1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/CodeGenOptions.h" 32 #include "clang/Basic/TargetInfo.h" 33 #include "clang/CodeGen/CGFunctionInfo.h" 34 #include "clang/Frontend/FrontendDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 69 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 70 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 71 if (!suppressNewContext) 72 CGM.getCXXABI().getMangleContext().startNewFunction(); 73 74 llvm::FastMathFlags FMF; 75 if (CGM.getLangOpts().FastMath) 76 FMF.setFast(); 77 if (CGM.getLangOpts().FiniteMathOnly) { 78 FMF.setNoNaNs(); 79 FMF.setNoInfs(); 80 } 81 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 82 FMF.setNoNaNs(); 83 } 84 if (CGM.getCodeGenOpts().NoSignedZeros) { 85 FMF.setNoSignedZeros(); 86 } 87 if (CGM.getCodeGenOpts().ReciprocalMath) { 88 FMF.setAllowReciprocal(); 89 } 90 if (CGM.getCodeGenOpts().Reassociate) { 91 FMF.setAllowReassoc(); 92 } 93 Builder.setFastMathFlags(FMF); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 110 LValueBaseInfo *BaseInfo, 111 TBAAAccessInfo *TBAAInfo) { 112 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 113 /* forPointeeType= */ true); 114 } 115 116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 117 LValueBaseInfo *BaseInfo, 118 TBAAAccessInfo *TBAAInfo, 119 bool forPointeeType) { 120 if (TBAAInfo) 121 *TBAAInfo = CGM.getTBAAAccessInfo(T); 122 123 // Honor alignment typedef attributes even on incomplete types. 124 // We also honor them straight for C++ class types, even as pointees; 125 // there's an expressivity gap here. 126 if (auto TT = T->getAs<TypedefType>()) { 127 if (auto Align = TT->getDecl()->getMaxAlignment()) { 128 if (BaseInfo) 129 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 130 return getContext().toCharUnitsFromBits(Align); 131 } 132 } 133 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 136 137 CharUnits Alignment; 138 if (T->isIncompleteType()) { 139 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 140 } else { 141 // For C++ class pointees, we don't know whether we're pointing at a 142 // base or a complete object, so we generally need to use the 143 // non-virtual alignment. 144 const CXXRecordDecl *RD; 145 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 146 Alignment = CGM.getClassPointerAlignment(RD); 147 } else { 148 Alignment = getContext().getTypeAlignInChars(T); 149 if (T.getQualifiers().hasUnaligned()) 150 Alignment = CharUnits::One(); 151 } 152 153 // Cap to the global maximum type alignment unless the alignment 154 // was somehow explicit on the type. 155 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 156 if (Alignment.getQuantity() > MaxAlign && 157 !getContext().isAlignmentRequired(T)) 158 Alignment = CharUnits::fromQuantity(MaxAlign); 159 } 160 } 161 return Alignment; 162 } 163 164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 165 LValueBaseInfo BaseInfo; 166 TBAAAccessInfo TBAAInfo; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 169 TBAAInfo); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 LValueBaseInfo BaseInfo; 177 TBAAAccessInfo TBAAInfo; 178 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 179 /* forPointeeType= */ true); 180 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 181 } 182 183 184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 185 return CGM.getTypes().ConvertTypeForMem(T); 186 } 187 188 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 189 return CGM.getTypes().ConvertType(T); 190 } 191 192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 193 type = type.getCanonicalType(); 194 while (true) { 195 switch (type->getTypeClass()) { 196 #define TYPE(name, parent) 197 #define ABSTRACT_TYPE(name, parent) 198 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 199 #define DEPENDENT_TYPE(name, parent) case Type::name: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 201 #include "clang/AST/TypeNodes.def" 202 llvm_unreachable("non-canonical or dependent type in IR-generation"); 203 204 case Type::Auto: 205 case Type::DeducedTemplateSpecialization: 206 llvm_unreachable("undeduced type in IR-generation"); 207 208 // Various scalar types. 209 case Type::Builtin: 210 case Type::Pointer: 211 case Type::BlockPointer: 212 case Type::LValueReference: 213 case Type::RValueReference: 214 case Type::MemberPointer: 215 case Type::Vector: 216 case Type::ExtVector: 217 case Type::FunctionProto: 218 case Type::FunctionNoProto: 219 case Type::Enum: 220 case Type::ObjCObjectPointer: 221 case Type::Pipe: 222 return TEK_Scalar; 223 224 // Complexes. 225 case Type::Complex: 226 return TEK_Complex; 227 228 // Arrays, records, and Objective-C objects. 229 case Type::ConstantArray: 230 case Type::IncompleteArray: 231 case Type::VariableArray: 232 case Type::Record: 233 case Type::ObjCObject: 234 case Type::ObjCInterface: 235 return TEK_Aggregate; 236 237 // We operate on atomic values according to their underlying type. 238 case Type::Atomic: 239 type = cast<AtomicType>(type)->getValueType(); 240 continue; 241 } 242 llvm_unreachable("unknown type kind!"); 243 } 244 } 245 246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 247 // For cleanliness, we try to avoid emitting the return block for 248 // simple cases. 249 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 250 251 if (CurBB) { 252 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 253 254 // We have a valid insert point, reuse it if it is empty or there are no 255 // explicit jumps to the return block. 256 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 257 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 258 delete ReturnBlock.getBlock(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 return Loc; 279 } 280 } 281 282 // FIXME: We are at an unreachable point, there is no reason to emit the block 283 // unless it has uses. However, we still need a place to put the debug 284 // region.end for now. 285 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 291 if (!BB) return; 292 if (!BB->use_empty()) 293 return CGF.CurFn->getBasicBlockList().push_back(BB); 294 delete BB; 295 } 296 297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 298 assert(BreakContinueStack.empty() && 299 "mismatched push/pop in break/continue stack!"); 300 301 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 302 && NumSimpleReturnExprs == NumReturnExprs 303 && ReturnBlock.getBlock()->use_empty(); 304 // Usually the return expression is evaluated before the cleanup 305 // code. If the function contains only a simple return statement, 306 // such as a constant, the location before the cleanup code becomes 307 // the last useful breakpoint in the function, because the simple 308 // return expression will be evaluated after the cleanup code. To be 309 // safe, set the debug location for cleanup code to the location of 310 // the return statement. Otherwise the cleanup code should be at the 311 // end of the function's lexical scope. 312 // 313 // If there are multiple branches to the return block, the branch 314 // instructions will get the location of the return statements and 315 // all will be fine. 316 if (CGDebugInfo *DI = getDebugInfo()) { 317 if (OnlySimpleReturnStmts) 318 DI->EmitLocation(Builder, LastStopPoint); 319 else 320 DI->EmitLocation(Builder, EndLoc); 321 } 322 323 // Pop any cleanups that might have been associated with the 324 // parameters. Do this in whatever block we're currently in; it's 325 // important to do this before we enter the return block or return 326 // edges will be *really* confused. 327 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 328 bool HasOnlyLifetimeMarkers = 329 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 330 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 331 if (HasCleanups) { 332 // Make sure the line table doesn't jump back into the body for 333 // the ret after it's been at EndLoc. 334 if (CGDebugInfo *DI = getDebugInfo()) 335 if (OnlySimpleReturnStmts) 336 DI->EmitLocation(Builder, EndLoc); 337 338 PopCleanupBlocks(PrologueCleanupDepth); 339 } 340 341 // Emit function epilog (to return). 342 llvm::DebugLoc Loc = EmitReturnBlock(); 343 344 if (ShouldInstrumentFunction()) { 345 if (CGM.getCodeGenOpts().InstrumentFunctions) 346 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 347 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 348 CurFn->addFnAttr("instrument-function-exit-inlined", 349 "__cyg_profile_func_exit"); 350 } 351 352 // Emit debug descriptor for function end. 353 if (CGDebugInfo *DI = getDebugInfo()) 354 DI->EmitFunctionEnd(Builder, CurFn); 355 356 // Reset the debug location to that of the simple 'return' expression, if any 357 // rather than that of the end of the function's scope '}'. 358 ApplyDebugLocation AL(*this, Loc); 359 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 360 EmitEndEHSpec(CurCodeDecl); 361 362 assert(EHStack.empty() && 363 "did not remove all scopes from cleanup stack!"); 364 365 // If someone did an indirect goto, emit the indirect goto block at the end of 366 // the function. 367 if (IndirectBranch) { 368 EmitBlock(IndirectBranch->getParent()); 369 Builder.ClearInsertionPoint(); 370 } 371 372 // If some of our locals escaped, insert a call to llvm.localescape in the 373 // entry block. 374 if (!EscapedLocals.empty()) { 375 // Invert the map from local to index into a simple vector. There should be 376 // no holes. 377 SmallVector<llvm::Value *, 4> EscapeArgs; 378 EscapeArgs.resize(EscapedLocals.size()); 379 for (auto &Pair : EscapedLocals) 380 EscapeArgs[Pair.second] = Pair.first; 381 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 382 &CGM.getModule(), llvm::Intrinsic::localescape); 383 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 384 } 385 386 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 387 llvm::Instruction *Ptr = AllocaInsertPt; 388 AllocaInsertPt = nullptr; 389 Ptr->eraseFromParent(); 390 391 // If someone took the address of a label but never did an indirect goto, we 392 // made a zero entry PHI node, which is illegal, zap it now. 393 if (IndirectBranch) { 394 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 395 if (PN->getNumIncomingValues() == 0) { 396 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 397 PN->eraseFromParent(); 398 } 399 } 400 401 EmitIfUsed(*this, EHResumeBlock); 402 EmitIfUsed(*this, TerminateLandingPad); 403 EmitIfUsed(*this, TerminateHandler); 404 EmitIfUsed(*this, UnreachableBlock); 405 406 for (const auto &FuncletAndParent : TerminateFunclets) 407 EmitIfUsed(*this, FuncletAndParent.second); 408 409 if (CGM.getCodeGenOpts().EmitDeclMetadata) 410 EmitDeclMetadata(); 411 412 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 413 I = DeferredReplacements.begin(), 414 E = DeferredReplacements.end(); 415 I != E; ++I) { 416 I->first->replaceAllUsesWith(I->second); 417 I->first->eraseFromParent(); 418 } 419 420 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 421 // PHIs if the current function is a coroutine. We don't do it for all 422 // functions as it may result in slight increase in numbers of instructions 423 // if compiled with no optimizations. We do it for coroutine as the lifetime 424 // of CleanupDestSlot alloca make correct coroutine frame building very 425 // difficult. 