1 //===--- CodeGenModule.cpp - Emit LLVM Code from ASTs for a Module --------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-module state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenModule.h" 15 #include "CGBlocks.h" 16 #include "CGCUDARuntime.h" 17 #include "CGCXXABI.h" 18 #include "CGCall.h" 19 #include "CGDebugInfo.h" 20 #include "CGObjCRuntime.h" 21 #include "CGOpenCLRuntime.h" 22 #include "CGOpenMPRuntime.h" 23 #include "CGOpenMPRuntimeNVPTX.h" 24 #include "CodeGenFunction.h" 25 #include "CodeGenPGO.h" 26 #include "ConstantEmitter.h" 27 #include "CoverageMappingGen.h" 28 #include "TargetInfo.h" 29 #include "clang/AST/ASTContext.h" 30 #include "clang/AST/CharUnits.h" 31 #include "clang/AST/DeclCXX.h" 32 #include "clang/AST/DeclObjC.h" 33 #include "clang/AST/DeclTemplate.h" 34 #include "clang/AST/Mangle.h" 35 #include "clang/AST/RecordLayout.h" 36 #include "clang/AST/RecursiveASTVisitor.h" 37 #include "clang/Basic/Builtins.h" 38 #include "clang/Basic/CharInfo.h" 39 #include "clang/Basic/Diagnostic.h" 40 #include "clang/Basic/Module.h" 41 #include "clang/Basic/SourceManager.h" 42 #include "clang/Basic/TargetInfo.h" 43 #include "clang/Basic/Version.h" 44 #include "clang/CodeGen/ConstantInitBuilder.h" 45 #include "clang/Frontend/CodeGenOptions.h" 46 #include "clang/Sema/SemaDiagnostic.h" 47 #include "llvm/ADT/Triple.h" 48 #include "llvm/Analysis/TargetLibraryInfo.h" 49 #include "llvm/IR/CallSite.h" 50 #include "llvm/IR/CallingConv.h" 51 #include "llvm/IR/DataLayout.h" 52 #include "llvm/IR/Intrinsics.h" 53 #include "llvm/IR/LLVMContext.h" 54 #include "llvm/IR/Module.h" 55 #include "llvm/ProfileData/InstrProfReader.h" 56 #include "llvm/Support/ConvertUTF.h" 57 #include "llvm/Support/ErrorHandling.h" 58 #include "llvm/Support/MD5.h" 59 60 using namespace clang; 61 using namespace CodeGen; 62 63 static llvm::cl::opt<bool> LimitedCoverage( 64 "limited-coverage-experimental", llvm::cl::ZeroOrMore, llvm::cl::Hidden, 65 llvm::cl::desc("Emit limited coverage mapping information (experimental)"), 66 llvm::cl::init(false)); 67 68 static const char AnnotationSection[] = "llvm.metadata"; 69 70 static CGCXXABI *createCXXABI(CodeGenModule &CGM) { 71 switch (CGM.getTarget().getCXXABI().getKind()) { 72 case TargetCXXABI::GenericAArch64: 73 case TargetCXXABI::GenericARM: 74 case TargetCXXABI::iOS: 75 case TargetCXXABI::iOS64: 76 case TargetCXXABI::WatchOS: 77 case TargetCXXABI::GenericMIPS: 78 case TargetCXXABI::GenericItanium: 79 case TargetCXXABI::WebAssembly: 80 return CreateItaniumCXXABI(CGM); 81 case TargetCXXABI::Microsoft: 82 return CreateMicrosoftCXXABI(CGM); 83 } 84 85 llvm_unreachable("invalid C++ ABI kind"); 86 } 87 88 CodeGenModule::CodeGenModule(ASTContext &C, const HeaderSearchOptions &HSO, 89 const PreprocessorOptions &PPO, 90 const CodeGenOptions &CGO, llvm::Module &M, 91 DiagnosticsEngine &diags, 92 CoverageSourceInfo *CoverageInfo) 93 : Context(C), LangOpts(C.getLangOpts()), HeaderSearchOpts(HSO), 94 PreprocessorOpts(PPO), CodeGenOpts(CGO), TheModule(M), Diags(diags), 95 Target(C.getTargetInfo()), ABI(createCXXABI(*this)), 96 VMContext(M.getContext()), Types(*this), VTables(*this), 97 SanitizerMD(new SanitizerMetadata(*this)) { 98 99 // Initialize the type cache. 100 llvm::LLVMContext &LLVMContext = M.getContext(); 101 VoidTy = llvm::Type::getVoidTy(LLVMContext); 102 Int8Ty = llvm::Type::getInt8Ty(LLVMContext); 103 Int16Ty = llvm::Type::getInt16Ty(LLVMContext); 104 Int32Ty = llvm::Type::getInt32Ty(LLVMContext); 105 Int64Ty = llvm::Type::getInt64Ty(LLVMContext); 106 HalfTy = llvm::Type::getHalfTy(LLVMContext); 107 FloatTy = llvm::Type::getFloatTy(LLVMContext); 108 DoubleTy = llvm::Type::getDoubleTy(LLVMContext); 109 PointerWidthInBits = C.getTargetInfo().getPointerWidth(0); 110 PointerAlignInBytes = 111 C.toCharUnitsFromBits(C.getTargetInfo().getPointerAlign(0)).getQuantity(); 112 SizeSizeInBytes = 113 C.toCharUnitsFromBits(C.getTargetInfo().getMaxPointerWidth()).getQuantity(); 114 IntAlignInBytes = 115 C.toCharUnitsFromBits(C.getTargetInfo().getIntAlign()).getQuantity(); 116 IntTy = llvm::IntegerType::get(LLVMContext, C.getTargetInfo().getIntWidth()); 117 IntPtrTy = llvm::IntegerType::get(LLVMContext, 118 C.getTargetInfo().getMaxPointerWidth()); 119 Int8PtrTy = Int8Ty->getPointerTo(0); 120 Int8PtrPtrTy = Int8PtrTy->getPointerTo(0); 121 AllocaInt8PtrTy = Int8Ty->getPointerTo( 122 M.getDataLayout().getAllocaAddrSpace()); 123 ASTAllocaAddressSpace = getTargetCodeGenInfo().getASTAllocaAddressSpace(); 124 125 RuntimeCC = getTargetCodeGenInfo().getABIInfo().getRuntimeCC(); 126 127 if (LangOpts.ObjC1) 128 createObjCRuntime(); 129 if (LangOpts.OpenCL) 130 createOpenCLRuntime(); 131 if (LangOpts.OpenMP) 132 createOpenMPRuntime(); 133 if (LangOpts.CUDA) 134 createCUDARuntime(); 135 136 // Enable TBAA unless it's suppressed. ThreadSanitizer needs TBAA even at O0. 137 if (LangOpts.Sanitize.has(SanitizerKind::Thread) || 138 (!CodeGenOpts.RelaxedAliasing && CodeGenOpts.OptimizationLevel > 0)) 139 TBAA.reset(new CodeGenTBAA(Context, TheModule, CodeGenOpts, getLangOpts(), 140 getCXXABI().getMangleContext())); 141 142 // If debug info or coverage generation is enabled, create the CGDebugInfo 143 // object. 144 if (CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo || 145 CodeGenOpts.EmitGcovArcs || CodeGenOpts.EmitGcovNotes) 146 DebugInfo.reset(new CGDebugInfo(*this)); 147 148 Block.GlobalUniqueCount = 0; 149 150 if (C.getLangOpts().ObjC1) 151 ObjCData.reset(new ObjCEntrypoints()); 152 153 if (CodeGenOpts.hasProfileClangUse()) { 154 auto ReaderOrErr = llvm::IndexedInstrProfReader::create( 155 CodeGenOpts.ProfileInstrumentUsePath); 156 if (auto E = ReaderOrErr.takeError()) { 157 unsigned DiagID = Diags.getCustomDiagID(DiagnosticsEngine::Error, 158 "Could not read profile %0: %1"); 159 llvm::handleAllErrors(std::move(E), [&](const llvm::ErrorInfoBase &EI) { 160 getDiags().Report(DiagID) << CodeGenOpts.ProfileInstrumentUsePath 161 << EI.message(); 162 }); 163 } else 164 PGOReader = std::move(ReaderOrErr.get()); 165 } 166 167 // If coverage mapping generation is enabled, create the 168 // CoverageMappingModuleGen object. 169 if (CodeGenOpts.CoverageMapping) 170 CoverageMapping.reset(new CoverageMappingModuleGen(*this, *CoverageInfo)); 171 } 172 173 CodeGenModule::~CodeGenModule() {} 174 175 void CodeGenModule::createObjCRuntime() { 176 // This is just isGNUFamily(), but we want to force implementors of 177 // new ABIs to decide how best to do this. 178 switch (LangOpts.ObjCRuntime.getKind()) { 179 case ObjCRuntime::GNUstep: 180 case ObjCRuntime::GCC: 181 case ObjCRuntime::ObjFW: 182 ObjCRuntime.reset(CreateGNUObjCRuntime(*this)); 183 return; 184 185 case ObjCRuntime::FragileMacOSX: 186 case ObjCRuntime::MacOSX: 187 case ObjCRuntime::iOS: 188 case ObjCRuntime::WatchOS: 189 ObjCRuntime.reset(CreateMacObjCRuntime(*this)); 190 return; 191 } 192 llvm_unreachable("bad runtime kind"); 193 } 194 195 void CodeGenModule::createOpenCLRuntime() { 196 OpenCLRuntime.reset(new CGOpenCLRuntime(*this)); 197 } 198 199 void CodeGenModule::createOpenMPRuntime() { 200 // Select a specialized code generation class based on the target, if any. 201 // If it does not exist use the default implementation. 202 switch (getTriple().getArch()) { 203 case llvm::Triple::nvptx: 204 case llvm::Triple::nvptx64: 205 assert(getLangOpts().OpenMPIsDevice && 206 "OpenMP NVPTX is only prepared to deal with device code."); 207 OpenMPRuntime.reset(new CGOpenMPRuntimeNVPTX(*this)); 208 break; 209 default: 210 if (LangOpts.OpenMPSimd) 211 OpenMPRuntime.reset(new CGOpenMPSIMDRuntime(*this)); 212 else 213 OpenMPRuntime.reset(new CGOpenMPRuntime(*this)); 214 break; 215 } 216 } 217 218 void CodeGenModule::createCUDARuntime() { 219 CUDARuntime.reset(CreateNVCUDARuntime(*this)); 220 } 221 222 void CodeGenModule::addReplacement(StringRef Name, llvm::Constant *C) { 223 Replacements[Name] = C; 224 } 225 226 void CodeGenModule::applyReplacements() { 227 for (auto &I : Replacements) { 228 StringRef MangledName = I.first(); 229 llvm::Constant *Replacement = I.second; 230 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 231 if (!Entry) 232 continue; 233 auto *OldF = cast<llvm::Function>(Entry); 234 auto *NewF = dyn_cast<llvm::Function>(Replacement); 235 if (!NewF) { 236 if (auto *Alias = dyn_cast<llvm::GlobalAlias>(Replacement)) { 237 NewF = dyn_cast<llvm::Function>(Alias->getAliasee()); 238 } else { 239 auto *CE = cast<llvm::ConstantExpr>(Replacement); 240 assert(CE->getOpcode() == llvm::Instruction::BitCast || 241 CE->getOpcode() == llvm::Instruction::GetElementPtr); 242 NewF = dyn_cast<llvm::Function>(CE->getOperand(0)); 243 } 244 } 245 246 // Replace old with new, but keep the old order. 247 OldF->replaceAllUsesWith(Replacement); 248 if (NewF) { 249 NewF->removeFromParent(); 250 OldF->getParent()->getFunctionList().insertAfter(OldF->getIterator(), 251 NewF); 252 } 253 OldF->eraseFromParent(); 254 } 255 } 256 257 void CodeGenModule::addGlobalValReplacement(llvm::GlobalValue *GV, llvm::Constant *C) { 258 GlobalValReplacements.push_back(std::make_pair(GV, C)); 259 } 260 261 void CodeGenModule::applyGlobalValReplacements() { 262 for (auto &I : GlobalValReplacements) { 263 llvm::GlobalValue *GV = I.first; 264 llvm::Constant *C = I.second; 265 266 GV->replaceAllUsesWith(C); 267 GV->eraseFromParent(); 268 } 269 } 270 271 // This is only used in aliases that we created and we know they have a 272 // linear structure. 273 static const llvm::GlobalObject *getAliasedGlobal( 274 const llvm::GlobalIndirectSymbol &GIS) { 275 llvm::SmallPtrSet<const llvm::GlobalIndirectSymbol*, 4> Visited; 276 const llvm::Constant *C = &GIS; 277 for (;;) { 278 C = C->stripPointerCasts(); 279 if (auto *GO = dyn_cast<llvm::GlobalObject>(C)) 280 return GO; 281 // stripPointerCasts will not walk over weak aliases. 282 auto *GIS2 = dyn_cast<llvm::GlobalIndirectSymbol>(C); 283 if (!GIS2) 284 return nullptr; 285 if (!Visited.insert(GIS2).second) 286 return nullptr; 287 C = GIS2->getIndirectSymbol(); 288 } 289 } 290 291 void CodeGenModule::checkAliases() { 292 // Check if the constructed aliases are well formed. It is really unfortunate 293 // that we have to do this in CodeGen, but we only construct mangled names 294 // and aliases during codegen. 295 bool Error = false; 296 DiagnosticsEngine &Diags = getDiags(); 297 for (const GlobalDecl &GD : Aliases) { 298 const auto *D = cast<ValueDecl>(GD.getDecl()); 299 SourceLocation Location; 300 bool IsIFunc = D->hasAttr<IFuncAttr>(); 301 if (const Attr *A = D->getDefiningAttr()) 302 Location = A->getLocation(); 303 else 304 llvm_unreachable("Not an alias or ifunc?"); 305 StringRef MangledName = getMangledName(GD); 306 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 307 auto *Alias = cast<llvm::GlobalIndirectSymbol>(Entry); 308 const llvm::GlobalValue *GV = getAliasedGlobal(*Alias); 309 if (!GV) { 310 Error = true; 311 Diags.Report(Location, diag::err_cyclic_alias) << IsIFunc; 312 } else if (GV->isDeclaration()) { 313 Error = true; 314 Diags.Report(Location, diag::err_alias_to_undefined) 315 << IsIFunc << IsIFunc; 316 } else if (IsIFunc) { 317 // Check resolver function type. 318 llvm::FunctionType *FTy = dyn_cast<llvm::FunctionType>( 319 GV->getType()->getPointerElementType()); 320 assert(FTy); 321 if (!FTy->getReturnType()->isPointerTy()) 322 Diags.Report(Location, diag::err_ifunc_resolver_return); 323 } 324 325 llvm::Constant *Aliasee = Alias->getIndirectSymbol(); 326 llvm::GlobalValue *AliaseeGV; 327 if (auto CE = dyn_cast<llvm::ConstantExpr>(Aliasee)) 328 AliaseeGV = cast<llvm::GlobalValue>(CE->getOperand(0)); 329 else 330 AliaseeGV = cast<llvm::GlobalValue>(Aliasee); 331 332 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 333 StringRef AliasSection = SA->getName(); 334 if (AliasSection != AliaseeGV->getSection()) 335 Diags.Report(SA->getLocation(), diag::warn_alias_with_section) 336 << AliasSection << IsIFunc << IsIFunc; 337 } 338 339 // We have to handle alias to weak aliases in here. LLVM itself disallows 340 // this since the object semantics would not match the IL one. For 341 // compatibility with gcc we implement it by just pointing the alias 342 // to its aliasee's aliasee. We also warn, since the user is probably 343 // expecting the link to be weak. 344 if (auto GA = dyn_cast<llvm::GlobalIndirectSymbol>(AliaseeGV)) { 345 if (GA->isInterposable()) { 346 Diags.Report(Location, diag::warn_alias_to_weak_alias) 347 << GV->getName() << GA->getName() << IsIFunc; 348 Aliasee = llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 349 GA->getIndirectSymbol(), Alias->getType()); 350 Alias->setIndirectSymbol(Aliasee); 351 } 352 } 353 } 354 if (!Error) 355 return; 356 357 for (const GlobalDecl &GD : Aliases) { 358 StringRef MangledName = getMangledName(GD); 359 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 360 auto *Alias = dyn_cast<llvm::GlobalIndirectSymbol>(Entry); 361 Alias->replaceAllUsesWith(llvm::UndefValue::get(Alias->getType())); 362 Alias->eraseFromParent(); 363 } 364 } 365 366 void CodeGenModule::clear() { 367 DeferredDeclsToEmit.clear(); 368 if (OpenMPRuntime) 369 OpenMPRuntime->clear(); 370 } 371 372 void InstrProfStats::reportDiagnostics(DiagnosticsEngine &Diags, 373 StringRef MainFile) { 374 if (!hasDiagnostics()) 375 return; 376 if (VisitedInMainFile > 0 && VisitedInMainFile == MissingInMainFile) { 377 if (MainFile.empty()) 378 MainFile = "<stdin>"; 379 Diags.Report(diag::warn_profile_data_unprofiled) << MainFile; 380 } else { 381 if (Mismatched > 0) 382 Diags.Report(diag::warn_profile_data_out_of_date) << Visited << Mismatched; 383 384 if (Missing > 0) 385 Diags.Report(diag::warn_profile_data_missing) << Visited << Missing; 386 } 387 } 388 389 void CodeGenModule::Release() { 390 EmitDeferred(); 391 EmitVTablesOpportunistically(); 392 applyGlobalValReplacements(); 393 applyReplacements(); 394 checkAliases(); 395 emitMultiVersionFunctions(); 396 EmitCXXGlobalInitFunc(); 397 EmitCXXGlobalDtorFunc(); 398 registerGlobalDtorsWithAtExit(); 399 EmitCXXThreadLocalInitFunc(); 400 if (ObjCRuntime) 401 if (llvm::Function *ObjCInitFunction = ObjCRuntime->ModuleInitFunction()) 402 AddGlobalCtor(ObjCInitFunction); 403 if (Context.getLangOpts().CUDA && !Context.getLangOpts().CUDAIsDevice && 404 CUDARuntime) { 405 if (llvm::Function *CudaCtorFunction = 406 CUDARuntime->makeModuleCtorFunction()) 407 AddGlobalCtor(CudaCtorFunction); 408 } 409 if (OpenMPRuntime) { 410 if (llvm::Function *OpenMPRegistrationFunction = 411 OpenMPRuntime->emitRegistrationFunction()) { 412 auto ComdatKey = OpenMPRegistrationFunction->hasComdat() ? 413 OpenMPRegistrationFunction : nullptr; 414 AddGlobalCtor(OpenMPRegistrationFunction, 0, ComdatKey); 415 } 416 OpenMPRuntime->clear(); 417 } 418 if (PGOReader) { 419 getModule().setProfileSummary(PGOReader->getSummary().getMD(VMContext)); 420 if (PGOStats.hasDiagnostics()) 421 PGOStats.reportDiagnostics(getDiags(), getCodeGenOpts().MainFileName); 422 } 423 EmitCtorList(GlobalCtors, "llvm.global_ctors"); 424 EmitCtorList(GlobalDtors, "llvm.global_dtors"); 425 EmitGlobalAnnotations(); 426 EmitStaticExternCAliases(); 427 EmitDeferredUnusedCoverageMappings(); 428 if (CoverageMapping) 429 CoverageMapping->emit(); 430 if (CodeGenOpts.SanitizeCfiCrossDso) { 431 CodeGenFunction(*this).EmitCfiCheckFail(); 432 CodeGenFunction(*this).EmitCfiCheckStub(); 433 } 434 emitAtAvailableLinkGuard(); 435 emitLLVMUsed(); 436 if (SanStats) 437 SanStats->finish(); 438 439 if (CodeGenOpts.Autolink && 440 (Context.getLangOpts().Modules || !LinkerOptionsMetadata.empty())) { 441 EmitModuleLinkOptions(); 442 } 443 444 // Record mregparm value now so it is visible through rest of codegen. 445 if (Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86) 446 getModule().addModuleFlag(llvm::Module::Error, "NumRegisterParameters", 447 CodeGenOpts.NumRegisterParameters); 448 449 if (CodeGenOpts.DwarfVersion) { 450 // We actually want the latest version when there are conflicts. 451 // We can change from Warning to Latest if such mode is supported. 452 getModule().addModuleFlag(llvm::Module::Warning, "Dwarf Version", 453 CodeGenOpts.DwarfVersion); 454 } 455 if (CodeGenOpts.EmitCodeView) { 456 // Indicate that we want CodeView in the metadata. 457 getModule().addModuleFlag(llvm::Module::Warning, "CodeView", 1); 458 } 459 if (CodeGenOpts.ControlFlowGuard) { 460 // We want function ID tables for Control Flow Guard. 461 getModule().addModuleFlag(llvm::Module::Warning, "cfguard", 1); 462 } 463 if (CodeGenOpts.OptimizationLevel > 0 && CodeGenOpts.StrictVTablePointers) { 464 // We don't support LTO with 2 with different StrictVTablePointers 465 // FIXME: we could support it by stripping all the information introduced 466 // by StrictVTablePointers. 467 468 getModule().addModuleFlag(llvm::Module::Error, "StrictVTablePointers",1); 469 470 llvm::Metadata *Ops[2] = { 471 llvm::MDString::get(VMContext, "StrictVTablePointers"), 472 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 473 llvm::Type::getInt32Ty(VMContext), 1))}; 474 475 getModule().addModuleFlag(llvm::Module::Require, 476 "StrictVTablePointersRequirement", 477 llvm::MDNode::get(VMContext, Ops)); 478 } 479 if (DebugInfo) 480 // We support a single version in the linked module. The LLVM 481 // parser will drop debug info with a different version number 482 // (and warn about it, too). 483 getModule().addModuleFlag(llvm::Module::Warning, "Debug Info Version", 484 llvm::DEBUG_METADATA_VERSION); 485 486 // We need to record the widths of enums and wchar_t, so that we can generate 487 // the correct build attributes in the ARM backend. wchar_size is also used by 488 // TargetLibraryInfo. 489 uint64_t WCharWidth = 490 Context.getTypeSizeInChars(Context.getWideCharType()).getQuantity(); 491 getModule().addModuleFlag(llvm::Module::Error, "wchar_size", WCharWidth); 492 493 llvm::Triple::ArchType Arch = Context.getTargetInfo().getTriple().getArch(); 494 if ( Arch == llvm::Triple::arm 495 || Arch == llvm::Triple::armeb 496 || Arch == llvm::Triple::thumb 497 || Arch == llvm::Triple::thumbeb) { 498 // The minimum width of an enum in bytes 499 uint64_t EnumWidth = Context.getLangOpts().ShortEnums ? 1 : 4; 500 getModule().addModuleFlag(llvm::Module::Error, "min_enum_size", EnumWidth); 501 } 502 503 if (CodeGenOpts.SanitizeCfiCrossDso) { 504 // Indicate that we want cross-DSO control flow integrity checks. 505 getModule().addModuleFlag(llvm::Module::Override, "Cross-DSO CFI", 1); 506 } 507 508 if (CodeGenOpts.CFProtectionReturn && 509 Target.checkCFProtectionReturnSupported(getDiags())) { 510 // Indicate that we want to instrument return control flow protection. 511 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-return", 512 1); 513 } 514 515 if (CodeGenOpts.CFProtectionBranch && 516 Target.checkCFProtectionBranchSupported(getDiags())) { 517 // Indicate that we want to instrument branch control flow protection. 518 getModule().addModuleFlag(llvm::Module::Override, "cf-protection-branch", 519 1); 520 } 521 522 if (LangOpts.CUDAIsDevice && getTriple().isNVPTX()) { 523 // Indicate whether __nvvm_reflect should be configured to flush denormal 524 // floating point values to 0. (This corresponds to its "__CUDA_FTZ" 525 // property.) 526 getModule().addModuleFlag(llvm::Module::Override, "nvvm-reflect-ftz", 527 CodeGenOpts.FlushDenorm ? 1 : 0); 528 } 529 530 // Emit OpenCL specific module metadata: OpenCL/SPIR version. 531 if (LangOpts.OpenCL) { 532 EmitOpenCLMetadata(); 533 // Emit SPIR version. 534 if (getTriple().getArch() == llvm::Triple::spir || 535 getTriple().getArch() == llvm::Triple::spir64) { 536 // SPIR v2.0 s2.12 - The SPIR version used by the module is stored in the 537 // opencl.spir.version named metadata. 538 llvm::Metadata *SPIRVerElts[] = { 539 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 540 Int32Ty, LangOpts.OpenCLVersion / 100)), 541 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 542 Int32Ty, (LangOpts.OpenCLVersion / 100 > 1) ? 0 : 2))}; 543 llvm::NamedMDNode *SPIRVerMD = 544 TheModule.getOrInsertNamedMetadata("opencl.spir.version"); 545 llvm::LLVMContext &Ctx = TheModule.getContext(); 546 SPIRVerMD->addOperand(llvm::MDNode::get(Ctx, SPIRVerElts)); 547 } 548 } 549 550 if (uint32_t PLevel = Context.getLangOpts().PICLevel) { 551 assert(PLevel < 3 && "Invalid PIC Level"); 552 getModule().setPICLevel(static_cast<llvm::PICLevel::Level>(PLevel)); 553 if (Context.getLangOpts().PIE) 554 getModule().setPIELevel(static_cast<llvm::PIELevel::Level>(PLevel)); 555 } 556 557 if (CodeGenOpts.NoPLT) 558 getModule().setRtLibUseGOT(); 559 560 SimplifyPersonality(); 561 562 if (getCodeGenOpts().EmitDeclMetadata) 563 EmitDeclMetadata(); 564 565 if (getCodeGenOpts().EmitGcovArcs || getCodeGenOpts().EmitGcovNotes) 566 EmitCoverageFile(); 567 568 if (DebugInfo) 569 DebugInfo->finalize(); 570 571 if (getCodeGenOpts().EmitVersionIdentMetadata) 572 EmitVersionIdentMetadata(); 573 574 EmitTargetMetadata(); 575 } 576 577 void CodeGenModule::EmitOpenCLMetadata() { 578 // SPIR v2.0 s2.13 - The OpenCL version used by the module is stored in the 579 // opencl.ocl.version named metadata node. 580 llvm::Metadata *OCLVerElts[] = { 581 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 582 Int32Ty, LangOpts.OpenCLVersion / 100)), 583 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 584 Int32Ty, (LangOpts.OpenCLVersion % 100) / 10))}; 585 llvm::NamedMDNode *OCLVerMD = 586 TheModule.getOrInsertNamedMetadata("opencl.ocl.version"); 587 llvm::LLVMContext &Ctx = TheModule.getContext(); 588 OCLVerMD->addOperand(llvm::MDNode::get(Ctx, OCLVerElts)); 589 } 590 591 void CodeGenModule::UpdateCompletedType(const TagDecl *TD) { 592 // Make sure that this type is translated. 593 Types.UpdateCompletedType(TD); 594 } 595 596 void CodeGenModule::RefreshTypeCacheForClass(const CXXRecordDecl *RD) { 597 // Make sure that this type is translated. 598 Types.RefreshTypeCacheForClass(RD); 599 } 600 601 llvm::MDNode *CodeGenModule::getTBAATypeInfo(QualType QTy) { 602 if (!TBAA) 603 return nullptr; 604 return TBAA->getTypeInfo(QTy); 605 } 606 607 TBAAAccessInfo CodeGenModule::getTBAAAccessInfo(QualType AccessType) { 608 if (!TBAA) 609 return TBAAAccessInfo(); 610 return TBAA->getAccessInfo(AccessType); 611 } 612 613 TBAAAccessInfo 614 CodeGenModule::getTBAAVTablePtrAccessInfo(llvm::Type *VTablePtrType) { 615 if (!TBAA) 616 return TBAAAccessInfo(); 617 return TBAA->getVTablePtrAccessInfo(VTablePtrType); 618 } 619 620 llvm::MDNode *CodeGenModule::getTBAAStructInfo(QualType QTy) { 621 if (!TBAA) 622 return nullptr; 623 return TBAA->getTBAAStructInfo(QTy); 624 } 625 626 llvm::MDNode *CodeGenModule::getTBAABaseTypeInfo(QualType QTy) { 627 if (!TBAA) 628 return nullptr; 629 return TBAA->getBaseTypeInfo(QTy); 630 } 631 632 llvm::MDNode *CodeGenModule::getTBAAAccessTagInfo(TBAAAccessInfo Info) { 633 if (!TBAA) 634 return nullptr; 635 return TBAA->getAccessTagInfo(Info); 636 } 637 638 TBAAAccessInfo CodeGenModule::mergeTBAAInfoForCast(TBAAAccessInfo SourceInfo, 639 TBAAAccessInfo TargetInfo) { 640 if (!TBAA) 641 return TBAAAccessInfo(); 642 return TBAA->mergeTBAAInfoForCast(SourceInfo, TargetInfo); 643 } 644 645 TBAAAccessInfo 646 CodeGenModule::mergeTBAAInfoForConditionalOperator(TBAAAccessInfo InfoA, 647 TBAAAccessInfo InfoB) { 648 if (!TBAA) 649 return TBAAAccessInfo(); 650 return TBAA->mergeTBAAInfoForConditionalOperator(InfoA, InfoB); 651 } 652 653 TBAAAccessInfo 654 CodeGenModule::mergeTBAAInfoForMemoryTransfer(TBAAAccessInfo DestInfo, 655 TBAAAccessInfo SrcInfo) { 656 if (!TBAA) 657 return TBAAAccessInfo(); 658 return TBAA->mergeTBAAInfoForConditionalOperator(DestInfo, SrcInfo); 659 } 660 661 void CodeGenModule::DecorateInstructionWithTBAA(llvm::Instruction *Inst, 662 TBAAAccessInfo TBAAInfo) { 663 if (llvm::MDNode *Tag = getTBAAAccessTagInfo(TBAAInfo)) 664 Inst->setMetadata(llvm::LLVMContext::MD_tbaa, Tag); 665 } 666 667 void CodeGenModule::DecorateInstructionWithInvariantGroup( 668 llvm::Instruction *I, const CXXRecordDecl *RD) { 669 I->setMetadata(llvm::LLVMContext::MD_invariant_group, 670 llvm::MDNode::get(getLLVMContext(), {})); 671 } 672 673 void CodeGenModule::Error(SourceLocation loc, StringRef message) { 674 unsigned diagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, "%0"); 675 getDiags().Report(Context.getFullLoc(loc), diagID) << message; 676 } 677 678 /// ErrorUnsupported - Print out an error that codegen doesn't support the 679 /// specified stmt yet. 680 void CodeGenModule::ErrorUnsupported(const Stmt *S, const char *Type) { 681 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 682 "cannot compile this %0 yet"); 683 std::string Msg = Type; 684 getDiags().Report(Context.getFullLoc(S->getLocStart()), DiagID) 685 << Msg << S->getSourceRange(); 686 } 687 688 /// ErrorUnsupported - Print out an error that codegen doesn't support the 689 /// specified decl yet. 690 void CodeGenModule::ErrorUnsupported(const Decl *D, const char *Type) { 691 unsigned DiagID = getDiags().getCustomDiagID(DiagnosticsEngine::Error, 692 "cannot compile this %0 yet"); 693 std::string Msg = Type; 694 getDiags().Report(Context.getFullLoc(D->getLocation()), DiagID) << Msg; 695 } 696 697 llvm::ConstantInt *CodeGenModule::getSize(CharUnits size) { 698 return llvm::ConstantInt::get(SizeTy, size.getQuantity()); 699 } 700 701 void CodeGenModule::setGlobalVisibility(llvm::GlobalValue *GV, 702 const NamedDecl *D) const { 703 if (GV->hasDLLImportStorageClass()) 704 return; 705 // Internal definitions always have default visibility. 