1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/ASTContext.h" 20 #include "clang/AST/Decl.h" 21 #include "clang/AST/DeclCXX.h" 22 #include "clang/AST/StmtCXX.h" 23 #include "clang/Basic/OpenCL.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/Intrinsics.h" 28 #include "llvm/IR/MDBuilder.h" 29 #include "llvm/IR/Operator.h" 30 using namespace clang; 31 using namespace CodeGen; 32 33 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 34 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 35 Builder(cgm.getModule().getContext()), 36 SanitizePerformTypeCheck(CGM.getSanOpts().Null | 37 CGM.getSanOpts().Alignment | 38 CGM.getSanOpts().ObjectSize | 39 CGM.getSanOpts().Vptr), 40 SanOpts(&CGM.getSanOpts()), 41 AutoreleaseResult(false), BlockInfo(0), BlockPointer(0), 42 LambdaThisCaptureField(0), NormalCleanupDest(0), NextCleanupDestIndex(1), 43 FirstBlockInfo(0), EHResumeBlock(0), ExceptionSlot(0), EHSelectorSlot(0), 44 DebugInfo(0), DisableDebugInfo(false), CalleeWithThisReturn(0), 45 DidCallStackSave(false), 46 IndirectBranch(0), SwitchInsn(0), CaseRangeBlock(0), UnreachableBlock(0), 47 NumReturnExprs(0), NumSimpleReturnExprs(0), 48 CXXABIThisDecl(0), CXXABIThisValue(0), CXXThisValue(0), 49 CXXDefaultInitExprThis(0), 50 CXXStructorImplicitParamDecl(0), CXXStructorImplicitParamValue(0), 51 OutermostConditional(0), CurLexicalScope(0), TerminateLandingPad(0), 52 TerminateHandler(0), TrapBB(0) { 53 if (!suppressNewContext) 54 CGM.getCXXABI().getMangleContext().startNewFunction(); 55 56 llvm::FastMathFlags FMF; 57 if (CGM.getLangOpts().FastMath) 58 FMF.setUnsafeAlgebra(); 59 if (CGM.getLangOpts().FiniteMathOnly) { 60 FMF.setNoNaNs(); 61 FMF.setNoInfs(); 62 } 63 Builder.SetFastMathFlags(FMF); 64 } 65 66 CodeGenFunction::~CodeGenFunction() { 67 // If there are any unclaimed block infos, go ahead and destroy them 68 // now. This can happen if IR-gen gets clever and skips evaluating 69 // something. 70 if (FirstBlockInfo) 71 destroyBlockInfos(FirstBlockInfo); 72 } 73 74 75 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 76 return CGM.getTypes().ConvertTypeForMem(T); 77 } 78 79 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 80 return CGM.getTypes().ConvertType(T); 81 } 82 83 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 84 type = type.getCanonicalType(); 85 while (true) { 86 switch (type->getTypeClass()) { 87 #define TYPE(name, parent) 88 #define ABSTRACT_TYPE(name, parent) 89 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 90 #define DEPENDENT_TYPE(name, parent) case Type::name: 91 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 92 #include "clang/AST/TypeNodes.def" 93 llvm_unreachable("non-canonical or dependent type in IR-generation"); 94 95 case Type::Auto: 96 llvm_unreachable("undeduced auto type in IR-generation"); 97 98 // Various scalar types. 99 case Type::Builtin: 100 case Type::Pointer: 101 case Type::BlockPointer: 102 case Type::LValueReference: 103 case Type::RValueReference: 104 case Type::MemberPointer: 105 case Type::Vector: 106 case Type::ExtVector: 107 case Type::FunctionProto: 108 case Type::FunctionNoProto: 109 case Type::Enum: 110 case Type::ObjCObjectPointer: 111 return TEK_Scalar; 112 113 // Complexes. 114 case Type::Complex: 115 return TEK_Complex; 116 117 // Arrays, records, and Objective-C objects. 118 case Type::ConstantArray: 119 case Type::IncompleteArray: 120 case Type::VariableArray: 121 case Type::Record: 122 case Type::ObjCObject: 123 case Type::ObjCInterface: 124 return TEK_Aggregate; 125 126 // We operate on atomic values according to their underlying type. 127 case Type::Atomic: 128 type = cast<AtomicType>(type)->getValueType(); 129 continue; 130 } 131 llvm_unreachable("unknown type kind!"); 132 } 133 } 134 135 void CodeGenFunction::EmitReturnBlock() { 136 // For cleanliness, we try to avoid emitting the return block for 137 // simple cases. 138 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 139 140 if (CurBB) { 141 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 142 143 // We have a valid insert point, reuse it if it is empty or there are no 144 // explicit jumps to the return block. 145 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 146 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 147 delete ReturnBlock.getBlock(); 148 } else 149 EmitBlock(ReturnBlock.getBlock()); 150 return; 151 } 152 153 // Otherwise, if the return block is the target of a single direct 154 // branch then we can just put the code in that block instead. This 155 // cleans up functions which started with a unified return block. 156 if (ReturnBlock.getBlock()->hasOneUse()) { 157 llvm::BranchInst *BI = 158 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->use_begin()); 159 if (BI && BI->isUnconditional() && 160 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 161 // Reset insertion point, including debug location, and delete the 162 // branch. This is really subtle and only works because the next change 163 // in location will hit the caching in CGDebugInfo::EmitLocation and not 164 // override this. 165 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 166 Builder.SetInsertPoint(BI->getParent()); 167 BI->eraseFromParent(); 168 delete ReturnBlock.getBlock(); 169 return; 170 } 171 } 172 173 // FIXME: We are at an unreachable point, there is no reason to emit the block 174 // unless it has uses. However, we still need a place to put the debug 175 // region.end for now. 176 177 EmitBlock(ReturnBlock.getBlock()); 178 } 179 180 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 181 if (!BB) return; 182 if (!BB->use_empty()) 183 return CGF.CurFn->getBasicBlockList().push_back(BB); 184 delete BB; 185 } 186 187 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 188 assert(BreakContinueStack.empty() && 189 "mismatched push/pop in break/continue stack!"); 190 191 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 192 && NumSimpleReturnExprs == NumReturnExprs; 193 // If the function contains only a simple return statement, the 194 // cleanup code may become the first breakpoint in the function. To 195 // be safe, set the debug location for it to the location of the 196 // return statement. Otherwise point it to end of the function's 197 // lexical scope. 