426 if (NormalCleanupDest.isValid() && isCoroutine()) { 427 llvm::DominatorTree DT(*CurFn); 428 llvm::PromoteMemToReg( 429 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 430 NormalCleanupDest = Address::invalid(); 431 } 432 433 // Scan function arguments for vector width. 434 for (llvm::Argument &A : CurFn->args()) 435 if (auto *VT = dyn_cast<llvm::VectorType>(A.getType())) 436 LargestVectorWidth = std::max(LargestVectorWidth, 437 VT->getPrimitiveSizeInBits()); 438 439 // Update vector width based on return type. 440 if (auto *VT = dyn_cast<llvm::VectorType>(CurFn->getReturnType())) 441 LargestVectorWidth = std::max(LargestVectorWidth, 442 VT->getPrimitiveSizeInBits()); 443 444 // Add the required-vector-width attribute. This contains the max width from: 445 // 1. min-vector-width attribute used in the source program. 446 // 2. Any builtins used that have a vector width specified. 447 // 3. Values passed in and out of inline assembly. 448 // 4. Width of vector arguments and return types for this function. 449 // 5. Width of vector aguments and return types for functions called by this 450 // function. 451 CurFn->addFnAttr("min-legal-vector-width", llvm::utostr(LargestVectorWidth)); 452 } 453 454 /// ShouldInstrumentFunction - Return true if the current function should be 455 /// instrumented with __cyg_profile_func_* calls 456 bool CodeGenFunction::ShouldInstrumentFunction() { 457 if (!CGM.getCodeGenOpts().InstrumentFunctions && 458 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 459 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 460 return false; 461 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 462 return false; 463 return true; 464 } 465 466 /// ShouldXRayInstrument - Return true if the current function should be 467 /// instrumented with XRay nop sleds. 468 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 469 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 470 } 471 472 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 473 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 474 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 475 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 476 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 477 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 478 XRayInstrKind::Custom); 479 } 480 481 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 482 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 483 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 484 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 485 XRayInstrKind::Typed); 486 } 487 488 llvm::Constant * 489 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 490 llvm::Constant *Addr) { 491 // Addresses stored in prologue data can't require run-time fixups and must 492 // be PC-relative. Run-time fixups are undesirable because they necessitate 493 // writable text segments, which are unsafe. And absolute addresses are 494 // undesirable because they break PIE mode. 495 496 // Add a layer of indirection through a private global. Taking its address 497 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 498 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 499 /*isConstant=*/true, 500 llvm::GlobalValue::PrivateLinkage, Addr); 501 502 // Create a PC-relative address. 503 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 504 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 505 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 506 return (IntPtrTy == Int32Ty) 507 ? PCRelAsInt 508 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 509 } 510 511 llvm::Value * 512 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 513 llvm::Value *EncodedAddr) { 514 // Reconstruct the address of the global. 515 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 516 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 517 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 518 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 519 520 // Load the original pointer through the global. 521 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 522 "decoded_addr"); 523 } 524 525 static void removeImageAccessQualifier(std::string& TyName) { 526 std::string ReadOnlyQual("__read_only"); 527 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 528 if (ReadOnlyPos != std::string::npos) 529 // "+ 1" for the space after access qualifier. 530 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 531 else { 532 std::string WriteOnlyQual("__write_only"); 533 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 534 if (WriteOnlyPos != std::string::npos) 535 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 536 else { 537 std::string ReadWriteQual("__read_write"); 538 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 539 if (ReadWritePos != std::string::npos) 540 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 541 } 542 } 543 } 544 545 // Returns the address space id that should be produced to the 546 // kernel_arg_addr_space metadata. This is always fixed to the ids 547 // as specified in the SPIR 2.0 specification in order to differentiate 548 // for example in clGetKernelArgInfo() implementation between the address 549 // spaces with targets without unique mapping to the OpenCL address spaces 550 // (basically all single AS CPUs). 551 static unsigned ArgInfoAddressSpace(LangAS AS) { 552 switch (AS) { 553 case LangAS::opencl_global: return 1; 554 case LangAS::opencl_constant: return 2; 555 case LangAS::opencl_local: return 3; 556 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 557 default: 558 return 0; // Assume private. 559 } 560 } 561 562 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 563 // information in the program executable. The argument information stored 564 // includes the argument name, its type, the address and access qualifiers used. 565 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 566 CodeGenModule &CGM, llvm::LLVMContext &Context, 567 CGBuilderTy &Builder, ASTContext &ASTCtx) { 568 // Create MDNodes that represent the kernel arg metadata. 569 // Each MDNode is a list in the form of "key", N number of values which is 570 // the same number of values as their are kernel arguments. 571 572 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 573 574 // MDNode for the kernel argument address space qualifiers. 575 SmallVector<llvm::Metadata *, 8> addressQuals; 576 577 // MDNode for the kernel argument access qualifiers (images only). 578 SmallVector<llvm::Metadata *, 8> accessQuals; 579 580 // MDNode for the kernel argument type names. 581 SmallVector<llvm::Metadata *, 8> argTypeNames; 582 583 // MDNode for the kernel argument base type names. 584 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 585 586 // MDNode for the kernel argument type qualifiers. 587 SmallVector<llvm::Metadata *, 8> argTypeQuals; 588 589 // MDNode for the kernel argument names. 590 SmallVector<llvm::Metadata *, 8> argNames; 591 592 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 593 const ParmVarDecl *parm = FD->getParamDecl(i); 594 QualType ty = parm->getType(); 595 std::string typeQuals; 596 597 if (ty->isPointerType()) { 598 QualType pointeeTy = ty->getPointeeType(); 599 600 // Get address qualifier. 601 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 602 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 603 604 // Get argument type name. 605 std::string typeName = 606 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 607 608 // Turn "unsigned type" to "utype" 609 std::string::size_type pos = typeName.find("unsigned"); 610 if (pointeeTy.isCanonical() && pos != std::string::npos) 611 typeName.erase(pos+1, 8); 612 613 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 614 615 std::string baseTypeName = 616 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 617 Policy) + 618 "*"; 619 620 // Turn "unsigned type" to "utype" 621 pos = baseTypeName.find("unsigned"); 622 if (pos != std::string::npos) 623 baseTypeName.erase(pos+1, 8); 624 625 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 626 627 // Get argument type qualifiers: 628 if (ty.isRestrictQualified()) 629 typeQuals = "restrict"; 630 if (pointeeTy.isConstQualified() || 631 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 632 typeQuals += typeQuals.empty() ? "const" : " const"; 633 if (pointeeTy.isVolatileQualified()) 634 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 635 } else { 636 uint32_t AddrSpc = 0; 637 bool isPipe = ty->isPipeType(); 638 if (ty->isImageType() || isPipe) 639 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 640 641 addressQuals.push_back( 642 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 643 644 // Get argument type name. 645 std::string typeName; 646 if (isPipe) 647 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 648 .getAsString(Policy); 649 else 650 typeName = ty.getUnqualifiedType().getAsString(Policy); 651 652 // Turn "unsigned type" to "utype" 653 std::string::size_type pos = typeName.find("unsigned"); 654 if (ty.isCanonical() && pos != std::string::npos) 655 typeName.erase(pos+1, 8); 656 657 std::string baseTypeName; 658 if (isPipe) 659 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 660 ->getElementType().getCanonicalType() 661 .getAsString(Policy); 662 else 663 baseTypeName = 664 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 665 666 // Remove access qualifiers on images 667 // (as they are inseparable from type in clang implementation, 668 // but OpenCL spec provides a special query to get access qualifier 669 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 670 if (ty->isImageType()) { 671 removeImageAccessQualifier(typeName); 672 removeImageAccessQualifier(baseTypeName); 673 } 674 675 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 676 677 // Turn "unsigned type" to "utype" 678 pos = baseTypeName.find("unsigned"); 679 if (pos != std::string::npos) 680 baseTypeName.erase(pos+1, 8); 681 682 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 683 684 if (isPipe) 685 typeQuals = "pipe"; 686 } 687 688 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 689 690 // Get image and pipe access qualifier: 691 if (ty->isImageType()|| ty->isPipeType()) { 692 const Decl *PDecl = parm; 693 if (auto *TD = dyn_cast<TypedefType>(ty)) 694 PDecl = TD->getDecl(); 695 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 696 if (A && A->isWriteOnly()) 697 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 698 else if (A && A->isReadWrite()) 699 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 700 else 701 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 702 } else 703 accessQuals.push_back(llvm::MDString::get(Context, "none")); 704 705 // Get argument name. 706 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 707 } 708 709 Fn->setMetadata("kernel_arg_addr_space", 710 llvm::MDNode::get(Context, addressQuals)); 711 Fn->setMetadata("kernel_arg_access_qual", 712 llvm::MDNode::get(Context, accessQuals)); 713 Fn->setMetadata("kernel_arg_type", 714 llvm::MDNode::get(Context, argTypeNames)); 715 Fn->setMetadata("kernel_arg_base_type", 716 llvm::MDNode::get(Context, argBaseTypeNames)); 717 Fn->setMetadata("kernel_arg_type_qual", 718 llvm::MDNode::get(Context, argTypeQuals)); 719 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 720 Fn->setMetadata("kernel_arg_name", 721 