1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This coordinates the per-function state used while generating code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CodeGenModule.h"
16 #include "CGCXXABI.h"
17 #include "CGDebugInfo.h"
18 #include "CGException.h"
19 #include "clang/Basic/TargetInfo.h"
20 #include "clang/AST/APValue.h"
21 #include "clang/AST/ASTContext.h"
22 #include "clang/AST/Decl.h"
23 #include "clang/AST/DeclCXX.h"
24 #include "clang/AST/StmtCXX.h"
25 #include "clang/Frontend/CodeGenOptions.h"
26 #include "llvm/Target/TargetData.h"
27 #include "llvm/Intrinsics.h"
28 using namespace clang;
29 using namespace CodeGen;
30 
31 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm)
32   : BlockFunction(cgm, *this, Builder), CGM(cgm),
33     Target(CGM.getContext().Target),
34     Builder(cgm.getModule().getContext()),
35     NormalCleanupDest(0), EHCleanupDest(0), NextCleanupDestIndex(1),
36     ExceptionSlot(0), DebugInfo(0), IndirectBranch(0),
37     SwitchInsn(0), CaseRangeBlock(0),
38     DidCallStackSave(false), UnreachableBlock(0),
39     CXXThisDecl(0), CXXThisValue(0), CXXVTTDecl(0), CXXVTTValue(0),
40     ConditionalBranchLevel(0), TerminateLandingPad(0), TerminateHandler(0),
41     TrapBB(0) {
42 
43   // Get some frequently used types.
44   LLVMPointerWidth = Target.getPointerWidth(0);
45   llvm::LLVMContext &LLVMContext = CGM.getLLVMContext();
46   IntPtrTy = llvm::IntegerType::get(LLVMContext, LLVMPointerWidth);
47   Int32Ty  = llvm::Type::getInt32Ty(LLVMContext);
48   Int64Ty  = llvm::Type::getInt64Ty(LLVMContext);
49 
50   Exceptions = getContext().getLangOptions().Exceptions;
51   CatchUndefined = getContext().getLangOptions().CatchUndefined;
52   CGM.getCXXABI().getMangleContext().startNewFunction();
53 }
54 
55 ASTContext &CodeGenFunction::getContext() const {
56   return CGM.getContext();
57 }
58 
59 
60 const llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) {
61   return CGM.getTypes().ConvertTypeForMem(T);
62 }
63 
64 const llvm::Type *CodeGenFunction::ConvertType(QualType T) {
65   return CGM.getTypes().ConvertType(T);
66 }
67 
68 bool CodeGenFunction::hasAggregateLLVMType(QualType T) {
69   return T->isRecordType() || T->isArrayType() || T->isAnyComplexType() ||
70     T->isObjCObjectType();
71 }
72 
73 void CodeGenFunction::EmitReturnBlock() {
74   // For cleanliness, we try to avoid emitting the return block for
75   // simple cases.
76   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
77 
78   if (CurBB) {
79     assert(!CurBB->getTerminator() && "Unexpected terminated block.");
80 
81     // We have a valid insert point, reuse it if it is empty or there are no
82     // explicit jumps to the return block.
83     if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) {
84       ReturnBlock.getBlock()->replaceAllUsesWith(CurBB);
85       delete ReturnBlock.getBlock();
86     } else
87       EmitBlock(ReturnBlock.getBlock());
88     return;
89   }
90 
91   // Otherwise, if the return block is the target of a single direct
92   // branch then we can just put the code in that block instead. This
93   // cleans up functions which started with a unified return block.
94   if (ReturnBlock.getBlock()->hasOneUse()) {
95     llvm::BranchInst *BI =
96       dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin());
97     if (BI && BI->isUnconditional() &&
98         BI->getSuccessor(0) == ReturnBlock.getBlock()) {
99       // Reset insertion point and delete the branch.
100       Builder.SetInsertPoint(BI->getParent());
101       BI->eraseFromParent();
102       delete ReturnBlock.getBlock();
103       return;
104     }
105   }
106 
107   // FIXME: We are at an unreachable point, there is no reason to emit the block
108   // unless it has uses. However, we still need a place to put the debug
109   // region.end for now.
110 
111   EmitBlock(ReturnBlock.getBlock());
112 }
113 
114 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) {
115   if (!BB) return;
116   if (!BB->use_empty())
117     return CGF.CurFn->getBasicBlockList().push_back(BB);
118   delete BB;
119 }
120 
121 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) {
122   assert(BreakContinueStack.empty() &&
123          "mismatched push/pop in break/continue stack!");
124 
125   // Emit function epilog (to return).
126   EmitReturnBlock();
127 
128   EmitFunctionInstrumentation("__cyg_profile_func_exit");
129 
130   // Emit debug descriptor for function end.
131   if (CGDebugInfo *DI = getDebugInfo()) {
132     DI->setLocation(EndLoc);
133     DI->EmitFunctionEnd(Builder);
134   }
135 
136   EmitFunctionEpilog(*CurFnInfo);
137   EmitEndEHSpec(CurCodeDecl);
138 
139   assert(EHStack.empty() &&
140          "did not remove all scopes from cleanup stack!");
141 
142   // If someone did an indirect goto, emit the indirect goto block at the end of
143   // the function.
144   if (IndirectBranch) {
145     EmitBlock(IndirectBranch->getParent());
146     Builder.ClearInsertionPoint();
147   }
148 
149   // Remove the AllocaInsertPt instruction, which is just a convenience for us.
150   llvm::Instruction *Ptr = AllocaInsertPt;
151   AllocaInsertPt = 0;
152   Ptr->eraseFromParent();
153 
154   // If someone took the address of a label but never did an indirect goto, we
155   // made a zero entry PHI node, which is illegal, zap it now.
156   if (IndirectBranch) {
157     llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress());
158     if (PN->getNumIncomingValues() == 0) {
159       PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType()));
160       PN->eraseFromParent();
161     }
162   }
163 
164   EmitIfUsed(*this, RethrowBlock.getBlock());
165   EmitIfUsed(*this, TerminateLandingPad);
166   EmitIfUsed(*this, TerminateHandler);
167   EmitIfUsed(*this, UnreachableBlock);
168 
169   if (CGM.getCodeGenOpts().EmitDeclMetadata)
170     EmitDeclMetadata();
171 }
172 
173 /// ShouldInstrumentFunction - Return true if the current function should be
174 /// instrumented with __cyg_profile_func_* calls
175 bool CodeGenFunction::ShouldInstrumentFunction() {
176   if (!CGM.getCodeGenOpts().InstrumentFunctions)
177     return false;
178   if (CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>())
179     return false;
180   return true;
181 }
182 
183 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified
184 /// instrumentation function with the current function and the call site, if
185 /// function instrumentation is enabled.
