 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2170 // each other bottoming out with the base dtor. Therefore we emit non-base 2171 // dtors on usage, even if there is no dtor definition in the TU. 2172 if (D && isa<CXXDestructorDecl>(D) && 2173 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2174 GD.getDtorType())) 2175 addDeferredDeclToEmit(GD); 2176 2177 // This is the first use or definition of a mangled name. If there is a 2178 // deferred decl with this name, remember that we need to emit it at the end 2179 // of the file. 2180 auto DDI = DeferredDecls.find(MangledName); 2181 if (DDI != DeferredDecls.end()) { 2182 // Move the potentially referenced deferred decl to the 2183 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2184 // don't need it anymore). 2185 addDeferredDeclToEmit(DDI->second); 2186 DeferredDecls.erase(DDI); 2187 2188 // Otherwise, there are cases we have to worry about where we're 2189 // using a declaration for which we must emit a definition but where 2190 // we might not find a top-level definition: 2191 // - member functions defined inline in their classes 2192 // - friend functions defined inline in some class 2193 // - special member functions with implicit definitions 2194 // If we ever change our AST traversal to walk into class methods, 2195 // this will be unnecessary. 2196 // 2197 // We also don't emit a definition for a function if it's going to be an 2198 // entry in a vtable, unless it's already marked as used. 2199 } else if (getLangOpts().CPlusPlus && D) { 2200 // Look for a declaration that's lexically in a record. 2201 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2202 FD = FD->getPreviousDecl()) { 2203 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2204 if (FD->doesThisDeclarationHaveABody()) { 2205 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2206 break; 2207 } 2208 } 2209 } 2210 } 2211 } 2212 2213 // Make sure the result is of the requested type. 2214 if (!IsIncompleteFunction) { 2215 assert(F->getType()->getElementType() == Ty); 2216 return F; 2217 } 2218 2219 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2220 return llvm::ConstantExpr::getBitCast(F, PTy); 2221 } 2222 2223 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2224 /// non-null, then this function will use the specified type if it has to 2225 /// create it (this occurs when we see a definition of the function). 2226 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2227 llvm::Type *Ty, 2228 bool ForVTable, 2229 bool DontDefer, 2230 ForDefinition_t IsForDefinition) { 2231 // If there was no specific requested type, just convert it now. 2232 if (!Ty) { 2233 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2234 auto CanonTy = Context.getCanonicalType(FD->getType()); 2235 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2236 } 2237 2238 StringRef MangledName = getMangledName(GD); 2239 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2240 /*IsThunk=*/false, llvm::AttributeList(), 2241 IsForDefinition); 2242 } 2243 2244 static const FunctionDecl * 2245 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2246 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2247 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2248 2249 IdentifierInfo &CII = C.Idents.get(Name); 2250 for (const auto &Result : DC->lookup(&CII)) 2251 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2252 return FD; 2253 2254 if (!C.getLangOpts().CPlusPlus) 2255 return nullptr; 2256 2257 // Demangle the premangled name from getTerminateFn() 2258 IdentifierInfo &CXXII = 2259 (Name == "_ZSt9terminatev" || Name == "\01?terminate@@YAXXZ") 2260 ? C.Idents.get("terminate") 2261 : C.Idents.get(Name); 2262 2263 for (const auto &N : {"__cxxabiv1", "std"}) { 2264 IdentifierInfo &NS = C.Idents.get(N); 2265 for (const auto &Result : DC->lookup(&NS)) { 2266 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2267 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2268 for (const auto &Result : LSD->lookup(&NS)) 2269 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2270 break; 2271 2272 if (ND) 2273 for (const auto &Result : ND->lookup(&CXXII)) 2274 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2275 return FD; 2276 } 2277 } 2278 2279 return nullptr; 2280 } 2281 2282 /// CreateRuntimeFunction - Create a new runtime function with the specified 2283 /// type and name. 2284 llvm::Constant * 2285 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2286 llvm::AttributeList ExtraAttrs, 2287 bool Local) { 2288 llvm::Constant *C = 2289 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2290 /*DontDefer=*/false, /*IsThunk=*/false, 2291 ExtraAttrs); 2292 2293 if (auto *F = dyn_cast<llvm::Function>(C)) { 2294 if (F->empty()) { 2295 F->setCallingConv(getRuntimeCC()); 2296 2297 if (!Local && getTriple().isOSBinFormatCOFF() && 2298 !getCodeGenOpts().LTOVisibilityPublicStd && 2299 !getTriple().isWindowsGNUEnvironment()) { 2300 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2301 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2302 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2303 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2304 } 2305 } 2306 } 2307 } 2308 2309 return C; 2310 } 2311 2312 /// CreateBuiltinFunction - Create a new builtin function with the specified 2313 /// type and name. 2314 llvm::Constant * 2315 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2316 llvm::AttributeList ExtraAttrs) { 2317 llvm::Constant *C = 2318 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2319 /*DontDefer=*/false, /*IsThunk=*/false, ExtraAttrs); 2320 if (auto *F = dyn_cast<llvm::Function>(C)) 2321 if (F->empty()) 2322 F->setCallingConv(getBuiltinCC()); 2323 return C; 2324 } 2325 2326 /// isTypeConstant - Determine whether an object of this type can be emitted 2327 /// as a constant. 2328 /// 2329 /// If ExcludeCtor is true, the duration when the object's constructor runs 2330 /// will not be considered. The caller will need to verify that the object is 2331 /// not written to during its construction. 2332 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2333 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2334 return false; 2335 2336 if (Context.getLangOpts().CPlusPlus) { 2337 if (const CXXRecordDecl *Record 2338 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2339 return ExcludeCtor && !Record->hasMutableFields() && 2340 Record->hasTrivialDestructor(); 2341 } 2342 2343 return true; 2344 } 2345 2346 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2347 /// create and return an llvm GlobalVariable with the specified type. If there 2348 /// is something in the module with the specified name, return it potentially 2349 /// bitcasted to the right type. 2350 /// 2351 /// If D is non-null, it specifies a decl that correspond to this. This is used 2352 /// to set the attributes on the global when it is first created. 2353 /// 2354 /// If IsForDefinition is true, it is guranteed that an actual global with 2355 /// type Ty will be returned, not conversion of a variable with the same 2356 /// mangled name but some other type. 2357 llvm::Constant * 2358 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2359 llvm::PointerType *Ty, 2360 const VarDecl *D, 2361 ForDefinition_t IsForDefinition) { 2362 // Lookup the entry, lazily creating it if necessary. 2363 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2364 if (Entry) { 2365 if (WeakRefReferences.erase(Entry)) { 2366 if (D && !D->hasAttr<WeakAttr>()) 2367 Entry->setLinkage(llvm::Function::ExternalLinkage); 2368 } 2369 2370 // Handle dropped DLL attributes. 2371 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2372 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2373 2374 if (Entry->getType() == Ty) 2375 return Entry; 2376 2377 // If there are two attempts to define the same mangled name, issue an 2378 // error. 2379 if (IsForDefinition && !Entry->isDeclaration()) { 2380 GlobalDecl OtherGD; 2381 const VarDecl *OtherD; 2382 2383 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2384 // to make sure that we issue an error only once. 2385 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2386 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2387 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2388 OtherD->hasInit() && 2389 DiagnosedConflictingDefinitions.insert(D).second) { 2390 getDiags().Report(D->getLocation(), 2391 diag::err_duplicate_mangled_name); 2392 getDiags().Report(OtherGD.getDecl()->getLocation(), 2393 diag::note_previous_definition); 2394 } 2395 } 2396 2397 // Make sure the result is of the correct type. 2398 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2399 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2400 2401 // (If global is requested for a definition, we always need to create a new 2402 // global, not just return a bitcast.) 2403 if (!IsForDefinition) 2404 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2405 } 2406 2407 auto AddrSpace = GetGlobalVarAddressSpace(D); 2408 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2409 2410 auto *GV = new llvm::GlobalVariable( 2411 getModule(), Ty->getElementType(), false, 2412 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2413 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2414 2415 // If we already created a global with the same mangled name (but different 2416 // type) before, take its name and remove it from its parent. 2417 if (Entry) { 2418 GV->takeName(Entry); 2419 2420 if (!Entry->use_empty()) { 2421 llvm::Constant *NewPtrForOldDecl = 2422 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2423 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2424 } 2425 2426 Entry->eraseFromParent(); 2427 } 2428 2429 // This is the first use or definition of a mangled name. If there is a 2430 // deferred decl with this name, remember that we need to emit it at the end 2431 // of the file. 2432 auto DDI = DeferredDecls.find(MangledName); 2433 if (DDI != DeferredDecls.end()) { 2434 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2435 // list, and remove it from DeferredDecls (since we don't need it anymore). 2436 addDeferredDeclToEmit(DDI->second); 2437 DeferredDecls.erase(DDI); 2438 } 2439 2440 // Handle things which are present even on external declarations. 2441 if (D) { 2442 // FIXME: This code is overly simple and should be merged with other global 2443 // handling. 2444 GV->setConstant(isTypeConstant(D->getType(), false)); 2445 2446 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2447 2448 setLinkageForGV(GV, D); 2449 setGlobalVisibility(GV, D, NotForDefinition); 2450 2451 if (D->getTLSKind()) { 2452 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2453 CXXThreadLocals.push_back(D); 2454 setTLSMode(GV, *D); 2455 } 2456 2457 // If required by the ABI, treat declarations of static data members with 2458 // inline initializers as definitions. 2459 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 2460 EmitGlobalVarDefinition(D); 2461 } 2462 2463 // Emit section information for extern variables. 2464 if (D->hasExternalStorage()) { 2465 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 2466 GV->setSection(SA->getName()); 2467 } 2468 2469 // Handle XCore specific ABI requirements. 2470 if (getTriple().getArch() == llvm::Triple::xcore && 2471 D->getLanguageLinkage() == CLanguageLinkage && 2472 D->getType().isConstant(Context) && 2473 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 2474 GV->setSection(".cp.rodata"); 2475 2476 // Check if we a have a const declaration with an initializer, we may be 2477 // able to emit it as available_externally to expose it's value to the 2478 // optimizer. 