706 if (GV->hasLocalLinkage()) { 707 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 708 return; 709 } 710 if (!D) 711 return; 712 // Set visibility for definitions. 713 LinkageInfo LV = D->getLinkageAndVisibility(); 714 if (LV.isVisibilityExplicit() || !GV->isDeclarationForLinker()) 715 GV->setVisibility(GetLLVMVisibility(LV.getVisibility())); 716 } 717 718 static bool shouldAssumeDSOLocal(const CodeGenModule &CGM, 719 llvm::GlobalValue *GV) { 720 if (GV->hasLocalLinkage()) 721 return true; 722 723 if (!GV->hasDefaultVisibility() && !GV->hasExternalWeakLinkage()) 724 return true; 725 726 // DLLImport explicitly marks the GV as external. 727 if (GV->hasDLLImportStorageClass()) 728 return false; 729 730 const llvm::Triple &TT = CGM.getTriple(); 731 // Every other GV is local on COFF. 732 // Make an exception for windows OS in the triple: Some firmware builds use 733 // *-win32-macho triples. This (accidentally?) produced windows relocations 734 // without GOT tables in older clang versions; Keep this behaviour. 735 // FIXME: even thread local variables? 736 if (TT.isOSBinFormatCOFF() || (TT.isOSWindows() && TT.isOSBinFormatMachO())) 737 return true; 738 739 // Only handle COFF and ELF for now. 740 if (!TT.isOSBinFormatELF()) 741 return false; 742 743 // If this is not an executable, don't assume anything is local. 744 const auto &CGOpts = CGM.getCodeGenOpts(); 745 llvm::Reloc::Model RM = CGOpts.RelocationModel; 746 const auto &LOpts = CGM.getLangOpts(); 747 if (RM != llvm::Reloc::Static && !LOpts.PIE) 748 return false; 749 750 // A definition cannot be preempted from an executable. 751 if (!GV->isDeclarationForLinker()) 752 return true; 753 754 // Most PIC code sequences that assume that a symbol is local cannot produce a 755 // 0 if it turns out the symbol is undefined. While this is ABI and relocation 756 // depended, it seems worth it to handle it here. 757 if (RM == llvm::Reloc::PIC_ && GV->hasExternalWeakLinkage()) 758 return false; 759 760 // PPC has no copy relocations and cannot use a plt entry as a symbol address. 761 llvm::Triple::ArchType Arch = TT.getArch(); 762 if (Arch == llvm::Triple::ppc || Arch == llvm::Triple::ppc64 || 763 Arch == llvm::Triple::ppc64le) 764 return false; 765 766 // If we can use copy relocations we can assume it is local. 767 if (auto *Var = dyn_cast<llvm::GlobalVariable>(GV)) 768 if (!Var->isThreadLocal() && 769 (RM == llvm::Reloc::Static || CGOpts.PIECopyRelocations)) 770 return true; 771 772 // If we can use a plt entry as the symbol address we can assume it 773 // is local. 774 // FIXME: This should work for PIE, but the gold linker doesn't support it. 775 if (isa<llvm::Function>(GV) && !CGOpts.NoPLT && RM == llvm::Reloc::Static) 776 return true; 777 778 // Otherwise don't assue it is local. 779 return false; 780 } 781 782 void CodeGenModule::setDSOLocal(llvm::GlobalValue *GV) const { 783 GV->setDSOLocal(shouldAssumeDSOLocal(*this, GV)); 784 } 785 786 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 787 GlobalDecl GD) const { 788 const auto *D = dyn_cast<NamedDecl>(GD.getDecl()); 789 // C++ destructors have a few C++ ABI specific special cases. 790 if (const auto *Dtor = dyn_cast_or_null<CXXDestructorDecl>(D)) { 791 getCXXABI().setCXXDestructorDLLStorage(GV, Dtor, GD.getDtorType()); 792 return; 793 } 794 setDLLImportDLLExport(GV, D); 795 } 796 797 void CodeGenModule::setDLLImportDLLExport(llvm::GlobalValue *GV, 798 const NamedDecl *D) const { 799 if (D && D->isExternallyVisible()) { 800 if (D->hasAttr<DLLImportAttr>()) 801 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 802 else if (D->hasAttr<DLLExportAttr>() && !GV->isDeclarationForLinker()) 803 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 804 } 805 } 806 807 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 808 GlobalDecl GD) const { 809 setDLLImportDLLExport(GV, GD); 810 setGlobalVisibilityAndLocal(GV, dyn_cast<NamedDecl>(GD.getDecl())); 811 } 812 813 void CodeGenModule::setGVProperties(llvm::GlobalValue *GV, 814 const NamedDecl *D) const { 815 setDLLImportDLLExport(GV, D); 816 setGlobalVisibilityAndLocal(GV, D); 817 } 818 819 void CodeGenModule::setGlobalVisibilityAndLocal(llvm::GlobalValue *GV, 820 const NamedDecl *D) const { 821 setGlobalVisibility(GV, D); 822 setDSOLocal(GV); 823 } 824 825 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel(StringRef S) { 826 return llvm::StringSwitch<llvm::GlobalVariable::ThreadLocalMode>(S) 827 .Case("global-dynamic", llvm::GlobalVariable::GeneralDynamicTLSModel) 828 .Case("local-dynamic", llvm::GlobalVariable::LocalDynamicTLSModel) 829 .Case("initial-exec", llvm::GlobalVariable::InitialExecTLSModel) 830 .Case("local-exec", llvm::GlobalVariable::LocalExecTLSModel); 831 } 832 833 static llvm::GlobalVariable::ThreadLocalMode GetLLVMTLSModel( 834 CodeGenOptions::TLSModel M) { 835 switch (M) { 836 case CodeGenOptions::GeneralDynamicTLSModel: 837 return llvm::GlobalVariable::GeneralDynamicTLSModel; 838 case CodeGenOptions::LocalDynamicTLSModel: 839 return llvm::GlobalVariable::LocalDynamicTLSModel; 840 case CodeGenOptions::InitialExecTLSModel: 841 return llvm::GlobalVariable::InitialExecTLSModel; 842 case CodeGenOptions::LocalExecTLSModel: 843 return llvm::GlobalVariable::LocalExecTLSModel; 844 } 845 llvm_unreachable("Invalid TLS model!"); 846 } 847 848 void CodeGenModule::setTLSMode(llvm::GlobalValue *GV, const VarDecl &D) const { 849 assert(D.getTLSKind() && "setting TLS mode on non-TLS var!"); 850 851 llvm::GlobalValue::ThreadLocalMode TLM; 852 TLM = GetLLVMTLSModel(CodeGenOpts.getDefaultTLSModel()); 853 854 // Override the TLS model if it is explicitly specified. 855 if (const TLSModelAttr *Attr = D.getAttr<TLSModelAttr>()) { 856 TLM = GetLLVMTLSModel(Attr->getModel()); 857 } 858 859 GV->setThreadLocalMode(TLM); 860 } 861 862 static std::string getCPUSpecificMangling(const CodeGenModule &CGM, 863 StringRef Name) { 864 const TargetInfo &Target = CGM.getTarget(); 865 return (Twine('.') + Twine(Target.CPUSpecificManglingCharacter(Name))).str(); 866 } 867 868 static void AppendCPUSpecificCPUDispatchMangling(const CodeGenModule &CGM, 869 const CPUSpecificAttr *Attr, 870 raw_ostream &Out) { 871 // cpu_specific gets the current name, dispatch gets the resolver. 872 if (Attr) 873 Out << getCPUSpecificMangling(CGM, Attr->getCurCPUName()->getName()); 874 else 875 Out << ".resolver"; 876 } 877 878 static void AppendTargetMangling(const CodeGenModule &CGM, 879 const TargetAttr *Attr, raw_ostream &Out) { 880 if (Attr->isDefaultVersion()) 881 return; 882 883 Out << '.'; 884 const TargetInfo &Target = CGM.getTarget(); 885 TargetAttr::ParsedTargetAttr Info = 886 Attr->parse([&Target](StringRef LHS, StringRef RHS) { 887 // Multiversioning doesn't allow "no-${feature}", so we can 888 // only have "+" prefixes here. 889 assert(LHS.startswith("+") && RHS.startswith("+") && 890 "Features should always have a prefix."); 891 return Target.multiVersionSortPriority(LHS.substr(1)) > 892 Target.multiVersionSortPriority(RHS.substr(1)); 893 }); 894 895 bool IsFirst = true; 896 897 if (!Info.Architecture.empty()) { 898 IsFirst = false; 899 Out << "arch_" << Info.Architecture; 900 } 901 902 for (StringRef Feat : Info.Features) { 903 if (!IsFirst) 904 Out << '_'; 905 IsFirst = false; 906 Out << Feat.substr(1); 907 } 908 } 909 910 static std::string getMangledNameImpl(const CodeGenModule &CGM, GlobalDecl GD, 911 const NamedDecl *ND, 912 bool OmitMultiVersionMangling = false) { 913 SmallString<256> Buffer; 914 llvm::raw_svector_ostream Out(Buffer); 915 MangleContext &MC = CGM.getCXXABI().getMangleContext(); 916 if (MC.shouldMangleDeclName(ND)) { 917 llvm::raw_svector_ostream Out(Buffer); 918 if (const auto *D = dyn_cast<CXXConstructorDecl>(ND)) 919 MC.mangleCXXCtor(D, GD.getCtorType(), Out); 920 else if (const auto *D = dyn_cast<CXXDestructorDecl>(ND)) 921 MC.mangleCXXDtor(D, GD.getDtorType(), Out); 922 else 923 MC.mangleName(ND, Out); 924 } else { 925 IdentifierInfo *II = ND->getIdentifier(); 926 assert(II && "Attempt to mangle unnamed decl."); 927 const auto *FD = dyn_cast<FunctionDecl>(ND); 928 929 if (FD && 930 FD->getType()->castAs<FunctionType>()->getCallConv() == CC_X86RegCall) { 931 llvm::raw_svector_ostream Out(Buffer); 932 Out << "__regcall3__" << II->getName(); 933 } else { 934 Out << II->getName(); 935 } 936 } 937 938 if (const auto *FD = dyn_cast<FunctionDecl>(ND)) 939 if (FD->isMultiVersion() && !OmitMultiVersionMangling) { 940 if (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion()) 941 AppendCPUSpecificCPUDispatchMangling( 942 CGM, FD->getAttr<CPUSpecificAttr>(), Out); 943 else 944 AppendTargetMangling(CGM, FD->getAttr<TargetAttr>(), Out); 945 } 946 947 return Out.str(); 948 } 949 950 void CodeGenModule::UpdateMultiVersionNames(GlobalDecl GD, 951 const FunctionDecl *FD) { 952 if (!FD->isMultiVersion()) 953 return; 954 955 // Get the name of what this would be without the 'target' attribute. This 956 // allows us to lookup the version that was emitted when this wasn't a 957 // multiversion function. 958 std::string NonTargetName = 959 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 960 GlobalDecl OtherGD; 961 if (lookupRepresentativeDecl(NonTargetName, OtherGD)) { 962 assert(OtherGD.getCanonicalDecl() 963 .getDecl() 964 ->getAsFunction() 965 ->isMultiVersion() && 966 "Other GD should now be a multiversioned function"); 967 // OtherFD is the version of this function that was mangled BEFORE 968 // becoming a MultiVersion function. It potentially needs to be updated. 969 const FunctionDecl *OtherFD = 970 OtherGD.getCanonicalDecl().getDecl()->getAsFunction(); 971 std::string OtherName = getMangledNameImpl(*this, OtherGD, OtherFD); 972 // This is so that if the initial version was already the 'default' 973 // version, we don't try to update it. 974 if (OtherName != NonTargetName) { 975 // Remove instead of erase, since others may have stored the StringRef 976 // to this. 977 const auto ExistingRecord = Manglings.find(NonTargetName); 978 if (ExistingRecord != std::end(Manglings)) 979 Manglings.remove(&(*ExistingRecord)); 980 auto Result = Manglings.insert(std::make_pair(OtherName, OtherGD)); 981 MangledDeclNames[OtherGD.getCanonicalDecl()] = Result.first->first(); 982 if (llvm::GlobalValue *Entry = GetGlobalValue(NonTargetName)) 983 Entry->setName(OtherName); 984 } 985 } 986 } 987 988 StringRef CodeGenModule::getMangledName(GlobalDecl GD) { 989 GlobalDecl CanonicalGD = GD.getCanonicalDecl(); 990 991 // Some ABIs don't have constructor variants. Make sure that base and 992 // complete constructors get mangled the same. 993 if (const auto *CD = dyn_cast<CXXConstructorDecl>(CanonicalGD.getDecl())) { 994 if (!getTarget().getCXXABI().hasConstructorVariants()) { 995 CXXCtorType OrigCtorType = GD.getCtorType(); 996 assert(OrigCtorType == Ctor_Base || OrigCtorType == Ctor_Complete); 997 if (OrigCtorType == Ctor_Base) 998 CanonicalGD = GlobalDecl(CD, Ctor_Complete); 999 } 1000 } 1001 1002 const auto *FD = dyn_cast<FunctionDecl>(GD.getDecl()); 1003 // Since CPUSpecific can require multiple emits per decl, store the manglings 1004 // separately. 1005 if (FD && 1006 (FD->isCPUDispatchMultiVersion() || FD->isCPUSpecificMultiVersion())) { 1007 const auto *SD = FD->getAttr<CPUSpecificAttr>(); 1008 1009 std::pair<GlobalDecl, unsigned> SpecCanonicalGD{ 1010 CanonicalGD, 1011 SD ? SD->ActiveArgIndex : std::numeric_limits<unsigned>::max()}; 1012 1013 auto FoundName = CPUSpecificMangledDeclNames.find(SpecCanonicalGD); 1014 if (FoundName != CPUSpecificMangledDeclNames.end()) 1015 return FoundName->second; 1016 1017 auto Result = CPUSpecificManglings.insert( 1018 std::make_pair(getMangledNameImpl(*this, GD, FD), SpecCanonicalGD)); 1019 return CPUSpecificMangledDeclNames[SpecCanonicalGD] = Result.first->first(); 1020 } 1021 1022 auto FoundName = MangledDeclNames.find(CanonicalGD); 1023 if (FoundName != MangledDeclNames.end()) 1024 return FoundName->second; 1025 1026 // Keep the first result in the case of a mangling collision. 1027 const auto *ND = cast<NamedDecl>(GD.getDecl()); 1028 auto Result = 1029 Manglings.insert(std::make_pair(getMangledNameImpl(*this, GD, ND), GD)); 1030 return MangledDeclNames[CanonicalGD] = Result.first->first(); 1031 } 1032 1033 StringRef CodeGenModule::getBlockMangledName(GlobalDecl GD, 1034 const BlockDecl *BD) { 1035 MangleContext &MangleCtx = getCXXABI().getMangleContext(); 1036 const Decl *D = GD.getDecl(); 1037 1038 SmallString<256> Buffer; 1039 llvm::raw_svector_ostream Out(Buffer); 1040 if (!D) 1041 MangleCtx.mangleGlobalBlock(BD, 1042 dyn_cast_or_null<VarDecl>(initializedGlobalDecl.getDecl()), Out); 1043 else if (const auto *CD = dyn_cast<CXXConstructorDecl>(D)) 1044 MangleCtx.mangleCtorBlock(CD, GD.getCtorType(), BD, Out); 1045 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(D)) 1046 MangleCtx.mangleDtorBlock(DD, GD.getDtorType(), BD, Out); 1047 else 1048 MangleCtx.mangleBlock(cast<DeclContext>(D), BD, Out); 1049 1050 auto Result = Manglings.insert(std::make_pair(Out.str(), BD)); 1051 return Result.first->first(); 1052 } 1053 1054 llvm::GlobalValue *CodeGenModule::GetGlobalValue(StringRef Name) { 1055 return getModule().getNamedValue(Name); 1056 } 1057 1058 /// AddGlobalCtor - Add a function to the list that will be called before 1059 /// main() runs. 1060 void CodeGenModule::AddGlobalCtor(llvm::Function *Ctor, int Priority, 1061 llvm::Constant *AssociatedData) { 1062 // FIXME: Type coercion of void()* types. 1063 GlobalCtors.push_back(Structor(Priority, Ctor, AssociatedData)); 1064 } 1065 1066 /// AddGlobalDtor - Add a function to the list that will be called 1067 /// when the module is unloaded. 1068 void CodeGenModule::AddGlobalDtor(llvm::Function *Dtor, int Priority) { 1069 if (CodeGenOpts.RegisterGlobalDtorsWithAtExit) { 1070 DtorsUsingAtExit[Priority].push_back(Dtor); 1071 return; 1072 } 1073 1074 // FIXME: Type coercion of void()* types. 1075 GlobalDtors.push_back(Structor(Priority, Dtor, nullptr)); 1076 } 1077 1078 void CodeGenModule::EmitCtorList(CtorList &Fns, const char *GlobalName) { 1079 if (Fns.empty()) return; 1080 1081 // Ctor function type is void()*. 1082 llvm::FunctionType* CtorFTy = llvm::FunctionType::get(VoidTy, false); 1083 llvm::Type *CtorPFTy = llvm::PointerType::getUnqual(CtorFTy); 1084 1085 // Get the type of a ctor entry, { i32, void ()*, i8* }. 1086 llvm::StructType *CtorStructTy = llvm::StructType::get( 1087 Int32Ty, llvm::PointerType::getUnqual(CtorFTy), VoidPtrTy); 1088 1089 // Construct the constructor and destructor arrays. 1090 ConstantInitBuilder builder(*this); 1091 auto ctors = builder.beginArray(CtorStructTy); 1092 for (const auto &I : Fns) { 1093 auto ctor = ctors.beginStruct(CtorStructTy); 1094 ctor.addInt(Int32Ty, I.Priority); 1095 ctor.add(llvm::ConstantExpr::getBitCast(I.Initializer, CtorPFTy)); 1096 if (I.AssociatedData) 1097 ctor.add(llvm::ConstantExpr::getBitCast(I.AssociatedData, VoidPtrTy)); 1098 else 1099 ctor.addNullPointer(VoidPtrTy); 1100 ctor.finishAndAddTo(ctors); 1101 } 1102 1103 auto list = 1104 ctors.finishAndCreateGlobal(GlobalName, getPointerAlign(), 1105 /*constant*/ false, 1106 llvm::GlobalValue::AppendingLinkage); 1107 1108 // The LTO linker doesn't seem to like it when we set an alignment 1109 // on appending variables. Take it off as a workaround. 1110 list->setAlignment(0); 1111 1112 Fns.clear(); 1113 } 1114 1115 llvm::GlobalValue::LinkageTypes 1116 CodeGenModule::getFunctionLinkage(GlobalDecl GD) { 1117 const auto *D = cast<FunctionDecl>(GD.getDecl()); 1118 1119 GVALinkage Linkage = getContext().GetGVALinkageForFunction(D); 1120 1121 if (const auto *Dtor = dyn_cast<CXXDestructorDecl>(D)) 1122 return getCXXABI().getCXXDestructorLinkage(Linkage, Dtor, GD.getDtorType()); 1123 1124 if (isa<CXXConstructorDecl>(D) && 1125 cast<CXXConstructorDecl>(D)->isInheritingConstructor() && 1126 Context.getTargetInfo().getCXXABI().isMicrosoft()) { 1127 // Our approach to inheriting constructors is fundamentally different from 1128 // that used by the MS ABI, so keep our inheriting constructor thunks 1129 // internal rather than trying to pick an unambiguous mangling for them. 1130 return llvm::GlobalValue::InternalLinkage; 1131 } 1132 1133 return getLLVMLinkageForDeclarator(D, Linkage, /*isConstantVariable=*/false); 1134 } 1135 1136 llvm::ConstantInt *CodeGenModule::CreateCrossDsoCfiTypeId(llvm::Metadata *MD) { 1137 llvm::MDString *MDS = dyn_cast<llvm::MDString>(MD); 1138 if (!MDS) return nullptr; 1139 1140 return llvm::ConstantInt::get(Int64Ty, llvm::MD5Hash(MDS->getString())); 1141 } 1142 1143 void CodeGenModule::SetLLVMFunctionAttributes(const Decl *D, 1144 const CGFunctionInfo &Info, 1145 llvm::Function *F) { 1146 unsigned CallingConv; 1147 llvm::AttributeList PAL; 1148 ConstructAttributeList(F->getName(), Info, D, PAL, CallingConv, false); 1149 F->setAttributes(PAL); 1150 F->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 1151 } 1152 1153 /// Determines whether the language options require us to model 1154 /// unwind exceptions. We treat -fexceptions as mandating this 1155 /// except under the fragile ObjC ABI with only ObjC exceptions 1156 /// enabled. This means, for example, that C with -fexceptions 1157 /// enables this. 1158 static bool hasUnwindExceptions(const LangOptions &LangOpts) { 1159 // If exceptions are completely disabled, obviously this is false. 1160 if (!LangOpts.Exceptions) return false; 1161 1162 // If C++ exceptions are enabled, this is true. 1163 if (LangOpts.CXXExceptions) return true; 1164 1165 // If ObjC exceptions are enabled, this depends on the ABI. 1166 if (LangOpts.ObjCExceptions) { 1167 return LangOpts.ObjCRuntime.hasUnwindExceptions(); 1168 } 1169 1170 return true; 1171 } 1172 1173 static bool requiresMemberFunctionPointerTypeMetadata(CodeGenModule &CGM, 1174 const CXXMethodDecl *MD) { 1175 // Check that the type metadata can ever actually be used by a call. 1176 if (!CGM.getCodeGenOpts().LTOUnit || 1177 !CGM.HasHiddenLTOVisibility(MD->getParent())) 1178 return false; 1179 1180 // Only functions whose address can be taken with a member function pointer 1181 // need this sort of type metadata. 1182 return !MD->isStatic() && !MD->isVirtual() && !isa<CXXConstructorDecl>(MD) && 1183 !isa<CXXDestructorDecl>(MD); 1184 } 1185 1186 std::vector<const CXXRecordDecl *> 1187 CodeGenModule::getMostBaseClasses(const CXXRecordDecl *RD) { 1188 llvm::SetVector<const CXXRecordDecl *> MostBases; 1189 1190 std::function<void (const CXXRecordDecl *)> CollectMostBases; 1191 CollectMostBases = [&](const CXXRecordDecl *RD) { 1192 if (RD->getNumBases() == 0) 1193 MostBases.insert(RD); 1194 for (const CXXBaseSpecifier &B : RD->bases()) 1195 CollectMostBases(B.getType()->getAsCXXRecordDecl()); 1196 }; 1197 CollectMostBases(RD); 1198 return MostBases.takeVector(); 1199 } 1200 1201 void CodeGenModule::SetLLVMFunctionAttributesForDefinition(const Decl *D, 1202 llvm::Function *F) { 1203 llvm::AttrBuilder B; 1204 1205 if (CodeGenOpts.UnwindTables) 1206 B.addAttribute(llvm::Attribute::UWTable); 1207 1208 if (!hasUnwindExceptions(LangOpts)) 1209 B.addAttribute(llvm::Attribute::NoUnwind); 1210 1211 if (!D || !D->hasAttr<NoStackProtectorAttr>()) { 1212 if (LangOpts.getStackProtector() == LangOptions::SSPOn) 1213 B.addAttribute(llvm::Attribute::StackProtect); 1214 else if (LangOpts.getStackProtector() == LangOptions::SSPStrong) 1215 B.addAttribute(llvm::Attribute::StackProtectStrong); 1216 else if (LangOpts.getStackProtector() == LangOptions::SSPReq) 1217 B.addAttribute(llvm::Attribute::StackProtectReq); 1218 } 1219 1220 if (!D) { 1221 // If we don't have a declaration to control inlining, the function isn't 1222 // explicitly marked as alwaysinline for semantic reasons, and inlining is 1223 // disabled, mark the function as noinline. 1224 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1225 CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) 1226 B.addAttribute(llvm::Attribute::NoInline); 1227 1228 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1229 return; 1230 } 1231 1232 // Track whether we need to add the optnone LLVM attribute, 1233 // starting with the default for this optimization level. 1234 bool ShouldAddOptNone = 1235 !CodeGenOpts.DisableO0ImplyOptNone && CodeGenOpts.OptimizationLevel == 0; 1236 // We can't add optnone in the following cases, it won't pass the verifier. 1237 ShouldAddOptNone &= !D->hasAttr<MinSizeAttr>(); 1238 ShouldAddOptNone &= !F->hasFnAttribute(llvm::Attribute::AlwaysInline); 1239 ShouldAddOptNone &= !D->hasAttr<AlwaysInlineAttr>(); 1240 1241 if (ShouldAddOptNone || D->hasAttr<OptimizeNoneAttr>()) { 1242 B.addAttribute(llvm::Attribute::OptimizeNone); 1243 1244 // OptimizeNone implies noinline; we should not be inlining such functions. 1245 B.addAttribute(llvm::Attribute::NoInline); 1246 assert(!F->hasFnAttribute(llvm::Attribute::AlwaysInline) && 1247 "OptimizeNone and AlwaysInline on same function!"); 1248 1249 // We still need to handle naked functions even though optnone subsumes 1250 // much of their semantics. 1251 if (D->hasAttr<NakedAttr>()) 1252 B.addAttribute(llvm::Attribute::Naked); 1253 1254 // OptimizeNone wins over OptimizeForSize and MinSize. 1255 F->removeFnAttr(llvm::Attribute::OptimizeForSize); 1256 F->removeFnAttr(llvm::Attribute::MinSize); 1257 } else if (D->hasAttr<NakedAttr>()) { 1258 // Naked implies noinline: we should not be inlining such functions. 1259 B.addAttribute(llvm::Attribute::Naked); 1260 B.addAttribute(llvm::Attribute::NoInline); 1261 } else if (D->hasAttr<NoDuplicateAttr>()) { 1262 B.addAttribute(llvm::Attribute::NoDuplicate); 1263 } else if (D->hasAttr<NoInlineAttr>()) { 1264 B.addAttribute(llvm::Attribute::NoInline); 1265 } else if (D->hasAttr<AlwaysInlineAttr>() && 1266 !F->hasFnAttribute(llvm::Attribute::NoInline)) { 1267 // (noinline wins over always_inline, and we can't specify both in IR) 1268 B.addAttribute(llvm::Attribute::AlwaysInline); 1269 } else if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyAlwaysInlining) { 1270 // If we're not inlining, then force everything that isn't always_inline to 1271 // carry an explicit noinline attribute. 1272 if (!F->hasFnAttribute(llvm::Attribute::AlwaysInline)) 1273 B.addAttribute(llvm::Attribute::NoInline); 1274 } else { 1275 // Otherwise, propagate the inline hint attribute and potentially use its 1276 // absence to mark things as noinline. 1277 if (auto *FD = dyn_cast<FunctionDecl>(D)) { 1278 if (any_of(FD->redecls(), [&](const FunctionDecl *Redecl) { 1279 return Redecl->isInlineSpecified(); 1280 })) { 1281 B.addAttribute(llvm::Attribute::InlineHint); 1282 } else if (CodeGenOpts.getInlining() == 1283 CodeGenOptions::OnlyHintInlining && 1284 !FD->isInlined() && 1285 !F->hasFnAttribute(llvm::Attribute::AlwaysInline)) { 1286 B.addAttribute(llvm::Attribute::NoInline); 1287 } 1288 } 1289 } 1290 1291 // Add other optimization related attributes if we are optimizing this 1292 // function. 1293 if (!D->hasAttr<OptimizeNoneAttr>()) { 1294 if (D->hasAttr<ColdAttr>()) { 1295 if (!ShouldAddOptNone) 1296 B.addAttribute(llvm::Attribute::OptimizeForSize); 1297 B.addAttribute(llvm::Attribute::Cold); 1298 } 1299 1300 if (D->hasAttr<MinSizeAttr>()) 1301 B.addAttribute(llvm::Attribute::MinSize); 1302 } 1303 1304 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 1305 1306 unsigned alignment = D->getMaxAlignment() / Context.getCharWidth(); 1307 if (alignment) 1308 F->setAlignment(alignment); 1309 1310 if (!D->hasAttr<AlignedAttr>()) 1311 if (LangOpts.FunctionAlignment) 1312 F->setAlignment(1 << LangOpts.FunctionAlignment); 1313 1314 // Some C++ ABIs require 2-byte alignment for member functions, in order to 1315 // reserve a bit for differentiating between virtual and non-virtual member 1316 // functions. If the current target's C++ ABI requires this and this is a 1317 // member function, set its alignment accordingly. 1318 if (getTarget().getCXXABI().areMemberFunctionsAligned()) { 1319 if (F->getAlignment() < 2 && isa<CXXMethodDecl>(D)) 1320 F->setAlignment(2); 1321 } 1322 1323 // In the cross-dso CFI mode, we want !type attributes on definitions only. 1324 if (CodeGenOpts.SanitizeCfiCrossDso) 1325 if (auto *FD = dyn_cast<FunctionDecl>(D)) 1326 CreateFunctionTypeMetadataForIcall(FD, F); 1327 1328 // Emit type metadata on member functions for member function pointer checks. 1329 // These are only ever necessary on definitions; we're guaranteed that the 1330 // definition will be present in the LTO unit as a result of LTO visibility. 1331 auto *MD = dyn_cast<CXXMethodDecl>(D); 1332 if (MD && requiresMemberFunctionPointerTypeMetadata(*this, MD)) { 1333 for (const CXXRecordDecl *Base : getMostBaseClasses(MD->getParent())) { 1334 llvm::Metadata *Id = 1335 CreateMetadataIdentifierForType(Context.getMemberPointerType( 1336 MD->getType(), Context.getRecordType(Base).getTypePtr())); 1337 F->addTypeMetadata(0, Id); 1338 } 1339 } 1340 } 1341 1342 void CodeGenModule::SetCommonAttributes(GlobalDecl GD, llvm::GlobalValue *GV) { 1343 const Decl *D = GD.getDecl(); 1344 if (dyn_cast_or_null<NamedDecl>(D)) 1345 setGVProperties(GV, GD); 1346 else 1347 GV->setVisibility(llvm::GlobalValue::DefaultVisibility); 1348 1349 if (D && D->hasAttr<UsedAttr>()) 1350 addUsedGlobal(GV); 1351 } 1352 1353 bool CodeGenModule::GetCPUAndFeaturesAttributes(const Decl *D, 1354 llvm::AttrBuilder &Attrs) { 1355 // Add target-cpu and target-features attributes to functions. If 1356 // we have a decl for the function and it has a target attribute then 1357 // parse that and add it to the feature set. 1358 StringRef TargetCPU = getTarget().getTargetOpts().CPU; 1359 std::vector<std::string> Features; 1360 const auto *FD = dyn_cast_or_null<FunctionDecl>(D); 1361 FD = FD ? FD->getMostRecentDecl() : FD; 1362 const auto *TD = FD ? FD->getAttr<TargetAttr>() : nullptr; 1363 const auto *SD = FD ? FD->getAttr<CPUSpecificAttr>() : nullptr; 1364 bool AddedAttr = false; 1365 if (TD || SD) { 1366 llvm::StringMap<bool> FeatureMap; 1367 getFunctionFeatureMap(FeatureMap, FD); 1368 1369 // Produce the canonical string for this set of features. 