186 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) {
187   if (!ShouldInstrumentFunction())
188     return;
189 
190   const llvm::PointerType *PointerTy;
191   const llvm::FunctionType *FunctionTy;
192   std::vector<const llvm::Type*> ProfileFuncArgs;
193 
194   // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site);
195   PointerTy = llvm::Type::getInt8PtrTy(VMContext);
196   ProfileFuncArgs.push_back(PointerTy);
197   ProfileFuncArgs.push_back(PointerTy);
198   FunctionTy = llvm::FunctionType::get(
199     llvm::Type::getVoidTy(VMContext),
200     ProfileFuncArgs, false);
201 
202   llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn);
203   llvm::CallInst *CallSite = Builder.CreateCall(
204     CGM.getIntrinsic(llvm::Intrinsic::returnaddress, 0, 0),
205     llvm::ConstantInt::get(Int32Ty, 0),
206     "callsite");
207 
208   Builder.CreateCall2(F,
209                       llvm::ConstantExpr::getBitCast(CurFn, PointerTy),
210                       CallSite);
211 }
212 
213 void CodeGenFunction::StartFunction(GlobalDecl GD, QualType RetTy,
214                                     llvm::Function *Fn,
215                                     const FunctionArgList &Args,
216                                     SourceLocation StartLoc) {
217   const Decl *D = GD.getDecl();
218 
219   DidCallStackSave = false;
220   CurCodeDecl = CurFuncDecl = D;
221   FnRetTy = RetTy;
222   CurFn = Fn;
223   assert(CurFn->isDeclaration() && "Function already has body?");
224 
225   // Pass inline keyword to optimizer if it appears explicitly on any
226   // declaration.
227   if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D))
228     for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(),
229            RE = FD->redecls_end(); RI != RE; ++RI)
230       if (RI->isInlineSpecified()) {
231         Fn->addFnAttr(llvm::Attribute::InlineHint);
232         break;
233       }
234 
235   llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn);
236 
237   // Create a marker to make it easy to insert allocas into the entryblock
238   // later.  Don't create this with the builder, because we don't want it
239   // folded.
240   llvm::Value *Undef = llvm::UndefValue::get(Int32Ty);
241   AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB);
242   if (Builder.isNamePreserving())
243     AllocaInsertPt->setName("allocapt");
244 
245   ReturnBlock = getJumpDestInCurrentScope("return");
246 
247   Builder.SetInsertPoint(EntryBB);
248 
249   QualType FnType = getContext().getFunctionType(RetTy, 0, 0, false, 0,
250                                                  false, false, 0, 0,
251                                                  /*FIXME?*/
252                                                  FunctionType::ExtInfo());
253 
254   // Emit subprogram debug descriptor.
255   if (CGDebugInfo *DI = getDebugInfo()) {
256     DI->setLocation(StartLoc);
257     DI->EmitFunctionStart(GD, FnType, CurFn, Builder);
258   }
259 
260   EmitFunctionInstrumentation("__cyg_profile_func_enter");
261 
262   // FIXME: Leaked.
263   // CC info is ignored, hopefully?
264   CurFnInfo = &CGM.getTypes().getFunctionInfo(FnRetTy, Args,
265                                               FunctionType::ExtInfo());
266 
267   if (RetTy->isVoidType()) {
268     // Void type; nothing to return.
269     ReturnValue = 0;
270   } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect &&
271              hasAggregateLLVMType(CurFnInfo->getReturnType())) {
272     // Indirect aggregate return; emit returned value directly into sret slot.
273     // This reduces code size, and affects correctness in C++.
274     ReturnValue = CurFn->arg_begin();
275   } else {
276     ReturnValue = CreateIRTemp(RetTy, "retval");
277   }
278 
279   EmitStartEHSpec(CurCodeDecl);
280   EmitFunctionProlog(*CurFnInfo, CurFn, Args);
281 
282   if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance())
283     CGM.getCXXABI().EmitInstanceFunctionProlog(*this);
284 
285   // If any of the arguments have a variably modified type, make sure to
286   // emit the type size.
287   for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end();
288        i != e; ++i) {
289     QualType Ty = i->second;
290 
291     if (Ty->isVariablyModifiedType())
292       EmitVLASize(Ty);
293   }
294 }
295 
296 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) {
297   const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl());
298   assert(FD->getBody());
299   EmitStmt(FD->getBody());
300 }
301 
302 /// Tries to mark the given function nounwind based on the
303 /// non-existence of any throwing calls within it.  We believe this is
304 /// lightweight enough to do at -O0.
305 static void TryMarkNoThrow(llvm::Function *F) {
306   // LLVM treats 'nounwind' on a function as part of the type, so we
307   // can't do this on functions that can be overwritten.
308   if (F->mayBeOverridden()) return;
309 
310   for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI)
311     for (llvm::BasicBlock::iterator
312            BI = FI->begin(), BE = FI->end(); BI != BE; ++BI)
313       if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI))
314         if (!Call->doesNotThrow())
315           return;
316   F->setDoesNotThrow(true);
317 }
318 
319 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn) {
320   const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl());
321 
322   // Check if we should generate debug info for this function.
323   if (CGM.getDebugInfo() && !FD->hasAttr<NoDebugAttr>())
324     DebugInfo = CGM.getDebugInfo();
325 
326   FunctionArgList Args;
327   QualType ResTy = FD->getResultType();
328 
329   CurGD = GD;
330   if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance())
331     CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args);
332 
333   if (FD->getNumParams()) {
334     const FunctionProtoType* FProto = FD->getType()->getAs<FunctionProtoType>();
335     assert(FProto && "Function def must have prototype!");
336 
337     for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i)
338       Args.push_back(std::make_pair(FD->getParamDecl(i),
339                                     FProto->getArgType(i)));
340   }
341 
342   SourceRange BodyRange;
343   if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange();
344 
345   // Emit the standard function prologue.
346   StartFunction(GD, ResTy, Fn, Args, BodyRange.getBegin());
347 
348   // Generate the body of the function.
349   if (isa<CXXDestructorDecl>(FD))
350     EmitDestructorBody(Args);
351   else if (isa<CXXConstructorDecl>(FD))
352     EmitConstructorBody(Args);
353   else
354     EmitFunctionBody(Args);
355 
356   // Emit the standard function epilogue.
357   FinishFunction(BodyRange.getEnd());
358 
359   // If we haven't marked the function nothrow through other means, do
360   // a quick pass now to see if we can.
361   if (!CurFn->doesNotThrow())
362     TryMarkNoThrow(CurFn);
363 }
364 
365 /// ContainsLabel - Return true if the statement contains a label in it.  If
366 /// this statement is not executed normally, it not containing a label means
367 /// that we can just remove the code.
368 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) {
369   // Null statement, not a label!