2479 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 2480 D->getType().isConstQualified() && !GV->hasInitializer() && 2481 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 2482 const auto *Record = 2483 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 2484 bool HasMutableFields = Record && Record->hasMutableFields(); 2485 if (!HasMutableFields) { 2486 const VarDecl *InitDecl; 2487 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2488 if (InitExpr) { 2489 ConstantEmitter emitter(*this); 2490 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 2491 if (Init) { 2492 auto *InitType = Init->getType(); 2493 if (GV->getType()->getElementType() != InitType) { 2494 // The type of the initializer does not match the definition. 2495 // This happens when an initializer has a different type from 2496 // the type of the global (because of padding at the end of a 2497 // structure for instance). 2498 GV->setName(StringRef()); 2499 // Make a new global with the correct type, this is now guaranteed 2500 // to work. 2501 auto *NewGV = cast<llvm::GlobalVariable>( 2502 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 2503 2504 // Erase the old global, since it is no longer used. 2505 cast<llvm::GlobalValue>(GV)->eraseFromParent(); 2506 GV = NewGV; 2507 } else { 2508 GV->setInitializer(Init); 2509 GV->setConstant(true); 2510 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 2511 } 2512 emitter.finalize(GV); 2513 } 2514 } 2515 } 2516 } 2517 } 2518 2519 LangAS ExpectedAS = 2520 D ? D->getType().getAddressSpace() 2521 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 2522 assert(getContext().getTargetAddressSpace(ExpectedAS) == 2523 Ty->getPointerAddressSpace()); 2524 if (AddrSpace != ExpectedAS) 2525 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 2526 ExpectedAS, Ty); 2527 2528 return GV; 2529 } 2530 2531 llvm::Constant * 2532 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 2533 ForDefinition_t IsForDefinition) { 2534 const Decl *D = GD.getDecl(); 2535 if (isa<CXXConstructorDecl>(D)) 2536 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 2537 getFromCtorType(GD.getCtorType()), 2538 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2539 /*DontDefer=*/false, IsForDefinition); 2540 else if (isa<CXXDestructorDecl>(D)) 2541 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 2542 getFromDtorType(GD.getDtorType()), 2543 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 2544 /*DontDefer=*/false, IsForDefinition); 2545 else if (isa<CXXMethodDecl>(D)) { 2546 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 2547 cast<CXXMethodDecl>(D)); 2548 auto Ty = getTypes().GetFunctionType(*FInfo); 2549 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2550 IsForDefinition); 2551 } else if (isa<FunctionDecl>(D)) { 2552 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2553 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2554 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 2555 IsForDefinition); 2556 } else 2557 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 2558 IsForDefinition); 2559 } 2560 2561 llvm::GlobalVariable * 2562 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 2563 llvm::Type *Ty, 2564 llvm::GlobalValue::LinkageTypes Linkage) { 2565 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 2566 llvm::GlobalVariable *OldGV = nullptr; 2567 2568 if (GV) { 2569 // Check if the variable has the right type. 2570 if (GV->getType()->getElementType() == Ty) 2571 return GV; 2572 2573 // Because C++ name mangling, the only way we can end up with an already 2574 // existing global with the same name is if it has been declared extern "C". 2575 assert(GV->isDeclaration() && "Declaration has wrong type!"); 2576 OldGV = GV; 2577 } 2578 2579 // Create a new variable. 2580 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 2581 Linkage, nullptr, Name); 2582 2583 if (OldGV) { 2584 // Replace occurrences of the old variable if needed. 2585 GV->takeName(OldGV); 2586 2587 if (!OldGV->use_empty()) { 2588 llvm::Constant *NewPtrForOldDecl = 2589 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 2590 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 2591 } 2592 2593 OldGV->eraseFromParent(); 2594 } 2595 2596 if (supportsCOMDAT() && GV->isWeakForLinker() && 2597 !GV->hasAvailableExternallyLinkage()) 2598 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2599 2600 return GV; 2601 } 2602 2603 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 2604 /// given global variable. If Ty is non-null and if the global doesn't exist, 2605 /// then it will be created with the specified type instead of whatever the 2606 /// normal requested type would be. If IsForDefinition is true, it is guranteed 2607 /// that an actual global with type Ty will be returned, not conversion of a 2608 /// variable with the same mangled name but some other type. 2609 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 2610 llvm::Type *Ty, 2611 ForDefinition_t IsForDefinition) { 2612 assert(D->hasGlobalStorage() && "Not a global variable"); 2613 QualType ASTTy = D->getType(); 2614 if (!Ty) 2615 Ty = getTypes().ConvertTypeForMem(ASTTy); 2616 2617 llvm::PointerType *PTy = 2618 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 2619 2620 StringRef MangledName = getMangledName(D); 2621 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 2622 } 2623 2624 /// CreateRuntimeVariable - Create a new runtime global variable with the 2625 /// specified type and name. 2626 llvm::Constant * 2627 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 2628 StringRef Name) { 2629 return GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 2630 } 2631 2632 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 2633 assert(!D->getInit() && "Cannot emit definite definitions here!"); 2634 2635 StringRef MangledName = getMangledName(D); 2636 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 2637 2638 // We already have a definition, not declaration, with the same mangled name. 2639 // Emitting of declaration is not required (and actually overwrites emitted 2640 // definition). 2641 if (GV && !GV->isDeclaration()) 2642 return; 2643 2644 // If we have not seen a reference to this variable yet, place it into the 2645 // deferred declarations table to be emitted if needed later. 2646 if (!MustBeEmitted(D) && !GV) { 2647 DeferredDecls[MangledName] = D; 2648 return; 2649 } 2650 2651 // The tentative definition is the only definition. 2652 EmitGlobalVarDefinition(D); 2653 } 2654 2655 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 2656 return Context.toCharUnitsFromBits( 2657 getDataLayout().getTypeStoreSizeInBits(Ty)); 2658 } 2659 2660 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 2661 LangAS AddrSpace = LangAS::Default; 2662 if (LangOpts.OpenCL) { 2663 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 2664 assert(AddrSpace == LangAS::opencl_global || 2665 AddrSpace == LangAS::opencl_constant || 2666 AddrSpace == LangAS::opencl_local || 2667 AddrSpace >= LangAS::FirstTargetAddressSpace); 2668 return AddrSpace; 2669 } 2670 2671 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 2672 if (D && D->hasAttr<CUDAConstantAttr>()) 2673 return LangAS::cuda_constant; 2674 else if (D && D->hasAttr<CUDASharedAttr>()) 2675 return LangAS::cuda_shared; 2676 else 2677 return LangAS::cuda_device; 2678 } 2679 2680 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 2681 } 2682 2683 template<typename SomeDecl> 2684 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 2685 llvm::GlobalValue *GV) { 2686 if (!getLangOpts().CPlusPlus) 2687 return; 2688 2689 // Must have 'used' attribute, or else inline assembly can't rely on 2690 // the name existing. 2691 if (!D->template hasAttr<UsedAttr>()) 2692 return; 2693 2694 // Must have internal linkage and an ordinary name. 2695 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 2696 return; 2697 2698 // Must be in an extern "C" context. Entities declared directly within 2699 // a record are not extern "C" even if the record is in such a context. 2700 const SomeDecl *First = D->getFirstDecl(); 2701 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 2702 return; 2703 2704 // OK, this is an internal linkage entity inside an extern "C" linkage 2705 // specification. Make a note of that so we can give it the "expected" 2706 // mangled name if nothing else is using that name. 2707 std::pair<StaticExternCMap::iterator, bool> R = 2708 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 2709 2710 // If we have multiple internal linkage entities with the same name 2711 // in extern "C" regions, none of them gets that name. 2712 if (!R.second) 2713 R.first->second = nullptr; 2714 } 2715 2716 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 2717 if (!CGM.supportsCOMDAT()) 2718 return false; 2719 2720 if (D.hasAttr<SelectAnyAttr>()) 2721 return true; 2722 2723 GVALinkage Linkage; 2724 if (auto *VD = dyn_cast<VarDecl>(&D)) 2725 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 2726 else 2727 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 2728 2729 switch (Linkage) { 2730 case GVA_Internal: 2731 case GVA_AvailableExternally: 2732 case GVA_StrongExternal: 2733 return false; 2734 case GVA_DiscardableODR: 2735 case GVA_StrongODR: 2736 return true; 2737 } 2738 llvm_unreachable("No such linkage"); 2739 } 2740 2741 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 2742 llvm::GlobalObject &GO) { 2743 if (!shouldBeInCOMDAT(*this, D)) 2744 return; 2745 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 2746 } 2747 2748 /// Pass IsTentative as true if you want to create a tentative definition. 2749 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 2750 bool IsTentative) { 2751 // OpenCL global variables of sampler type are translated to function calls, 2752 // therefore no need to be translated. 2753 QualType ASTTy = D->getType(); 2754 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 2755 return; 2756 2757 llvm::Constant *Init = nullptr; 2758 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 2759 bool NeedsGlobalCtor = false; 2760 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 2761 2762 const VarDecl *InitDecl; 2763 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 2764 2765 Optional<ConstantEmitter> emitter; 2766 2767 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 2768 // as part of their declaration." Sema has already checked for 2769 // error cases, so we just need to set Init to UndefValue. 2770 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 2771 D->hasAttr<CUDASharedAttr>()) 2772 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 2773 else if (!InitExpr) { 2774 // This is a tentative definition; tentative definitions are 2775 // implicitly initialized with { 0 }. 2776 // 2777 // Note that tentative definitions are only emitted at the end of 2778 // a translation unit, so they should never have incomplete 2779 // type. In addition, EmitTentativeDefinition makes sure that we 2780 // never attempt to emit a tentative definition if a real one 2781 // exists. A use may still exists, however, so we still may need 2782 // to do a RAUW. 2783 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 2784 Init = EmitNullConstant(D->getType()); 2785 } else { 2786 initializedGlobalDecl = GlobalDecl(D); 2787 emitter.emplace(*this); 2788 Init = emitter->tryEmitForInitializer(*InitDecl); 2789 2790 if (!Init) { 2791 QualType T = InitExpr->getType(); 2792 if (D->getType()->isReferenceType()) 2793 T = D->getType(); 2794 2795 if (getLangOpts().CPlusPlus) { 2796 Init = EmitNullConstant(T); 2797 NeedsGlobalCtor = true; 2798 } else { 2799 ErrorUnsupported(D, "static initializer"); 2800 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 2801 } 2802 } else { 2803 // We don't need an initializer, so remove the entry for the delayed 2804 // initializer position (just in case this entry was delayed) if we 2805 // also don't need to register a destructor. 