1370 for (const llvm::StringMap<bool>::value_type &Entry : FeatureMap) 1371 Features.push_back((Entry.getValue() ? "+" : "-") + Entry.getKey().str()); 1372 1373 // Now add the target-cpu and target-features to the function. 1374 // While we populated the feature map above, we still need to 1375 // get and parse the target attribute so we can get the cpu for 1376 // the function. 1377 if (TD) { 1378 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 1379 if (ParsedAttr.Architecture != "" && 1380 getTarget().isValidCPUName(ParsedAttr.Architecture)) 1381 TargetCPU = ParsedAttr.Architecture; 1382 } 1383 } else { 1384 // Otherwise just add the existing target cpu and target features to the 1385 // function. 1386 Features = getTarget().getTargetOpts().Features; 1387 } 1388 1389 if (TargetCPU != "") { 1390 Attrs.addAttribute("target-cpu", TargetCPU); 1391 AddedAttr = true; 1392 } 1393 if (!Features.empty()) { 1394 llvm::sort(Features.begin(), Features.end()); 1395 Attrs.addAttribute("target-features", llvm::join(Features, ",")); 1396 AddedAttr = true; 1397 } 1398 1399 return AddedAttr; 1400 } 1401 1402 void CodeGenModule::setNonAliasAttributes(GlobalDecl GD, 1403 llvm::GlobalObject *GO) { 1404 const Decl *D = GD.getDecl(); 1405 SetCommonAttributes(GD, GO); 1406 1407 if (D) { 1408 if (auto *GV = dyn_cast<llvm::GlobalVariable>(GO)) { 1409 if (auto *SA = D->getAttr<PragmaClangBSSSectionAttr>()) 1410 GV->addAttribute("bss-section", SA->getName()); 1411 if (auto *SA = D->getAttr<PragmaClangDataSectionAttr>()) 1412 GV->addAttribute("data-section", SA->getName()); 1413 if (auto *SA = D->getAttr<PragmaClangRodataSectionAttr>()) 1414 GV->addAttribute("rodata-section", SA->getName()); 1415 } 1416 1417 if (auto *F = dyn_cast<llvm::Function>(GO)) { 1418 if (auto *SA = D->getAttr<PragmaClangTextSectionAttr>()) 1419 if (!D->getAttr<SectionAttr>()) 1420 F->addFnAttr("implicit-section-name", SA->getName()); 1421 1422 llvm::AttrBuilder Attrs; 1423 if (GetCPUAndFeaturesAttributes(D, Attrs)) { 1424 // We know that GetCPUAndFeaturesAttributes will always have the 1425 // newest set, since it has the newest possible FunctionDecl, so the 1426 // new ones should replace the old. 1427 F->removeFnAttr("target-cpu"); 1428 F->removeFnAttr("target-features"); 1429 F->addAttributes(llvm::AttributeList::FunctionIndex, Attrs); 1430 } 1431 } 1432 1433 if (const auto *CSA = D->getAttr<CodeSegAttr>()) 1434 GO->setSection(CSA->getName()); 1435 else if (const auto *SA = D->getAttr<SectionAttr>()) 1436 GO->setSection(SA->getName()); 1437 } 1438 1439 getTargetCodeGenInfo().setTargetAttributes(D, GO, *this); 1440 } 1441 1442 void CodeGenModule::SetInternalFunctionAttributes(GlobalDecl GD, 1443 llvm::Function *F, 1444 const CGFunctionInfo &FI) { 1445 const Decl *D = GD.getDecl(); 1446 SetLLVMFunctionAttributes(D, FI, F); 1447 SetLLVMFunctionAttributesForDefinition(D, F); 1448 1449 F->setLinkage(llvm::Function::InternalLinkage); 1450 1451 setNonAliasAttributes(GD, F); 1452 } 1453 1454 static void setLinkageForGV(llvm::GlobalValue *GV, const NamedDecl *ND) { 1455 // Set linkage and visibility in case we never see a definition. 1456 LinkageInfo LV = ND->getLinkageAndVisibility(); 1457 // Don't set internal linkage on declarations. 1458 // "extern_weak" is overloaded in LLVM; we probably should have 1459 // separate linkage types for this. 1460 if (isExternallyVisible(LV.getLinkage()) && 1461 (ND->hasAttr<WeakAttr>() || ND->isWeakImported())) 1462 GV->setLinkage(llvm::GlobalValue::ExternalWeakLinkage); 1463 } 1464 1465 void CodeGenModule::CreateFunctionTypeMetadataForIcall(const FunctionDecl *FD, 1466 llvm::Function *F) { 1467 // Only if we are checking indirect calls. 1468 if (!LangOpts.Sanitize.has(SanitizerKind::CFIICall)) 1469 return; 1470 1471 // Non-static class methods are handled via vtable or member function pointer 1472 // checks elsewhere. 1473 if (isa<CXXMethodDecl>(FD) && !cast<CXXMethodDecl>(FD)->isStatic()) 1474 return; 1475 1476 // Additionally, if building with cross-DSO support... 1477 if (CodeGenOpts.SanitizeCfiCrossDso) { 1478 // Skip available_externally functions. They won't be codegen'ed in the 1479 // current module anyway. 1480 if (getContext().GetGVALinkageForFunction(FD) == GVA_AvailableExternally) 1481 return; 1482 } 1483 1484 llvm::Metadata *MD = CreateMetadataIdentifierForType(FD->getType()); 1485 F->addTypeMetadata(0, MD); 1486 F->addTypeMetadata(0, CreateMetadataIdentifierGeneralized(FD->getType())); 1487 1488 // Emit a hash-based bit set entry for cross-DSO calls. 1489 if (CodeGenOpts.SanitizeCfiCrossDso) 1490 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 1491 F->addTypeMetadata(0, llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 1492 } 1493 1494 void CodeGenModule::SetFunctionAttributes(GlobalDecl GD, llvm::Function *F, 1495 bool IsIncompleteFunction, 1496 bool IsThunk) { 1497 1498 if (llvm::Intrinsic::ID IID = F->getIntrinsicID()) { 1499 // If this is an intrinsic function, set the function's attributes 1500 // to the intrinsic's attributes. 1501 F->setAttributes(llvm::Intrinsic::getAttributes(getLLVMContext(), IID)); 1502 return; 1503 } 1504 1505 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 1506 1507 if (!IsIncompleteFunction) { 1508 SetLLVMFunctionAttributes(FD, getTypes().arrangeGlobalDeclaration(GD), F); 1509 // Setup target-specific attributes. 1510 if (F->isDeclaration()) 1511 getTargetCodeGenInfo().setTargetAttributes(FD, F, *this); 1512 } 1513 1514 // Add the Returned attribute for "this", except for iOS 5 and earlier 1515 // where substantial code, including the libstdc++ dylib, was compiled with 1516 // GCC and does not actually return "this". 1517 if (!IsThunk && getCXXABI().HasThisReturn(GD) && 1518 !(getTriple().isiOS() && getTriple().isOSVersionLT(6))) { 1519 assert(!F->arg_empty() && 1520 F->arg_begin()->getType() 1521 ->canLosslesslyBitCastTo(F->getReturnType()) && 1522 "unexpected this return"); 1523 F->addAttribute(1, llvm::Attribute::Returned); 1524 } 1525 1526 // Only a few attributes are set on declarations; these may later be 1527 // overridden by a definition. 1528 1529 setLinkageForGV(F, FD); 1530 setGVProperties(F, FD); 1531 1532 if (const auto *CSA = FD->getAttr<CodeSegAttr>()) 1533 F->setSection(CSA->getName()); 1534 else if (const auto *SA = FD->getAttr<SectionAttr>()) 1535 F->setSection(SA->getName()); 1536 1537 if (FD->isReplaceableGlobalAllocationFunction()) { 1538 // A replaceable global allocation function does not act like a builtin by 1539 // default, only if it is invoked by a new-expression or delete-expression. 1540 F->addAttribute(llvm::AttributeList::FunctionIndex, 1541 llvm::Attribute::NoBuiltin); 1542 1543 // A sane operator new returns a non-aliasing pointer. 1544 // FIXME: Also add NonNull attribute to the return value 1545 // for the non-nothrow forms? 1546 auto Kind = FD->getDeclName().getCXXOverloadedOperator(); 1547 if (getCodeGenOpts().AssumeSaneOperatorNew && 1548 (Kind == OO_New || Kind == OO_Array_New)) 1549 F->addAttribute(llvm::AttributeList::ReturnIndex, 1550 llvm::Attribute::NoAlias); 1551 } 1552 1553 if (isa<CXXConstructorDecl>(FD) || isa<CXXDestructorDecl>(FD)) 1554 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1555 else if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 1556 if (MD->isVirtual()) 1557 F->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1558 1559 // Don't emit entries for function declarations in the cross-DSO mode. This 1560 // is handled with better precision by the receiving DSO. 1561 if (!CodeGenOpts.SanitizeCfiCrossDso) 1562 CreateFunctionTypeMetadataForIcall(FD, F); 1563 1564 if (getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 1565 getOpenMPRuntime().emitDeclareSimdFunction(FD, F); 1566 } 1567 1568 void CodeGenModule::addUsedGlobal(llvm::GlobalValue *GV) { 1569 assert(!GV->isDeclaration() && 1570 "Only globals with definition can force usage."); 1571 LLVMUsed.emplace_back(GV); 1572 } 1573 1574 void CodeGenModule::addCompilerUsedGlobal(llvm::GlobalValue *GV) { 1575 assert(!GV->isDeclaration() && 1576 "Only globals with definition can force usage."); 1577 LLVMCompilerUsed.emplace_back(GV); 1578 } 1579 1580 static void emitUsed(CodeGenModule &CGM, StringRef Name, 1581 std::vector<llvm::WeakTrackingVH> &List) { 1582 // Don't create llvm.used if there is no need. 1583 if (List.empty()) 1584 return; 1585 1586 // Convert List to what ConstantArray needs. 1587 SmallVector<llvm::Constant*, 8> UsedArray; 1588 UsedArray.resize(List.size()); 1589 for (unsigned i = 0, e = List.size(); i != e; ++i) { 1590 UsedArray[i] = 1591 llvm::ConstantExpr::getPointerBitCastOrAddrSpaceCast( 1592 cast<llvm::Constant>(&*List[i]), CGM.Int8PtrTy); 1593 } 1594 1595 if (UsedArray.empty()) 1596 return; 1597 llvm::ArrayType *ATy = llvm::ArrayType::get(CGM.Int8PtrTy, UsedArray.size()); 1598 1599 auto *GV = new llvm::GlobalVariable( 1600 CGM.getModule(), ATy, false, llvm::GlobalValue::AppendingLinkage, 1601 llvm::ConstantArray::get(ATy, UsedArray), Name); 1602 1603 GV->setSection("llvm.metadata"); 1604 } 1605 1606 void CodeGenModule::emitLLVMUsed() { 1607 emitUsed(*this, "llvm.used", LLVMUsed); 1608 emitUsed(*this, "llvm.compiler.used", LLVMCompilerUsed); 1609 } 1610 1611 void CodeGenModule::AppendLinkerOptions(StringRef Opts) { 1612 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opts); 1613 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1614 } 1615 1616 void CodeGenModule::AddDetectMismatch(StringRef Name, StringRef Value) { 1617 llvm::SmallString<32> Opt; 1618 getTargetCodeGenInfo().getDetectMismatchOption(Name, Value, Opt); 1619 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1620 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1621 } 1622 1623 void CodeGenModule::AddELFLibDirective(StringRef Lib) { 1624 auto &C = getLLVMContext(); 1625 LinkerOptionsMetadata.push_back(llvm::MDNode::get( 1626 C, {llvm::MDString::get(C, "lib"), llvm::MDString::get(C, Lib)})); 1627 } 1628 1629 void CodeGenModule::AddDependentLib(StringRef Lib) { 1630 llvm::SmallString<24> Opt; 1631 getTargetCodeGenInfo().getDependentLibraryOption(Lib, Opt); 1632 auto *MDOpts = llvm::MDString::get(getLLVMContext(), Opt); 1633 LinkerOptionsMetadata.push_back(llvm::MDNode::get(getLLVMContext(), MDOpts)); 1634 } 1635 1636 /// Add link options implied by the given module, including modules 1637 /// it depends on, using a postorder walk. 1638 static void addLinkOptionsPostorder(CodeGenModule &CGM, Module *Mod, 1639 SmallVectorImpl<llvm::MDNode *> &Metadata, 1640 llvm::SmallPtrSet<Module *, 16> &Visited) { 1641 // Import this module's parent. 1642 if (Mod->Parent && Visited.insert(Mod->Parent).second) { 1643 addLinkOptionsPostorder(CGM, Mod->Parent, Metadata, Visited); 1644 } 1645 1646 // Import this module's dependencies. 1647 for (unsigned I = Mod->Imports.size(); I > 0; --I) { 1648 if (Visited.insert(Mod->Imports[I - 1]).second) 1649 addLinkOptionsPostorder(CGM, Mod->Imports[I-1], Metadata, Visited); 1650 } 1651 1652 // Add linker options to link against the libraries/frameworks 1653 // described by this module. 1654 llvm::LLVMContext &Context = CGM.getLLVMContext(); 1655 1656 // For modules that use export_as for linking, use that module 1657 // name instead. 1658 if (Mod->UseExportAsModuleLinkName) 1659 return; 1660 1661 for (unsigned I = Mod->LinkLibraries.size(); I > 0; --I) { 1662 // Link against a framework. Frameworks are currently Darwin only, so we 1663 // don't to ask TargetCodeGenInfo for the spelling of the linker option. 1664 if (Mod->LinkLibraries[I-1].IsFramework) { 1665 llvm::Metadata *Args[2] = { 1666 llvm::MDString::get(Context, "-framework"), 1667 llvm::MDString::get(Context, Mod->LinkLibraries[I - 1].Library)}; 1668 1669 Metadata.push_back(llvm::MDNode::get(Context, Args)); 1670 continue; 1671 } 1672 1673 // Link against a library. 1674 llvm::SmallString<24> Opt; 1675 CGM.getTargetCodeGenInfo().getDependentLibraryOption( 1676 Mod->LinkLibraries[I-1].Library, Opt); 1677 auto *OptString = llvm::MDString::get(Context, Opt); 1678 Metadata.push_back(llvm::MDNode::get(Context, OptString)); 1679 } 1680 } 1681 1682 void CodeGenModule::EmitModuleLinkOptions() { 1683 // Collect the set of all of the modules we want to visit to emit link 1684 // options, which is essentially the imported modules and all of their 1685 // non-explicit child modules. 1686 llvm::SetVector<clang::Module *> LinkModules; 1687 llvm::SmallPtrSet<clang::Module *, 16> Visited; 1688 SmallVector<clang::Module *, 16> Stack; 1689 1690 // Seed the stack with imported modules. 1691 for (Module *M : ImportedModules) { 1692 // Do not add any link flags when an implementation TU of a module imports 1693 // a header of that same module. 1694 if (M->getTopLevelModuleName() == getLangOpts().CurrentModule && 1695 !getLangOpts().isCompilingModule()) 1696 continue; 1697 if (Visited.insert(M).second) 1698 Stack.push_back(M); 1699 } 1700 1701 // Find all of the modules to import, making a little effort to prune 1702 // non-leaf modules. 1703 while (!Stack.empty()) { 1704 clang::Module *Mod = Stack.pop_back_val(); 1705 1706 bool AnyChildren = false; 1707 1708 // Visit the submodules of this module. 1709 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 1710 SubEnd = Mod->submodule_end(); 1711 Sub != SubEnd; ++Sub) { 1712 // Skip explicit children; they need to be explicitly imported to be 1713 // linked against. 1714 if ((*Sub)->IsExplicit) 1715 continue; 1716 1717 if (Visited.insert(*Sub).second) { 1718 Stack.push_back(*Sub); 1719 AnyChildren = true; 1720 } 1721 } 1722 1723 // We didn't find any children, so add this module to the list of 1724 // modules to link against. 1725 if (!AnyChildren) { 1726 LinkModules.insert(Mod); 1727 } 1728 } 1729 1730 // Add link options for all of the imported modules in reverse topological 1731 // order. We don't do anything to try to order import link flags with respect 1732 // to linker options inserted by things like #pragma comment(). 1733 SmallVector<llvm::MDNode *, 16> MetadataArgs; 1734 Visited.clear(); 1735 for (Module *M : LinkModules) 1736 if (Visited.insert(M).second) 1737 addLinkOptionsPostorder(*this, M, MetadataArgs, Visited); 1738 std::reverse(MetadataArgs.begin(), MetadataArgs.end()); 1739 LinkerOptionsMetadata.append(MetadataArgs.begin(), MetadataArgs.end()); 1740 1741 // Add the linker options metadata flag. 1742 auto *NMD = getModule().getOrInsertNamedMetadata("llvm.linker.options"); 1743 for (auto *MD : LinkerOptionsMetadata) 1744 NMD->addOperand(MD); 1745 } 1746 1747 void CodeGenModule::EmitDeferred() { 1748 // Emit code for any potentially referenced deferred decls. Since a 1749 // previously unused static decl may become used during the generation of code 1750 // for a static function, iterate until no changes are made. 1751 1752 if (!DeferredVTables.empty()) { 1753 EmitDeferredVTables(); 1754 1755 // Emitting a vtable doesn't directly cause more vtables to 1756 // become deferred, although it can cause functions to be 1757 // emitted that then need those vtables. 1758 assert(DeferredVTables.empty()); 1759 } 1760 1761 // Stop if we're out of both deferred vtables and deferred declarations. 1762 if (DeferredDeclsToEmit.empty()) 1763 return; 1764 1765 // Grab the list of decls to emit. If EmitGlobalDefinition schedules more 1766 // work, it will not interfere with this. 1767 std::vector<GlobalDecl> CurDeclsToEmit; 1768 CurDeclsToEmit.swap(DeferredDeclsToEmit); 1769 1770 for (GlobalDecl &D : CurDeclsToEmit) { 1771 // We should call GetAddrOfGlobal with IsForDefinition set to true in order 1772 // to get GlobalValue with exactly the type we need, not something that 1773 // might had been created for another decl with the same mangled name but 1774 // different type. 1775 llvm::GlobalValue *GV = dyn_cast<llvm::GlobalValue>( 1776 GetAddrOfGlobal(D, ForDefinition)); 1777 1778 // In case of different address spaces, we may still get a cast, even with 1779 // IsForDefinition equal to true. Query mangled names table to get 1780 // GlobalValue. 1781 if (!GV) 1782 GV = GetGlobalValue(getMangledName(D)); 1783 1784 // Make sure GetGlobalValue returned non-null. 1785 assert(GV); 1786 1787 // Check to see if we've already emitted this. This is necessary 1788 // for a couple of reasons: first, decls can end up in the 1789 // deferred-decls queue multiple times, and second, decls can end 1790 // up with definitions in unusual ways (e.g. by an extern inline 1791 // function acquiring a strong function redefinition). Just 1792 // ignore these cases. 1793 if (!GV->isDeclaration()) 1794 continue; 1795 1796 // Otherwise, emit the definition and move on to the next one. 1797 EmitGlobalDefinition(D, GV); 1798 1799 // If we found out that we need to emit more decls, do that recursively. 1800 // This has the advantage that the decls are emitted in a DFS and related 1801 // ones are close together, which is convenient for testing. 1802 if (!DeferredVTables.empty() || !DeferredDeclsToEmit.empty()) { 1803 EmitDeferred(); 1804 assert(DeferredVTables.empty() && DeferredDeclsToEmit.empty()); 1805 } 1806 } 1807 } 1808 1809 void CodeGenModule::EmitVTablesOpportunistically() { 1810 // Try to emit external vtables as available_externally if they have emitted 1811 // all inlined virtual functions. It runs after EmitDeferred() and therefore 1812 // is not allowed to create new references to things that need to be emitted 1813 // lazily. Note that it also uses fact that we eagerly emitting RTTI. 1814 1815 assert((OpportunisticVTables.empty() || shouldOpportunisticallyEmitVTables()) 1816 && "Only emit opportunistic vtables with optimizations"); 1817 1818 for (const CXXRecordDecl *RD : OpportunisticVTables) { 1819 assert(getVTables().isVTableExternal(RD) && 1820 "This queue should only contain external vtables"); 1821 if (getCXXABI().canSpeculativelyEmitVTable(RD)) 1822 VTables.GenerateClassData(RD); 1823 } 1824 OpportunisticVTables.clear(); 1825 } 1826 1827 void CodeGenModule::EmitGlobalAnnotations() { 1828 if (Annotations.empty()) 1829 return; 1830 1831 // Create a new global variable for the ConstantStruct in the Module. 1832 llvm::Constant *Array = llvm::ConstantArray::get(llvm::ArrayType::get( 1833 Annotations[0]->getType(), Annotations.size()), Annotations); 1834 auto *gv = new llvm::GlobalVariable(getModule(), Array->getType(), false, 1835 llvm::GlobalValue::AppendingLinkage, 1836 Array, "llvm.global.annotations"); 1837 gv->setSection(AnnotationSection); 1838 } 1839 1840 llvm::Constant *CodeGenModule::EmitAnnotationString(StringRef Str) { 1841 llvm::Constant *&AStr = AnnotationStrings[Str]; 1842 if (AStr) 1843 return AStr; 1844 1845 // Not found yet, create a new global. 1846 llvm::Constant *s = llvm::ConstantDataArray::getString(getLLVMContext(), Str); 1847 auto *gv = 1848 new llvm::GlobalVariable(getModule(), s->getType(), true, 1849 llvm::GlobalValue::PrivateLinkage, s, ".str"); 1850 gv->setSection(AnnotationSection); 1851 gv->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1852 AStr = gv; 1853 return gv; 1854 } 1855 1856 llvm::Constant *CodeGenModule::EmitAnnotationUnit(SourceLocation Loc) { 1857 SourceManager &SM = getContext().getSourceManager(); 1858 PresumedLoc PLoc = SM.getPresumedLoc(Loc); 1859 if (PLoc.isValid()) 1860 return EmitAnnotationString(PLoc.getFilename()); 1861 return EmitAnnotationString(SM.getBufferName(Loc)); 1862 } 1863 1864 llvm::Constant *CodeGenModule::EmitAnnotationLineNo(SourceLocation L) { 1865 SourceManager &SM = getContext().getSourceManager(); 1866 PresumedLoc PLoc = SM.getPresumedLoc(L); 1867 unsigned LineNo = PLoc.isValid() ? PLoc.getLine() : 1868 SM.getExpansionLineNumber(L); 1869 return llvm::ConstantInt::get(Int32Ty, LineNo); 1870 } 1871 1872 llvm::Constant *CodeGenModule::EmitAnnotateAttr(llvm::GlobalValue *GV, 1873 const AnnotateAttr *AA, 1874 SourceLocation L) { 1875 // Get the globals for file name, annotation, and the line number. 1876 llvm::Constant *AnnoGV = EmitAnnotationString(AA->getAnnotation()), 1877 *UnitGV = EmitAnnotationUnit(L), 1878 *LineNoCst = EmitAnnotationLineNo(L); 1879 1880 // Create the ConstantStruct for the global annotation. 1881 llvm::Constant *Fields[4] = { 1882 llvm::ConstantExpr::getBitCast(GV, Int8PtrTy), 1883 llvm::ConstantExpr::getBitCast(AnnoGV, Int8PtrTy), 1884 llvm::ConstantExpr::getBitCast(UnitGV, Int8PtrTy), 1885 LineNoCst 1886 }; 1887 return llvm::ConstantStruct::getAnon(Fields); 1888 } 1889 1890 void CodeGenModule::AddGlobalAnnotations(const ValueDecl *D, 1891 llvm::GlobalValue *GV) { 1892 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1893 // Get the struct elements for these annotations. 1894 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1895 Annotations.push_back(EmitAnnotateAttr(GV, I, D->getLocation())); 1896 } 1897 1898 bool CodeGenModule::isInSanitizerBlacklist(SanitizerMask Kind, 1899 llvm::Function *Fn, 1900 SourceLocation Loc) const { 1901 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1902 // Blacklist by function name. 1903 if (SanitizerBL.isBlacklistedFunction(Kind, Fn->getName())) 1904 return true; 1905 // Blacklist by location. 1906 if (Loc.isValid()) 1907 return SanitizerBL.isBlacklistedLocation(Kind, Loc); 1908 // If location is unknown, this may be a compiler-generated function. Assume 1909 // it's located in the main file. 1910 auto &SM = Context.getSourceManager(); 1911 if (const auto *MainFile = SM.getFileEntryForID(SM.getMainFileID())) { 1912 return SanitizerBL.isBlacklistedFile(Kind, MainFile->getName()); 1913 } 1914 return false; 1915 } 1916 1917 bool CodeGenModule::isInSanitizerBlacklist(llvm::GlobalVariable *GV, 1918 SourceLocation Loc, QualType Ty, 1919 StringRef Category) const { 1920 // For now globals can be blacklisted only in ASan and KASan. 1921 const SanitizerMask EnabledAsanMask = LangOpts.Sanitize.Mask & 1922 (SanitizerKind::Address | SanitizerKind::KernelAddress | 1923 SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress); 1924 if (!EnabledAsanMask) 1925 return false; 1926 const auto &SanitizerBL = getContext().getSanitizerBlacklist(); 1927 if (SanitizerBL.isBlacklistedGlobal(EnabledAsanMask, GV->getName(), Category)) 1928 return true; 1929 if (SanitizerBL.isBlacklistedLocation(EnabledAsanMask, Loc, Category)) 1930 return true; 1931 // Check global type. 1932 if (!Ty.isNull()) { 1933 // Drill down the array types: if global variable of a fixed type is 1934 // blacklisted, we also don't instrument arrays of them. 1935 while (auto AT = dyn_cast<ArrayType>(Ty.getTypePtr())) 1936 Ty = AT->getElementType(); 1937 Ty = Ty.getCanonicalType().getUnqualifiedType(); 1938 // We allow to blacklist only record types (classes, structs etc.) 1939 if (Ty->isRecordType()) { 1940 std::string TypeStr = Ty.getAsString(getContext().getPrintingPolicy()); 1941 if (SanitizerBL.isBlacklistedType(EnabledAsanMask, TypeStr, Category)) 1942 return true; 1943 } 1944 } 1945 return false; 1946 } 1947 1948 bool CodeGenModule::imbueXRayAttrs(llvm::Function *Fn, SourceLocation Loc, 1949 StringRef Category) const { 1950 if (!LangOpts.XRayInstrument) 1951 return false; 1952 1953 const auto &XRayFilter = getContext().getXRayFilter(); 1954 using ImbueAttr = XRayFunctionFilter::ImbueAttribute; 1955 auto Attr = ImbueAttr::NONE; 1956 if (Loc.isValid()) 1957 Attr = XRayFilter.shouldImbueLocation(Loc, Category); 1958 if (Attr == ImbueAttr::NONE) 1959 Attr = XRayFilter.shouldImbueFunction(Fn->getName()); 1960 switch (Attr) { 1961 case ImbueAttr::NONE: 1962 return false; 1963 case ImbueAttr::ALWAYS: 1964 Fn->addFnAttr("function-instrument", "xray-always"); 1965 break; 1966 case ImbueAttr::ALWAYS_ARG1: 1967 Fn->addFnAttr("function-instrument", "xray-always"); 1968 Fn->addFnAttr("xray-log-args", "1"); 1969 break; 1970 case ImbueAttr::NEVER: 1971 Fn->addFnAttr("function-instrument", "xray-never"); 1972 break; 1973 } 1974 return true; 1975 } 1976 1977 bool CodeGenModule::MustBeEmitted(const ValueDecl *Global) { 1978 // Never defer when EmitAllDecls is specified. 1979 if (LangOpts.EmitAllDecls) 1980 return true; 1981 1982 return getContext().DeclMustBeEmitted(Global); 1983 } 1984 1985 bool CodeGenModule::MayBeEmittedEagerly(const ValueDecl *Global) { 1986 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) 1987 if (FD->getTemplateSpecializationKind() == TSK_ImplicitInstantiation) 1988 // Implicit template instantiations may change linkage if they are later 1989 // explicitly instantiated, so they should not be emitted eagerly. 1990 return false; 1991 if (const auto *VD = dyn_cast<VarDecl>(Global)) 1992 if (Context.getInlineVariableDefinitionKind(VD) == 1993 ASTContext::InlineVariableDefinitionKind::WeakUnknown) 1994 // A definition of an inline constexpr static data member may change 1995 // linkage later if it's redeclared outside the class. 