370   if (S == 0) return false;
371 
372   // If this is a label, we have to emit the code, consider something like:
373   // if (0) {  ...  foo:  bar(); }  goto foo;
374   if (isa<LabelStmt>(S))
375     return true;
376 
377   // If this is a case/default statement, and we haven't seen a switch, we have
378   // to emit the code.
379   if (isa<SwitchCase>(S) && !IgnoreCaseStmts)
380     return true;
381 
382   // If this is a switch statement, we want to ignore cases below it.
383   if (isa<SwitchStmt>(S))
384     IgnoreCaseStmts = true;
385 
386   // Scan subexpressions for verboten labels.
387   for (Stmt::const_child_iterator I = S->child_begin(), E = S->child_end();
388        I != E; ++I)
389     if (ContainsLabel(*I, IgnoreCaseStmts))
390       return true;
391 
392   return false;
393 }
394 
395 
396 /// ConstantFoldsToSimpleInteger - If the sepcified expression does not fold to
397 /// a constant, or if it does but contains a label, return 0.  If it constant
398 /// folds to 'true' and does not contain a label, return 1, if it constant folds
399 /// to 'false' and does not contain a label, return -1.
400 int CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond) {
401   // FIXME: Rename and handle conversion of other evaluatable things
402   // to bool.
403   Expr::EvalResult Result;
404   if (!Cond->Evaluate(Result, getContext()) || !Result.Val.isInt() ||
405       Result.HasSideEffects)
406     return 0;  // Not foldable, not integer or not fully evaluatable.
407 
408   if (CodeGenFunction::ContainsLabel(Cond))
409     return 0;  // Contains a label.
410 
411   return Result.Val.getInt().getBoolValue() ? 1 : -1;
412 }
413 
414 
415 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if
416 /// statement) to the specified blocks.  Based on the condition, this might try
417 /// to simplify the codegen of the conditional based on the branch.
418 ///
419 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond,
420                                            llvm::BasicBlock *TrueBlock,
421                                            llvm::BasicBlock *FalseBlock) {
422   if (const ParenExpr *PE = dyn_cast<ParenExpr>(Cond))
423     return EmitBranchOnBoolExpr(PE->getSubExpr(), TrueBlock, FalseBlock);
424 
425   if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) {
426     // Handle X && Y in a condition.
427     if (CondBOp->getOpcode() == BO_LAnd) {
428       // If we have "1 && X", simplify the code.  "0 && X" would have constant
429       // folded if the case was simple enough.
430       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == 1) {
431         // br(1 && X) -> br(X).
432         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
433       }
434 
435       // If we have "X && 1", simplify the code to use an uncond branch.
436       // "X && 0" would have been constant folded to 0.
437       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == 1) {
438         // br(X && 1) -> br(X).
439         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
440       }
441 
442       // Emit the LHS as a conditional.  If the LHS conditional is false, we
443       // want to jump to the FalseBlock.
444       llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true");
445       EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock);
446       EmitBlock(LHSTrue);
447 
448       // Any temporaries created here are conditional.
449       BeginConditionalBranch();
450       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
451       EndConditionalBranch();
452 
453       return;
454     } else if (CondBOp->getOpcode() == BO_LOr) {
455       // If we have "0 || X", simplify the code.  "1 || X" would have constant
456       // folded if the case was simple enough.
457       if (ConstantFoldsToSimpleInteger(CondBOp->getLHS()) == -1) {
458         // br(0 || X) -> br(X).
459         return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
460       }
461 
462       // If we have "X || 0", simplify the code to use an uncond branch.
463       // "X || 1" would have been constant folded to 1.
464       if (ConstantFoldsToSimpleInteger(CondBOp->getRHS()) == -1) {
465         // br(X || 0) -> br(X).
466         return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock);
467       }
468 
469       // Emit the LHS as a conditional.  If the LHS conditional is true, we
470       // want to jump to the TrueBlock.
471       llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false");
472       EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse);
473       EmitBlock(LHSFalse);
474 
475       // Any temporaries created here are conditional.
476       BeginConditionalBranch();
477       EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock);
478       EndConditionalBranch();
479 
480       return;
481     }
482   }
483 
484   if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) {
485     // br(!x, t, f) -> br(x, f, t)
486     if (CondUOp->getOpcode() == UO_LNot)
487       return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock);
488   }
489 
490   if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) {
491     // Handle ?: operator.
492 
493     // Just ignore GNU ?: extension.
494     if (CondOp->getLHS()) {
495       // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f))
496       llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true");
497       llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false");
498       EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock);
499       EmitBlock(LHSBlock);
500       EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock);
501       EmitBlock(RHSBlock);
502       EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock);
503       return;
504     }
505   }
506 
507   // Emit the code with the fully general case.
508   llvm::Value *CondV = EvaluateExprAsBool(Cond);
509   Builder.CreateCondBr(CondV, TrueBlock, FalseBlock);
510 }
511 
512 /// ErrorUnsupported - Print out an error that codegen doesn't support the
513 /// specified stmt yet.
514 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type,
515                                        bool OmitOnError) {
516   CGM.ErrorUnsupported(S, Type, OmitOnError);
517 }
518 
519 void
520 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) {
521   // Ignore empty classes in C++.
522   if (getContext().getLangOptions().CPlusPlus) {
523     if (const RecordType *RT = Ty->getAs<RecordType>()) {
524       if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty())
525         return;
526     }
527   }
528 
529   // Cast the dest ptr to the appropriate i8 pointer type.
530   unsigned DestAS =
531     cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace();
532   const llvm::Type *BP =
533     llvm::Type::getInt8PtrTy(VMContext, DestAS);
534   if (DestPtr->getType() != BP)
535     DestPtr = Builder.CreateBitCast(DestPtr, BP, "tmp");
536 
537   // Get size and alignment info for this aggregate.
538   std::pair<uint64_t, unsigned> TypeInfo = getContext().getTypeInfo(Ty);
539   uint64_t Size = TypeInfo.first;
540   unsigned Align = TypeInfo.second;
541 
542   // Don't bother emitting a zero-byte memset.
543   if (Size == 0)
544     return;
545 
546   llvm::ConstantInt *SizeVal = llvm::ConstantInt::get(IntPtrTy, Size / 8);
547   llvm::ConstantInt *AlignVal = Builder.getInt32(Align / 8);
548 
549   // If the type contains a pointer to data member we can't memset it to zero.
550   // Instead, create a null constant and copy it to the destination.
551   if (!CGM.getTypes().isZeroInitializable(Ty)) {
552     llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty);
553 
554     llvm::GlobalVariable *NullVariable =
555       new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(),
556                                /*isConstant=*/true,
557                                llvm::GlobalVariable::PrivateLinkage,
558                                NullConstant, llvm::Twine());
559     llvm::Value *SrcPtr =
560       Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy());
561 
562     // FIXME: variable-size types?