2806 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 2807 DelayedCXXInitPosition.erase(D); 2808 } 2809 } 2810 2811 llvm::Type* InitType = Init->getType(); 2812 llvm::Constant *Entry = 2813 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 2814 2815 // Strip off a bitcast if we got one back. 2816 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 2817 assert(CE->getOpcode() == llvm::Instruction::BitCast || 2818 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 2819 // All zero index gep. 2820 CE->getOpcode() == llvm::Instruction::GetElementPtr); 2821 Entry = CE->getOperand(0); 2822 } 2823 2824 // Entry is now either a Function or GlobalVariable. 2825 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 2826 2827 // We have a definition after a declaration with the wrong type. 2828 // We must make a new GlobalVariable* and update everything that used OldGV 2829 // (a declaration or tentative definition) with the new GlobalVariable* 2830 // (which will be a definition). 2831 // 2832 // This happens if there is a prototype for a global (e.g. 2833 // "extern int x[];") and then a definition of a different type (e.g. 2834 // "int x[10];"). This also happens when an initializer has a different type 2835 // from the type of the global (this happens with unions). 2836 if (!GV || GV->getType()->getElementType() != InitType || 2837 GV->getType()->getAddressSpace() != 2838 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 2839 2840 // Move the old entry aside so that we'll create a new one. 2841 Entry->setName(StringRef()); 2842 2843 // Make a new global with the correct type, this is now guaranteed to work. 2844 GV = cast<llvm::GlobalVariable>( 2845 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 2846 2847 // Replace all uses of the old global with the new global 2848 llvm::Constant *NewPtrForOldDecl = 2849 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2850 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2851 2852 // Erase the old global, since it is no longer used. 2853 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 2854 } 2855 2856 MaybeHandleStaticInExternC(D, GV); 2857 2858 if (D->hasAttr<AnnotateAttr>()) 2859 AddGlobalAnnotations(D, GV); 2860 2861 // Set the llvm linkage type as appropriate. 2862 llvm::GlobalValue::LinkageTypes Linkage = 2863 getLLVMLinkageVarDefinition(D, GV->isConstant()); 2864 2865 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 2866 // the device. [...]" 2867 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 2868 // __device__, declares a variable that: [...] 2869 // Is accessible from all the threads within the grid and from the host 2870 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 2871 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 2872 if (GV && LangOpts.CUDA) { 2873 if (LangOpts.CUDAIsDevice) { 2874 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 2875 GV->setExternallyInitialized(true); 2876 } else { 2877 // Host-side shadows of external declarations of device-side 2878 // global variables become internal definitions. These have to 2879 // be internal in order to prevent name conflicts with global 2880 // host variables with the same name in a different TUs. 2881 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 2882 Linkage = llvm::GlobalValue::InternalLinkage; 2883 2884 // Shadow variables and their properties must be registered 2885 // with CUDA runtime. 2886 unsigned Flags = 0; 2887 if (!D->hasDefinition()) 2888 Flags |= CGCUDARuntime::ExternDeviceVar; 2889 if (D->hasAttr<CUDAConstantAttr>()) 2890 Flags |= CGCUDARuntime::ConstantDeviceVar; 2891 getCUDARuntime().registerDeviceVar(*GV, Flags); 2892 } else if (D->hasAttr<CUDASharedAttr>()) 2893 // __shared__ variables are odd. Shadows do get created, but 2894 // they are not registered with the CUDA runtime, so they 2895 // can't really be used to access their device-side 2896 // counterparts. It's not clear yet whether it's nvcc's bug or 2897 // a feature, but we've got to do the same for compatibility. 2898 Linkage = llvm::GlobalValue::InternalLinkage; 2899 } 2900 } 2901 2902 GV->setInitializer(Init); 2903 if (emitter) emitter->finalize(GV); 2904 2905 // If it is safe to mark the global 'constant', do so now. 2906 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 2907 isTypeConstant(D->getType(), true)); 2908 2909 // If it is in a read-only section, mark it 'constant'. 2910 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 2911 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 2912 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 2913 GV->setConstant(true); 2914 } 2915 2916 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2917 2918 2919 // On Darwin, if the normal linkage of a C++ thread_local variable is 2920 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 2921 // copies within a linkage unit; otherwise, the backing variable has 2922 // internal linkage and all accesses should just be calls to the 2923 // Itanium-specified entry point, which has the normal linkage of the 2924 // variable. This is to preserve the ability to change the implementation 2925 // behind the scenes. 2926 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 2927 Context.getTargetInfo().getTriple().isOSDarwin() && 2928 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 2929 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 2930 Linkage = llvm::GlobalValue::InternalLinkage; 2931 2932 GV->setLinkage(Linkage); 2933 if (D->hasAttr<DLLImportAttr>()) 2934 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 2935 else if (D->hasAttr<DLLExportAttr>()) 2936 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 2937 else 2938 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 2939 2940 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 2941 // common vars aren't constant even if declared const. 2942 GV->setConstant(false); 2943 // Tentative definition of global variables may be initialized with 2944 // non-zero null pointers. In this case they should have weak linkage 2945 // since common linkage must have zero initializer and must not have 2946 // explicit section therefore cannot have non-zero initial value. 2947 if (!GV->getInitializer()->isNullValue()) 2948 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 2949 } 2950 2951 setNonAliasAttributes(D, GV); 2952 2953 if (D->getTLSKind() && !GV->isThreadLocal()) { 2954 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2955 CXXThreadLocals.push_back(D); 2956 setTLSMode(GV, *D); 2957 } 2958 2959 maybeSetTrivialComdat(*D, *GV); 2960 2961 // Emit the initializer function if necessary. 2962 if (NeedsGlobalCtor || NeedsGlobalDtor) 2963 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 2964 2965 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 2966 2967 // Emit global variable debug information. 2968 if (CGDebugInfo *DI = getModuleDebugInfo()) 2969 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2970 DI->EmitGlobalVariable(GV, D); 2971 } 2972 2973 static bool isVarDeclStrongDefinition(const ASTContext &Context, 2974 CodeGenModule &CGM, const VarDecl *D, 2975 bool NoCommon) { 2976 // Don't give variables common linkage if -fno-common was specified unless it 2977 // was overridden by a NoCommon attribute. 2978 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 2979 return true; 2980 2981 // C11 6.9.2/2: 2982 // A declaration of an identifier for an object that has file scope without 2983 // an initializer, and without a storage-class specifier or with the 2984 // storage-class specifier static, constitutes a tentative definition. 2985 if (D->getInit() || D->hasExternalStorage()) 2986 return true; 2987 2988 // A variable cannot be both common and exist in a section. 2989 if (D->hasAttr<SectionAttr>()) 2990 return true; 2991 2992 // A variable cannot be both common and exist in a section. 2993 // We dont try to determine which is the right section in the front-end. 2994 // If no specialized section name is applicable, it will resort to default. 2995 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 2996 D->hasAttr<PragmaClangDataSectionAttr>() || 2997 D->hasAttr<PragmaClangRodataSectionAttr>()) 2998 return true; 2999 3000 // Thread local vars aren't considered common linkage. 3001 if (D->getTLSKind()) 3002 return true; 3003 3004 // Tentative definitions marked with WeakImportAttr are true definitions. 3005 if (D->hasAttr<WeakImportAttr>()) 3006 return true; 3007 3008 // A variable cannot be both common and exist in a comdat. 3009 if (shouldBeInCOMDAT(CGM, *D)) 3010 return true; 3011 3012 // Declarations with a required alignment do not have common linkage in MSVC 3013 // mode. 3014 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3015 if (D->hasAttr<AlignedAttr>()) 3016 return true; 3017 QualType VarType = D->getType(); 3018 if (Context.isAlignmentRequired(VarType)) 3019 return true; 3020 3021 if (const auto *RT = VarType->getAs<RecordType>()) { 3022 const RecordDecl *RD = RT->getDecl(); 3023 for (const FieldDecl *FD : RD->fields()) { 3024 if (FD->isBitField()) 3025 continue; 3026 if (FD->hasAttr<AlignedAttr>()) 3027 return true; 3028 if (Context.isAlignmentRequired(FD->getType())) 3029 return true; 3030 } 3031 } 3032 } 3033 3034 return false; 3035 } 3036 3037 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3038 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3039 if (Linkage == GVA_Internal) 3040 return llvm::Function::InternalLinkage; 3041 3042 if (D->hasAttr<WeakAttr>()) { 3043 if (IsConstantVariable) 3044 return llvm::GlobalVariable::WeakODRLinkage; 3045 else 3046 return llvm::GlobalVariable::WeakAnyLinkage; 3047 } 3048 3049 // We are guaranteed to have a strong definition somewhere else, 3050 // so we can use available_externally linkage. 3051 if (Linkage == GVA_AvailableExternally) 3052 return llvm::GlobalValue::AvailableExternallyLinkage; 3053 3054 // Note that Apple's kernel linker doesn't support symbol 3055 // coalescing, so we need to avoid linkonce and weak linkages there. 3056 // Normally, this means we just map to internal, but for explicit 3057 // instantiations we'll map to external. 3058 3059 // In C++, the compiler has to emit a definition in every translation unit 3060 // that references the function. We should use linkonce_odr because 3061 // a) if all references in this translation unit are optimized away, we 3062 // don't need to codegen it. b) if the function persists, it needs to be 3063 // merged with other definitions. c) C++ has the ODR, so we know the 3064 // definition is dependable. 3065 if (Linkage == GVA_DiscardableODR) 3066 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3067 : llvm::Function::InternalLinkage; 3068 3069 // An explicit instantiation of a template has weak linkage, since 3070 // explicit instantiations can occur in multiple translation units 3071 // and must all be equivalent. However, we are not allowed to 3072 // throw away these explicit instantiations. 3073 // 3074 // We don't currently support CUDA device code spread out across multiple TUs, 3075 // so say that CUDA templates are either external (for kernels) or internal. 