198 if (CGDebugInfo *DI = getDebugInfo()) { 199 if (OnlySimpleReturnStmts) 200 DI->EmitLocation(Builder, LastStopPoint); 201 else 202 DI->EmitLocation(Builder, EndLoc); 203 } 204 205 // Pop any cleanups that might have been associated with the 206 // parameters. Do this in whatever block we're currently in; it's 207 // important to do this before we enter the return block or return 208 // edges will be *really* confused. 209 bool EmitRetDbgLoc = true; 210 if (EHStack.stable_begin() != PrologueCleanupDepth) { 211 PopCleanupBlocks(PrologueCleanupDepth, EndLoc); 212 213 // Make sure the line table doesn't jump back into the body for 214 // the ret after it's been at EndLoc. 215 EmitRetDbgLoc = false; 216 217 if (CGDebugInfo *DI = getDebugInfo()) 218 if (OnlySimpleReturnStmts) 219 DI->EmitLocation(Builder, EndLoc); 220 } 221 222 // Emit function epilog (to return). 223 EmitReturnBlock(); 224 225 if (ShouldInstrumentFunction()) 226 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 227 228 // Emit debug descriptor for function end. 229 if (CGDebugInfo *DI = getDebugInfo()) { 230 DI->EmitFunctionEnd(Builder); 231 } 232 233 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc); 234 EmitEndEHSpec(CurCodeDecl); 235 236 assert(EHStack.empty() && 237 "did not remove all scopes from cleanup stack!"); 238 239 // If someone did an indirect goto, emit the indirect goto block at the end of 240 // the function. 241 if (IndirectBranch) { 242 EmitBlock(IndirectBranch->getParent()); 243 Builder.ClearInsertionPoint(); 244 } 245 246 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 247 llvm::Instruction *Ptr = AllocaInsertPt; 248 AllocaInsertPt = 0; 249 Ptr->eraseFromParent(); 250 251 // If someone took the address of a label but never did an indirect goto, we 252 // made a zero entry PHI node, which is illegal, zap it now. 253 if (IndirectBranch) { 254 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 255 if (PN->getNumIncomingValues() == 0) { 256 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 257 PN->eraseFromParent(); 258 } 259 } 260 261 EmitIfUsed(*this, EHResumeBlock); 262 EmitIfUsed(*this, TerminateLandingPad); 263 EmitIfUsed(*this, TerminateHandler); 264 EmitIfUsed(*this, UnreachableBlock); 265 266 if (CGM.getCodeGenOpts().EmitDeclMetadata) 267 EmitDeclMetadata(); 268 } 269 270 /// ShouldInstrumentFunction - Return true if the current function should be 271 /// instrumented with __cyg_profile_func_* calls 272 bool CodeGenFunction::ShouldInstrumentFunction() { 273 if (!CGM.getCodeGenOpts().InstrumentFunctions) 274 return false; 275 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 276 return false; 277 return true; 278 } 279 280 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 281 /// instrumentation function with the current function and the call site, if 282 /// function instrumentation is enabled. 283 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 284 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 285 llvm::PointerType *PointerTy = Int8PtrTy; 286 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 287 llvm::FunctionType *FunctionTy = 288 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 289 290 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 291 llvm::CallInst *CallSite = Builder.CreateCall( 292 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 293 llvm::ConstantInt::get(Int32Ty, 0), 294 "callsite"); 295 296 llvm::Value *args[] = { 297 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 298 CallSite 299 }; 300 301 EmitNounwindRuntimeCall(F, args); 302 } 303 304 void CodeGenFunction::EmitMCountInstrumentation() { 305 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 306 307 llvm::Constant *MCountFn = 308 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 309 EmitNounwindRuntimeCall(MCountFn); 310 } 311 312 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 313 // information in the program executable. The argument information stored 314 // includes the argument name, its type, the address and access qualifiers used. 315 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 316 CodeGenModule &CGM,llvm::LLVMContext &Context, 317 SmallVector <llvm::Value*, 5> &kernelMDArgs, 318 CGBuilderTy& Builder, ASTContext &ASTCtx) { 319 // Create MDNodes that represent the kernel arg metadata. 320 // Each MDNode is a list in the form of "key", N number of values which is 321 // the same number of values as their are kernel arguments. 322 323 // MDNode for the kernel argument address space qualifiers. 324 SmallVector<llvm::Value*, 8> addressQuals; 325 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 326 327 // MDNode for the kernel argument access qualifiers (images only). 328 SmallVector<llvm::Value*, 8> accessQuals; 329 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 330 331 // MDNode for the kernel argument type names. 332 SmallVector<llvm::Value*, 8> argTypeNames; 333 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 334 335 // MDNode for the kernel argument type qualifiers. 336 SmallVector<llvm::Value*, 8> argTypeQuals; 337 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 338 339 // MDNode for the kernel argument names. 340 SmallVector<llvm::Value*, 8> argNames; 341 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 342 343 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 344 const ParmVarDecl *parm = FD->getParamDecl(i); 345 QualType ty = parm->getType(); 346 std::string typeQuals; 347 348 if (ty->isPointerType()) { 349 QualType pointeeTy = ty->getPointeeType(); 350 351 // Get address qualifier. 