llvm::MDNode::get(Context, argNames)); 722 } 723 724 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 725 llvm::Function *Fn) 726 { 727 if (!FD->hasAttr<OpenCLKernelAttr>()) 728 return; 729 730 llvm::LLVMContext &Context = getLLVMContext(); 731 732 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 733 734 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 735 QualType HintQTy = A->getTypeHint(); 736 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 737 bool IsSignedInteger = 738 HintQTy->isSignedIntegerType() || 739 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 740 llvm::Metadata *AttrMDArgs[] = { 741 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 742 CGM.getTypes().ConvertType(A->getTypeHint()))), 743 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 744 llvm::IntegerType::get(Context, 32), 745 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 746 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 747 } 748 749 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 750 llvm::Metadata *AttrMDArgs[] = { 751 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 752 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 754 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 755 } 756 757 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 758 llvm::Metadata *AttrMDArgs[] = { 759 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 760 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 761 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 762 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 763 } 764 765 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 766 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 767 llvm::Metadata *AttrMDArgs[] = { 768 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 769 Fn->setMetadata("intel_reqd_sub_group_size", 770 llvm::MDNode::get(Context, AttrMDArgs)); 771 } 772 } 773 774 /// Determine whether the function F ends with a return stmt. 775 static bool endsWithReturn(const Decl* F) { 776 const Stmt *Body = nullptr; 777 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 778 Body = FD->getBody(); 779 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 780 Body = OMD->getBody(); 781 782 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 783 auto LastStmt = CS->body_rbegin(); 784 if (LastStmt != CS->body_rend()) 785 return isa<ReturnStmt>(*LastStmt); 786 } 787 return false; 788 } 789 790 void CodeGenFunction::markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 791 if (SanOpts.has(SanitizerKind::Thread)) { 792 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 793 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 794 } 795 } 796 797 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 798 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 799 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 800 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 801 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 802 return false; 803 804 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 805 return false; 806 807 if (MD->getNumParams() == 2) { 808 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 809 if (!PT || !PT->isVoidPointerType() || 810 !PT->getPointeeType().isConstQualified()) 811 return false; 812 } 813 814 return true; 815 } 816 817 /// Return the UBSan prologue signature for \p FD if one is available. 818 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 819 const FunctionDecl *FD) { 820 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 821 if (!MD->isStatic()) 822 return nullptr; 823 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 824 } 825 826 void CodeGenFunction::StartFunction(GlobalDecl GD, 827 QualType RetTy, 828 llvm::Function *Fn, 829 const CGFunctionInfo &FnInfo, 830 const FunctionArgList &Args, 831 SourceLocation Loc, 832 SourceLocation StartLoc) { 833 assert(!CurFn && 834 "Do not use a CodeGenFunction object for more than one function"); 835 836 const Decl *D = GD.getDecl(); 837 838 DidCallStackSave = false; 839 CurCodeDecl = D; 840 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 841 if (FD->usesSEHTry()) 842 CurSEHParent = FD; 843 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 844 FnRetTy = RetTy; 845 CurFn = Fn; 846 CurFnInfo = &FnInfo; 847 assert(CurFn->isDeclaration() && "Function already has body?"); 848 849 // If this function has been blacklisted for any of the enabled sanitizers, 850 // disable the sanitizer for the function. 851 do { 852 #define SANITIZER(NAME, ID) \ 853 if (SanOpts.empty()) \ 854 break; \ 855 if (SanOpts.has(SanitizerKind::ID)) \ 856 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 857 SanOpts.set(SanitizerKind::ID, false); 858 859 #include "clang/Basic/Sanitizers.def" 860 #undef SANITIZER 861 } while (0); 862 863 if (D) { 864 // Apply the no_sanitize* attributes to SanOpts. 865 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 866 SanitizerMask mask = Attr->getMask(); 867 SanOpts.Mask &= ~mask; 868 if (mask & SanitizerKind::Address) 869 SanOpts.set(SanitizerKind::KernelAddress, false); 870 if (mask & SanitizerKind::KernelAddress) 871 SanOpts.set(SanitizerKind::Address, false); 872 if (mask & SanitizerKind::HWAddress) 873 SanOpts.set(SanitizerKind::KernelHWAddress, false); 874 if (mask & SanitizerKind::KernelHWAddress) 875 SanOpts.set(SanitizerKind::HWAddress, false); 876 } 877 } 878 879 // Apply sanitizer attributes to the function. 880 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 881 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 882 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 883 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 884 if (SanOpts.has(SanitizerKind::Thread)) 885 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 886 if (SanOpts.hasOneOf(SanitizerKind::Memory | SanitizerKind::KernelMemory)) 887 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 888 if (SanOpts.has(SanitizerKind::SafeStack)) 889 Fn->addFnAttr(llvm::Attribute::SafeStack); 890 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 891 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 892 893 // Apply fuzzing attribute to the function. 894 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 895 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 896 897 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 898 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 899 if (SanOpts.has(SanitizerKind::Thread)) { 900 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 901 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 902 if (OMD->getMethodFamily() == OMF_dealloc || 903 OMD->getMethodFamily() == OMF_initialize || 904 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 905 markAsIgnoreThreadCheckingAtRuntime(Fn); 906 } 907 } 908 } 909 910 // Ignore unrelated casts in STL allocate() since the allocator must cast 911 // from void* to T* before object initialization completes. Don't match on the 912 // namespace because not all allocators are in std:: 913 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 914 if (matchesStlAllocatorFn(D, getContext())) 915 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 916 } 917 918 // Apply xray attributes to the function (as a string, for now) 919 if (D) { 920 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 921 if (CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 922 XRayInstrKind::Function)) { 923 if (XRayAttr->alwaysXRayInstrument() && ShouldXRayInstrumentFunction()) 924 Fn->addFnAttr("function-instrument", "xray-always"); 925 if (XRayAttr->neverXRayInstrument()) 926 Fn->addFnAttr("function-instrument", "xray-never"); 927 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) 928 if (ShouldXRayInstrumentFunction()) 929 Fn->addFnAttr("xray-log-args", 930 llvm::utostr(LogArgs->getArgumentCount())); 931 } 932 } else { 933 if (ShouldXRayInstrumentFunction() && !CGM.imbueXRayAttrs(Fn, Loc)) 934 Fn->addFnAttr( 935 "xray-instruction-threshold", 936 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 937 } 938 } 939 940 // Add no-jump-tables value. 941 Fn->addFnAttr("no-jump-tables", 942 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 943 944 // Add profile-sample-accurate value. 945 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 946 Fn->addFnAttr("profile-sample-accurate"); 947 948 if (getLangOpts().OpenCL) { 949 // Add metadata for a kernel function. 950 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 951 EmitOpenCLKernelMetadata(FD, Fn); 952 } 953 954 // If we are checking function types, emit a function type signature as 955 // prologue data. 956 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 957 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 958 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 959 // Remove any (C++17) exception specifications, to allow calling e.g. a 960 // noexcept function through a non-noexcept pointer. 961 auto ProtoTy = 962 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 963 EST_None); 964 llvm::Constant *FTRTTIConst = 965 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 966 llvm::Constant *FTRTTIConstEncoded = 967 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 968 llvm::Constant *PrologueStructElems[] = {PrologueSig, 969 FTRTTIConstEncoded}; 970 llvm::Constant *PrologueStructConst = 971 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 972 Fn->setPrologueData(PrologueStructConst); 973 } 974 } 975 } 976 977 // If we're checking nullability, we need to know whether we can check the 978 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 979 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 980 auto Nullability = FnRetTy->getNullability(getContext()); 981 if (Nullability && *Nullability == NullabilityKind::NonNull) { 982 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 983 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 984 RetValNullabilityPrecondition = 985 llvm::ConstantInt::getTrue(getLLVMContext()); 986 } 987 } 988 989 // If we're in C++ mode and the function name is "main", it is guaranteed 990 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 991 // used within a program"). 992 if (getLangOpts().CPlusPlus) 993 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 994 if (FD->isMain()) 995 Fn->addFnAttr(llvm::Attribute::NoRecurse); 996 997 // If a custom alignment is used, force realigning to this alignment on 998 // any main function which certainly will need it. 999 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 1000 if ((FD->isMain() || FD->isMSVCRTEntryPoint()) && 1001 CGM.getCodeGenOpts().StackAlignment) 1002 Fn->addFnAttr("stackrealign"); 1003 1004 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 1005 1006 // Create a marker to make it easy to insert allocas into the entryblock 1007 // later. Don't create this with the builder, because we don't want it 1008 // folded. 1009 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 1010 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 1011 1012 ReturnBlock = getJumpDestInCurrentScope("return"); 1013 1014 Builder.SetInsertPoint(EntryBB); 1015 1016 // If we're checking the return value, allocate space for a pointer to a 1017 // precise source location of the checked return statement. 