1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/MDBuilder.h" 38 #include "llvm/IR/Operator.h" 39 using namespace clang; 40 using namespace CodeGen; 41 42 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 43 /// markers. 44 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 45 const LangOptions &LangOpts) { 46 if (CGOpts.DisableLifetimeMarkers) 47 return false; 48 49 // Disable lifetime markers in msan builds. 50 // FIXME: Remove this when msan works with lifetime markers. 51 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 52 return false; 53 54 // Asan uses markers for use-after-scope checks. 55 if (CGOpts.SanitizeAddressUseAfterScope) 56 return true; 57 58 // For now, only in optimized builds. 59 return CGOpts.OptimizationLevel != 0; 60 } 61 62 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 63 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 64 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 65 CGBuilderInserterTy(this)), 66 CurFn(nullptr), ReturnValue(Address::invalid()), 67 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 68 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 69 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 70 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 71 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 72 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 73 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 74 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 75 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 76 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 77 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 78 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 79 CXXStructorImplicitParamDecl(nullptr), 80 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 81 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 82 TerminateHandler(nullptr), TrapBB(nullptr), 83 ShouldEmitLifetimeMarkers( 84 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 85 if (!suppressNewContext) 86 CGM.getCXXABI().getMangleContext().startNewFunction(); 87 88 llvm::FastMathFlags FMF; 89 if (CGM.getLangOpts().FastMath) 90 FMF.setUnsafeAlgebra(); 91 if (CGM.getLangOpts().FiniteMathOnly) { 92 FMF.setNoNaNs(); 93 FMF.setNoInfs(); 94 } 95 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 96 FMF.setNoNaNs(); 97 } 98 if (CGM.getCodeGenOpts().NoSignedZeros) { 99 FMF.setNoSignedZeros(); 100 } 101 if (CGM.getCodeGenOpts().ReciprocalMath) { 102 FMF.setAllowReciprocal(); 103 } 104 Builder.setFastMathFlags(FMF); 105 } 106 107 CodeGenFunction::~CodeGenFunction() { 108 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 109 110 // If there are any unclaimed block infos, go ahead and destroy them 111 // now. This can happen if IR-gen gets clever and skips evaluating 112 // something. 113 if (FirstBlockInfo) 114 destroyBlockInfos(FirstBlockInfo); 115 116 if (getLangOpts().OpenMP && CurFn) 117 CGM.getOpenMPRuntime().functionFinished(*this); 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 LValueBaseInfo *BaseInfo) { 122 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 LValueBaseInfo *BaseInfo, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 136 return getContext().toCharUnitsFromBits(Align); 137 } 138 } 139 140 if (BaseInfo) 141 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 142 143 CharUnits Alignment; 144 if (T->isIncompleteType()) { 145 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 146 } else { 147 // For C++ class pointees, we don't know whether we're pointing at a 148 // base or a complete object, so we generally need to use the 149 // non-virtual alignment. 150 const CXXRecordDecl *RD; 151 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 152 Alignment = CGM.getClassPointerAlignment(RD); 153 } else { 154 Alignment = getContext().getTypeAlignInChars(T); 155 if (T.getQualifiers().hasUnaligned()) 156 Alignment = CharUnits::One(); 157 } 158 159 // Cap to the global maximum type alignment unless the alignment 160 // was somehow explicit on the type. 161 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 162 if (Alignment.getQuantity() > MaxAlign && 163 !getContext().isAlignmentRequired(T)) 164 Alignment = CharUnits::fromQuantity(MaxAlign); 165 } 166 } 167 return Alignment; 168 } 169 170 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 171 LValueBaseInfo BaseInfo; 172 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 173 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 174 CGM.getTBAAInfo(T)); 175 } 176 177 /// Given a value of type T* that may not be to a complete object, 178 /// construct an l-value with the natural pointee alignment of T. 179 LValue 180 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 183 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 184 } 185 186 187 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 188 return CGM.getTypes().ConvertTypeForMem(T); 189 } 190 191 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 192 return CGM.getTypes().ConvertType(T); 193 } 194 195 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 196 type = type.getCanonicalType(); 197 while (true) { 198 switch (type->getTypeClass()) { 199 #define TYPE(name, parent) 200 #define ABSTRACT_TYPE(name, parent) 201 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 202 #define DEPENDENT_TYPE(name, parent) case Type::name: 203 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 204 #include "clang/AST/TypeNodes.def" 205 llvm_unreachable("non-canonical or dependent type in IR-generation"); 206 207 case Type::Auto: 208 case Type::DeducedTemplateSpecialization: 209 llvm_unreachable("undeduced type in IR-generation"); 210 211 // Various scalar types. 212 case Type::Builtin: 213 case Type::Pointer: 214 case Type::BlockPointer: 215 case Type::LValueReference: 216 case Type::RValueReference: 217 case Type::MemberPointer: 218 case Type::Vector: 219 case Type::ExtVector: 220 case Type::FunctionProto: 221 case Type::FunctionNoProto: 222 case Type::Enum: 223 case Type::ObjCObjectPointer: 224 case Type::Pipe: 225 return TEK_Scalar; 226 227 // Complexes. 228 case Type::Complex: 229 return TEK_Complex; 230 231 // Arrays, records, and Objective-C objects. 232 case Type::ConstantArray: 233 case Type::IncompleteArray: 234 case Type::VariableArray: 235 case Type::Record: 236 case Type::ObjCObject: 237 case Type::ObjCInterface: 238 return TEK_Aggregate; 239 240 // We operate on atomic values according to their underlying type. 241 case Type::Atomic: 242 type = cast<AtomicType>(type)->getValueType(); 243 continue; 244 } 245 llvm_unreachable("unknown type kind!"); 246 } 247 } 248 249 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 250 // For cleanliness, we try to avoid emitting the return block for 251 // simple cases. 252 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 253 254 if (CurBB) { 255 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 256 257 // We have a valid insert point, reuse it if it is empty or there are no 258 // explicit jumps to the return block. 259 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 260 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 261 delete ReturnBlock.getBlock(); 262 } else 263 EmitBlock(ReturnBlock.getBlock()); 264 return llvm::DebugLoc(); 265 } 266 267 // Otherwise, if the return block is the target of a single direct 268 // branch then we can just put the code in that block instead. This 269 // cleans up functions which started with a unified return block. 270 if (ReturnBlock.getBlock()->hasOneUse()) { 271 llvm::BranchInst *BI = 272 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 273 if (BI && BI->isUnconditional() && 274 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 275 // Record/return the DebugLoc of the simple 'return' expression to be used 276 // later by the actual 'ret' instruction. 277 llvm::DebugLoc Loc = BI->getDebugLoc(); 278 Builder.SetInsertPoint(BI->getParent()); 279 BI->eraseFromParent(); 280 delete ReturnBlock.getBlock(); 281 return Loc; 282 } 283 } 284 285 // FIXME: We are at an unreachable point, there is no reason to emit the block 286 // unless it has uses. However, we still need a place to put the debug 287 // region.end for now. 288 289 EmitBlock(ReturnBlock.getBlock()); 290 return llvm::DebugLoc(); 291 } 292 293 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 294 if (!BB) return; 295 if (!BB->use_empty()) 296 return CGF.CurFn->getBasicBlockList().push_back(BB); 297 delete BB; 298 } 299 300 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 301 assert(BreakContinueStack.empty() && 302 "mismatched push/pop in break/continue stack!"); 303 304 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 305 && NumSimpleReturnExprs == NumReturnExprs 306 && ReturnBlock.getBlock()->use_empty(); 307 // Usually the return expression is evaluated before the cleanup 308 // code. If the function contains only a simple return statement, 309 // such as a constant, the location before the cleanup code becomes 310 // the last useful breakpoint in the function, because the simple 311 // return expression will be evaluated after the cleanup code. To be 312 // safe, set the debug location for cleanup code to the location of 313 // the return statement. Otherwise the cleanup code should be at the 314 // end of the function's lexical scope. 315 // 316 // If there are multiple branches to the return block, the branch 317 // instructions will get the location of the return statements and 318 // all will be fine. 319 if (CGDebugInfo *DI = getDebugInfo()) { 320 if (OnlySimpleReturnStmts) 321 DI->EmitLocation(Builder, LastStopPoint); 322 else 323 DI->EmitLocation(Builder, EndLoc); 324 } 325 326 // Pop any cleanups that might have been associated with the 327 // parameters. Do this in whatever block we're currently in; it's 328 // important to do this before we enter the return block or return 329 // edges will be *really* confused. 