563 
564     // Get and call the appropriate llvm.memcpy overload.
565     llvm::Constant *Memcpy =
566       CGM.getMemCpyFn(DestPtr->getType(), SrcPtr->getType(), IntPtrTy);
567     Builder.CreateCall5(Memcpy, DestPtr, SrcPtr, SizeVal, AlignVal,
568                         /*volatile*/ Builder.getFalse());
569     return;
570   }
571 
572   // Otherwise, just memset the whole thing to zero.  This is legal
573   // because in LLVM, all default initializers (other than the ones we just
574   // handled above) are guaranteed to have a bit pattern of all zeros.
575 
576   // FIXME: Handle variable sized types.
577   Builder.CreateCall5(CGM.getMemSetFn(BP, IntPtrTy), DestPtr,
578                       Builder.getInt8(0),
579                       SizeVal, AlignVal, /*volatile*/ Builder.getFalse());
580 }
581 
582 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelStmt *L) {
583   // Make sure that there is a block for the indirect goto.
584   if (IndirectBranch == 0)
585     GetIndirectGotoBlock();
586 
587   llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock();
588 
589   // Make sure the indirect branch includes all of the address-taken blocks.
590   IndirectBranch->addDestination(BB);
591   return llvm::BlockAddress::get(CurFn, BB);
592 }
593 
594 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() {
595   // If we already made the indirect branch for indirect goto, return its block.
596   if (IndirectBranch) return IndirectBranch->getParent();
597 
598   CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto"));
599 
600   const llvm::Type *Int8PtrTy = llvm::Type::getInt8PtrTy(VMContext);
601 
602   // Create the PHI node that indirect gotos will add entries to.
603   llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, "indirect.goto.dest");
604 
605   // Create the indirect branch instruction.
606   IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal);
607   return IndirectBranch->getParent();
608 }
609 
610 llvm::Value *CodeGenFunction::GetVLASize(const VariableArrayType *VAT) {
611   llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
612 
613   assert(SizeEntry && "Did not emit size for type");
614   return SizeEntry;
615 }
616 
617 llvm::Value *CodeGenFunction::EmitVLASize(QualType Ty) {
618   assert(Ty->isVariablyModifiedType() &&
619          "Must pass variably modified type to EmitVLASizes!");
620 
621   EnsureInsertPoint();
622 
623   if (const VariableArrayType *VAT = getContext().getAsVariableArrayType(Ty)) {
624     llvm::Value *&SizeEntry = VLASizeMap[VAT->getSizeExpr()];
625 
626     if (!SizeEntry) {
627       const llvm::Type *SizeTy = ConvertType(getContext().getSizeType());
628 
629       // Get the element size;
630       QualType ElemTy = VAT->getElementType();
631       llvm::Value *ElemSize;
632       if (ElemTy->isVariableArrayType())
633         ElemSize = EmitVLASize(ElemTy);
634       else
635         ElemSize = llvm::ConstantInt::get(SizeTy,
636             getContext().getTypeSizeInChars(ElemTy).getQuantity());
637 
638       llvm::Value *NumElements = EmitScalarExpr(VAT->getSizeExpr());
639       NumElements = Builder.CreateIntCast(NumElements, SizeTy, false, "tmp");
640 
641       SizeEntry = Builder.CreateMul(ElemSize, NumElements);
642     }
643 
644     return SizeEntry;
645   }
646 
647   if (const ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
648     EmitVLASize(AT->getElementType());
649     return 0;
650   }
651 
652   const PointerType *PT = Ty->getAs<PointerType>();
653   assert(PT && "unknown VM type!");
654   EmitVLASize(PT->getPointeeType());
655   return 0;
656 }
657 
658 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) {
659   if (CGM.getContext().getBuiltinVaListType()->isArrayType())
660     return EmitScalarExpr(E);
661   return EmitLValue(E).getAddress();
662 }
663 
664 /// Pops cleanup blocks until the given savepoint is reached.
665 void CodeGenFunction::PopCleanupBlocks(EHScopeStack::stable_iterator Old) {
666   assert(Old.isValid());
667 
668   while (EHStack.stable_begin() != Old) {
669     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
670 
671     // As long as Old strictly encloses the scope's enclosing normal
672     // cleanup, we're going to emit another normal cleanup which
673     // fallthrough can propagate through.
674     bool FallThroughIsBranchThrough =
675       Old.strictlyEncloses(Scope.getEnclosingNormalCleanup());
676 
677     PopCleanupBlock(FallThroughIsBranchThrough);
678   }
679 }
680 
681 static llvm::BasicBlock *CreateNormalEntry(CodeGenFunction &CGF,
682                                            EHCleanupScope &Scope) {
683   assert(Scope.isNormalCleanup());
684   llvm::BasicBlock *Entry = Scope.getNormalBlock();
685   if (!Entry) {
686     Entry = CGF.createBasicBlock("cleanup");
687     Scope.setNormalBlock(Entry);
688   }
689   return Entry;
690 }
691 
692 static llvm::BasicBlock *CreateEHEntry(CodeGenFunction &CGF,
693                                        EHCleanupScope &Scope) {
694   assert(Scope.isEHCleanup());
695   llvm::BasicBlock *Entry = Scope.getEHBlock();
696   if (!Entry) {
697     Entry = CGF.createBasicBlock("eh.cleanup");
698     Scope.setEHBlock(Entry);
699   }
700   return Entry;
701 }
702 
703 /// Transitions the terminator of the given exit-block of a cleanup to
704 /// be a cleanup switch.
705 static llvm::SwitchInst *TransitionToCleanupSwitch(CodeGenFunction &CGF,
706                                                    llvm::BasicBlock *Block) {
707   // If it's a branch, turn it into a switch whose default
708   // destination is its original target.
709   llvm::TerminatorInst *Term = Block->getTerminator();
710   assert(Term && "can't transition block without terminator");
711 
712   if (llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Term)) {
713     assert(Br->isUnconditional());
714     llvm::LoadInst *Load =
715       new llvm::LoadInst(CGF.getNormalCleanupDestSlot(), "cleanup.dest", Term);
716     llvm::SwitchInst *Switch =
717       llvm::SwitchInst::Create(Load, Br->getSuccessor(0), 4, Block);
718     Br->eraseFromParent();
719     return Switch;
720   } else {
721     return cast<llvm::SwitchInst>(Term);
722   }
723 }
724 
725 /// Attempts to reduce a cleanup's entry block to a fallthrough.  This
726 /// is basically llvm::MergeBlockIntoPredecessor, except
727 /// simplified/optimized for the tighter constraints on cleanup blocks.
728 ///
729 /// Returns the new block, whatever it is.
