1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 SanOpts(CGM.getLangOpts().Sanitize), DebugInfo(CGM.getModuleDebugInfo()), 69 PGO(cgm), ShouldEmitLifetimeMarkers(shouldEmitLifetimeMarkers( 70 CGM.getCodeGenOpts(), CGM.getLangOpts())) { 71 if (!suppressNewContext) 72 CGM.getCXXABI().getMangleContext().startNewFunction(); 73 74 llvm::FastMathFlags FMF; 75 if (CGM.getLangOpts().FastMath) 76 FMF.setFast(); 77 if (CGM.getLangOpts().FiniteMathOnly) { 78 FMF.setNoNaNs(); 79 FMF.setNoInfs(); 80 } 81 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 82 FMF.setNoNaNs(); 83 } 84 if (CGM.getCodeGenOpts().NoSignedZeros) { 85 FMF.setNoSignedZeros(); 86 } 87 if (CGM.getCodeGenOpts().ReciprocalMath) { 88 FMF.setAllowReciprocal(); 89 } 90 if (CGM.getCodeGenOpts().Reassociate) { 91 FMF.setAllowReassoc(); 92 } 93 Builder.setFastMathFlags(FMF); 94 } 95 96 CodeGenFunction::~CodeGenFunction() { 97 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 98 99 // If there are any unclaimed block infos, go ahead and destroy them 100 // now. This can happen if IR-gen gets clever and skips evaluating 101 // something. 102 if (FirstBlockInfo) 103 destroyBlockInfos(FirstBlockInfo); 104 105 if (getLangOpts().OpenMP && CurFn) 106 CGM.getOpenMPRuntime().functionFinished(*this); 107 } 108 109 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 110 LValueBaseInfo *BaseInfo, 111 TBAAAccessInfo *TBAAInfo) { 112 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 113 /* forPointeeType= */ true); 114 } 115 116 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 117 LValueBaseInfo *BaseInfo, 118 TBAAAccessInfo *TBAAInfo, 119 bool forPointeeType) { 120 if (TBAAInfo) 121 *TBAAInfo = CGM.getTBAAAccessInfo(T); 122 123 // Honor alignment typedef attributes even on incomplete types. 124 // We also honor them straight for C++ class types, even as pointees; 125 // there's an expressivity gap here. 126 if (auto TT = T->getAs<TypedefType>()) { 127 if (auto Align = TT->getDecl()->getMaxAlignment()) { 128 if (BaseInfo) 129 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 130 return getContext().toCharUnitsFromBits(Align); 131 } 132 } 133 134 if (BaseInfo) 135 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 136 137 CharUnits Alignment; 138 if (T->isIncompleteType()) { 139 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 140 } else { 141 // For C++ class pointees, we don't know whether we're pointing at a 142 // base or a complete object, so we generally need to use the 143 // non-virtual alignment. 144 const CXXRecordDecl *RD; 145 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 146 Alignment = CGM.getClassPointerAlignment(RD); 147 } else { 148 Alignment = getContext().getTypeAlignInChars(T); 149 if (T.getQualifiers().hasUnaligned()) 150 Alignment = CharUnits::One(); 151 } 152 153 // Cap to the global maximum type alignment unless the alignment 154 // was somehow explicit on the type. 155 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 156 if (Alignment.getQuantity() > MaxAlign && 157 !getContext().isAlignmentRequired(T)) 158 Alignment = CharUnits::fromQuantity(MaxAlign); 159 } 160 } 161 return Alignment; 162 } 163 164 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 165 LValueBaseInfo BaseInfo; 166 TBAAAccessInfo TBAAInfo; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 169 TBAAInfo); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 LValueBaseInfo BaseInfo; 177 TBAAAccessInfo TBAAInfo; 178 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 179 /* forPointeeType= */ true); 180 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 181 } 182 183 184 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 185 return CGM.getTypes().ConvertTypeForMem(T); 186 } 187 188 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 189 return CGM.getTypes().ConvertType(T); 190 } 191 192 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 193 type = type.getCanonicalType(); 194 while (true) { 195 switch (type->getTypeClass()) { 196 #define TYPE(name, parent) 197 #define ABSTRACT_TYPE(name, parent) 198 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 199 #define DEPENDENT_TYPE(name, parent) case Type::name: 200 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 201 #include "clang/AST/TypeNodes.def" 202 llvm_unreachable("non-canonical or dependent type in IR-generation"); 203 204 case Type::Auto: 205 case Type::DeducedTemplateSpecialization: 206 llvm_unreachable("undeduced type in IR-generation"); 207 208 // Various scalar types. 209 case Type::Builtin: 210 case Type::Pointer: 211 case Type::BlockPointer: 212 case Type::LValueReference: 213 case Type::RValueReference: 214 case Type::MemberPointer: 215 case Type::Vector: 216 case Type::ExtVector: 217 case Type::FunctionProto: 218 case Type::FunctionNoProto: 219 case Type::Enum: 220 case Type::ObjCObjectPointer: 221 case Type::Pipe: 222 return TEK_Scalar; 223 224 // Complexes. 225 case Type::Complex: 226 return TEK_Complex; 227 228 // Arrays, records, and Objective-C objects. 229 case Type::ConstantArray: 230 case Type::IncompleteArray: 231 case Type::VariableArray: 232 case Type::Record: 233 case Type::ObjCObject: 234 case Type::ObjCInterface: 235 return TEK_Aggregate; 236 237 // We operate on atomic values according to their underlying type. 238 case Type::Atomic: 239 type = cast<AtomicType>(type)->getValueType(); 240 continue; 241 } 242 llvm_unreachable("unknown type kind!"); 243 } 244 } 245 246 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 247 // For cleanliness, we try to avoid emitting the return block for 248 // simple cases. 249 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 250 251 if (CurBB) { 252 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 253 254 // We have a valid insert point, reuse it if it is empty or there are no 255 // explicit jumps to the return block. 256 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 257 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 258 delete ReturnBlock.getBlock(); 259 } else 260 EmitBlock(ReturnBlock.getBlock()); 261 return llvm::DebugLoc(); 262 } 263 264 // Otherwise, if the return block is the target of a single direct 265 // branch then we can just put the code in that block instead. This 266 // cleans up functions which started with a unified return block. 267 if (ReturnBlock.getBlock()->hasOneUse()) { 268 llvm::BranchInst *BI = 269 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 270 if (BI && BI->isUnconditional() && 271 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 272 // Record/return the DebugLoc of the simple 'return' expression to be used 273 // later by the actual 'ret' instruction. 274 llvm::DebugLoc Loc = BI->getDebugLoc(); 275 Builder.SetInsertPoint(BI->getParent()); 276 BI->eraseFromParent(); 277 delete ReturnBlock.getBlock(); 278 return Loc; 279 } 280 } 281 282 // FIXME: We are at an unreachable point, there is no reason to emit the block 283 // unless it has uses. However, we still need a place to put the debug 284 // region.end for now. 285 286 EmitBlock(ReturnBlock.getBlock()); 287 return llvm::DebugLoc(); 288 } 289 290 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 291 if (!BB) return; 292 if (!BB->use_empty()) 293 return CGF.CurFn->getBasicBlockList().push_back(BB); 294 delete BB; 295 } 296 297 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 298 assert(BreakContinueStack.empty() && 299 "mismatched push/pop in break/continue stack!"); 300 301 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 302 && NumSimpleReturnExprs == NumReturnExprs 303 && ReturnBlock.getBlock()->use_empty(); 304 // Usually the return expression is evaluated before the cleanup 305 // code. If the function contains only a simple return statement, 306 // such as a constant, the location before the cleanup code becomes 307 // the last useful breakpoint in the function, because the simple 308 // return expression will be evaluated after the cleanup code. To be 309 // safe, set the debug location for cleanup code to the location of 310 // the return statement. Otherwise the cleanup code should be at the 311 // end of the function's lexical scope. 312 // 313 // If there are multiple branches to the return block, the branch 314 // instructions will get the location of the return statements and 315 // all will be fine. 316 if (CGDebugInfo *DI = getDebugInfo()) { 317 if (OnlySimpleReturnStmts) 318 DI->EmitLocation(Builder, LastStopPoint); 319 else 320 DI->EmitLocation(Builder, EndLoc); 321 } 322 323 // Pop any cleanups that might have been associated with the 324 // parameters. Do this in whatever block we're currently in; it's 325 // important to do this before we enter the return block or return 326 // edges will be *really* confused. 327 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 328 bool HasOnlyLifetimeMarkers = 329 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 330 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 331 if (HasCleanups) { 332 // Make sure the line table doesn't jump back into the body for 333 // the ret after it's been at EndLoc. 334 if (CGDebugInfo *DI = getDebugInfo()) 335 if (OnlySimpleReturnStmts) 336 DI->EmitLocation(Builder, EndLoc); 337 338 PopCleanupBlocks(PrologueCleanupDepth); 339 } 340 341 // Emit function epilog (to return). 342 llvm::DebugLoc Loc = EmitReturnBlock(); 343 344 if (ShouldInstrumentFunction()) { 345 if (CGM.getCodeGenOpts().InstrumentFunctions) 346 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 347 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 348 CurFn->addFnAttr("instrument-function-exit-inlined", 349 "__cyg_profile_func_exit"); 350 } 351 352 // Emit debug descriptor for function end. 353 if (CGDebugInfo *DI = getDebugInfo()) 354 DI->EmitFunctionEnd(Builder, CurFn); 355 356 // Reset the debug location to that of the simple 'return' expression, if any 357 // rather than that of the end of the function's scope '}'. 358 ApplyDebugLocation AL(*this, Loc); 359 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 360 EmitEndEHSpec(CurCodeDecl); 361 362 assert(EHStack.empty() && 363 "did not remove all scopes from cleanup stack!"); 364 365 // If someone did an indirect goto, emit the indirect goto block at the end of 366 // the function. 367 if (IndirectBranch) { 368 EmitBlock(IndirectBranch->getParent()); 369 Builder.ClearInsertionPoint(); 370 } 371 372 // If some of our locals escaped, insert a call to llvm.localescape in the 373 // entry block. 374 if (!EscapedLocals.empty()) { 375 // Invert the map from local to index into a simple vector. There should be 376 // no holes. 