1996 return false; 1997 // If OpenMP is enabled and threadprivates must be generated like TLS, delay 1998 // codegen for global variables, because they may be marked as threadprivate. 1999 if (LangOpts.OpenMP && LangOpts.OpenMPUseTLS && 2000 getContext().getTargetInfo().isTLSSupported() && isa<VarDecl>(Global) && 2001 !isTypeConstant(Global->getType(), false)) 2002 return false; 2003 2004 return true; 2005 } 2006 2007 ConstantAddress CodeGenModule::GetAddrOfUuidDescriptor( 2008 const CXXUuidofExpr* E) { 2009 // Sema has verified that IIDSource has a __declspec(uuid()), and that its 2010 // well-formed. 2011 StringRef Uuid = E->getUuidStr(); 2012 std::string Name = "_GUID_" + Uuid.lower(); 2013 std::replace(Name.begin(), Name.end(), '-', '_'); 2014 2015 // The UUID descriptor should be pointer aligned. 2016 CharUnits Alignment = CharUnits::fromQuantity(PointerAlignInBytes); 2017 2018 // Look for an existing global. 2019 if (llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name)) 2020 return ConstantAddress(GV, Alignment); 2021 2022 llvm::Constant *Init = EmitUuidofInitializer(Uuid); 2023 assert(Init && "failed to initialize as constant"); 2024 2025 auto *GV = new llvm::GlobalVariable( 2026 getModule(), Init->getType(), 2027 /*isConstant=*/true, llvm::GlobalValue::LinkOnceODRLinkage, Init, Name); 2028 if (supportsCOMDAT()) 2029 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 2030 setDSOLocal(GV); 2031 return ConstantAddress(GV, Alignment); 2032 } 2033 2034 ConstantAddress CodeGenModule::GetWeakRefReference(const ValueDecl *VD) { 2035 const AliasAttr *AA = VD->getAttr<AliasAttr>(); 2036 assert(AA && "No alias?"); 2037 2038 CharUnits Alignment = getContext().getDeclAlign(VD); 2039 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(VD->getType()); 2040 2041 // See if there is already something with the target's name in the module. 2042 llvm::GlobalValue *Entry = GetGlobalValue(AA->getAliasee()); 2043 if (Entry) { 2044 unsigned AS = getContext().getTargetAddressSpace(VD->getType()); 2045 auto Ptr = llvm::ConstantExpr::getBitCast(Entry, DeclTy->getPointerTo(AS)); 2046 return ConstantAddress(Ptr, Alignment); 2047 } 2048 2049 llvm::Constant *Aliasee; 2050 if (isa<llvm::FunctionType>(DeclTy)) 2051 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, 2052 GlobalDecl(cast<FunctionDecl>(VD)), 2053 /*ForVTable=*/false); 2054 else 2055 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 2056 llvm::PointerType::getUnqual(DeclTy), 2057 nullptr); 2058 2059 auto *F = cast<llvm::GlobalValue>(Aliasee); 2060 F->setLinkage(llvm::Function::ExternalWeakLinkage); 2061 WeakRefReferences.insert(F); 2062 2063 return ConstantAddress(Aliasee, Alignment); 2064 } 2065 2066 void CodeGenModule::EmitGlobal(GlobalDecl GD) { 2067 const auto *Global = cast<ValueDecl>(GD.getDecl()); 2068 2069 // Weak references don't produce any output by themselves. 2070 if (Global->hasAttr<WeakRefAttr>()) 2071 return; 2072 2073 // If this is an alias definition (which otherwise looks like a declaration) 2074 // emit it now. 2075 if (Global->hasAttr<AliasAttr>()) 2076 return EmitAliasDefinition(GD); 2077 2078 // IFunc like an alias whose value is resolved at runtime by calling resolver. 2079 if (Global->hasAttr<IFuncAttr>()) 2080 return emitIFuncDefinition(GD); 2081 2082 // If this is a cpu_dispatch multiversion function, emit the resolver. 2083 if (Global->hasAttr<CPUDispatchAttr>()) 2084 return emitCPUDispatchDefinition(GD); 2085 2086 // If this is CUDA, be selective about which declarations we emit. 2087 if (LangOpts.CUDA) { 2088 if (LangOpts.CUDAIsDevice) { 2089 if (!Global->hasAttr<CUDADeviceAttr>() && 2090 !Global->hasAttr<CUDAGlobalAttr>() && 2091 !Global->hasAttr<CUDAConstantAttr>() && 2092 !Global->hasAttr<CUDASharedAttr>()) 2093 return; 2094 } else { 2095 // We need to emit host-side 'shadows' for all global 2096 // device-side variables because the CUDA runtime needs their 2097 // size and host-side address in order to provide access to 2098 // their device-side incarnations. 2099 2100 // So device-only functions are the only things we skip. 2101 if (isa<FunctionDecl>(Global) && !Global->hasAttr<CUDAHostAttr>() && 2102 Global->hasAttr<CUDADeviceAttr>()) 2103 return; 2104 2105 assert((isa<FunctionDecl>(Global) || isa<VarDecl>(Global)) && 2106 "Expected Variable or Function"); 2107 } 2108 } 2109 2110 if (LangOpts.OpenMP) { 2111 // If this is OpenMP device, check if it is legal to emit this global 2112 // normally. 2113 if (OpenMPRuntime && OpenMPRuntime->emitTargetGlobal(GD)) 2114 return; 2115 if (auto *DRD = dyn_cast<OMPDeclareReductionDecl>(Global)) { 2116 if (MustBeEmitted(Global)) 2117 EmitOMPDeclareReduction(DRD); 2118 return; 2119 } 2120 } 2121 2122 // Ignore declarations, they will be emitted on their first use. 2123 if (const auto *FD = dyn_cast<FunctionDecl>(Global)) { 2124 // Forward declarations are emitted lazily on first use. 2125 if (!FD->doesThisDeclarationHaveABody()) { 2126 if (!FD->doesDeclarationForceExternallyVisibleDefinition()) 2127 return; 2128 2129 StringRef MangledName = getMangledName(GD); 2130 2131 // Compute the function info and LLVM type. 2132 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 2133 llvm::Type *Ty = getTypes().GetFunctionType(FI); 2134 2135 GetOrCreateLLVMFunction(MangledName, Ty, GD, /*ForVTable=*/false, 2136 /*DontDefer=*/false); 2137 return; 2138 } 2139 } else { 2140 const auto *VD = cast<VarDecl>(Global); 2141 assert(VD->isFileVarDecl() && "Cannot emit local var decl as global."); 2142 // We need to emit device-side global CUDA variables even if a 2143 // variable does not have a definition -- we still need to define 2144 // host-side shadow for it. 2145 bool MustEmitForCuda = LangOpts.CUDA && !LangOpts.CUDAIsDevice && 2146 !VD->hasDefinition() && 2147 (VD->hasAttr<CUDAConstantAttr>() || 2148 VD->hasAttr<CUDADeviceAttr>()); 2149 if (!MustEmitForCuda && 2150 VD->isThisDeclarationADefinition() != VarDecl::Definition && 2151 !Context.isMSStaticDataMemberInlineDefinition(VD)) { 2152 // If this declaration may have caused an inline variable definition to 2153 // change linkage, make sure that it's emitted. 2154 if (Context.getInlineVariableDefinitionKind(VD) == 2155 ASTContext::InlineVariableDefinitionKind::Strong) 2156 GetAddrOfGlobalVar(VD); 2157 return; 2158 } 2159 } 2160 2161 // Defer code generation to first use when possible, e.g. if this is an inline 2162 // function. If the global must always be emitted, do it eagerly if possible 2163 // to benefit from cache locality. 2164 if (MustBeEmitted(Global) && MayBeEmittedEagerly(Global)) { 2165 // Emit the definition if it can't be deferred. 2166 EmitGlobalDefinition(GD); 2167 return; 2168 } 2169 2170 // If we're deferring emission of a C++ variable with an 2171 // initializer, remember the order in which it appeared in the file. 2172 if (getLangOpts().CPlusPlus && isa<VarDecl>(Global) && 2173 cast<VarDecl>(Global)->hasInit()) { 2174 DelayedCXXInitPosition[Global] = CXXGlobalInits.size(); 2175 CXXGlobalInits.push_back(nullptr); 2176 } 2177 2178 StringRef MangledName = getMangledName(GD); 2179 if (GetGlobalValue(MangledName) != nullptr) { 2180 // The value has already been used and should therefore be emitted. 2181 addDeferredDeclToEmit(GD); 2182 } else if (MustBeEmitted(Global)) { 2183 // The value must be emitted, but cannot be emitted eagerly. 2184 assert(!MayBeEmittedEagerly(Global)); 2185 addDeferredDeclToEmit(GD); 2186 } else { 2187 // Otherwise, remember that we saw a deferred decl with this name. The 2188 // first use of the mangled name will cause it to move into 2189 // DeferredDeclsToEmit. 2190 DeferredDecls[MangledName] = GD; 2191 } 2192 } 2193 2194 // Check if T is a class type with a destructor that's not dllimport. 2195 static bool HasNonDllImportDtor(QualType T) { 2196 if (const auto *RT = T->getBaseElementTypeUnsafe()->getAs<RecordType>()) 2197 if (CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(RT->getDecl())) 2198 if (RD->getDestructor() && !RD->getDestructor()->hasAttr<DLLImportAttr>()) 2199 return true; 2200 2201 return false; 2202 } 2203 2204 namespace { 2205 struct FunctionIsDirectlyRecursive : 2206 public RecursiveASTVisitor<FunctionIsDirectlyRecursive> { 2207 const StringRef Name; 2208 const Builtin::Context &BI; 2209 bool Result; 2210 FunctionIsDirectlyRecursive(StringRef N, const Builtin::Context &C) : 2211 Name(N), BI(C), Result(false) { 2212 } 2213 typedef RecursiveASTVisitor<FunctionIsDirectlyRecursive> Base; 2214 2215 bool TraverseCallExpr(CallExpr *E) { 2216 const FunctionDecl *FD = E->getDirectCallee(); 2217 if (!FD) 2218 return true; 2219 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2220 if (Attr && Name == Attr->getLabel()) { 2221 Result = true; 2222 return false; 2223 } 2224 unsigned BuiltinID = FD->getBuiltinID(); 2225 if (!BuiltinID || !BI.isLibFunction(BuiltinID)) 2226 return true; 2227 StringRef BuiltinName = BI.getName(BuiltinID); 2228 if (BuiltinName.startswith("__builtin_") && 2229 Name == BuiltinName.slice(strlen("__builtin_"), StringRef::npos)) { 2230 Result = true; 2231 return false; 2232 } 2233 return true; 2234 } 2235 }; 2236 2237 // Make sure we're not referencing non-imported vars or functions. 2238 struct DLLImportFunctionVisitor 2239 : public RecursiveASTVisitor<DLLImportFunctionVisitor> { 2240 bool SafeToInline = true; 2241 2242 bool shouldVisitImplicitCode() const { return true; } 2243 2244 bool VisitVarDecl(VarDecl *VD) { 2245 if (VD->getTLSKind()) { 2246 // A thread-local variable cannot be imported. 2247 SafeToInline = false; 2248 return SafeToInline; 2249 } 2250 2251 // A variable definition might imply a destructor call. 2252 if (VD->isThisDeclarationADefinition()) 2253 SafeToInline = !HasNonDllImportDtor(VD->getType()); 2254 2255 return SafeToInline; 2256 } 2257 2258 bool VisitCXXBindTemporaryExpr(CXXBindTemporaryExpr *E) { 2259 if (const auto *D = E->getTemporary()->getDestructor()) 2260 SafeToInline = D->hasAttr<DLLImportAttr>(); 2261 return SafeToInline; 2262 } 2263 2264 bool VisitDeclRefExpr(DeclRefExpr *E) { 2265 ValueDecl *VD = E->getDecl(); 2266 if (isa<FunctionDecl>(VD)) 2267 SafeToInline = VD->hasAttr<DLLImportAttr>(); 2268 else if (VarDecl *V = dyn_cast<VarDecl>(VD)) 2269 SafeToInline = !V->hasGlobalStorage() || V->hasAttr<DLLImportAttr>(); 2270 return SafeToInline; 2271 } 2272 2273 bool VisitCXXConstructExpr(CXXConstructExpr *E) { 2274 SafeToInline = E->getConstructor()->hasAttr<DLLImportAttr>(); 2275 return SafeToInline; 2276 } 2277 2278 bool VisitCXXMemberCallExpr(CXXMemberCallExpr *E) { 2279 CXXMethodDecl *M = E->getMethodDecl(); 2280 if (!M) { 2281 // Call through a pointer to member function. This is safe to inline. 2282 SafeToInline = true; 2283 } else { 2284 SafeToInline = M->hasAttr<DLLImportAttr>(); 2285 } 2286 return SafeToInline; 2287 } 2288 2289 bool VisitCXXDeleteExpr(CXXDeleteExpr *E) { 2290 SafeToInline = E->getOperatorDelete()->hasAttr<DLLImportAttr>(); 2291 return SafeToInline; 2292 } 2293 2294 bool VisitCXXNewExpr(CXXNewExpr *E) { 2295 SafeToInline = E->getOperatorNew()->hasAttr<DLLImportAttr>(); 2296 return SafeToInline; 2297 } 2298 }; 2299 } 2300 2301 // isTriviallyRecursive - Check if this function calls another 2302 // decl that, because of the asm attribute or the other decl being a builtin, 2303 // ends up pointing to itself. 2304 bool 2305 CodeGenModule::isTriviallyRecursive(const FunctionDecl *FD) { 2306 StringRef Name; 2307 if (getCXXABI().getMangleContext().shouldMangleDeclName(FD)) { 2308 // asm labels are a special kind of mangling we have to support. 2309 AsmLabelAttr *Attr = FD->getAttr<AsmLabelAttr>(); 2310 if (!Attr) 2311 return false; 2312 Name = Attr->getLabel(); 2313 } else { 2314 Name = FD->getName(); 2315 } 2316 2317 FunctionIsDirectlyRecursive Walker(Name, Context.BuiltinInfo); 2318 Walker.TraverseFunctionDecl(const_cast<FunctionDecl*>(FD)); 2319 return Walker.Result; 2320 } 2321 2322 bool CodeGenModule::shouldEmitFunction(GlobalDecl GD) { 2323 if (getFunctionLinkage(GD) != llvm::Function::AvailableExternallyLinkage) 2324 return true; 2325 const auto *F = cast<FunctionDecl>(GD.getDecl()); 2326 if (CodeGenOpts.OptimizationLevel == 0 && !F->hasAttr<AlwaysInlineAttr>()) 2327 return false; 2328 2329 if (F->hasAttr<DLLImportAttr>()) { 2330 // Check whether it would be safe to inline this dllimport function. 2331 DLLImportFunctionVisitor Visitor; 2332 Visitor.TraverseFunctionDecl(const_cast<FunctionDecl*>(F)); 2333 if (!Visitor.SafeToInline) 2334 return false; 2335 2336 if (const CXXDestructorDecl *Dtor = dyn_cast<CXXDestructorDecl>(F)) { 2337 // Implicit destructor invocations aren't captured in the AST, so the 2338 // check above can't see them. Check for them manually here. 2339 for (const Decl *Member : Dtor->getParent()->decls()) 2340 if (isa<FieldDecl>(Member)) 2341 if (HasNonDllImportDtor(cast<FieldDecl>(Member)->getType())) 2342 return false; 2343 for (const CXXBaseSpecifier &B : Dtor->getParent()->bases()) 2344 if (HasNonDllImportDtor(B.getType())) 2345 return false; 2346 } 2347 } 2348 2349 // PR9614. Avoid cases where the source code is lying to us. An available 2350 // externally function should have an equivalent function somewhere else, 2351 // but a function that calls itself is clearly not equivalent to the real 2352 // implementation. 2353 // This happens in glibc's btowc and in some configure checks. 2354 return !isTriviallyRecursive(F); 2355 } 2356 2357 bool CodeGenModule::shouldOpportunisticallyEmitVTables() { 2358 return CodeGenOpts.OptimizationLevel > 0; 2359 } 2360 2361 void CodeGenModule::EmitGlobalDefinition(GlobalDecl GD, llvm::GlobalValue *GV) { 2362 const auto *D = cast<ValueDecl>(GD.getDecl()); 2363 2364 PrettyStackTraceDecl CrashInfo(const_cast<ValueDecl *>(D), D->getLocation(), 2365 Context.getSourceManager(), 2366 "Generating code for declaration"); 2367 2368 if (isa<FunctionDecl>(D)) { 2369 // At -O0, don't generate IR for functions with available_externally 2370 // linkage. 2371 if (!shouldEmitFunction(GD)) 2372 return; 2373 2374 if (const auto *Method = dyn_cast<CXXMethodDecl>(D)) { 2375 // Make sure to emit the definition(s) before we emit the thunks. 2376 // This is necessary for the generation of certain thunks. 2377 if (const auto *CD = dyn_cast<CXXConstructorDecl>(Method)) 2378 ABI->emitCXXStructor(CD, getFromCtorType(GD.getCtorType())); 2379 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(Method)) 2380 ABI->emitCXXStructor(DD, getFromDtorType(GD.getDtorType())); 2381 else 2382 EmitGlobalFunctionDefinition(GD, GV); 2383 2384 if (Method->isVirtual()) 2385 getVTables().EmitThunks(GD); 2386 2387 return; 2388 } 2389 2390 return EmitGlobalFunctionDefinition(GD, GV); 2391 } 2392 2393 if (const auto *VD = dyn_cast<VarDecl>(D)) 2394 return EmitGlobalVarDefinition(VD, !VD->hasDefinition()); 2395 2396 llvm_unreachable("Invalid argument to EmitGlobalDefinition()"); 2397 } 2398 2399 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 2400 llvm::Function *NewFn); 2401 2402 static unsigned 2403 TargetMVPriority(const TargetInfo &TI, 2404 const CodeGenFunction::MultiVersionResolverOption &RO) { 2405 unsigned Priority = 0; 2406 for (StringRef Feat : RO.Conditions.Features) 2407 Priority = std::max(Priority, TI.multiVersionSortPriority(Feat)); 2408 2409 if (!RO.Conditions.Architecture.empty()) 2410 Priority = std::max( 2411 Priority, TI.multiVersionSortPriority(RO.Conditions.Architecture)); 2412 return Priority; 2413 } 2414 2415 void CodeGenModule::emitMultiVersionFunctions() { 2416 for (GlobalDecl GD : MultiVersionFuncs) { 2417 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2418 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 2419 getContext().forEachMultiversionedFunctionVersion( 2420 FD, [this, &GD, &Options](const FunctionDecl *CurFD) { 2421 GlobalDecl CurGD{ 2422 (CurFD->isDefined() ? CurFD->getDefinition() : CurFD)}; 2423 StringRef MangledName = getMangledName(CurGD); 2424 llvm::Constant *Func = GetGlobalValue(MangledName); 2425 if (!Func) { 2426 if (CurFD->isDefined()) { 2427 EmitGlobalFunctionDefinition(CurGD, nullptr); 2428 Func = GetGlobalValue(MangledName); 2429 } else { 2430 const CGFunctionInfo &FI = 2431 getTypes().arrangeGlobalDeclaration(GD); 2432 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 2433 Func = GetAddrOfFunction(CurGD, Ty, /*ForVTable=*/false, 2434 /*DontDefer=*/false, ForDefinition); 2435 } 2436 assert(Func && "This should have just been created"); 2437 } 2438 2439 const auto *TA = CurFD->getAttr<TargetAttr>(); 2440 llvm::SmallVector<StringRef, 8> Feats; 2441 TA->getAddedFeatures(Feats); 2442 2443 Options.emplace_back(cast<llvm::Function>(Func), 2444 TA->getArchitecture(), Feats); 2445 }); 2446 2447 llvm::Function *ResolverFunc = cast<llvm::Function>( 2448 GetGlobalValue((getMangledName(GD) + ".resolver").str())); 2449 if (supportsCOMDAT()) 2450 ResolverFunc->setComdat( 2451 getModule().getOrInsertComdat(ResolverFunc->getName())); 2452 2453 const TargetInfo &TI = getTarget(); 2454 std::stable_sort( 2455 Options.begin(), Options.end(), 2456 [&TI](const CodeGenFunction::MultiVersionResolverOption &LHS, 2457 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2458 return TargetMVPriority(TI, LHS) > TargetMVPriority(TI, RHS); 2459 }); 2460 CodeGenFunction CGF(*this); 2461 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2462 } 2463 } 2464 2465 void CodeGenModule::emitCPUDispatchDefinition(GlobalDecl GD) { 2466 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2467 assert(FD && "Not a FunctionDecl?"); 2468 const auto *DD = FD->getAttr<CPUDispatchAttr>(); 2469 assert(DD && "Not a cpu_dispatch Function?"); 2470 QualType CanonTy = Context.getCanonicalType(FD->getType()); 2471 llvm::Type *DeclTy = getTypes().ConvertFunctionType(CanonTy, FD); 2472 2473 if (const auto *CXXFD = dyn_cast<CXXMethodDecl>(FD)) { 2474 const CGFunctionInfo &FInfo = getTypes().arrangeCXXMethodDeclaration(CXXFD); 2475 DeclTy = getTypes().GetFunctionType(FInfo); 2476 } 2477 2478 StringRef ResolverName = getMangledName(GD); 2479 llvm::Type *ResolverType = llvm::FunctionType::get( 2480 llvm::PointerType::get(DeclTy, 2481 Context.getTargetAddressSpace(FD->getType())), 2482 false); 2483 auto *ResolverFunc = cast<llvm::Function>( 2484 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2485 /*ForVTable=*/false)); 2486 2487 SmallVector<CodeGenFunction::MultiVersionResolverOption, 10> Options; 2488 const TargetInfo &Target = getTarget(); 2489 for (const IdentifierInfo *II : DD->cpus()) { 2490 // Get the name of the target function so we can look it up/create it. 2491 std::string MangledName = getMangledNameImpl(*this, GD, FD, true) + 2492 getCPUSpecificMangling(*this, II->getName()); 2493 llvm::Constant *Func = GetOrCreateLLVMFunction( 2494 MangledName, DeclTy, GD, /*ForVTable=*/false, /*DontDefer=*/true, 2495 /*IsThunk=*/false, llvm::AttributeList(), ForDefinition); 2496 llvm::SmallVector<StringRef, 32> Features; 2497 Target.getCPUSpecificCPUDispatchFeatures(II->getName(), Features); 2498 llvm::transform(Features, Features.begin(), 2499 [](StringRef Str) { return Str.substr(1); }); 2500 Features.erase(std::remove_if( 2501 Features.begin(), Features.end(), [&Target](StringRef Feat) { 2502 return !Target.validateCpuSupports(Feat); 2503 }), Features.end()); 2504 Options.emplace_back(cast<llvm::Function>(Func), StringRef{}, Features); 2505 } 2506 2507 llvm::sort( 2508 Options.begin(), Options.end(), 2509 [](const CodeGenFunction::MultiVersionResolverOption &LHS, 2510 const CodeGenFunction::MultiVersionResolverOption &RHS) { 2511 return CodeGenFunction::GetX86CpuSupportsMask(LHS.Conditions.Features) > 2512 CodeGenFunction::GetX86CpuSupportsMask(RHS.Conditions.Features); 2513 }); 2514 2515 // If the list contains multiple 'default' versions, such as when it contains 2516 // 'pentium' and 'generic', don't emit the call to the generic one (since we 2517 // always run on at least a 'pentium'). We do this by deleting the 'least 2518 // advanced' (read, lowest mangling letter). 2519 while (Options.size() > 1 && 2520 CodeGenFunction::GetX86CpuSupportsMask( 2521 (Options.end() - 2)->Conditions.Features) == 0) { 2522 StringRef LHSName = (Options.end() - 2)->Function->getName(); 2523 StringRef RHSName = (Options.end() - 1)->Function->getName(); 2524 if (LHSName.compare(RHSName) < 0) 2525 Options.erase(Options.end() - 2); 2526 else 2527 Options.erase(Options.end() - 1); 2528 } 2529 2530 CodeGenFunction CGF(*this); 2531 CGF.EmitMultiVersionResolver(ResolverFunc, Options); 2532 } 2533 2534 /// If an ifunc for the specified mangled name is not in the module, create and 2535 /// return an llvm IFunc Function with the specified type. 2536 llvm::Constant * 2537 CodeGenModule::GetOrCreateMultiVersionIFunc(GlobalDecl GD, llvm::Type *DeclTy, 2538 const FunctionDecl *FD) { 2539 std::string MangledName = 2540 getMangledNameImpl(*this, GD, FD, /*OmitMultiVersionMangling=*/true); 2541 std::string IFuncName = MangledName + ".ifunc"; 2542 if (llvm::GlobalValue *IFuncGV = GetGlobalValue(IFuncName)) 2543 return IFuncGV; 2544 2545 // Since this is the first time we've created this IFunc, make sure 2546 // that we put this multiversioned function into the list to be 2547 // replaced later if necessary (target multiversioning only). 2548 if (!FD->isCPUDispatchMultiVersion() && !FD->isCPUSpecificMultiVersion()) 2549 MultiVersionFuncs.push_back(GD); 2550 2551 std::string ResolverName = MangledName + ".resolver"; 2552 llvm::Type *ResolverType = llvm::FunctionType::get( 2553 llvm::PointerType::get(DeclTy, 2554 Context.getTargetAddressSpace(FD->getType())), 2555 false); 2556 llvm::Constant *Resolver = 2557 GetOrCreateLLVMFunction(ResolverName, ResolverType, GlobalDecl{}, 2558 /*ForVTable=*/false); 2559 llvm::GlobalIFunc *GIF = llvm::GlobalIFunc::create( 2560 DeclTy, 0, llvm::Function::ExternalLinkage, "", Resolver, &getModule()); 2561 GIF->setName(IFuncName); 2562 SetCommonAttributes(FD, GIF); 2563 2564 return GIF; 2565 } 2566 2567 /// GetOrCreateLLVMFunction - If the specified mangled name is not in the 2568 /// module, create and return an llvm Function with the specified type. If there 2569 /// is something in the module with the specified name, return it potentially 2570 /// bitcasted to the right type. 2571 /// 2572 /// If D is non-null, it specifies a decl that correspond to this. This is used 2573 /// to set the attributes on the function when it is first created. 2574 llvm::Constant *CodeGenModule::GetOrCreateLLVMFunction( 2575 StringRef MangledName, llvm::Type *Ty, GlobalDecl GD, bool ForVTable, 2576 bool DontDefer, bool IsThunk, llvm::AttributeList ExtraAttrs, 2577 ForDefinition_t IsForDefinition) { 2578 const Decl *D = GD.getDecl(); 2579 2580 // Any attempts to use a MultiVersion function should result in retrieving 2581 // the iFunc instead. Name Mangling will handle the rest of the changes. 2582 if (const FunctionDecl *FD = cast_or_null<FunctionDecl>(D)) { 2583 // For the device mark the function as one that should be emitted. 2584 if (getLangOpts().OpenMPIsDevice && OpenMPRuntime && 2585 !OpenMPRuntime->markAsGlobalTarget(GD) && FD->isDefined() && 2586 !DontDefer && !IsForDefinition) { 2587 if (const FunctionDecl *FDDef = FD->getDefinition()) 2588 if (getContext().DeclMustBeEmitted(FDDef)) { 2589 GlobalDecl GDDef; 2590 if (const auto *CD = dyn_cast<CXXConstructorDecl>(FDDef)) 2591 GDDef = GlobalDecl(CD, GD.getCtorType()); 2592 else if (const auto *DD = dyn_cast<CXXDestructorDecl>(FDDef)) 2593 GDDef = GlobalDecl(DD, GD.getDtorType()); 2594 else 2595 GDDef = GlobalDecl(FDDef); 2596 addDeferredDeclToEmit(GDDef); 2597 } 2598 } 2599 2600 if (FD->isMultiVersion()) { 2601 const auto *TA = FD->getAttr<TargetAttr>(); 2602 if (TA && TA->isDefaultVersion()) 2603 UpdateMultiVersionNames(GD, FD); 2604 if (!IsForDefinition) 2605 return GetOrCreateMultiVersionIFunc(GD, Ty, FD); 2606 } 2607 } 2608 2609 // Lookup the entry, lazily creating it if necessary. 2610 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2611 if (Entry) { 2612 if (WeakRefReferences.erase(Entry)) { 2613 const FunctionDecl *FD = cast_or_null<FunctionDecl>(D); 2614 if (FD && !FD->hasAttr<WeakAttr>()) 2615 Entry->setLinkage(llvm::Function::ExternalLinkage); 2616 } 2617 2618 // Handle dropped DLL attributes. 2619 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) { 2620 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2621 setDSOLocal(Entry); 2622 } 2623 2624 // If there are two attempts to define the same mangled name, issue an 2625 // error. 2626 if (IsForDefinition && !Entry->isDeclaration()) { 2627 GlobalDecl OtherGD; 2628 // Check that GD is not yet in DiagnosedConflictingDefinitions is required 2629 // to make sure that we issue an error only once. 2630 if (lookupRepresentativeDecl(MangledName, OtherGD) && 2631 (GD.getCanonicalDecl().getDecl() != 2632 OtherGD.getCanonicalDecl().getDecl()) && 2633 DiagnosedConflictingDefinitions.insert(GD).second) { 2634 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2635 << MangledName; 2636 getDiags().Report(OtherGD.getDecl()->getLocation(), 2637 diag::note_previous_definition); 2638 } 2639 } 2640 2641 if ((isa<llvm::Function>(Entry) || isa<llvm::GlobalAlias>(Entry)) && 2642 (Entry->getType()->getElementType() == Ty)) { 2643 return Entry; 2644 } 2645 2646 // Make sure the result is of the correct type. 2647 // (If function is requested for a definition, we always need to create a new 2648 // function, not just return a bitcast.) 