1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/ASTLambda.h" 26 #include "clang/AST/Decl.h" 27 #include "clang/AST/DeclCXX.h" 28 #include "clang/AST/StmtCXX.h" 29 #include "clang/AST/StmtObjC.h" 30 #include "clang/Basic/Builtins.h" 31 #include "clang/Basic/TargetInfo.h" 32 #include "clang/CodeGen/CGFunctionInfo.h" 33 #include "clang/Frontend/CodeGenOptions.h" 34 #include "clang/Sema/SemaDiagnostic.h" 35 #include "llvm/IR/DataLayout.h" 36 #include "llvm/IR/Dominators.h" 37 #include "llvm/IR/Intrinsics.h" 38 #include "llvm/IR/MDBuilder.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/Transforms/Utils/PromoteMemToReg.h" 41 using namespace clang; 42 using namespace CodeGen; 43 44 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 45 /// markers. 46 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 47 const LangOptions &LangOpts) { 48 if (CGOpts.DisableLifetimeMarkers) 49 return false; 50 51 // Disable lifetime markers in msan builds. 52 // FIXME: Remove this when msan works with lifetime markers. 53 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 54 return false; 55 56 // Asan uses markers for use-after-scope checks. 57 if (CGOpts.SanitizeAddressUseAfterScope) 58 return true; 59 60 // For now, only in optimized builds. 61 return CGOpts.OptimizationLevel != 0; 62 } 63 64 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 65 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 66 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 67 CGBuilderInserterTy(this)), 68 CurFn(nullptr), ReturnValue(Address::invalid()), 69 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 70 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 71 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 72 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 73 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 74 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 75 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 76 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 77 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 78 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 79 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 80 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 81 CXXStructorImplicitParamDecl(nullptr), 82 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 83 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 84 TerminateHandler(nullptr), TrapBB(nullptr), 85 ShouldEmitLifetimeMarkers( 86 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 87 if (!suppressNewContext) 88 CGM.getCXXABI().getMangleContext().startNewFunction(); 89 90 llvm::FastMathFlags FMF; 91 if (CGM.getLangOpts().FastMath) 92 FMF.setFast(); 93 if (CGM.getLangOpts().FiniteMathOnly) { 94 FMF.setNoNaNs(); 95 FMF.setNoInfs(); 96 } 97 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 98 FMF.setNoNaNs(); 99 } 100 if (CGM.getCodeGenOpts().NoSignedZeros) { 101 FMF.setNoSignedZeros(); 102 } 103 if (CGM.getCodeGenOpts().ReciprocalMath) { 104 FMF.setAllowReciprocal(); 105 } 106 if (CGM.getCodeGenOpts().Reassociate) { 107 FMF.setAllowReassoc(); 108 } 109 Builder.setFastMathFlags(FMF); 110 } 111 112 CodeGenFunction::~CodeGenFunction() { 113 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 114 115 // If there are any unclaimed block infos, go ahead and destroy them 116 // now. This can happen if IR-gen gets clever and skips evaluating 117 // something. 118 if (FirstBlockInfo) 119 destroyBlockInfos(FirstBlockInfo); 120 121 if (getLangOpts().OpenMP && CurFn) 122 CGM.getOpenMPRuntime().functionFinished(*this); 123 } 124 125 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 TBAAAccessInfo *TBAAInfo) { 128 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, TBAAInfo, 129 /* forPointeeType= */ true); 130 } 131 132 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 133 LValueBaseInfo *BaseInfo, 134 TBAAAccessInfo *TBAAInfo, 135 bool forPointeeType) { 136 if (TBAAInfo) 137 *TBAAInfo = CGM.getTBAAAccessInfo(T); 138 139 // Honor alignment typedef attributes even on incomplete types. 140 // We also honor them straight for C++ class types, even as pointees; 141 // there's an expressivity gap here. 142 if (auto TT = T->getAs<TypedefType>()) { 143 if (auto Align = TT->getDecl()->getMaxAlignment()) { 144 if (BaseInfo) 145 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType); 146 return getContext().toCharUnitsFromBits(Align); 147 } 148 } 149 150 if (BaseInfo) 151 *BaseInfo = LValueBaseInfo(AlignmentSource::Type); 152 153 CharUnits Alignment; 154 if (T->isIncompleteType()) { 155 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 156 } else { 157 // For C++ class pointees, we don't know whether we're pointing at a 158 // base or a complete object, so we generally need to use the 159 // non-virtual alignment. 160 const CXXRecordDecl *RD; 161 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 162 Alignment = CGM.getClassPointerAlignment(RD); 163 } else { 164 Alignment = getContext().getTypeAlignInChars(T); 165 if (T.getQualifiers().hasUnaligned()) 166 Alignment = CharUnits::One(); 167 } 168 169 // Cap to the global maximum type alignment unless the alignment 170 // was somehow explicit on the type. 171 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 172 if (Alignment.getQuantity() > MaxAlign && 173 !getContext().isAlignmentRequired(T)) 174 Alignment = CharUnits::fromQuantity(MaxAlign); 175 } 176 } 177 return Alignment; 178 } 179 180 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 181 LValueBaseInfo BaseInfo; 182 TBAAAccessInfo TBAAInfo; 183 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo); 184 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 185 TBAAInfo); 186 } 187 188 /// Given a value of type T* that may not be to a complete object, 189 /// construct an l-value with the natural pointee alignment of T. 190 LValue 191 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 192 LValueBaseInfo BaseInfo; 193 TBAAAccessInfo TBAAInfo; 194 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, &TBAAInfo, 195 /* forPointeeType= */ true); 196 return MakeAddrLValue(Address(V, Align), T, BaseInfo, TBAAInfo); 197 } 198 199 200 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 201 return CGM.getTypes().ConvertTypeForMem(T); 202 } 203 204 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 205 return CGM.getTypes().ConvertType(T); 206 } 207 208 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 209 type = type.getCanonicalType(); 210 while (true) { 211 switch (type->getTypeClass()) { 212 #define TYPE(name, parent) 213 #define ABSTRACT_TYPE(name, parent) 214 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 215 #define DEPENDENT_TYPE(name, parent) case Type::name: 216 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 217 #include "clang/AST/TypeNodes.def" 218 llvm_unreachable("non-canonical or dependent type in IR-generation"); 219 220 case Type::Auto: 221 case Type::DeducedTemplateSpecialization: 222 llvm_unreachable("undeduced type in IR-generation"); 223 224 // Various scalar types. 225 case Type::Builtin: 226 case Type::Pointer: 227 case Type::BlockPointer: 228 case Type::LValueReference: 229 case Type::RValueReference: 230 case Type::MemberPointer: 231 case Type::Vector: 232 case Type::ExtVector: 233 case Type::FunctionProto: 234 case Type::FunctionNoProto: 235 case Type::Enum: 236 case Type::ObjCObjectPointer: 237 case Type::Pipe: 238 return TEK_Scalar; 239 240 // Complexes. 241 case Type::Complex: 242 return TEK_Complex; 243 244 // Arrays, records, and Objective-C objects. 245 case Type::ConstantArray: 246 case Type::IncompleteArray: 247 case Type::VariableArray: 248 case Type::Record: 249 case Type::ObjCObject: 250 case Type::ObjCInterface: 251 return TEK_Aggregate; 252 253 // We operate on atomic values according to their underlying type. 254 case Type::Atomic: 255 type = cast<AtomicType>(type)->getValueType(); 256 continue; 257 } 258 llvm_unreachable("unknown type kind!"); 259 } 260 } 261 262 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 263 // For cleanliness, we try to avoid emitting the return block for 264 // simple cases. 