730 static llvm::BasicBlock *SimplifyCleanupEntry(CodeGenFunction &CGF,
731                                               llvm::BasicBlock *Entry) {
732   llvm::BasicBlock *Pred = Entry->getSinglePredecessor();
733   if (!Pred) return Entry;
734 
735   llvm::BranchInst *Br = dyn_cast<llvm::BranchInst>(Pred->getTerminator());
736   if (!Br || Br->isConditional()) return Entry;
737   assert(Br->getSuccessor(0) == Entry);
738 
739   // If we were previously inserting at the end of the cleanup entry
740   // block, we'll need to continue inserting at the end of the
741   // predecessor.
742   bool WasInsertBlock = CGF.Builder.GetInsertBlock() == Entry;
743   assert(!WasInsertBlock || CGF.Builder.GetInsertPoint() == Entry->end());
744 
745   // Kill the branch.
746   Br->eraseFromParent();
747 
748   // Merge the blocks.
749   Pred->getInstList().splice(Pred->end(), Entry->getInstList());
750 
751   // Kill the entry block.
752   Entry->eraseFromParent();
753 
754   if (WasInsertBlock)
755     CGF.Builder.SetInsertPoint(Pred);
756 
757   return Pred;
758 }
759 
760 static void EmitCleanup(CodeGenFunction &CGF,
761                         EHScopeStack::Cleanup *Fn,
762                         bool ForEH) {
763   if (ForEH) CGF.EHStack.pushTerminate();
764   Fn->Emit(CGF, ForEH);
765   if (ForEH) CGF.EHStack.popTerminate();
766   assert(CGF.HaveInsertPoint() && "cleanup ended with no insertion point?");
767 }
768 
769 /// Pops a cleanup block.  If the block includes a normal cleanup, the
770 /// current insertion point is threaded through the cleanup, as are
771 /// any branch fixups on the cleanup.
772 void CodeGenFunction::PopCleanupBlock(bool FallthroughIsBranchThrough) {
773   assert(!EHStack.empty() && "cleanup stack is empty!");
774   assert(isa<EHCleanupScope>(*EHStack.begin()) && "top not a cleanup!");
775   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.begin());
776   assert(Scope.getFixupDepth() <= EHStack.getNumBranchFixups());
777   assert(Scope.isActive() && "cleanup was still inactive when popped!");
778 
779   // Check whether we need an EH cleanup.  This is only true if we've
780   // generated a lazy EH cleanup block.
781   bool RequiresEHCleanup = Scope.hasEHBranches();
782 
783   // Check the three conditions which might require a normal cleanup:
784 
785   // - whether there are branch fix-ups through this cleanup
786   unsigned FixupDepth = Scope.getFixupDepth();
787   bool HasFixups = EHStack.getNumBranchFixups() != FixupDepth;
788 
789   // - whether there are branch-throughs or branch-afters
790   bool HasExistingBranches = Scope.hasBranches();
791 
792   // - whether there's a fallthrough
793   llvm::BasicBlock *FallthroughSource = Builder.GetInsertBlock();
794   bool HasFallthrough = (FallthroughSource != 0);
795 
796   bool RequiresNormalCleanup = false;
797   if (Scope.isNormalCleanup() &&
798       (HasFixups || HasExistingBranches || HasFallthrough)) {
799     RequiresNormalCleanup = true;
800   }
801 
802   // If we don't need the cleanup at all, we're done.
803   if (!RequiresNormalCleanup && !RequiresEHCleanup) {
804     EHStack.popCleanup(); // safe because there are no fixups
805     assert(EHStack.getNumBranchFixups() == 0 ||
806            EHStack.hasNormalCleanups());
807     return;
808   }
809 
810   // Copy the cleanup emission data out.  Note that SmallVector
811   // guarantees maximal alignment for its buffer regardless of its
812   // type parameter.
813   llvm::SmallVector<char, 8*sizeof(void*)> CleanupBuffer;
814   CleanupBuffer.reserve(Scope.getCleanupSize());
815   memcpy(CleanupBuffer.data(),
816          Scope.getCleanupBuffer(), Scope.getCleanupSize());
817   CleanupBuffer.set_size(Scope.getCleanupSize());
818   EHScopeStack::Cleanup *Fn =
819     reinterpret_cast<EHScopeStack::Cleanup*>(CleanupBuffer.data());
820 
821   // We want to emit the EH cleanup after the normal cleanup, but go
822   // ahead and do the setup for the EH cleanup while the scope is still
823   // alive.
824   llvm::BasicBlock *EHEntry = 0;
825   llvm::SmallVector<llvm::Instruction*, 2> EHInstsToAppend;
826   if (RequiresEHCleanup) {
827     EHEntry = CreateEHEntry(*this, Scope);
828 
829     // Figure out the branch-through dest if necessary.
830     llvm::BasicBlock *EHBranchThroughDest = 0;
831     if (Scope.hasEHBranchThroughs()) {
832       assert(Scope.getEnclosingEHCleanup() != EHStack.stable_end());
833       EHScope &S = *EHStack.find(Scope.getEnclosingEHCleanup());
834       EHBranchThroughDest = CreateEHEntry(*this, cast<EHCleanupScope>(S));
835     }
836 
837     // If we have exactly one branch-after and no branch-throughs, we
838     // can dispatch it without a switch.
839     if (!Scope.hasEHBranchThroughs() &&
840         Scope.getNumEHBranchAfters() == 1) {
841       assert(!EHBranchThroughDest);
842 
843       // TODO: remove the spurious eh.cleanup.dest stores if this edge
844       // never went through any switches.
845       llvm::BasicBlock *BranchAfterDest = Scope.getEHBranchAfterBlock(0);
846       EHInstsToAppend.push_back(llvm::BranchInst::Create(BranchAfterDest));
847 
848     // Otherwise, if we have any branch-afters, we need a switch.
849     } else if (Scope.getNumEHBranchAfters()) {
850       // The default of the switch belongs to the branch-throughs if
851       // they exist.
852       llvm::BasicBlock *Default =
853         (EHBranchThroughDest ? EHBranchThroughDest : getUnreachableBlock());
854 
855       const unsigned SwitchCapacity = Scope.getNumEHBranchAfters();
856 
857       llvm::LoadInst *Load =
858         new llvm::LoadInst(getEHCleanupDestSlot(), "cleanup.dest");
859       llvm::SwitchInst *Switch =
860         llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
861 
862       EHInstsToAppend.push_back(Load);
863       EHInstsToAppend.push_back(Switch);
864 
865       for (unsigned I = 0, E = Scope.getNumEHBranchAfters(); I != E; ++I)
866         Switch->addCase(Scope.getEHBranchAfterIndex(I),
867                         Scope.getEHBranchAfterBlock(I));
868 
869     // Otherwise, we have only branch-throughs; jump to the next EH
870     // cleanup.