3076 // This lets llvm perform aggressive inter-procedural optimizations. 3077 if (Linkage == GVA_StrongODR) { 3078 if (Context.getLangOpts().AppleKext) 3079 return llvm::Function::ExternalLinkage; 3080 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3081 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3082 : llvm::Function::InternalLinkage; 3083 return llvm::Function::WeakODRLinkage; 3084 } 3085 3086 // C++ doesn't have tentative definitions and thus cannot have common 3087 // linkage. 3088 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3089 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3090 CodeGenOpts.NoCommon)) 3091 return llvm::GlobalVariable::CommonLinkage; 3092 3093 // selectany symbols are externally visible, so use weak instead of 3094 // linkonce. MSVC optimizes away references to const selectany globals, so 3095 // all definitions should be the same and ODR linkage should be used. 3096 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3097 if (D->hasAttr<SelectAnyAttr>()) 3098 return llvm::GlobalVariable::WeakODRLinkage; 3099 3100 // Otherwise, we have strong external linkage. 3101 assert(Linkage == GVA_StrongExternal); 3102 return llvm::GlobalVariable::ExternalLinkage; 3103 } 3104 3105 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3106 const VarDecl *VD, bool IsConstant) { 3107 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3108 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3109 } 3110 3111 /// Replace the uses of a function that was declared with a non-proto type. 3112 /// We want to silently drop extra arguments from call sites 3113 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3114 llvm::Function *newFn) { 3115 // Fast path. 3116 if (old->use_empty()) return; 3117 3118 llvm::Type *newRetTy = newFn->getReturnType(); 3119 SmallVector<llvm::Value*, 4> newArgs; 3120 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3121 3122 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3123 ui != ue; ) { 3124 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3125 llvm::User *user = use->getUser(); 3126 3127 // Recognize and replace uses of bitcasts. Most calls to 3128 // unprototyped functions will use bitcasts. 3129 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3130 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3131 replaceUsesOfNonProtoConstant(bitcast, newFn); 3132 continue; 3133 } 3134 3135 // Recognize calls to the function. 3136 llvm::CallSite callSite(user); 3137 if (!callSite) continue; 3138 if (!callSite.isCallee(&*use)) continue; 3139 3140 // If the return types don't match exactly, then we can't 3141 // transform this call unless it's dead. 3142 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3143 continue; 3144 3145 // Get the call site's attribute list. 3146 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3147 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3148 3149 // If the function was passed too few arguments, don't transform. 3150 unsigned newNumArgs = newFn->arg_size(); 3151 if (callSite.arg_size() < newNumArgs) continue; 3152 3153 // If extra arguments were passed, we silently drop them. 3154 // If any of the types mismatch, we don't transform. 3155 unsigned argNo = 0; 3156 bool dontTransform = false; 3157 for (llvm::Argument &A : newFn->args()) { 3158 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3159 dontTransform = true; 3160 break; 3161 } 3162 3163 // Add any parameter attributes. 3164 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3165 argNo++; 3166 } 3167 if (dontTransform) 3168 continue; 3169 3170 // Okay, we can transform this. Create the new call instruction and copy 3171 // over the required information. 3172 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3173 3174 // Copy over any operand bundles. 3175 callSite.getOperandBundlesAsDefs(newBundles); 3176 3177 llvm::CallSite newCall; 3178 if (callSite.isCall()) { 3179 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3180 callSite.getInstruction()); 3181 } else { 3182 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3183 newCall = llvm::InvokeInst::Create(newFn, 3184 oldInvoke->getNormalDest(), 3185 oldInvoke->getUnwindDest(), 3186 newArgs, newBundles, "", 3187 callSite.getInstruction()); 3188 } 3189 newArgs.clear(); // for the next iteration 3190 3191 if (!newCall->getType()->isVoidTy()) 3192 newCall->takeName(callSite.getInstruction()); 3193 newCall.setAttributes(llvm::AttributeList::get( 3194 newFn->getContext(), oldAttrs.getFnAttributes(), 3195 oldAttrs.getRetAttributes(), newArgAttrs)); 3196 newCall.setCallingConv(callSite.getCallingConv()); 3197 3198 // Finally, remove the old call, replacing any uses with the new one. 3199 if (!callSite->use_empty()) 3200 callSite->replaceAllUsesWith(newCall.getInstruction()); 3201 3202 // Copy debug location attached to CI. 3203 if (callSite->getDebugLoc()) 3204 newCall->setDebugLoc(callSite->getDebugLoc()); 3205 3206 callSite->eraseFromParent(); 3207 } 3208 } 3209 3210 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3211 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3212 /// existing call uses of the old function in the module, this adjusts them to 3213 /// call the new function directly. 3214 /// 3215 /// This is not just a cleanup: the always_inline pass requires direct calls to 3216 /// functions to be able to inline them. If there is a bitcast in the way, it 3217 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3218 /// run at -O0. 3219 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3220 llvm::Function *NewFn) { 3221 // If we're redefining a global as a function, don't transform it. 3222 if (!isa<llvm::Function>(Old)) return; 3223 3224 replaceUsesOfNonProtoConstant(Old, NewFn); 3225 } 3226 3227 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3228 auto DK = VD->isThisDeclarationADefinition(); 3229 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3230 return; 3231 3232 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3233 // If we have a definition, this might be a deferred decl. If the 3234 // instantiation is explicit, make sure we emit it at the end. 3235 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3236 GetAddrOfGlobalVar(VD); 3237 3238 EmitTopLevelDecl(VD); 3239 } 3240 3241 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3242 llvm::GlobalValue *GV) { 3243 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3244 3245 // Compute the function info and LLVM type. 3246 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3247 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3248 3249 // Get or create the prototype for the function. 3250 if (!GV || (GV->getType()->getElementType() != Ty)) 3251 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3252 /*DontDefer=*/true, 3253 ForDefinition)); 3254 3255 // Already emitted. 3256 if (!GV->isDeclaration()) 3257 return; 3258 3259 // We need to set linkage and visibility on the function before 3260 // generating code for it because various parts of IR generation 3261 // want to propagate this information down (e.g. to local static 3262 // declarations). 3263 auto *Fn = cast<llvm::Function>(GV); 3264 setFunctionLinkage(GD, Fn); 3265 setFunctionDLLStorageClass(GD, Fn); 3266 3267 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3268 setGlobalVisibility(Fn, D, ForDefinition); 3269 3270 MaybeHandleStaticInExternC(D, Fn); 3271 3272 maybeSetTrivialComdat(*D, *Fn); 3273 3274 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3275 3276 setFunctionDefinitionAttributes(D, Fn); 3277 SetLLVMFunctionAttributesForDefinition(D, Fn); 3278 3279 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3280 AddGlobalCtor(Fn, CA->getPriority()); 3281 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3282 AddGlobalDtor(Fn, DA->getPriority()); 3283 if (D->hasAttr<AnnotateAttr>()) 3284 AddGlobalAnnotations(D, Fn); 3285 } 3286 3287 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3288 const auto *D = cast<ValueDecl>(GD.getDecl()); 3289 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3290 assert(AA && "Not an alias?"); 3291 3292 StringRef MangledName = getMangledName(GD); 3293 3294 if (AA->getAliasee() == MangledName) { 3295 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3296 return; 3297 } 3298 3299 // If there is a definition in the module, then it wins over the alias. 3300 // This is dubious, but allow it to be safe. Just ignore the alias. 3301 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3302 if (Entry && !Entry->isDeclaration()) 3303 return; 3304 3305 Aliases.push_back(GD); 3306 3307 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3308 3309 // Create a reference to the named value. This ensures that it is emitted 3310 // if a deferred decl. 3311 llvm::Constant *Aliasee; 3312 if (isa<llvm::FunctionType>(DeclTy)) 3313 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3314 /*ForVTable=*/false); 3315 else 3316 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3317 llvm::PointerType::getUnqual(DeclTy), 3318 /*D=*/nullptr); 3319 3320 // Create the new alias itself, but don't set a name yet. 3321 auto *GA = llvm::GlobalAlias::create( 3322 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3323 3324 if (Entry) { 3325 if (GA->getAliasee() == Entry) { 3326 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3327 return; 3328 } 3329 3330 assert(Entry->isDeclaration()); 3331 3332 // If there is a declaration in the module, then we had an extern followed 3333 // by the alias, as in: 3334 // extern int test6(); 3335 // ... 3336 // int test6() __attribute__((alias("test7"))); 3337 // 3338 // Remove it and replace uses of it with the alias. 3339 GA->takeName(Entry); 3340 3341 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3342 Entry->getType())); 3343 Entry->eraseFromParent(); 3344 } else { 3345 GA->setName(MangledName); 3346 } 3347 3348 // Set attributes which are particular to an alias; this is a 3349 // specialization of the attributes which may be set on a global 3350 // variable/function. 3351 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3352 D->isWeakImported()) { 3353 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3354 } 3355 3356 if (const auto *VD = dyn_cast<VarDecl>(D)) 3357 if (VD->getTLSKind()) 3358 setTLSMode(GA, *VD); 3359 3360 setAliasAttributes(D, GA); 3361 } 3362 3363 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3364 const auto *D = cast<ValueDecl>(GD.getDecl()); 3365 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3366 assert(IFA && "Not an ifunc?"); 3367 3368 StringRef MangledName = getMangledName(GD); 3369 3370 if (IFA->getResolver() == MangledName) { 3371 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3372 return; 3373 } 3374 3375 // Report an error if some definition overrides ifunc. 3376 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3377 if (Entry && !Entry->isDeclaration()) { 3378 GlobalDecl OtherGD; 3379 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3380 DiagnosedConflictingDefinitions.insert(GD).second) { 3381 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name); 3382 Diags.Report(OtherGD.getDecl()->getLocation(), 3383 diag::note_previous_definition); 3384 } 3385 return; 3386 } 3387 3388 Aliases.push_back(GD); 3389 3390 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3391 llvm::Constant *Resolver = 3392 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3393 /*ForVTable=*/false); 3394 llvm::GlobalIFunc *GIF = 3395 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3396 "", Resolver, &getModule()); 3397 if (Entry) { 3398 if (GIF->getResolver() == Entry) { 3399 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3400 return; 3401 } 3402 assert(Entry->isDeclaration()); 3403 3404 // If there is a declaration in the module, then we had an extern followed 3405 // by the ifunc, as in: 3406 // extern int test(); 3407 // ... 