330 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 331 bool HasOnlyLifetimeMarkers = 332 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 333 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 334 if (HasCleanups) { 335 // Make sure the line table doesn't jump back into the body for 336 // the ret after it's been at EndLoc. 337 if (CGDebugInfo *DI = getDebugInfo()) 338 if (OnlySimpleReturnStmts) 339 DI->EmitLocation(Builder, EndLoc); 340 341 PopCleanupBlocks(PrologueCleanupDepth); 342 } 343 344 // Emit function epilog (to return). 345 llvm::DebugLoc Loc = EmitReturnBlock(); 346 347 if (ShouldInstrumentFunction()) 348 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 349 350 // Emit debug descriptor for function end. 351 if (CGDebugInfo *DI = getDebugInfo()) 352 DI->EmitFunctionEnd(Builder, CurFn); 353 354 // Reset the debug location to that of the simple 'return' expression, if any 355 // rather than that of the end of the function's scope '}'. 356 ApplyDebugLocation AL(*this, Loc); 357 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 358 EmitEndEHSpec(CurCodeDecl); 359 360 assert(EHStack.empty() && 361 "did not remove all scopes from cleanup stack!"); 362 363 // If someone did an indirect goto, emit the indirect goto block at the end of 364 // the function. 365 if (IndirectBranch) { 366 EmitBlock(IndirectBranch->getParent()); 367 Builder.ClearInsertionPoint(); 368 } 369 370 // If some of our locals escaped, insert a call to llvm.localescape in the 371 // entry block. 372 if (!EscapedLocals.empty()) { 373 // Invert the map from local to index into a simple vector. There should be 374 // no holes. 375 SmallVector<llvm::Value *, 4> EscapeArgs; 376 EscapeArgs.resize(EscapedLocals.size()); 377 for (auto &Pair : EscapedLocals) 378 EscapeArgs[Pair.second] = Pair.first; 379 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 380 &CGM.getModule(), llvm::Intrinsic::localescape); 381 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 382 } 383 384 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 385 llvm::Instruction *Ptr = AllocaInsertPt; 386 AllocaInsertPt = nullptr; 387 Ptr->eraseFromParent(); 388 389 // If someone took the address of a label but never did an indirect goto, we 390 // made a zero entry PHI node, which is illegal, zap it now. 391 if (IndirectBranch) { 392 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 393 if (PN->getNumIncomingValues() == 0) { 394 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 395 PN->eraseFromParent(); 396 } 397 } 398 399 EmitIfUsed(*this, EHResumeBlock); 400 EmitIfUsed(*this, TerminateLandingPad); 401 EmitIfUsed(*this, TerminateHandler); 402 EmitIfUsed(*this, UnreachableBlock); 403 404 if (CGM.getCodeGenOpts().EmitDeclMetadata) 405 EmitDeclMetadata(); 406 407 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 408 I = DeferredReplacements.begin(), 409 E = DeferredReplacements.end(); 410 I != E; ++I) { 411 I->first->replaceAllUsesWith(I->second); 412 I->first->eraseFromParent(); 413 } 414 } 415 416 /// ShouldInstrumentFunction - Return true if the current function should be 417 /// instrumented with __cyg_profile_func_* calls 418 bool CodeGenFunction::ShouldInstrumentFunction() { 419 if (!CGM.getCodeGenOpts().InstrumentFunctions) 420 return false; 421 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 422 return false; 423 return true; 424 } 425 426 /// ShouldXRayInstrument - Return true if the current function should be 427 /// instrumented with XRay nop sleds. 428 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 429 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 430 } 431 432 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 433 /// instrumentation function with the current function and the call site, if 434 /// function instrumentation is enabled. 435 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 436 auto NL = ApplyDebugLocation::CreateArtificial(*this); 437 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 438 llvm::PointerType *PointerTy = Int8PtrTy; 439 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 440 llvm::FunctionType *FunctionTy = 441 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 442 443 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 444 llvm::CallInst *CallSite = Builder.CreateCall( 445 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 446 llvm::ConstantInt::get(Int32Ty, 0), 447 "callsite"); 448 449 llvm::Value *args[] = { 450 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 451 CallSite 452 }; 453 454 EmitNounwindRuntimeCall(F, args); 455 } 456 457 static void removeImageAccessQualifier(std::string& TyName) { 458 std::string ReadOnlyQual("__read_only"); 459 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 460 if (ReadOnlyPos != std::string::npos) 461 // "+ 1" for the space after access qualifier. 462 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 463 else { 464 std::string WriteOnlyQual("__write_only"); 465 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 466 if (WriteOnlyPos != std::string::npos) 467 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 468 else { 469 std::string ReadWriteQual("__read_write"); 470 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 471 if (ReadWritePos != std::string::npos) 472 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 473 } 474 } 475 } 476 477 // Returns the address space id that should be produced to the 478 // kernel_arg_addr_space metadata. This is always fixed to the ids 479 // as specified in the SPIR 2.0 specification in order to differentiate 480 // for example in clGetKernelArgInfo() implementation between the address 481 // spaces with targets without unique mapping to the OpenCL address spaces 482 // (basically all single AS CPUs). 483 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 484 switch (LangAS) { 485 case LangAS::opencl_global: return 1; 486 case LangAS::opencl_constant: return 2; 487 case LangAS::opencl_local: return 3; 488 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 489 default: 490 return 0; // Assume private. 491 } 492 } 493 494 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 495 // information in the program executable. The argument information stored 496 // includes the argument name, its type, the address and access qualifiers used. 497 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 498 CodeGenModule &CGM, llvm::LLVMContext &Context, 499 CGBuilderTy &Builder, ASTContext &ASTCtx) { 500 // Create MDNodes that represent the kernel arg metadata. 501 // Each MDNode is a list in the form of "key", N number of values which is 502 // the same number of values as their are kernel arguments. 503 504 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 505 506 // MDNode for the kernel argument address space qualifiers. 507 SmallVector<llvm::Metadata *, 8> addressQuals; 508 509 // MDNode for the kernel argument access qualifiers (images only). 510 SmallVector<llvm::Metadata *, 8> accessQuals; 511 512 // MDNode for the kernel argument type names. 513 SmallVector<llvm::Metadata *, 8> argTypeNames; 514 515 // MDNode for the kernel argument base type names. 516 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 517 518 // MDNode for the kernel argument type qualifiers. 519 SmallVector<llvm::Metadata *, 8> argTypeQuals; 520 521 // MDNode for the kernel argument names. 522 SmallVector<llvm::Metadata *, 8> argNames; 523 524 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 525 const ParmVarDecl *parm = FD->getParamDecl(i); 526 QualType ty = parm->getType(); 527 std::string typeQuals; 528 529 if (ty->isPointerType()) { 530 QualType pointeeTy = ty->getPointeeType(); 531 532 // Get address qualifier. 533 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 534 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 535 536 // Get argument type name. 537 std::string typeName = 538 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 539 540 // Turn "unsigned type" to "utype" 541 std::string::size_type pos = typeName.find("unsigned"); 542 if (pointeeTy.isCanonical() && pos != std::string::npos) 543 typeName.erase(pos+1, 8); 544 545 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 546 547 std::string baseTypeName = 548 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 549 Policy) + 550 "*"; 551 552 // Turn "unsigned type" to "utype" 553 pos = baseTypeName.find("unsigned"); 554 if (pos != std::string::npos) 555 baseTypeName.erase(pos+1, 8); 556 557 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 558 559 // Get argument type qualifiers: 560 if (ty.isRestrictQualified()) 561 typeQuals = "restrict"; 562 if (pointeeTy.isConstQualified() || 563 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 564 typeQuals += typeQuals.empty() ? "const" : " const"; 565 if (pointeeTy.isVolatileQualified()) 566 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 567 } else { 568 uint32_t AddrSpc = 0; 569 bool isPipe = ty->isPipeType(); 570 if (ty->isImageType() || isPipe) 571 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 572 573 addressQuals.push_back( 574 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 575 576 // Get argument type name. 577 std::string typeName; 578 if (isPipe) 579 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 580 .getAsString(Policy); 581 else 582 typeName = ty.getUnqualifiedType().getAsString(Policy); 583 584 // Turn "unsigned type" to "utype" 585 std::string::size_type pos = typeName.find("unsigned"); 