871     } else {
872       assert(EHBranchThroughDest);
873       EHInstsToAppend.push_back(llvm::BranchInst::Create(EHBranchThroughDest));
874     }
875   }
876 
877   if (!RequiresNormalCleanup) {
878     EHStack.popCleanup();
879   } else {
880     // As a kindof crazy internal case, branch-through fall-throughs
881     // leave the insertion point set to the end of the last cleanup.
882     bool HasPrebranchedFallthrough =
883       (HasFallthrough && FallthroughSource->getTerminator());
884     assert(!HasPrebranchedFallthrough ||
885            FallthroughSource->getTerminator()->getSuccessor(0)
886              == Scope.getNormalBlock());
887 
888     // If we have a fallthrough and no other need for the cleanup,
889     // emit it directly.
890     if (HasFallthrough && !HasPrebranchedFallthrough &&
891         !HasFixups && !HasExistingBranches) {
892 
893       // Fixups can cause us to optimistically create a normal block,
894       // only to later have no real uses for it.  Just delete it in
895       // this case.
896       // TODO: we can potentially simplify all the uses after this.
897       if (Scope.getNormalBlock()) {
898         Scope.getNormalBlock()->replaceAllUsesWith(getUnreachableBlock());
899         delete Scope.getNormalBlock();
900       }
901 
902       EHStack.popCleanup();
903 
904       EmitCleanup(*this, Fn, /*ForEH*/ false);
905 
906     // Otherwise, the best approach is to thread everything through
907     // the cleanup block and then try to clean up after ourselves.
908     } else {
909       // Force the entry block to exist.
910       llvm::BasicBlock *NormalEntry = CreateNormalEntry(*this, Scope);
911 
912       // If there's a fallthrough, we need to store the cleanup
913       // destination index.  For fall-throughs this is always zero.
914       if (HasFallthrough && !HasPrebranchedFallthrough)
915         Builder.CreateStore(Builder.getInt32(0), getNormalCleanupDestSlot());
916 
917       // Emit the entry block.  This implicitly branches to it if we
918       // have fallthrough.  All the fixups and existing branches should
919       // already be branched to it.
920       EmitBlock(NormalEntry);
921 
922       bool HasEnclosingCleanups =
923         (Scope.getEnclosingNormalCleanup() != EHStack.stable_end());
924 
925       // Compute the branch-through dest if we need it:
926       //   - if there are branch-throughs threaded through the scope
927       //   - if fall-through is a branch-through
928       //   - if there are fixups that will be optimistically forwarded
929       //     to the enclosing cleanup
930       llvm::BasicBlock *BranchThroughDest = 0;
931       if (Scope.hasBranchThroughs() ||
932           (HasFallthrough && FallthroughIsBranchThrough) ||
933           (HasFixups && HasEnclosingCleanups)) {
934         assert(HasEnclosingCleanups);
935         EHScope &S = *EHStack.find(Scope.getEnclosingNormalCleanup());
936         BranchThroughDest = CreateNormalEntry(*this, cast<EHCleanupScope>(S));
937       }
938 
939       llvm::BasicBlock *FallthroughDest = 0;
940       llvm::SmallVector<llvm::Instruction*, 2> InstsToAppend;
941 
942       // If there's exactly one branch-after and no other threads,
943       // we can route it without a switch.
944       if (!Scope.hasBranchThroughs() && !HasFixups && !HasFallthrough &&
945           Scope.getNumBranchAfters() == 1) {
946         assert(!BranchThroughDest);
947 
948         // TODO: clean up the possibly dead stores to the cleanup dest slot.
949         llvm::BasicBlock *BranchAfter = Scope.getBranchAfterBlock(0);
950         InstsToAppend.push_back(llvm::BranchInst::Create(BranchAfter));
951 
952       // Build a switch-out if we need it:
953       //   - if there are branch-afters threaded through the scope
954       //   - if fall-through is a branch-after
955       //   - if there are fixups that have nowhere left to go and
956       //     so must be immediately resolved
957       } else if (Scope.getNumBranchAfters() ||
958                  (HasFallthrough && !FallthroughIsBranchThrough) ||
959                  (HasFixups && !HasEnclosingCleanups)) {
960 
961         llvm::BasicBlock *Default =
962           (BranchThroughDest ? BranchThroughDest : getUnreachableBlock());
963 
964         // TODO: base this on the number of branch-afters and fixups
965         const unsigned SwitchCapacity = 10;
966 
967         llvm::LoadInst *Load =
968           new llvm::LoadInst(getNormalCleanupDestSlot(), "cleanup.dest");
969         llvm::SwitchInst *Switch =
970           llvm::SwitchInst::Create(Load, Default, SwitchCapacity);
971 
972         InstsToAppend.push_back(Load);
973         InstsToAppend.push_back(Switch);
974 
975         // Branch-after fallthrough.
976         if (HasFallthrough && !FallthroughIsBranchThrough) {
977           FallthroughDest = createBasicBlock("cleanup.cont");
978           Switch->addCase(Builder.getInt32(0), FallthroughDest);
979         }
980 
981         for (unsigned I = 0, E = Scope.getNumBranchAfters(); I != E; ++I) {
982           Switch->addCase(Scope.getBranchAfterIndex(I),
983                           Scope.getBranchAfterBlock(I));
984         }
985 
986         if (HasFixups && !HasEnclosingCleanups)
987           ResolveAllBranchFixups(Switch);
988       } else {
989         // We should always have a branch-through destination in this case.
990         assert(BranchThroughDest);
991         InstsToAppend.push_back(llvm::BranchInst::Create(BranchThroughDest));
992       }
993 
994       // We're finally ready to pop the cleanup.
995       EHStack.popCleanup();
996       assert(EHStack.hasNormalCleanups() == HasEnclosingCleanups);
997 
998       EmitCleanup(*this, Fn, /*ForEH*/ false);
999 
1000       // Append the prepared cleanup prologue from above.
1001       llvm::BasicBlock *NormalExit = Builder.GetInsertBlock();
1002       for (unsigned I = 0, E = InstsToAppend.size(); I != E; ++I)
1003         NormalExit->getInstList().push_back(InstsToAppend[I]);
1004 
1005       // Optimistically hope that any fixups will continue falling through.
1006       for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1007            I < E; ++I) {
1008         BranchFixup &Fixup = CGF.EHStack.getBranchFixup(I);
1009         if (!Fixup.Destination) continue;
1010         if (!Fixup.OptimisticBranchBlock) {
1011           new llvm::StoreInst(Builder.getInt32(Fixup.DestinationIndex),
1012                               getNormalCleanupDestSlot(),
1013                               Fixup.InitialBranch);
1014           Fixup.InitialBranch->setSuccessor(0, NormalEntry);
1015         }
1016         Fixup.OptimisticBranchBlock = NormalExit;
1017       }
1018 
1019       if (FallthroughDest)
1020         EmitBlock(FallthroughDest);
1021       else if (!HasFallthrough)
1022         Builder.ClearInsertionPoint();
1023 
1024       // Check whether we can merge NormalEntry into a single predecessor.