265 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 266 267 if (CurBB) { 268 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 269 270 // We have a valid insert point, reuse it if it is empty or there are no 271 // explicit jumps to the return block. 272 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 273 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 274 delete ReturnBlock.getBlock(); 275 } else 276 EmitBlock(ReturnBlock.getBlock()); 277 return llvm::DebugLoc(); 278 } 279 280 // Otherwise, if the return block is the target of a single direct 281 // branch then we can just put the code in that block instead. This 282 // cleans up functions which started with a unified return block. 283 if (ReturnBlock.getBlock()->hasOneUse()) { 284 llvm::BranchInst *BI = 285 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 286 if (BI && BI->isUnconditional() && 287 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 288 // Record/return the DebugLoc of the simple 'return' expression to be used 289 // later by the actual 'ret' instruction. 290 llvm::DebugLoc Loc = BI->getDebugLoc(); 291 Builder.SetInsertPoint(BI->getParent()); 292 BI->eraseFromParent(); 293 delete ReturnBlock.getBlock(); 294 return Loc; 295 } 296 } 297 298 // FIXME: We are at an unreachable point, there is no reason to emit the block 299 // unless it has uses. However, we still need a place to put the debug 300 // region.end for now. 301 302 EmitBlock(ReturnBlock.getBlock()); 303 return llvm::DebugLoc(); 304 } 305 306 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 307 if (!BB) return; 308 if (!BB->use_empty()) 309 return CGF.CurFn->getBasicBlockList().push_back(BB); 310 delete BB; 311 } 312 313 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 314 assert(BreakContinueStack.empty() && 315 "mismatched push/pop in break/continue stack!"); 316 317 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 318 && NumSimpleReturnExprs == NumReturnExprs 319 && ReturnBlock.getBlock()->use_empty(); 320 // Usually the return expression is evaluated before the cleanup 321 // code. If the function contains only a simple return statement, 322 // such as a constant, the location before the cleanup code becomes 323 // the last useful breakpoint in the function, because the simple 324 // return expression will be evaluated after the cleanup code. To be 325 // safe, set the debug location for cleanup code to the location of 326 // the return statement. Otherwise the cleanup code should be at the 327 // end of the function's lexical scope. 328 // 329 // If there are multiple branches to the return block, the branch 330 // instructions will get the location of the return statements and 331 // all will be fine. 332 if (CGDebugInfo *DI = getDebugInfo()) { 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, LastStopPoint); 335 else 336 DI->EmitLocation(Builder, EndLoc); 337 } 338 339 // Pop any cleanups that might have been associated with the 340 // parameters. Do this in whatever block we're currently in; it's 341 // important to do this before we enter the return block or return 342 // edges will be *really* confused. 343 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 344 bool HasOnlyLifetimeMarkers = 345 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 346 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 347 if (HasCleanups) { 348 // Make sure the line table doesn't jump back into the body for 349 // the ret after it's been at EndLoc. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 if (OnlySimpleReturnStmts) 352 DI->EmitLocation(Builder, EndLoc); 353 354 PopCleanupBlocks(PrologueCleanupDepth); 355 } 356 357 // Emit function epilog (to return). 358 llvm::DebugLoc Loc = EmitReturnBlock(); 359 360 if (ShouldInstrumentFunction()) { 361 if (CGM.getCodeGenOpts().InstrumentFunctions) 362 CurFn->addFnAttr("instrument-function-exit", "__cyg_profile_func_exit"); 363 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 364 CurFn->addFnAttr("instrument-function-exit-inlined", 365 "__cyg_profile_func_exit"); 366 } 367 368 // Emit debug descriptor for function end. 369 if (CGDebugInfo *DI = getDebugInfo()) 370 DI->EmitFunctionEnd(Builder, CurFn); 371 372 // Reset the debug location to that of the simple 'return' expression, if any 373 // rather than that of the end of the function's scope '}'. 374 ApplyDebugLocation AL(*this, Loc); 375 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 376 EmitEndEHSpec(CurCodeDecl); 377 378 assert(EHStack.empty() && 379 "did not remove all scopes from cleanup stack!"); 380 381 // If someone did an indirect goto, emit the indirect goto block at the end of 382 // the function. 383 if (IndirectBranch) { 384 EmitBlock(IndirectBranch->getParent()); 385 Builder.ClearInsertionPoint(); 386 } 387 388 // If some of our locals escaped, insert a call to llvm.localescape in the 389 // entry block. 390 if (!EscapedLocals.empty()) { 391 // Invert the map from local to index into a simple vector. There should be 392 // no holes. 393 SmallVector<llvm::Value *, 4> EscapeArgs; 394 EscapeArgs.resize(EscapedLocals.size()); 395 for (auto &Pair : EscapedLocals) 396 EscapeArgs[Pair.second] = Pair.first; 397 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 398 &CGM.getModule(), llvm::Intrinsic::localescape); 399 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 400 } 401 402 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 403 llvm::Instruction *Ptr = AllocaInsertPt; 404 AllocaInsertPt = nullptr; 405 Ptr->eraseFromParent(); 406 407 // If someone took the address of a label but never did an indirect goto, we 408 // made a zero entry PHI node, which is illegal, zap it now. 409 if (IndirectBranch) { 410 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 411 if (PN->getNumIncomingValues() == 0) { 412 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 413 PN->eraseFromParent(); 414 } 415 } 416 417 EmitIfUsed(*this, EHResumeBlock); 418 EmitIfUsed(*this, TerminateLandingPad); 419 EmitIfUsed(*this, TerminateHandler); 420 EmitIfUsed(*this, UnreachableBlock); 421 422 for (const auto &FuncletAndParent : TerminateFunclets) 423 EmitIfUsed(*this, FuncletAndParent.second); 424 425 if (CGM.getCodeGenOpts().EmitDeclMetadata) 426 EmitDeclMetadata(); 427 428 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 429 I = DeferredReplacements.begin(), 430 E = DeferredReplacements.end(); 431 I != E; ++I) { 432 I->first->replaceAllUsesWith(I->second); 433 I->first->eraseFromParent(); 434 } 435 436 // Eliminate CleanupDestSlot alloca by replacing it with SSA values and 437 // PHIs if the current function is a coroutine. We don't do it for all 438 // functions as it may result in slight increase in numbers of instructions 439 // if compiled with no optimizations. We do it for coroutine as the lifetime 440 // of CleanupDestSlot alloca make correct coroutine frame building very 441 // difficult. 442 if (NormalCleanupDest && isCoroutine()) { 443 llvm::DominatorTree DT(*CurFn); 444 llvm::PromoteMemToReg(NormalCleanupDest, DT); 445 NormalCleanupDest = nullptr; 446 } 447 } 448 449 /// ShouldInstrumentFunction - Return true if the current function should be 450 /// instrumented with __cyg_profile_func_* calls 451 bool CodeGenFunction::ShouldInstrumentFunction() { 452 if (!CGM.getCodeGenOpts().InstrumentFunctions && 453 !CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining && 454 !CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 455 return false; 456 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 457 return false; 458 return true; 459 } 460 461 /// ShouldXRayInstrument - Return true if the current function should be 462 /// instrumented with XRay nop sleds. 