377 SmallVector<llvm::Value *, 4> EscapeArgs; 378 EscapeArgs.resize(EscapedLocals.size()); 379 for (auto &Pair : EscapedLocals) 380 EscapeArgs[Pair.second] = Pair.first; 381 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 382 &CGM.getModule(), llvm::Intrinsic::localescape); 383 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 384 } 385 386 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 387 llvm::Instruction *Ptr = AllocaInsertPt; 388 AllocaInsertPt = nullptr; 389 Ptr->eraseFromParent(); 390 391 // If someone took the address of a label but never did an indirect goto, we 392 // made a zero entry PHI node, which is illegal, zap it now. 393 if (IndirectBranch) { 394 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 395 if (PN->getNumIncomingValues() == 0) { 396 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 397 PN->eraseFromParent(); 398 } 399 } 400 401 EmitIfUsed(*this, EHResumeBlock); 402 EmitIfUsed(*this, TerminateLandingPad); 403 EmitIfUsed(*this, TerminateHandler); 404 EmitIfUsed(*this, UnreachableBlock); 405 406 for (const auto &FuncletAndParent : TerminateFunclets) 407 EmitIfUsed(*this, FuncletAndParent.second); 408 409 if (CGM.getCodeGenOpts().EmitDeclMetadata) 410 EmitDeclMetadata(); 411 412 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 413 I = DeferredReplacements.begin(), 414 E = DeferredReplacements.end(); 415 I != E; ++I) { 416 I->first->replaceAllUsesWith(I->second); 417 I->first->eraseFromParent(); 418 } 419 420 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 421 // PHIs if the current function is a coroutine. We don't do it for all 422 // functions as it may result in slight increase in numbers of instructions 423 // if compiled with no optimizations. We do it for coroutine as the lifetime 424 // of CleanupDestSlot alloca make correct coroutine frame building very 425 // difficult. 426 if (NormalCleanupDest.isValid() && isCoroutine()) { 427 llvm::DominatorTree DT(*CurFn); 428 llvm::PromoteMemToReg( 429 cast<llvm::AllocaInst>(NormalCleanupDest.getPointer()), DT); 430 NormalCleanupDest = Address::invalid(); 431 } 432 433 // Add the required-vector-width attribute. 434 if (LargestVectorWidth != 0) 435 CurFn->addFnAttr("min-legal-vector-width", 436 llvm::utostr(LargestVectorWidth)); 437 } 438 439 /// ShouldInstrumentFunction - Return true if the current function should be 440 /// instrumented with __cyg_profile_func_* calls 441 bool CodeGenFunction::ShouldInstrumentFunction() { 442 if (!CGM.getCodeGenOpts().InstrumentFunctions && 443 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 444 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 445 return false; 446 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 447 return false; 448 return true; 449 } 450 451 /// ShouldXRayInstrument - Return true if the current function should be 452 /// instrumented with XRay nop sleds. 453 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 454 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 455 } 456 457 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 458 /// the __xray_customevent(...) builtin calls, when doing XRay instrumentation. 459 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 460 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 461 (CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents || 462 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 463 XRayInstrKind::Custom); 464 } 465 466 bool CodeGenFunction::AlwaysEmitXRayTypedEvents() const { 467 return CGM.getCodeGenOpts().XRayInstrumentFunctions && 468 (CGM.getCodeGenOpts().XRayAlwaysEmitTypedEvents || 469 CGM.getCodeGenOpts().XRayInstrumentationBundle.Mask == 470 XRayInstrKind::Typed); 471 } 472 473 llvm::Constant * 474 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 475 llvm::Constant *Addr) { 476 // Addresses stored in prologue data can't require run-time fixups and must 477 // be PC-relative. Run-time fixups are undesirable because they necessitate 478 // writable text segments, which are unsafe. And absolute addresses are 479 // undesirable because they break PIE mode. 480 481 // Add a layer of indirection through a private global. Taking its address 482 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 483 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 484 /*isConstant=*/true, 485 llvm::GlobalValue::PrivateLinkage, Addr); 486 487 // Create a PC-relative address. 488 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 489 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 490 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 491 return (IntPtrTy == Int32Ty) 492 ? PCRelAsInt 493 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 494 } 495 496 llvm::Value * 497 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 498 llvm::Value *EncodedAddr) { 499 // Reconstruct the address of the global. 500 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 501 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 502 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 503 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 504 505 // Load the original pointer through the global. 506 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 507 "decoded_addr"); 508 } 509 510 static void removeImageAccessQualifier(std::string& TyName) { 511 std::string ReadOnlyQual("__read_only"); 512 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 513 if (ReadOnlyPos != std::string::npos) 514 // "+ 1" for the space after access qualifier. 515 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 516 else { 517 std::string WriteOnlyQual("__write_only"); 518 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 519 if (WriteOnlyPos != std::string::npos) 520 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 521 else { 522 std::string ReadWriteQual("__read_write"); 523 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 524 if (ReadWritePos != std::string::npos) 525 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 526 } 527 } 528 } 529 530 // Returns the address space id that should be produced to the 531 // kernel_arg_addr_space metadata. This is always fixed to the ids 532 // as specified in the SPIR 2.0 specification in order to differentiate 533 // for example in clGetKernelArgInfo() implementation between the address 534 // spaces with targets without unique mapping to the OpenCL address spaces 535 // (basically all single AS CPUs). 536 static unsigned ArgInfoAddressSpace(LangAS AS) { 537 switch (AS) { 538 case LangAS::opencl_global: return 1; 539 case LangAS::opencl_constant: return 2; 540 case LangAS::opencl_local: return 3; 541 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 542 default: 543 return 0; // Assume private. 544 } 545 } 546 547 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 548 // information in the program executable. The argument information stored 549 // includes the argument name, its type, the address and access qualifiers used. 550 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 551 CodeGenModule &CGM, llvm::LLVMContext &Context, 552 CGBuilderTy &Builder, ASTContext &ASTCtx) { 553 // Create MDNodes that represent the kernel arg metadata. 554 // Each MDNode is a list in the form of "key", N number of values which is 555 // the same number of values as their are kernel arguments. 556 557 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 558 559 // MDNode for the kernel argument address space qualifiers. 560 SmallVector<llvm::Metadata *, 8> addressQuals; 561 562 // MDNode for the kernel argument access qualifiers (images only). 563 SmallVector<llvm::Metadata *, 8> accessQuals; 564 565 // MDNode for the kernel argument type names. 566 SmallVector<llvm::Metadata *, 8> argTypeNames; 567 568 // MDNode for the kernel argument base type names. 569 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 570 571 // MDNode for the kernel argument type qualifiers. 572 SmallVector<llvm::Metadata *, 8> argTypeQuals; 573 574 // MDNode for the kernel argument names. 575 SmallVector<llvm::Metadata *, 8> argNames; 576 577 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 578 const ParmVarDecl *parm = FD->getParamDecl(i); 579 QualType ty = parm->getType(); 580 std::string typeQuals; 581 582 if (ty->isPointerType()) { 583 QualType pointeeTy = ty->getPointeeType(); 584 585 // Get address qualifier. 586 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 587 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 588 589 // Get argument type name. 590 std::string typeName = 591 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 592 593 // Turn "unsigned type" to "utype" 594 std::string::size_type pos = typeName.find("unsigned"); 595 if (pointeeTy.isCanonical() && pos != std::string::npos) 596 typeName.erase(pos+1, 8); 597 598 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 599 600 std::string baseTypeName = 601 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 602 Policy) + 603 "*"; 604 605 // Turn "unsigned type" to "utype" 606 pos = baseTypeName.find("unsigned"); 607 if (pos != std::string::npos) 608 baseTypeName.erase(pos+1, 8); 609 610 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 611 612 // Get argument type qualifiers: 613 if (ty.isRestrictQualified()) 614 typeQuals = "restrict"; 615 if (pointeeTy.isConstQualified() || 616 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 617 typeQuals += typeQuals.empty() ? "const" : " const"; 618 if (pointeeTy.isVolatileQualified()) 619 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 620 } else { 621 uint32_t AddrSpc = 0; 622 bool isPipe = ty->isPipeType(); 623 if (ty->isImageType() || isPipe) 624 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 625 626 addressQuals.push_back( 627 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 628 629 // Get argument type name. 630 std::string typeName; 631 if (isPipe) 632 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 633 .getAsString(Policy); 634 else 635 typeName = ty.getUnqualifiedType().getAsString(Policy); 636 637 // Turn "unsigned type" to "utype" 638 std::string::size_type pos = typeName.find("unsigned"); 639 if (ty.isCanonical() && pos != std::string::npos) 640 typeName.erase(pos+1, 8); 641 642 std::string baseTypeName; 643 if (isPipe) 644 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 645 ->getElementType().getCanonicalType() 646 .getAsString(Policy); 647 else 648 baseTypeName = 649 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 650 651 // Remove access qualifiers on images 652 // (as they are inseparable from type in clang implementation, 653 // but OpenCL spec provides a special query to get access qualifier 654 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 655 if (ty->isImageType()) { 656 removeImageAccessQualifier(typeName); 657 removeImageAccessQualifier(baseTypeName); 658 } 659 660 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 