2649 if (!IsForDefinition) 2650 return llvm::ConstantExpr::getBitCast(Entry, Ty->getPointerTo()); 2651 } 2652 2653 // This function doesn't have a complete type (for example, the return 2654 // type is an incomplete struct). Use a fake type instead, and make 2655 // sure not to try to set attributes. 2656 bool IsIncompleteFunction = false; 2657 2658 llvm::FunctionType *FTy; 2659 if (isa<llvm::FunctionType>(Ty)) { 2660 FTy = cast<llvm::FunctionType>(Ty); 2661 } else { 2662 FTy = llvm::FunctionType::get(VoidTy, false); 2663 IsIncompleteFunction = true; 2664 } 2665 2666 llvm::Function *F = 2667 llvm::Function::Create(FTy, llvm::Function::ExternalLinkage, 2668 Entry ? StringRef() : MangledName, &getModule()); 2669 2670 // If we already created a function with the same mangled name (but different 2671 // type) before, take its name and add it to the list of functions to be 2672 // replaced with F at the end of CodeGen. 2673 // 2674 // This happens if there is a prototype for a function (e.g. "int f()") and 2675 // then a definition of a different type (e.g. "int f(int x)"). 2676 if (Entry) { 2677 F->takeName(Entry); 2678 2679 // This might be an implementation of a function without a prototype, in 2680 // which case, try to do special replacement of calls which match the new 2681 // prototype. The really key thing here is that we also potentially drop 2682 // arguments from the call site so as to make a direct call, which makes the 2683 // inliner happier and suppresses a number of optimizer warnings (!) about 2684 // dropping arguments. 2685 if (!Entry->use_empty()) { 2686 ReplaceUsesOfNonProtoTypeWithRealFunction(Entry, F); 2687 Entry->removeDeadConstantUsers(); 2688 } 2689 2690 llvm::Constant *BC = llvm::ConstantExpr::getBitCast( 2691 F, Entry->getType()->getElementType()->getPointerTo()); 2692 addGlobalValReplacement(Entry, BC); 2693 } 2694 2695 assert(F->getName() == MangledName && "name was uniqued!"); 2696 if (D) 2697 SetFunctionAttributes(GD, F, IsIncompleteFunction, IsThunk); 2698 if (ExtraAttrs.hasAttributes(llvm::AttributeList::FunctionIndex)) { 2699 llvm::AttrBuilder B(ExtraAttrs, llvm::AttributeList::FunctionIndex); 2700 F->addAttributes(llvm::AttributeList::FunctionIndex, B); 2701 } 2702 2703 if (!DontDefer) { 2704 // All MSVC dtors other than the base dtor are linkonce_odr and delegate to 2705 // each other bottoming out with the base dtor. Therefore we emit non-base 2706 // dtors on usage, even if there is no dtor definition in the TU. 2707 if (D && isa<CXXDestructorDecl>(D) && 2708 getCXXABI().useThunkForDtorVariant(cast<CXXDestructorDecl>(D), 2709 GD.getDtorType())) 2710 addDeferredDeclToEmit(GD); 2711 2712 // This is the first use or definition of a mangled name. If there is a 2713 // deferred decl with this name, remember that we need to emit it at the end 2714 // of the file. 2715 auto DDI = DeferredDecls.find(MangledName); 2716 if (DDI != DeferredDecls.end()) { 2717 // Move the potentially referenced deferred decl to the 2718 // DeferredDeclsToEmit list, and remove it from DeferredDecls (since we 2719 // don't need it anymore). 2720 addDeferredDeclToEmit(DDI->second); 2721 DeferredDecls.erase(DDI); 2722 2723 // Otherwise, there are cases we have to worry about where we're 2724 // using a declaration for which we must emit a definition but where 2725 // we might not find a top-level definition: 2726 // - member functions defined inline in their classes 2727 // - friend functions defined inline in some class 2728 // - special member functions with implicit definitions 2729 // If we ever change our AST traversal to walk into class methods, 2730 // this will be unnecessary. 2731 // 2732 // We also don't emit a definition for a function if it's going to be an 2733 // entry in a vtable, unless it's already marked as used. 2734 } else if (getLangOpts().CPlusPlus && D) { 2735 // Look for a declaration that's lexically in a record. 2736 for (const auto *FD = cast<FunctionDecl>(D)->getMostRecentDecl(); FD; 2737 FD = FD->getPreviousDecl()) { 2738 if (isa<CXXRecordDecl>(FD->getLexicalDeclContext())) { 2739 if (FD->doesThisDeclarationHaveABody()) { 2740 addDeferredDeclToEmit(GD.getWithDecl(FD)); 2741 break; 2742 } 2743 } 2744 } 2745 } 2746 } 2747 2748 // Make sure the result is of the requested type. 2749 if (!IsIncompleteFunction) { 2750 assert(F->getType()->getElementType() == Ty); 2751 return F; 2752 } 2753 2754 llvm::Type *PTy = llvm::PointerType::getUnqual(Ty); 2755 return llvm::ConstantExpr::getBitCast(F, PTy); 2756 } 2757 2758 /// GetAddrOfFunction - Return the address of the given function. If Ty is 2759 /// non-null, then this function will use the specified type if it has to 2760 /// create it (this occurs when we see a definition of the function). 2761 llvm::Constant *CodeGenModule::GetAddrOfFunction(GlobalDecl GD, 2762 llvm::Type *Ty, 2763 bool ForVTable, 2764 bool DontDefer, 2765 ForDefinition_t IsForDefinition) { 2766 // If there was no specific requested type, just convert it now. 2767 if (!Ty) { 2768 const auto *FD = cast<FunctionDecl>(GD.getDecl()); 2769 auto CanonTy = Context.getCanonicalType(FD->getType()); 2770 Ty = getTypes().ConvertFunctionType(CanonTy, FD); 2771 } 2772 2773 // Devirtualized destructor calls may come through here instead of via 2774 // getAddrOfCXXStructor. Make sure we use the MS ABI base destructor instead 2775 // of the complete destructor when necessary. 2776 if (const auto *DD = dyn_cast<CXXDestructorDecl>(GD.getDecl())) { 2777 if (getTarget().getCXXABI().isMicrosoft() && 2778 GD.getDtorType() == Dtor_Complete && 2779 DD->getParent()->getNumVBases() == 0) 2780 GD = GlobalDecl(DD, Dtor_Base); 2781 } 2782 2783 StringRef MangledName = getMangledName(GD); 2784 return GetOrCreateLLVMFunction(MangledName, Ty, GD, ForVTable, DontDefer, 2785 /*IsThunk=*/false, llvm::AttributeList(), 2786 IsForDefinition); 2787 } 2788 2789 static const FunctionDecl * 2790 GetRuntimeFunctionDecl(ASTContext &C, StringRef Name) { 2791 TranslationUnitDecl *TUDecl = C.getTranslationUnitDecl(); 2792 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 2793 2794 IdentifierInfo &CII = C.Idents.get(Name); 2795 for (const auto &Result : DC->lookup(&CII)) 2796 if (const auto FD = dyn_cast<FunctionDecl>(Result)) 2797 return FD; 2798 2799 if (!C.getLangOpts().CPlusPlus) 2800 return nullptr; 2801 2802 // Demangle the premangled name from getTerminateFn() 2803 IdentifierInfo &CXXII = 2804 (Name == "_ZSt9terminatev" || Name == "?terminate@@YAXXZ") 2805 ? C.Idents.get("terminate") 2806 : C.Idents.get(Name); 2807 2808 for (const auto &N : {"__cxxabiv1", "std"}) { 2809 IdentifierInfo &NS = C.Idents.get(N); 2810 for (const auto &Result : DC->lookup(&NS)) { 2811 NamespaceDecl *ND = dyn_cast<NamespaceDecl>(Result); 2812 if (auto LSD = dyn_cast<LinkageSpecDecl>(Result)) 2813 for (const auto &Result : LSD->lookup(&NS)) 2814 if ((ND = dyn_cast<NamespaceDecl>(Result))) 2815 break; 2816 2817 if (ND) 2818 for (const auto &Result : ND->lookup(&CXXII)) 2819 if (const auto *FD = dyn_cast<FunctionDecl>(Result)) 2820 return FD; 2821 } 2822 } 2823 2824 return nullptr; 2825 } 2826 2827 /// CreateRuntimeFunction - Create a new runtime function with the specified 2828 /// type and name. 2829 llvm::Constant * 2830 CodeGenModule::CreateRuntimeFunction(llvm::FunctionType *FTy, StringRef Name, 2831 llvm::AttributeList ExtraAttrs, 2832 bool Local) { 2833 llvm::Constant *C = 2834 GetOrCreateLLVMFunction(Name, FTy, GlobalDecl(), /*ForVTable=*/false, 2835 /*DontDefer=*/false, /*IsThunk=*/false, 2836 ExtraAttrs); 2837 2838 if (auto *F = dyn_cast<llvm::Function>(C)) { 2839 if (F->empty()) { 2840 F->setCallingConv(getRuntimeCC()); 2841 2842 if (!Local && getTriple().isOSBinFormatCOFF() && 2843 !getCodeGenOpts().LTOVisibilityPublicStd && 2844 !getTriple().isWindowsGNUEnvironment()) { 2845 const FunctionDecl *FD = GetRuntimeFunctionDecl(Context, Name); 2846 if (!FD || FD->hasAttr<DLLImportAttr>()) { 2847 F->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 2848 F->setLinkage(llvm::GlobalValue::ExternalLinkage); 2849 } 2850 } 2851 setDSOLocal(F); 2852 } 2853 } 2854 2855 return C; 2856 } 2857 2858 /// CreateBuiltinFunction - Create a new builtin function with the specified 2859 /// type and name. 2860 llvm::Constant * 2861 CodeGenModule::CreateBuiltinFunction(llvm::FunctionType *FTy, StringRef Name, 2862 llvm::AttributeList ExtraAttrs) { 2863 return CreateRuntimeFunction(FTy, Name, ExtraAttrs, true); 2864 } 2865 2866 /// isTypeConstant - Determine whether an object of this type can be emitted 2867 /// as a constant. 2868 /// 2869 /// If ExcludeCtor is true, the duration when the object's constructor runs 2870 /// will not be considered. The caller will need to verify that the object is 2871 /// not written to during its construction. 2872 bool CodeGenModule::isTypeConstant(QualType Ty, bool ExcludeCtor) { 2873 if (!Ty.isConstant(Context) && !Ty->isReferenceType()) 2874 return false; 2875 2876 if (Context.getLangOpts().CPlusPlus) { 2877 if (const CXXRecordDecl *Record 2878 = Context.getBaseElementType(Ty)->getAsCXXRecordDecl()) 2879 return ExcludeCtor && !Record->hasMutableFields() && 2880 Record->hasTrivialDestructor(); 2881 } 2882 2883 return true; 2884 } 2885 2886 /// GetOrCreateLLVMGlobal - If the specified mangled name is not in the module, 2887 /// create and return an llvm GlobalVariable with the specified type. If there 2888 /// is something in the module with the specified name, return it potentially 2889 /// bitcasted to the right type. 2890 /// 2891 /// If D is non-null, it specifies a decl that correspond to this. This is used 2892 /// to set the attributes on the global when it is first created. 2893 /// 2894 /// If IsForDefinition is true, it is guaranteed that an actual global with 2895 /// type Ty will be returned, not conversion of a variable with the same 2896 /// mangled name but some other type. 2897 llvm::Constant * 2898 CodeGenModule::GetOrCreateLLVMGlobal(StringRef MangledName, 2899 llvm::PointerType *Ty, 2900 const VarDecl *D, 2901 ForDefinition_t IsForDefinition) { 2902 // Lookup the entry, lazily creating it if necessary. 2903 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 2904 if (Entry) { 2905 if (WeakRefReferences.erase(Entry)) { 2906 if (D && !D->hasAttr<WeakAttr>()) 2907 Entry->setLinkage(llvm::Function::ExternalLinkage); 2908 } 2909 2910 // Handle dropped DLL attributes. 2911 if (D && !D->hasAttr<DLLImportAttr>() && !D->hasAttr<DLLExportAttr>()) 2912 Entry->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 2913 2914 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd && D) 2915 getOpenMPRuntime().registerTargetGlobalVariable(D, Entry); 2916 2917 if (Entry->getType() == Ty) 2918 return Entry; 2919 2920 // If there are two attempts to define the same mangled name, issue an 2921 // error. 2922 if (IsForDefinition && !Entry->isDeclaration()) { 2923 GlobalDecl OtherGD; 2924 const VarDecl *OtherD; 2925 2926 // Check that D is not yet in DiagnosedConflictingDefinitions is required 2927 // to make sure that we issue an error only once. 2928 if (D && lookupRepresentativeDecl(MangledName, OtherGD) && 2929 (D->getCanonicalDecl() != OtherGD.getCanonicalDecl().getDecl()) && 2930 (OtherD = dyn_cast<VarDecl>(OtherGD.getDecl())) && 2931 OtherD->hasInit() && 2932 DiagnosedConflictingDefinitions.insert(D).second) { 2933 getDiags().Report(D->getLocation(), diag::err_duplicate_mangled_name) 2934 << MangledName; 2935 getDiags().Report(OtherGD.getDecl()->getLocation(), 2936 diag::note_previous_definition); 2937 } 2938 } 2939 2940 // Make sure the result is of the correct type. 2941 if (Entry->getType()->getAddressSpace() != Ty->getAddressSpace()) 2942 return llvm::ConstantExpr::getAddrSpaceCast(Entry, Ty); 2943 2944 // (If global is requested for a definition, we always need to create a new 2945 // global, not just return a bitcast.) 2946 if (!IsForDefinition) 2947 return llvm::ConstantExpr::getBitCast(Entry, Ty); 2948 } 2949 2950 auto AddrSpace = GetGlobalVarAddressSpace(D); 2951 auto TargetAddrSpace = getContext().getTargetAddressSpace(AddrSpace); 2952 2953 auto *GV = new llvm::GlobalVariable( 2954 getModule(), Ty->getElementType(), false, 2955 llvm::GlobalValue::ExternalLinkage, nullptr, MangledName, nullptr, 2956 llvm::GlobalVariable::NotThreadLocal, TargetAddrSpace); 2957 2958 // If we already created a global with the same mangled name (but different 2959 // type) before, take its name and remove it from its parent. 2960 if (Entry) { 2961 GV->takeName(Entry); 2962 2963 if (!Entry->use_empty()) { 2964 llvm::Constant *NewPtrForOldDecl = 2965 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 2966 Entry->replaceAllUsesWith(NewPtrForOldDecl); 2967 } 2968 2969 Entry->eraseFromParent(); 2970 } 2971 2972 // This is the first use or definition of a mangled name. If there is a 2973 // deferred decl with this name, remember that we need to emit it at the end 2974 // of the file. 2975 auto DDI = DeferredDecls.find(MangledName); 2976 if (DDI != DeferredDecls.end()) { 2977 // Move the potentially referenced deferred decl to the DeferredDeclsToEmit 2978 // list, and remove it from DeferredDecls (since we don't need it anymore). 2979 addDeferredDeclToEmit(DDI->second); 2980 DeferredDecls.erase(DDI); 2981 } 2982 2983 // Handle things which are present even on external declarations. 2984 if (D) { 2985 if (LangOpts.OpenMP && !LangOpts.OpenMPSimd) 2986 getOpenMPRuntime().registerTargetGlobalVariable(D, GV); 2987 2988 // FIXME: This code is overly simple and should be merged with other global 2989 // handling. 2990 GV->setConstant(isTypeConstant(D->getType(), false)); 2991 2992 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 2993 2994 setLinkageForGV(GV, D); 2995 2996 if (D->getTLSKind()) { 2997 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 2998 CXXThreadLocals.push_back(D); 2999 setTLSMode(GV, *D); 3000 } 3001 3002 setGVProperties(GV, D); 3003 3004 // If required by the ABI, treat declarations of static data members with 3005 // inline initializers as definitions. 3006 if (getContext().isMSStaticDataMemberInlineDefinition(D)) { 3007 EmitGlobalVarDefinition(D); 3008 } 3009 3010 // Emit section information for extern variables. 3011 if (D->hasExternalStorage()) { 3012 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) 3013 GV->setSection(SA->getName()); 3014 } 3015 3016 // Handle XCore specific ABI requirements. 3017 if (getTriple().getArch() == llvm::Triple::xcore && 3018 D->getLanguageLinkage() == CLanguageLinkage && 3019 D->getType().isConstant(Context) && 3020 isExternallyVisible(D->getLinkageAndVisibility().getLinkage())) 3021 GV->setSection(".cp.rodata"); 3022 3023 // Check if we a have a const declaration with an initializer, we may be 3024 // able to emit it as available_externally to expose it's value to the 3025 // optimizer. 3026 if (Context.getLangOpts().CPlusPlus && GV->hasExternalLinkage() && 3027 D->getType().isConstQualified() && !GV->hasInitializer() && 3028 !D->hasDefinition() && D->hasInit() && !D->hasAttr<DLLImportAttr>()) { 3029 const auto *Record = 3030 Context.getBaseElementType(D->getType())->getAsCXXRecordDecl(); 3031 bool HasMutableFields = Record && Record->hasMutableFields(); 3032 if (!HasMutableFields) { 3033 const VarDecl *InitDecl; 3034 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3035 if (InitExpr) { 3036 ConstantEmitter emitter(*this); 3037 llvm::Constant *Init = emitter.tryEmitForInitializer(*InitDecl); 3038 if (Init) { 3039 auto *InitType = Init->getType(); 3040 if (GV->getType()->getElementType() != InitType) { 3041 // The type of the initializer does not match the definition. 3042 // This happens when an initializer has a different type from 3043 // the type of the global (because of padding at the end of a 3044 // structure for instance). 3045 GV->setName(StringRef()); 3046 // Make a new global with the correct type, this is now guaranteed 3047 // to work. 3048 auto *NewGV = cast<llvm::GlobalVariable>( 3049 GetAddrOfGlobalVar(D, InitType, IsForDefinition)); 3050 3051 // Erase the old global, since it is no longer used. 3052 GV->eraseFromParent(); 3053 GV = NewGV; 3054 } else { 3055 GV->setInitializer(Init); 3056 GV->setConstant(true); 3057 GV->setLinkage(llvm::GlobalValue::AvailableExternallyLinkage); 3058 } 3059 emitter.finalize(GV); 3060 } 3061 } 3062 } 3063 } 3064 } 3065 3066 LangAS ExpectedAS = 3067 D ? D->getType().getAddressSpace() 3068 : (LangOpts.OpenCL ? LangAS::opencl_global : LangAS::Default); 3069 assert(getContext().getTargetAddressSpace(ExpectedAS) == 3070 Ty->getPointerAddressSpace()); 3071 if (AddrSpace != ExpectedAS) 3072 return getTargetCodeGenInfo().performAddrSpaceCast(*this, GV, AddrSpace, 3073 ExpectedAS, Ty); 3074 3075 return GV; 3076 } 3077 3078 llvm::Constant * 3079 CodeGenModule::GetAddrOfGlobal(GlobalDecl GD, 3080 ForDefinition_t IsForDefinition) { 3081 const Decl *D = GD.getDecl(); 3082 if (isa<CXXConstructorDecl>(D)) 3083 return getAddrOfCXXStructor(cast<CXXConstructorDecl>(D), 3084 getFromCtorType(GD.getCtorType()), 3085 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3086 /*DontDefer=*/false, IsForDefinition); 3087 else if (isa<CXXDestructorDecl>(D)) 3088 return getAddrOfCXXStructor(cast<CXXDestructorDecl>(D), 3089 getFromDtorType(GD.getDtorType()), 3090 /*FnInfo=*/nullptr, /*FnType=*/nullptr, 3091 /*DontDefer=*/false, IsForDefinition); 3092 else if (isa<CXXMethodDecl>(D)) { 3093 auto FInfo = &getTypes().arrangeCXXMethodDeclaration( 3094 cast<CXXMethodDecl>(D)); 3095 auto Ty = getTypes().GetFunctionType(*FInfo); 3096 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3097 IsForDefinition); 3098 } else if (isa<FunctionDecl>(D)) { 3099 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3100 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3101 return GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, /*DontDefer=*/false, 3102 IsForDefinition); 3103 } else 3104 return GetAddrOfGlobalVar(cast<VarDecl>(D), /*Ty=*/nullptr, 3105 IsForDefinition); 3106 } 3107 3108 llvm::GlobalVariable * 3109 CodeGenModule::CreateOrReplaceCXXRuntimeVariable(StringRef Name, 3110 llvm::Type *Ty, 3111 llvm::GlobalValue::LinkageTypes Linkage) { 3112 llvm::GlobalVariable *GV = getModule().getNamedGlobal(Name); 3113 llvm::GlobalVariable *OldGV = nullptr; 3114 3115 if (GV) { 3116 // Check if the variable has the right type. 3117 if (GV->getType()->getElementType() == Ty) 3118 return GV; 3119 3120 // Because C++ name mangling, the only way we can end up with an already 3121 // existing global with the same name is if it has been declared extern "C". 3122 assert(GV->isDeclaration() && "Declaration has wrong type!"); 3123 OldGV = GV; 3124 } 3125 3126 // Create a new variable. 3127 GV = new llvm::GlobalVariable(getModule(), Ty, /*isConstant=*/true, 3128 Linkage, nullptr, Name); 3129 3130 if (OldGV) { 3131 // Replace occurrences of the old variable if needed. 3132 GV->takeName(OldGV); 3133 3134 if (!OldGV->use_empty()) { 3135 llvm::Constant *NewPtrForOldDecl = 3136 llvm::ConstantExpr::getBitCast(GV, OldGV->getType()); 3137 OldGV->replaceAllUsesWith(NewPtrForOldDecl); 3138 } 3139 3140 OldGV->eraseFromParent(); 3141 } 3142 3143 if (supportsCOMDAT() && GV->isWeakForLinker() && 3144 !GV->hasAvailableExternallyLinkage()) 3145 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 3146 3147 return GV; 3148 } 3149 3150 /// GetAddrOfGlobalVar - Return the llvm::Constant for the address of the 3151 /// given global variable. If Ty is non-null and if the global doesn't exist, 3152 /// then it will be created with the specified type instead of whatever the 3153 /// normal requested type would be. If IsForDefinition is true, it is guaranteed 3154 /// that an actual global with type Ty will be returned, not conversion of a 3155 /// variable with the same mangled name but some other type. 3156 llvm::Constant *CodeGenModule::GetAddrOfGlobalVar(const VarDecl *D, 3157 llvm::Type *Ty, 3158 ForDefinition_t IsForDefinition) { 3159 assert(D->hasGlobalStorage() && "Not a global variable"); 3160 QualType ASTTy = D->getType(); 3161 if (!Ty) 3162 Ty = getTypes().ConvertTypeForMem(ASTTy); 3163 3164 llvm::PointerType *PTy = 3165 llvm::PointerType::get(Ty, getContext().getTargetAddressSpace(ASTTy)); 3166 3167 StringRef MangledName = getMangledName(D); 3168 return GetOrCreateLLVMGlobal(MangledName, PTy, D, IsForDefinition); 3169 } 3170 3171 /// CreateRuntimeVariable - Create a new runtime global variable with the 3172 /// specified type and name. 3173 llvm::Constant * 3174 CodeGenModule::CreateRuntimeVariable(llvm::Type *Ty, 3175 StringRef Name) { 3176 auto *Ret = 3177 GetOrCreateLLVMGlobal(Name, llvm::PointerType::getUnqual(Ty), nullptr); 3178 setDSOLocal(cast<llvm::GlobalValue>(Ret->stripPointerCasts())); 3179 return Ret; 3180 } 3181 3182 void CodeGenModule::EmitTentativeDefinition(const VarDecl *D) { 3183 assert(!D->getInit() && "Cannot emit definite definitions here!"); 3184 3185 StringRef MangledName = getMangledName(D); 3186 llvm::GlobalValue *GV = GetGlobalValue(MangledName); 3187 3188 // We already have a definition, not declaration, with the same mangled name. 3189 // Emitting of declaration is not required (and actually overwrites emitted 3190 // definition). 3191 if (GV && !GV->isDeclaration()) 3192 return; 3193 3194 // If we have not seen a reference to this variable yet, place it into the 3195 // deferred declarations table to be emitted if needed later. 3196 if (!MustBeEmitted(D) && !GV) { 3197 DeferredDecls[MangledName] = D; 3198 return; 3199 } 3200 3201 // The tentative definition is the only definition. 3202 EmitGlobalVarDefinition(D); 3203 } 3204 3205 CharUnits CodeGenModule::GetTargetTypeStoreSize(llvm::Type *Ty) const { 3206 return Context.toCharUnitsFromBits( 3207 getDataLayout().getTypeStoreSizeInBits(Ty)); 3208 } 3209 3210 LangAS CodeGenModule::GetGlobalVarAddressSpace(const VarDecl *D) { 3211 LangAS AddrSpace = LangAS::Default; 3212 if (LangOpts.OpenCL) { 3213 AddrSpace = D ? D->getType().getAddressSpace() : LangAS::opencl_global; 3214 assert(AddrSpace == LangAS::opencl_global || 3215 AddrSpace == LangAS::opencl_constant || 3216 AddrSpace == LangAS::opencl_local || 3217 AddrSpace >= LangAS::FirstTargetAddressSpace); 3218 return AddrSpace; 3219 } 3220 3221 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) { 3222 if (D && D->hasAttr<CUDAConstantAttr>()) 3223 return LangAS::cuda_constant; 3224 else if (D && D->hasAttr<CUDASharedAttr>()) 3225 return LangAS::cuda_shared; 3226 else if (D && D->hasAttr<CUDADeviceAttr>()) 3227 return LangAS::cuda_device; 3228 else if (D && D->getType().isConstQualified()) 3229 return LangAS::cuda_constant; 3230 else 3231 return LangAS::cuda_device; 3232 } 3233 3234 return getTargetCodeGenInfo().getGlobalVarAddressSpace(*this, D); 3235 } 3236 3237 LangAS CodeGenModule::getStringLiteralAddressSpace() const { 3238 // OpenCL v1.2 s6.5.3: a string literal is in the constant address space. 3239 if (LangOpts.OpenCL) 3240 return LangAS::opencl_constant; 3241 if (auto AS = getTarget().getConstantAddressSpace()) 3242 return AS.getValue(); 3243 return LangAS::Default; 3244 } 3245 3246 // In address space agnostic languages, string literals are in default address 3247 // space in AST. However, certain targets (e.g. amdgcn) request them to be 3248 // emitted in constant address space in LLVM IR. To be consistent with other 3249 // parts of AST, string literal global variables in constant address space 3250 // need to be casted to default address space before being put into address 3251 // map and referenced by other part of CodeGen. 3252 // In OpenCL, string literals are in constant address space in AST, therefore 3253 // they should not be casted to default address space. 3254 static llvm::Constant * 3255 castStringLiteralToDefaultAddressSpace(CodeGenModule &CGM, 3256 llvm::GlobalVariable *GV) { 3257 llvm::Constant *Cast = GV; 3258 if (!CGM.getLangOpts().OpenCL) { 3259 if (auto AS = CGM.getTarget().getConstantAddressSpace()) { 3260 if (AS != LangAS::Default) 3261 Cast = CGM.getTargetCodeGenInfo().performAddrSpaceCast( 3262 CGM, GV, AS.getValue(), LangAS::Default, 3263 GV->getValueType()->getPointerTo( 3264 CGM.getContext().getTargetAddressSpace(LangAS::Default))); 3265 } 3266 } 3267 return Cast; 3268 } 3269 3270 template<typename SomeDecl> 3271 void CodeGenModule::MaybeHandleStaticInExternC(const SomeDecl *D, 3272 llvm::GlobalValue *GV) { 3273 if (!getLangOpts().CPlusPlus) 3274 return; 3275 3276 // Must have 'used' attribute, or else inline assembly can't rely on 3277 // the name existing. 3278 if (!D->template hasAttr<UsedAttr>()) 3279 return; 3280 3281 // Must have internal linkage and an ordinary name. 3282 if (!D->getIdentifier() || D->getFormalLinkage() != InternalLinkage) 3283 return; 3284 3285 // Must be in an extern "C" context. Entities declared directly within 3286 // a record are not extern "C" even if the record is in such a context. 