463 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 464 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 465 } 466 467 /// AlwaysEmitXRayCustomEvents - Return true if we should emit IR for calls to 468 /// the __xray_customevent(...) builin calls, when doing XRay instrumentation. 469 bool CodeGenFunction::AlwaysEmitXRayCustomEvents() const { 470 return CGM.getCodeGenOpts().XRayAlwaysEmitCustomEvents; 471 } 472 473 llvm::Constant * 474 CodeGenFunction::EncodeAddrForUseInPrologue(llvm::Function *F, 475 llvm::Constant *Addr) { 476 // Addresses stored in prologue data can't require run-time fixups and must 477 // be PC-relative. Run-time fixups are undesirable because they necessitate 478 // writable text segments, which are unsafe. And absolute addresses are 479 // undesirable because they break PIE mode. 480 481 // Add a layer of indirection through a private global. Taking its address 482 // won't result in a run-time fixup, even if Addr has linkonce_odr linkage. 483 auto *GV = new llvm::GlobalVariable(CGM.getModule(), Addr->getType(), 484 /*isConstant=*/true, 485 llvm::GlobalValue::PrivateLinkage, Addr); 486 487 // Create a PC-relative address. 488 auto *GOTAsInt = llvm::ConstantExpr::getPtrToInt(GV, IntPtrTy); 489 auto *FuncAsInt = llvm::ConstantExpr::getPtrToInt(F, IntPtrTy); 490 auto *PCRelAsInt = llvm::ConstantExpr::getSub(GOTAsInt, FuncAsInt); 491 return (IntPtrTy == Int32Ty) 492 ? PCRelAsInt 493 : llvm::ConstantExpr::getTrunc(PCRelAsInt, Int32Ty); 494 } 495 496 llvm::Value * 497 CodeGenFunction::DecodeAddrUsedInPrologue(llvm::Value *F, 498 llvm::Value *EncodedAddr) { 499 // Reconstruct the address of the global. 500 auto *PCRelAsInt = Builder.CreateSExt(EncodedAddr, IntPtrTy); 501 auto *FuncAsInt = Builder.CreatePtrToInt(F, IntPtrTy, "func_addr.int"); 502 auto *GOTAsInt = Builder.CreateAdd(PCRelAsInt, FuncAsInt, "global_addr.int"); 503 auto *GOTAddr = Builder.CreateIntToPtr(GOTAsInt, Int8PtrPtrTy, "global_addr"); 504 505 // Load the original pointer through the global. 506 return Builder.CreateLoad(Address(GOTAddr, getPointerAlign()), 507 "decoded_addr"); 508 } 509 510 static void removeImageAccessQualifier(std::string& TyName) { 511 std::string ReadOnlyQual("__read_only"); 512 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 513 if (ReadOnlyPos != std::string::npos) 514 // "+ 1" for the space after access qualifier. 515 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 516 else { 517 std::string WriteOnlyQual("__write_only"); 518 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 519 if (WriteOnlyPos != std::string::npos) 520 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 521 else { 522 std::string ReadWriteQual("__read_write"); 523 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 524 if (ReadWritePos != std::string::npos) 525 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 526 } 527 } 528 } 529 530 // Returns the address space id that should be produced to the 531 // kernel_arg_addr_space metadata. This is always fixed to the ids 532 // as specified in the SPIR 2.0 specification in order to differentiate 533 // for example in clGetKernelArgInfo() implementation between the address 534 // spaces with targets without unique mapping to the OpenCL address spaces 535 // (basically all single AS CPUs). 536 static unsigned ArgInfoAddressSpace(LangAS AS) { 537 switch (AS) { 538 case LangAS::opencl_global: return 1; 539 case LangAS::opencl_constant: return 2; 540 case LangAS::opencl_local: return 3; 541 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 542 default: 543 return 0; // Assume private. 544 } 545 } 546 547 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 548 // information in the program executable. The argument information stored 549 // includes the argument name, its type, the address and access qualifiers used. 550 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 551 CodeGenModule &CGM, llvm::LLVMContext &Context, 552 CGBuilderTy &Builder, ASTContext &ASTCtx) { 553 // Create MDNodes that represent the kernel arg metadata. 554 // Each MDNode is a list in the form of "key", N number of values which is 555 // the same number of values as their are kernel arguments. 556 557 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 558 559 // MDNode for the kernel argument address space qualifiers. 560 SmallVector<llvm::Metadata *, 8> addressQuals; 561 562 // MDNode for the kernel argument access qualifiers (images only). 563 SmallVector<llvm::Metadata *, 8> accessQuals; 564 565 // MDNode for the kernel argument type names. 566 SmallVector<llvm::Metadata *, 8> argTypeNames; 567 568 // MDNode for the kernel argument base type names. 569 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 570 571 // MDNode for the kernel argument type qualifiers. 572 SmallVector<llvm::Metadata *, 8> argTypeQuals; 573 574 // MDNode for the kernel argument names. 575 SmallVector<llvm::Metadata *, 8> argNames; 576 577 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 578 const ParmVarDecl *parm = FD->getParamDecl(i); 579 QualType ty = parm->getType(); 580 std::string typeQuals; 581 582 if (ty->isPointerType()) { 583 QualType pointeeTy = ty->getPointeeType(); 584 585 // Get address qualifier. 586 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 587 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 588 589 // Get argument type name. 590 std::string typeName = 591 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 592 593 // Turn "unsigned type" to "utype" 594 std::string::size_type pos = typeName.find("unsigned"); 595 if (pointeeTy.isCanonical() && pos != std::string::npos) 596 typeName.erase(pos+1, 8); 597 598 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 599 600 std::string baseTypeName = 601 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 602 Policy) + 603 "*"; 604 605 // Turn "unsigned type" to "utype" 606 pos = baseTypeName.find("unsigned"); 607 if (pos != std::string::npos) 608 baseTypeName.erase(pos+1, 8); 609 610 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 611 612 // Get argument type qualifiers: 613 if (ty.isRestrictQualified()) 614 typeQuals = "restrict"; 615 if (pointeeTy.isConstQualified() || 616 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 617 typeQuals += typeQuals.empty() ? "const" : " const"; 618 if (pointeeTy.isVolatileQualified()) 619 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 620 } else { 621 uint32_t AddrSpc = 0; 622 bool isPipe = ty->isPipeType(); 623 if (ty->isImageType() || isPipe) 624 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 625 626 addressQuals.push_back( 627 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 628 629 // Get argument type name. 630 std::string typeName; 631 if (isPipe) 632 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 633 .getAsString(Policy); 634 else 635 typeName = ty.getUnqualifiedType().getAsString(Policy); 636 637 // Turn "unsigned type" to "utype" 638 std::string::size_type pos = typeName.find("unsigned"); 639 if (ty.isCanonical() && pos != std::string::npos) 640 typeName.erase(pos+1, 8); 641 642 std::string baseTypeName; 643 if (isPipe) 644 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 645 ->getElementType().getCanonicalType() 646 .getAsString(Policy); 647 else 648 baseTypeName = 649 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 650 651 // Remove access qualifiers on images 652 // (as they are inseparable from type in clang implementation, 653 // but OpenCL spec provides a special query to get access qualifier 654 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 655 if (ty->isImageType()) { 656 removeImageAccessQualifier(typeName); 657 removeImageAccessQualifier(baseTypeName); 658 } 659 