3408 // int test() __attribute__((ifunc("resolver"))); 3409 // 3410 // Remove it and replace uses of it with the ifunc. 3411 GIF->takeName(Entry); 3412 3413 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 3414 Entry->getType())); 3415 Entry->eraseFromParent(); 3416 } else 3417 GIF->setName(MangledName); 3418 3419 SetCommonAttributes(D, GIF); 3420 } 3421 3422 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 3423 ArrayRef<llvm::Type*> Tys) { 3424 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 3425 Tys); 3426 } 3427 3428 static llvm::StringMapEntry<llvm::GlobalVariable *> & 3429 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 3430 const StringLiteral *Literal, bool TargetIsLSB, 3431 bool &IsUTF16, unsigned &StringLength) { 3432 StringRef String = Literal->getString(); 3433 unsigned NumBytes = String.size(); 3434 3435 // Check for simple case. 3436 if (!Literal->containsNonAsciiOrNull()) { 3437 StringLength = NumBytes; 3438 return *Map.insert(std::make_pair(String, nullptr)).first; 3439 } 3440 3441 // Otherwise, convert the UTF8 literals into a string of shorts. 3442 IsUTF16 = true; 3443 3444 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 3445 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 3446 llvm::UTF16 *ToPtr = &ToBuf[0]; 3447 3448 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 3449 ToPtr + NumBytes, llvm::strictConversion); 3450 3451 // ConvertUTF8toUTF16 returns the length in ToPtr. 3452 StringLength = ToPtr - &ToBuf[0]; 3453 3454 // Add an explicit null. 3455 *ToPtr = 0; 3456 return *Map.insert(std::make_pair( 3457 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 3458 (StringLength + 1) * 2), 3459 nullptr)).first; 3460 } 3461 3462 ConstantAddress 3463 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 3464 unsigned StringLength = 0; 3465 bool isUTF16 = false; 3466 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 3467 GetConstantCFStringEntry(CFConstantStringMap, Literal, 3468 getDataLayout().isLittleEndian(), isUTF16, 3469 StringLength); 3470 3471 if (auto *C = Entry.second) 3472 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 3473 3474 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 3475 llvm::Constant *Zeros[] = { Zero, Zero }; 3476 3477 // If we don't already have it, get __CFConstantStringClassReference. 3478 if (!CFConstantStringClassRef) { 3479 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 3480 Ty = llvm::ArrayType::get(Ty, 0); 3481 llvm::Constant *GV = 3482 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference"); 3483 3484 if (getTriple().isOSBinFormatCOFF()) { 3485 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 3486 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 3487 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 3488 llvm::GlobalValue *CGV = cast<llvm::GlobalValue>(GV); 3489 3490 const VarDecl *VD = nullptr; 3491 for (const auto &Result : DC->lookup(&II)) 3492 if ((VD = dyn_cast<VarDecl>(Result))) 3493 break; 3494 3495 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 3496 CGV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 3497 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3498 } else { 3499 CGV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 3500 CGV->setLinkage(llvm::GlobalValue::ExternalLinkage); 3501 } 3502 } 3503 3504 // Decay array -> ptr 3505 CFConstantStringClassRef = 3506 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 3507 } 3508 3509 QualType CFTy = getContext().getCFConstantStringType(); 3510 3511 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 3512 3513 ConstantInitBuilder Builder(*this); 3514 auto Fields = Builder.beginStruct(STy); 3515 3516 // Class pointer. 3517 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 3518 3519 // Flags. 3520 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 3521 3522 // String pointer. 3523 llvm::Constant *C = nullptr; 3524 if (isUTF16) { 3525 auto Arr = llvm::makeArrayRef( 3526 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 3527 Entry.first().size() / 2); 3528 C = llvm::ConstantDataArray::get(VMContext, Arr); 3529 } else { 3530 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 3531 } 3532 3533 // Note: -fwritable-strings doesn't make the backing store strings of 3534 // CFStrings writable. (See <rdar://problem/10657500>) 3535 auto *GV = 3536 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 3537 llvm::GlobalValue::PrivateLinkage, C, ".str"); 3538 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3539 // Don't enforce the target's minimum global alignment, since the only use 3540 // of the string is via this class initializer. 3541 CharUnits Align = isUTF16 3542 ? getContext().getTypeAlignInChars(getContext().ShortTy) 3543 : getContext().getTypeAlignInChars(getContext().CharTy); 3544 GV->setAlignment(Align.getQuantity()); 3545 3546 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 3547 // Without it LLVM can merge the string with a non unnamed_addr one during 3548 // LTO. Doing that changes the section it ends in, which surprises ld64. 3549 if (getTriple().isOSBinFormatMachO()) 3550 GV->setSection(isUTF16 ? "__TEXT,__ustring" 3551 : "__TEXT,__cstring,cstring_literals"); 3552 3553 // String. 3554 llvm::Constant *Str = 3555 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 3556 3557 if (isUTF16) 3558 // Cast the UTF16 string to the correct type. 3559 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 3560 Fields.add(Str); 3561 3562 // String length. 3563 auto Ty = getTypes().ConvertType(getContext().LongTy); 3564 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 3565 3566 CharUnits Alignment = getPointerAlign(); 3567 3568 // The struct. 3569 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 3570 /*isConstant=*/false, 3571 llvm::GlobalVariable::PrivateLinkage); 3572 switch (getTriple().getObjectFormat()) { 3573 case llvm::Triple::UnknownObjectFormat: 3574 llvm_unreachable("unknown file format"); 3575 case llvm::Triple::COFF: 3576 case llvm::Triple::ELF: 3577 case llvm::Triple::Wasm: 3578 GV->setSection("cfstring"); 3579 break; 3580 case llvm::Triple::MachO: 3581 GV->setSection("__DATA,__cfstring"); 3582 break; 3583 } 3584 Entry.second = GV; 3585 3586 return ConstantAddress(GV, Alignment); 3587 } 3588 3589 bool CodeGenModule::getExpressionLocationsEnabled() const { 3590 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 3591 } 3592 3593 QualType CodeGenModule::getObjCFastEnumerationStateType() { 3594 if (ObjCFastEnumerationStateType.isNull()) { 3595 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 3596 D->startDefinition(); 3597 3598 QualType FieldTypes[] = { 3599 Context.UnsignedLongTy, 3600 Context.getPointerType(Context.getObjCIdType()), 3601 Context.getPointerType(Context.UnsignedLongTy), 3602 Context.getConstantArrayType(Context.UnsignedLongTy, 3603 llvm::APInt(32, 5), ArrayType::Normal, 0) 3604 }; 3605 3606 for (size_t i = 0; i < 4; ++i) { 3607 FieldDecl *Field = FieldDecl::Create(Context, 3608 D, 3609 SourceLocation(), 3610 SourceLocation(), nullptr, 3611 FieldTypes[i], /*TInfo=*/nullptr, 3612 /*BitWidth=*/nullptr, 3613 /*Mutable=*/false, 3614 ICIS_NoInit); 3615 Field->setAccess(AS_public); 3616 D->addDecl(Field); 3617 } 3618 3619 D->completeDefinition(); 3620 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 3621 } 3622 3623 return ObjCFastEnumerationStateType; 3624 } 3625 3626 llvm::Constant * 3627 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 3628 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 3629 3630 // Don't emit it as the address of the string, emit the string data itself 3631 // as an inline array. 3632 if (E->getCharByteWidth() == 1) { 3633 SmallString<64> Str(E->getString()); 3634 3635 // Resize the string to the right size, which is indicated by its type. 3636 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 3637 Str.resize(CAT->getSize().getZExtValue()); 3638 return llvm::ConstantDataArray::getString(VMContext, Str, false); 3639 } 3640 3641 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 3642 llvm::Type *ElemTy = AType->getElementType(); 3643 unsigned NumElements = AType->getNumElements(); 3644 3645 // Wide strings have either 2-byte or 4-byte elements. 3646 if (ElemTy->getPrimitiveSizeInBits() == 16) { 3647 SmallVector<uint16_t, 32> Elements; 3648 Elements.reserve(NumElements); 3649 3650 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3651 Elements.push_back(E->getCodeUnit(i)); 3652 Elements.resize(NumElements); 3653 return llvm::ConstantDataArray::get(VMContext, Elements); 3654 } 3655 3656 assert(ElemTy->getPrimitiveSizeInBits() == 32); 3657 SmallVector<uint32_t, 32> Elements; 3658 Elements.reserve(NumElements); 3659 3660 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 3661 Elements.push_back(E->getCodeUnit(i)); 3662 Elements.resize(NumElements); 3663 return llvm::ConstantDataArray::get(VMContext, Elements); 3664 } 3665 3666 static llvm::GlobalVariable * 3667 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 3668 CodeGenModule &CGM, StringRef GlobalName, 3669 CharUnits Alignment) { 3670 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3671 unsigned AddrSpace = 0; 3672 if (CGM.getLangOpts().OpenCL) 3673 AddrSpace = CGM.getContext().getTargetAddressSpace(LangAS::opencl_constant); 3674 3675 llvm::Module &M = CGM.getModule(); 3676 // Create a global variable for this string 3677 auto *GV = new llvm::GlobalVariable( 3678 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 3679 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 3680 GV->setAlignment(Alignment.getQuantity()); 3681 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 3682 if (GV->isWeakForLinker()) { 3683 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 3684 GV->setComdat(M.getOrInsertComdat(GV->getName())); 3685 } 3686 3687 return GV; 3688 } 3689 3690 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 3691 /// constant array for the given string literal. 3692 ConstantAddress 3693 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 3694 StringRef Name) { 3695 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 3696 3697 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 3698 llvm::GlobalVariable **Entry = nullptr; 3699 if (!LangOpts.WritableStrings) { 3700 Entry = &ConstantStringMap[C]; 3701 if (auto GV = *Entry) { 3702 if (Alignment.getQuantity() > GV->getAlignment()) 3703 GV->setAlignment(Alignment.getQuantity()); 3704 return ConstantAddress(GV, Alignment); 3705 } 3706 } 3707 3708 SmallString<256> MangledNameBuffer; 3709 StringRef GlobalVariableName; 3710 llvm::GlobalValue::LinkageTypes LT; 3711 3712 // Mangle the string literal if the ABI allows for it. However, we cannot 3713 // do this if we are compiling with ASan or -fwritable-strings because they 3714 // rely on strings having normal linkage. 