586 if (ty.isCanonical() && pos != std::string::npos) 587 typeName.erase(pos+1, 8); 588 589 std::string baseTypeName; 590 if (isPipe) 591 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 592 ->getElementType().getCanonicalType() 593 .getAsString(Policy); 594 else 595 baseTypeName = 596 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 597 598 // Remove access qualifiers on images 599 // (as they are inseparable from type in clang implementation, 600 // but OpenCL spec provides a special query to get access qualifier 601 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 602 if (ty->isImageType()) { 603 removeImageAccessQualifier(typeName); 604 removeImageAccessQualifier(baseTypeName); 605 } 606 607 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 608 609 // Turn "unsigned type" to "utype" 610 pos = baseTypeName.find("unsigned"); 611 if (pos != std::string::npos) 612 baseTypeName.erase(pos+1, 8); 613 614 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 615 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 625 if (A && A->isWriteOnly()) 626 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 627 else if (A && A->isReadWrite()) 628 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 629 else 630 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 631 } else 632 accessQuals.push_back(llvm::MDString::get(Context, "none")); 633 634 // Get argument name. 635 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 636 } 637 638 Fn->setMetadata("kernel_arg_addr_space", 639 llvm::MDNode::get(Context, addressQuals)); 640 Fn->setMetadata("kernel_arg_access_qual", 641 llvm::MDNode::get(Context, accessQuals)); 642 Fn->setMetadata("kernel_arg_type", 643 llvm::MDNode::get(Context, argTypeNames)); 644 Fn->setMetadata("kernel_arg_base_type", 645 llvm::MDNode::get(Context, argBaseTypeNames)); 646 Fn->setMetadata("kernel_arg_type_qual", 647 llvm::MDNode::get(Context, argTypeQuals)); 648 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 649 Fn->setMetadata("kernel_arg_name", 650 llvm::MDNode::get(Context, argNames)); 651 } 652 653 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 654 llvm::Function *Fn) 655 { 656 if (!FD->hasAttr<OpenCLKernelAttr>()) 657 return; 658 659 llvm::LLVMContext &Context = getLLVMContext(); 660 661 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 662 663 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 664 QualType HintQTy = A->getTypeHint(); 665 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 666 bool IsSignedInteger = 667 HintQTy->isSignedIntegerType() || 668 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 669 llvm::Metadata *AttrMDArgs[] = { 670 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 671 CGM.getTypes().ConvertType(A->getTypeHint()))), 672 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 673 llvm::IntegerType::get(Context, 32), 674 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 675 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 676 } 677 678 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 679 llvm::Metadata *AttrMDArgs[] = { 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 683 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 684 } 685 686 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 687 llvm::Metadata *AttrMDArgs[] = { 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 691 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 692 } 693 694 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 695 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 696 llvm::Metadata *AttrMDArgs[] = { 697 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 698 Fn->setMetadata("intel_reqd_sub_group_size", 699 llvm::MDNode::get(Context, AttrMDArgs)); 700 } 701 } 702 703 /// Determine whether the function F ends with a return stmt. 704 static bool endsWithReturn(const Decl* F) { 705 const Stmt *Body = nullptr; 706 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 707 Body = FD->getBody(); 708 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 709 Body = OMD->getBody(); 710 711 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 712 auto LastStmt = CS->body_rbegin(); 713 if (LastStmt != CS->body_rend()) 714 return isa<ReturnStmt>(*LastStmt); 715 } 716 return false; 717 } 718 719 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 720 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 721 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 722 } 723 724 void CodeGenFunction::StartFunction(GlobalDecl GD, 725 QualType RetTy, 726 llvm::Function *Fn, 727 const CGFunctionInfo &FnInfo, 728 const FunctionArgList &Args, 729 SourceLocation Loc, 730 SourceLocation StartLoc) { 731 assert(!CurFn && 732 "Do not use a CodeGenFunction object for more than one function"); 733 734 const Decl *D = GD.getDecl(); 735 736 DidCallStackSave = false; 737 CurCodeDecl = D; 738 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 739 if (FD->usesSEHTry()) 740 CurSEHParent = FD; 741 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 742 FnRetTy = RetTy; 743 CurFn = Fn; 744 CurFnInfo = &FnInfo; 745 assert(CurFn->isDeclaration() && "Function already has body?"); 746 747 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 748 SanOpts.clear(); 749 750 if (D) { 751 // Apply the no_sanitize* attributes to SanOpts. 752 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 753 SanOpts.Mask &= ~Attr->getMask(); 754 } 755 756 // Apply sanitizer attributes to the function. 757 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 758 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 759 if (SanOpts.has(SanitizerKind::Thread)) 760 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 761 if (SanOpts.has(SanitizerKind::Memory)) 762 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 763 if (SanOpts.has(SanitizerKind::SafeStack)) 764 Fn->addFnAttr(llvm::Attribute::SafeStack); 765 766 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 767 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 768 if (SanOpts.has(SanitizerKind::Thread)) { 769 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 770 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 771 if (OMD->getMethodFamily() == OMF_dealloc || 772 OMD->getMethodFamily() == OMF_initialize || 773 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 774 markAsIgnoreThreadCheckingAtRuntime(Fn); 775 } 776 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 777 IdentifierInfo *II = FD->getIdentifier(); 778 if (II && II->isStr("__destroy_helper_block_")) 779 markAsIgnoreThreadCheckingAtRuntime(Fn); 780 } 781 } 782 783 // Apply xray attributes to the function (as a string, for now) 784 if (D && ShouldXRayInstrumentFunction()) { 785 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 786 if (XRayAttr->alwaysXRayInstrument()) 787 Fn->addFnAttr("function-instrument", "xray-always"); 788 if (XRayAttr->neverXRayInstrument()) 789 Fn->addFnAttr("function-instrument", "xray-never"); 790 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 791 Fn->addFnAttr("xray-log-args", 792 llvm::utostr(LogArgs->getArgumentCount())); 793 } 794 } else { 795 if (!CGM.imbueXRayAttrs(Fn, Loc)) 796 Fn->addFnAttr( 797 "xray-instruction-threshold", 798 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 799 } 800 } 801 802 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 803 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 804 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 805 806 // Add no-jump-tables value. 807 Fn->addFnAttr("no-jump-tables", 808 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 809 810 if (getLangOpts().OpenCL) { 811 // Add metadata for a kernel function. 812 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 813 EmitOpenCLKernelMetadata(FD, Fn); 814 } 815 816 // If we are checking function types, emit a function type signature as 817 // prologue data. 818 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 819 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 820 if (llvm::Constant *PrologueSig = 821 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 822 llvm::Constant *FTRTTIConst = 823 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 824 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 825 llvm::Constant *PrologueStructConst = 826 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 827 Fn->setPrologueData(PrologueStructConst); 828 } 829 } 830 } 831 832 // If we're checking nullability, we need to know whether we can check the 833 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 834 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 835 auto Nullability = FnRetTy->getNullability(getContext()); 836 if (Nullability && *Nullability == NullabilityKind::NonNull) { 837 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 838 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 839 RetValNullabilityPrecondition = 840 llvm::ConstantInt::getTrue(getLLVMContext()); 841 } 842 } 843 844 // If we're in C++ mode and the function name is "main", it is guaranteed 845 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 846 // used within a program"). 847 if (getLangOpts().CPlusPlus) 848 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 849 if (FD->isMain()) 850 Fn->addFnAttr(llvm::Attribute::NoRecurse); 851 852 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 853 854 // Create a marker to make it easy to insert allocas into the entryblock 855 // later. Don't create this with the builder, because we don't want it 856 // folded. 857 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 858 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 859 860 ReturnBlock = getJumpDestInCurrentScope("return"); 861 862 Builder.SetInsertPoint(EntryBB); 863 864 // If we're checking the return value, allocate space for a pointer to a 865 // precise source location of the checked return statement. 