661 662 // Turn "unsigned type" to "utype" 663 pos = baseTypeName.find("unsigned"); 664 if (pos != std::string::npos) 665 baseTypeName.erase(pos+1, 8); 666 667 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 668 669 if (isPipe) 670 typeQuals = "pipe"; 671 } 672 673 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 674 675 // Get image and pipe access qualifier: 676 if (ty->isImageType()|| ty->isPipeType()) { 677 const Decl *PDecl = parm; 678 if (auto *TD = dyn_cast<TypedefType>(ty)) 679 PDecl = TD->getDecl(); 680 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 681 if (A && A->isWriteOnly()) 682 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 683 else if (A && A->isReadWrite()) 684 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 685 else 686 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 687 } else 688 accessQuals.push_back(llvm::MDString::get(Context, "none")); 689 690 // Get argument name. 691 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 692 } 693 694 Fn->setMetadata("kernel_arg_addr_space", 695 llvm::MDNode::get(Context, addressQuals)); 696 Fn->setMetadata("kernel_arg_access_qual", 697 llvm::MDNode::get(Context, accessQuals)); 698 Fn->setMetadata("kernel_arg_type", 699 llvm::MDNode::get(Context, argTypeNames)); 700 Fn->setMetadata("kernel_arg_base_type", 701 llvm::MDNode::get(Context, argBaseTypeNames)); 702 Fn->setMetadata("kernel_arg_type_qual", 703 llvm::MDNode::get(Context, argTypeQuals)); 704 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 705 Fn->setMetadata("kernel_arg_name", 706 llvm::MDNode::get(Context, argNames)); 707 } 708 709 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 710 llvm::Function *Fn) 711 { 712 if (!FD->hasAttr<OpenCLKernelAttr>()) 713 return; 714 715 llvm::LLVMContext &Context = getLLVMContext(); 716 717 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 718 719 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 720 QualType HintQTy = A->getTypeHint(); 721 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 722 bool IsSignedInteger = 723 HintQTy->isSignedIntegerType() || 724 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 725 llvm::Metadata *AttrMDArgs[] = { 726 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 727 CGM.getTypes().ConvertType(A->getTypeHint()))), 728 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 729 llvm::IntegerType::get(Context, 32), 730 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 731 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 735 llvm::Metadata *AttrMDArgs[] = { 736 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 739 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 742 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 743 llvm::Metadata *AttrMDArgs[] = { 744 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 746 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 747 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 748 } 749 750 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 751 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 752 llvm::Metadata *AttrMDArgs[] = { 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 754 Fn->setMetadata("intel_reqd_sub_group_size", 755 llvm::MDNode::get(Context, AttrMDArgs)); 756 } 757 } 758 759 /// Determine whether the function F ends with a return stmt. 760 static bool endsWithReturn(const Decl* F) { 761 const Stmt *Body = nullptr; 762 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 763 Body = FD->getBody(); 764 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 765 Body = OMD->getBody(); 766 767 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 768 auto LastStmt = CS->body_rbegin(); 769 if (LastStmt != CS->body_rend()) 770 return isa<ReturnStmt>(*LastStmt); 771 } 772 return false; 773 } 774 775 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 776 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 777 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 778 } 779 780 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 781 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 782 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 783 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 784 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 785 return false; 786 787 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 788 return false; 789 790 if (MD->getNumParams() == 2) { 791 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 792 if (!PT || !PT->isVoidPointerType() || 793 !PT->getPointeeType().isConstQualified()) 794 return false; 795 } 796 797 return true; 798 } 799 800 /// Return the UBSan prologue signature for \p FD if one is available. 801 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 802 const FunctionDecl *FD) { 803 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 804 if (!MD->isStatic()) 805 return nullptr; 806 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 807 } 808 809 void CodeGenFunction::StartFunction(GlobalDecl GD, 810 QualType RetTy, 811 llvm::Function *Fn, 812 const CGFunctionInfo &FnInfo, 813 const FunctionArgList &Args, 814 SourceLocation Loc, 815 SourceLocation StartLoc) { 816 assert(!CurFn && 817 "Do not use a CodeGenFunction object for more than one function"); 818 819 const Decl *D = GD.getDecl(); 820 821 DidCallStackSave = false; 822 CurCodeDecl = D; 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 824 if (FD->usesSEHTry()) 825 CurSEHParent = FD; 826 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 827 FnRetTy = RetTy; 828 CurFn = Fn; 829 CurFnInfo = &FnInfo; 830 assert(CurFn->isDeclaration() && "Function already has body?"); 831 832 // If this function has been blacklisted for any of the enabled sanitizers, 833 // disable the sanitizer for the function. 834 do { 835 #define SANITIZER(NAME, ID) \ 836 if (SanOpts.empty()) \ 837 break; \ 838 if (SanOpts.has(SanitizerKind::ID)) \ 839 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 840 SanOpts.set(SanitizerKind::ID, false); 841 842 #include "clang/Basic/Sanitizers.def" 843 #undef SANITIZER 844 } while (0); 845 846 if (D) { 847 // Apply the no_sanitize* attributes to SanOpts. 848 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) { 849 SanitizerMask mask = Attr->getMask(); 850 SanOpts.Mask &= ~mask; 851 if (mask & SanitizerKind::Address) 852 SanOpts.set(SanitizerKind::KernelAddress, false); 853 if (mask & SanitizerKind::KernelAddress) 854 SanOpts.set(SanitizerKind::Address, false); 855 if (mask & SanitizerKind::HWAddress) 856 SanOpts.set(SanitizerKind::KernelHWAddress, false); 857 if (mask & SanitizerKind::KernelHWAddress) 858 SanOpts.set(SanitizerKind::HWAddress, false); 859 } 860 } 861 862 // Apply sanitizer attributes to the function. 863 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 864 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 865 if (SanOpts.hasOneOf(SanitizerKind::HWAddress | SanitizerKind::KernelHWAddress)) 866 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 867 if (SanOpts.has(SanitizerKind::Thread)) 868 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 869 if (SanOpts.has(SanitizerKind::Memory)) 870 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 871 if (SanOpts.has(SanitizerKind::SafeStack)) 872 Fn->addFnAttr(llvm::Attribute::SafeStack); 873 if (SanOpts.has(SanitizerKind::ShadowCallStack)) 874 Fn->addFnAttr(llvm::Attribute::ShadowCallStack); 875 876 // Apply fuzzing attribute to the function. 877 if (SanOpts.hasOneOf(SanitizerKind::Fuzzer | SanitizerKind::FuzzerNoLink)) 878 Fn->addFnAttr(llvm::Attribute::OptForFuzzing); 879 880 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 881 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 882 if (SanOpts.has(SanitizerKind::Thread)) { 883 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 884 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 885 if (OMD->getMethodFamily() == OMF_dealloc || 886 OMD->getMethodFamily() == OMF_initialize || 887 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 888 markAsIgnoreThreadCheckingAtRuntime(Fn); 889 } 890 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 891 IdentifierInfo *II = FD->getIdentifier(); 892 if (II && II->isStr("__destroy_helper_block_")) 893 markAsIgnoreThreadCheckingAtRuntime(Fn); 894 } 895 } 896 897 // Ignore unrelated casts in STL allocate() since the allocator must cast 898 // from void* to T* before object initialization completes. Don't match on the 899 // namespace because not all allocators are in std:: 900 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 901 if (matchesStlAllocatorFn(D, getContext())) 902 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 903 } 904 905 // Apply xray attributes to the function (as a string, for now) 906 bool InstrumentXray = ShouldXRayInstrumentFunction() && 907 CGM.getCodeGenOpts().XRayInstrumentationBundle.has( 908 XRayInstrKind::Function); 909 if (D && InstrumentXray) { 910 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 911 if (XRayAttr->alwaysXRayInstrument()) 912 Fn->addFnAttr("function-instrument", "xray-always"); 913 if (XRayAttr->neverXRayInstrument()) 914 Fn->addFnAttr("function-instrument", "xray-never"); 915 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 916 Fn->addFnAttr("xray-log-args", 917 llvm::utostr(LogArgs->getArgumentCount())); 918 } 919 } else { 920 if (!CGM.imbueXRayAttrs(Fn, Loc)) 921 Fn->addFnAttr( 922 "xray-instruction-threshold", 923 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 924 } 925 } 926 927 // Add no-jump-tables value. 928 Fn->addFnAttr("no-jump-tables", 929 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 930 931 // Add profile-sample-accurate value. 932 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 933 Fn->addFnAttr("profile-sample-accurate"); 934 935 if (getLangOpts().OpenCL) { 936 // Add metadata for a kernel function. 937 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 938 EmitOpenCLKernelMetadata(FD, Fn); 939 } 940 941 // If we are checking function types, emit a function type signature as 942 // prologue data. 943 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 944 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 945 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 946 // Remove any (C++17) exception specifications, to allow calling e.g. a 947 // noexcept function through a non-noexcept pointer. 