660 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 661 662 // Turn "unsigned type" to "utype" 663 pos = baseTypeName.find("unsigned"); 664 if (pos != std::string::npos) 665 baseTypeName.erase(pos+1, 8); 666 667 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 668 669 if (isPipe) 670 typeQuals = "pipe"; 671 } 672 673 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 674 675 // Get image and pipe access qualifier: 676 if (ty->isImageType()|| ty->isPipeType()) { 677 const Decl *PDecl = parm; 678 if (auto *TD = dyn_cast<TypedefType>(ty)) 679 PDecl = TD->getDecl(); 680 const OpenCLAccessAttr *A = PDecl->getAttr<OpenCLAccessAttr>(); 681 if (A && A->isWriteOnly()) 682 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 683 else if (A && A->isReadWrite()) 684 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 685 else 686 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 687 } else 688 accessQuals.push_back(llvm::MDString::get(Context, "none")); 689 690 // Get argument name. 691 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 692 } 693 694 Fn->setMetadata("kernel_arg_addr_space", 695 llvm::MDNode::get(Context, addressQuals)); 696 Fn->setMetadata("kernel_arg_access_qual", 697 llvm::MDNode::get(Context, accessQuals)); 698 Fn->setMetadata("kernel_arg_type", 699 llvm::MDNode::get(Context, argTypeNames)); 700 Fn->setMetadata("kernel_arg_base_type", 701 llvm::MDNode::get(Context, argBaseTypeNames)); 702 Fn->setMetadata("kernel_arg_type_qual", 703 llvm::MDNode::get(Context, argTypeQuals)); 704 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 705 Fn->setMetadata("kernel_arg_name", 706 llvm::MDNode::get(Context, argNames)); 707 } 708 709 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 710 llvm::Function *Fn) 711 { 712 if (!FD->hasAttr<OpenCLKernelAttr>()) 713 return; 714 715 llvm::LLVMContext &Context = getLLVMContext(); 716 717 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 718 719 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 720 QualType HintQTy = A->getTypeHint(); 721 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 722 bool IsSignedInteger = 723 HintQTy->isSignedIntegerType() || 724 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 725 llvm::Metadata *AttrMDArgs[] = { 726 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 727 CGM.getTypes().ConvertType(A->getTypeHint()))), 728 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 729 llvm::IntegerType::get(Context, 32), 730 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 731 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 732 } 733 734 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 735 llvm::Metadata *AttrMDArgs[] = { 736 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 737 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 738 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 739 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 740 } 741 742 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 743 llvm::Metadata *AttrMDArgs[] = { 744 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 745 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 746 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 747 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 748 } 749 750 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 751 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 752 llvm::Metadata *AttrMDArgs[] = { 753 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 754 Fn->setMetadata("intel_reqd_sub_group_size", 755 llvm::MDNode::get(Context, AttrMDArgs)); 756 } 757 } 758 759 /// Determine whether the function F ends with a return stmt. 760 static bool endsWithReturn(const Decl* F) { 761 const Stmt *Body = nullptr; 762 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 763 Body = FD->getBody(); 764 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 765 Body = OMD->getBody(); 766 767 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 768 auto LastStmt = CS->body_rbegin(); 769 if (LastStmt != CS->body_rend()) 770 return isa<ReturnStmt>(*LastStmt); 771 } 772 return false; 773 } 774 775 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 776 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 777 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 778 } 779 780 static bool matchesStlAllocatorFn(const Decl *D, const ASTContext &Ctx) { 781 auto *MD = dyn_cast_or_null<CXXMethodDecl>(D); 782 if (!MD || !MD->getDeclName().getAsIdentifierInfo() || 783 !MD->getDeclName().getAsIdentifierInfo()->isStr("allocate") || 784 (MD->getNumParams() != 1 && MD->getNumParams() != 2)) 785 return false; 786 787 if (MD->parameters()[0]->getType().getCanonicalType() != Ctx.getSizeType()) 788 return false; 789 790 if (MD->getNumParams() == 2) { 791 auto *PT = MD->parameters()[1]->getType()->getAs<PointerType>(); 792 if (!PT || !PT->isVoidPointerType() || 793 !PT->getPointeeType().isConstQualified()) 794 return false; 795 } 796 797 return true; 798 } 799 800 /// Return the UBSan prologue signature for \p FD if one is available. 801 static llvm::Constant *getPrologueSignature(CodeGenModule &CGM, 802 const FunctionDecl *FD) { 803 if (const auto *MD = dyn_cast<CXXMethodDecl>(FD)) 804 if (!MD->isStatic()) 805 return nullptr; 806 return CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM); 807 } 808 809 void CodeGenFunction::StartFunction(GlobalDecl GD, 810 QualType RetTy, 811 llvm::Function *Fn, 812 const CGFunctionInfo &FnInfo, 813 const FunctionArgList &Args, 814 SourceLocation Loc, 815 SourceLocation StartLoc) { 816 assert(!CurFn && 817 "Do not use a CodeGenFunction object for more than one function"); 818 819 const Decl *D = GD.getDecl(); 820 821 DidCallStackSave = false; 822 CurCodeDecl = D; 823 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 824 if (FD->usesSEHTry()) 825 CurSEHParent = FD; 826 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 827 FnRetTy = RetTy; 828 CurFn = Fn; 829 CurFnInfo = &FnInfo; 830 assert(CurFn->isDeclaration() && "Function already has body?"); 831 832 // If this function has been blacklisted for any of the enabled sanitizers, 833 // disable the sanitizer for the function. 834 do { 835 #define SANITIZER(NAME, ID) \ 836 if (SanOpts.empty()) \ 837 break; \ 838 if (SanOpts.has(SanitizerKind::ID)) \ 839 if (CGM.isInSanitizerBlacklist(SanitizerKind::ID, Fn, Loc)) \ 840 SanOpts.set(SanitizerKind::ID, false); 841 842 #include "clang/Basic/Sanitizers.def" 843 #undef SANITIZER 844 } while (0); 845 846 if (D) { 847 // Apply the no_sanitize* attributes to SanOpts. 848 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 849 SanOpts.Mask &= ~Attr->getMask(); 850 } 851 852 // Apply sanitizer attributes to the function. 