1025       // This might invalidate (non-IR) pointers to NormalEntry.
1026       llvm::BasicBlock *NewNormalEntry =
1027         SimplifyCleanupEntry(*this, NormalEntry);
1028 
1029       // If it did invalidate those pointers, and NormalEntry was the same
1030       // as NormalExit, go back and patch up the fixups.
1031       if (NewNormalEntry != NormalEntry && NormalEntry == NormalExit)
1032         for (unsigned I = FixupDepth, E = EHStack.getNumBranchFixups();
1033                I < E; ++I)
1034           CGF.EHStack.getBranchFixup(I).OptimisticBranchBlock = NewNormalEntry;
1035     }
1036   }
1037 
1038   assert(EHStack.hasNormalCleanups() || EHStack.getNumBranchFixups() == 0);
1039 
1040   // Emit the EH cleanup if required.
1041   if (RequiresEHCleanup) {
1042     CGBuilderTy::InsertPoint SavedIP = Builder.saveAndClearIP();
1043 
1044     EmitBlock(EHEntry);
1045     EmitCleanup(*this, Fn, /*ForEH*/ true);
1046 
1047     // Append the prepared cleanup prologue from above.
1048     llvm::BasicBlock *EHExit = Builder.GetInsertBlock();
1049     for (unsigned I = 0, E = EHInstsToAppend.size(); I != E; ++I)
1050       EHExit->getInstList().push_back(EHInstsToAppend[I]);
1051 
1052     Builder.restoreIP(SavedIP);
1053 
1054     SimplifyCleanupEntry(*this, EHEntry);
1055   }
1056 }
1057 
1058 /// Terminate the current block by emitting a branch which might leave
1059 /// the current cleanup-protected scope.  The target scope may not yet
1060 /// be known, in which case this will require a fixup.
1061 ///
1062 /// As a side-effect, this method clears the insertion point.
1063 void CodeGenFunction::EmitBranchThroughCleanup(JumpDest Dest) {
1064   assert(Dest.getScopeDepth().encloses(EHStack.getInnermostNormalCleanup())
1065          && "stale jump destination");
1066 
1067   if (!HaveInsertPoint())
1068     return;
1069 
1070   // Create the branch.
1071   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1072 
1073   // Calculate the innermost active normal cleanup.
1074   EHScopeStack::stable_iterator
1075     TopCleanup = EHStack.getInnermostActiveNormalCleanup();
1076 
1077   // If we're not in an active normal cleanup scope, or if the
1078   // destination scope is within the innermost active normal cleanup
1079   // scope, we don't need to worry about fixups.
1080   if (TopCleanup == EHStack.stable_end() ||
1081       TopCleanup.encloses(Dest.getScopeDepth())) { // works for invalid
1082     Builder.ClearInsertionPoint();
1083     return;
1084   }
1085 
1086   // If we can't resolve the destination cleanup scope, just add this
1087   // to the current cleanup scope as a branch fixup.
1088   if (!Dest.getScopeDepth().isValid()) {
1089     BranchFixup &Fixup = EHStack.addBranchFixup();
1090     Fixup.Destination = Dest.getBlock();
1091     Fixup.DestinationIndex = Dest.getDestIndex();
1092     Fixup.InitialBranch = BI;
1093     Fixup.OptimisticBranchBlock = 0;
1094 
1095     Builder.ClearInsertionPoint();
1096     return;
1097   }
1098 
1099   // Otherwise, thread through all the normal cleanups in scope.
1100 
1101   // Store the index at the start.
1102   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1103   new llvm::StoreInst(Index, getNormalCleanupDestSlot(), BI);
1104 
1105   // Adjust BI to point to the first cleanup block.
1106   {
1107     EHCleanupScope &Scope =
1108       cast<EHCleanupScope>(*EHStack.find(TopCleanup));
1109     BI->setSuccessor(0, CreateNormalEntry(*this, Scope));
1110   }
1111 
1112   // Add this destination to all the scopes involved.
1113   EHScopeStack::stable_iterator I = TopCleanup;
1114   EHScopeStack::stable_iterator E = Dest.getScopeDepth();
1115   if (E.strictlyEncloses(I)) {
1116     while (true) {
1117       EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1118       assert(Scope.isNormalCleanup());
1119       I = Scope.getEnclosingNormalCleanup();
1120 
1121       // If this is the last cleanup we're propagating through, tell it
1122       // that there's a resolved jump moving through it.
1123       if (!E.strictlyEncloses(I)) {
1124         Scope.addBranchAfter(Index, Dest.getBlock());
1125         break;
1126       }
1127 
1128       // Otherwise, tell the scope that there's a jump propoagating
1129       // through it.  If this isn't new information, all the rest of
1130       // the work has been done before.
1131       if (!Scope.addBranchThrough(Dest.getBlock()))
1132         break;
1133     }
1134   }
1135 
1136   Builder.ClearInsertionPoint();
1137 }
1138 
1139 void CodeGenFunction::EmitBranchThroughEHCleanup(UnwindDest Dest) {
1140   // We should never get invalid scope depths for an UnwindDest; that
1141   // implies that the destination wasn't set up correctly.
1142   assert(Dest.getScopeDepth().isValid() && "invalid scope depth on EH dest?");
1143 
1144   if (!HaveInsertPoint())
1145     return;
1146 
1147   // Create the branch.
1148   llvm::BranchInst *BI = Builder.CreateBr(Dest.getBlock());
1149 
1150   // Calculate the innermost active cleanup.
1151   EHScopeStack::stable_iterator
1152     InnermostCleanup = EHStack.getInnermostActiveEHCleanup();
1153 
1154   // If the destination is in the same EH cleanup scope as us, we
1155   // don't need to thread through anything.
1156   if (InnermostCleanup.encloses(Dest.getScopeDepth())) {
1157     Builder.ClearInsertionPoint();
1158     return;
1159   }
1160   assert(InnermostCleanup != EHStack.stable_end());
1161 
1162   // Store the index at the start.
1163   llvm::ConstantInt *Index = Builder.getInt32(Dest.getDestIndex());
1164   new llvm::StoreInst(Index, getEHCleanupDestSlot(), BI);
1165 
1166   // Adjust BI to point to the first cleanup block.
1167   {
1168     EHCleanupScope &Scope =
1169       cast<EHCleanupScope>(*EHStack.find(InnermostCleanup));
1170     BI->setSuccessor(0, CreateEHEntry(*this, Scope));
1171   }
1172 
1173   // Add this destination to all the scopes involved.