948 auto ProtoTy = 949 getContext().getFunctionTypeWithExceptionSpec(FD->getType(), 950 EST_None); 951 llvm::Constant *FTRTTIConst = 952 CGM.GetAddrOfRTTIDescriptor(ProtoTy, /*ForEH=*/true); 953 llvm::Constant *FTRTTIConstEncoded = 954 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 955 llvm::Constant *PrologueStructElems[] = {PrologueSig, 956 FTRTTIConstEncoded}; 957 llvm::Constant *PrologueStructConst = 958 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 959 Fn->setPrologueData(PrologueStructConst); 960 } 961 } 962 } 963 964 // If we're checking nullability, we need to know whether we can check the 965 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 966 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 967 auto Nullability = FnRetTy->getNullability(getContext()); 968 if (Nullability && *Nullability == NullabilityKind::NonNull) { 969 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 970 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 971 RetValNullabilityPrecondition = 972 llvm::ConstantInt::getTrue(getLLVMContext()); 973 } 974 } 975 976 // If we're in C++ mode and the function name is "main", it is guaranteed 977 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 978 // used within a program"). 979 if (getLangOpts().CPlusPlus) 980 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 981 if (FD->isMain()) 982 Fn->addFnAttr(llvm::Attribute::NoRecurse); 983 984 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 985 986 // Create a marker to make it easy to insert allocas into the entryblock 987 // later. Don't create this with the builder, because we don't want it 988 // folded. 989 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 990 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 991 992 ReturnBlock = getJumpDestInCurrentScope("return"); 993 994 Builder.SetInsertPoint(EntryBB); 995 996 // If we're checking the return value, allocate space for a pointer to a 997 // precise source location of the checked return statement. 998 if (requiresReturnValueCheck()) { 999 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 1000 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 1001 } 1002 1003 // Emit subprogram debug descriptor. 1004 if (CGDebugInfo *DI = getDebugInfo()) { 1005 // Reconstruct the type from the argument list so that implicit parameters, 1006 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 1007 // convention. 1008 CallingConv CC = CallingConv::CC_C; 1009 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 1010 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 1011 CC = SrcFnTy->getCallConv(); 1012 SmallVector<QualType, 16> ArgTypes; 1013 for (const VarDecl *VD : Args) 1014 ArgTypes.push_back(VD->getType()); 1015 QualType FnType = getContext().getFunctionType( 1016 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 1017 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, CurFuncIsThunk, 1018 Builder); 1019 } 1020 1021 if (ShouldInstrumentFunction()) { 1022 if (CGM.getCodeGenOpts().InstrumentFunctions) 1023 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 1024 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1025 CurFn->addFnAttr("instrument-function-entry-inlined", 1026 "__cyg_profile_func_enter"); 1027 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1028 CurFn->addFnAttr("instrument-function-entry-inlined", 1029 "__cyg_profile_func_enter_bare"); 1030 } 1031 1032 // Since emitting the mcount call here impacts optimizations such as function 1033 // inlining, we just add an attribute to insert a mcount call in backend. 1034 // The attribute "counting-function" is set to mcount function name which is 1035 // architecture dependent. 1036 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1037 // Calls to fentry/mcount should not be generated if function has 1038 // the no_instrument_function attribute. 1039 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1040 if (CGM.getCodeGenOpts().CallFEntry) 1041 Fn->addFnAttr("fentry-call", "true"); 1042 else { 1043 Fn->addFnAttr("instrument-function-entry-inlined", 1044 getTarget().getMCountName()); 1045 } 1046 } 1047 } 1048 1049 if (RetTy->isVoidType()) { 1050 // Void type; nothing to return. 1051 ReturnValue = Address::invalid(); 1052 1053 // Count the implicit return. 1054 if (!endsWithReturn(D)) 1055 ++NumReturnExprs; 1056 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1057 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1058 // Indirect aggregate return; emit returned value directly into sret slot. 1059 // This reduces code size, and affects correctness in C++. 1060 auto AI = CurFn->arg_begin(); 1061 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1062 ++AI; 1063 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1064 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1065 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1066 // Load the sret pointer from the argument struct and return into that. 1067 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1068 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1069 --EI; 1070 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1071 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1072 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1073 } else { 1074 ReturnValue = CreateIRTemp(RetTy, "retval"); 1075 1076 // Tell the epilog emitter to autorelease the result. We do this 1077 // now so that various specialized functions can suppress it 1078 // during their IR-generation. 1079 if (getLangOpts().ObjCAutoRefCount && 1080 !CurFnInfo->isReturnsRetained() && 1081 RetTy->isObjCRetainableType()) 1082 AutoreleaseResult = true; 1083 } 1084 1085 EmitStartEHSpec(CurCodeDecl); 1086 1087 PrologueCleanupDepth = EHStack.stable_begin(); 1088 1089 // Emit OpenMP specific initialization of the device functions. 1090 if (getLangOpts().OpenMP && CurCodeDecl) 1091 CGM.getOpenMPRuntime().emitFunctionProlog(*this, CurCodeDecl); 1092 1093 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1094 1095 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1096 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1097 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1098 if (MD->getParent()->isLambda() && 1099 MD->getOverloadedOperator() == OO_Call) { 1100 // We're in a lambda; figure out the captures. 1101 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1102 LambdaThisCaptureField); 1103 if (LambdaThisCaptureField) { 1104 // If the lambda captures the object referred to by '*this' - either by 1105 // value or by reference, make sure CXXThisValue points to the correct 1106 // object. 1107 1108 // Get the lvalue for the field (which is a copy of the enclosing object 1109 // or contains the address of the enclosing object). 1110 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1111 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1112 // If the enclosing object was captured by value, just use its address. 1113 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1114 } else { 1115 // Load the lvalue pointed to by the field, since '*this' was captured 1116 // by reference. 1117 CXXThisValue = 1118 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1119 } 1120 } 1121 for (auto *FD : MD->getParent()->fields()) { 1122 if (FD->hasCapturedVLAType()) { 1123 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1124 SourceLocation()).getScalarVal(); 1125 auto VAT = FD->getCapturedVLAType(); 1126 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1127 } 1128 } 1129 } else { 1130 // Not in a lambda; just use 'this' from the method. 1131 // FIXME: Should we generate a new load for each use of 'this'? The 1132 // fast register allocator would be happier... 1133 CXXThisValue = CXXABIThisValue; 1134 } 1135 1136 // Check the 'this' pointer once per function, if it's available. 1137 if (CXXABIThisValue) { 1138 SanitizerSet SkippedChecks; 1139 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1140 QualType ThisTy = MD->getThisType(getContext()); 1141 1142 // If this is the call operator of a lambda with no capture-default, it 1143 // may have a static invoker function, which may call this operator with 1144 // a null 'this' pointer. 1145 if (isLambdaCallOperator(MD) && 1146 MD->getParent()->getLambdaCaptureDefault() == LCD_None) 1147 SkippedChecks.set(SanitizerKind::Null, true); 1148 1149 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1150 : TCK_MemberCall, 1151 Loc, CXXABIThisValue, ThisTy, 1152 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1153 SkippedChecks); 1154 } 1155 } 1156 1157 // If any of the arguments have a variably modified type, make sure to 1158 // emit the type size. 1159 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1160 i != e; ++i) { 1161 const VarDecl *VD = *i; 1162 1163 // Dig out the type as written from ParmVarDecls; it's unclear whether 1164 // the standard (C99 6.9.1p10) requires this, but we're following the 1165 // precedent set by gcc. 1166 QualType Ty; 1167 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1168 Ty = PVD->getOriginalType(); 1169 else 1170 Ty = VD->getType(); 1171 1172 if (Ty->isVariablyModifiedType()) 1173 EmitVariablyModifiedType(Ty); 1174 } 1175 // Emit a location at the end of the prologue. 1176 if (CGDebugInfo *DI = getDebugInfo()) 1177 DI->EmitLocation(Builder, StartLoc); 1178 1179 // TODO: Do we need to handle this in two places like we do with 1180 // target-features/target-cpu? 1181 if (CurFuncDecl) 1182 if (const auto *VecWidth = CurFuncDecl->getAttr<MinVectorWidthAttr>()) 1183 LargestVectorWidth = VecWidth->getVectorWidth(); 1184 } 1185 1186 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1187 const Stmt *Body) { 1188 incrementProfileCounter(Body); 1189 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1190 EmitCompoundStmtWithoutScope(*S); 1191 else 1192 EmitStmt(Body); 1193 } 1194 1195 /// When instrumenting to collect profile data, the counts for some blocks 1196 /// such as switch cases need to not include the fall-through counts, so 1197 /// emit a branch around the instrumentation code. When not instrumenting, 1198 /// this just calls EmitBlock(). 1199 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1200 const Stmt *S) { 1201 llvm::BasicBlock *SkipCountBB = nullptr; 1202 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1203 // When instrumenting for profiling, the fallthrough to certain 1204 // statements needs to skip over the instrumentation code so that we 1205 // get an accurate count. 1206 SkipCountBB = createBasicBlock("skipcount"); 1207 EmitBranch(SkipCountBB); 1208 } 1209 EmitBlock(BB); 1210 uint64_t CurrentCount = getCurrentProfileCount(); 1211 incrementProfileCounter(S); 1212 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1213 if (SkipCountBB) 1214 EmitBlock(SkipCountBB); 1215 } 1216 1217 /// Tries to mark the given function nounwind based on the 1218 /// non-existence of any throwing calls within it. We believe this is 1219 /// lightweight enough to do at -O0. 1220 static void TryMarkNoThrow(llvm::Function *F) { 1221 // LLVM treats 'nounwind' on a function as part of the type, so we 1222 // can't do this on functions that can be overwritten. 