352 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 353 pointeeTy.getAddressSpace()))); 354 355 // Get argument type name. 356 std::string typeName = pointeeTy.getUnqualifiedType().getAsString() + "*"; 357 358 // Turn "unsigned type" to "utype" 359 std::string::size_type pos = typeName.find("unsigned"); 360 if (pos != std::string::npos) 361 typeName.erase(pos+1, 8); 362 363 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 364 365 // Get argument type qualifiers: 366 if (ty.isRestrictQualified()) 367 typeQuals = "restrict"; 368 if (pointeeTy.isConstQualified() || 369 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 370 typeQuals += typeQuals.empty() ? "const" : " const"; 371 if (pointeeTy.isVolatileQualified()) 372 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 373 } else { 374 addressQuals.push_back(Builder.getInt32(0)); 375 376 // Get argument type name. 377 std::string typeName = ty.getUnqualifiedType().getAsString(); 378 379 // Turn "unsigned type" to "utype" 380 std::string::size_type pos = typeName.find("unsigned"); 381 if (pos != std::string::npos) 382 typeName.erase(pos+1, 8); 383 384 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 385 386 // Get argument type qualifiers: 387 if (ty.isConstQualified()) 388 typeQuals = "const"; 389 if (ty.isVolatileQualified()) 390 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 391 } 392 393 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 394 395 // Get image access qualifier: 396 if (ty->isImageType()) { 397 if (parm->hasAttr<OpenCLImageAccessAttr>() && 398 parm->getAttr<OpenCLImageAccessAttr>()->getAccess() == CLIA_write_only) 399 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 400 else 401 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 402 } else 403 accessQuals.push_back(llvm::MDString::get(Context, "none")); 404 405 // Get argument name. 406 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 407 } 408 409 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 410 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 411 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 412 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 413 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 414 } 415 416 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 417 llvm::Function *Fn) 418 { 419 if (!FD->hasAttr<OpenCLKernelAttr>()) 420 return; 421 422 llvm::LLVMContext &Context = getLLVMContext(); 423 424 SmallVector <llvm::Value*, 5> kernelMDArgs; 425 kernelMDArgs.push_back(Fn); 426 427 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 428 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 429 Builder, getContext()); 430 431 if (FD->hasAttr<VecTypeHintAttr>()) { 432 VecTypeHintAttr *attr = FD->getAttr<VecTypeHintAttr>(); 433 QualType hintQTy = attr->getTypeHint(); 434 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 435 bool isSignedInteger = 436 hintQTy->isSignedIntegerType() || 437 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 438 llvm::Value *attrMDArgs[] = { 439 llvm::MDString::get(Context, "vec_type_hint"), 440 llvm::UndefValue::get(CGM.getTypes().ConvertType(attr->getTypeHint())), 441 llvm::ConstantInt::get( 442 llvm::IntegerType::get(Context, 32), 443 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 444 }; 445 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 446 } 447 448 if (FD->hasAttr<WorkGroupSizeHintAttr>()) { 449 WorkGroupSizeHintAttr *attr = FD->getAttr<WorkGroupSizeHintAttr>(); 450 llvm::Value *attrMDArgs[] = { 451 llvm::MDString::get(Context, "work_group_size_hint"), 452 Builder.getInt32(attr->getXDim()), 453 Builder.getInt32(attr->getYDim()), 454 Builder.getInt32(attr->getZDim()) 455 }; 456 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 457 } 458 459 if (FD->hasAttr<ReqdWorkGroupSizeAttr>()) { 460 ReqdWorkGroupSizeAttr *attr = FD->getAttr<ReqdWorkGroupSizeAttr>(); 461 llvm::Value *attrMDArgs[] = { 462 llvm::MDString::get(Context, "reqd_work_group_size"), 463 Builder.getInt32(attr->getXDim()), 464 Builder.getInt32(attr->getYDim()), 465 Builder.getInt32(attr->getZDim()) 466 }; 467 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 468 } 469 470 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 471 llvm::NamedMDNode *OpenCLKernelMetadata = 472 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 473 OpenCLKernelMetadata->addOperand(kernelMDNode); 474 } 475 476 void CodeGenFunction::StartFunction(GlobalDecl GD, 477 QualType RetTy, 478 llvm::Function *Fn, 479 const CGFunctionInfo &FnInfo, 480 const FunctionArgList &Args, 481 SourceLocation StartLoc) { 482 const Decl *D = GD.getDecl(); 483 484 DidCallStackSave = false; 485 CurCodeDecl = D; 486 CurFuncDecl = (D ? D->getNonClosureContext() : 0); 487 FnRetTy = RetTy; 488 CurFn = Fn; 489 CurFnInfo = &FnInfo; 490 assert(CurFn->isDeclaration() && "Function already has body?"); 491 492 if (CGM.getSanitizerBlacklist().isIn(*Fn)) { 493 SanOpts = &SanitizerOptions::Disabled; 494 SanitizePerformTypeCheck = false; 495 } 496 497 // Pass inline keyword to optimizer if it appears explicitly on any 498 // declaration. 499 if (!CGM.getCodeGenOpts().NoInline) 500 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 501 for (FunctionDecl::redecl_iterator RI = FD->redecls_begin(), 502 RE = FD->redecls_end(); RI != RE; ++RI) 503 if (RI->isInlineSpecified()) { 504 Fn->addFnAttr(llvm::Attribute::InlineHint); 505 break; 506 } 507 508 if (getLangOpts().OpenCL) { 509 // Add metadata for a kernel function. 510 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 511 EmitOpenCLKernelMetadata(FD, Fn); 512 } 513 514 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 515 516 // Create a marker to make it easy to insert allocas into the entryblock 517 // later. Don't create this with the builder, because we don't want it 518 // folded. 519 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 520 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 521 if (Builder.isNamePreserving()) 522 AllocaInsertPt->setName("allocapt"); 523 524 ReturnBlock = getJumpDestInCurrentScope("return"); 525 526 Builder.SetInsertPoint(EntryBB); 527 528 // Emit subprogram debug descriptor. 529 if (CGDebugInfo *DI = getDebugInfo()) { 530 SmallVector<QualType, 16> ArgTypes; 531 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 532 i != e; ++i) { 533 ArgTypes.push_back((*i)->getType()); 534 } 535 536 QualType FnType = 537 getContext().getFunctionType(RetTy, ArgTypes, 538 FunctionProtoType::ExtProtoInfo()); 539 540 DI->setLocation(StartLoc); 541 DI->EmitFunctionStart(GD, FnType, CurFn, Builder); 542 } 543 544 if (ShouldInstrumentFunction()) 545 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 546 547 if (CGM.getCodeGenOpts().InstrumentForProfiling) 548 EmitMCountInstrumentation(); 549 550 if (RetTy->isVoidType()) { 551 // Void type; nothing to return. 552 ReturnValue = 0; 553 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 554 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 555 // Indirect aggregate return; emit returned value directly into sret slot. 556 // This reduces code size, and affects correctness in C++. 