853 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 854 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 855 if (SanOpts.hasOneOf(SanitizerKind::HWAddress)) 856 Fn->addFnAttr(llvm::Attribute::SanitizeHWAddress); 857 if (SanOpts.has(SanitizerKind::Thread)) 858 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 859 if (SanOpts.has(SanitizerKind::Memory)) 860 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 861 if (SanOpts.has(SanitizerKind::SafeStack)) 862 Fn->addFnAttr(llvm::Attribute::SafeStack); 863 864 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 865 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 866 if (SanOpts.has(SanitizerKind::Thread)) { 867 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 868 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 869 if (OMD->getMethodFamily() == OMF_dealloc || 870 OMD->getMethodFamily() == OMF_initialize || 871 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 872 markAsIgnoreThreadCheckingAtRuntime(Fn); 873 } 874 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 875 IdentifierInfo *II = FD->getIdentifier(); 876 if (II && II->isStr("__destroy_helper_block_")) 877 markAsIgnoreThreadCheckingAtRuntime(Fn); 878 } 879 } 880 881 // Ignore unrelated casts in STL allocate() since the allocator must cast 882 // from void* to T* before object initialization completes. Don't match on the 883 // namespace because not all allocators are in std:: 884 if (D && SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 885 if (matchesStlAllocatorFn(D, getContext())) 886 SanOpts.Mask &= ~SanitizerKind::CFIUnrelatedCast; 887 } 888 889 // Apply xray attributes to the function (as a string, for now) 890 if (D && ShouldXRayInstrumentFunction()) { 891 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 892 if (XRayAttr->alwaysXRayInstrument()) 893 Fn->addFnAttr("function-instrument", "xray-always"); 894 if (XRayAttr->neverXRayInstrument()) 895 Fn->addFnAttr("function-instrument", "xray-never"); 896 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 897 Fn->addFnAttr("xray-log-args", 898 llvm::utostr(LogArgs->getArgumentCount())); 899 } 900 } else { 901 if (!CGM.imbueXRayAttrs(Fn, Loc)) 902 Fn->addFnAttr( 903 "xray-instruction-threshold", 904 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 905 } 906 } 907 908 // Add no-jump-tables value. 909 Fn->addFnAttr("no-jump-tables", 910 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 911 912 // Add profile-sample-accurate value. 913 if (CGM.getCodeGenOpts().ProfileSampleAccurate) 914 Fn->addFnAttr("profile-sample-accurate"); 915 916 if (getLangOpts().OpenCL) { 917 // Add metadata for a kernel function. 918 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 919 EmitOpenCLKernelMetadata(FD, Fn); 920 } 921 922 // If we are checking function types, emit a function type signature as 923 // prologue data. 924 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 925 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 926 if (llvm::Constant *PrologueSig = getPrologueSignature(CGM, FD)) { 927 llvm::Constant *FTRTTIConst = 928 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 929 llvm::Constant *FTRTTIConstEncoded = 930 EncodeAddrForUseInPrologue(Fn, FTRTTIConst); 931 llvm::Constant *PrologueStructElems[] = {PrologueSig, 932 FTRTTIConstEncoded}; 933 llvm::Constant *PrologueStructConst = 934 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 935 Fn->setPrologueData(PrologueStructConst); 936 } 937 } 938 } 939 940 // If we're checking nullability, we need to know whether we can check the 941 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 942 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 943 auto Nullability = FnRetTy->getNullability(getContext()); 944 if (Nullability && *Nullability == NullabilityKind::NonNull) { 945 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 946 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 947 RetValNullabilityPrecondition = 948 llvm::ConstantInt::getTrue(getLLVMContext()); 949 } 950 } 951 952 // If we're in C++ mode and the function name is "main", it is guaranteed 953 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 954 // used within a program"). 955 if (getLangOpts().CPlusPlus) 956 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 957 if (FD->isMain()) 958 Fn->addFnAttr(llvm::Attribute::NoRecurse); 959 960 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 961 962 // Create a marker to make it easy to insert allocas into the entryblock 963 // later. Don't create this with the builder, because we don't want it 964 // folded. 965 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 966 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 967 968 ReturnBlock = getJumpDestInCurrentScope("return"); 969 970 Builder.SetInsertPoint(EntryBB); 971 972 // If we're checking the return value, allocate space for a pointer to a 973 // precise source location of the checked return statement. 974 if (requiresReturnValueCheck()) { 975 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 976 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 977 } 978 979 // Emit subprogram debug descriptor. 980 if (CGDebugInfo *DI = getDebugInfo()) { 981 // Reconstruct the type from the argument list so that implicit parameters, 982 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 983 // convention. 984 CallingConv CC = CallingConv::CC_C; 985 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 986 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 987 CC = SrcFnTy->getCallConv(); 988 SmallVector<QualType, 16> ArgTypes; 989 for (const VarDecl *VD : Args) 990 ArgTypes.push_back(VD->getType()); 991 QualType FnType = getContext().getFunctionType( 992 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 993 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 994 } 995 996 if (ShouldInstrumentFunction()) { 997 if (CGM.getCodeGenOpts().InstrumentFunctions) 998 CurFn->addFnAttr("instrument-function-entry", "__cyg_profile_func_enter"); 999 if (CGM.getCodeGenOpts().InstrumentFunctionsAfterInlining) 1000 CurFn->addFnAttr("instrument-function-entry-inlined", 1001 "__cyg_profile_func_enter"); 1002 if (CGM.getCodeGenOpts().InstrumentFunctionEntryBare) 1003 CurFn->addFnAttr("instrument-function-entry-inlined", 1004 "__cyg_profile_func_enter_bare"); 1005 } 1006 1007 // Since emitting the mcount call here impacts optimizations such as function 1008 // inlining, we just add an attribute to insert a mcount call in backend. 1009 // The attribute "counting-function" is set to mcount function name which is 1010 // architecture dependent. 1011 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 1012 if (CGM.getCodeGenOpts().CallFEntry) 1013 Fn->addFnAttr("fentry-call", "true"); 1014 else { 1015 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) { 1016 Fn->addFnAttr("instrument-function-entry-inlined", 1017 getTarget().getMCountName()); 1018 } 1019 } 1020 } 1021 1022 if (RetTy->isVoidType()) { 1023 // Void type; nothing to return. 1024 ReturnValue = Address::invalid(); 1025 1026 // Count the implicit return. 1027 if (!endsWithReturn(D)) 1028 ++NumReturnExprs; 1029 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 1030 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1031 // Indirect aggregate return; emit returned value directly into sret slot. 1032 // This reduces code size, and affects correctness in C++. 1033 auto AI = CurFn->arg_begin(); 1034 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 1035 ++AI; 1036 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 1037 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 1038 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 1039 // Load the sret pointer from the argument struct and return into that. 1040 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 1041 llvm::Function::arg_iterator EI = CurFn->arg_end(); 1042 --EI; 1043 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 1044 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 1045 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 1046 } else { 1047 ReturnValue = CreateIRTemp(RetTy, "retval"); 1048 1049 // Tell the epilog emitter to autorelease the result. We do this 1050 // now so that various specialized functions can suppress it 1051 // during their IR-generation. 1052 if (getLangOpts().ObjCAutoRefCount && 1053 !CurFnInfo->isReturnsRetained() && 1054 RetTy->isObjCRetainableType()) 1055 AutoreleaseResult = true; 1056 } 1057 1058 EmitStartEHSpec(CurCodeDecl); 1059 1060 PrologueCleanupDepth = EHStack.stable_begin(); 1061 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 1062 1063 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 1064 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 1065 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 1066 if (MD->getParent()->isLambda() && 1067 MD->getOverloadedOperator() == OO_Call) { 1068 // We're in a lambda; figure out the captures. 