3287 const SomeDecl *First = D->getFirstDecl(); 3288 if (First->getDeclContext()->isRecord() || !First->isInExternCContext()) 3289 return; 3290 3291 // OK, this is an internal linkage entity inside an extern "C" linkage 3292 // specification. Make a note of that so we can give it the "expected" 3293 // mangled name if nothing else is using that name. 3294 std::pair<StaticExternCMap::iterator, bool> R = 3295 StaticExternCValues.insert(std::make_pair(D->getIdentifier(), GV)); 3296 3297 // If we have multiple internal linkage entities with the same name 3298 // in extern "C" regions, none of them gets that name. 3299 if (!R.second) 3300 R.first->second = nullptr; 3301 } 3302 3303 static bool shouldBeInCOMDAT(CodeGenModule &CGM, const Decl &D) { 3304 if (!CGM.supportsCOMDAT()) 3305 return false; 3306 3307 if (D.hasAttr<SelectAnyAttr>()) 3308 return true; 3309 3310 GVALinkage Linkage; 3311 if (auto *VD = dyn_cast<VarDecl>(&D)) 3312 Linkage = CGM.getContext().GetGVALinkageForVariable(VD); 3313 else 3314 Linkage = CGM.getContext().GetGVALinkageForFunction(cast<FunctionDecl>(&D)); 3315 3316 switch (Linkage) { 3317 case GVA_Internal: 3318 case GVA_AvailableExternally: 3319 case GVA_StrongExternal: 3320 return false; 3321 case GVA_DiscardableODR: 3322 case GVA_StrongODR: 3323 return true; 3324 } 3325 llvm_unreachable("No such linkage"); 3326 } 3327 3328 void CodeGenModule::maybeSetTrivialComdat(const Decl &D, 3329 llvm::GlobalObject &GO) { 3330 if (!shouldBeInCOMDAT(*this, D)) 3331 return; 3332 GO.setComdat(TheModule.getOrInsertComdat(GO.getName())); 3333 } 3334 3335 /// Pass IsTentative as true if you want to create a tentative definition. 3336 void CodeGenModule::EmitGlobalVarDefinition(const VarDecl *D, 3337 bool IsTentative) { 3338 // OpenCL global variables of sampler type are translated to function calls, 3339 // therefore no need to be translated. 3340 QualType ASTTy = D->getType(); 3341 if (getLangOpts().OpenCL && ASTTy->isSamplerT()) 3342 return; 3343 3344 // If this is OpenMP device, check if it is legal to emit this global 3345 // normally. 3346 if (LangOpts.OpenMPIsDevice && OpenMPRuntime && 3347 OpenMPRuntime->emitTargetGlobalVariable(D)) 3348 return; 3349 3350 llvm::Constant *Init = nullptr; 3351 CXXRecordDecl *RD = ASTTy->getBaseElementTypeUnsafe()->getAsCXXRecordDecl(); 3352 bool NeedsGlobalCtor = false; 3353 bool NeedsGlobalDtor = RD && !RD->hasTrivialDestructor(); 3354 3355 const VarDecl *InitDecl; 3356 const Expr *InitExpr = D->getAnyInitializer(InitDecl); 3357 3358 Optional<ConstantEmitter> emitter; 3359 3360 // CUDA E.2.4.1 "__shared__ variables cannot have an initialization 3361 // as part of their declaration." Sema has already checked for 3362 // error cases, so we just need to set Init to UndefValue. 3363 if (getLangOpts().CUDA && getLangOpts().CUDAIsDevice && 3364 D->hasAttr<CUDASharedAttr>()) 3365 Init = llvm::UndefValue::get(getTypes().ConvertType(ASTTy)); 3366 else if (!InitExpr) { 3367 // This is a tentative definition; tentative definitions are 3368 // implicitly initialized with { 0 }. 3369 // 3370 // Note that tentative definitions are only emitted at the end of 3371 // a translation unit, so they should never have incomplete 3372 // type. In addition, EmitTentativeDefinition makes sure that we 3373 // never attempt to emit a tentative definition if a real one 3374 // exists. A use may still exists, however, so we still may need 3375 // to do a RAUW. 3376 assert(!ASTTy->isIncompleteType() && "Unexpected incomplete type"); 3377 Init = EmitNullConstant(D->getType()); 3378 } else { 3379 initializedGlobalDecl = GlobalDecl(D); 3380 emitter.emplace(*this); 3381 Init = emitter->tryEmitForInitializer(*InitDecl); 3382 3383 if (!Init) { 3384 QualType T = InitExpr->getType(); 3385 if (D->getType()->isReferenceType()) 3386 T = D->getType(); 3387 3388 if (getLangOpts().CPlusPlus) { 3389 Init = EmitNullConstant(T); 3390 NeedsGlobalCtor = true; 3391 } else { 3392 ErrorUnsupported(D, "static initializer"); 3393 Init = llvm::UndefValue::get(getTypes().ConvertType(T)); 3394 } 3395 } else { 3396 // We don't need an initializer, so remove the entry for the delayed 3397 // initializer position (just in case this entry was delayed) if we 3398 // also don't need to register a destructor. 3399 if (getLangOpts().CPlusPlus && !NeedsGlobalDtor) 3400 DelayedCXXInitPosition.erase(D); 3401 } 3402 } 3403 3404 llvm::Type* InitType = Init->getType(); 3405 llvm::Constant *Entry = 3406 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative)); 3407 3408 // Strip off a bitcast if we got one back. 3409 if (auto *CE = dyn_cast<llvm::ConstantExpr>(Entry)) { 3410 assert(CE->getOpcode() == llvm::Instruction::BitCast || 3411 CE->getOpcode() == llvm::Instruction::AddrSpaceCast || 3412 // All zero index gep. 3413 CE->getOpcode() == llvm::Instruction::GetElementPtr); 3414 Entry = CE->getOperand(0); 3415 } 3416 3417 // Entry is now either a Function or GlobalVariable. 3418 auto *GV = dyn_cast<llvm::GlobalVariable>(Entry); 3419 3420 // We have a definition after a declaration with the wrong type. 3421 // We must make a new GlobalVariable* and update everything that used OldGV 3422 // (a declaration or tentative definition) with the new GlobalVariable* 3423 // (which will be a definition). 3424 // 3425 // This happens if there is a prototype for a global (e.g. 3426 // "extern int x[];") and then a definition of a different type (e.g. 3427 // "int x[10];"). This also happens when an initializer has a different type 3428 // from the type of the global (this happens with unions). 3429 if (!GV || GV->getType()->getElementType() != InitType || 3430 GV->getType()->getAddressSpace() != 3431 getContext().getTargetAddressSpace(GetGlobalVarAddressSpace(D))) { 3432 3433 // Move the old entry aside so that we'll create a new one. 3434 Entry->setName(StringRef()); 3435 3436 // Make a new global with the correct type, this is now guaranteed to work. 3437 GV = cast<llvm::GlobalVariable>( 3438 GetAddrOfGlobalVar(D, InitType, ForDefinition_t(!IsTentative))); 3439 3440 // Replace all uses of the old global with the new global 3441 llvm::Constant *NewPtrForOldDecl = 3442 llvm::ConstantExpr::getBitCast(GV, Entry->getType()); 3443 Entry->replaceAllUsesWith(NewPtrForOldDecl); 3444 3445 // Erase the old global, since it is no longer used. 3446 cast<llvm::GlobalValue>(Entry)->eraseFromParent(); 3447 } 3448 3449 MaybeHandleStaticInExternC(D, GV); 3450 3451 if (D->hasAttr<AnnotateAttr>()) 3452 AddGlobalAnnotations(D, GV); 3453 3454 // Set the llvm linkage type as appropriate. 3455 llvm::GlobalValue::LinkageTypes Linkage = 3456 getLLVMLinkageVarDefinition(D, GV->isConstant()); 3457 3458 // CUDA B.2.1 "The __device__ qualifier declares a variable that resides on 3459 // the device. [...]" 3460 // CUDA B.2.2 "The __constant__ qualifier, optionally used together with 3461 // __device__, declares a variable that: [...] 3462 // Is accessible from all the threads within the grid and from the host 3463 // through the runtime library (cudaGetSymbolAddress() / cudaGetSymbolSize() 3464 // / cudaMemcpyToSymbol() / cudaMemcpyFromSymbol())." 3465 if (GV && LangOpts.CUDA) { 3466 if (LangOpts.CUDAIsDevice) { 3467 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) 3468 GV->setExternallyInitialized(true); 3469 } else { 3470 // Host-side shadows of external declarations of device-side 3471 // global variables become internal definitions. These have to 3472 // be internal in order to prevent name conflicts with global 3473 // host variables with the same name in a different TUs. 3474 if (D->hasAttr<CUDADeviceAttr>() || D->hasAttr<CUDAConstantAttr>()) { 3475 Linkage = llvm::GlobalValue::InternalLinkage; 3476 3477 // Shadow variables and their properties must be registered 3478 // with CUDA runtime. 3479 unsigned Flags = 0; 3480 if (!D->hasDefinition()) 3481 Flags |= CGCUDARuntime::ExternDeviceVar; 3482 if (D->hasAttr<CUDAConstantAttr>()) 3483 Flags |= CGCUDARuntime::ConstantDeviceVar; 3484 getCUDARuntime().registerDeviceVar(*GV, Flags); 3485 } else if (D->hasAttr<CUDASharedAttr>()) 3486 // __shared__ variables are odd. Shadows do get created, but 3487 // they are not registered with the CUDA runtime, so they 3488 // can't really be used to access their device-side 3489 // counterparts. It's not clear yet whether it's nvcc's bug or 3490 // a feature, but we've got to do the same for compatibility. 3491 Linkage = llvm::GlobalValue::InternalLinkage; 3492 } 3493 } 3494 3495 GV->setInitializer(Init); 3496 if (emitter) emitter->finalize(GV); 3497 3498 // If it is safe to mark the global 'constant', do so now. 3499 GV->setConstant(!NeedsGlobalCtor && !NeedsGlobalDtor && 3500 isTypeConstant(D->getType(), true)); 3501 3502 // If it is in a read-only section, mark it 'constant'. 3503 if (const SectionAttr *SA = D->getAttr<SectionAttr>()) { 3504 const ASTContext::SectionInfo &SI = Context.SectionInfos[SA->getName()]; 3505 if ((SI.SectionFlags & ASTContext::PSF_Write) == 0) 3506 GV->setConstant(true); 3507 } 3508 3509 GV->setAlignment(getContext().getDeclAlign(D).getQuantity()); 3510 3511 3512 // On Darwin, if the normal linkage of a C++ thread_local variable is 3513 // LinkOnce or Weak, we keep the normal linkage to prevent multiple 3514 // copies within a linkage unit; otherwise, the backing variable has 3515 // internal linkage and all accesses should just be calls to the 3516 // Itanium-specified entry point, which has the normal linkage of the 3517 // variable. This is to preserve the ability to change the implementation 3518 // behind the scenes. 3519 if (!D->isStaticLocal() && D->getTLSKind() == VarDecl::TLS_Dynamic && 3520 Context.getTargetInfo().getTriple().isOSDarwin() && 3521 !llvm::GlobalVariable::isLinkOnceLinkage(Linkage) && 3522 !llvm::GlobalVariable::isWeakLinkage(Linkage)) 3523 Linkage = llvm::GlobalValue::InternalLinkage; 3524 3525 GV->setLinkage(Linkage); 3526 if (D->hasAttr<DLLImportAttr>()) 3527 GV->setDLLStorageClass(llvm::GlobalVariable::DLLImportStorageClass); 3528 else if (D->hasAttr<DLLExportAttr>()) 3529 GV->setDLLStorageClass(llvm::GlobalVariable::DLLExportStorageClass); 3530 else 3531 GV->setDLLStorageClass(llvm::GlobalVariable::DefaultStorageClass); 3532 3533 if (Linkage == llvm::GlobalVariable::CommonLinkage) { 3534 // common vars aren't constant even if declared const. 3535 GV->setConstant(false); 3536 // Tentative definition of global variables may be initialized with 3537 // non-zero null pointers. In this case they should have weak linkage 3538 // since common linkage must have zero initializer and must not have 3539 // explicit section therefore cannot have non-zero initial value. 3540 if (!GV->getInitializer()->isNullValue()) 3541 GV->setLinkage(llvm::GlobalVariable::WeakAnyLinkage); 3542 } 3543 3544 setNonAliasAttributes(D, GV); 3545 3546 if (D->getTLSKind() && !GV->isThreadLocal()) { 3547 if (D->getTLSKind() == VarDecl::TLS_Dynamic) 3548 CXXThreadLocals.push_back(D); 3549 setTLSMode(GV, *D); 3550 } 3551 3552 maybeSetTrivialComdat(*D, *GV); 3553 3554 // Emit the initializer function if necessary. 3555 if (NeedsGlobalCtor || NeedsGlobalDtor) 3556 EmitCXXGlobalVarDeclInitFunc(D, GV, NeedsGlobalCtor); 3557 3558 SanitizerMD->reportGlobalToASan(GV, *D, NeedsGlobalCtor); 3559 3560 // Emit global variable debug information. 3561 if (CGDebugInfo *DI = getModuleDebugInfo()) 3562 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 3563 DI->EmitGlobalVariable(GV, D); 3564 } 3565 3566 static bool isVarDeclStrongDefinition(const ASTContext &Context, 3567 CodeGenModule &CGM, const VarDecl *D, 3568 bool NoCommon) { 3569 // Don't give variables common linkage if -fno-common was specified unless it 3570 // was overridden by a NoCommon attribute. 3571 if ((NoCommon || D->hasAttr<NoCommonAttr>()) && !D->hasAttr<CommonAttr>()) 3572 return true; 3573 3574 // C11 6.9.2/2: 3575 // A declaration of an identifier for an object that has file scope without 3576 // an initializer, and without a storage-class specifier or with the 3577 // storage-class specifier static, constitutes a tentative definition. 3578 if (D->getInit() || D->hasExternalStorage()) 3579 return true; 3580 3581 // A variable cannot be both common and exist in a section. 3582 if (D->hasAttr<SectionAttr>()) 3583 return true; 3584 3585 // A variable cannot be both common and exist in a section. 3586 // We don't try to determine which is the right section in the front-end. 3587 // If no specialized section name is applicable, it will resort to default. 3588 if (D->hasAttr<PragmaClangBSSSectionAttr>() || 3589 D->hasAttr<PragmaClangDataSectionAttr>() || 3590 D->hasAttr<PragmaClangRodataSectionAttr>()) 3591 return true; 3592 3593 // Thread local vars aren't considered common linkage. 3594 if (D->getTLSKind()) 3595 return true; 3596 3597 // Tentative definitions marked with WeakImportAttr are true definitions. 3598 if (D->hasAttr<WeakImportAttr>()) 3599 return true; 3600 3601 // A variable cannot be both common and exist in a comdat. 3602 if (shouldBeInCOMDAT(CGM, *D)) 3603 return true; 3604 3605 // Declarations with a required alignment do not have common linkage in MSVC 3606 // mode. 3607 if (Context.getTargetInfo().getCXXABI().isMicrosoft()) { 3608 if (D->hasAttr<AlignedAttr>()) 3609 return true; 3610 QualType VarType = D->getType(); 3611 if (Context.isAlignmentRequired(VarType)) 3612 return true; 3613 3614 if (const auto *RT = VarType->getAs<RecordType>()) { 3615 const RecordDecl *RD = RT->getDecl(); 3616 for (const FieldDecl *FD : RD->fields()) { 3617 if (FD->isBitField()) 3618 continue; 3619 if (FD->hasAttr<AlignedAttr>()) 3620 return true; 3621 if (Context.isAlignmentRequired(FD->getType())) 3622 return true; 3623 } 3624 } 3625 } 3626 3627 return false; 3628 } 3629 3630 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageForDeclarator( 3631 const DeclaratorDecl *D, GVALinkage Linkage, bool IsConstantVariable) { 3632 if (Linkage == GVA_Internal) 3633 return llvm::Function::InternalLinkage; 3634 3635 if (D->hasAttr<WeakAttr>()) { 3636 if (IsConstantVariable) 3637 return llvm::GlobalVariable::WeakODRLinkage; 3638 else 3639 return llvm::GlobalVariable::WeakAnyLinkage; 3640 } 3641 3642 // We are guaranteed to have a strong definition somewhere else, 3643 // so we can use available_externally linkage. 3644 if (Linkage == GVA_AvailableExternally) 3645 return llvm::GlobalValue::AvailableExternallyLinkage; 3646 3647 // Note that Apple's kernel linker doesn't support symbol 3648 // coalescing, so we need to avoid linkonce and weak linkages there. 3649 // Normally, this means we just map to internal, but for explicit 3650 // instantiations we'll map to external. 3651 3652 // In C++, the compiler has to emit a definition in every translation unit 3653 // that references the function. We should use linkonce_odr because 3654 // a) if all references in this translation unit are optimized away, we 3655 // don't need to codegen it. b) if the function persists, it needs to be 3656 // merged with other definitions. c) C++ has the ODR, so we know the 3657 // definition is dependable. 3658 if (Linkage == GVA_DiscardableODR) 3659 return !Context.getLangOpts().AppleKext ? llvm::Function::LinkOnceODRLinkage 3660 : llvm::Function::InternalLinkage; 3661 3662 // An explicit instantiation of a template has weak linkage, since 3663 // explicit instantiations can occur in multiple translation units 3664 // and must all be equivalent. However, we are not allowed to 3665 // throw away these explicit instantiations. 3666 // 3667 // We don't currently support CUDA device code spread out across multiple TUs, 3668 // so say that CUDA templates are either external (for kernels) or internal. 3669 // This lets llvm perform aggressive inter-procedural optimizations. 3670 if (Linkage == GVA_StrongODR) { 3671 if (Context.getLangOpts().AppleKext) 3672 return llvm::Function::ExternalLinkage; 3673 if (Context.getLangOpts().CUDA && Context.getLangOpts().CUDAIsDevice) 3674 return D->hasAttr<CUDAGlobalAttr>() ? llvm::Function::ExternalLinkage 3675 : llvm::Function::InternalLinkage; 3676 return llvm::Function::WeakODRLinkage; 3677 } 3678 3679 // C++ doesn't have tentative definitions and thus cannot have common 3680 // linkage. 3681 if (!getLangOpts().CPlusPlus && isa<VarDecl>(D) && 3682 !isVarDeclStrongDefinition(Context, *this, cast<VarDecl>(D), 3683 CodeGenOpts.NoCommon)) 3684 return llvm::GlobalVariable::CommonLinkage; 3685 3686 // selectany symbols are externally visible, so use weak instead of 3687 // linkonce. MSVC optimizes away references to const selectany globals, so 3688 // all definitions should be the same and ODR linkage should be used. 3689 // http://msdn.microsoft.com/en-us/library/5tkz6s71.aspx 3690 if (D->hasAttr<SelectAnyAttr>()) 3691 return llvm::GlobalVariable::WeakODRLinkage; 3692 3693 // Otherwise, we have strong external linkage. 3694 assert(Linkage == GVA_StrongExternal); 3695 return llvm::GlobalVariable::ExternalLinkage; 3696 } 3697 3698 llvm::GlobalValue::LinkageTypes CodeGenModule::getLLVMLinkageVarDefinition( 3699 const VarDecl *VD, bool IsConstant) { 3700 GVALinkage Linkage = getContext().GetGVALinkageForVariable(VD); 3701 return getLLVMLinkageForDeclarator(VD, Linkage, IsConstant); 3702 } 3703 3704 /// Replace the uses of a function that was declared with a non-proto type. 3705 /// We want to silently drop extra arguments from call sites 3706 static void replaceUsesOfNonProtoConstant(llvm::Constant *old, 3707 llvm::Function *newFn) { 3708 // Fast path. 3709 if (old->use_empty()) return; 3710 3711 llvm::Type *newRetTy = newFn->getReturnType(); 3712 SmallVector<llvm::Value*, 4> newArgs; 3713 SmallVector<llvm::OperandBundleDef, 1> newBundles; 3714 3715 for (llvm::Value::use_iterator ui = old->use_begin(), ue = old->use_end(); 3716 ui != ue; ) { 3717 llvm::Value::use_iterator use = ui++; // Increment before the use is erased. 3718 llvm::User *user = use->getUser(); 3719 3720 // Recognize and replace uses of bitcasts. Most calls to 3721 // unprototyped functions will use bitcasts. 3722 if (auto *bitcast = dyn_cast<llvm::ConstantExpr>(user)) { 3723 if (bitcast->getOpcode() == llvm::Instruction::BitCast) 3724 replaceUsesOfNonProtoConstant(bitcast, newFn); 3725 continue; 3726 } 3727 3728 // Recognize calls to the function. 3729 llvm::CallSite callSite(user); 3730 if (!callSite) continue; 3731 if (!callSite.isCallee(&*use)) continue; 3732 3733 // If the return types don't match exactly, then we can't 3734 // transform this call unless it's dead. 3735 if (callSite->getType() != newRetTy && !callSite->use_empty()) 3736 continue; 3737 3738 // Get the call site's attribute list. 3739 SmallVector<llvm::AttributeSet, 8> newArgAttrs; 3740 llvm::AttributeList oldAttrs = callSite.getAttributes(); 3741 3742 // If the function was passed too few arguments, don't transform. 3743 unsigned newNumArgs = newFn->arg_size(); 3744 if (callSite.arg_size() < newNumArgs) continue; 3745 3746 // If extra arguments were passed, we silently drop them. 3747 // If any of the types mismatch, we don't transform. 3748 unsigned argNo = 0; 3749 bool dontTransform = false; 3750 for (llvm::Argument &A : newFn->args()) { 3751 if (callSite.getArgument(argNo)->getType() != A.getType()) { 3752 dontTransform = true; 3753 break; 3754 } 3755 3756 // Add any parameter attributes. 3757 newArgAttrs.push_back(oldAttrs.getParamAttributes(argNo)); 3758 argNo++; 3759 } 3760 if (dontTransform) 3761 continue; 3762 3763 // Okay, we can transform this. Create the new call instruction and copy 3764 // over the required information. 3765 newArgs.append(callSite.arg_begin(), callSite.arg_begin() + argNo); 3766 3767 // Copy over any operand bundles. 3768 callSite.getOperandBundlesAsDefs(newBundles); 3769 3770 llvm::CallSite newCall; 3771 if (callSite.isCall()) { 3772 newCall = llvm::CallInst::Create(newFn, newArgs, newBundles, "", 3773 callSite.getInstruction()); 3774 } else { 3775 auto *oldInvoke = cast<llvm::InvokeInst>(callSite.getInstruction()); 3776 newCall = llvm::InvokeInst::Create(newFn, 3777 oldInvoke->getNormalDest(), 3778 oldInvoke->getUnwindDest(), 3779 newArgs, newBundles, "", 3780 callSite.getInstruction()); 3781 } 3782 newArgs.clear(); // for the next iteration 3783 3784 if (!newCall->getType()->isVoidTy()) 3785 newCall->takeName(callSite.getInstruction()); 3786 newCall.setAttributes(llvm::AttributeList::get( 3787 newFn->getContext(), oldAttrs.getFnAttributes(), 3788 oldAttrs.getRetAttributes(), newArgAttrs)); 3789 newCall.setCallingConv(callSite.getCallingConv()); 3790 3791 // Finally, remove the old call, replacing any uses with the new one. 3792 if (!callSite->use_empty()) 3793 callSite->replaceAllUsesWith(newCall.getInstruction()); 3794 3795 // Copy debug location attached to CI. 3796 if (callSite->getDebugLoc()) 3797 newCall->setDebugLoc(callSite->getDebugLoc()); 3798 3799 callSite->eraseFromParent(); 3800 } 3801 } 3802 3803 /// ReplaceUsesOfNonProtoTypeWithRealFunction - This function is called when we 3804 /// implement a function with no prototype, e.g. "int foo() {}". If there are 3805 /// existing call uses of the old function in the module, this adjusts them to 3806 /// call the new function directly. 3807 /// 3808 /// This is not just a cleanup: the always_inline pass requires direct calls to 3809 /// functions to be able to inline them. If there is a bitcast in the way, it 3810 /// won't inline them. Instcombine normally deletes these calls, but it isn't 3811 /// run at -O0. 3812 static void ReplaceUsesOfNonProtoTypeWithRealFunction(llvm::GlobalValue *Old, 3813 llvm::Function *NewFn) { 3814 // If we're redefining a global as a function, don't transform it. 3815 if (!isa<llvm::Function>(Old)) return; 3816 3817 replaceUsesOfNonProtoConstant(Old, NewFn); 3818 } 3819 3820 void CodeGenModule::HandleCXXStaticMemberVarInstantiation(VarDecl *VD) { 3821 auto DK = VD->isThisDeclarationADefinition(); 3822 if (DK == VarDecl::Definition && VD->hasAttr<DLLImportAttr>()) 3823 return; 3824 3825 TemplateSpecializationKind TSK = VD->getTemplateSpecializationKind(); 3826 // If we have a definition, this might be a deferred decl. If the 3827 // instantiation is explicit, make sure we emit it at the end. 3828 if (VD->getDefinition() && TSK == TSK_ExplicitInstantiationDefinition) 3829 GetAddrOfGlobalVar(VD); 3830 3831 EmitTopLevelDecl(VD); 3832 } 3833 3834 void CodeGenModule::EmitGlobalFunctionDefinition(GlobalDecl GD, 3835 llvm::GlobalValue *GV) { 3836 const auto *D = cast<FunctionDecl>(GD.getDecl()); 3837 3838 // Compute the function info and LLVM type. 3839 const CGFunctionInfo &FI = getTypes().arrangeGlobalDeclaration(GD); 3840 llvm::FunctionType *Ty = getTypes().GetFunctionType(FI); 3841 3842 // Get or create the prototype for the function. 3843 if (!GV || (GV->getType()->getElementType() != Ty)) 3844 GV = cast<llvm::GlobalValue>(GetAddrOfFunction(GD, Ty, /*ForVTable=*/false, 3845 /*DontDefer=*/true, 3846 ForDefinition)); 3847 3848 // Already emitted. 3849 if (!GV->isDeclaration()) 3850 return; 3851 3852 // We need to set linkage and visibility on the function before 3853 // generating code for it because various parts of IR generation 3854 // want to propagate this information down (e.g. to local static 3855 // declarations). 3856 auto *Fn = cast<llvm::Function>(GV); 3857 setFunctionLinkage(GD, Fn); 3858 3859 // FIXME: this is redundant with part of setFunctionDefinitionAttributes 3860 setGVProperties(Fn, GD); 3861 3862 MaybeHandleStaticInExternC(D, Fn); 3863 3864 3865 maybeSetTrivialComdat(*D, *Fn); 3866 3867 CodeGenFunction(*this).GenerateCode(D, Fn, FI); 3868 3869 setNonAliasAttributes(GD, Fn); 3870 SetLLVMFunctionAttributesForDefinition(D, Fn); 3871 3872 if (const ConstructorAttr *CA = D->getAttr<ConstructorAttr>()) 3873 AddGlobalCtor(Fn, CA->getPriority()); 3874 if (const DestructorAttr *DA = D->getAttr<DestructorAttr>()) 3875 AddGlobalDtor(Fn, DA->getPriority()); 3876 if (D->hasAttr<AnnotateAttr>()) 3877 AddGlobalAnnotations(D, Fn); 3878 3879 if (D->isCPUSpecificMultiVersion()) { 3880 auto *Spec = D->getAttr<CPUSpecificAttr>(); 3881 // If there is another specific version we need to emit, do so here. 3882 if (Spec->ActiveArgIndex + 1 < Spec->cpus_size()) { 3883 ++Spec->ActiveArgIndex; 3884 EmitGlobalFunctionDefinition(GD, nullptr); 3885 } 3886 } 3887 } 3888 3889 void CodeGenModule::EmitAliasDefinition(GlobalDecl GD) { 3890 const auto *D = cast<ValueDecl>(GD.getDecl()); 3891 const AliasAttr *AA = D->getAttr<AliasAttr>(); 3892 assert(AA && "Not an alias?"); 3893 3894 StringRef MangledName = getMangledName(GD); 3895 3896 if (AA->getAliasee() == MangledName) { 3897 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3898 return; 3899 } 3900 3901 // If there is a definition in the module, then it wins over the alias. 3902 // This is dubious, but allow it to be safe. Just ignore the alias. 3903 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3904 if (Entry && !Entry->isDeclaration()) 3905 return; 3906 3907 Aliases.push_back(GD); 3908 3909 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3910 3911 // Create a reference to the named value. This ensures that it is emitted 3912 // if a deferred decl. 3913 llvm::Constant *Aliasee; 3914 if (isa<llvm::FunctionType>(DeclTy)) 3915 Aliasee = GetOrCreateLLVMFunction(AA->getAliasee(), DeclTy, GD, 3916 /*ForVTable=*/false); 3917 else 3918 Aliasee = GetOrCreateLLVMGlobal(AA->getAliasee(), 3919 llvm::PointerType::getUnqual(DeclTy), 3920 /*D=*/nullptr); 3921 3922 // Create the new alias itself, but don't set a name yet. 3923 auto *GA = llvm::GlobalAlias::create( 3924 DeclTy, 0, llvm::Function::ExternalLinkage, "", Aliasee, &getModule()); 3925 3926 if (Entry) { 3927 if (GA->getAliasee() == Entry) { 3928 Diags.Report(AA->getLocation(), diag::err_cyclic_alias) << 0; 3929 return; 3930 } 3931 3932 assert(Entry->isDeclaration()); 3933 3934 // If there is a declaration in the module, then we had an extern followed 3935 // by the alias, as in: 3936 // extern int test6(); 3937 // ... 