557 ReturnValue = CurFn->arg_begin(); 558 } else { 559 ReturnValue = CreateIRTemp(RetTy, "retval"); 560 561 // Tell the epilog emitter to autorelease the result. We do this 562 // now so that various specialized functions can suppress it 563 // during their IR-generation. 564 if (getLangOpts().ObjCAutoRefCount && 565 !CurFnInfo->isReturnsRetained() && 566 RetTy->isObjCRetainableType()) 567 AutoreleaseResult = true; 568 } 569 570 EmitStartEHSpec(CurCodeDecl); 571 572 PrologueCleanupDepth = EHStack.stable_begin(); 573 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 574 575 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 576 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 577 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 578 if (MD->getParent()->isLambda() && 579 MD->getOverloadedOperator() == OO_Call) { 580 // We're in a lambda; figure out the captures. 581 MD->getParent()->getCaptureFields(LambdaCaptureFields, 582 LambdaThisCaptureField); 583 if (LambdaThisCaptureField) { 584 // If this lambda captures this, load it. 585 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 586 CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal(); 587 } 588 } else { 589 // Not in a lambda; just use 'this' from the method. 590 // FIXME: Should we generate a new load for each use of 'this'? The 591 // fast register allocator would be happier... 592 CXXThisValue = CXXABIThisValue; 593 } 594 } 595 596 // If any of the arguments have a variably modified type, make sure to 597 // emit the type size. 598 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 599 i != e; ++i) { 600 const VarDecl *VD = *i; 601 602 // Dig out the type as written from ParmVarDecls; it's unclear whether 603 // the standard (C99 6.9.1p10) requires this, but we're following the 604 // precedent set by gcc. 605 QualType Ty; 606 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 607 Ty = PVD->getOriginalType(); 608 else 609 Ty = VD->getType(); 610 611 if (Ty->isVariablyModifiedType()) 612 EmitVariablyModifiedType(Ty); 613 } 614 // Emit a location at the end of the prologue. 615 if (CGDebugInfo *DI = getDebugInfo()) 616 DI->EmitLocation(Builder, StartLoc); 617 } 618 619 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args) { 620 const FunctionDecl *FD = cast<FunctionDecl>(CurGD.getDecl()); 621 assert(FD->getBody()); 622 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(FD->getBody())) 623 EmitCompoundStmtWithoutScope(*S); 624 else 625 EmitStmt(FD->getBody()); 626 } 627 628 /// Tries to mark the given function nounwind based on the 629 /// non-existence of any throwing calls within it. We believe this is 630 /// lightweight enough to do at -O0. 631 static void TryMarkNoThrow(llvm::Function *F) { 632 // LLVM treats 'nounwind' on a function as part of the type, so we 633 // can't do this on functions that can be overwritten. 634 if (F->mayBeOverridden()) return; 635 636 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 637 for (llvm::BasicBlock::iterator 638 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 639 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 640 if (!Call->doesNotThrow()) 641 return; 642 } else if (isa<llvm::ResumeInst>(&*BI)) { 643 return; 644 } 645 F->setDoesNotThrow(); 646 } 647 648 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 649 const CGFunctionInfo &FnInfo) { 650 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 651 652 // Check if we should generate debug info for this function. 653 if (!FD->hasAttr<NoDebugAttr>()) 654 maybeInitializeDebugInfo(); 655 656 FunctionArgList Args; 657 QualType ResTy = FD->getResultType(); 658 659 CurGD = GD; 660 if (isa<CXXMethodDecl>(FD) && cast<CXXMethodDecl>(FD)->isInstance()) 661 CGM.getCXXABI().BuildInstanceFunctionParams(*this, ResTy, Args); 662 663 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 664 Args.push_back(FD->getParamDecl(i)); 665 666 SourceRange BodyRange; 667 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 668 669 // CalleeWithThisReturn keeps track of the last callee inside this function 670 // that returns 'this'. Before starting the function, we set it to null. 671 CalleeWithThisReturn = 0; 672 673 // Emit the standard function prologue. 674 StartFunction(GD, ResTy, Fn, FnInfo, Args, BodyRange.getBegin()); 675 676 // Generate the body of the function. 677 if (isa<CXXDestructorDecl>(FD)) 678 EmitDestructorBody(Args); 679 else if (isa<CXXConstructorDecl>(FD)) 680 EmitConstructorBody(Args); 681 else if (getLangOpts().CUDA && 682 !CGM.getCodeGenOpts().CUDAIsDevice && 683 FD->hasAttr<CUDAGlobalAttr>()) 684 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 685 else if (isa<CXXConversionDecl>(FD) && 686 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 687 // The lambda conversion to block pointer is special; the semantics can't be 688 // expressed in the AST, so IRGen needs to special-case it. 689 EmitLambdaToBlockPointerBody(Args); 690 } else if (isa<CXXMethodDecl>(FD) && 691 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 692 // The lambda "__invoke" function is special, because it forwards or 693 // clones the body of the function call operator (but is actually static). 694 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 695 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 696 cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator()) { 697 // Implicit copy-assignment gets the same special treatment as implicit 698 // copy-constructors. 699 emitImplicitAssignmentOperatorBody(Args); 700 } 701 else 702 EmitFunctionBody(Args); 703 704 // C++11 [stmt.return]p2: 705 // Flowing off the end of a function [...] results in undefined behavior in 706 // a value-returning function. 707 // C11 6.9.1p12: 708 // If the '}' that terminates a function is reached, and the value of the 709 // function call is used by the caller, the behavior is undefined. 710 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 711 !FD->getResultType()->isVoidType() && Builder.GetInsertBlock()) { 712 if (SanOpts->Return) 713 EmitCheck(Builder.getFalse(), "missing_return", 714 EmitCheckSourceLocation(FD->getLocation()), 715 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 716 else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 717 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 718 Builder.CreateUnreachable(); 719 Builder.ClearInsertionPoint(); 720 } 721 722 // Emit the standard function epilogue. 