1069 MD->getParent()->getCaptureFields(LambdaCaptureFields, 1070 LambdaThisCaptureField); 1071 if (LambdaThisCaptureField) { 1072 // If the lambda captures the object referred to by '*this' - either by 1073 // value or by reference, make sure CXXThisValue points to the correct 1074 // object. 1075 1076 // Get the lvalue for the field (which is a copy of the enclosing object 1077 // or contains the address of the enclosing object). 1078 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 1079 if (!LambdaThisCaptureField->getType()->isPointerType()) { 1080 // If the enclosing object was captured by value, just use its address. 1081 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 1082 } else { 1083 // Load the lvalue pointed to by the field, since '*this' was captured 1084 // by reference. 1085 CXXThisValue = 1086 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 1087 } 1088 } 1089 for (auto *FD : MD->getParent()->fields()) { 1090 if (FD->hasCapturedVLAType()) { 1091 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 1092 SourceLocation()).getScalarVal(); 1093 auto VAT = FD->getCapturedVLAType(); 1094 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 1095 } 1096 } 1097 } else { 1098 // Not in a lambda; just use 'this' from the method. 1099 // FIXME: Should we generate a new load for each use of 'this'? The 1100 // fast register allocator would be happier... 1101 CXXThisValue = CXXABIThisValue; 1102 } 1103 1104 // Check the 'this' pointer once per function, if it's available. 1105 if (CXXABIThisValue) { 1106 SanitizerSet SkippedChecks; 1107 SkippedChecks.set(SanitizerKind::ObjectSize, true); 1108 QualType ThisTy = MD->getThisType(getContext()); 1109 1110 // If this is the call operator of a lambda with no capture-default, it 1111 // may have a static invoker function, which may call this operator with 1112 // a null 'this' pointer. 1113 if (isLambdaCallOperator(MD) && 1114 cast<CXXRecordDecl>(MD->getParent())->getLambdaCaptureDefault() == 1115 LCD_None) 1116 SkippedChecks.set(SanitizerKind::Null, true); 1117 1118 EmitTypeCheck(isa<CXXConstructorDecl>(MD) ? TCK_ConstructorCall 1119 : TCK_MemberCall, 1120 Loc, CXXABIThisValue, ThisTy, 1121 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 1122 SkippedChecks); 1123 } 1124 } 1125 1126 // If any of the arguments have a variably modified type, make sure to 1127 // emit the type size. 1128 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 1129 i != e; ++i) { 1130 const VarDecl *VD = *i; 1131 1132 // Dig out the type as written from ParmVarDecls; it's unclear whether 1133 // the standard (C99 6.9.1p10) requires this, but we're following the 1134 // precedent set by gcc. 1135 QualType Ty; 1136 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1137 Ty = PVD->getOriginalType(); 1138 else 1139 Ty = VD->getType(); 1140 1141 if (Ty->isVariablyModifiedType()) 1142 EmitVariablyModifiedType(Ty); 1143 } 1144 // Emit a location at the end of the prologue. 1145 if (CGDebugInfo *DI = getDebugInfo()) 1146 DI->EmitLocation(Builder, StartLoc); 1147 } 1148 1149 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1150 const Stmt *Body) { 1151 incrementProfileCounter(Body); 1152 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1153 EmitCompoundStmtWithoutScope(*S); 1154 else 1155 EmitStmt(Body); 1156 } 1157 1158 /// When instrumenting to collect profile data, the counts for some blocks 1159 /// such as switch cases need to not include the fall-through counts, so 1160 /// emit a branch around the instrumentation code. When not instrumenting, 1161 /// this just calls EmitBlock(). 1162 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1163 const Stmt *S) { 1164 llvm::BasicBlock *SkipCountBB = nullptr; 1165 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1166 // When instrumenting for profiling, the fallthrough to certain 1167 // statements needs to skip over the instrumentation code so that we 1168 // get an accurate count. 1169 SkipCountBB = createBasicBlock("skipcount"); 1170 EmitBranch(SkipCountBB); 1171 } 1172 EmitBlock(BB); 1173 uint64_t CurrentCount = getCurrentProfileCount(); 1174 incrementProfileCounter(S); 1175 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1176 if (SkipCountBB) 1177 EmitBlock(SkipCountBB); 1178 } 1179 1180 /// Tries to mark the given function nounwind based on the 1181 /// non-existence of any throwing calls within it. We believe this is 1182 /// lightweight enough to do at -O0. 1183 static void TryMarkNoThrow(llvm::Function *F) { 1184 // LLVM treats 'nounwind' on a function as part of the type, so we 1185 // can't do this on functions that can be overwritten. 1186 if (F->isInterposable()) return; 1187 1188 for (llvm::BasicBlock &BB : *F) 1189 for (llvm::Instruction &I : BB) 1190 if (I.mayThrow()) 1191 return; 1192 1193 F->setDoesNotThrow(); 1194 } 1195 1196 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1197 FunctionArgList &Args) { 1198 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1199 QualType ResTy = FD->getReturnType(); 1200 1201 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1202 if (MD && MD->isInstance()) { 1203 if (CGM.getCXXABI().HasThisReturn(GD)) 1204 ResTy = MD->getThisType(getContext()); 1205 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1206 ResTy = CGM.getContext().VoidPtrTy; 1207 CGM.getCXXABI().buildThisParam(*this, Args); 1208 } 1209 1210 // The base version of an inheriting constructor whose constructed base is a 1211 // virtual base is not passed any arguments (because it doesn't actually call 1212 // the inherited constructor). 1213 bool PassedParams = true; 1214 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1215 if (auto Inherited = CD->getInheritedConstructor()) 1216 PassedParams = 1217 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1218 1219 if (PassedParams) { 1220 for (auto *Param : FD->parameters()) { 1221 Args.push_back(Param); 1222 if (!Param->hasAttr<PassObjectSizeAttr>()) 1223 continue; 1224 1225 auto *Implicit = ImplicitParamDecl::Create( 1226 getContext(), Param->getDeclContext(), Param->getLocation(), 1227 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1228 SizeArguments[Param] = Implicit; 1229 Args.push_back(Implicit); 1230 } 1231 } 1232 1233 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1234 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1235 1236 return ResTy; 1237 } 1238 1239 static bool 1240 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1241 const ASTContext &Context) { 1242 QualType T = FD->getReturnType(); 1243 // Avoid the optimization for functions that return a record type with a 1244 // trivial destructor or another trivially copyable type. 1245 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1246 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1247 return !ClassDecl->hasTrivialDestructor(); 1248 } 1249 return !T.isTriviallyCopyableType(Context); 1250 } 1251 1252 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1253 const CGFunctionInfo &FnInfo) { 1254 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1255 CurGD = GD; 1256 1257 FunctionArgList Args; 1258 QualType ResTy = BuildFunctionArgList(GD, Args); 1259 1260 // Check if we should generate debug info for this function. 1261 if (FD->hasAttr<NoDebugAttr>()) 1262 DebugInfo = nullptr; // disable debug info indefinitely for this function 1263 1264 // The function might not have a body if we're generating thunks for a 1265 // function declaration. 1266 SourceRange BodyRange; 1267 if (Stmt *Body = FD->getBody()) 1268 BodyRange = Body->getSourceRange(); 1269 else 1270 BodyRange = FD->getLocation(); 1271 CurEHLocation = BodyRange.getEnd(); 1272 1273 // Use the location of the start of the function to determine where 1274 // the function definition is located. By default use the location 1275 // of the declaration as the location for the subprogram. A function 1276 // may lack a declaration in the source code if it is created by code 1277 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1278 SourceLocation Loc = FD->getLocation(); 1279 1280 // If this is a function specialization then use the pattern body 1281 // as the location for the function. 