3938 // int test6() __attribute__((alias("test7"))); 3939 // 3940 // Remove it and replace uses of it with the alias. 3941 GA->takeName(Entry); 3942 3943 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GA, 3944 Entry->getType())); 3945 Entry->eraseFromParent(); 3946 } else { 3947 GA->setName(MangledName); 3948 } 3949 3950 // Set attributes which are particular to an alias; this is a 3951 // specialization of the attributes which may be set on a global 3952 // variable/function. 3953 if (D->hasAttr<WeakAttr>() || D->hasAttr<WeakRefAttr>() || 3954 D->isWeakImported()) { 3955 GA->setLinkage(llvm::Function::WeakAnyLinkage); 3956 } 3957 3958 if (const auto *VD = dyn_cast<VarDecl>(D)) 3959 if (VD->getTLSKind()) 3960 setTLSMode(GA, *VD); 3961 3962 SetCommonAttributes(GD, GA); 3963 } 3964 3965 void CodeGenModule::emitIFuncDefinition(GlobalDecl GD) { 3966 const auto *D = cast<ValueDecl>(GD.getDecl()); 3967 const IFuncAttr *IFA = D->getAttr<IFuncAttr>(); 3968 assert(IFA && "Not an ifunc?"); 3969 3970 StringRef MangledName = getMangledName(GD); 3971 3972 if (IFA->getResolver() == MangledName) { 3973 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 3974 return; 3975 } 3976 3977 // Report an error if some definition overrides ifunc. 3978 llvm::GlobalValue *Entry = GetGlobalValue(MangledName); 3979 if (Entry && !Entry->isDeclaration()) { 3980 GlobalDecl OtherGD; 3981 if (lookupRepresentativeDecl(MangledName, OtherGD) && 3982 DiagnosedConflictingDefinitions.insert(GD).second) { 3983 Diags.Report(D->getLocation(), diag::err_duplicate_mangled_name) 3984 << MangledName; 3985 Diags.Report(OtherGD.getDecl()->getLocation(), 3986 diag::note_previous_definition); 3987 } 3988 return; 3989 } 3990 3991 Aliases.push_back(GD); 3992 3993 llvm::Type *DeclTy = getTypes().ConvertTypeForMem(D->getType()); 3994 llvm::Constant *Resolver = 3995 GetOrCreateLLVMFunction(IFA->getResolver(), DeclTy, GD, 3996 /*ForVTable=*/false); 3997 llvm::GlobalIFunc *GIF = 3998 llvm::GlobalIFunc::create(DeclTy, 0, llvm::Function::ExternalLinkage, 3999 "", Resolver, &getModule()); 4000 if (Entry) { 4001 if (GIF->getResolver() == Entry) { 4002 Diags.Report(IFA->getLocation(), diag::err_cyclic_alias) << 1; 4003 return; 4004 } 4005 assert(Entry->isDeclaration()); 4006 4007 // If there is a declaration in the module, then we had an extern followed 4008 // by the ifunc, as in: 4009 // extern int test(); 4010 // ... 4011 // int test() __attribute__((ifunc("resolver"))); 4012 // 4013 // Remove it and replace uses of it with the ifunc. 4014 GIF->takeName(Entry); 4015 4016 Entry->replaceAllUsesWith(llvm::ConstantExpr::getBitCast(GIF, 4017 Entry->getType())); 4018 Entry->eraseFromParent(); 4019 } else 4020 GIF->setName(MangledName); 4021 4022 SetCommonAttributes(GD, GIF); 4023 } 4024 4025 llvm::Function *CodeGenModule::getIntrinsic(unsigned IID, 4026 ArrayRef<llvm::Type*> Tys) { 4027 return llvm::Intrinsic::getDeclaration(&getModule(), (llvm::Intrinsic::ID)IID, 4028 Tys); 4029 } 4030 4031 static llvm::StringMapEntry<llvm::GlobalVariable *> & 4032 GetConstantCFStringEntry(llvm::StringMap<llvm::GlobalVariable *> &Map, 4033 const StringLiteral *Literal, bool TargetIsLSB, 4034 bool &IsUTF16, unsigned &StringLength) { 4035 StringRef String = Literal->getString(); 4036 unsigned NumBytes = String.size(); 4037 4038 // Check for simple case. 4039 if (!Literal->containsNonAsciiOrNull()) { 4040 StringLength = NumBytes; 4041 return *Map.insert(std::make_pair(String, nullptr)).first; 4042 } 4043 4044 // Otherwise, convert the UTF8 literals into a string of shorts. 4045 IsUTF16 = true; 4046 4047 SmallVector<llvm::UTF16, 128> ToBuf(NumBytes + 1); // +1 for ending nulls. 4048 const llvm::UTF8 *FromPtr = (const llvm::UTF8 *)String.data(); 4049 llvm::UTF16 *ToPtr = &ToBuf[0]; 4050 4051 (void)llvm::ConvertUTF8toUTF16(&FromPtr, FromPtr + NumBytes, &ToPtr, 4052 ToPtr + NumBytes, llvm::strictConversion); 4053 4054 // ConvertUTF8toUTF16 returns the length in ToPtr. 4055 StringLength = ToPtr - &ToBuf[0]; 4056 4057 // Add an explicit null. 4058 *ToPtr = 0; 4059 return *Map.insert(std::make_pair( 4060 StringRef(reinterpret_cast<const char *>(ToBuf.data()), 4061 (StringLength + 1) * 2), 4062 nullptr)).first; 4063 } 4064 4065 ConstantAddress 4066 CodeGenModule::GetAddrOfConstantCFString(const StringLiteral *Literal) { 4067 unsigned StringLength = 0; 4068 bool isUTF16 = false; 4069 llvm::StringMapEntry<llvm::GlobalVariable *> &Entry = 4070 GetConstantCFStringEntry(CFConstantStringMap, Literal, 4071 getDataLayout().isLittleEndian(), isUTF16, 4072 StringLength); 4073 4074 if (auto *C = Entry.second) 4075 return ConstantAddress(C, CharUnits::fromQuantity(C->getAlignment())); 4076 4077 llvm::Constant *Zero = llvm::Constant::getNullValue(Int32Ty); 4078 llvm::Constant *Zeros[] = { Zero, Zero }; 4079 4080 // If we don't already have it, get __CFConstantStringClassReference. 4081 if (!CFConstantStringClassRef) { 4082 llvm::Type *Ty = getTypes().ConvertType(getContext().IntTy); 4083 Ty = llvm::ArrayType::get(Ty, 0); 4084 llvm::GlobalValue *GV = cast<llvm::GlobalValue>( 4085 CreateRuntimeVariable(Ty, "__CFConstantStringClassReference")); 4086 4087 if (getTriple().isOSBinFormatCOFF()) { 4088 IdentifierInfo &II = getContext().Idents.get(GV->getName()); 4089 TranslationUnitDecl *TUDecl = getContext().getTranslationUnitDecl(); 4090 DeclContext *DC = TranslationUnitDecl::castToDeclContext(TUDecl); 4091 4092 const VarDecl *VD = nullptr; 4093 for (const auto &Result : DC->lookup(&II)) 4094 if ((VD = dyn_cast<VarDecl>(Result))) 4095 break; 4096 4097 if (!VD || !VD->hasAttr<DLLExportAttr>()) { 4098 GV->setDLLStorageClass(llvm::GlobalValue::DLLImportStorageClass); 4099 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4100 } else { 4101 GV->setDLLStorageClass(llvm::GlobalValue::DLLExportStorageClass); 4102 GV->setLinkage(llvm::GlobalValue::ExternalLinkage); 4103 } 4104 } 4105 setDSOLocal(GV); 4106 4107 // Decay array -> ptr 4108 CFConstantStringClassRef = 4109 llvm::ConstantExpr::getGetElementPtr(Ty, GV, Zeros); 4110 } 4111 4112 QualType CFTy = getContext().getCFConstantStringType(); 4113 4114 auto *STy = cast<llvm::StructType>(getTypes().ConvertType(CFTy)); 4115 4116 ConstantInitBuilder Builder(*this); 4117 auto Fields = Builder.beginStruct(STy); 4118 4119 // Class pointer. 4120 Fields.add(cast<llvm::ConstantExpr>(CFConstantStringClassRef)); 4121 4122 // Flags. 4123 Fields.addInt(IntTy, isUTF16 ? 0x07d0 : 0x07C8); 4124 4125 // String pointer. 4126 llvm::Constant *C = nullptr; 4127 if (isUTF16) { 4128 auto Arr = llvm::makeArrayRef( 4129 reinterpret_cast<uint16_t *>(const_cast<char *>(Entry.first().data())), 4130 Entry.first().size() / 2); 4131 C = llvm::ConstantDataArray::get(VMContext, Arr); 4132 } else { 4133 C = llvm::ConstantDataArray::getString(VMContext, Entry.first()); 4134 } 4135 4136 // Note: -fwritable-strings doesn't make the backing store strings of 4137 // CFStrings writable. (See <rdar://problem/10657500>) 4138 auto *GV = 4139 new llvm::GlobalVariable(getModule(), C->getType(), /*isConstant=*/true, 4140 llvm::GlobalValue::PrivateLinkage, C, ".str"); 4141 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4142 // Don't enforce the target's minimum global alignment, since the only use 4143 // of the string is via this class initializer. 4144 CharUnits Align = isUTF16 4145 ? getContext().getTypeAlignInChars(getContext().ShortTy) 4146 : getContext().getTypeAlignInChars(getContext().CharTy); 4147 GV->setAlignment(Align.getQuantity()); 4148 4149 // FIXME: We set the section explicitly to avoid a bug in ld64 224.1. 4150 // Without it LLVM can merge the string with a non unnamed_addr one during 4151 // LTO. Doing that changes the section it ends in, which surprises ld64. 4152 if (getTriple().isOSBinFormatMachO()) 4153 GV->setSection(isUTF16 ? "__TEXT,__ustring" 4154 : "__TEXT,__cstring,cstring_literals"); 4155 4156 // String. 4157 llvm::Constant *Str = 4158 llvm::ConstantExpr::getGetElementPtr(GV->getValueType(), GV, Zeros); 4159 4160 if (isUTF16) 4161 // Cast the UTF16 string to the correct type. 4162 Str = llvm::ConstantExpr::getBitCast(Str, Int8PtrTy); 4163 Fields.add(Str); 4164 4165 // String length. 4166 auto Ty = getTypes().ConvertType(getContext().LongTy); 4167 Fields.addInt(cast<llvm::IntegerType>(Ty), StringLength); 4168 4169 CharUnits Alignment = getPointerAlign(); 4170 4171 // The struct. 4172 GV = Fields.finishAndCreateGlobal("_unnamed_cfstring_", Alignment, 4173 /*isConstant=*/false, 4174 llvm::GlobalVariable::PrivateLinkage); 4175 switch (getTriple().getObjectFormat()) { 4176 case llvm::Triple::UnknownObjectFormat: 4177 llvm_unreachable("unknown file format"); 4178 case llvm::Triple::COFF: 4179 case llvm::Triple::ELF: 4180 case llvm::Triple::Wasm: 4181 GV->setSection("cfstring"); 4182 break; 4183 case llvm::Triple::MachO: 4184 GV->setSection("__DATA,__cfstring"); 4185 break; 4186 } 4187 Entry.second = GV; 4188 4189 return ConstantAddress(GV, Alignment); 4190 } 4191 4192 bool CodeGenModule::getExpressionLocationsEnabled() const { 4193 return !CodeGenOpts.EmitCodeView || CodeGenOpts.DebugColumnInfo; 4194 } 4195 4196 QualType CodeGenModule::getObjCFastEnumerationStateType() { 4197 if (ObjCFastEnumerationStateType.isNull()) { 4198 RecordDecl *D = Context.buildImplicitRecord("__objcFastEnumerationState"); 4199 D->startDefinition(); 4200 4201 QualType FieldTypes[] = { 4202 Context.UnsignedLongTy, 4203 Context.getPointerType(Context.getObjCIdType()), 4204 Context.getPointerType(Context.UnsignedLongTy), 4205 Context.getConstantArrayType(Context.UnsignedLongTy, 4206 llvm::APInt(32, 5), ArrayType::Normal, 0) 4207 }; 4208 4209 for (size_t i = 0; i < 4; ++i) { 4210 FieldDecl *Field = FieldDecl::Create(Context, 4211 D, 4212 SourceLocation(), 4213 SourceLocation(), nullptr, 4214 FieldTypes[i], /*TInfo=*/nullptr, 4215 /*BitWidth=*/nullptr, 4216 /*Mutable=*/false, 4217 ICIS_NoInit); 4218 Field->setAccess(AS_public); 4219 D->addDecl(Field); 4220 } 4221 4222 D->completeDefinition(); 4223 ObjCFastEnumerationStateType = Context.getTagDeclType(D); 4224 } 4225 4226 return ObjCFastEnumerationStateType; 4227 } 4228 4229 llvm::Constant * 4230 CodeGenModule::GetConstantArrayFromStringLiteral(const StringLiteral *E) { 4231 assert(!E->getType()->isPointerType() && "Strings are always arrays"); 4232 4233 // Don't emit it as the address of the string, emit the string data itself 4234 // as an inline array. 4235 if (E->getCharByteWidth() == 1) { 4236 SmallString<64> Str(E->getString()); 4237 4238 // Resize the string to the right size, which is indicated by its type. 4239 const ConstantArrayType *CAT = Context.getAsConstantArrayType(E->getType()); 4240 Str.resize(CAT->getSize().getZExtValue()); 4241 return llvm::ConstantDataArray::getString(VMContext, Str, false); 4242 } 4243 4244 auto *AType = cast<llvm::ArrayType>(getTypes().ConvertType(E->getType())); 4245 llvm::Type *ElemTy = AType->getElementType(); 4246 unsigned NumElements = AType->getNumElements(); 4247 4248 // Wide strings have either 2-byte or 4-byte elements. 4249 if (ElemTy->getPrimitiveSizeInBits() == 16) { 4250 SmallVector<uint16_t, 32> Elements; 4251 Elements.reserve(NumElements); 4252 4253 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4254 Elements.push_back(E->getCodeUnit(i)); 4255 Elements.resize(NumElements); 4256 return llvm::ConstantDataArray::get(VMContext, Elements); 4257 } 4258 4259 assert(ElemTy->getPrimitiveSizeInBits() == 32); 4260 SmallVector<uint32_t, 32> Elements; 4261 Elements.reserve(NumElements); 4262 4263 for(unsigned i = 0, e = E->getLength(); i != e; ++i) 4264 Elements.push_back(E->getCodeUnit(i)); 4265 Elements.resize(NumElements); 4266 return llvm::ConstantDataArray::get(VMContext, Elements); 4267 } 4268 4269 static llvm::GlobalVariable * 4270 GenerateStringLiteral(llvm::Constant *C, llvm::GlobalValue::LinkageTypes LT, 4271 CodeGenModule &CGM, StringRef GlobalName, 4272 CharUnits Alignment) { 4273 unsigned AddrSpace = CGM.getContext().getTargetAddressSpace( 4274 CGM.getStringLiteralAddressSpace()); 4275 4276 llvm::Module &M = CGM.getModule(); 4277 // Create a global variable for this string 4278 auto *GV = new llvm::GlobalVariable( 4279 M, C->getType(), !CGM.getLangOpts().WritableStrings, LT, C, GlobalName, 4280 nullptr, llvm::GlobalVariable::NotThreadLocal, AddrSpace); 4281 GV->setAlignment(Alignment.getQuantity()); 4282 GV->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 4283 if (GV->isWeakForLinker()) { 4284 assert(CGM.supportsCOMDAT() && "Only COFF uses weak string literals"); 4285 GV->setComdat(M.getOrInsertComdat(GV->getName())); 4286 } 4287 CGM.setDSOLocal(GV); 4288 4289 return GV; 4290 } 4291 4292 /// GetAddrOfConstantStringFromLiteral - Return a pointer to a 4293 /// constant array for the given string literal. 4294 ConstantAddress 4295 CodeGenModule::GetAddrOfConstantStringFromLiteral(const StringLiteral *S, 4296 StringRef Name) { 4297 CharUnits Alignment = getContext().getAlignOfGlobalVarInChars(S->getType()); 4298 4299 llvm::Constant *C = GetConstantArrayFromStringLiteral(S); 4300 llvm::GlobalVariable **Entry = nullptr; 4301 if (!LangOpts.WritableStrings) { 4302 Entry = &ConstantStringMap[C]; 4303 if (auto GV = *Entry) { 4304 if (Alignment.getQuantity() > GV->getAlignment()) 4305 GV->setAlignment(Alignment.getQuantity()); 4306 return ConstantAddress(GV, Alignment); 4307 } 4308 } 4309 4310 SmallString<256> MangledNameBuffer; 4311 StringRef GlobalVariableName; 4312 llvm::GlobalValue::LinkageTypes LT; 4313 4314 // Mangle the string literal if the ABI allows for it. However, we cannot 4315 // do this if we are compiling with ASan or -fwritable-strings because they 4316 // rely on strings having normal linkage. 4317 if (!LangOpts.WritableStrings && 4318 !LangOpts.Sanitize.has(SanitizerKind::Address) && 4319 getCXXABI().getMangleContext().shouldMangleStringLiteral(S)) { 4320 llvm::raw_svector_ostream Out(MangledNameBuffer); 4321 getCXXABI().getMangleContext().mangleStringLiteral(S, Out); 4322 4323 LT = llvm::GlobalValue::LinkOnceODRLinkage; 4324 GlobalVariableName = MangledNameBuffer; 4325 } else { 4326 LT = llvm::GlobalValue::PrivateLinkage; 4327 GlobalVariableName = Name; 4328 } 4329 4330 auto GV = GenerateStringLiteral(C, LT, *this, GlobalVariableName, Alignment); 4331 if (Entry) 4332 *Entry = GV; 4333 4334 SanitizerMD->reportGlobalToASan(GV, S->getStrTokenLoc(0), "<string literal>", 4335 QualType()); 4336 4337 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4338 Alignment); 4339 } 4340 4341 /// GetAddrOfConstantStringFromObjCEncode - Return a pointer to a constant 4342 /// array for the given ObjCEncodeExpr node. 4343 ConstantAddress 4344 CodeGenModule::GetAddrOfConstantStringFromObjCEncode(const ObjCEncodeExpr *E) { 4345 std::string Str; 4346 getContext().getObjCEncodingForType(E->getEncodedType(), Str); 4347 4348 return GetAddrOfConstantCString(Str); 4349 } 4350 4351 /// GetAddrOfConstantCString - Returns a pointer to a character array containing 4352 /// the literal and a terminating '\0' character. 4353 /// The result has pointer to array type. 4354 ConstantAddress CodeGenModule::GetAddrOfConstantCString( 4355 const std::string &Str, const char *GlobalName) { 4356 StringRef StrWithNull(Str.c_str(), Str.size() + 1); 4357 CharUnits Alignment = 4358 getContext().getAlignOfGlobalVarInChars(getContext().CharTy); 4359 4360 llvm::Constant *C = 4361 llvm::ConstantDataArray::getString(getLLVMContext(), StrWithNull, false); 4362 4363 // Don't share any string literals if strings aren't constant. 4364 llvm::GlobalVariable **Entry = nullptr; 4365 if (!LangOpts.WritableStrings) { 4366 Entry = &ConstantStringMap[C]; 4367 if (auto GV = *Entry) { 4368 if (Alignment.getQuantity() > GV->getAlignment()) 4369 GV->setAlignment(Alignment.getQuantity()); 4370 return ConstantAddress(GV, Alignment); 4371 } 4372 } 4373 4374 // Get the default prefix if a name wasn't specified. 4375 if (!GlobalName) 4376 GlobalName = ".str"; 4377 // Create a global variable for this. 4378 auto GV = GenerateStringLiteral(C, llvm::GlobalValue::PrivateLinkage, *this, 4379 GlobalName, Alignment); 4380 if (Entry) 4381 *Entry = GV; 4382 4383 return ConstantAddress(castStringLiteralToDefaultAddressSpace(*this, GV), 4384 Alignment); 4385 } 4386 4387 ConstantAddress CodeGenModule::GetAddrOfGlobalTemporary( 4388 const MaterializeTemporaryExpr *E, const Expr *Init) { 4389 assert((E->getStorageDuration() == SD_Static || 4390 E->getStorageDuration() == SD_Thread) && "not a global temporary"); 4391 const auto *VD = cast<VarDecl>(E->getExtendingDecl()); 4392 4393 // If we're not materializing a subobject of the temporary, keep the 4394 // cv-qualifiers from the type of the MaterializeTemporaryExpr. 4395 QualType MaterializedType = Init->getType(); 4396 if (Init == E->GetTemporaryExpr()) 4397 MaterializedType = E->getType(); 4398 4399 CharUnits Align = getContext().getTypeAlignInChars(MaterializedType); 4400 4401 if (llvm::Constant *Slot = MaterializedGlobalTemporaryMap[E]) 4402 return ConstantAddress(Slot, Align); 4403 4404 // FIXME: If an externally-visible declaration extends multiple temporaries, 4405 // we need to give each temporary the same name in every translation unit (and 4406 // we also need to make the temporaries externally-visible). 4407 SmallString<256> Name; 4408 llvm::raw_svector_ostream Out(Name); 4409 getCXXABI().getMangleContext().mangleReferenceTemporary( 4410 VD, E->getManglingNumber(), Out); 4411 4412 APValue *Value = nullptr; 4413 if (E->getStorageDuration() == SD_Static) { 4414 // We might have a cached constant initializer for this temporary. Note 4415 // that this might have a different value from the value computed by 4416 // evaluating the initializer if the surrounding constant expression 4417 // modifies the temporary. 4418 Value = getContext().getMaterializedTemporaryValue(E, false); 4419 if (Value && Value->isUninit()) 4420 Value = nullptr; 4421 } 4422 4423 // Try evaluating it now, it might have a constant initializer. 4424 Expr::EvalResult EvalResult; 4425 if (!Value && Init->EvaluateAsRValue(EvalResult, getContext()) && 4426 !EvalResult.hasSideEffects()) 4427 Value = &EvalResult.Val; 4428 4429 LangAS AddrSpace = 4430 VD ? GetGlobalVarAddressSpace(VD) : MaterializedType.getAddressSpace(); 4431 4432 Optional<ConstantEmitter> emitter; 4433 llvm::Constant *InitialValue = nullptr; 4434 bool Constant = false; 4435 llvm::Type *Type; 4436 if (Value) { 4437 // The temporary has a constant initializer, use it. 4438 emitter.emplace(*this); 4439 InitialValue = emitter->emitForInitializer(*Value, AddrSpace, 4440 MaterializedType); 4441 Constant = isTypeConstant(MaterializedType, /*ExcludeCtor*/Value); 4442 Type = InitialValue->getType(); 4443 } else { 4444 // No initializer, the initialization will be provided when we 4445 // initialize the declaration which performed lifetime extension. 4446 Type = getTypes().ConvertTypeForMem(MaterializedType); 4447 } 4448 4449 // Create a global variable for this lifetime-extended temporary. 4450 llvm::GlobalValue::LinkageTypes Linkage = 4451 getLLVMLinkageVarDefinition(VD, Constant); 4452 if (Linkage == llvm::GlobalVariable::ExternalLinkage) { 4453 const VarDecl *InitVD; 4454 if (VD->isStaticDataMember() && VD->getAnyInitializer(InitVD) && 4455 isa<CXXRecordDecl>(InitVD->getLexicalDeclContext())) { 4456 // Temporaries defined inside a class get linkonce_odr linkage because the 4457 // class can be defined in multiple translation units. 4458 Linkage = llvm::GlobalVariable::LinkOnceODRLinkage; 4459 } else { 4460 // There is no need for this temporary to have external linkage if the 4461 // VarDecl has external linkage. 4462 Linkage = llvm::GlobalVariable::InternalLinkage; 4463 } 4464 } 4465 auto TargetAS = getContext().getTargetAddressSpace(AddrSpace); 4466 auto *GV = new llvm::GlobalVariable( 4467 getModule(), Type, Constant, Linkage, InitialValue, Name.c_str(), 4468 /*InsertBefore=*/nullptr, llvm::GlobalVariable::NotThreadLocal, TargetAS); 4469 if (emitter) emitter->finalize(GV); 4470 setGVProperties(GV, VD); 4471 GV->setAlignment(Align.getQuantity()); 4472 if (supportsCOMDAT() && GV->isWeakForLinker()) 4473 GV->setComdat(TheModule.getOrInsertComdat(GV->getName())); 4474 if (VD->getTLSKind()) 4475 setTLSMode(GV, *VD); 4476 llvm::Constant *CV = GV; 4477 if (AddrSpace != LangAS::Default) 4478 CV = getTargetCodeGenInfo().performAddrSpaceCast( 4479 *this, GV, AddrSpace, LangAS::Default, 4480 Type->getPointerTo( 4481 getContext().getTargetAddressSpace(LangAS::Default))); 4482 MaterializedGlobalTemporaryMap[E] = CV; 4483 return ConstantAddress(CV, Align); 4484 } 4485 4486 /// EmitObjCPropertyImplementations - Emit information for synthesized 4487 /// properties for an implementation. 4488 void CodeGenModule::EmitObjCPropertyImplementations(const 4489 ObjCImplementationDecl *D) { 4490 for (const auto *PID : D->property_impls()) { 4491 // Dynamic is just for type-checking. 4492 if (PID->getPropertyImplementation() == ObjCPropertyImplDecl::Synthesize) { 4493 ObjCPropertyDecl *PD = PID->getPropertyDecl(); 4494 4495 // Determine which methods need to be implemented, some may have 4496 // been overridden. Note that ::isPropertyAccessor is not the method 4497 // we want, that just indicates if the decl came from a 4498 // property. What we want to know is if the method is defined in 4499 // this implementation. 4500 if (!D->getInstanceMethod(PD->getGetterName())) 4501 CodeGenFunction(*this).GenerateObjCGetter( 4502 const_cast<ObjCImplementationDecl *>(D), PID); 4503 if (!PD->isReadOnly() && 4504 !D->getInstanceMethod(PD->getSetterName())) 4505 CodeGenFunction(*this).GenerateObjCSetter( 4506 const_cast<ObjCImplementationDecl *>(D), PID); 4507 } 4508 } 4509 } 4510 4511 static bool needsDestructMethod(ObjCImplementationDecl *impl) { 4512 const ObjCInterfaceDecl *iface = impl->getClassInterface(); 4513 for (const ObjCIvarDecl *ivar = iface->all_declared_ivar_begin(); 4514 ivar; ivar = ivar->getNextIvar()) 4515 if (ivar->getType().isDestructedType()) 4516 return true; 4517 4518 return false; 4519 } 4520 4521 static bool AllTrivialInitializers(CodeGenModule &CGM, 4522 ObjCImplementationDecl *D) { 4523 CodeGenFunction CGF(CGM); 4524 for (ObjCImplementationDecl::init_iterator B = D->init_begin(), 4525 E = D->init_end(); B != E; ++B) { 4526 CXXCtorInitializer *CtorInitExp = *B; 4527 Expr *Init = CtorInitExp->getInit(); 4528 if (!CGF.isTrivialInitializer(Init)) 4529 return false; 4530 } 4531 return true; 4532 } 4533 4534 /// EmitObjCIvarInitializations - Emit information for ivar initialization 4535 /// for an implementation. 4536 void CodeGenModule::EmitObjCIvarInitializations(ObjCImplementationDecl *D) { 4537 // We might need a .cxx_destruct even if we don't have any ivar initializers. 4538 if (needsDestructMethod(D)) { 4539 IdentifierInfo *II = &getContext().Idents.get(".cxx_destruct"); 4540 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4541 ObjCMethodDecl *DTORMethod = 4542 ObjCMethodDecl::Create(getContext(), D->getLocation(), D->getLocation(), 4543 cxxSelector, getContext().VoidTy, nullptr, D, 4544 /*isInstance=*/true, /*isVariadic=*/false, 4545 /*isPropertyAccessor=*/true, /*isImplicitlyDeclared=*/true, 4546 /*isDefined=*/false, ObjCMethodDecl::Required); 4547 D->addInstanceMethod(DTORMethod); 4548 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, DTORMethod, false); 4549 D->setHasDestructors(true); 4550 } 4551 4552 // If the implementation doesn't have any ivar initializers, we don't need 4553 // a .cxx_construct. 4554 if (D->getNumIvarInitializers() == 0 || 4555 AllTrivialInitializers(*this, D)) 4556 return; 4557 4558 IdentifierInfo *II = &getContext().Idents.get(".cxx_construct"); 4559 Selector cxxSelector = getContext().Selectors.getSelector(0, &II); 4560 // The constructor returns 'self'. 4561 ObjCMethodDecl *CTORMethod = ObjCMethodDecl::Create(getContext(), 4562 D->getLocation(), 4563 D->getLocation(), 4564 cxxSelector, 4565 getContext().getObjCIdType(), 4566 nullptr, D, /*isInstance=*/true, 4567 /*isVariadic=*/false, 4568 /*isPropertyAccessor=*/true, 4569 /*isImplicitlyDeclared=*/true, 4570 /*isDefined=*/false, 4571 ObjCMethodDecl::Required); 4572 D->addInstanceMethod(CTORMethod); 4573 CodeGenFunction(*this).GenerateObjCCtorDtorMethod(D, CTORMethod, true); 4574 D->setHasNonZeroConstructors(true); 4575 } 4576 4577 // EmitLinkageSpec - Emit all declarations in a linkage spec. 4578 void CodeGenModule::EmitLinkageSpec(const LinkageSpecDecl *LSD) { 4579 if (LSD->getLanguage() != LinkageSpecDecl::lang_c && 4580 LSD->getLanguage() != LinkageSpecDecl::lang_cxx) { 4581 ErrorUnsupported(LSD, "linkage spec"); 4582 return; 4583 } 4584 4585 EmitDeclContext(LSD); 4586 } 4587 4588 void CodeGenModule::EmitDeclContext(const DeclContext *DC) { 4589 for (auto *I : DC->decls()) { 4590 // Unlike other DeclContexts, the contents of an ObjCImplDecl at TU scope 4591 // are themselves considered "top-level", so EmitTopLevelDecl on an 4592 // ObjCImplDecl does not recursively visit them. We need to do that in 4593 // case they're nested inside another construct (LinkageSpecDecl / 4594 // ExportDecl) that does stop them from being considered "top-level". 4595 if (auto *OID = dyn_cast<ObjCImplDecl>(I)) { 4596 for (auto *M : OID->methods()) 4597 EmitTopLevelDecl(M); 4598 } 4599 4600 EmitTopLevelDecl(I); 4601 } 4602 } 4603 4604 /// EmitTopLevelDecl - Emit code for a single top level declaration. 4605 void CodeGenModule::EmitTopLevelDecl(Decl *D) { 4606 // Ignore dependent declarations. 