1018 if (requiresReturnValueCheck()) { 1019 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1020 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1021 } 1022 1023 // Emit subprogram debug descriptor. 1024 if (CGDebugInfo *DI = getDebugInfo()) { 1025 // Reconstruct the type from the argument list so that implicit parameters, 1026 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1027 // convention. 1028 CallingConv CC = CallingConv::CC_C; 1029 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1030 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1031 CC = SrcFnTy->getCallConv(); 1032 SmallVector<QualType, 16> ArgTypes; 1033 for (const VarDecl *VD : Args) 1034 ArgTypes.push_back(VD->getType()); 1035 QualType FnType = getContext().getFunctionType( 1036 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1037 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1038 Builder); 1039 } 1040 1041 if (ShouldInstrumentFunction()) { 1042 if (CGM.getCodeGenOpts().InstrumentFunctions) 1043 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1044 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1045 CurFn->addFnAttr("instrument-function-entry-inlined", 1046 "__cyg_profile_func_enter"); 1047 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1048 CurFn->addFnAttr("instrument-function-entry-inlined", 1049 "__cyg_profile_func_enter_bare"); 1050 } 1051 1052 // Since emitting the mcount call here impacts optimizations such as function 1053 // inlining, we just add an attribute to insert a mcount call in backend. 1054 // The attribute "counting-function" is set to mcount function name which is 1055 // architecture dependent. 1056 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1057 // Calls to fentry/mcount should not be generated if function has 1058 // the no_instrument_function attribute. 1059 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1060 if (CGM.getCodeGenOpts().CallFEntry) 1061 Fn->addFnAttr("fentry-call", "true"); 1062 else { 1063 Fn->addFnAttr("instrument-function-entry-inlined", 1064 getTarget().getMCountName()); 1065 } 1066 } 1067 } 1068 1069 if (RetTy->isVoidType()) { 1070 // Void type; nothing to return. 1071 ReturnValue = Address::invalid(); 1072 1073 // Count the implicit return. 1074 if (!endsWithReturn(D)) 1075 ++NumReturnExprs; 1076 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) { 1077 // Indirect return; emit returned value directly into sret slot. 1078 // This reduces code size, and affects correctness in C++. 1079 auto AI = CurFn->arg_begin(); 1080 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1081 ++AI; 1082 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1083 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1084 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1085 // Load the sret pointer from the argument struct and return into that. 1086 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1087 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1088 --EI; 1089 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1090 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1091 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1092 } else { 1093 ReturnValue = CreateIRTemp(RetTy, "retval"); 1094 1095 // Tell the epilog emitter to autorelease the result. We do this 1096 // now so that various specialized functions can suppress it 1097 // during their IR-generation. 1098 if (getLangOpts().ObjCAutoRefCount && 1099 !CurFnInfo->isReturnsRetained() && 1100 RetTy->isObjCRetainableType()) 1101 AutoreleaseResult = true; 1102 } 1103 1104 EmitStartEHSpec(CurCodeDecl); 1105 1106 PrologueCleanupDepth = EHStack.stable_begin(); 1107 1108 // Emit OpenMP specific initialization of the device functions. 1109 if (getLangOpts().OpenMP && CurCodeDecl) 1110 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1111 1112 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1113 1114 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1115 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1116 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1117 if (MD->getParent()->isLambda() && 1118 MD->getOverloadedOperator() == OO_Call) { 1119 // We're in a lambda; figure out the captures. 1120 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1121 LambdaThisCaptureField); 1122 if (LambdaThisCaptureField) { 1123 // If the lambda captures the object referred to by '*this' - either by 1124 // value or by reference, make sure CXXThisValue points to the correct 1125 // object. 1126 1127 // Get the lvalue for the field (which is a copy of the enclosing object 1128 // or contains the address of the enclosing object). 1129 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1130 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1131 // If the enclosing object was captured by value, just use its address. 1132 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1133 } else { 1134 // Load the lvalue pointed to by the field, since '*this' was captured 1135 // by reference. 1136 CXXThisValue = 1137 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1138 } 1139 } 1140 for (auto *FD : MD->getParent()->fields()) { 1141 if (FD->hasCapturedVLAType()) { 1142 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1143 SourceLocation()).getScalarVal(); 1144 auto VAT = FD->getCapturedVLAType(); 1145 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1146 } 1147 } 1148 } else { 1149 // Not in a lambda; just use 'this' from the method. 1150 // FIXME: Should we generate a new load for each use of 'this'? The 1151 // fast register allocator would be happier... 1152 CXXThisValue = CXXABIThisValue; 1153 } 1154 1155 // Check the 'this' pointer once per function, if it's available. 1156 if (CXXABIThisValue) { 1157 SanitizerSet SkippedChecks; 1158 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1159 QualType ThisTy = MD->getThisType(); 1160 1161 // If this is the call operator of a lambda with no capture-default, it 1162 // may have a static invoker function, which may call this operator with 1163 // a null 'this' pointer. 1164 if (isLambdaCallOperator(MD) && 1165 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1166 SkippedChecks.set(SanitizerKind::Null, true); 1167 1168 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1169 : TCK_MemberCall, 1170 Loc, CXXABIThisValue, ThisTy, 1171 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1172 SkippedChecks); 1173 } 1174 } 1175 1176 // If any of the arguments have a variably modified type, make sure to 1177 // emit the type size. 1178 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1179 i != e; ++i) { 1180 const VarDecl *VD = *i; 1181 1182 // Dig out the type as written from ParmVarDecls; it's unclear whether 1183 // the standard (C99 6.9.1p10) requires this, but we're following the 1184 // precedent set by gcc. 1185 QualType Ty; 1186 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1187 Ty = PVD->getOriginalType(); 1188 else 1189 Ty = VD->getType(); 1190 1191 if (Ty->isVariablyModifiedType()) 1192 EmitVariablyModifiedType(Ty); 1193 } 1194 // Emit a location at the end of the prologue. 1195 if (CGDebugInfo *DI = getDebugInfo()) 1196 DI->EmitLocation(Builder, StartLoc); 1197 1198 // TODO: Do we need to handle this in two places like we do with 1199 // target-features/target-cpu? 1200 if (CurFuncDecl) 1201 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1202 LargestVectorWidth = VecWidth->getVectorWidth(); 1203 } 1204 1205 void CodeGenFunction::EmitFunctionBody(const Stmt *Body) { 1206 incrementProfileCounter(Body); 1207 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1208 EmitCompoundStmtWithoutScope(*S); 1209 else 1210 EmitStmt(Body); 1211 } 1212 1213 /// When instrumenting to collect profile data, the counts for some blocks 1214 /// such as switch cases need to not include the fall-through counts, so 1215 /// emit a branch around the instrumentation code. When not instrumenting, 1216 /// this just calls EmitBlock(). 1217 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1218 const Stmt *S) { 1219 llvm::BasicBlock *SkipCountBB = nullptr; 1220 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1221 // When instrumenting for profiling, the fallthrough to certain 1222 // statements needs to skip over the instrumentation code so that we 1223 // get an accurate count. 1224 SkipCountBB = createBasicBlock("skipcount"); 1225 EmitBranch(SkipCountBB); 1226 } 1227 EmitBlock(BB); 1228 uint64_t CurrentCount = getCurrentProfileCount(); 1229 incrementProfileCounter(S); 1230 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1231 if (SkipCountBB) 1232 EmitBlock(SkipCountBB); 1233 } 1234 1235 /// Tries to mark the given function nounwind based on the 1236 /// non-existence of any throwing calls within it. We believe this is 1237 /// lightweight enough to do at -O0. 1238 static void TryMarkNoThrow(llvm::Function *F) { 1239 // LLVM treats 'nounwind' on a function as part of the type, so we 1240 // can't do this on functions that can be overwritten. 1241 if (F->isInterposable()) return; 1242 1243 for (llvm::BasicBlock &BB : *F) 1244 for (llvm::Instruction &I : BB) 1245 if (I.mayThrow()) 1246 return; 1247 1248 F->setDoesNotThrow(); 1249 } 1250 1251 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1252 FunctionArgList &Args) { 1253 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1254 QualType ResTy = FD->getReturnType(); 1255 1256 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1257 if (MD && MD->isInstance()) { 1258 if (CGM.getCXXABI().HasThisReturn(GD)) 1259 ResTy = MD->getThisType(); 1260 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1261 ResTy = CGM.getContext().VoidPtrTy; 1262 CGM.getCXXABI().buildThisParam(*this, Args); 1263 } 1264 1265 // The base version of an inheriting constructor whose constructed base is a 1266 // virtual base is not passed any arguments (because it doesn't actually call 1267 // the inherited constructor). 1268 bool PassedParams = true; 1269 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1270 if (auto Inherited = CD->getInheritedConstructor()) 1271 PassedParams = 1272 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1273 1274 if (PassedParams) { 1275 for (auto *Param : FD->parameters()) { 1276 Args.push_back(Param); 1277 if (!Param->hasAttr<PassObjectSizeAttr>()) 1278 continue; 1279 1280 auto *Implicit = ImplicitParamDecl::Create( 1281 getContext(), Param->getDeclContext(), Param->getLocation(), 1282 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1283 SizeArguments[Param] = Implicit; 1284 Args.push_back(Implicit); 1285 } 1286 } 1287 1288 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1289 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1290 1291 return ResTy; 1292 } 1293 1294 static bool 1295 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1296 const ASTContext &Context) { 1297 QualType T = FD->getReturnType(); 1298 // Avoid the optimization for functions that return a record type with a 1299 // trivial destructor or another trivially copyable type. 1300 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1301 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1302 return !ClassDecl->hasTrivialDestructor(); 1303 } 1304 return !T.isTriviallyCopyableType(Context); 1305 } 1306 1307 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1308 const CGFunctionInfo &FnInfo) { 1309 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1310 CurGD = GD; 1311 1312 FunctionArgList Args; 1313 QualType ResTy = BuildFunctionArgList(GD, Args); 1314 1315 // Check if we should generate debug info for this function. 