3715 if (!LangOpts.WritableStrings && 3716 !LangOpts.Sanitize.has(SanitizerKind::Address) && 3717 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 3718 llvm::raw_svector_ostream Out(MangledNameBuffer); 3719 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 3720 3721 LT = llvm::GlobalValue::LinkOnceODRLinkage; 3722 GlobalVariableName = MangledNameBuffer; 3723 } else { 3724 LT = llvm::GlobalValue::PrivateLinkage; 3725 GlobalVariableName = Name; 3726 } 3727 3728 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 3729 if (Entry) 3730 *Entry = GV; 3731 3732 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 3733 QualType()); 3734 return ConstantAddress(GV, Alignment); 3735 } 3736 3737 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 3738 /// array for the given ObjCEncodeExpr node. 3739 ConstantAddress 3740 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 3741 std::string Str; 3742 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 3743 3744 return GetAddrOfConstantCString(Str); 3745 } 3746 3747 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 3748 /// the literal and a terminating '\0' character. 3749 /// The result has pointer to array type. 3750 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 3751 const std::string &Str, const char *GlobalName) { 3752 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 3753 CharUnits Alignment = 3754 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 3755 3756 llvm::Constant *C = 3757 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 3758 3759 // Don't share any string literals if strings aren't constant. 3760 llvm::GlobalVariable **Entry = nullptr; 3761 if (!LangOpts.WritableStrings) { 3762 Entry = &ConstantStringMap[C]; 3763 if (auto GV = *Entry) { 3764 if (Alignment.getQuantity() > GV->getAlignment()) 3765 GV->setAlignment(Alignment.getQuantity()); 3766 return ConstantAddress(GV, Alignment); 3767 } 3768 } 3769 3770 // Get the default prefix if a name wasn't specified. 3771 if (!GlobalName) 3772 GlobalName = ".str"; 3773 // Create a global variable for this. 3774 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 3775 GlobalName, Alignment); 3776 if (Entry) 3777 *Entry = GV; 3778 return ConstantAddress(GV, Alignment); 3779 } 3780 3781 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 3782 const MaterializeTemporaryExpr *E, const Expr *Init) { 3783 assert((E->getStorageDuration() == SD_Static || 3784 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 3785 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 3786 3787 // If we're not materializing a subobject of the temporary, keep the 3788 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 3789 QualType MaterializedType = Init->getType(); 3790 if (Init == E->GetTemporaryExpr()) 3791 MaterializedType = E->getType(); 3792 3793 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 3794 3795 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 3796 return ConstantAddress(Slot, Align); 3797 3798 // FIXME: If an externally-visible declaration extends multiple temporaries, 3799 // we need to give each temporary the same name in every translation unit (and 3800 // we also need to make the temporaries externally-visible). 3801 SmallString<256> Name; 3802 llvm::raw_svector_ostream Out(Name); 3803 getCXXABI().getMangleContext().mangleReferenceTemporary( 3804 VD, E->getManglingNumber(), Out); 3805 3806 APValue *Value = nullptr; 3807 if (E->getStorageDuration() == SD_Static) { 3808 // We might have a cached constant initializer for this temporary. Note 3809 // that this might have a different value from the value computed by 3810 // evaluating the initializer if the surrounding constant expression 3811 // modifies the temporary. 3812 Value = getContext().getMaterializedTemporaryValue(E, false); 3813 if (Value && Value->isUninit()) 3814 Value = nullptr; 3815 } 3816 3817 // Try evaluating it now, it might have a constant initializer. 3818 Expr::EvalResult EvalResult; 3819 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 3820 !EvalResult.hasSideEffects()) 3821 Value = &EvalResult.Val; 3822 3823 LangAS AddrSpace = 3824 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 3825 3826 Optional<ConstantEmitter> emitter; 3827 llvm::Constant *InitialValue = nullptr; 3828 bool Constant = false; 3829 llvm::Type *Type; 3830 if (Value) { 3831 // The temporary has a constant initializer, use it. 3832 emitter.emplace(*this); 3833 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 3834 MaterializedType); 3835 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 3836 Type = InitialValue->getType(); 3837 } else { 3838 // No initializer, the initialization will be provided when we 3839 // initialize the declaration which performed lifetime extension. 3840 Type = getTypes().ConvertTypeForMem(MaterializedType); 3841 } 3842 3843 // Create a global variable for this lifetime-extended temporary. 3844 llvm::GlobalValue::LinkageTypes Linkage = 3845 getLLVMLinkageVarDefinition(VD, Constant); 3846 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 3847 const VarDecl *InitVD; 3848 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 3849 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 3850 // Temporaries defined inside a class get linkonce_odr linkage because the 3851 // class can be defined in multipe translation units. 3852 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 3853 } else { 3854 // There is no need for this temporary to have external linkage if the 3855 // VarDecl has external linkage. 3856 Linkage = llvm::GlobalVariable::InternalLinkage; 3857 } 3858 } 3859 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 3860 auto *GV = new llvm::GlobalVariable( 3861 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 3862 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 3863 if (emitter) emitter->finalize(GV); 3864 setGlobalVisibility(GV, VD, ForDefinition); 3865 GV->setAlignment(Align.getQuantity()); 3866 if (supportsCOMDAT() && GV->isWeakForLinker()) 3867 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3868 if (VD->getTLSKind()) 3869 setTLSMode(GV, *VD); 3870 llvm::Constant *CV = GV; 3871 if (AddrSpace != LangAS::Default) 3872 CV = getTargetCodeGenInfo().performAddrSpaceCast( 3873 *this, GV, AddrSpace, LangAS::Default, 3874 Type->getPointerTo( 3875 getContext().getTargetAddressSpace(LangAS::Default))); 3876 MaterializedGlobalTemporaryMap[E] = CV; 3877 return ConstantAddress(CV, Align); 3878 } 3879 3880 /// EmitObjCPropertyImplementations - Emit information for synthesized 3881 /// properties for an implementation. 3882 void CodeGenModule::EmitObjCPropertyImplementations(const 3883 ObjCImplementationDecl *D) { 3884 for (const auto *PID : D->property_impls()) { 3885 // Dynamic is just for type-checking. 3886 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 3887 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 3888 3889 // Determine which methods need to be implemented, some may have 3890 // been overridden. Note that ::isPropertyAccessor is not the method 3891 // we want, that just indicates if the decl came from a 3892 // property. What we want to know is if the method is defined in 3893 // this implementation. 3894 if (!D->getInstanceMethod(PD->getGetterName())) 3895 CodeGenFunction(*this).GenerateObjCGetter( 3896 const_cast<ObjCImplementationDecl *>(D), PID); 3897 if (!PD->isReadOnly() && 3898 !D->getInstanceMethod(PD->getSetterName())) 3899 CodeGenFunction(*this).GenerateObjCSetter( 3900 const_cast<ObjCImplementationDecl *>(D), PID); 3901 } 3902 } 3903 } 3904 3905 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 3906 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 3907 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 3908 ivar; ivar = ivar->getNextIvar()) 3909 if (ivar->getType().isDestructedType()) 3910 return true; 3911 3912 return false; 3913 } 3914 3915 static bool AllTrivialInitializers(CodeGenModule &CGM, 3916 ObjCImplementationDecl *D) { 3917 CodeGenFunction CGF(CGM); 3918 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 3919 E = D->init_end(); B != E; ++B) { 3920 CXXCtorInitializer *CtorInitExp = *B; 3921 Expr *Init = CtorInitExp->getInit(); 3922 if (!CGF.isTrivialInitializer(Init)) 3923 return false; 3924 } 3925 return true; 3926 } 3927 3928 /// EmitObjCIvarInitializations - Emit information for ivar initialization 3929 /// for an implementation. 3930 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 3931 // We might need a .cxx_destruct even if we don't have any ivar initializers. 3932 if (needsDestructMethod(D)) { 3933 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 3934 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3935 ObjCMethodDecl *DTORMethod = 3936 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 3937 cxxSelector, getContext().VoidTy, nullptr, D, 3938 /*isInstance=*/true, /*isVariadic=*/false, 3939 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 3940 /*isDefined=*/false, ObjCMethodDecl::Required); 3941 D->addInstanceMethod(DTORMethod); 3942 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 3943 D->setHasDestructors(true); 3944 } 3945 3946 // If the implementation doesn't have any ivar initializers, we don't need 3947 // a .cxx_construct. 3948 if (D->getNumIvarInitializers() == 0 || 3949 AllTrivialInitializers(*this, D)) 3950 return; 3951 3952 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 3953 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 3954 // The constructor returns 'self'. 3955 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 3956 D->getLocation(), 3957 D->getLocation(), 3958 cxxSelector, 3959 getContext().getObjCIdType(), 3960 nullptr, D, /*isInstance=*/true, 3961 /*isVariadic=*/false, 3962 /*isPropertyAccessor=*/true, 3963 /*isImplicitlyDeclared=*/true, 3964 /*isDefined=*/false, 3965 ObjCMethodDecl::Required); 3966 D->addInstanceMethod(CTORMethod); 3967 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 3968 D->setHasNonZeroConstructors(true); 3969 } 3970 3971 // EmitLinkageSpec - Emit all declarations in a linkage spec. 3972 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 3973 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 3974 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 3975 ErrorUnsupported(LSD, "linkage spec"); 3976 return; 3977 } 3978 3979 EmitDeclContext(LSD); 3980 } 3981 3982 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 3983 for (auto *I : DC->decls()) { 3984 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 3985 // are themselves considered "top-level", so EmitTopLevelDecl on an 3986 // ObjCImplDecl does not recursively visit them. We need to do that in 3987 // case they're nested inside another construct (LinkageSpecDecl / 3988 // ExportDecl) that does stop them from being considered "top-level". 3989 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 3990 for (auto *M : OID->methods()) 3991 EmitTopLevelDecl(M); 3992 } 3993 3994 EmitTopLevelDecl(I); 3995 } 3996 } 3997 3998 /// EmitTopLevelDecl - Emit code for a single top level declaration. 3999 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4000 // Ignore dependent declarations. 4001 if (D->isTemplated()) 4002 return; 4003 4004 switch (D->getKind()) { 4005 case Decl::CXXConversion: 4006 case Decl::CXXMethod: 4007 case Decl::Function: 4008 EmitGlobal(cast<FunctionDecl>(D)); 4009 // Always provide some coverage mapping 4010 // even for the functions that aren't emitted. 4011 AddDeferredUnusedCoverageMapping(D); 4012 break; 4013 4014 case Decl::CXXDeductionGuide: 4015 // Function-like, but does not result in code emission. 4016 break; 4017 4018 case Decl::Var: 4019 case Decl::Decomposition: 4020 case Decl::VarTemplateSpecialization: 4021 EmitGlobal(cast<VarDecl>(D)); 4022 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4023 for (auto *B : DD->bindings()) 4024 if (auto *HD = B->getHoldingVar()) 4025 EmitGlobal(HD); 4026 break; 4027 4028 // Indirect fields from global anonymous structs and unions can be 4029 // ignored; only the actual variable requires IR gen support. 