1223 if (F->isInterposable()) return; 1224 1225 for (llvm::BasicBlock &BB : *F) 1226 for (llvm::Instruction &I : BB) 1227 if (I.mayThrow()) 1228 return; 1229 1230 F->setDoesNotThrow(); 1231 } 1232 1233 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1234 FunctionArgList &Args) { 1235 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1236 QualType ResTy = FD->getReturnType(); 1237 1238 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1239 if (MD && MD->isInstance()) { 1240 if (CGM.getCXXABI().HasThisReturn(GD)) 1241 ResTy = MD->getThisType(getContext()); 1242 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1243 ResTy = CGM.getContext().VoidPtrTy; 1244 CGM.getCXXABI().buildThisParam(*this, Args); 1245 } 1246 1247 // The base version of an inheriting constructor whose constructed base is a 1248 // virtual base is not passed any arguments (because it doesn't actually call 1249 // the inherited constructor). 1250 bool PassedParams = true; 1251 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1252 if (auto Inherited = CD->getInheritedConstructor()) 1253 PassedParams = 1254 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1255 1256 if (PassedParams) { 1257 for (auto *Param : FD->parameters()) { 1258 Args.push_back(Param); 1259 if (!Param->hasAttr<PassObjectSizeAttr>()) 1260 continue; 1261 1262 auto *Implicit = ImplicitParamDecl::Create( 1263 getContext(), Param->getDeclContext(), Param->getLocation(), 1264 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1265 SizeArguments[Param] = Implicit; 1266 Args.push_back(Implicit); 1267 } 1268 } 1269 1270 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1271 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1272 1273 return ResTy; 1274 } 1275 1276 static bool 1277 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1278 const ASTContext &Context) { 1279 QualType T = FD->getReturnType(); 1280 // Avoid the optimization for functions that return a record type with a 1281 // trivial destructor or another trivially copyable type. 1282 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1283 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1284 return !ClassDecl->hasTrivialDestructor(); 1285 } 1286 return !T.isTriviallyCopyableType(Context); 1287 } 1288 1289 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1290 const CGFunctionInfo &FnInfo) { 1291 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1292 CurGD = GD; 1293 1294 FunctionArgList Args; 1295 QualType ResTy = BuildFunctionArgList(GD, Args); 1296 1297 // Check if we should generate debug info for this function. 1298 if (FD->hasAttr<NoDebugAttr>()) 1299 DebugInfo = nullptr; // disable debug info indefinitely for this function 1300 1301 // The function might not have a body if we're generating thunks for a 1302 // function declaration. 1303 SourceRange BodyRange; 1304 if (Stmt *Body = FD->getBody()) 1305 BodyRange = Body->getSourceRange(); 1306 else 1307 BodyRange = FD->getLocation(); 1308 CurEHLocation = BodyRange.getEnd(); 1309 1310 // Use the location of the start of the function to determine where 1311 // the function definition is located. By default use the location 1312 // of the declaration as the location for the subprogram. A function 1313 // may lack a declaration in the source code if it is created by code 1314 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1315 SourceLocation Loc = FD->getLocation(); 1316 1317 // If this is a function specialization then use the pattern body 1318 // as the location for the function. 1319 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1320 if (SpecDecl->hasBody(SpecDecl)) 1321 Loc = SpecDecl->getLocation(); 1322 1323 Stmt *Body = FD->getBody(); 1324 1325 // Initialize helper which will detect jumps which can cause invalid lifetime 1326 // markers. 1327 if (Body && ShouldEmitLifetimeMarkers) 1328 Bypasses.Init(Body); 1329 1330 // Emit the standard function prologue. 1331 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1332 1333 // Generate the body of the function. 1334 PGO.assignRegionCounters(GD, CurFn); 1335 if (isa<CXXDestructorDecl>(FD)) 1336 EmitDestructorBody(Args); 1337 else if (isa<CXXConstructorDecl>(FD)) 1338 EmitConstructorBody(Args); 1339 else if (getLangOpts().CUDA && 1340 !getLangOpts().CUDAIsDevice && 1341 FD->hasAttr<CUDAGlobalAttr>()) 1342 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1343 else if (isa<CXXMethodDecl>(FD) && 1344 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1345 // The lambda static invoker function is special, because it forwards or 1346 // clones the body of the function call operator (but is actually static). 1347 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1348 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1349 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1350 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1351 // Implicit copy-assignment gets the same special treatment as implicit 1352 // copy-constructors. 1353 emitImplicitAssignmentOperatorBody(Args); 1354 } else if (Body) { 1355 EmitFunctionBody(Args, Body); 1356 } else 1357 llvm_unreachable("no definition for emitted function"); 1358 1359 // C++11 [stmt.return]p2: 1360 // Flowing off the end of a function [...] results in undefined behavior in 1361 // a value-returning function. 1362 // C11 6.9.1p12: 1363 // If the '}' that terminates a function is reached, and the value of the 1364 // function call is used by the caller, the behavior is undefined. 1365 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1366 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1367 bool ShouldEmitUnreachable = 1368 CGM.getCodeGenOpts().StrictReturn || 1369 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1370 if (SanOpts.has(SanitizerKind::Return)) { 1371 SanitizerScope SanScope(this); 1372 llvm::Value *IsFalse = Builder.getFalse(); 1373 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1374 SanitizerHandler::MissingReturn, 1375 EmitCheckSourceLocation(FD->getLocation()), None); 1376 } else if (ShouldEmitUnreachable) { 1377 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1378 EmitTrapCall(llvm::Intrinsic::trap); 1379 } 1380 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1381 Builder.CreateUnreachable(); 1382 Builder.ClearInsertionPoint(); 1383 } 1384 } 1385 1386 // Emit the standard function epilogue. 1387 FinishFunction(BodyRange.getEnd()); 1388 1389 // If we haven't marked the function nothrow through other means, do 1390 // a quick pass now to see if we can. 1391 if (!CurFn->doesNotThrow()) 1392 TryMarkNoThrow(CurFn); 1393 } 1394 1395 /// ContainsLabel - Return true if the statement contains a label in it. If 1396 /// this statement is not executed normally, it not containing a label means 1397 /// that we can just remove the code. 1398 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1399 // Null statement, not a label! 1400 if (!S) return false; 1401 1402 // If this is a label, we have to emit the code, consider something like: 1403 // if (0) { ... foo: bar(); } goto foo; 1404 // 1405 // TODO: If anyone cared, we could track __label__'s, since we know that you 1406 // can't jump to one from outside their declared region. 1407 if (isa<LabelStmt>(S)) 1408 return true; 1409 1410 // If this is a case/default statement, and we haven't seen a switch, we have 1411 // to emit the code. 1412 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1413 return true; 1414 1415 // If this is a switch statement, we want to ignore cases below it. 1416 if (isa<SwitchStmt>(S)) 1417 IgnoreCaseStmts = true; 1418 1419 // Scan subexpressions for verboten labels. 1420 for (const Stmt *SubStmt : S->children()) 1421 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1422 return true; 1423 1424 return false; 1425 } 1426 1427 /// containsBreak - Return true if the statement contains a break out of it. 1428 /// If the statement (recursively) contains a switch or loop with a break 1429 /// inside of it, this is fine. 1430 bool CodeGenFunction::containsBreak(const Stmt *S) { 1431 // Null statement, not a label! 1432 if (!S) return false; 1433 1434 // If this is a switch or loop that defines its own break scope, then we can 1435 // include it and anything inside of it. 1436 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1437 isa<ForStmt>(S)) 1438 return false; 1439 1440 if (isa<BreakStmt>(S)) 1441 return true; 1442 1443 // Scan subexpressions for verboten breaks. 1444 for (const Stmt *SubStmt : S->children()) 1445 if (containsBreak(SubStmt)) 1446 return true; 1447 1448 return false; 1449 } 1450 1451 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1452 if (!S) return false; 1453 1454 // Some statement kinds add a scope and thus never add a decl to the current 1455 // scope. Note, this list is longer than the list of statements that might 1456 // have an unscoped decl nested within them, but this way is conservatively 1457 // correct even if more statement kinds are added. 1458 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1459 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1460 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1461 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1462 return false; 1463 1464 if (isa<DeclStmt>(S)) 1465 return true; 1466 1467 for (const Stmt *SubStmt : S->children()) 1468 if (mightAddDeclToScope(SubStmt)) 1469 return true; 1470 1471 return false; 1472 } 1473 1474 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1475 /// to a constant, or if it does but contains a label, return false. If it 1476 /// constant folds return true and set the boolean result in Result. 1477 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1478 bool &ResultBool, 1479 bool AllowLabels) { 1480 llvm::APSInt ResultInt; 1481 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1482 return false; 1483 1484 ResultBool = ResultInt.getBoolValue(); 1485 return true; 1486 } 1487 1488 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1489 /// to a constant, or if it does but contains a label, return false. If it 1490 /// constant folds return true and set the folded value. 1491 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1492 llvm::APSInt &ResultInt, 1493 bool AllowLabels) { 1494 // FIXME: Rename and handle conversion of other evaluatable things 1495 // to bool. 1496 llvm::APSInt Int; 1497 if (!Cond->EvaluateAsInt(Int, getContext())) 1498 return false; // Not foldable, not integer or not fully evaluatable. 1499 1500 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1501 return false; // Contains a label. 