723 FinishFunction(BodyRange.getEnd()); 724 // CalleeWithThisReturn keeps track of the last callee inside this function 725 // that returns 'this'. After finishing the function, we set it to null. 726 CalleeWithThisReturn = 0; 727 728 // If we haven't marked the function nothrow through other means, do 729 // a quick pass now to see if we can. 730 if (!CurFn->doesNotThrow()) 731 TryMarkNoThrow(CurFn); 732 } 733 734 /// ContainsLabel - Return true if the statement contains a label in it. If 735 /// this statement is not executed normally, it not containing a label means 736 /// that we can just remove the code. 737 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 738 // Null statement, not a label! 739 if (S == 0) return false; 740 741 // If this is a label, we have to emit the code, consider something like: 742 // if (0) { ... foo: bar(); } goto foo; 743 // 744 // TODO: If anyone cared, we could track __label__'s, since we know that you 745 // can't jump to one from outside their declared region. 746 if (isa<LabelStmt>(S)) 747 return true; 748 749 // If this is a case/default statement, and we haven't seen a switch, we have 750 // to emit the code. 751 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 752 return true; 753 754 // If this is a switch statement, we want to ignore cases below it. 755 if (isa<SwitchStmt>(S)) 756 IgnoreCaseStmts = true; 757 758 // Scan subexpressions for verboten labels. 759 for (Stmt::const_child_range I = S->children(); I; ++I) 760 if (ContainsLabel(*I, IgnoreCaseStmts)) 761 return true; 762 763 return false; 764 } 765 766 /// containsBreak - Return true if the statement contains a break out of it. 767 /// If the statement (recursively) contains a switch or loop with a break 768 /// inside of it, this is fine. 769 bool CodeGenFunction::containsBreak(const Stmt *S) { 770 // Null statement, not a label! 771 if (S == 0) return false; 772 773 // If this is a switch or loop that defines its own break scope, then we can 774 // include it and anything inside of it. 775 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 776 isa<ForStmt>(S)) 777 return false; 778 779 if (isa<BreakStmt>(S)) 780 return true; 781 782 // Scan subexpressions for verboten breaks. 783 for (Stmt::const_child_range I = S->children(); I; ++I) 784 if (containsBreak(*I)) 785 return true; 786 787 return false; 788 } 789 790 791 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 792 /// to a constant, or if it does but contains a label, return false. If it 793 /// constant folds return true and set the boolean result in Result. 794 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 795 bool &ResultBool) { 796 llvm::APSInt ResultInt; 797 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 798 return false; 799 800 ResultBool = ResultInt.getBoolValue(); 801 return true; 802 } 803 804 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 805 /// to a constant, or if it does but contains a label, return false. If it 806 /// constant folds return true and set the folded value. 807 bool CodeGenFunction:: 808 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 809 // FIXME: Rename and handle conversion of other evaluatable things 810 // to bool. 811 llvm::APSInt Int; 812 if (!Cond->EvaluateAsInt(Int, getContext())) 813 return false; // Not foldable, not integer or not fully evaluatable. 814 815 if (CodeGenFunction::ContainsLabel(Cond)) 816 return false; // Contains a label. 817 818 ResultInt = Int; 819 return true; 820 } 821 822 823 824 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 825 /// statement) to the specified blocks. Based on the condition, this might try 826 /// to simplify the codegen of the conditional based on the branch. 827 /// 828 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 829 llvm::BasicBlock *TrueBlock, 830 llvm::BasicBlock *FalseBlock) { 831 Cond = Cond->IgnoreParens(); 832 833 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 834 // Handle X && Y in a condition. 835 if (CondBOp->getOpcode() == BO_LAnd) { 836 // If we have "1 && X", simplify the code. "0 && X" would have constant 837 // folded if the case was simple enough. 838 bool ConstantBool = false; 839 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 840 ConstantBool) { 841 // br(1 && X) -> br(X). 842 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 843 } 844 845 // If we have "X && 1", simplify the code to use an uncond branch. 846 // "X && 0" would have been constant folded to 0. 847 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 848 ConstantBool) { 849 // br(X && 1) -> br(X). 850 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 851 } 852 853 // Emit the LHS as a conditional. If the LHS conditional is false, we 854 // want to jump to the FalseBlock. 855 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 856 857 ConditionalEvaluation eval(*this); 858 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock); 859 EmitBlock(LHSTrue); 860 861 // Any temporaries created here are conditional. 862 eval.begin(*this); 863 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 864 eval.end(*this); 865 866 return; 867 } 868 869 if (CondBOp->getOpcode() == BO_LOr) { 870 // If we have "0 || X", simplify the code. "1 || X" would have constant 871 // folded if the case was simple enough. 872 bool ConstantBool = false; 873 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 874 !ConstantBool) { 875 // br(0 || X) -> br(X). 876 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 877 } 878 879 // If we have "X || 0", simplify the code to use an uncond branch. 880 // "X || 1" would have been constant folded to 1. 881 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 882 !ConstantBool) { 883 // br(X || 0) -> br(X). 884 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock); 885 } 886 887 // Emit the LHS as a conditional. If the LHS conditional is true, we 888 // want to jump to the TrueBlock. 889 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 890 891 ConditionalEvaluation eval(*this); 892 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse); 893 EmitBlock(LHSFalse); 894 895 // Any temporaries created here are conditional. 