866 if (requiresReturnValueCheck()) { 867 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 868 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 869 } 870 871 // Emit subprogram debug descriptor. 872 if (CGDebugInfo *DI = getDebugInfo()) { 873 // Reconstruct the type from the argument list so that implicit parameters, 874 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 875 // convention. 876 CallingConv CC = CallingConv::CC_C; 877 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 878 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 879 CC = SrcFnTy->getCallConv(); 880 SmallVector<QualType, 16> ArgTypes; 881 for (const VarDecl *VD : Args) 882 ArgTypes.push_back(VD->getType()); 883 QualType FnType = getContext().getFunctionType( 884 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 885 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 886 } 887 888 if (ShouldInstrumentFunction()) 889 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 890 891 // Since emitting the mcount call here impacts optimizations such as function 892 // inlining, we just add an attribute to insert a mcount call in backend. 893 // The attribute "counting-function" is set to mcount function name which is 894 // architecture dependent. 895 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 896 if (CGM.getCodeGenOpts().CallFEntry) 897 Fn->addFnAttr("fentry-call", "true"); 898 else { 899 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 900 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 901 } 902 } 903 904 if (RetTy->isVoidType()) { 905 // Void type; nothing to return. 906 ReturnValue = Address::invalid(); 907 908 // Count the implicit return. 909 if (!endsWithReturn(D)) 910 ++NumReturnExprs; 911 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 912 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 913 // Indirect aggregate return; emit returned value directly into sret slot. 914 // This reduces code size, and affects correctness in C++. 915 auto AI = CurFn->arg_begin(); 916 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 917 ++AI; 918 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 919 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 920 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 921 // Load the sret pointer from the argument struct and return into that. 922 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 923 llvm::Function::arg_iterator EI = CurFn->arg_end(); 924 --EI; 925 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 926 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 927 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 928 } else { 929 ReturnValue = CreateIRTemp(RetTy, "retval"); 930 931 // Tell the epilog emitter to autorelease the result. We do this 932 // now so that various specialized functions can suppress it 933 // during their IR-generation. 934 if (getLangOpts().ObjCAutoRefCount && 935 !CurFnInfo->isReturnsRetained() && 936 RetTy->isObjCRetainableType()) 937 AutoreleaseResult = true; 938 } 939 940 EmitStartEHSpec(CurCodeDecl); 941 942 PrologueCleanupDepth = EHStack.stable_begin(); 943 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 944 945 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 946 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 947 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 948 if (MD->getParent()->isLambda() && 949 MD->getOverloadedOperator() == OO_Call) { 950 // We're in a lambda; figure out the captures. 951 MD->getParent()->getCaptureFields(LambdaCaptureFields, 952 LambdaThisCaptureField); 953 if (LambdaThisCaptureField) { 954 // If the lambda captures the object referred to by '*this' - either by 955 // value or by reference, make sure CXXThisValue points to the correct 956 // object. 957 958 // Get the lvalue for the field (which is a copy of the enclosing object 959 // or contains the address of the enclosing object). 960 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 961 if (!LambdaThisCaptureField->getType()->isPointerType()) { 962 // If the enclosing object was captured by value, just use its address. 963 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 964 } else { 965 // Load the lvalue pointed to by the field, since '*this' was captured 966 // by reference. 967 CXXThisValue = 968 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 969 } 970 } 971 for (auto *FD : MD->getParent()->fields()) { 972 if (FD->hasCapturedVLAType()) { 973 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 974 SourceLocation()).getScalarVal(); 975 auto VAT = FD->getCapturedVLAType(); 976 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 977 } 978 } 979 } else { 980 // Not in a lambda; just use 'this' from the method. 981 // FIXME: Should we generate a new load for each use of 'this'? The 982 // fast register allocator would be happier... 983 CXXThisValue = CXXABIThisValue; 984 } 985 986 // Check the 'this' pointer once per function, if it's available. 987 if (CXXABIThisValue) { 988 SanitizerSet SkippedChecks; 989 SkippedChecks.set(SanitizerKind::ObjectSize, true); 990 QualType ThisTy = MD->getThisType(getContext()); 991 992 // If this is the call operator of a lambda with no capture-default, it 993 // may have a static invoker function, which may call this operator with 994 // a null 'this' pointer. 995 if (isLambdaCallOperator(MD) && 996 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 997 LCD_None) 998 SkippedChecks.set(SanitizerKind::Null, true); 999 1000 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1001 : TCK_MemberCall, 1002 Loc, CXXABIThisValue, ThisTy, 1003 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1004 SkippedChecks); 1005 } 1006 } 1007 1008 // If any of the arguments have a variably modified type, make sure to 1009 // emit the type size. 1010 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1011 i != e; ++i) { 1012 const VarDecl *VD = *i; 1013 1014 // Dig out the type as written from ParmVarDecls; it's unclear whether 1015 // the standard (C99 6.9.1p10) requires this, but we're following the 1016 // precedent set by gcc. 1017 QualType Ty; 1018 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1019 Ty = PVD->getOriginalType(); 1020 else 1021 Ty = VD->getType(); 1022 1023 if (Ty->isVariablyModifiedType()) 1024 EmitVariablyModifiedType(Ty); 1025 } 1026 // Emit a location at the end of the prologue. 1027 if (CGDebugInfo *DI = getDebugInfo()) 1028 DI->EmitLocation(Builder, StartLoc); 1029 } 1030 1031 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1032 const Stmt *Body) { 1033 incrementProfileCounter(Body); 1034 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1035 EmitCompoundStmtWithoutScope(*S); 1036 else 1037 EmitStmt(Body); 1038 } 1039 1040 /// When instrumenting to collect profile data, the counts for some blocks 1041 /// such as switch cases need to not include the fall-through counts, so 1042 /// emit a branch around the instrumentation code. When not instrumenting, 1043 /// this just calls EmitBlock(). 1044 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1045 const Stmt *S) { 1046 llvm::BasicBlock *SkipCountBB = nullptr; 1047 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1048 // When instrumenting for profiling, the fallthrough to certain 1049 // statements needs to skip over the instrumentation code so that we 1050 // get an accurate count. 1051 SkipCountBB = createBasicBlock("skipcount"); 1052 EmitBranch(SkipCountBB); 1053 } 1054 EmitBlock(BB); 1055 uint64_t CurrentCount = getCurrentProfileCount(); 1056 incrementProfileCounter(S); 1057 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1058 if (SkipCountBB) 1059 EmitBlock(SkipCountBB); 1060 } 1061 1062 /// Tries to mark the given function nounwind based on the 1063 /// non-existence of any throwing calls within it. We believe this is 1064 /// lightweight enough to do at -O0. 1065 static void TryMarkNoThrow(llvm::Function *F) { 1066 // LLVM treats 'nounwind' on a function as part of the type, so we 1067 // can't do this on functions that can be overwritten. 1068 if (F->isInterposable()) return; 1069 1070 for (llvm::BasicBlock &BB : *F) 1071 for (llvm::Instruction &I : BB) 1072 if (I.mayThrow()) 1073 return; 1074 1075 F->setDoesNotThrow(); 1076 } 1077 1078 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1079 FunctionArgList &Args) { 1080 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1081 QualType ResTy = FD->getReturnType(); 1082 1083 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1084 if (MD && MD->isInstance()) { 1085 if (CGM.getCXXABI().HasThisReturn(GD)) 1086 ResTy = MD->getThisType(getContext()); 1087 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1088 ResTy = CGM.getContext().VoidPtrTy; 1089 CGM.getCXXABI().buildThisParam(*this, Args); 1090 } 1091 1092 // The base version of an inheriting constructor whose constructed base is a 1093 // virtual base is not passed any arguments (because it doesn't actually call 1094 // the inherited constructor). 