1502 1503 ResultInt = Int; 1504 return true; 1505 } 1506 1507 1508 1509 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1510 /// statement) to the specified blocks. Based on the condition, this might try 1511 /// to simplify the codegen of the conditional based on the branch. 1512 /// 1513 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1514 llvm::BasicBlock *TrueBlock, 1515 llvm::BasicBlock *FalseBlock, 1516 uint64_t TrueCount) { 1517 Cond = Cond->IgnoreParens(); 1518 1519 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1520 1521 // Handle X && Y in a condition. 1522 if (CondBOp->getOpcode() == BO_LAnd) { 1523 // If we have "1 && X", simplify the code. "0 && X" would have constant 1524 // folded if the case was simple enough. 1525 bool ConstantBool = false; 1526 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1527 ConstantBool) { 1528 // br(1 && X) -> br(X). 1529 incrementProfileCounter(CondBOp); 1530 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1531 TrueCount); 1532 } 1533 1534 // If we have "X && 1", simplify the code to use an uncond branch. 1535 // "X && 0" would have been constant folded to 0. 1536 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1537 ConstantBool) { 1538 // br(X && 1) -> br(X). 1539 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1540 TrueCount); 1541 } 1542 1543 // Emit the LHS as a conditional. If the LHS conditional is false, we 1544 // want to jump to the FalseBlock. 1545 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1546 // The counter tells us how often we evaluate RHS, and all of TrueCount 1547 // can be propagated to that branch. 1548 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1549 1550 ConditionalEvaluation eval(*this); 1551 { 1552 ApplyDebugLocation DL(*this, Cond); 1553 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1554 EmitBlock(LHSTrue); 1555 } 1556 1557 incrementProfileCounter(CondBOp); 1558 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1559 1560 // Any temporaries created here are conditional. 1561 eval.begin(*this); 1562 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1563 eval.end(*this); 1564 1565 return; 1566 } 1567 1568 if (CondBOp->getOpcode() == BO_LOr) { 1569 // If we have "0 || X", simplify the code. "1 || X" would have constant 1570 // folded if the case was simple enough. 1571 bool ConstantBool = false; 1572 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1573 !ConstantBool) { 1574 // br(0 || X) -> br(X). 1575 incrementProfileCounter(CondBOp); 1576 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1577 TrueCount); 1578 } 1579 1580 // If we have "X || 0", simplify the code to use an uncond branch. 1581 // "X || 1" would have been constant folded to 1. 1582 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1583 !ConstantBool) { 1584 // br(X || 0) -> br(X). 1585 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1586 TrueCount); 1587 } 1588 1589 // Emit the LHS as a conditional. If the LHS conditional is true, we 1590 // want to jump to the TrueBlock. 1591 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1592 // We have the count for entry to the RHS and for the whole expression 1593 // being true, so we can divy up True count between the short circuit and 1594 // the RHS. 1595 uint64_t LHSCount = 1596 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1597 uint64_t RHSCount = TrueCount - LHSCount; 1598 1599 ConditionalEvaluation eval(*this); 1600 { 1601 ApplyDebugLocation DL(*this, Cond); 1602 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1603 EmitBlock(LHSFalse); 1604 } 1605 1606 incrementProfileCounter(CondBOp); 1607 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1608 1609 // Any temporaries created here are conditional. 1610 eval.begin(*this); 1611 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1612 1613 eval.end(*this); 1614 1615 return; 1616 } 1617 } 1618 1619 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1620 // br(!x, t, f) -> br(x, f, t) 1621 if (CondUOp->getOpcode() == UO_LNot) { 1622 // Negate the count. 1623 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1624 // Negate the condition and swap the destination blocks. 1625 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1626 FalseCount); 1627 } 1628 } 1629 1630 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1631 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1632 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1633 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1634 1635 ConditionalEvaluation cond(*this); 1636 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1637 getProfileCount(CondOp)); 1638 1639 // When computing PGO branch weights, we only know the overall count for 1640 // the true block. This code is essentially doing tail duplication of the 1641 // naive code-gen, introducing new edges for which counts are not 1642 // available. Divide the counts proportionally between the LHS and RHS of 1643 // the conditional operator. 1644 uint64_t LHSScaledTrueCount = 0; 1645 if (TrueCount) { 1646 double LHSRatio = 1647 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1648 LHSScaledTrueCount = TrueCount * LHSRatio; 1649 } 1650 1651 cond.begin(*this); 1652 EmitBlock(LHSBlock); 1653 incrementProfileCounter(CondOp); 1654 { 1655 ApplyDebugLocation DL(*this, Cond); 1656 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1657 LHSScaledTrueCount); 1658 } 1659 cond.end(*this); 1660 1661 cond.begin(*this); 1662 EmitBlock(RHSBlock); 1663 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1664 TrueCount - LHSScaledTrueCount); 1665 cond.end(*this); 1666 1667 return; 1668 } 1669 1670 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1671 // Conditional operator handling can give us a throw expression as a 1672 // condition for a case like: 1673 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1674 // Fold this to: 1675 // br(c, throw x, br(y, t, f)) 1676 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1677 return; 1678 } 1679 1680 // If the branch has a condition wrapped by __builtin_unpredictable, 1681 // create metadata that specifies that the branch is unpredictable. 1682 // Don't bother if not optimizing because that metadata would not be used. 1683 llvm::MDNode *Unpredictable = nullptr; 1684 auto *Call = dyn_cast<CallExpr>(Cond); 1685 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1686 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1687 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1688 llvm::MDBuilder MDHelper(getLLVMContext()); 1689 Unpredictable = MDHelper.createUnpredictable(); 1690 } 1691 } 1692 1693 // Create branch weights based on the number of times we get here and the 1694 // number of times the condition should be true. 1695 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1696 llvm::MDNode *Weights = 1697 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1698 1699 // Emit the code with the fully general case. 1700 llvm::Value *CondV; 1701 { 1702 ApplyDebugLocation DL(*this, Cond); 1703 CondV = EvaluateExprAsBool(Cond); 1704 } 1705 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1706 } 1707 1708 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1709 /// specified stmt yet. 1710 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1711 CGM.ErrorUnsupported(S, Type); 1712 } 1713 1714 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1715 /// variable-length array whose elements have a non-zero bit-pattern. 1716 /// 1717 /// \param baseType the inner-most element type of the array 1718 /// \param src - a char* pointing to the bit-pattern for a single 1719 /// base element of the array 1720 /// \param sizeInChars - the total size of the VLA, in chars 1721 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1722 Address dest, Address src, 1723 llvm::Value *sizeInChars) { 1724 CGBuilderTy &Builder = CGF.Builder; 1725 1726 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1727 llvm::Value *baseSizeInChars 1728 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1729 1730 Address begin = 1731 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1732 llvm::Value *end = 1733 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1734 1735 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1736 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1737 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1738 1739 // Make a loop over the VLA. C99 guarantees that the VLA element 1740 // count must be nonzero. 1741 CGF.EmitBlock(loopBB); 1742 1743 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1744 cur->addIncoming(begin.getPointer(), originBB); 1745 1746 CharUnits curAlign = 1747 dest.getAlignment().alignmentOfArrayElement(baseSize); 1748 1749 // memcpy the individual element bit-pattern. 1750 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1751 /*volatile*/ false); 1752 1753 // Go to the next element. 1754 llvm::Value *next = 1755 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1756 1757 // Leave if that's the end of the VLA. 1758 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1759 Builder.CreateCondBr(done, contBB, loopBB); 1760 cur->addIncoming(next, loopBB); 1761 1762 CGF.EmitBlock(contBB); 1763 } 1764 1765 void 1766 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1767 // Ignore empty classes in C++. 1768 if (getLangOpts().CPlusPlus) { 1769 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1770 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1771 return; 1772 } 1773 } 1774 1775 // Cast the dest ptr to the appropriate i8 pointer type. 1776 if (DestPtr.getElementType() != Int8Ty) 1777 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1778 1779 // Get size and alignment info for this aggregate. 1780 CharUnits size = getContext().getTypeSizeInChars(Ty); 1781 1782 llvm::Value *SizeVal; 1783 const VariableArrayType *vla; 1784 1785 // Don't bother emitting a zero-byte memset. 1786 if (size.isZero()) { 1787 // But note that getTypeInfo returns 0 for a VLA. 1788 if (const VariableArrayType *vlaType = 1789 dyn_cast_or_null<VariableArrayType>( 1790 getContext().getAsArrayType(Ty))) { 1791 auto VlaSize = getVLASize(vlaType); 1792 SizeVal = VlaSize.NumElts; 1793 CharUnits eltSize = getContext().getTypeSizeInChars(VlaSize.Type); 1794 if (!eltSize.isOne()) 1795 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1796 vla = vlaType; 1797 } else { 1798 return; 1799 } 1800 } else { 1801 SizeVal = CGM.getSize(size); 1802 vla = nullptr; 1803 } 1804 1805 // If the type contains a pointer to data member we can't memset it to zero. 1806 // Instead, create a null constant and copy it to the destination. 1807 // TODO: there are other patterns besides zero that we can usefully memset, 1808 // like -1, which happens to be the pattern used by member-pointers. 