896 eval.begin(*this); 897 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock); 898 eval.end(*this); 899 900 return; 901 } 902 } 903 904 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 905 // br(!x, t, f) -> br(x, f, t) 906 if (CondUOp->getOpcode() == UO_LNot) 907 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock); 908 } 909 910 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 911 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 912 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 913 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 914 915 ConditionalEvaluation cond(*this); 916 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock); 917 918 cond.begin(*this); 919 EmitBlock(LHSBlock); 920 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock); 921 cond.end(*this); 922 923 cond.begin(*this); 924 EmitBlock(RHSBlock); 925 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock); 926 cond.end(*this); 927 928 return; 929 } 930 931 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 932 // Conditional operator handling can give us a throw expression as a 933 // condition for a case like: 934 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 935 // Fold this to: 936 // br(c, throw x, br(y, t, f)) 937 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 938 return; 939 } 940 941 // Emit the code with the fully general case. 942 llvm::Value *CondV = EvaluateExprAsBool(Cond); 943 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock); 944 } 945 946 /// ErrorUnsupported - Print out an error that codegen doesn't support the 947 /// specified stmt yet. 948 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type, 949 bool OmitOnError) { 950 CGM.ErrorUnsupported(S, Type, OmitOnError); 951 } 952 953 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 954 /// variable-length array whose elements have a non-zero bit-pattern. 955 /// 956 /// \param baseType the inner-most element type of the array 957 /// \param src - a char* pointing to the bit-pattern for a single 958 /// base element of the array 959 /// \param sizeInChars - the total size of the VLA, in chars 960 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 961 llvm::Value *dest, llvm::Value *src, 962 llvm::Value *sizeInChars) { 963 std::pair<CharUnits,CharUnits> baseSizeAndAlign 964 = CGF.getContext().getTypeInfoInChars(baseType); 965 966 CGBuilderTy &Builder = CGF.Builder; 967 968 llvm::Value *baseSizeInChars 969 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 970 971 llvm::Type *i8p = Builder.getInt8PtrTy(); 972 973 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 974 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 975 976 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 977 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 978 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 979 980 // Make a loop over the VLA. C99 guarantees that the VLA element 981 // count must be nonzero. 982 CGF.EmitBlock(loopBB); 983 984 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 985 cur->addIncoming(begin, originBB); 986 987 // memcpy the individual element bit-pattern. 988 Builder.CreateMemCpy(cur, src, baseSizeInChars, 989 baseSizeAndAlign.second.getQuantity(), 990 /*volatile*/ false); 991 992 // Go to the next element. 993 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 994 995 // Leave if that's the end of the VLA. 996 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 997 Builder.CreateCondBr(done, contBB, loopBB); 998 cur->addIncoming(next, loopBB); 999 1000 CGF.EmitBlock(contBB); 1001 } 1002 1003 void 1004 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1005 // Ignore empty classes in C++. 1006 if (getLangOpts().CPlusPlus) { 1007 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1008 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1009 return; 1010 } 1011 } 1012 1013 // Cast the dest ptr to the appropriate i8 pointer type. 1014 unsigned DestAS = 1015 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1016 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1017 if (DestPtr->getType() != BP) 1018 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1019 1020 // Get size and alignment info for this aggregate. 1021 std::pair<CharUnits, CharUnits> TypeInfo = 1022 getContext().getTypeInfoInChars(Ty); 1023 CharUnits Size = TypeInfo.first; 1024 CharUnits Align = TypeInfo.second; 1025 1026 llvm::Value *SizeVal; 1027 const VariableArrayType *vla; 1028 1029 // Don't bother emitting a zero-byte memset. 1030 if (Size.isZero()) { 1031 // But note that getTypeInfo returns 0 for a VLA. 1032 if (const VariableArrayType *vlaType = 1033 dyn_cast_or_null<VariableArrayType>( 1034 getContext().getAsArrayType(Ty))) { 1035 QualType eltType; 1036 llvm::Value *numElts; 1037 llvm::tie(numElts, eltType) = getVLASize(vlaType); 1038 1039 SizeVal = numElts; 1040 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1041 if (!eltSize.isOne()) 1042 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1043 vla = vlaType; 1044 } else { 1045 return; 1046 } 1047 } else { 1048 SizeVal = CGM.getSize(Size); 1049 vla = 0; 1050 } 1051 1052 // If the type contains a pointer to data member we can't memset it to zero. 1053 // Instead, create a null constant and copy it to the destination. 1054 // TODO: there are other patterns besides zero that we can usefully memset, 1055 // like -1, which happens to be the pattern used by member-pointers. 1056 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1057 // For a VLA, emit a single element, then splat that over the VLA. 1058 if (vla) Ty = getContext().getBaseElementType(vla); 1059 1060 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1061 1062 llvm::GlobalVariable *NullVariable = 1063 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1064 /*isConstant=*/true, 1065 llvm::GlobalVariable::PrivateLinkage, 1066 NullConstant, Twine()); 1067 llvm::Value *SrcPtr = 1068 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1069 1070 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1071 1072 // Get and call the appropriate llvm.memcpy overload. 1073 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1074 return; 1075 } 1076 1077 // Otherwise, just memset the whole thing to zero. This is legal 1078 // because in LLVM, all default initializers (other than the ones we just 1079 // handled above) are guaranteed to have a bit pattern of all zeros. 