1282 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1283 if (SpecDecl->hasBody(SpecDecl)) 1284 Loc = SpecDecl->getLocation(); 1285 1286 Stmt *Body = FD->getBody(); 1287 1288 // Initialize helper which will detect jumps which can cause invalid lifetime 1289 // markers. 1290 if (Body && ShouldEmitLifetimeMarkers) 1291 Bypasses.Init(Body); 1292 1293 // Emit the standard function prologue. 1294 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1295 1296 // Generate the body of the function. 1297 PGO.assignRegionCounters(GD, CurFn); 1298 if (isa<CXXDestructorDecl>(FD)) 1299 EmitDestructorBody(Args); 1300 else if (isa<CXXConstructorDecl>(FD)) 1301 EmitConstructorBody(Args); 1302 else if (getLangOpts().CUDA && 1303 !getLangOpts().CUDAIsDevice && 1304 FD->hasAttr<CUDAGlobalAttr>()) 1305 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1306 else if (isa<CXXMethodDecl>(FD) && 1307 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1308 // The lambda static invoker function is special, because it forwards or 1309 // clones the body of the function call operator (but is actually static). 1310 EmitLambdaStaticInvokeBody(cast<CXXMethodDecl>(FD)); 1311 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1312 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1313 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1314 // Implicit copy-assignment gets the same special treatment as implicit 1315 // copy-constructors. 1316 emitImplicitAssignmentOperatorBody(Args); 1317 } else if (Body) { 1318 EmitFunctionBody(Args, Body); 1319 } else 1320 llvm_unreachable("no definition for emitted function"); 1321 1322 // C++11 [stmt.return]p2: 1323 // Flowing off the end of a function [...] results in undefined behavior in 1324 // a value-returning function. 1325 // C11 6.9.1p12: 1326 // If the '}' that terminates a function is reached, and the value of the 1327 // function call is used by the caller, the behavior is undefined. 1328 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1329 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1330 bool ShouldEmitUnreachable = 1331 CGM.getCodeGenOpts().StrictReturn || 1332 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1333 if (SanOpts.has(SanitizerKind::Return)) { 1334 SanitizerScope SanScope(this); 1335 llvm::Value *IsFalse = Builder.getFalse(); 1336 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1337 SanitizerHandler::MissingReturn, 1338 EmitCheckSourceLocation(FD->getLocation()), None); 1339 } else if (ShouldEmitUnreachable) { 1340 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1341 EmitTrapCall(llvm::Intrinsic::trap); 1342 } 1343 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1344 Builder.CreateUnreachable(); 1345 Builder.ClearInsertionPoint(); 1346 } 1347 } 1348 1349 // Emit the standard function epilogue. 1350 FinishFunction(BodyRange.getEnd()); 1351 1352 // If we haven't marked the function nothrow through other means, do 1353 // a quick pass now to see if we can. 1354 if (!CurFn->doesNotThrow()) 1355 TryMarkNoThrow(CurFn); 1356 } 1357 1358 /// ContainsLabel - Return true if the statement contains a label in it. If 1359 /// this statement is not executed normally, it not containing a label means 1360 /// that we can just remove the code. 1361 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1362 // Null statement, not a label! 1363 if (!S) return false; 1364 1365 // If this is a label, we have to emit the code, consider something like: 1366 // if (0) { ... foo: bar(); } goto foo; 1367 // 1368 // TODO: If anyone cared, we could track __label__'s, since we know that you 1369 // can't jump to one from outside their declared region. 1370 if (isa<LabelStmt>(S)) 1371 return true; 1372 1373 // If this is a case/default statement, and we haven't seen a switch, we have 1374 // to emit the code. 1375 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1376 return true; 1377 1378 // If this is a switch statement, we want to ignore cases below it. 1379 if (isa<SwitchStmt>(S)) 1380 IgnoreCaseStmts = true; 1381 1382 // Scan subexpressions for verboten labels. 1383 for (const Stmt *SubStmt : S->children()) 1384 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1385 return true; 1386 1387 return false; 1388 } 1389 1390 /// containsBreak - Return true if the statement contains a break out of it. 1391 /// If the statement (recursively) contains a switch or loop with a break 1392 /// inside of it, this is fine. 1393 bool CodeGenFunction::containsBreak(const Stmt *S) { 1394 // Null statement, not a label! 1395 if (!S) return false; 1396 1397 // If this is a switch or loop that defines its own break scope, then we can 1398 // include it and anything inside of it. 1399 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1400 isa<ForStmt>(S)) 1401 return false; 1402 1403 if (isa<BreakStmt>(S)) 1404 return true; 1405 1406 // Scan subexpressions for verboten breaks. 1407 for (const Stmt *SubStmt : S->children()) 1408 if (containsBreak(SubStmt)) 1409 return true; 1410 1411 return false; 1412 } 1413 1414 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1415 if (!S) return false; 1416 1417 // Some statement kinds add a scope and thus never add a decl to the current 1418 // scope. Note, this list is longer than the list of statements that might 1419 // have an unscoped decl nested within them, but this way is conservatively 1420 // correct even if more statement kinds are added. 1421 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1422 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1423 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1424 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1425 return false; 1426 1427 if (isa<DeclStmt>(S)) 1428 return true; 1429 1430 for (const Stmt *SubStmt : S->children()) 1431 if (mightAddDeclToScope(SubStmt)) 1432 return true; 1433 1434 return false; 1435 } 1436 1437 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1438 /// to a constant, or if it does but contains a label, return false. If it 1439 /// constant folds return true and set the boolean result in Result. 1440 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1441 bool &ResultBool, 1442 bool AllowLabels) { 1443 llvm::APSInt ResultInt; 1444 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1445 return false; 1446 1447 ResultBool = ResultInt.getBoolValue(); 1448 return true; 1449 } 1450 1451 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1452 /// to a constant, or if it does but contains a label, return false. If it 1453 /// constant folds return true and set the folded value. 1454 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1455 llvm::APSInt &ResultInt, 1456 bool AllowLabels) { 1457 // FIXME: Rename and handle conversion of other evaluatable things 1458 // to bool. 1459 llvm::APSInt Int; 1460 if (!Cond->EvaluateAsInt(Int, getContext())) 1461 return false; // Not foldable, not integer or not fully evaluatable. 1462 1463 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1464 return false; // Contains a label. 1465 1466 ResultInt = Int; 1467 return true; 1468 } 1469 1470 1471 1472 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1473 /// statement) to the specified blocks. Based on the condition, this might try 1474 /// to simplify the codegen of the conditional based on the branch. 1475 /// 1476 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1477 llvm::BasicBlock *TrueBlock, 1478 llvm::BasicBlock *FalseBlock, 1479 uint64_t TrueCount) { 1480 Cond = Cond->IgnoreParens(); 1481 1482 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1483 1484 // Handle X && Y in a condition. 