1316 if (FD->hasAttr<NoDebugAttr>()) 1317 DebugInfo = nullptr; // disable debug info indefinitely for this function 1318 1319 // The function might not have a body if we're generating thunks for a 1320 // function declaration. 1321 SourceRange BodyRange; 1322 if (Stmt *Body = FD->getBody()) 1323 BodyRange = Body->getSourceRange(); 1324 else 1325 BodyRange = FD->getLocation(); 1326 CurEHLocation = BodyRange.getEnd(); 1327 1328 // Use the location of the start of the function to determine where 1329 // the function definition is located. By default use the location 1330 // of the declaration as the location for the subprogram. A function 1331 // may lack a declaration in the source code if it is created by code 1332 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1333 SourceLocation Loc = FD->getLocation(); 1334 1335 // If this is a function specialization then use the pattern body 1336 // as the location for the function. 1337 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1338 if (SpecDecl->hasBody(SpecDecl)) 1339 Loc = SpecDecl->getLocation(); 1340 1341 Stmt *Body = FD->getBody(); 1342 1343 // Initialize helper which will detect jumps which can cause invalid lifetime 1344 // markers. 1345 if (Body && ShouldEmitLifetimeMarkers) 1346 Bypasses.Init(Body); 1347 1348 // Emit the standard function prologue. 1349 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1350 1351 // Generate the body of the function. 1352 PGO.assignRegionCounters(GD, CurFn); 1353 if (isa<CXXDestructorDecl>(FD)) 1354 EmitDestructorBody(Args); 1355 else if (isa<CXXConstructorDecl>(FD)) 1356 EmitConstructorBody(Args); 1357 else if (getLangOpts().CUDA && 1358 !getLangOpts().CUDAIsDevice && 1359 FD->hasAttr<CUDAGlobalAttr>()) 1360 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1361 else if (isa<CXXMethodDecl>(FD) && 1362 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1363 // The lambda static invoker function is special, because it forwards or 1364 // clones the body of the function call operator (but is actually static). 1365 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1366 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1367 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1368 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1369 // Implicit copy-assignment gets the same special treatment as implicit 1370 // copy-constructors. 1371 emitImplicitAssignmentOperatorBody(Args); 1372 } else if (Body) { 1373 EmitFunctionBody(Body); 1374 } else 1375 llvm_unreachable("no definition for emitted function"); 1376 1377 // C++11 [stmt.return]p2: 1378 // Flowing off the end of a function [...] results in undefined behavior in 1379 // a value-returning function. 1380 // C11 6.9.1p12: 1381 // If the '}' that terminates a function is reached, and the value of the 1382 // function call is used by the caller, the behavior is undefined. 1383 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1384 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1385 bool ShouldEmitUnreachable = 1386 CGM.getCodeGenOpts().StrictReturn || 1387 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1388 if (SanOpts.has(SanitizerKind::Return)) { 1389 SanitizerScope SanScope(this); 1390 llvm::Value *IsFalse = Builder.getFalse(); 1391 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1392 SanitizerHandler::MissingReturn, 1393 EmitCheckSourceLocation(FD->getLocation()), None); 1394 } else if (ShouldEmitUnreachable) { 1395 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1396 EmitTrapCall(llvm::Intrinsic::trap); 1397 } 1398 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1399 Builder.CreateUnreachable(); 1400 Builder.ClearInsertionPoint(); 1401 } 1402 } 1403 1404 // Emit the standard function epilogue. 1405 FinishFunction(BodyRange.getEnd()); 1406 1407 // If we haven't marked the function nothrow through other means, do 1408 // a quick pass now to see if we can. 1409 if (!CurFn->doesNotThrow()) 1410 TryMarkNoThrow(CurFn); 1411 } 1412 1413 /// ContainsLabel - Return true if the statement contains a label in it. If 1414 /// this statement is not executed normally, it not containing a label means 1415 /// that we can just remove the code. 1416 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1417 // Null statement, not a label! 1418 if (!S) return false; 1419 1420 // If this is a label, we have to emit the code, consider something like: 1421 // if (0) { ... foo: bar(); } goto foo; 1422 // 1423 // TODO: If anyone cared, we could track __label__'s, since we know that you 1424 // can't jump to one from outside their declared region. 1425 if (isa<LabelStmt>(S)) 1426 return true; 1427 1428 // If this is a case/default statement, and we haven't seen a switch, we have 1429 // to emit the code. 1430 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1431 return true; 1432 1433 // If this is a switch statement, we want to ignore cases below it. 1434 if (isa<SwitchStmt>(S)) 1435 IgnoreCaseStmts = true; 1436 1437 // Scan subexpressions for verboten labels. 1438 for (const Stmt *SubStmt : S->children()) 1439 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1440 return true; 1441 1442 return false; 1443 } 1444 1445 /// containsBreak - Return true if the statement contains a break out of it. 1446 /// If the statement (recursively) contains a switch or loop with a break 1447 /// inside of it, this is fine. 1448 bool CodeGenFunction::containsBreak(const Stmt *S) { 1449 // Null statement, not a label! 1450 if (!S) return false; 1451 1452 // If this is a switch or loop that defines its own break scope, then we can 1453 // include it and anything inside of it. 1454 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1455 isa<ForStmt>(S)) 1456 return false; 1457 1458 if (isa<BreakStmt>(S)) 1459 return true; 1460 1461 // Scan subexpressions for verboten breaks. 1462 for (const Stmt *SubStmt : S->children()) 1463 if (containsBreak(SubStmt)) 1464 return true; 1465 1466 return false; 1467 } 1468 1469 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1470 if (!S) return false; 1471 1472 // Some statement kinds add a scope and thus never add a decl to the current 1473 // scope. Note, this list is longer than the list of statements that might 1474 // have an unscoped decl nested within them, but this way is conservatively 1475 // correct even if more statement kinds are added. 1476 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1477 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1478 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1479 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1480 return false; 1481 1482 if (isa<DeclStmt>(S)) 1483 return true; 1484 1485 for (const Stmt *SubStmt : S->children()) 1486 if (mightAddDeclToScope(SubStmt)) 1487 return true; 1488 1489 return false; 1490 } 1491 1492 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1493 /// to a constant, or if it does but contains a label, return false. If it 1494 /// constant folds return true and set the boolean result in Result. 1495 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1496 bool &ResultBool, 1497 bool AllowLabels) { 1498 llvm::APSInt ResultInt; 1499 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1500 return false; 1501 1502 ResultBool = ResultInt.getBoolValue(); 1503 return true; 1504 } 1505 1506 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1507 /// to a constant, or if it does but contains a label, return false. If it 1508 /// constant folds return true and set the folded value. 1509 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1510 llvm::APSInt &ResultInt, 1511 bool AllowLabels) { 1512 // FIXME: Rename and handle conversion of other evaluatable things 1513 // to bool. 1514 Expr::EvalResult Result; 1515 if (!Cond->EvaluateAsInt(Result, getContext())) 1516 return false; // Not foldable, not integer or not fully evaluatable. 1517 1518 llvm::APSInt Int = Result.Val.getInt(); 1519 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1520 return false; // Contains a label. 1521 1522 ResultInt = Int; 1523 return true; 1524 } 1525 1526 1527 1528 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1529 /// statement) to the specified blocks. Based on the condition, this might try 1530 /// to simplify the codegen of the conditional based on the branch. 1531 /// 1532 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1533 llvm::BasicBlock *TrueBlock, 1534 llvm::BasicBlock *FalseBlock, 1535 uint64_t TrueCount) { 1536 Cond = Cond->IgnoreParens(); 1537 1538 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1539 1540 // Handle X && Y in a condition. 1541 if (CondBOp->getOpcode() == BO_LAnd) { 1542 // If we have "1 && X", simplify the code. "0 && X" would have constant 1543 // folded if the case was simple enough. 1544 bool ConstantBool = false; 1545 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1546 ConstantBool) { 1547 // br(1 && X) -> br(X). 1548 incrementProfileCounter(CondBOp); 1549 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1550 TrueCount); 1551 } 1552 1553 // If we have "X && 1", simplify the code to use an uncond branch. 1554 // "X && 0" would have been constant folded to 0. 1555 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1556 ConstantBool) { 1557 // br(X && 1) -> br(X). 1558 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1559 TrueCount); 1560 } 1561 1562 // Emit the LHS as a conditional. If the LHS conditional is false, we 1563 // want to jump to the FalseBlock. 1564 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1565 // The counter tells us how often we evaluate RHS, and all of TrueCount 1566 // can be propagated to that branch. 1567 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1568 1569 ConditionalEvaluation eval(*this); 1570 { 1571 ApplyDebugLocation DL(*this, Cond); 1572 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1573 EmitBlock(LHSTrue); 1574 } 1575 1576 incrementProfileCounter(CondBOp); 1577 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1578 1579 // Any temporaries created here are conditional. 1580 eval.begin(*this); 1581 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1582 eval.end(*this); 1583 1584 return; 1585 } 1586 1587 if (CondBOp->getOpcode() == BO_LOr) { 1588 // If we have "0 || X", simplify the code. "1 || X" would have constant 1589 // folded if the case was simple enough. 1590 bool ConstantBool = false; 1591 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1592 !ConstantBool) { 1593 // br(0 || X) -> br(X). 1594 incrementProfileCounter(CondBOp); 1595 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1596 TrueCount); 1597 } 1598 1599 // If we have "X || 0", simplify the code to use an uncond branch. 1600 // "X || 1" would have been constant folded to 1. 1601 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1602 !ConstantBool) { 1603 // br(X || 0) -> br(X). 1604 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1605 TrueCount); 1606 } 1607 1608 // Emit the LHS as a conditional. If the LHS conditional is true, we 1609 // want to jump to the TrueBlock. 