4607 if (D->isTemplated()) 4608 return; 4609 4610 switch (D->getKind()) { 4611 case Decl::CXXConversion: 4612 case Decl::CXXMethod: 4613 case Decl::Function: 4614 EmitGlobal(cast<FunctionDecl>(D)); 4615 // Always provide some coverage mapping 4616 // even for the functions that aren't emitted. 4617 AddDeferredUnusedCoverageMapping(D); 4618 break; 4619 4620 case Decl::CXXDeductionGuide: 4621 // Function-like, but does not result in code emission. 4622 break; 4623 4624 case Decl::Var: 4625 case Decl::Decomposition: 4626 case Decl::VarTemplateSpecialization: 4627 EmitGlobal(cast<VarDecl>(D)); 4628 if (auto *DD = dyn_cast<DecompositionDecl>(D)) 4629 for (auto *B : DD->bindings()) 4630 if (auto *HD = B->getHoldingVar()) 4631 EmitGlobal(HD); 4632 break; 4633 4634 // Indirect fields from global anonymous structs and unions can be 4635 // ignored; only the actual variable requires IR gen support. 4636 case Decl::IndirectField: 4637 break; 4638 4639 // C++ Decls 4640 case Decl::Namespace: 4641 EmitDeclContext(cast<NamespaceDecl>(D)); 4642 break; 4643 case Decl::ClassTemplateSpecialization: { 4644 const auto *Spec = cast<ClassTemplateSpecializationDecl>(D); 4645 if (DebugInfo && 4646 Spec->getSpecializationKind() == TSK_ExplicitInstantiationDefinition && 4647 Spec->hasDefinition()) 4648 DebugInfo->completeTemplateDefinition(*Spec); 4649 } LLVM_FALLTHROUGH; 4650 case Decl::CXXRecord: 4651 if (DebugInfo) { 4652 if (auto *ES = D->getASTContext().getExternalSource()) 4653 if (ES->hasExternalDefinitions(D) == ExternalASTSource::EK_Never) 4654 DebugInfo->completeUnusedClass(cast<CXXRecordDecl>(*D)); 4655 } 4656 // Emit any static data members, they may be definitions. 4657 for (auto *I : cast<CXXRecordDecl>(D)->decls()) 4658 if (isa<VarDecl>(I) || isa<CXXRecordDecl>(I)) 4659 EmitTopLevelDecl(I); 4660 break; 4661 // No code generation needed. 4662 case Decl::UsingShadow: 4663 case Decl::ClassTemplate: 4664 case Decl::VarTemplate: 4665 case Decl::VarTemplatePartialSpecialization: 4666 case Decl::FunctionTemplate: 4667 case Decl::TypeAliasTemplate: 4668 case Decl::Block: 4669 case Decl::Empty: 4670 break; 4671 case Decl::Using: // using X; [C++] 4672 if (CGDebugInfo *DI = getModuleDebugInfo()) 4673 DI->EmitUsingDecl(cast<UsingDecl>(*D)); 4674 return; 4675 case Decl::NamespaceAlias: 4676 if (CGDebugInfo *DI = getModuleDebugInfo()) 4677 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(*D)); 4678 return; 4679 case Decl::UsingDirective: // using namespace X; [C++] 4680 if (CGDebugInfo *DI = getModuleDebugInfo()) 4681 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(*D)); 4682 return; 4683 case Decl::CXXConstructor: 4684 getCXXABI().EmitCXXConstructors(cast<CXXConstructorDecl>(D)); 4685 break; 4686 case Decl::CXXDestructor: 4687 getCXXABI().EmitCXXDestructors(cast<CXXDestructorDecl>(D)); 4688 break; 4689 4690 case Decl::StaticAssert: 4691 // Nothing to do. 4692 break; 4693 4694 // Objective-C Decls 4695 4696 // Forward declarations, no (immediate) code generation. 4697 case Decl::ObjCInterface: 4698 case Decl::ObjCCategory: 4699 break; 4700 4701 case Decl::ObjCProtocol: { 4702 auto *Proto = cast<ObjCProtocolDecl>(D); 4703 if (Proto->isThisDeclarationADefinition()) 4704 ObjCRuntime->GenerateProtocol(Proto); 4705 break; 4706 } 4707 4708 case Decl::ObjCCategoryImpl: 4709 // Categories have properties but don't support synthesize so we 4710 // can ignore them here. 4711 ObjCRuntime->GenerateCategory(cast<ObjCCategoryImplDecl>(D)); 4712 break; 4713 4714 case Decl::ObjCImplementation: { 4715 auto *OMD = cast<ObjCImplementationDecl>(D); 4716 EmitObjCPropertyImplementations(OMD); 4717 EmitObjCIvarInitializations(OMD); 4718 ObjCRuntime->GenerateClass(OMD); 4719 // Emit global variable debug information. 4720 if (CGDebugInfo *DI = getModuleDebugInfo()) 4721 if (getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 4722 DI->getOrCreateInterfaceType(getContext().getObjCInterfaceType( 4723 OMD->getClassInterface()), OMD->getLocation()); 4724 break; 4725 } 4726 case Decl::ObjCMethod: { 4727 auto *OMD = cast<ObjCMethodDecl>(D); 4728 // If this is not a prototype, emit the body. 4729 if (OMD->getBody()) 4730 CodeGenFunction(*this).GenerateObjCMethod(OMD); 4731 break; 4732 } 4733 case Decl::ObjCCompatibleAlias: 4734 ObjCRuntime->RegisterAlias(cast<ObjCCompatibleAliasDecl>(D)); 4735 break; 4736 4737 case Decl::PragmaComment: { 4738 const auto *PCD = cast<PragmaCommentDecl>(D); 4739 switch (PCD->getCommentKind()) { 4740 case PCK_Unknown: 4741 llvm_unreachable("unexpected pragma comment kind"); 4742 case PCK_Linker: 4743 AppendLinkerOptions(PCD->getArg()); 4744 break; 4745 case PCK_Lib: 4746 if (getTarget().getTriple().isOSBinFormatELF() && 4747 !getTarget().getTriple().isPS4()) 4748 AddELFLibDirective(PCD->getArg()); 4749 else 4750 AddDependentLib(PCD->getArg()); 4751 break; 4752 case PCK_Compiler: 4753 case PCK_ExeStr: 4754 case PCK_User: 4755 break; // We ignore all of these. 4756 } 4757 break; 4758 } 4759 4760 case Decl::PragmaDetectMismatch: { 4761 const auto *PDMD = cast<PragmaDetectMismatchDecl>(D); 4762 AddDetectMismatch(PDMD->getName(), PDMD->getValue()); 4763 break; 4764 } 4765 4766 case Decl::LinkageSpec: 4767 EmitLinkageSpec(cast<LinkageSpecDecl>(D)); 4768 break; 4769 4770 case Decl::FileScopeAsm: { 4771 // File-scope asm is ignored during device-side CUDA compilation. 4772 if (LangOpts.CUDA && LangOpts.CUDAIsDevice) 4773 break; 4774 // File-scope asm is ignored during device-side OpenMP compilation. 4775 if (LangOpts.OpenMPIsDevice) 4776 break; 4777 auto *AD = cast<FileScopeAsmDecl>(D); 4778 getModule().appendModuleInlineAsm(AD->getAsmString()->getString()); 4779 break; 4780 } 4781 4782 case Decl::Import: { 4783 auto *Import = cast<ImportDecl>(D); 4784 4785 // If we've already imported this module, we're done. 4786 if (!ImportedModules.insert(Import->getImportedModule())) 4787 break; 4788 4789 // Emit debug information for direct imports. 4790 if (!Import->getImportedOwningModule()) { 4791 if (CGDebugInfo *DI = getModuleDebugInfo()) 4792 DI->EmitImportDecl(*Import); 4793 } 4794 4795 // Find all of the submodules and emit the module initializers. 4796 llvm::SmallPtrSet<clang::Module *, 16> Visited; 4797 SmallVector<clang::Module *, 16> Stack; 4798 Visited.insert(Import->getImportedModule()); 4799 Stack.push_back(Import->getImportedModule()); 4800 4801 while (!Stack.empty()) { 4802 clang::Module *Mod = Stack.pop_back_val(); 4803 if (!EmittedModuleInitializers.insert(Mod).second) 4804 continue; 4805 4806 for (auto *D : Context.getModuleInitializers(Mod)) 4807 EmitTopLevelDecl(D); 4808 4809 // Visit the submodules of this module. 4810 for (clang::Module::submodule_iterator Sub = Mod->submodule_begin(), 4811 SubEnd = Mod->submodule_end(); 4812 Sub != SubEnd; ++Sub) { 4813 // Skip explicit children; they need to be explicitly imported to emit 4814 // the initializers. 4815 if ((*Sub)->IsExplicit) 4816 continue; 4817 4818 if (Visited.insert(*Sub).second) 4819 Stack.push_back(*Sub); 4820 } 4821 } 4822 break; 4823 } 4824 4825 case Decl::Export: 4826 EmitDeclContext(cast<ExportDecl>(D)); 4827 break; 4828 4829 case Decl::OMPThreadPrivate: 4830 EmitOMPThreadPrivateDecl(cast<OMPThreadPrivateDecl>(D)); 4831 break; 4832 4833 case Decl::OMPDeclareReduction: 4834 EmitOMPDeclareReduction(cast<OMPDeclareReductionDecl>(D)); 4835 break; 4836 4837 default: 4838 // Make sure we handled everything we should, every other kind is a 4839 // non-top-level decl. FIXME: Would be nice to have an isTopLevelDeclKind 4840 // function. Need to recode Decl::Kind to do that easily. 4841 assert(isa<TypeDecl>(D) && "Unsupported decl kind"); 4842 break; 4843 } 4844 } 4845 4846 void CodeGenModule::AddDeferredUnusedCoverageMapping(Decl *D) { 4847 // Do we need to generate coverage mapping? 4848 if (!CodeGenOpts.CoverageMapping) 4849 return; 4850 switch (D->getKind()) { 4851 case Decl::CXXConversion: 4852 case Decl::CXXMethod: 4853 case Decl::Function: 4854 case Decl::ObjCMethod: 4855 case Decl::CXXConstructor: 4856 case Decl::CXXDestructor: { 4857 if (!cast<FunctionDecl>(D)->doesThisDeclarationHaveABody()) 4858 return; 4859 SourceManager &SM = getContext().getSourceManager(); 4860 if (LimitedCoverage && SM.getMainFileID() != SM.getFileID(D->getLocStart())) 4861 return; 4862 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4863 if (I == DeferredEmptyCoverageMappingDecls.end()) 4864 DeferredEmptyCoverageMappingDecls[D] = true; 4865 break; 4866 } 4867 default: 4868 break; 4869 }; 4870 } 4871 4872 void CodeGenModule::ClearUnusedCoverageMapping(const Decl *D) { 4873 // Do we need to generate coverage mapping? 4874 if (!CodeGenOpts.CoverageMapping) 4875 return; 4876 if (const auto *Fn = dyn_cast<FunctionDecl>(D)) { 4877 if (Fn->isTemplateInstantiation()) 4878 ClearUnusedCoverageMapping(Fn->getTemplateInstantiationPattern()); 4879 } 4880 auto I = DeferredEmptyCoverageMappingDecls.find(D); 4881 if (I == DeferredEmptyCoverageMappingDecls.end()) 4882 DeferredEmptyCoverageMappingDecls[D] = false; 4883 else 4884 I->second = false; 4885 } 4886 4887 void CodeGenModule::EmitDeferredUnusedCoverageMappings() { 4888 // We call takeVector() here to avoid use-after-free. 4889 // FIXME: DeferredEmptyCoverageMappingDecls is getting mutated because 4890 // we deserialize function bodies to emit coverage info for them, and that 4891 // deserializes more declarations. How should we handle that case? 4892 for (const auto &Entry : DeferredEmptyCoverageMappingDecls.takeVector()) { 4893 if (!Entry.second) 4894 continue; 4895 const Decl *D = Entry.first; 4896 switch (D->getKind()) { 4897 case Decl::CXXConversion: 4898 case Decl::CXXMethod: 4899 case Decl::Function: 4900 case Decl::ObjCMethod: { 4901 CodeGenPGO PGO(*this); 4902 GlobalDecl GD(cast<FunctionDecl>(D)); 4903 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4904 getFunctionLinkage(GD)); 4905 break; 4906 } 4907 case Decl::CXXConstructor: { 4908 CodeGenPGO PGO(*this); 4909 GlobalDecl GD(cast<CXXConstructorDecl>(D), Ctor_Base); 4910 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4911 getFunctionLinkage(GD)); 4912 break; 4913 } 4914 case Decl::CXXDestructor: { 4915 CodeGenPGO PGO(*this); 4916 GlobalDecl GD(cast<CXXDestructorDecl>(D), Dtor_Base); 4917 PGO.emitEmptyCounterMapping(D, getMangledName(GD), 4918 getFunctionLinkage(GD)); 4919 break; 4920 } 4921 default: 4922 break; 4923 }; 4924 } 4925 } 4926 4927 /// Turns the given pointer into a constant. 4928 static llvm::Constant *GetPointerConstant(llvm::LLVMContext &Context, 4929 const void *Ptr) { 4930 uintptr_t PtrInt = reinterpret_cast<uintptr_t>(Ptr); 4931 llvm::Type *i64 = llvm::Type::getInt64Ty(Context); 4932 return llvm::ConstantInt::get(i64, PtrInt); 4933 } 4934 4935 static void EmitGlobalDeclMetadata(CodeGenModule &CGM, 4936 llvm::NamedMDNode *&GlobalMetadata, 4937 GlobalDecl D, 4938 llvm::GlobalValue *Addr) { 4939 if (!GlobalMetadata) 4940 GlobalMetadata = 4941 CGM.getModule().getOrInsertNamedMetadata("clang.global.decl.ptrs"); 4942 4943 // TODO: should we report variant information for ctors/dtors? 4944 llvm::Metadata *Ops[] = {llvm::ConstantAsMetadata::get(Addr), 4945 llvm::ConstantAsMetadata::get(GetPointerConstant( 4946 CGM.getLLVMContext(), D.getDecl()))}; 4947 GlobalMetadata->addOperand(llvm::MDNode::get(CGM.getLLVMContext(), Ops)); 4948 } 4949 4950 /// For each function which is declared within an extern "C" region and marked 4951 /// as 'used', but has internal linkage, create an alias from the unmangled 4952 /// name to the mangled name if possible. People expect to be able to refer 4953 /// to such functions with an unmangled name from inline assembly within the 4954 /// same translation unit. 4955 void CodeGenModule::EmitStaticExternCAliases() { 4956 if (!getTargetCodeGenInfo().shouldEmitStaticExternCAliases()) 4957 return; 4958 for (auto &I : StaticExternCValues) { 4959 IdentifierInfo *Name = I.first; 4960 llvm::GlobalValue *Val = I.second; 4961 if (Val && !getModule().getNamedValue(Name->getName())) 4962 addUsedGlobal(llvm::GlobalAlias::create(Name->getName(), Val)); 4963 } 4964 } 4965 4966 bool CodeGenModule::lookupRepresentativeDecl(StringRef MangledName, 4967 GlobalDecl &Result) const { 4968 auto Res = Manglings.find(MangledName); 4969 if (Res == Manglings.end()) 4970 return false; 4971 Result = Res->getValue(); 4972 return true; 4973 } 4974 4975 /// Emits metadata nodes associating all the global values in the 4976 /// current module with the Decls they came from. This is useful for 4977 /// projects using IR gen as a subroutine. 4978 /// 4979 /// Since there's currently no way to associate an MDNode directly 4980 /// with an llvm::GlobalValue, we create a global named metadata 4981 /// with the name 'clang.global.decl.ptrs'. 4982 void CodeGenModule::EmitDeclMetadata() { 4983 llvm::NamedMDNode *GlobalMetadata = nullptr; 4984 4985 for (auto &I : MangledDeclNames) { 4986 llvm::GlobalValue *Addr = getModule().getNamedValue(I.second); 4987 // Some mangled names don't necessarily have an associated GlobalValue 4988 // in this module, e.g. if we mangled it for DebugInfo. 4989 if (Addr) 4990 EmitGlobalDeclMetadata(*this, GlobalMetadata, I.first, Addr); 4991 } 4992 } 4993 4994 /// Emits metadata nodes for all the local variables in the current 4995 /// function. 4996 void CodeGenFunction::EmitDeclMetadata() { 4997 if (LocalDeclMap.empty()) return; 4998 4999 llvm::LLVMContext &Context = getLLVMContext(); 5000 5001 // Find the unique metadata ID for this name. 5002 unsigned DeclPtrKind = Context.getMDKindID("clang.decl.ptr"); 5003 5004 llvm::NamedMDNode *GlobalMetadata = nullptr; 5005 5006 for (auto &I : LocalDeclMap) { 5007 const Decl *D = I.first; 5008 llvm::Value *Addr = I.second.getPointer(); 5009 if (auto *Alloca = dyn_cast<llvm::AllocaInst>(Addr)) { 5010 llvm::Value *DAddr = GetPointerConstant(getLLVMContext(), D); 5011 Alloca->setMetadata( 5012 DeclPtrKind, llvm::MDNode::get( 5013 Context, llvm::ValueAsMetadata::getConstant(DAddr))); 5014 } else if (auto *GV = dyn_cast<llvm::GlobalValue>(Addr)) { 5015 GlobalDecl GD = GlobalDecl(cast<VarDecl>(D)); 5016 EmitGlobalDeclMetadata(CGM, GlobalMetadata, GD, GV); 5017 } 5018 } 5019 } 5020 5021 void CodeGenModule::EmitVersionIdentMetadata() { 5022 llvm::NamedMDNode *IdentMetadata = 5023 TheModule.getOrInsertNamedMetadata("llvm.ident"); 5024 std::string Version = getClangFullVersion(); 5025 llvm::LLVMContext &Ctx = TheModule.getContext(); 5026 5027 llvm::Metadata *IdentNode[] = {llvm::MDString::get(Ctx, Version)}; 5028 IdentMetadata->addOperand(llvm::MDNode::get(Ctx, IdentNode)); 5029 } 5030 5031 void CodeGenModule::EmitTargetMetadata() { 5032 // Warning, new MangledDeclNames may be appended within this loop. 5033 // We rely on MapVector insertions adding new elements to the end 5034 // of the container. 5035 // FIXME: Move this loop into the one target that needs it, and only 5036 // loop over those declarations for which we couldn't emit the target 5037 // metadata when we emitted the declaration. 5038 for (unsigned I = 0; I != MangledDeclNames.size(); ++I) { 5039 auto Val = *(MangledDeclNames.begin() + I); 5040 const Decl *D = Val.first.getDecl()->getMostRecentDecl(); 5041 llvm::GlobalValue *GV = GetGlobalValue(Val.second); 5042 getTargetCodeGenInfo().emitTargetMD(D, GV, *this); 5043 } 5044 } 5045 5046 void CodeGenModule::EmitCoverageFile() { 5047 if (getCodeGenOpts().CoverageDataFile.empty() && 5048 getCodeGenOpts().CoverageNotesFile.empty()) 5049 return; 5050 5051 llvm::NamedMDNode *CUNode = TheModule.getNamedMetadata("llvm.dbg.cu"); 5052 if (!CUNode) 5053 return; 5054 5055 llvm::NamedMDNode *GCov = TheModule.getOrInsertNamedMetadata("llvm.gcov"); 5056 llvm::LLVMContext &Ctx = TheModule.getContext(); 5057 auto *CoverageDataFile = 5058 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageDataFile); 5059 auto *CoverageNotesFile = 5060 llvm::MDString::get(Ctx, getCodeGenOpts().CoverageNotesFile); 5061 for (int i = 0, e = CUNode->getNumOperands(); i != e; ++i) { 5062 llvm::MDNode *CU = CUNode->getOperand(i); 5063 llvm::Metadata *Elts[] = {CoverageNotesFile, CoverageDataFile, CU}; 5064 GCov->addOperand(llvm::MDNode::get(Ctx, Elts)); 5065 } 5066 } 5067 5068 llvm::Constant *CodeGenModule::EmitUuidofInitializer(StringRef Uuid) { 5069 // Sema has checked that all uuid strings are of the form 5070 // "12345678-1234-1234-1234-1234567890ab". 5071 assert(Uuid.size() == 36); 5072 for (unsigned i = 0; i < 36; ++i) { 5073 if (i == 8 || i == 13 || i == 18 || i == 23) assert(Uuid[i] == '-'); 5074 else assert(isHexDigit(Uuid[i])); 5075 } 5076 5077 // The starts of all bytes of Field3 in Uuid. Field 3 is "1234-1234567890ab". 5078 const unsigned Field3ValueOffsets[8] = { 19, 21, 24, 26, 28, 30, 32, 34 }; 5079 5080 llvm::Constant *Field3[8]; 5081 for (unsigned Idx = 0; Idx < 8; ++Idx) 5082 Field3[Idx] = llvm::ConstantInt::get( 5083 Int8Ty, Uuid.substr(Field3ValueOffsets[Idx], 2), 16); 5084 5085 llvm::Constant *Fields[4] = { 5086 llvm::ConstantInt::get(Int32Ty, Uuid.substr(0, 8), 16), 5087 llvm::ConstantInt::get(Int16Ty, Uuid.substr(9, 4), 16), 5088 llvm::ConstantInt::get(Int16Ty, Uuid.substr(14, 4), 16), 5089 llvm::ConstantArray::get(llvm::ArrayType::get(Int8Ty, 8), Field3) 5090 }; 5091 5092 return llvm::ConstantStruct::getAnon(Fields); 5093 } 5094 5095 llvm::Constant *CodeGenModule::GetAddrOfRTTIDescriptor(QualType Ty, 5096 bool ForEH) { 5097 // Return a bogus pointer if RTTI is disabled, unless it's for EH. 5098 // FIXME: should we even be calling this method if RTTI is disabled 5099 // and it's not for EH? 5100 if ((!ForEH && !getLangOpts().RTTI) || getLangOpts().CUDAIsDevice) 5101 return llvm::Constant::getNullValue(Int8PtrTy); 5102 5103 if (ForEH && Ty->isObjCObjectPointerType() && 5104 LangOpts.ObjCRuntime.isGNUFamily()) 5105 return ObjCRuntime->GetEHType(Ty); 5106 5107 return getCXXABI().getAddrOfRTTIDescriptor(Ty); 5108 } 5109 5110 void CodeGenModule::EmitOMPThreadPrivateDecl(const OMPThreadPrivateDecl *D) { 5111 // Do not emit threadprivates in simd-only mode. 5112 if (LangOpts.OpenMP && LangOpts.OpenMPSimd) 5113 return; 5114 for (auto RefExpr : D->varlists()) { 5115 auto *VD = cast<VarDecl>(cast<DeclRefExpr>(RefExpr)->getDecl()); 5116 bool PerformInit = 5117 VD->getAnyInitializer() && 5118 !VD->getAnyInitializer()->isConstantInitializer(getContext(), 5119 /*ForRef=*/false); 5120 5121 Address Addr(GetAddrOfGlobalVar(VD), getContext().getDeclAlign(VD)); 5122 if (auto InitFunction = getOpenMPRuntime().emitThreadPrivateVarDefinition( 5123 VD, Addr, RefExpr->getLocStart(), PerformInit)) 5124 CXXGlobalInits.push_back(InitFunction); 5125 } 5126 } 5127 5128 llvm::Metadata * 5129 CodeGenModule::CreateMetadataIdentifierImpl(QualType T, MetadataTypeMap &Map, 5130 StringRef Suffix) { 5131 llvm::Metadata *&InternalId = Map[T.getCanonicalType()]; 5132 if (InternalId) 5133 return InternalId; 5134 5135 if (isExternallyVisible(T->getLinkage())) { 5136 std::string OutName; 5137 llvm::raw_string_ostream Out(OutName); 5138 getCXXABI().getMangleContext().mangleTypeName(T, Out); 5139 Out << Suffix; 5140 5141 InternalId = llvm::MDString::get(getLLVMContext(), Out.str()); 5142 } else { 5143 InternalId = llvm::MDNode::getDistinct(getLLVMContext(), 5144 llvm::ArrayRef<llvm::Metadata *>()); 5145 } 5146 5147 return InternalId; 5148 } 5149 5150 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierForType(QualType T) { 5151 return CreateMetadataIdentifierImpl(T, MetadataIdMap, ""); 5152 } 5153 5154 llvm::Metadata * 5155 CodeGenModule::CreateMetadataIdentifierForVirtualMemPtrType(QualType T) { 5156 return CreateMetadataIdentifierImpl(T, VirtualMetadataIdMap, ".virtual"); 5157 } 5158 5159 // Generalize pointer types to a void pointer with the qualifiers of the 5160 // originally pointed-to type, e.g. 'const char *' and 'char * const *' 5161 // generalize to 'const void *' while 'char *' and 'const char **' generalize to 5162 // 'void *'. 5163 static QualType GeneralizeType(ASTContext &Ctx, QualType Ty) { 5164 if (!Ty->isPointerType()) 5165 return Ty; 5166 5167 return Ctx.getPointerType( 5168 QualType(Ctx.VoidTy).withCVRQualifiers( 5169 Ty->getPointeeType().getCVRQualifiers())); 5170 } 5171 5172 // Apply type generalization to a FunctionType's return and argument types 5173 static QualType GeneralizeFunctionType(ASTContext &Ctx, QualType Ty) { 5174 if (auto *FnType = Ty->getAs<FunctionProtoType>()) { 5175 SmallVector<QualType, 8> GeneralizedParams; 5176 for (auto &Param : FnType->param_types()) 5177 GeneralizedParams.push_back(GeneralizeType(Ctx, Param)); 5178 5179 return Ctx.getFunctionType( 5180 GeneralizeType(Ctx, FnType->getReturnType()), 5181 GeneralizedParams, FnType->getExtProtoInfo()); 5182 } 5183 5184 if (auto *FnType = Ty->getAs<FunctionNoProtoType>()) 5185 return Ctx.getFunctionNoProtoType( 5186 GeneralizeType(Ctx, FnType->getReturnType())); 5187 5188 llvm_unreachable("Encountered unknown FunctionType"); 5189 } 5190 5191 llvm::Metadata *CodeGenModule::CreateMetadataIdentifierGeneralized(QualType T) { 5192 return CreateMetadataIdentifierImpl(GeneralizeFunctionType(getContext(), T), 5193 GeneralizedMetadataIdMap, ".generalized"); 5194 } 5195 5196 /// Returns whether this module needs the "all-vtables" type identifier. 5197 bool CodeGenModule::NeedAllVtablesTypeId() const { 5198 // Returns true if at least one of vtable-based CFI checkers is enabled and 5199 // is not in the trapping mode. 5200 return ((LangOpts.Sanitize.has(SanitizerKind::CFIVCall) && 5201 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIVCall)) || 5202 (LangOpts.Sanitize.has(SanitizerKind::CFINVCall) && 5203 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFINVCall)) || 5204 (LangOpts.Sanitize.has(SanitizerKind::CFIDerivedCast) && 5205 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIDerivedCast)) || 5206 (LangOpts.Sanitize.has(SanitizerKind::CFIUnrelatedCast) && 5207 !CodeGenOpts.SanitizeTrap.has(SanitizerKind::CFIUnrelatedCast))); 5208 } 5209 5210 void CodeGenModule::AddVTableTypeMetadata(llvm::GlobalVariable *VTable, 5211 CharUnits Offset, 5212 const CXXRecordDecl *RD) { 5213 llvm::Metadata *MD = 5214 CreateMetadataIdentifierForType(QualType(RD->getTypeForDecl(), 0)); 5215 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5216 5217 if (CodeGenOpts.SanitizeCfiCrossDso) 5218 if (auto CrossDsoTypeId = CreateCrossDsoCfiTypeId(MD)) 5219 VTable->addTypeMetadata(Offset.getQuantity(), 5220 llvm::ConstantAsMetadata::get(CrossDsoTypeId)); 5221 5222 if (NeedAllVtablesTypeId()) { 5223 llvm::Metadata *MD = llvm::MDString::get(getLLVMContext(), "all-vtables"); 5224 VTable->addTypeMetadata(Offset.getQuantity(), MD); 5225 } 5226 } 5227 5228 TargetAttr::ParsedTargetAttr CodeGenModule::filterFunctionTargetAttrs(const TargetAttr *TD) { 5229 assert(TD != nullptr); 5230 TargetAttr::ParsedTargetAttr ParsedAttr = TD->parse(); 5231 5232 ParsedAttr.Features.erase( 5233 llvm::remove_if(ParsedAttr.Features, 5234 [&](const std::string &Feat) { 5235 return !Target.isValidFeatureName( 5236 StringRef{Feat}.substr(1)); 5237 }), 5238 ParsedAttr.Features.end()); 5239 return ParsedAttr; 5240 } 5241 5242 5243 // Fills in the supplied string map with the set of target features for the 5244 // passed in function. 5245 void CodeGenModule::getFunctionFeatureMap(llvm::StringMap<bool> &FeatureMap, 5246 const FunctionDecl *FD) { 5247 StringRef TargetCPU = Target.getTargetOpts().CPU; 5248 if (const auto *TD = FD->getAttr<TargetAttr>()) { 5249 TargetAttr::ParsedTargetAttr ParsedAttr = filterFunctionTargetAttrs(TD); 5250 5251 // Make a copy of the features as passed on the command line into the 5252 // beginning of the additional features from the function to override. 5253 ParsedAttr.Features.insert(ParsedAttr.Features.begin(), 5254 Target.getTargetOpts().FeaturesAsWritten.begin(), 5255 Target.getTargetOpts().FeaturesAsWritten.end()); 5256 5257 if (ParsedAttr.Architecture != "" && 5258 Target.isValidCPUName(ParsedAttr.Architecture)) 5259 TargetCPU = ParsedAttr.Architecture; 5260 5261 // Now populate the feature map, first with the TargetCPU which is either 5262 // the default or a new one from the target attribute string. Then we'll use 5263 // the passed in features (FeaturesAsWritten) along with the new ones from 5264 // the attribute. 5265 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5266 ParsedAttr.Features); 5267 } else if (const auto *SD = FD->getAttr<CPUSpecificAttr>()) { 5268 llvm::SmallVector<StringRef, 32> FeaturesTmp; 5269 Target.getCPUSpecificCPUDispatchFeatures(SD->getCurCPUName()->getName(), 5270 FeaturesTmp); 5271 std::vector<std::string> Features(FeaturesTmp.begin(), FeaturesTmp.end()); 5272 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, Features); 5273 } else { 5274 Target.initFeatureMap(FeatureMap, getDiags(), TargetCPU, 5275 Target.getTargetOpts().Features); 5276 } 5277 } 5278 5279 llvm::SanitizerStatReport &CodeGenModule::getSanStats() { 5280 if (!SanStats) 5281 SanStats = llvm::make_unique<llvm::SanitizerStatReport>(&getModule()); 5282 5283 return *SanStats; 5284 } 5285 llvm::Value * 5286 CodeGenModule::createOpenCLIntToSamplerConversion(const Expr *E, 5287 CodeGenFunction &CGF) { 5288 llvm::Constant *C = ConstantEmitter(CGF).emitAbstract(E, E->getType()); 5289 auto SamplerT = getOpenCLRuntime().getSamplerType(E->getType().getTypePtr()); 5290 auto FTy = llvm::FunctionType::get(SamplerT, {C->getType()}, false); 5291 return CGF.Builder.CreateCall(CreateRuntimeFunction(FTy, 5292 "__translate_sampler_initializer"), 5293 {C}); 5294 } 5295