1095 bool PassedParams = true; 1096 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1097 if (auto Inherited = CD->getInheritedConstructor()) 1098 PassedParams = 1099 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1100 1101 if (PassedParams) { 1102 for (auto *Param : FD->parameters()) { 1103 Args.push_back(Param); 1104 if (!Param->hasAttr<PassObjectSizeAttr>()) 1105 continue; 1106 1107 auto *Implicit = ImplicitParamDecl::Create( 1108 getContext(), Param->getDeclContext(), Param->getLocation(), 1109 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1110 SizeArguments[Param] = Implicit; 1111 Args.push_back(Implicit); 1112 } 1113 } 1114 1115 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1116 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1117 1118 return ResTy; 1119 } 1120 1121 static bool 1122 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1123 const ASTContext &Context) { 1124 QualType T = FD->getReturnType(); 1125 // Avoid the optimization for functions that return a record type with a 1126 // trivial destructor or another trivially copyable type. 1127 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1128 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1129 return !ClassDecl->hasTrivialDestructor(); 1130 } 1131 return !T.isTriviallyCopyableType(Context); 1132 } 1133 1134 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1135 const CGFunctionInfo &FnInfo) { 1136 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1137 CurGD = GD; 1138 1139 FunctionArgList Args; 1140 QualType ResTy = BuildFunctionArgList(GD, Args); 1141 1142 // Check if we should generate debug info for this function. 1143 if (FD->hasAttr<NoDebugAttr>()) 1144 DebugInfo = nullptr; // disable debug info indefinitely for this function 1145 1146 // The function might not have a body if we're generating thunks for a 1147 // function declaration. 1148 SourceRange BodyRange; 1149 if (Stmt *Body = FD->getBody()) 1150 BodyRange = Body->getSourceRange(); 1151 else 1152 BodyRange = FD->getLocation(); 1153 CurEHLocation = BodyRange.getEnd(); 1154 1155 // Use the location of the start of the function to determine where 1156 // the function definition is located. By default use the location 1157 // of the declaration as the location for the subprogram. A function 1158 // may lack a declaration in the source code if it is created by code 1159 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1160 SourceLocation Loc = FD->getLocation(); 1161 1162 // If this is a function specialization then use the pattern body 1163 // as the location for the function. 1164 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1165 if (SpecDecl->hasBody(SpecDecl)) 1166 Loc = SpecDecl->getLocation(); 1167 1168 Stmt *Body = FD->getBody(); 1169 1170 // Initialize helper which will detect jumps which can cause invalid lifetime 1171 // markers. 1172 if (Body && ShouldEmitLifetimeMarkers) 1173 Bypasses.Init(Body); 1174 1175 // Emit the standard function prologue. 1176 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1177 1178 // Generate the body of the function. 1179 PGO.assignRegionCounters(GD, CurFn); 1180 if (isa<CXXDestructorDecl>(FD)) 1181 EmitDestructorBody(Args); 1182 else if (isa<CXXConstructorDecl>(FD)) 1183 EmitConstructorBody(Args); 1184 else if (getLangOpts().CUDA && 1185 !getLangOpts().CUDAIsDevice && 1186 FD->hasAttr<CUDAGlobalAttr>()) 1187 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1188 else if (isa<CXXConversionDecl>(FD) && 1189 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1190 // The lambda conversion to block pointer is special; the semantics can't be 1191 // expressed in the AST, so IRGen needs to special-case it. 1192 EmitLambdaToBlockPointerBody(Args); 1193 } else if (isa<CXXMethodDecl>(FD) && 1194 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1195 // The lambda static invoker function is special, because it forwards or 1196 // clones the body of the function call operator (but is actually static). 1197 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1198 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1199 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1200 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1201 // Implicit copy-assignment gets the same special treatment as implicit 1202 // copy-constructors. 1203 emitImplicitAssignmentOperatorBody(Args); 1204 } else if (Body) { 1205 EmitFunctionBody(Args, Body); 1206 } else 1207 llvm_unreachable("no definition for emitted function"); 1208 1209 // C++11 [stmt.return]p2: 1210 // Flowing off the end of a function [...] results in undefined behavior in 1211 // a value-returning function. 1212 // C11 6.9.1p12: 1213 // If the '}' that terminates a function is reached, and the value of the 1214 // function call is used by the caller, the behavior is undefined. 1215 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1216 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1217 bool ShouldEmitUnreachable = 1218 CGM.getCodeGenOpts().StrictReturn || 1219 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1220 if (SanOpts.has(SanitizerKind::Return)) { 1221 SanitizerScope SanScope(this); 1222 llvm::Value *IsFalse = Builder.getFalse(); 1223 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1224 SanitizerHandler::MissingReturn, 1225 EmitCheckSourceLocation(FD->getLocation()), None); 1226 } else if (ShouldEmitUnreachable) { 1227 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1228 EmitTrapCall(llvm::Intrinsic::trap); 1229 } 1230 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1231 Builder.CreateUnreachable(); 1232 Builder.ClearInsertionPoint(); 1233 } 1234 } 1235 1236 // Emit the standard function epilogue. 1237 FinishFunction(BodyRange.getEnd()); 1238 1239 // If we haven't marked the function nothrow through other means, do 1240 // a quick pass now to see if we can. 1241 if (!CurFn->doesNotThrow()) 1242 TryMarkNoThrow(CurFn); 1243 } 1244 1245 /// ContainsLabel - Return true if the statement contains a label in it. If 1246 /// this statement is not executed normally, it not containing a label means 1247 /// that we can just remove the code. 1248 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1249 // Null statement, not a label! 1250 if (!S) return false; 1251 1252 // If this is a label, we have to emit the code, consider something like: 1253 // if (0) { ... foo: bar(); } goto foo; 1254 // 1255 // TODO: If anyone cared, we could track __label__'s, since we know that you 1256 // can't jump to one from outside their declared region. 1257 if (isa<LabelStmt>(S)) 1258 return true; 1259 1260 // If this is a case/default statement, and we haven't seen a switch, we have 1261 // to emit the code. 1262 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1263 return true; 1264 1265 // If this is a switch statement, we want to ignore cases below it. 1266 if (isa<SwitchStmt>(S)) 1267 IgnoreCaseStmts = true; 1268 1269 // Scan subexpressions for verboten labels. 1270 for (const Stmt *SubStmt : S->children()) 1271 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1272 return true; 1273 1274 return false; 1275 } 1276 1277 /// containsBreak - Return true if the statement contains a break out of it. 1278 /// If the statement (recursively) contains a switch or loop with a break 1279 /// inside of it, this is fine. 1280 bool CodeGenFunction::containsBreak(const Stmt *S) { 1281 // Null statement, not a label! 1282 if (!S) return false; 1283 1284 // If this is a switch or loop that defines its own break scope, then we can 1285 // include it and anything inside of it. 1286 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1287 isa<ForStmt>(S)) 1288 return false; 1289 1290 if (isa<BreakStmt>(S)) 1291 return true; 1292 1293 // Scan subexpressions for verboten breaks. 1294 for (const Stmt *SubStmt : S->children()) 1295 if (containsBreak(SubStmt)) 1296 return true; 1297 1298 return false; 1299 } 1300 1301 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1302 if (!S) return false; 1303 1304 // Some statement kinds add a scope and thus never add a decl to the current 1305 // scope. Note, this list is longer than the list of statements that might 1306 // have an unscoped decl nested within them, but this way is conservatively 1307 // correct even if more statement kinds are added. 1308 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1309 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1310 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1311 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1312 return false; 1313 1314 if (isa<DeclStmt>(S)) 1315 return true; 1316 1317 for (const Stmt *SubStmt : S->children()) 1318 if (mightAddDeclToScope(SubStmt)) 1319 return true; 1320 1321 return false; 1322 } 1323 1324 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1325 /// to a constant, or if it does but contains a label, return false. If it 1326 /// constant folds return true and set the boolean result in Result. 1327 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1328 bool &ResultBool, 1329 bool AllowLabels) { 1330 llvm::APSInt ResultInt; 1331 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1332 return false; 1333 1334 ResultBool = ResultInt.getBoolValue(); 1335 return true; 1336 } 1337 1338 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1339 /// to a constant, or if it does but contains a label, return false. If it 1340 /// constant folds return true and set the folded value. 1341 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1342 llvm::APSInt &ResultInt, 1343 bool AllowLabels) { 1344 // FIXME: Rename and handle conversion of other evaluatable things 1345 // to bool. 1346 llvm::APSInt Int; 1347 if (!Cond->EvaluateAsInt(Int, getContext())) 1348 return false; // Not foldable, not integer or not fully evaluatable. 1349 1350 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1351 return false; // Contains a label. 1352 1353 ResultInt = Int; 1354 return true; 1355 } 1356 1357 1358 1359 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1360 /// statement) to the specified blocks. Based on the condition, this might try 1361 /// to simplify the codegen of the conditional based on the branch. 