4030 case Decl::IndirectField: 4031 break; 4032 4033 // C++ Decls 4034 case Decl::Namespace: 4035 EmitDeclContext(cast<NamespaceDecl>(D)); 4036 break; 4037 case Decl::ClassTemplateSpecialization: { 4038 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4039 if (DebugInfo && 4040 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4041 Spec->hasDefinition()) 4042 DebugInfo->completeTemplateDefinition(*Spec); 4043 } LLVM_FALLTHROUGH; 4044 case Decl::CXXRecord: 4045 if (DebugInfo) { 4046 if (auto *ES = D->getASTContext().getExternalSource()) 4047 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4048 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4049 } 4050 // Emit any static data members, they may be definitions. 4051 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4052 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4053 EmitTopLevelDecl(I); 4054 break; 4055 // No code generation needed. 4056 case Decl::UsingShadow: 4057 case Decl::ClassTemplate: 4058 case Decl::VarTemplate: 4059 case Decl::VarTemplatePartialSpecialization: 4060 case Decl::FunctionTemplate: 4061 case Decl::TypeAliasTemplate: 4062 case Decl::Block: 4063 case Decl::Empty: 4064 break; 4065 case Decl::Using: // using X; [C++] 4066 if (CGDebugInfo *DI = getModuleDebugInfo()) 4067 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4068 return; 4069 case Decl::NamespaceAlias: 4070 if (CGDebugInfo *DI = getModuleDebugInfo()) 4071 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4072 return; 4073 case Decl::UsingDirective: // using namespace X; [C++] 4074 if (CGDebugInfo *DI = getModuleDebugInfo()) 4075 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4076 return; 4077 case Decl::CXXConstructor: 4078 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4079 break; 4080 case Decl::CXXDestructor: 4081 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4082 break; 4083 4084 case Decl::StaticAssert: 4085 // Nothing to do. 4086 break; 4087 4088 // Objective-C Decls 4089 4090 // Forward declarations, no (immediate) code generation. 4091 case Decl::ObjCInterface: 4092 case Decl::ObjCCategory: 4093 break; 4094 4095 case Decl::ObjCProtocol: { 4096 auto *Proto = cast<ObjCProtocolDecl>(D); 4097 if (Proto->isThisDeclarationADefinition()) 4098 ObjCRuntime->GenerateProtocol(Proto); 4099 break; 4100 } 4101 4102 case Decl::ObjCCategoryImpl: 4103 // Categories have properties but don't support synthesize so we 4104 // can ignore them here. 4105 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4106 break; 4107 4108 case Decl::ObjCImplementation: { 4109 auto *OMD = cast<ObjCImplementationDecl>(D); 4110 EmitObjCPropertyImplementations(OMD); 4111 EmitObjCIvarInitializations(OMD); 4112 ObjCRuntime->GenerateClass(OMD); 4113 // Emit global variable debug information. 4114 if (CGDebugInfo *DI = getModuleDebugInfo()) 4115 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4116 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4117 OMD->getClassInterface()), OMD->getLocation()); 4118 break; 4119 } 4120 case Decl::ObjCMethod: { 4121 auto *OMD = cast<ObjCMethodDecl>(D); 4122 // If this is not a prototype, emit the body. 4123 if (OMD->getBody()) 4124 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4125 break; 4126 } 4127 case Decl::ObjCCompatibleAlias: 4128 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4129 break; 4130 4131 case Decl::PragmaComment: { 4132 const auto *PCD = cast<PragmaCommentDecl>(D); 4133 switch (PCD->getCommentKind()) { 4134 case PCK_Unknown: 4135 llvm_unreachable("unexpected pragma comment kind"); 4136 case PCK_Linker: 4137 AppendLinkerOptions(PCD->getArg()); 4138 break; 4139 case PCK_Lib: 4140 AddDependentLib(PCD->getArg()); 4141 break; 4142 case PCK_Compiler: 4143 case PCK_ExeStr: 4144 case PCK_User: 4145 break; // We ignore all of these. 4146 } 4147 break; 4148 } 4149 4150 case Decl::PragmaDetectMismatch: { 4151 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4152 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4153 break; 4154 } 4155 4156 case Decl::LinkageSpec: 4157 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4158 break; 4159 4160 case Decl::FileScopeAsm: { 4161 // File-scope asm is ignored during device-side CUDA compilation. 4162 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4163 break; 4164 // File-scope asm is ignored during device-side OpenMP compilation. 4165 if (LangOpts.OpenMPIsDevice) 4166 break; 4167 auto *AD = cast<FileScopeAsmDecl>(D); 4168 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4169 break; 4170 } 4171 4172 case Decl::Import: { 4173 auto *Import = cast<ImportDecl>(D); 4174 4175 // If we've already imported this module, we're done. 4176 if (!ImportedModules.insert(Import->getImportedModule())) 4177 break; 4178 4179 // Emit debug information for direct imports. 4180 if (!Import->getImportedOwningModule()) { 4181 if (CGDebugInfo *DI = getModuleDebugInfo()) 4182 DI->EmitImportDecl(*Import); 4183 } 4184 4185 // Find all of the submodules and emit the module initializers. 4186 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4187 SmallVector<clang::Module *, 16> Stack; 4188 Visited.insert(Import->getImportedModule()); 4189 Stack.push_back(Import->getImportedModule()); 4190 4191 while (!Stack.empty()) { 4192 clang::Module *Mod = Stack.pop_back_val(); 4193 if (!EmittedModuleInitializers.insert(Mod).second) 4194 continue; 4195 4196 for (auto *D : Context.getModuleInitializers(Mod)) 4197 EmitTopLevelDecl(D); 4198 4199 // Visit the submodules of this module. 4200 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4201 SubEnd = Mod->submodule_end(); 4202 Sub != SubEnd; ++Sub) { 4203 // Skip explicit children; they need to be explicitly imported to emit 4204 // the initializers. 4205 if ((*Sub)->IsExplicit) 4206 continue; 4207 4208 if (Visited.insert(*Sub).second) 4209 Stack.push_back(*Sub); 4210 } 4211 } 4212 break; 4213 } 4214 4215 case Decl::Export: 4216 EmitDeclContext(cast<ExportDecl>(D)); 4217 break; 4218 4219 case Decl::OMPThreadPrivate: 4220 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4221 break; 4222 4223 case Decl::OMPDeclareReduction: 4224 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4225 break; 4226 4227 default: 4228 // Make sure we handled everything we should, every other kind is a 4229 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4230 // function. Need to recode Decl::Kind to do that easily. 4231 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4232 break; 4233 } 4234 } 4235 4236 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4237 // Do we need to generate coverage mapping? 4238 if (!CodeGenOpts.CoverageMapping) 4239 return; 4240 switch (D->getKind()) { 4241 case Decl::CXXConversion: 4242 case Decl::CXXMethod: 4243 case Decl::Function: 4244 case Decl::ObjCMethod: 4245 case Decl::CXXConstructor: 4246 case Decl::CXXDestructor: { 4247 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4248 return; 4249 SourceManager &SM = getContext().getSourceManager(); 4250 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4251 return; 4252 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4253 if (I == DeferredEmptyCoverageMappingDecls.end()) 4254 DeferredEmptyCoverageMappingDecls[D] = true; 4255 break; 4256 } 4257 default: 4258 break; 4259 }; 4260 } 4261 4262 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4263 // Do we need to generate coverage mapping? 4264 if (!CodeGenOpts.CoverageMapping) 4265 return; 4266 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4267 if (Fn->isTemplateInstantiation()) 4268 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4269 } 4270 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4271 if (I == DeferredEmptyCoverageMappingDecls.end()) 4272 DeferredEmptyCoverageMappingDecls[D] = false; 4273 else 4274 I->second = false; 4275 } 4276 4277 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4278 // We call takeVector() here to avoid use-after-free. 4279 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4280 // we deserialize function bodies to emit coverage info for them, and that 4281 // deserializes more declarations. How should we handle that case? 4282 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4283 if (!Entry.second) 4284 continue; 4285 const Decl *D = Entry.first; 4286 switch (D->getKind()) { 4287 case Decl::CXXConversion: 4288 case Decl::CXXMethod: 4289 case Decl::Function: 4290 case Decl::ObjCMethod: { 4291 CodeGenPGO PGO(*this); 4292 GlobalDecl GD(cast<FunctionDecl>(D)); 4293 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4294 getFunctionLinkage(GD)); 4295 break; 4296 } 4297 case Decl::CXXConstructor: { 4298 CodeGenPGO PGO(*this); 4299 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4300 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4301 getFunctionLinkage(GD)); 4302 break; 4303 } 4304 case Decl::CXXDestructor: { 4305 CodeGenPGO PGO(*this); 4306 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4307 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4308 getFunctionLinkage(GD)); 4309 break; 4310 } 4311 default: 4312 break; 4313 }; 4314 } 4315 } 4316 4317 /// Turns the given pointer into a constant. 4318 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4319 const void *Ptr) { 4320 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4321 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4322 return llvm::ConstantInt::get(i64, PtrInt); 4323 } 4324 4325 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4326 llvm::NamedMDNode *&GlobalMetadata, 4327 GlobalDecl D, 4328 llvm::GlobalValue *Addr) { 4329 if (!GlobalMetadata) 4330 GlobalMetadata = 4331 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4332 4333 // TODO: should we report variant information for ctors/dtors? 4334 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4335 llvm::ConstantAsMetadata::get(GetPointerConstant( 4336 CGM.getLLVMContext(), D.getDecl()))}; 4337 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4338 } 4339 4340 /// For each function which is declared within an extern "C" region and marked 4341 /// as 'used', but has internal linkage, create an alias from the unmangled 4342 /// name to the mangled name if possible. People expect to be able to refer 4343 /// to such functions with an unmangled name from inline assembly within the 4344 /// same translation unit. 4345 void CodeGenModule::EmitStaticExternCAliases() { 4346 // Don't do anything if we're generating CUDA device code -- the NVPTX 4347 // assembly target doesn't support aliases. 4348 if (Context.getTargetInfo().getTriple().isNVPTX()) 4349 return; 4350 for (auto &I : StaticExternCValues) { 4351 IdentifierInfo *Name = I.first; 4352 llvm::GlobalValue *Val = I.second; 4353 if (Val && !getModule().getNamedValue(Name->getName())) 4354 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4355 } 4356 } 4357 4358 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4359 GlobalDecl &Result) const { 4360 auto Res = Manglings.find(MangledName); 4361 if (Res == Manglings.end()) 4362 return false; 4363 Result = Res->getValue(); 4364 return true; 4365 } 4366 4367 /// Emits metadata nodes associating all the global values in the 4368 /// current module with the Decls they came from. This is useful for 4369 /// projects using IR gen as a subroutine. 4370 /// 4371 /// Since there's currently no way to associate an MDNode directly 4372 /// with an llvm::GlobalValue, we create a global named metadata 4373 /// with the name 'clang.global.decl.ptrs'. 