1809 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1810 // For a VLA, emit a single element, then splat that over the VLA. 1811 if (vla) Ty = getContext().getBaseElementType(vla); 1812 1813 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1814 1815 llvm::GlobalVariable *NullVariable = 1816 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1817 /*isConstant=*/true, 1818 llvm::GlobalVariable::PrivateLinkage, 1819 NullConstant, Twine()); 1820 CharUnits NullAlign = DestPtr.getAlignment(); 1821 NullVariable->setAlignment(NullAlign.getQuantity()); 1822 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1823 NullAlign); 1824 1825 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1826 1827 // Get and call the appropriate llvm.memcpy overload. 1828 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1829 return; 1830 } 1831 1832 // Otherwise, just memset the whole thing to zero. This is legal 1833 // because in LLVM, all default initializers (other than the ones we just 1834 // handled above) are guaranteed to have a bit pattern of all zeros. 1835 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1836 } 1837 1838 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1839 // Make sure that there is a block for the indirect goto. 1840 if (!IndirectBranch) 1841 GetIndirectGotoBlock(); 1842 1843 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1844 1845 // Make sure the indirect branch includes all of the address-taken blocks. 1846 IndirectBranch->addDestination(BB); 1847 return llvm::BlockAddress::get(CurFn, BB); 1848 } 1849 1850 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1851 // If we already made the indirect branch for indirect goto, return its block. 1852 if (IndirectBranch) return IndirectBranch->getParent(); 1853 1854 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1855 1856 // Create the PHI node that indirect gotos will add entries to. 1857 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1858 "indirect.goto.dest"); 1859 1860 // Create the indirect branch instruction. 1861 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1862 return IndirectBranch->getParent(); 1863 } 1864 1865 /// Computes the length of an array in elements, as well as the base 1866 /// element type and a properly-typed first element pointer. 1867 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1868 QualType &baseType, 1869 Address &addr) { 1870 const ArrayType *arrayType = origArrayType; 1871 1872 // If it's a VLA, we have to load the stored size. Note that 1873 // this is the size of the VLA in bytes, not its size in elements. 1874 llvm::Value *numVLAElements = nullptr; 1875 if (isa<VariableArrayType>(arrayType)) { 1876 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).NumElts; 1877 1878 // Walk into all VLAs. This doesn't require changes to addr, 1879 // which has type T* where T is the first non-VLA element type. 1880 do { 1881 QualType elementType = arrayType->getElementType(); 1882 arrayType = getContext().getAsArrayType(elementType); 1883 1884 // If we only have VLA components, 'addr' requires no adjustment. 1885 if (!arrayType) { 1886 baseType = elementType; 1887 return numVLAElements; 1888 } 1889 } while (isa<VariableArrayType>(arrayType)); 1890 1891 // We get out here only if we find a constant array type 1892 // inside the VLA. 1893 } 1894 1895 // We have some number of constant-length arrays, so addr should 1896 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1897 // down to the first element of addr. 1898 SmallVector<llvm::Value*, 8> gepIndices; 1899 1900 // GEP down to the array type. 1901 llvm::ConstantInt *zero = Builder.getInt32(0); 1902 gepIndices.push_back(zero); 1903 1904 uint64_t countFromCLAs = 1; 1905 QualType eltType; 1906 1907 llvm::ArrayType *llvmArrayType = 1908 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1909 while (llvmArrayType) { 1910 assert(isa<ConstantArrayType>(arrayType)); 1911 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1912 == llvmArrayType->getNumElements()); 1913 1914 gepIndices.push_back(zero); 1915 countFromCLAs *= llvmArrayType->getNumElements(); 1916 eltType = arrayType->getElementType(); 1917 1918 llvmArrayType = 1919 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1920 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1921 assert((!llvmArrayType || arrayType) && 1922 "LLVM and Clang types are out-of-synch"); 1923 } 1924 1925 if (arrayType) { 1926 // From this point onwards, the Clang array type has been emitted 1927 // as some other type (probably a packed struct). Compute the array 1928 // size, and just emit the 'begin' expression as a bitcast. 1929 while (arrayType) { 1930 countFromCLAs *= 1931 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1932 eltType = arrayType->getElementType(); 1933 arrayType = getContext().getAsArrayType(eltType); 1934 } 1935 1936 llvm::Type *baseType = ConvertType(eltType); 1937 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1938 } else { 1939 // Create the actual GEP. 1940 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1941 gepIndices, "array.begin"), 1942 addr.getAlignment()); 1943 } 1944 1945 baseType = eltType; 1946 1947 llvm::Value *numElements 1948 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1949 1950 // If we had any VLA dimensions, factor them in. 1951 if (numVLAElements) 1952 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1953 1954 return numElements; 1955 } 1956 1957 CodeGenFunction::VlaSizePair CodeGenFunction::getVLASize(QualType type) { 1958 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1959 assert(vla && "type was not a variable array type!"); 1960 return getVLASize(vla); 1961 } 1962 1963 CodeGenFunction::VlaSizePair 1964 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1965 // The number of elements so far; always size_t. 1966 llvm::Value *numElements = nullptr; 1967 1968 QualType elementType; 1969 do { 1970 elementType = type->getElementType(); 1971 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1972 assert(vlaSize && "no size for VLA!"); 1973 assert(vlaSize->getType() == SizeTy); 1974 1975 if (!numElements) { 1976 numElements = vlaSize; 1977 } else { 1978 // It's undefined behavior if this wraps around, so mark it that way. 1979 // FIXME: Teach -fsanitize=undefined to trap this. 1980 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1981 } 1982 } while ((type = getContext().getAsVariableArrayType(elementType))); 1983 1984 return { numElements, elementType }; 1985 } 1986 1987 CodeGenFunction::VlaSizePair 1988 CodeGenFunction::getVLAElements1D(QualType type) { 1989 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1990 assert(vla && "type was not a variable array type!"); 1991 return getVLAElements1D(vla); 1992 } 1993 1994 CodeGenFunction::VlaSizePair 1995 CodeGenFunction::getVLAElements1D(const VariableArrayType *Vla) { 1996 llvm::Value *VlaSize = VLASizeMap[Vla->getSizeExpr()]; 1997 assert(VlaSize && "no size for VLA!"); 1998 assert(VlaSize->getType() == SizeTy); 1999 return { VlaSize, Vla->getElementType() }; 2000 } 2001 2002 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 2003 assert(type->isVariablyModifiedType() && 2004 "Must pass variably modified type to EmitVLASizes!"); 2005 2006 EnsureInsertPoint(); 2007 2008 // We're going to walk down into the type and look for VLA 2009 // expressions. 2010 do { 2011 assert(type->isVariablyModifiedType()); 2012 2013 const Type *ty = type.getTypePtr(); 2014 switch (ty->getTypeClass()) { 2015 2016 #define TYPE(Class, Base) 2017 #define ABSTRACT_TYPE(Class, Base) 2018 #define NON_CANONICAL_TYPE(Class, Base) 2019 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 2020 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 2021 #include "clang/AST/TypeNodes.def" 2022 llvm_unreachable("unexpected dependent type!"); 2023 2024 // These types are never variably-modified. 2025 case Type::Builtin: 2026 case Type::Complex: 2027 case Type::Vector: 2028 case Type::ExtVector: 2029 case Type::Record: 2030 case Type::Enum: 2031 case Type::Elaborated: 2032 case Type::TemplateSpecialization: 2033 case Type::ObjCTypeParam: 2034 case Type::ObjCObject: 2035 case Type::ObjCInterface: 2036 case Type::ObjCObjectPointer: 2037 llvm_unreachable("type class is never variably-modified!"); 2038 2039 case Type::Adjusted: 2040 type = cast<AdjustedType>(ty)->getAdjustedType(); 2041 break; 2042 2043 case Type::Decayed: 2044 type = cast<DecayedType>(ty)->getPointeeType(); 2045 break; 2046 2047 case Type::Pointer: 2048 type = cast<PointerType>(ty)->getPointeeType(); 2049 break; 2050 2051 case Type::BlockPointer: 2052 type = cast<BlockPointerType>(ty)->getPointeeType(); 2053 break; 2054 2055 case Type::LValueReference: 2056 case Type::RValueReference: 2057 type = cast<ReferenceType>(ty)->getPointeeType(); 2058 break; 2059 2060 case Type::MemberPointer: 2061 type = cast<MemberPointerType>(ty)->getPointeeType(); 2062 break; 2063 2064 case Type::ConstantArray: 2065 case Type::IncompleteArray: 2066 // Losing element qualification here is fine. 2067 type = cast<ArrayType>(ty)->getElementType(); 2068 break; 2069 2070 case Type::VariableArray: { 2071 // Losing element qualification here is fine. 2072 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2073 2074 // Unknown size indication requires no size computation. 2075 // Otherwise, evaluate and record it. 2076 if (const Expr *size = vat->getSizeExpr()) { 2077 // It's possible that we might have emitted this already, 2078 // e.g. with a typedef and a pointer to it. 2079 llvm::Value *&entry = VLASizeMap[size]; 2080 if (!entry) { 2081 llvm::Value *Size = EmitScalarExpr(size); 2082 2083 // C11 6.7.6.2p5: 2084 // If the size is an expression that is not an integer constant 2085 // expression [...] each time it is evaluated it shall have a value 2086 // greater than zero. 2087 if (SanOpts.has(SanitizerKind::VLABound) && 2088 size->getType()->isSignedIntegerType()) { 2089 SanitizerScope SanScope(this); 2090 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2091 llvm::Constant *StaticArgs[] = { 2092 EmitCheckSourceLocation(size->getLocStart()), 2093 EmitCheckTypeDescriptor(size->getType()) 2094 }; 2095 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2096 SanitizerKind::VLABound), 2097 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2098 } 2099 2100 // Always zexting here would be wrong if it weren't 2101 // undefined behavior to have a negative bound. 2102 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2103 } 2104 } 2105 type = vat->getElementType(); 2106 break; 2107 } 2108 2109 case Type::FunctionProto: 2110 case Type::FunctionNoProto: 2111 type = cast<FunctionType>(ty)->getReturnType(); 2112 break; 2113 2114 case Type::Paren: 2115 case Type::TypeOf: 2116 case Type::UnaryTransform: 2117 case Type::Attributed: 2118 case Type::SubstTemplateTypeParm: 2119 case Type::PackExpansion: 2120 // Keep walking after single level desugaring. 