1362 /// 1363 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1364 llvm::BasicBlock *TrueBlock, 1365 llvm::BasicBlock *FalseBlock, 1366 uint64_t TrueCount) { 1367 Cond = Cond->IgnoreParens(); 1368 1369 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1370 1371 // Handle X && Y in a condition. 1372 if (CondBOp->getOpcode() == BO_LAnd) { 1373 // If we have "1 && X", simplify the code. "0 && X" would have constant 1374 // folded if the case was simple enough. 1375 bool ConstantBool = false; 1376 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1377 ConstantBool) { 1378 // br(1 && X) -> br(X). 1379 incrementProfileCounter(CondBOp); 1380 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1381 TrueCount); 1382 } 1383 1384 // If we have "X && 1", simplify the code to use an uncond branch. 1385 // "X && 0" would have been constant folded to 0. 1386 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1387 ConstantBool) { 1388 // br(X && 1) -> br(X). 1389 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1390 TrueCount); 1391 } 1392 1393 // Emit the LHS as a conditional. If the LHS conditional is false, we 1394 // want to jump to the FalseBlock. 1395 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1396 // The counter tells us how often we evaluate RHS, and all of TrueCount 1397 // can be propagated to that branch. 1398 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1399 1400 ConditionalEvaluation eval(*this); 1401 { 1402 ApplyDebugLocation DL(*this, Cond); 1403 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1404 EmitBlock(LHSTrue); 1405 } 1406 1407 incrementProfileCounter(CondBOp); 1408 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1409 1410 // Any temporaries created here are conditional. 1411 eval.begin(*this); 1412 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1413 eval.end(*this); 1414 1415 return; 1416 } 1417 1418 if (CondBOp->getOpcode() == BO_LOr) { 1419 // If we have "0 || X", simplify the code. "1 || X" would have constant 1420 // folded if the case was simple enough. 1421 bool ConstantBool = false; 1422 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1423 !ConstantBool) { 1424 // br(0 || X) -> br(X). 1425 incrementProfileCounter(CondBOp); 1426 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1427 TrueCount); 1428 } 1429 1430 // If we have "X || 0", simplify the code to use an uncond branch. 1431 // "X || 1" would have been constant folded to 1. 1432 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1433 !ConstantBool) { 1434 // br(X || 0) -> br(X). 1435 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1436 TrueCount); 1437 } 1438 1439 // Emit the LHS as a conditional. If the LHS conditional is true, we 1440 // want to jump to the TrueBlock. 1441 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1442 // We have the count for entry to the RHS and for the whole expression 1443 // being true, so we can divy up True count between the short circuit and 1444 // the RHS. 1445 uint64_t LHSCount = 1446 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1447 uint64_t RHSCount = TrueCount - LHSCount; 1448 1449 ConditionalEvaluation eval(*this); 1450 { 1451 ApplyDebugLocation DL(*this, Cond); 1452 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1453 EmitBlock(LHSFalse); 1454 } 1455 1456 incrementProfileCounter(CondBOp); 1457 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1458 1459 // Any temporaries created here are conditional. 1460 eval.begin(*this); 1461 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1462 1463 eval.end(*this); 1464 1465 return; 1466 } 1467 } 1468 1469 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1470 // br(!x, t, f) -> br(x, f, t) 1471 if (CondUOp->getOpcode() == UO_LNot) { 1472 // Negate the count. 1473 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1474 // Negate the condition and swap the destination blocks. 1475 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1476 FalseCount); 1477 } 1478 } 1479 1480 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1481 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1482 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1483 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1484 1485 ConditionalEvaluation cond(*this); 1486 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1487 getProfileCount(CondOp)); 1488 1489 // When computing PGO branch weights, we only know the overall count for 1490 // the true block. This code is essentially doing tail duplication of the 1491 // naive code-gen, introducing new edges for which counts are not 1492 // available. Divide the counts proportionally between the LHS and RHS of 1493 // the conditional operator. 1494 uint64_t LHSScaledTrueCount = 0; 1495 if (TrueCount) { 1496 double LHSRatio = 1497 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1498 LHSScaledTrueCount = TrueCount * LHSRatio; 1499 } 1500 1501 cond.begin(*this); 1502 EmitBlock(LHSBlock); 1503 incrementProfileCounter(CondOp); 1504 { 1505 ApplyDebugLocation DL(*this, Cond); 1506 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1507 LHSScaledTrueCount); 1508 } 1509 cond.end(*this); 1510 1511 cond.begin(*this); 1512 EmitBlock(RHSBlock); 1513 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1514 TrueCount - LHSScaledTrueCount); 1515 cond.end(*this); 1516 1517 return; 1518 } 1519 1520 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1521 // Conditional operator handling can give us a throw expression as a 1522 // condition for a case like: 1523 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1524 // Fold this to: 1525 // br(c, throw x, br(y, t, f)) 1526 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1527 return; 1528 } 1529 1530 // If the branch has a condition wrapped by __builtin_unpredictable, 1531 // create metadata that specifies that the branch is unpredictable. 1532 // Don't bother if not optimizing because that metadata would not be used. 1533 llvm::MDNode *Unpredictable = nullptr; 1534 auto *Call = dyn_cast<CallExpr>(Cond); 1535 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1536 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1537 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1538 llvm::MDBuilder MDHelper(getLLVMContext()); 1539 Unpredictable = MDHelper.createUnpredictable(); 1540 } 1541 } 1542 1543 // Create branch weights based on the number of times we get here and the 1544 // number of times the condition should be true. 1545 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1546 llvm::MDNode *Weights = 1547 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1548 1549 // Emit the code with the fully general case. 1550 llvm::Value *CondV; 1551 { 1552 ApplyDebugLocation DL(*this, Cond); 1553 CondV = EvaluateExprAsBool(Cond); 1554 } 1555 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1556 } 1557 1558 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1559 /// specified stmt yet. 1560 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1561 CGM.ErrorUnsupported(S, Type); 1562 } 1563 1564 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1565 /// variable-length array whose elements have a non-zero bit-pattern. 1566 /// 1567 /// \param baseType the inner-most element type of the array 1568 /// \param src - a char* pointing to the bit-pattern for a single 1569 /// base element of the array 1570 /// \param sizeInChars - the total size of the VLA, in chars 1571 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1572 Address dest, Address src, 1573 llvm::Value *sizeInChars) { 1574 CGBuilderTy &Builder = CGF.Builder; 1575 1576 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1577 llvm::Value *baseSizeInChars 1578 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1579 1580 Address begin = 1581 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1582 llvm::Value *end = 1583 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1584 1585 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1586 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1587 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1588 1589 // Make a loop over the VLA. C99 guarantees that the VLA element 1590 // count must be nonzero. 1591 CGF.EmitBlock(loopBB); 1592 1593 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1594 cur->addIncoming(begin.getPointer(), originBB); 1595 1596 CharUnits curAlign = 1597 dest.getAlignment().alignmentOfArrayElement(baseSize); 1598 1599 // memcpy the individual element bit-pattern. 1600 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1601 /*volatile*/ false); 1602 1603 // Go to the next element. 1604 llvm::Value *next = 1605 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1606 1607 // Leave if that's the end of the VLA. 1608 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1609 Builder.CreateCondBr(done, contBB, loopBB); 1610 cur->addIncoming(next, loopBB); 1611 1612 CGF.EmitBlock(contBB); 1613 } 1614 1615 void 1616 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1617 // Ignore empty classes in C++. 1618 if (getLangOpts().CPlusPlus) { 1619 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1620 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1621 return; 1622 } 1623 } 1624 1625 // Cast the dest ptr to the appropriate i8 pointer type. 1626 if (DestPtr.getElementType() != Int8Ty) 1627 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1628 1629 // Get size and alignment info for this aggregate. 1630 CharUnits size = getContext().getTypeSizeInChars(Ty); 1631 1632 llvm::Value *SizeVal; 1633 const VariableArrayType *vla; 1634 1635 // Don't bother emitting a zero-byte memset. 