1610 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1611 // We have the count for entry to the RHS and for the whole expression 1612 // being true, so we can divy up True count between the short circuit and 1613 // the RHS. 1614 uint64_t LHSCount = 1615 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1616 uint64_t RHSCount = TrueCount - LHSCount; 1617 1618 ConditionalEvaluation eval(*this); 1619 { 1620 ApplyDebugLocation DL(*this, Cond); 1621 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1622 EmitBlock(LHSFalse); 1623 } 1624 1625 incrementProfileCounter(CondBOp); 1626 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1627 1628 // Any temporaries created here are conditional. 1629 eval.begin(*this); 1630 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1631 1632 eval.end(*this); 1633 1634 return; 1635 } 1636 } 1637 1638 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1639 // br(!x, t, f) -> br(x, f, t) 1640 if (CondUOp->getOpcode() == UO_LNot) { 1641 // Negate the count. 1642 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1643 // Negate the condition and swap the destination blocks. 1644 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1645 FalseCount); 1646 } 1647 } 1648 1649 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1650 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1651 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1652 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1653 1654 ConditionalEvaluation cond(*this); 1655 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1656 getProfileCount(CondOp)); 1657 1658 // When computing PGO branch weights, we only know the overall count for 1659 // the true block. This code is essentially doing tail duplication of the 1660 // naive code-gen, introducing new edges for which counts are not 1661 // available. Divide the counts proportionally between the LHS and RHS of 1662 // the conditional operator. 1663 uint64_t LHSScaledTrueCount = 0; 1664 if (TrueCount) { 1665 double LHSRatio = 1666 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1667 LHSScaledTrueCount = TrueCount * LHSRatio; 1668 } 1669 1670 cond.begin(*this); 1671 EmitBlock(LHSBlock); 1672 incrementProfileCounter(CondOp); 1673 { 1674 ApplyDebugLocation DL(*this, Cond); 1675 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1676 LHSScaledTrueCount); 1677 } 1678 cond.end(*this); 1679 1680 cond.begin(*this); 1681 EmitBlock(RHSBlock); 1682 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1683 TrueCount - LHSScaledTrueCount); 1684 cond.end(*this); 1685 1686 return; 1687 } 1688 1689 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1690 // Conditional operator handling can give us a throw expression as a 1691 // condition for a case like: 1692 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1693 // Fold this to: 1694 // br(c, throw x, br(y, t, f)) 1695 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1696 return; 1697 } 1698 1699 // If the branch has a condition wrapped by __builtin_unpredictable, 1700 // create metadata that specifies that the branch is unpredictable. 1701 // Don't bother if not optimizing because that metadata would not be used. 1702 llvm::MDNode *Unpredictable = nullptr; 1703 auto *Call = dyn_cast<CallExpr>(Cond->IgnoreImpCasts()); 1704 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1705 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1706 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1707 llvm::MDBuilder MDHelper(getLLVMContext()); 1708 Unpredictable = MDHelper.createUnpredictable(); 1709 } 1710 } 1711 1712 // Create branch weights based on the number of times we get here and the 1713 // number of times the condition should be true. 1714 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1715 llvm::MDNode *Weights = 1716 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1717 1718 // Emit the code with the fully general case. 1719 llvm::Value *CondV; 1720 { 1721 ApplyDebugLocation DL(*this, Cond); 1722 CondV = EvaluateExprAsBool(Cond); 1723 } 1724 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1725 } 1726 1727 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1728 /// specified stmt yet. 1729 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1730 CGM.ErrorUnsupported(S, Type); 1731 } 1732 1733 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1734 /// variable-length array whose elements have a non-zero bit-pattern. 1735 /// 1736 /// \param baseType the inner-most element type of the array 1737 /// \param src - a char* pointing to the bit-pattern for a single 1738 /// base element of the array 1739 /// \param sizeInChars - the total size of the VLA, in chars 1740 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1741 Address dest, Address src, 1742 llvm::Value *sizeInChars) { 1743 CGBuilderTy &Builder = CGF.Builder; 1744 1745 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1746 llvm::Value *baseSizeInChars 1747 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1748 1749 Address begin = 1750 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1751 llvm::Value *end = 1752 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1753 1754 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1755 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1756 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1757 1758 // Make a loop over the VLA. C99 guarantees that the VLA element 1759 // count must be nonzero. 1760 CGF.EmitBlock(loopBB); 1761 1762 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1763 cur->addIncoming(begin.getPointer(), originBB); 1764 1765 CharUnits curAlign = 1766 dest.getAlignment().alignmentOfArrayElement(baseSize); 1767 1768 // memcpy the individual element bit-pattern. 1769 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1770 /*volatile*/ false); 1771 1772 // Go to the next element. 1773 llvm::Value *next = 1774 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1775 1776 // Leave if that's the end of the VLA. 1777 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1778 Builder.CreateCondBr(done, contBB, loopBB); 1779 cur->addIncoming(next, loopBB); 1780 1781 CGF.EmitBlock(contBB); 1782 } 1783 1784 void 1785 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1786 // Ignore empty classes in C++. 1787 if (getLangOpts().CPlusPlus) { 1788 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1789 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1790 return; 1791 } 1792 } 1793 1794 // Cast the dest ptr to the appropriate i8 pointer type. 1795 if (DestPtr.getElementType() != Int8Ty) 1796 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1797 1798 // Get size and alignment info for this aggregate. 1799 CharUnits size = getContext().getTypeSizeInChars(Ty); 1800 1801 llvm::Value *SizeVal; 1802 const VariableArrayType *vla; 1803 1804 // Don't bother emitting a zero-byte memset. 1805 if (size.isZero()) { 1806 // But note that getTypeInfo returns 0 for a VLA. 1807 if (const VariableArrayType *vlaType = 1808 dyn_cast_or_null<VariableArrayType>( 1809 getContext().getAsArrayType(Ty))) { 1810 auto VlaSize = getVLASize(vlaType); 1811 SizeVal = VlaSize.NumElts; 1812 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1813 if (!eltSize.isOne()) 1814 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1815 vla = vlaType; 1816 } else { 1817 return; 1818 } 1819 } else { 1820 SizeVal = CGM.getSize(size); 1821 vla = nullptr; 1822 } 1823 1824 // If the type contains a pointer to data member we can't memset it to zero. 1825 // Instead, create a null constant and copy it to the destination. 1826 // TODO: there are other patterns besides zero that we can usefully memset, 1827 // like -1, which happens to be the pattern used by member-pointers. 1828 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1829 // For a VLA, emit a single element, then splat that over the VLA. 1830 if (vla) Ty = getContext().getBaseElementType(vla); 1831 1832 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1833 1834 llvm::GlobalVariable *NullVariable = 1835 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1836 /*isConstant=*/true, 1837 llvm::GlobalVariable::PrivateLinkage, 1838 NullConstant, Twine()); 1839 CharUnits NullAlign = DestPtr.getAlignment(); 1840 NullVariable->setAlignment(NullAlign.getQuantity()); 1841 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1842 NullAlign); 1843 1844 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1845 1846 // Get and call the appropriate llvm.memcpy overload. 1847 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1848 return; 1849 } 1850 1851 // Otherwise, just memset the whole thing to zero. This is legal 1852 // because in LLVM, all default initializers (other than the ones we just 1853 // handled above) are guaranteed to have a bit pattern of all zeros. 1854 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1855 } 1856 1857 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1858 // Make sure that there is a block for the indirect goto. 1859 if (!IndirectBranch) 1860 GetIndirectGotoBlock(); 1861 1862 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1863 1864 // Make sure the indirect branch includes all of the address-taken blocks. 1865 IndirectBranch->addDestination(BB); 1866 return llvm::BlockAddress::get(CurFn, BB); 1867 } 1868 1869 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1870 // If we already made the indirect branch for indirect goto, return its block. 1871 if (IndirectBranch) return IndirectBranch->getParent(); 1872 1873 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1874 1875 // Create the PHI node that indirect gotos will add entries to. 1876 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1877 "indirect.goto.dest"); 1878 1879 // Create the indirect branch instruction. 1880 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1881 return IndirectBranch->getParent(); 1882 } 1883 1884 /// Computes the length of an array in elements, as well as the base 1885 /// element type and a properly-typed first element pointer. 1886 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1887 QualType &baseType, 1888 Address &addr) { 1889 const ArrayType *arrayType = origArrayType; 1890 1891 // If it's a VLA, we have to load the stored size. Note that 1892 // this is the size of the VLA in bytes, not its size in elements. 1893 llvm::Value *numVLAElements = nullptr; 1894 if (isa<VariableArrayType>(arrayType)) { 1895 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1896 1897 // Walk into all VLAs. This doesn't require changes to addr, 1898 // which has type T* where T is the first non-VLA element type. 1899 do { 1900 QualType elementType = arrayType->getElementType(); 1901 arrayType = getContext().getAsArrayType(elementType); 1902 1903 // If we only have VLA components, 'addr' requires no adjustment. 