1080 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1081 Align.getQuantity(), false); 1082 } 1083 1084 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1085 // Make sure that there is a block for the indirect goto. 1086 if (IndirectBranch == 0) 1087 GetIndirectGotoBlock(); 1088 1089 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1090 1091 // Make sure the indirect branch includes all of the address-taken blocks. 1092 IndirectBranch->addDestination(BB); 1093 return llvm::BlockAddress::get(CurFn, BB); 1094 } 1095 1096 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1097 // If we already made the indirect branch for indirect goto, return its block. 1098 if (IndirectBranch) return IndirectBranch->getParent(); 1099 1100 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1101 1102 // Create the PHI node that indirect gotos will add entries to. 1103 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1104 "indirect.goto.dest"); 1105 1106 // Create the indirect branch instruction. 1107 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1108 return IndirectBranch->getParent(); 1109 } 1110 1111 /// Computes the length of an array in elements, as well as the base 1112 /// element type and a properly-typed first element pointer. 1113 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1114 QualType &baseType, 1115 llvm::Value *&addr) { 1116 const ArrayType *arrayType = origArrayType; 1117 1118 // If it's a VLA, we have to load the stored size. Note that 1119 // this is the size of the VLA in bytes, not its size in elements. 1120 llvm::Value *numVLAElements = 0; 1121 if (isa<VariableArrayType>(arrayType)) { 1122 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1123 1124 // Walk into all VLAs. This doesn't require changes to addr, 1125 // which has type T* where T is the first non-VLA element type. 1126 do { 1127 QualType elementType = arrayType->getElementType(); 1128 arrayType = getContext().getAsArrayType(elementType); 1129 1130 // If we only have VLA components, 'addr' requires no adjustment. 1131 if (!arrayType) { 1132 baseType = elementType; 1133 return numVLAElements; 1134 } 1135 } while (isa<VariableArrayType>(arrayType)); 1136 1137 // We get out here only if we find a constant array type 1138 // inside the VLA. 1139 } 1140 1141 // We have some number of constant-length arrays, so addr should 1142 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1143 // down to the first element of addr. 1144 SmallVector<llvm::Value*, 8> gepIndices; 1145 1146 // GEP down to the array type. 1147 llvm::ConstantInt *zero = Builder.getInt32(0); 1148 gepIndices.push_back(zero); 1149 1150 uint64_t countFromCLAs = 1; 1151 QualType eltType; 1152 1153 llvm::ArrayType *llvmArrayType = 1154 dyn_cast<llvm::ArrayType>( 1155 cast<llvm::PointerType>(addr->getType())->getElementType()); 1156 while (llvmArrayType) { 1157 assert(isa<ConstantArrayType>(arrayType)); 1158 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1159 == llvmArrayType->getNumElements()); 1160 1161 gepIndices.push_back(zero); 1162 countFromCLAs *= llvmArrayType->getNumElements(); 1163 eltType = arrayType->getElementType(); 1164 1165 llvmArrayType = 1166 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1167 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1168 assert((!llvmArrayType || arrayType) && 1169 "LLVM and Clang types are out-of-synch"); 1170 } 1171 1172 if (arrayType) { 1173 // From this point onwards, the Clang array type has been emitted 1174 // as some other type (probably a packed struct). Compute the array 1175 // size, and just emit the 'begin' expression as a bitcast. 1176 while (arrayType) { 1177 countFromCLAs *= 1178 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1179 eltType = arrayType->getElementType(); 1180 arrayType = getContext().getAsArrayType(eltType); 1181 } 1182 1183 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1184 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1185 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1186 } else { 1187 // Create the actual GEP. 1188 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1189 } 1190 1191 baseType = eltType; 1192 1193 llvm::Value *numElements 1194 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1195 1196 // If we had any VLA dimensions, factor them in. 1197 if (numVLAElements) 1198 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1199 1200 return numElements; 1201 } 1202 1203 std::pair<llvm::Value*, QualType> 1204 CodeGenFunction::getVLASize(QualType type) { 1205 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1206 assert(vla && "type was not a variable array type!"); 1207 return getVLASize(vla); 1208 } 1209 1210 std::pair<llvm::Value*, QualType> 1211 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1212 // The number of elements so far; always size_t. 1213 llvm::Value *numElements = 0; 1214 1215 QualType elementType; 1216 do { 1217 elementType = type->getElementType(); 1218 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1219 assert(vlaSize && "no size for VLA!"); 1220 assert(vlaSize->getType() == SizeTy); 1221 1222 if (!numElements) { 1223 numElements = vlaSize; 1224 } else { 1225 // It's undefined behavior if this wraps around, so mark it that way. 1226 // FIXME: Teach -fcatch-undefined-behavior to trap this. 1227 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1228 } 1229 } while ((type = getContext().getAsVariableArrayType(elementType))); 1230 1231 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1232 } 1233 1234 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1235 assert(type->isVariablyModifiedType() && 1236 "Must pass variably modified type to EmitVLASizes!"); 1237 1238 EnsureInsertPoint(); 1239 1240 // We're going to walk down into the type and look for VLA 1241 // expressions. 1242 do { 1243 assert(type->isVariablyModifiedType()); 1244 1245 const Type *ty = type.getTypePtr(); 1246 switch (ty->getTypeClass()) { 1247 1248 #define TYPE(Class, Base) 1249 #define ABSTRACT_TYPE(Class, Base) 1250 #define NON_CANONICAL_TYPE(Class, Base) 1251 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1252 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1253 #include "clang/AST/TypeNodes.def" 1254 llvm_unreachable("unexpected dependent type!"); 1255 1256 // These types are never variably-modified. 