1636 if (size.isZero()) { 1637 // But note that getTypeInfo returns 0 for a VLA. 1638 if (const VariableArrayType *vlaType = 1639 dyn_cast_or_null<VariableArrayType>( 1640 getContext().getAsArrayType(Ty))) { 1641 QualType eltType; 1642 llvm::Value *numElts; 1643 std::tie(numElts, eltType) = getVLASize(vlaType); 1644 1645 SizeVal = numElts; 1646 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1647 if (!eltSize.isOne()) 1648 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1649 vla = vlaType; 1650 } else { 1651 return; 1652 } 1653 } else { 1654 SizeVal = CGM.getSize(size); 1655 vla = nullptr; 1656 } 1657 1658 // If the type contains a pointer to data member we can't memset it to zero. 1659 // Instead, create a null constant and copy it to the destination. 1660 // TODO: there are other patterns besides zero that we can usefully memset, 1661 // like -1, which happens to be the pattern used by member-pointers. 1662 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1663 // For a VLA, emit a single element, then splat that over the VLA. 1664 if (vla) Ty = getContext().getBaseElementType(vla); 1665 1666 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1667 1668 llvm::GlobalVariable *NullVariable = 1669 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1670 /*isConstant=*/true, 1671 llvm::GlobalVariable::PrivateLinkage, 1672 NullConstant, Twine()); 1673 CharUnits NullAlign = DestPtr.getAlignment(); 1674 NullVariable->setAlignment(NullAlign.getQuantity()); 1675 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1676 NullAlign); 1677 1678 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1679 1680 // Get and call the appropriate llvm.memcpy overload. 1681 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1682 return; 1683 } 1684 1685 // Otherwise, just memset the whole thing to zero. This is legal 1686 // because in LLVM, all default initializers (other than the ones we just 1687 // handled above) are guaranteed to have a bit pattern of all zeros. 1688 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1689 } 1690 1691 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1692 // Make sure that there is a block for the indirect goto. 1693 if (!IndirectBranch) 1694 GetIndirectGotoBlock(); 1695 1696 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1697 1698 // Make sure the indirect branch includes all of the address-taken blocks. 1699 IndirectBranch->addDestination(BB); 1700 return llvm::BlockAddress::get(CurFn, BB); 1701 } 1702 1703 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1704 // If we already made the indirect branch for indirect goto, return its block. 1705 if (IndirectBranch) return IndirectBranch->getParent(); 1706 1707 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1708 1709 // Create the PHI node that indirect gotos will add entries to. 1710 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1711 "indirect.goto.dest"); 1712 1713 // Create the indirect branch instruction. 1714 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1715 return IndirectBranch->getParent(); 1716 } 1717 1718 /// Computes the length of an array in elements, as well as the base 1719 /// element type and a properly-typed first element pointer. 1720 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1721 QualType &baseType, 1722 Address &addr) { 1723 const ArrayType *arrayType = origArrayType; 1724 1725 // If it's a VLA, we have to load the stored size. Note that 1726 // this is the size of the VLA in bytes, not its size in elements. 1727 llvm::Value *numVLAElements = nullptr; 1728 if (isa<VariableArrayType>(arrayType)) { 1729 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1730 1731 // Walk into all VLAs. This doesn't require changes to addr, 1732 // which has type T* where T is the first non-VLA element type. 1733 do { 1734 QualType elementType = arrayType->getElementType(); 1735 arrayType = getContext().getAsArrayType(elementType); 1736 1737 // If we only have VLA components, 'addr' requires no adjustment. 1738 if (!arrayType) { 1739 baseType = elementType; 1740 return numVLAElements; 1741 } 1742 } while (isa<VariableArrayType>(arrayType)); 1743 1744 // We get out here only if we find a constant array type 1745 // inside the VLA. 1746 } 1747 1748 // We have some number of constant-length arrays, so addr should 1749 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1750 // down to the first element of addr. 1751 SmallVector<llvm::Value*, 8> gepIndices; 1752 1753 // GEP down to the array type. 1754 llvm::ConstantInt *zero = Builder.getInt32(0); 1755 gepIndices.push_back(zero); 1756 1757 uint64_t countFromCLAs = 1; 1758 QualType eltType; 1759 1760 llvm::ArrayType *llvmArrayType = 1761 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1762 while (llvmArrayType) { 1763 assert(isa<ConstantArrayType>(arrayType)); 1764 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1765 == llvmArrayType->getNumElements()); 1766 1767 gepIndices.push_back(zero); 1768 countFromCLAs *= llvmArrayType->getNumElements(); 1769 eltType = arrayType->getElementType(); 1770 1771 llvmArrayType = 1772 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1773 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1774 assert((!llvmArrayType || arrayType) && 1775 "LLVM and Clang types are out-of-synch"); 1776 } 1777 1778 if (arrayType) { 1779 // From this point onwards, the Clang array type has been emitted 1780 // as some other type (probably a packed struct). Compute the array 1781 // size, and just emit the 'begin' expression as a bitcast. 1782 while (arrayType) { 1783 countFromCLAs *= 1784 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1785 eltType = arrayType->getElementType(); 1786 arrayType = getContext().getAsArrayType(eltType); 1787 } 1788 1789 llvm::Type *baseType = ConvertType(eltType); 1790 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1791 } else { 1792 // Create the actual GEP. 1793 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1794 gepIndices, "array.begin"), 1795 addr.getAlignment()); 1796 } 1797 1798 baseType = eltType; 1799 1800 llvm::Value *numElements 1801 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1802 1803 // If we had any VLA dimensions, factor them in. 1804 if (numVLAElements) 1805 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1806 1807 return numElements; 1808 } 1809 1810 std::pair<llvm::Value*, QualType> 1811 CodeGenFunction::getVLASize(QualType type) { 1812 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1813 assert(vla && "type was not a variable array type!"); 1814 return getVLASize(vla); 1815 } 1816 1817 std::pair<llvm::Value*, QualType> 1818 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1819 // The number of elements so far; always size_t. 1820 llvm::Value *numElements = nullptr; 1821 1822 QualType elementType; 1823 do { 1824 elementType = type->getElementType(); 1825 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1826 assert(vlaSize && "no size for VLA!"); 1827 assert(vlaSize->getType() == SizeTy); 1828 1829 if (!numElements) { 1830 numElements = vlaSize; 1831 } else { 1832 // It's undefined behavior if this wraps around, so mark it that way. 1833 // FIXME: Teach -fsanitize=undefined to trap this. 1834 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1835 } 1836 } while ((type = getContext().getAsVariableArrayType(elementType))); 1837 1838 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1839 } 1840 1841 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1842 assert(type->isVariablyModifiedType() && 1843 "Must pass variably modified type to EmitVLASizes!"); 1844 1845 EnsureInsertPoint(); 1846 1847 // We're going to walk down into the type and look for VLA 1848 // expressions. 1849 do { 1850 assert(type->isVariablyModifiedType()); 1851 1852 const Type *ty = type.getTypePtr(); 1853 switch (ty->getTypeClass()) { 1854 1855 #define TYPE(Class, Base) 1856 #define ABSTRACT_TYPE(Class, Base) 1857 #define NON_CANONICAL_TYPE(Class, Base) 1858 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1859 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1860 #include "clang/AST/TypeNodes.def" 1861 llvm_unreachable("unexpected dependent type!"); 1862 1863 // These types are never variably-modified. 1864 case Type::Builtin: 1865 case Type::Complex: 1866 case Type::Vector: 1867 case Type::ExtVector: 1868 case Type::Record: 1869 case Type::Enum: 1870 case Type::Elaborated: 1871 case Type::TemplateSpecialization: 1872 case Type::ObjCTypeParam: 1873 case Type::ObjCObject: 1874 case Type::ObjCInterface: 1875 case Type::ObjCObjectPointer: 1876 llvm_unreachable("type class is never variably-modified!"); 1877 1878 case Type::Adjusted: 1879 type = cast<AdjustedType>(ty)->getAdjustedType(); 1880 break; 1881 1882 case Type::Decayed: 1883 type = cast<DecayedType>(ty)->getPointeeType(); 1884 break; 1885 1886 case Type::Pointer: 1887 type = cast<PointerType>(ty)->getPointeeType(); 1888 break; 1889 1890 case Type::BlockPointer: 1891 type = cast<BlockPointerType>(ty)->getPointeeType(); 1892 break; 1893 1894 case Type::LValueReference: 1895 case Type::RValueReference: 1896 type = cast<ReferenceType>(ty)->getPointeeType(); 1897 break; 1898 1899 case Type::MemberPointer: 1900 type = cast<MemberPointerType>(ty)->getPointeeType(); 1901 break; 1902 1903 case Type::ConstantArray: 1904 case Type::IncompleteArray: 1905 // Losing element qualification here is fine. 1906 type = cast<ArrayType>(ty)->getElementType(); 1907 break; 1908 1909 case Type::VariableArray: { 1910 // Losing element qualification here is fine. 1911 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1912 1913 // Unknown size indication requires no size computation. 