1174   for (EHScopeStack::stable_iterator
1175          I = InnermostCleanup, E = Dest.getScopeDepth(); ; ) {
1176     assert(E.strictlyEncloses(I));
1177     EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(I));
1178     assert(Scope.isEHCleanup());
1179     I = Scope.getEnclosingEHCleanup();
1180 
1181     // If this is the last cleanup we're propagating through, add this
1182     // as a branch-after.
1183     if (I == E) {
1184       Scope.addEHBranchAfter(Index, Dest.getBlock());
1185       break;
1186     }
1187 
1188     // Otherwise, add it as a branch-through.  If this isn't new
1189     // information, all the rest of the work has been done before.
1190     if (!Scope.addEHBranchThrough(Dest.getBlock()))
1191       break;
1192   }
1193 
1194   Builder.ClearInsertionPoint();
1195 }
1196 
1197 /// All the branch fixups on the EH stack have propagated out past the
1198 /// outermost normal cleanup; resolve them all by adding cases to the
1199 /// given switch instruction.
1200 void CodeGenFunction::ResolveAllBranchFixups(llvm::SwitchInst *Switch) {
1201   llvm::SmallPtrSet<llvm::BasicBlock*, 4> CasesAdded;
1202 
1203   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1204     // Skip this fixup if its destination isn't set or if we've
1205     // already treated it.
1206     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1207     if (Fixup.Destination == 0) continue;
1208     if (!CasesAdded.insert(Fixup.Destination)) continue;
1209 
1210     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex),
1211                     Fixup.Destination);
1212   }
1213 
1214   EHStack.clearFixups();
1215 }
1216 
1217 void CodeGenFunction::ResolveBranchFixups(llvm::BasicBlock *Block) {
1218   assert(Block && "resolving a null target block");
1219   if (!EHStack.getNumBranchFixups()) return;
1220 
1221   assert(EHStack.hasNormalCleanups() &&
1222          "branch fixups exist with no normal cleanups on stack");
1223 
1224   llvm::SmallPtrSet<llvm::BasicBlock*, 4> ModifiedOptimisticBlocks;
1225   bool ResolvedAny = false;
1226 
1227   for (unsigned I = 0, E = EHStack.getNumBranchFixups(); I != E; ++I) {
1228     // Skip this fixup if its destination doesn't match.
1229     BranchFixup &Fixup = EHStack.getBranchFixup(I);
1230     if (Fixup.Destination != Block) continue;
1231 
1232     Fixup.Destination = 0;
1233     ResolvedAny = true;
1234 
1235     // If it doesn't have an optimistic branch block, LatestBranch is
1236     // already pointing to the right place.
1237     llvm::BasicBlock *BranchBB = Fixup.OptimisticBranchBlock;
1238     if (!BranchBB)
1239       continue;
1240 
1241     // Don't process the same optimistic branch block twice.
1242     if (!ModifiedOptimisticBlocks.insert(BranchBB))
1243       continue;
1244 
1245     llvm::SwitchInst *Switch = TransitionToCleanupSwitch(*this, BranchBB);
1246 
1247     // Add a case to the switch.
1248     Switch->addCase(Builder.getInt32(Fixup.DestinationIndex), Block);
1249   }
1250 
1251   if (ResolvedAny)
1252     EHStack.popNullFixups();
1253 }
1254 
1255 /// Activate a cleanup that was created in an inactivated state.
1256 void CodeGenFunction::ActivateCleanup(EHScopeStack::stable_iterator C) {
1257   assert(C != EHStack.stable_end() && "activating bottom of stack?");
1258   EHCleanupScope &Scope = cast<EHCleanupScope>(*EHStack.find(C));
1259   assert(!Scope.isActive() && "double activation");
1260 
1261   // Calculate whether the cleanup was used:
1262   bool Used = false;
1263 
1264   //   - as a normal cleanup
1265   if (Scope.isNormalCleanup()) {
1266     bool NormalUsed = false;
1267     if (Scope.getNormalBlock()) {
1268       NormalUsed = true;
1269     } else {
1270       // Check whether any enclosed cleanups were needed.
1271       for (EHScopeStack::stable_iterator
1272              I = EHStack.getInnermostNormalCleanup(); I != C; ) {
1273         assert(C.strictlyEncloses(I));
1274         EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1275         if (S.getNormalBlock()) {
1276           NormalUsed = true;
1277           break;
1278         }
1279         I = S.getEnclosingNormalCleanup();
1280       }
1281     }
1282 
1283     if (NormalUsed)
1284       Used = true;
1285     else
1286       Scope.setActivatedBeforeNormalUse(true);
1287   }
1288 
1289   //  - as an EH cleanup
1290   if (Scope.isEHCleanup()) {
1291     bool EHUsed = false;
1292     if (Scope.getEHBlock()) {
1293       EHUsed = true;
1294     } else {
1295       // Check whether any enclosed cleanups were needed.
1296       for (EHScopeStack::stable_iterator
1297              I = EHStack.getInnermostEHCleanup(); I != C; ) {
1298         assert(C.strictlyEncloses(I));
1299         EHCleanupScope &S = cast<EHCleanupScope>(*EHStack.find(I));
1300         if (S.getEHBlock()) {
1301           EHUsed = true;
1302           break;
1303         }
1304         I = S.getEnclosingEHCleanup();
1305       }
1306     }
1307 
1308     if (EHUsed)
1309       Used = true;
1310     else
1311       Scope.setActivatedBeforeEHUse(true);
1312   }
1313 
1314   llvm::AllocaInst *Var = EHCleanupScope::activeSentinel();
1315   if (Used) {
1316     Var = CreateTempAlloca(Builder.getInt1Ty());
1317     InitTempAlloca(Var, Builder.getFalse());
1318   }
1319   Scope.setActiveVar(Var);
1320 }
1321 
1322 llvm::Value *CodeGenFunction::getNormalCleanupDestSlot() {
1323   if (!NormalCleanupDest)
1324     NormalCleanupDest =
1325       CreateTempAlloca(Builder.getInt32Ty(), "cleanup.dest.slot");
1326   return NormalCleanupDest;
1327 }
1328 
1329 llvm::Value *CodeGenFunction::getEHCleanupDestSlot() {
1330   if (!EHCleanupDest)
1331     EHCleanupDest =
1332       CreateTempAlloca(Builder.getInt32Ty(), "eh.cleanup.dest.slot");
1333   return EHCleanupDest;
1334 }
1335 
1336 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E,
1337                                               llvm::ConstantInt *Init) {
1338   assert (Init && "Invalid DeclRefExpr initializer!");
1339   if (CGDebugInfo *Dbg = getDebugInfo())
1340     Dbg->EmitGlobalVariable(E->getDecl(), Init, Builder);
1341 }
1342