4374 void CodeGenModule::EmitDeclMetadata() { 4375 llvm::NamedMDNode *GlobalMetadata = nullptr; 4376 4377 for (auto &I : MangledDeclNames) { 4378 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4379 // Some mangled names don't necessarily have an associated GlobalValue 4380 // in this module, e.g. if we mangled it for DebugInfo. 4381 if (Addr) 4382 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4383 } 4384 } 4385 4386 /// Emits metadata nodes for all the local variables in the current 4387 /// function. 4388 void CodeGenFunction::EmitDeclMetadata() { 4389 if (LocalDeclMap.empty()) return; 4390 4391 llvm::LLVMContext &Context = getLLVMContext(); 4392 4393 // Find the unique metadata ID for this name. 4394 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 4395 4396 llvm::NamedMDNode *GlobalMetadata = nullptr; 4397 4398 for (auto &I : LocalDeclMap) { 4399 const Decl *D = I.first; 4400 llvm::Value *Addr = I.second.getPointer(); 4401 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 4402 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 4403 Alloca->setMetadata( 4404 DeclPtrKind, llvm::MDNode::get( 4405 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 4406 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 4407 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 4408 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 4409 } 4410 } 4411 } 4412 4413 void CodeGenModule::EmitVersionIdentMetadata() { 4414 llvm::NamedMDNode *IdentMetadata = 4415 TheModule.getOrInsertNamedMetadata("llvm.ident"); 4416 std::string Version = getClangFullVersion(); 4417 llvm::LLVMContext &Ctx = TheModule.getContext(); 4418 4419 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 4420 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 4421 } 4422 4423 void CodeGenModule::EmitTargetMetadata() { 4424 // Warning, new MangledDeclNames may be appended within this loop. 4425 // We rely on MapVector insertions adding new elements to the end 4426 // of the container. 4427 // FIXME: Move this loop into the one target that needs it, and only 4428 // loop over those declarations for which we couldn't emit the target 4429 // metadata when we emitted the declaration. 4430 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 4431 auto Val = *(MangledDeclNames.begin() + I); 4432 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 4433 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 4434 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 4435 } 4436 } 4437 4438 void CodeGenModule::EmitCoverageFile() { 4439 if (getCodeGenOpts().CoverageDataFile.empty() && 4440 getCodeGenOpts().CoverageNotesFile.empty()) 4441 return; 4442 4443 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 4444 if (!CUNode) 4445 return; 4446 4447 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 4448 llvm::LLVMContext &Ctx = TheModule.getContext(); 4449 auto *CoverageDataFile = 4450 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 4451 auto *CoverageNotesFile = 4452 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 4453 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 4454 llvm::MDNode *CU = CUNode->getOperand(i); 4455 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 4456 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 4457 } 4458 } 4459 4460 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 4461 // Sema has checked that all uuid strings are of the form 4462 // "12345678-1234-1234-1234-1234567890ab". 4463 assert(Uuid.size() == 36); 4464 for (unsigned i = 0; i < 36; ++i) { 4465 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 4466 else assert(isHexDigit(Uuid[i])); 4467 } 4468 4469 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 4470 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 4471 4472 llvm::Constant *Field3[8]; 4473 for (unsigned Idx = 0; Idx < 8; ++Idx) 4474 Field3[Idx] = llvm::ConstantInt::get( 4475 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 4476 4477 llvm::Constant *Fields[4] = { 4478 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 4479 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 4480 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 4481 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 4482 }; 4483 4484 return llvm::ConstantStruct::getAnon(Fields); 4485 } 4486 4487 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 4488 bool ForEH) { 4489 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 4490 // FIXME: should we even be calling this method if RTTI is disabled 4491 // and it's not for EH? 4492 if (!ForEH && !getLangOpts().RTTI) 4493 return llvm::Constant::getNullValue(Int8PtrTy); 4494 4495 if (ForEH && Ty->isObjCObjectPointerType() && 4496 LangOpts.ObjCRuntime.isGNUFamily()) 4497 return ObjCRuntime->GetEHType(Ty); 4498 4499 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 4500 } 4501 4502 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 4503 // Do not emit threadprivates in simd-only mode. 4504 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 4505 return; 4506 for (auto RefExpr : D->varlists()) { 4507 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 4508 bool PerformInit = 4509 VD->getAnyInitializer() && 4510 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 4511 /*ForRef=*/false); 4512 4513 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 4514 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 4515 VD, Addr, RefExpr->getLocStart(), PerformInit)) 4516 CXXGlobalInits.push_back(InitFunction); 4517 } 4518 } 4519 4520 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 4521 llvm::Metadata *&InternalId = MetadataIdMap[T.getCanonicalType()]; 4522 if (InternalId) 4523 return InternalId; 4524 4525 if (isExternallyVisible(T->getLinkage())) { 4526 std::string OutName; 4527 llvm::raw_string_ostream Out(OutName); 4528 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4529 4530 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4531 } else { 4532 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4533 llvm::ArrayRef<llvm::Metadata *>()); 4534 } 4535 4536 return InternalId; 4537 } 4538 4539 // Generalize pointer types to a void pointer with the qualifiers of the 4540 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 4541 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 4542 // 'void *'. 4543 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 4544 if (!Ty->isPointerType()) 4545 return Ty; 4546 4547 return Ctx.getPointerType( 4548 QualType(Ctx.VoidTy).withCVRQualifiers( 4549 Ty->getPointeeType().getCVRQualifiers())); 4550 } 4551 4552 // Apply type generalization to a FunctionType's return and argument types 4553 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 4554 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 4555 SmallVector<QualType, 8> GeneralizedParams; 4556 for (auto &Param : FnType->param_types()) 4557 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 4558 4559 return Ctx.getFunctionType( 4560 GeneralizeType(Ctx, FnType->getReturnType()), 4561 GeneralizedParams, FnType->getExtProtoInfo()); 4562 } 4563 4564 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 4565 return Ctx.getFunctionNoProtoType( 4566 GeneralizeType(Ctx, FnType->getReturnType())); 4567 4568 llvm_unreachable("Encountered unknown FunctionType"); 4569 } 4570 4571 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 4572 T = GeneralizeFunctionType(getContext(), T); 4573 4574 llvm::Metadata *&InternalId = GeneralizedMetadataIdMap[T.getCanonicalType()]; 4575 if (InternalId) 4576 return InternalId; 4577 4578 if (isExternallyVisible(T->getLinkage())) { 4579 std::string OutName; 4580 llvm::raw_string_ostream Out(OutName); 4581 getCXXABI().getMangleContext().mangleTypeName(T, Out); 4582 Out << ".generalized"; 4583 4584 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 4585 } else { 4586 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 4587 llvm::ArrayRef<llvm::Metadata *>()); 4588 } 4589 4590 return InternalId; 4591 } 4592 4593 /// Returns whether this module needs the "all-vtables" type identifier. 4594 bool CodeGenModule::NeedAllVtablesTypeId() const { 4595 // Returns true if at least one of vtable-based CFI checkers is enabled and 4596 // is not in the trapping mode. 4597 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 4598 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 4599 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 4600 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 4601 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 4602 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 4603 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 4604 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 4605 } 4606 4607 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 4608 CharUnits Offset, 4609 const CXXRecordDecl *RD) { 4610 llvm::Metadata *MD = 4611 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 4612 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4613 4614 if (CodeGenOpts.SanitizeCfiCrossDso) 4615 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 4616 VTable->addTypeMetadata(Offset.getQuantity(), 4617 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 4618 4619 if (NeedAllVtablesTypeId()) { 4620 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 4621 VTable->addTypeMetadata(Offset.getQuantity(), MD); 4622 } 4623 } 4624 4625 // Fills in the supplied string map with the set of target features for the 4626 // passed in function. 4627 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 4628 const FunctionDecl *FD) { 4629 StringRef TargetCPU = Target.getTargetOpts().CPU; 4630 if (const auto *TD = FD->getAttr<TargetAttr>()) { 4631 // If we have a TargetAttr build up the feature map based on that. 4632 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 4633 4634 ParsedAttr.Features.erase( 4635 llvm::remove_if(ParsedAttr.Features, 4636 [&](const std::string &Feat) { 4637 return !Target.isValidFeatureName( 4638 StringRef{Feat}.substr(1)); 4639 }), 4640 ParsedAttr.Features.end()); 4641 4642 // Make a copy of the features as passed on the command line into the 4643 // beginning of the additional features from the function to override. 4644 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 4645 Target.getTargetOpts().FeaturesAsWritten.begin(), 4646 Target.getTargetOpts().FeaturesAsWritten.end()); 4647 4648 if (ParsedAttr.Architecture != "" && 4649 Target.isValidCPUName(ParsedAttr.Architecture)) 4650 TargetCPU = ParsedAttr.Architecture; 4651 4652 // Now populate the feature map, first with the TargetCPU which is either 4653 // the default or a new one from the target attribute string. Then we'll use 4654 // the passed in features (FeaturesAsWritten) along with the new ones from 4655 // the attribute. 4656 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4657 ParsedAttr.Features); 4658 } else { 4659 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 4660 Target.getTargetOpts().Features); 4661 } 4662 } 4663 4664 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 4665 if (!SanStats) 4666 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 4667 4668 return *SanStats; 4669 } 4670 llvm::Value * 4671 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 4672 CodeGenFunction &CGF) { 4673 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 4674 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 4675 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 4676 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 4677 "__translate_sampler_initializer"), 4678 {C}); 4679 } 4680