2121 type = type.getSingleStepDesugaredType(getContext()); 2122 break; 2123 2124 case Type::Typedef: 2125 case Type::Decltype: 2126 case Type::Auto: 2127 case Type::DeducedTemplateSpecialization: 2128 // Stop walking: nothing to do. 2129 return; 2130 2131 case Type::TypeOfExpr: 2132 // Stop walking: emit typeof expression. 2133 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2134 return; 2135 2136 case Type::Atomic: 2137 type = cast<AtomicType>(ty)->getValueType(); 2138 break; 2139 2140 case Type::Pipe: 2141 type = cast<PipeType>(ty)->getElementType(); 2142 break; 2143 } 2144 } while (type->isVariablyModifiedType()); 2145 } 2146 2147 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2148 if (getContext().getBuiltinVaListType()->isArrayType()) 2149 return EmitPointerWithAlignment(E); 2150 return EmitLValue(E).getAddress(); 2151 } 2152 2153 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2154 return EmitLValue(E).getAddress(); 2155 } 2156 2157 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2158 const APValue &Init) { 2159 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2160 if (CGDebugInfo *Dbg = getDebugInfo()) 2161 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2162 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2163 } 2164 2165 CodeGenFunction::PeepholeProtection 2166 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2167 // At the moment, the only aggressive peephole we do in IR gen 2168 // is trunc(zext) folding, but if we add more, we can easily 2169 // extend this protection. 2170 2171 if (!rvalue.isScalar()) return PeepholeProtection(); 2172 llvm::Value *value = rvalue.getScalarVal(); 2173 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2174 2175 // Just make an extra bitcast. 2176 assert(HaveInsertPoint()); 2177 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2178 Builder.GetInsertBlock()); 2179 2180 PeepholeProtection protection; 2181 protection.Inst = inst; 2182 return protection; 2183 } 2184 2185 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2186 if (!protection.Inst) return; 2187 2188 // In theory, we could try to duplicate the peepholes now, but whatever. 2189 protection.Inst->eraseFromParent(); 2190 } 2191 2192 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2193 llvm::Value *AnnotatedVal, 2194 StringRef AnnotationStr, 2195 SourceLocation Location) { 2196 llvm::Value *Args[4] = { 2197 AnnotatedVal, 2198 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2199 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2200 CGM.EmitAnnotationLineNo(Location) 2201 }; 2202 return Builder.CreateCall(AnnotationFn, Args); 2203 } 2204 2205 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2206 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2207 // FIXME We create a new bitcast for every annotation because that's what 2208 // llvm-gcc was doing. 2209 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2210 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2211 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2212 I->getAnnotation(), D->getLocation()); 2213 } 2214 2215 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2216 Address Addr) { 2217 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2218 llvm::Value *V = Addr.getPointer(); 2219 llvm::Type *VTy = V->getType(); 2220 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2221 CGM.Int8PtrTy); 2222 2223 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2224 // FIXME Always emit the cast inst so we can differentiate between 2225 // annotation on the first field of a struct and annotation on the struct 2226 // itself. 2227 if (VTy != CGM.Int8PtrTy) 2228 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2229 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2230 V = Builder.CreateBitCast(V, VTy); 2231 } 2232 2233 return Address(V, Addr.getAlignment()); 2234 } 2235 2236 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2237 2238 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2239 : CGF(CGF) { 2240 assert(!CGF->IsSanitizerScope); 2241 CGF->IsSanitizerScope = true; 2242 } 2243 2244 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2245 CGF->IsSanitizerScope = false; 2246 } 2247 2248 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2249 const llvm::Twine &Name, 2250 llvm::BasicBlock *BB, 2251 llvm::BasicBlock::iterator InsertPt) const { 2252 LoopStack.InsertHelper(I); 2253 if (IsSanitizerScope) 2254 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2255 } 2256 2257 void CGBuilderInserter::InsertHelper( 2258 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2259 llvm::BasicBlock::iterator InsertPt) const { 2260 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2261 if (CGF) 2262 CGF->InsertHelper(I, Name, BB, InsertPt); 2263 } 2264 2265 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2266 CodeGenModule &CGM, const FunctionDecl *FD, 2267 std::string &FirstMissing) { 2268 // If there aren't any required features listed then go ahead and return. 2269 if (ReqFeatures.empty()) 2270 return false; 2271 2272 // Now build up the set of caller features and verify that all the required 2273 // features are there. 2274 llvm::StringMap<bool> CallerFeatureMap; 2275 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2276 2277 // If we have at least one of the features in the feature list return 2278 // true, otherwise return false. 2279 return std::all_of( 2280 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2281 SmallVector<StringRef, 1> OrFeatures; 2282 Feature.split(OrFeatures, '|'); 2283 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2284 [&](StringRef Feature) { 2285 if (!CallerFeatureMap.lookup(Feature)) { 2286 FirstMissing = Feature.str(); 2287 return false; 2288 } 2289 return true; 2290 }); 2291 }); 2292 } 2293 2294 // Emits an error if we don't have a valid set of target features for the 2295 // called function. 2296 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2297 const FunctionDecl *TargetDecl) { 2298 // Early exit if this is an indirect call. 2299 if (!TargetDecl) 2300 return; 2301 2302 // Get the current enclosing function if it exists. If it doesn't 2303 // we can't check the target features anyhow. 2304 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2305 if (!FD) 2306 return; 2307 2308 // Grab the required features for the call. For a builtin this is listed in 2309 // the td file with the default cpu, for an always_inline function this is any 2310 // listed cpu and any listed features. 2311 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2312 std::string MissingFeature; 2313 if (BuiltinID) { 2314 SmallVector<StringRef, 1> ReqFeatures; 2315 const char *FeatureList = 2316 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2317 // Return if the builtin doesn't have any required features. 2318 if (!FeatureList || StringRef(FeatureList) == "") 2319 return; 2320 StringRef(FeatureList).split(ReqFeatures, ','); 2321 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2322 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2323 << TargetDecl->getDeclName() 2324 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2325 2326 } else if (TargetDecl->hasAttr<TargetAttr>() || 2327 TargetDecl->hasAttr<CPUSpecificAttr>()) { 2328 // Get the required features for the callee. 2329 2330 const TargetAttr *TD = TargetDecl->getAttr<TargetAttr>(); 2331 TargetAttr::ParsedTargetAttr ParsedAttr = CGM.filterFunctionTargetAttrs(TD); 2332 2333 SmallVector<StringRef, 1> ReqFeatures; 2334 llvm::StringMap<bool> CalleeFeatureMap; 2335 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2336 2337 for (const auto &F : ParsedAttr.Features) { 2338 if (F[0] == '+' && CalleeFeatureMap.lookup(F.substr(1))) 2339 ReqFeatures.push_back(StringRef(F).substr(1)); 2340 } 2341 2342 for (const auto &F : CalleeFeatureMap) { 2343 // Only positive features are "required". 2344 if (F.getValue()) 2345 ReqFeatures.push_back(F.getKey()); 2346 } 2347 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2348 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2349 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2350 } 2351 } 2352 2353 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2354 if (!CGM.getCodeGenOpts().SanitizeStats) 2355 return; 2356 2357 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2358 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2359 CGM.getSanStats().create(IRB, SSK); 2360 } 2361 2362 llvm::Value * 2363 CodeGenFunction::FormResolverCondition(const MultiVersionResolverOption &RO) { 2364 llvm::Value *Condition = nullptr; 2365 2366 if (!RO.Conditions.Architecture.empty()) 2367 Condition = EmitX86CpuIs(RO.Conditions.Architecture); 2368 2369 if (!RO.Conditions.Features.empty()) { 2370 llvm::Value *FeatureCond = EmitX86CpuSupports(RO.Conditions.Features); 2371 Condition = 2372 Condition ? Builder.CreateAnd(Condition, FeatureCond) : FeatureCond; 2373 } 2374 return Condition; 2375 } 2376 2377 void CodeGenFunction::EmitMultiVersionResolver( 2378 llvm::Function *Resolver, ArrayRef<MultiVersionResolverOption> Options) { 2379 assert((getContext().getTargetInfo().getTriple().getArch() == 2380 llvm::Triple::x86 || 2381 getContext().getTargetInfo().getTriple().getArch() == 2382 llvm::Triple::x86_64) && 2383 "Only implemented for x86 targets"); 2384 // Main function's basic block. 2385 llvm::BasicBlock *CurBlock = createBasicBlock("resolver_entry", Resolver); 2386 Builder.SetInsertPoint(CurBlock); 2387 EmitX86CpuInit(); 2388 2389 for (const MultiVersionResolverOption &RO : Options) { 2390 Builder.SetInsertPoint(CurBlock); 2391 llvm::Value *Condition = FormResolverCondition(RO); 2392 2393 // The 'default' or 'generic' case. 2394 if (!Condition) { 2395 assert(&RO == Options.end() - 1 && 2396 "Default or Generic case must be last"); 2397 Builder.CreateRet(RO.Function); 2398 return; 2399 } 2400 2401 llvm::BasicBlock *RetBlock = createBasicBlock("resolver_return", Resolver); 2402 llvm::IRBuilder<> RetBuilder(RetBlock); 2403 RetBuilder.CreateRet(RO.Function); 2404 CurBlock = createBasicBlock("resolver_else", Resolver); 2405 Builder.CreateCondBr(Condition, RetBlock, CurBlock); 2406 } 2407 2408 // If no generic/default, emit an unreachable. 2409 Builder.SetInsertPoint(CurBlock); 2410 llvm::CallInst *TrapCall = EmitTrapCall(llvm::Intrinsic::trap); 2411 TrapCall->setDoesNotReturn(); 2412 TrapCall->setDoesNotThrow(); 2413 Builder.CreateUnreachable(); 2414 Builder.ClearInsertionPoint(); 2415 } 2416 2417 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2418 if (CGDebugInfo *DI = getDebugInfo()) 2419 return DI->SourceLocToDebugLoc(Location); 2420 2421 return llvm::DebugLoc(); 2422 } 2423