1257 case Type::Builtin: 1258 case Type::Complex: 1259 case Type::Vector: 1260 case Type::ExtVector: 1261 case Type::Record: 1262 case Type::Enum: 1263 case Type::Elaborated: 1264 case Type::TemplateSpecialization: 1265 case Type::ObjCObject: 1266 case Type::ObjCInterface: 1267 case Type::ObjCObjectPointer: 1268 llvm_unreachable("type class is never variably-modified!"); 1269 1270 case Type::Pointer: 1271 type = cast<PointerType>(ty)->getPointeeType(); 1272 break; 1273 1274 case Type::BlockPointer: 1275 type = cast<BlockPointerType>(ty)->getPointeeType(); 1276 break; 1277 1278 case Type::LValueReference: 1279 case Type::RValueReference: 1280 type = cast<ReferenceType>(ty)->getPointeeType(); 1281 break; 1282 1283 case Type::MemberPointer: 1284 type = cast<MemberPointerType>(ty)->getPointeeType(); 1285 break; 1286 1287 case Type::ConstantArray: 1288 case Type::IncompleteArray: 1289 // Losing element qualification here is fine. 1290 type = cast<ArrayType>(ty)->getElementType(); 1291 break; 1292 1293 case Type::VariableArray: { 1294 // Losing element qualification here is fine. 1295 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1296 1297 // Unknown size indication requires no size computation. 1298 // Otherwise, evaluate and record it. 1299 if (const Expr *size = vat->getSizeExpr()) { 1300 // It's possible that we might have emitted this already, 1301 // e.g. with a typedef and a pointer to it. 1302 llvm::Value *&entry = VLASizeMap[size]; 1303 if (!entry) { 1304 llvm::Value *Size = EmitScalarExpr(size); 1305 1306 // C11 6.7.6.2p5: 1307 // If the size is an expression that is not an integer constant 1308 // expression [...] each time it is evaluated it shall have a value 1309 // greater than zero. 1310 if (SanOpts->VLABound && 1311 size->getType()->isSignedIntegerType()) { 1312 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1313 llvm::Constant *StaticArgs[] = { 1314 EmitCheckSourceLocation(size->getLocStart()), 1315 EmitCheckTypeDescriptor(size->getType()) 1316 }; 1317 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1318 "vla_bound_not_positive", StaticArgs, Size, 1319 CRK_Recoverable); 1320 } 1321 1322 // Always zexting here would be wrong if it weren't 1323 // undefined behavior to have a negative bound. 1324 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1325 } 1326 } 1327 type = vat->getElementType(); 1328 break; 1329 } 1330 1331 case Type::FunctionProto: 1332 case Type::FunctionNoProto: 1333 type = cast<FunctionType>(ty)->getResultType(); 1334 break; 1335 1336 case Type::Paren: 1337 case Type::TypeOf: 1338 case Type::UnaryTransform: 1339 case Type::Attributed: 1340 case Type::SubstTemplateTypeParm: 1341 // Keep walking after single level desugaring. 1342 type = type.getSingleStepDesugaredType(getContext()); 1343 break; 1344 1345 case Type::Typedef: 1346 case Type::Decltype: 1347 case Type::Auto: 1348 // Stop walking: nothing to do. 1349 return; 1350 1351 case Type::TypeOfExpr: 1352 // Stop walking: emit typeof expression. 1353 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1354 return; 1355 1356 case Type::Atomic: 1357 type = cast<AtomicType>(ty)->getValueType(); 1358 break; 1359 } 1360 } while (type->isVariablyModifiedType()); 1361 } 1362 1363 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1364 if (getContext().getBuiltinVaListType()->isArrayType()) 1365 return EmitScalarExpr(E); 1366 return EmitLValue(E).getAddress(); 1367 } 1368 1369 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1370 llvm::Constant *Init) { 1371 assert (Init && "Invalid DeclRefExpr initializer!"); 1372 if (CGDebugInfo *Dbg = getDebugInfo()) 1373 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1374 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1375 } 1376 1377 CodeGenFunction::PeepholeProtection 1378 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1379 // At the moment, the only aggressive peephole we do in IR gen 1380 // is trunc(zext) folding, but if we add more, we can easily 1381 // extend this protection. 1382 1383 if (!rvalue.isScalar()) return PeepholeProtection(); 1384 llvm::Value *value = rvalue.getScalarVal(); 1385 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1386 1387 // Just make an extra bitcast. 1388 assert(HaveInsertPoint()); 1389 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1390 Builder.GetInsertBlock()); 1391 1392 PeepholeProtection protection; 1393 protection.Inst = inst; 1394 return protection; 1395 } 1396 1397 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1398 if (!protection.Inst) return; 1399 1400 // In theory, we could try to duplicate the peepholes now, but whatever. 1401 protection.Inst->eraseFromParent(); 1402 } 1403 1404 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1405 llvm::Value *AnnotatedVal, 1406 StringRef AnnotationStr, 1407 SourceLocation Location) { 1408 llvm::Value *Args[4] = { 1409 AnnotatedVal, 1410 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1411 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1412 CGM.EmitAnnotationLineNo(Location) 1413 }; 1414 return Builder.CreateCall(AnnotationFn, Args); 1415 } 1416 1417 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1418 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1419 // FIXME We create a new bitcast for every annotation because that's what 1420 // llvm-gcc was doing. 1421 for (specific_attr_iterator<AnnotateAttr> 1422 ai = D->specific_attr_begin<AnnotateAttr>(), 1423 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) 1424 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1425 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1426 (*ai)->getAnnotation(), D->getLocation()); 1427 } 1428 1429 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1430 llvm::Value *V) { 1431 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1432 llvm::Type *VTy = V->getType(); 1433 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1434 CGM.Int8PtrTy); 1435 1436 for (specific_attr_iterator<AnnotateAttr> 1437 ai = D->specific_attr_begin<AnnotateAttr>(), 1438 ae = D->specific_attr_end<AnnotateAttr>(); ai != ae; ++ai) { 1439 // FIXME Always emit the cast inst so we can differentiate between 1440 // annotation on the first field of a struct and annotation on the struct 1441 // itself. 1442 if (VTy != CGM.Int8PtrTy) 1443 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1444 V = EmitAnnotationCall(F, V, (*ai)->getAnnotation(), D->getLocation()); 1445 V = Builder.CreateBitCast(V, VTy); 1446 } 1447 1448 return V; 1449 } 1450