1904 if (!arrayType) { 1905 baseType = elementType; 1906 return numVLAElements; 1907 } 1908 } while (isa<VariableArrayType>(arrayType)); 1909 1910 // We get out here only if we find a constant array type 1911 // inside the VLA. 1912 } 1913 1914 // We have some number of constant-length arrays, so addr should 1915 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1916 // down to the first element of addr. 1917 SmallVector<llvm::Value*, 8> gepIndices; 1918 1919 // GEP down to the array type. 1920 llvm::ConstantInt *zero = Builder.getInt32(0); 1921 gepIndices.push_back(zero); 1922 1923 uint64_t countFromCLAs = 1; 1924 QualType eltType; 1925 1926 llvm::ArrayType *llvmArrayType = 1927 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1928 while (llvmArrayType) { 1929 assert(isa<ConstantArrayType>(arrayType)); 1930 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1931 == llvmArrayType->getNumElements()); 1932 1933 gepIndices.push_back(zero); 1934 countFromCLAs *= llvmArrayType->getNumElements(); 1935 eltType = arrayType->getElementType(); 1936 1937 llvmArrayType = 1938 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1939 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1940 assert((!llvmArrayType || arrayType) && 1941 "LLVM and Clang types are out-of-synch"); 1942 } 1943 1944 if (arrayType) { 1945 // From this point onwards, the Clang array type has been emitted 1946 // as some other type (probably a packed struct). Compute the array 1947 // size, and just emit the 'begin' expression as a bitcast. 1948 while (arrayType) { 1949 countFromCLAs *= 1950 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1951 eltType = arrayType->getElementType(); 1952 arrayType = getContext().getAsArrayType(eltType); 1953 } 1954 1955 llvm::Type *baseType = ConvertType(eltType); 1956 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1957 } else { 1958 // Create the actual GEP. 1959 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1960 gepIndices, "array.begin"), 1961 addr.getAlignment()); 1962 } 1963 1964 baseType = eltType; 1965 1966 llvm::Value *numElements 1967 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1968 1969 // If we had any VLA dimensions, factor them in. 1970 if (numVLAElements) 1971 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1972 1973 return numElements; 1974 } 1975 1976 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1977 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1978 assert(vla && "type was not a variable array type!"); 1979 return getVLASize(vla); 1980 } 1981 1982 CodeGenFunction::VlaSizePair 1983 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1984 // The number of elements so far; always size_t. 1985 llvm::Value *numElements = nullptr; 1986 1987 QualType elementType; 1988 do { 1989 elementType = type->getElementType(); 1990 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1991 assert(vlaSize && "no size for VLA!"); 1992 assert(vlaSize->getType() == SizeTy); 1993 1994 if (!numElements) { 1995 numElements = vlaSize; 1996 } else { 1997 // It's undefined behavior if this wraps around, so mark it that way. 1998 // FIXME: Teach -fsanitize=undefined to trap this. 1999 numElements = Builder.CreateNUWMul(numElements, vlaSize); 2000 } 2001 } while ((type = getContext().getAsVariableArrayType(elementType))); 2002 2003 return { numElements, elementType }; 2004 } 2005 2006 CodeGenFunction::VlaSizePair 2007 CodeGenFunction::getVLAElements1D(QualType type) { 2008 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 2009 assert(vla && "type was not a variable array type!"); 2010 return getVLAElements1D(vla); 2011 } 2012 2013 CodeGenFunction::VlaSizePair 2014 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 2015 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 2016 assert(VlaSize && "no size for VLA!"); 2017 assert(VlaSize->getType() == SizeTy); 2018 return { VlaSize, Vla->getElementType() }; 2019 } 2020 2021 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2022 assert(type->isVariablyModifiedType() && 2023 "Must pass variably modified type to EmitVLASizes!"); 2024 2025 EnsureInsertPoint(); 2026 2027 // We're going to walk down into the type and look for VLA 2028 // expressions. 2029 do { 2030 assert(type->isVariablyModifiedType()); 2031 2032 const Type *ty = type.getTypePtr(); 2033 switch (ty->getTypeClass()) { 2034 2035 #define TYPE(Class, Base) 2036 #define ABSTRACT_TYPE(Class, Base) 2037 #define NON_CANONICAL_TYPE(Class, Base) 2038 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2039 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2040 #include "clang/AST/TypeNodes.def" 2041 llvm_unreachable("unexpected dependent type!"); 2042 2043 // These types are never variably-modified. 2044 case Type::Builtin: 2045 case Type::Complex: 2046 case Type::Vector: 2047 case Type::ExtVector: 2048 case Type::Record: 2049 case Type::Enum: 2050 case Type::Elaborated: 2051 case Type::TemplateSpecialization: 2052 case Type::ObjCTypeParam: 2053 case Type::ObjCObject: 2054 case Type::ObjCInterface: 2055 case Type::ObjCObjectPointer: 2056 llvm_unreachable("type class is never variably-modified!"); 2057 2058 case Type::Adjusted: 2059 type = cast<AdjustedType>(ty)->getAdjustedType(); 2060 break; 2061 2062 case Type::Decayed: 2063 type = cast<DecayedType>(ty)->getPointeeType(); 2064 break; 2065 2066 case Type::Pointer: 2067 type = cast<PointerType>(ty)->getPointeeType(); 2068 break; 2069 2070 case Type::BlockPointer: 2071 type = cast<BlockPointerType>(ty)->getPointeeType(); 2072 break; 2073 2074 case Type::LValueReference: 2075 case Type::RValueReference: 2076 type = cast<ReferenceType>(ty)->getPointeeType(); 2077 break; 2078 2079 case Type::MemberPointer: 2080 type = cast<MemberPointerType>(ty)->getPointeeType(); 2081 break; 2082 2083 case Type::ConstantArray: 2084 case Type::IncompleteArray: 2085 // Losing element qualification here is fine. 2086 type = cast<ArrayType>(ty)->getElementType(); 2087 break; 2088 2089 case Type::VariableArray: { 2090 // Losing element qualification here is fine. 2091 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2092 2093 // Unknown size indication requires no size computation. 2094 // Otherwise, evaluate and record it. 2095 if (const Expr *size = vat->getSizeExpr()) { 2096 // It's possible that we might have emitted this already, 2097 // e.g. with a typedef and a pointer to it. 2098 llvm::Value *&entry = VLASizeMap[size]; 2099 if (!entry) { 2100 llvm::Value *Size = EmitScalarExpr(size); 2101 2102 // C11 6.7.6.2p5: 2103 // If the size is an expression that is not an integer constant 2104 // expression [...] each time it is evaluated it shall have a value 2105 // greater than zero. 2106 if (SanOpts.has(SanitizerKind::VLABound) && 2107 size->getType()->isSignedIntegerType()) { 2108 SanitizerScope SanScope(this); 2109 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2110 llvm::Constant *StaticArgs[] = { 2111 EmitCheckSourceLocation(size->getBeginLoc()), 2112 EmitCheckTypeDescriptor(size->getType())}; 2113 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2114 SanitizerKind::VLABound), 2115 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2116 } 2117 2118 // Always zexting here would be wrong if it weren't 2119 // undefined behavior to have a negative bound. 2120 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2121 } 2122 } 2123 type = vat->getElementType(); 2124 break; 2125 } 2126 2127 case Type::FunctionProto: 2128 case Type::FunctionNoProto: 2129 type = cast<FunctionType>(ty)->getReturnType(); 2130 break; 2131 2132 case Type::Paren: 2133 case Type::TypeOf: 2134 case Type::UnaryTransform: 2135 case Type::Attributed: 2136 case Type::SubstTemplateTypeParm: 2137 case Type::PackExpansion: 2138 // Keep walking after single level desugaring. 2139 type = type.getSingleStepDesugaredType(getContext()); 2140 break; 2141 2142 case Type::Typedef: 2143 case Type::Decltype: 2144 case Type::Auto: 2145 case Type::DeducedTemplateSpecialization: 2146 // Stop walking: nothing to do. 2147 return; 2148 2149 case Type::TypeOfExpr: 2150 // Stop walking: emit typeof expression. 2151 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2152 return; 2153 2154 case Type::Atomic: 2155 type = cast<AtomicType>(ty)->getValueType(); 2156 break; 2157 2158 case Type::Pipe: 2159 type = cast<PipeType>(ty)->getElementType(); 2160 break; 2161 } 2162 } while (type->isVariablyModifiedType()); 2163 } 2164 2165 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2166 if (getContext().getBuiltinVaListType()->isArrayType()) 2167 return EmitPointerWithAlignment(E); 2168 return EmitLValue(E).getAddress(); 2169 } 2170 2171 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2172 return EmitLValue(E).getAddress(); 2173 } 2174 2175 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2176 const APValue &Init) { 2177 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2178 if (CGDebugInfo *Dbg = getDebugInfo()) 2179 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2180 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2181 } 2182 2183 CodeGenFunction::PeepholeProtection 2184 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2185 // At the moment, the only aggressive peephole we do in IR gen 2186 // is trunc(zext) folding, but if we add more, we can easily 2187 // extend this protection. 2188 2189 if (!rvalue.isScalar()) return PeepholeProtection(); 2190 llvm::Value *value = rvalue.getScalarVal(); 2191 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2192 2193 // Just make an extra bitcast. 2194 assert(HaveInsertPoint()); 2195 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2196 Builder.GetInsertBlock()); 2197 2198 PeepholeProtection protection; 2199 protection.Inst = inst; 2200 return protection; 2201 } 2202 2203 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2204 if (!protection.Inst) return; 2205 2206 // In theory, we could try to duplicate the peepholes now, but whatever. 2207 protection.Inst->eraseFromParent(); 2208 } 2209 2210 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2211 QualType Ty, SourceLocation Loc, 2212 SourceLocation AssumptionLoc, 2213 llvm::Value *Alignment, 2214 llvm::Value *OffsetValue) { 2215 llvm::Value *TheCheck; 2216 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2217 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2218 if (SanOpts.has(SanitizerKind::Alignment)) { 2219 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2220 OffsetValue, TheCheck, Assumption); 2221 } 2222 } 2223 2224 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2225 QualType Ty, SourceLocation Loc, 2226 SourceLocation AssumptionLoc, 2227 unsigned Alignment, 2228 llvm::Value *OffsetValue) { 2229 llvm::Value *TheCheck; 2230 llvm::Instruction *Assumption = Builder.CreateAlignmentAssumption( 2231 CGM.getDataLayout(), PtrValue, Alignment, OffsetValue, &TheCheck); 2232 if (SanOpts.has(SanitizerKind::Alignment)) { 2233 llvm::Value *AlignmentVal = llvm::ConstantInt::get(IntPtrTy, Alignment); 2234 EmitAlignmentAssumptionCheck(PtrValue, Ty, Loc, AssumptionLoc, AlignmentVal, 2235 OffsetValue, TheCheck, Assumption); 2236 } 2237 } 2238 2239 void CodeGenFunction::EmitAlignmentAssumption(llvm::Value *PtrValue, 2240 const Expr *E, 2241 SourceLocation AssumptionLoc, 2242 unsigned Alignment, 2243 llvm::Value *OffsetValue) { 2244 if (auto *CE = dyn_cast<CastExpr>(E)) 2245 E = CE->getSubExprAsWritten(); 2246 QualType Ty = E->getType(); 2247 SourceLocation Loc = E->getExprLoc(); 2248 2249 EmitAlignmentAssumption(PtrValue, Ty, Loc, AssumptionLoc, Alignment, 2250 OffsetValue); 2251 } 2252 2253 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2254 llvm::Value *AnnotatedVal, 2255 StringRef AnnotationStr, 2256 SourceLocation Location) { 2257 llvm::Value *Args[4] = { 2258 AnnotatedVal, 2259 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2260 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2261 CGM.EmitAnnotationLineNo(Location) 2262 }; 2263 return Builder.CreateCall(AnnotationFn, Args); 2264 } 2265 2266 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2267 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2268 // FIXME We create a new bitcast for every annotation because that's what 2269 // llvm-gcc was doing. 