1914 // Otherwise, evaluate and record it. 1915 if (const Expr *size = vat->getSizeExpr()) { 1916 // It's possible that we might have emitted this already, 1917 // e.g. with a typedef and a pointer to it. 1918 llvm::Value *&entry = VLASizeMap[size]; 1919 if (!entry) { 1920 llvm::Value *Size = EmitScalarExpr(size); 1921 1922 // C11 6.7.6.2p5: 1923 // If the size is an expression that is not an integer constant 1924 // expression [...] each time it is evaluated it shall have a value 1925 // greater than zero. 1926 if (SanOpts.has(SanitizerKind::VLABound) && 1927 size->getType()->isSignedIntegerType()) { 1928 SanitizerScope SanScope(this); 1929 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1930 llvm::Constant *StaticArgs[] = { 1931 EmitCheckSourceLocation(size->getLocStart()), 1932 EmitCheckTypeDescriptor(size->getType()) 1933 }; 1934 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1935 SanitizerKind::VLABound), 1936 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1937 } 1938 1939 // Always zexting here would be wrong if it weren't 1940 // undefined behavior to have a negative bound. 1941 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1942 } 1943 } 1944 type = vat->getElementType(); 1945 break; 1946 } 1947 1948 case Type::FunctionProto: 1949 case Type::FunctionNoProto: 1950 type = cast<FunctionType>(ty)->getReturnType(); 1951 break; 1952 1953 case Type::Paren: 1954 case Type::TypeOf: 1955 case Type::UnaryTransform: 1956 case Type::Attributed: 1957 case Type::SubstTemplateTypeParm: 1958 case Type::PackExpansion: 1959 // Keep walking after single level desugaring. 1960 type = type.getSingleStepDesugaredType(getContext()); 1961 break; 1962 1963 case Type::Typedef: 1964 case Type::Decltype: 1965 case Type::Auto: 1966 case Type::DeducedTemplateSpecialization: 1967 // Stop walking: nothing to do. 1968 return; 1969 1970 case Type::TypeOfExpr: 1971 // Stop walking: emit typeof expression. 1972 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1973 return; 1974 1975 case Type::Atomic: 1976 type = cast<AtomicType>(ty)->getValueType(); 1977 break; 1978 1979 case Type::Pipe: 1980 type = cast<PipeType>(ty)->getElementType(); 1981 break; 1982 } 1983 } while (type->isVariablyModifiedType()); 1984 } 1985 1986 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1987 if (getContext().getBuiltinVaListType()->isArrayType()) 1988 return EmitPointerWithAlignment(E); 1989 return EmitLValue(E).getAddress(); 1990 } 1991 1992 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1993 return EmitLValue(E).getAddress(); 1994 } 1995 1996 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1997 const APValue &Init) { 1998 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1999 if (CGDebugInfo *Dbg = getDebugInfo()) 2000 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2001 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2002 } 2003 2004 CodeGenFunction::PeepholeProtection 2005 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2006 // At the moment, the only aggressive peephole we do in IR gen 2007 // is trunc(zext) folding, but if we add more, we can easily 2008 // extend this protection. 2009 2010 if (!rvalue.isScalar()) return PeepholeProtection(); 2011 llvm::Value *value = rvalue.getScalarVal(); 2012 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2013 2014 // Just make an extra bitcast. 2015 assert(HaveInsertPoint()); 2016 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2017 Builder.GetInsertBlock()); 2018 2019 PeepholeProtection protection; 2020 protection.Inst = inst; 2021 return protection; 2022 } 2023 2024 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2025 if (!protection.Inst) return; 2026 2027 // In theory, we could try to duplicate the peepholes now, but whatever. 2028 protection.Inst->eraseFromParent(); 2029 } 2030 2031 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2032 llvm::Value *AnnotatedVal, 2033 StringRef AnnotationStr, 2034 SourceLocation Location) { 2035 llvm::Value *Args[4] = { 2036 AnnotatedVal, 2037 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2038 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2039 CGM.EmitAnnotationLineNo(Location) 2040 }; 2041 return Builder.CreateCall(AnnotationFn, Args); 2042 } 2043 2044 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2045 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2046 // FIXME We create a new bitcast for every annotation because that's what 2047 // llvm-gcc was doing. 2048 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2049 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2050 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2051 I->getAnnotation(), D->getLocation()); 2052 } 2053 2054 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2055 Address Addr) { 2056 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2057 llvm::Value *V = Addr.getPointer(); 2058 llvm::Type *VTy = V->getType(); 2059 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2060 CGM.Int8PtrTy); 2061 2062 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2063 // FIXME Always emit the cast inst so we can differentiate between 2064 // annotation on the first field of a struct and annotation on the struct 2065 // itself. 2066 if (VTy != CGM.Int8PtrTy) 2067 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2068 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2069 V = Builder.CreateBitCast(V, VTy); 2070 } 2071 2072 return Address(V, Addr.getAlignment()); 2073 } 2074 2075 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2076 2077 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2078 : CGF(CGF) { 2079 assert(!CGF->IsSanitizerScope); 2080 CGF->IsSanitizerScope = true; 2081 } 2082 2083 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2084 CGF->IsSanitizerScope = false; 2085 } 2086 2087 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2088 const llvm::Twine &Name, 2089 llvm::BasicBlock *BB, 2090 llvm::BasicBlock::iterator InsertPt) const { 2091 LoopStack.InsertHelper(I); 2092 if (IsSanitizerScope) 2093 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2094 } 2095 2096 void CGBuilderInserter::InsertHelper( 2097 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2098 llvm::BasicBlock::iterator InsertPt) const { 2099 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2100 if (CGF) 2101 CGF->InsertHelper(I, Name, BB, InsertPt); 2102 } 2103 2104 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2105 CodeGenModule &CGM, const FunctionDecl *FD, 2106 std::string &FirstMissing) { 2107 // If there aren't any required features listed then go ahead and return. 2108 if (ReqFeatures.empty()) 2109 return false; 2110 2111 // Now build up the set of caller features and verify that all the required 2112 // features are there. 2113 llvm::StringMap<bool> CallerFeatureMap; 2114 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2115 2116 // If we have at least one of the features in the feature list return 2117 // true, otherwise return false. 2118 return std::all_of( 2119 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2120 SmallVector<StringRef, 1> OrFeatures; 2121 Feature.split(OrFeatures, "|"); 2122 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2123 [&](StringRef Feature) { 2124 if (!CallerFeatureMap.lookup(Feature)) { 2125 FirstMissing = Feature.str(); 2126 return false; 2127 } 2128 return true; 2129 }); 2130 }); 2131 } 2132 2133 // Emits an error if we don't have a valid set of target features for the 2134 // called function. 2135 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2136 const FunctionDecl *TargetDecl) { 2137 // Early exit if this is an indirect call. 2138 if (!TargetDecl) 2139 return; 2140 2141 // Get the current enclosing function if it exists. If it doesn't 2142 // we can't check the target features anyhow. 2143 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2144 if (!FD) 2145 return; 2146 2147 // Grab the required features for the call. For a builtin this is listed in 2148 // the td file with the default cpu, for an always_inline function this is any 2149 // listed cpu and any listed features. 2150 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2151 std::string MissingFeature; 2152 if (BuiltinID) { 2153 SmallVector<StringRef, 1> ReqFeatures; 2154 const char *FeatureList = 2155 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2156 // Return if the builtin doesn't have any required features. 2157 if (!FeatureList || StringRef(FeatureList) == "") 2158 return; 2159 StringRef(FeatureList).split(ReqFeatures, ","); 2160 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2161 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2162 << TargetDecl->getDeclName() 2163 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2164 2165 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2166 // Get the required features for the callee. 2167 SmallVector<StringRef, 1> ReqFeatures; 2168 llvm::StringMap<bool> CalleeFeatureMap; 2169 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2170 for (const auto &F : CalleeFeatureMap) { 2171 // Only positive features are "required". 2172 if (F.getValue()) 2173 ReqFeatures.push_back(F.getKey()); 2174 } 2175 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2176 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2177 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2178 } 2179 } 2180 2181 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2182 if (!CGM.getCodeGenOpts().SanitizeStats) 2183 return; 2184 2185 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2186 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2187 CGM.getSanStats().create(IRB, SSK); 2188 } 2189 2190 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2191 if (CGDebugInfo *DI = getDebugInfo()) 2192 return DI->SourceLocToDebugLoc(Location); 2193 2194 return llvm::DebugLoc(); 2195 } 2196