2270 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2271 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2272 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2273 I->getAnnotation(), D->getLocation()); 2274 } 2275 2276 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2277 Address Addr) { 2278 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2279 llvm::Value *V = Addr.getPointer(); 2280 llvm::Type *VTy = V->getType(); 2281 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2282 CGM.Int8PtrTy); 2283 2284 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2285 // FIXME Always emit the cast inst so we can differentiate between 2286 // annotation on the first field of a struct and annotation on the struct 2287 // itself. 2288 if (VTy != CGM.Int8PtrTy) 2289 V = Builder.CreateBitCast(V, CGM.Int8PtrTy); 2290 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2291 V = Builder.CreateBitCast(V, VTy); 2292 } 2293 2294 return Address(V, Addr.getAlignment()); 2295 } 2296 2297 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2298 2299 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2300 : CGF(CGF) { 2301 assert(!CGF->IsSanitizerScope); 2302 CGF->IsSanitizerScope = true; 2303 } 2304 2305 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2306 CGF->IsSanitizerScope = false; 2307 } 2308 2309 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2310 const llvm::Twine &Name, 2311 llvm::BasicBlock *BB, 2312 llvm::BasicBlock::iterator InsertPt) const { 2313 LoopStack.InsertHelper(I); 2314 if (IsSanitizerScope) 2315 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2316 } 2317 2318 void CGBuilderInserter::InsertHelper( 2319 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2320 llvm::BasicBlock::iterator InsertPt) const { 2321 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2322 if (CGF) 2323 CGF->InsertHelper(I, Name, BB, InsertPt); 2324 } 2325 2326 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2327 CodeGenModule &CGM, const FunctionDecl *FD, 2328 std::string &FirstMissing) { 2329 // If there aren't any required features listed then go ahead and return. 2330 if (ReqFeatures.empty()) 2331 return false; 2332 2333 // Now build up the set of caller features and verify that all the required 2334 // features are there. 2335 llvm::StringMap<bool> CallerFeatureMap; 2336 CGM.getFunctionFeatureMap(CallerFeatureMap, GlobalDecl().getWithDecl(FD)); 2337 2338 // If we have at least one of the features in the feature list return 2339 // true, otherwise return false. 2340 return std::all_of( 2341 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2342 SmallVector<StringRef, 1> OrFeatures; 2343 Feature.split(OrFeatures, '|'); 2344 return llvm::any_of(OrFeatures, [&](StringRef Feature) { 2345 if (!CallerFeatureMap.lookup(Feature)) { 2346 FirstMissing = Feature.str(); 2347 return false; 2348 } 2349 return true; 2350 }); 2351 }); 2352 } 2353 2354 // Emits an error if we don't have a valid set of target features for the 2355 // called function. 2356 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2357 const FunctionDecl *TargetDecl) { 2358 // Early exit if this is an indirect call. 2359 if (!TargetDecl) 2360 return; 2361 2362 // Get the current enclosing function if it exists. If it doesn't 2363 // we can't check the target features anyhow. 2364 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2365 if (!FD) 2366 return; 2367 2368 // Grab the required features for the call. For a builtin this is listed in 2369 // the td file with the default cpu, for an always_inline function this is any 2370 // listed cpu and any listed features. 2371 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2372 std::string MissingFeature; 2373 if (BuiltinID) { 2374 SmallVector<StringRef, 1> ReqFeatures; 2375 const char *FeatureList = 2376 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2377 // Return if the builtin doesn't have any required features. 2378 if (!FeatureList || StringRef(FeatureList) == "") 2379 return; 2380 StringRef(FeatureList).split(ReqFeatures, ','); 2381 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2382 CGM.getDiags().Report(E->getBeginLoc(), diag::err_builtin_needs_feature) 2383 << TargetDecl->getDeclName() 2384 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2385 2386 } else if (TargetDecl->hasAttr<TargetAttr>() || 2387 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2388 // Get the required features for the callee. 2389 2390 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2391 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2392 2393 SmallVector<StringRef, 1> ReqFeatures; 2394 llvm::StringMap<bool> CalleeFeatureMap; 2395 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2396 2397 for (const auto &F : ParsedAttr.Features) { 2398 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2399 ReqFeatures.push_back(StringRef(F).substr(1)); 2400 } 2401 2402 for (const auto &F : CalleeFeatureMap) { 2403 // Only positive features are "required". 2404 if (F.getValue()) 2405 ReqFeatures.push_back(F.getKey()); 2406 } 2407 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2408 CGM.getDiags().Report(E->getBeginLoc(), diag::err_function_needs_feature) 2409 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2410 } 2411 } 2412 2413 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2414 if (!CGM.getCodeGenOpts().SanitizeStats) 2415 return; 2416 2417 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2418 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2419 CGM.getSanStats().create(IRB, SSK); 2420 } 2421 2422 llvm::Value * 2423 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2424 llvm::Value *Condition = nullptr; 2425 2426 if (!RO.Conditions.Architecture.empty()) 2427 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2428 2429 if (!RO.Conditions.Features.empty()) { 2430 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2431 Condition = 2432 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2433 } 2434 return Condition; 2435 } 2436 2437 static void CreateMultiVersionResolverReturn(CodeGenModule &CGM, 2438 llvm::Function *Resolver, 2439 CGBuilderTy &Builder, 2440 llvm::Function *FuncToReturn, 2441 bool SupportsIFunc) { 2442 if (SupportsIFunc) { 2443 Builder.CreateRet(FuncToReturn); 2444 return; 2445 } 2446 2447 llvm::SmallVector<llvm::Value *, 10> Args; 2448 llvm::for_each(Resolver->args(), 2449 [&](llvm::Argument &Arg) { Args.push_back(&Arg); }); 2450 2451 llvm::CallInst *Result = Builder.CreateCall(FuncToReturn, Args); 2452 Result->setTailCallKind(llvm::CallInst::TCK_MustTail); 2453 2454 if (Resolver->getReturnType()->isVoidTy()) 2455 Builder.CreateRetVoid(); 2456 else 2457 Builder.CreateRet(Result); 2458 } 2459 2460 void CodeGenFunction::EmitMultiVersionResolver( 2461 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2462 assert((getContext().getTargetInfo().getTriple().getArch() == 2463 llvm::Triple::x86 || 2464 getContext().getTargetInfo().getTriple().getArch() == 2465 llvm::Triple::x86_64) && 2466 "Only implemented for x86 targets"); 2467 2468 bool SupportsIFunc = getContext().getTargetInfo().supportsIFunc(); 2469 2470 // Main function's basic block. 2471 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2472 Builder.SetInsertPoint(CurBlock); 2473 EmitX86CpuInit(); 2474 2475 for (const MultiVersionResolverOption &RO : Options) { 2476 Builder.SetInsertPoint(CurBlock); 2477 llvm::Value *Condition = FormResolverCondition(RO); 2478 2479 // The 'default' or 'generic' case. 2480 if (!Condition) { 2481 assert(&RO == Options.end() - 1 && 2482 "Default or Generic case must be last"); 2483 CreateMultiVersionResolverReturn(CGM, Resolver, Builder, RO.Function, 2484 SupportsIFunc); 2485 return; 2486 } 2487 2488 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2489 CGBuilderTy RetBuilder(*this, RetBlock); 2490 CreateMultiVersionResolverReturn(CGM, Resolver, RetBuilder, RO.Function, 2491 SupportsIFunc); 2492 CurBlock = createBasicBlock("resolver_else", Resolver); 2493 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2494 } 2495 2496 // If no generic/default, emit an unreachable. 2497 Builder.SetInsertPoint(CurBlock); 2498 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2499 TrapCall->setDoesNotReturn(); 2500 TrapCall->setDoesNotThrow(); 2501 Builder.CreateUnreachable(); 2502 Builder.ClearInsertionPoint(); 2503 } 2504 2505 // Loc - where the diagnostic will point, where in the source code this 2506 // alignment has failed. 2507 // SecondaryLoc - if present (will be present if sufficiently different from 2508 // Loc), the diagnostic will additionally point a "Note:" to this location. 2509 // It should be the location where the __attribute__((assume_aligned)) 2510 // was written e.g. 2511 void CodeGenFunction::EmitAlignmentAssumptionCheck( 2512 llvm::Value *Ptr, QualType Ty, SourceLocation Loc, 2513 SourceLocation SecondaryLoc, llvm::Value *Alignment, 2514 llvm::Value *OffsetValue, llvm::Value *TheCheck, 2515 llvm::Instruction *Assumption) { 2516 assert(Assumption && isa<llvm::CallInst>(Assumption) && 2517 cast<llvm::CallInst>(Assumption)->getCalledValue() == 2518 llvm::Intrinsic::getDeclaration( 2519 Builder.GetInsertBlock()->getParent()->getParent(), 2520 llvm::Intrinsic::assume) && 2521 "Assumption should be a call to llvm.assume()."); 2522 assert(&(Builder.GetInsertBlock()->back()) == Assumption && 2523 "Assumption should be the last instruction of the basic block, " 2524 "since the basic block is still being generated."); 2525 2526 if (!SanOpts.has(SanitizerKind::Alignment)) 2527 return; 2528 2529 // Don't check pointers to volatile data. The behavior here is implementation- 2530 // defined. 2531 if (Ty->getPointeeType().isVolatileQualified()) 2532 return; 2533 2534 // We need to temorairly remove the assumption so we can insert the 2535 // sanitizer check before it, else the check will be dropped by optimizations. 2536 Assumption->removeFromParent(); 2537 2538 { 2539 SanitizerScope SanScope(this); 2540 2541 if (!OffsetValue) 2542 OffsetValue = Builder.getInt1(0); // no offset. 2543 2544 llvm::Constant *StaticData[] = {EmitCheckSourceLocation(Loc), 2545 EmitCheckSourceLocation(SecondaryLoc), 2546 EmitCheckTypeDescriptor(Ty)}; 2547 llvm::Value *DynamicData[] = {EmitCheckValue(Ptr), 2548 EmitCheckValue(Alignment), 2549 EmitCheckValue(OffsetValue)}; 2550 EmitCheck({std::make_pair(TheCheck, SanitizerKind::Alignment)}, 2551 SanitizerHandler::AlignmentAssumption, StaticData, DynamicData); 2552 } 2553 2554 // We are now in the (new, empty) "cont" basic block. 2555 // Reintroduce the assumption. 2556 Builder.Insert(Assumption); 2557 // FIXME: Assumption still has it's original basic block as it's Parent. 2558 } 2559 2560 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2561 if (CGDebugInfo *DI = getDebugInfo()) 2562 return DI->SourceLocToDebugLoc(Location); 2563 2564 return llvm::DebugLoc(); 2565 } 2566