1485 if (CondBOp->getOpcode() == BO_LAnd) { 1486 // If we have "1 && X", simplify the code. "0 && X" would have constant 1487 // folded if the case was simple enough. 1488 bool ConstantBool = false; 1489 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1490 ConstantBool) { 1491 // br(1 && X) -> br(X). 1492 incrementProfileCounter(CondBOp); 1493 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1494 TrueCount); 1495 } 1496 1497 // If we have "X && 1", simplify the code to use an uncond branch. 1498 // "X && 0" would have been constant folded to 0. 1499 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1500 ConstantBool) { 1501 // br(X && 1) -> br(X). 1502 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1503 TrueCount); 1504 } 1505 1506 // Emit the LHS as a conditional. If the LHS conditional is false, we 1507 // want to jump to the FalseBlock. 1508 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1509 // The counter tells us how often we evaluate RHS, and all of TrueCount 1510 // can be propagated to that branch. 1511 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1512 1513 ConditionalEvaluation eval(*this); 1514 { 1515 ApplyDebugLocation DL(*this, Cond); 1516 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1517 EmitBlock(LHSTrue); 1518 } 1519 1520 incrementProfileCounter(CondBOp); 1521 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1522 1523 // Any temporaries created here are conditional. 1524 eval.begin(*this); 1525 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1526 eval.end(*this); 1527 1528 return; 1529 } 1530 1531 if (CondBOp->getOpcode() == BO_LOr) { 1532 // If we have "0 || X", simplify the code. "1 || X" would have constant 1533 // folded if the case was simple enough. 1534 bool ConstantBool = false; 1535 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1536 !ConstantBool) { 1537 // br(0 || X) -> br(X). 1538 incrementProfileCounter(CondBOp); 1539 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1540 TrueCount); 1541 } 1542 1543 // If we have "X || 0", simplify the code to use an uncond branch. 1544 // "X || 1" would have been constant folded to 1. 1545 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1546 !ConstantBool) { 1547 // br(X || 0) -> br(X). 1548 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1549 TrueCount); 1550 } 1551 1552 // Emit the LHS as a conditional. If the LHS conditional is true, we 1553 // want to jump to the TrueBlock. 1554 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1555 // We have the count for entry to the RHS and for the whole expression 1556 // being true, so we can divy up True count between the short circuit and 1557 // the RHS. 1558 uint64_t LHSCount = 1559 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1560 uint64_t RHSCount = TrueCount - LHSCount; 1561 1562 ConditionalEvaluation eval(*this); 1563 { 1564 ApplyDebugLocation DL(*this, Cond); 1565 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1566 EmitBlock(LHSFalse); 1567 } 1568 1569 incrementProfileCounter(CondBOp); 1570 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1571 1572 // Any temporaries created here are conditional. 1573 eval.begin(*this); 1574 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1575 1576 eval.end(*this); 1577 1578 return; 1579 } 1580 } 1581 1582 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1583 // br(!x, t, f) -> br(x, f, t) 1584 if (CondUOp->getOpcode() == UO_LNot) { 1585 // Negate the count. 1586 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1587 // Negate the condition and swap the destination blocks. 1588 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1589 FalseCount); 1590 } 1591 } 1592 1593 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1594 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1595 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1596 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1597 1598 ConditionalEvaluation cond(*this); 1599 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1600 getProfileCount(CondOp)); 1601 1602 // When computing PGO branch weights, we only know the overall count for 1603 // the true block. This code is essentially doing tail duplication of the 1604 // naive code-gen, introducing new edges for which counts are not 1605 // available. Divide the counts proportionally between the LHS and RHS of 1606 // the conditional operator. 1607 uint64_t LHSScaledTrueCount = 0; 1608 if (TrueCount) { 1609 double LHSRatio = 1610 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1611 LHSScaledTrueCount = TrueCount * LHSRatio; 1612 } 1613 1614 cond.begin(*this); 1615 EmitBlock(LHSBlock); 1616 incrementProfileCounter(CondOp); 1617 { 1618 ApplyDebugLocation DL(*this, Cond); 1619 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1620 LHSScaledTrueCount); 1621 } 1622 cond.end(*this); 1623 1624 cond.begin(*this); 1625 EmitBlock(RHSBlock); 1626 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1627 TrueCount - LHSScaledTrueCount); 1628 cond.end(*this); 1629 1630 return; 1631 } 1632 1633 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1634 // Conditional operator handling can give us a throw expression as a 1635 // condition for a case like: 1636 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1637 // Fold this to: 1638 // br(c, throw x, br(y, t, f)) 1639 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1640 return; 1641 } 1642 1643 // If the branch has a condition wrapped by __builtin_unpredictable, 1644 // create metadata that specifies that the branch is unpredictable. 1645 // Don't bother if not optimizing because that metadata would not be used. 1646 llvm::MDNode *Unpredictable = nullptr; 1647 auto *Call = dyn_cast<CallExpr>(Cond); 1648 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1649 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1650 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1651 llvm::MDBuilder MDHelper(getLLVMContext()); 1652 Unpredictable = MDHelper.createUnpredictable(); 1653 } 1654 } 1655 1656 // Create branch weights based on the number of times we get here and the 1657 // number of times the condition should be true. 1658 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1659 llvm::MDNode *Weights = 1660 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1661 1662 // Emit the code with the fully general case. 1663 llvm::Value *CondV; 1664 { 1665 ApplyDebugLocation DL(*this, Cond); 1666 CondV = EvaluateExprAsBool(Cond); 1667 } 1668 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1669 } 1670 1671 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1672 /// specified stmt yet. 1673 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1674 CGM.ErrorUnsupported(S, Type); 1675 } 1676 1677 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1678 /// variable-length array whose elements have a non-zero bit-pattern. 1679 /// 1680 /// \param baseType the inner-most element type of the array 1681 /// \param src - a char* pointing to the bit-pattern for a single 1682 /// base element of the array 1683 /// \param sizeInChars - the total size of the VLA, in chars 1684 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1685 Address dest, Address src, 1686 llvm::Value *sizeInChars) { 1687 CGBuilderTy &Builder = CGF.Builder; 1688 1689 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1690 llvm::Value *baseSizeInChars 1691 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1692 1693 Address begin = 1694 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1695 llvm::Value *end = 1696 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1697 1698 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1699 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1700 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1701 1702 // Make a loop over the VLA. C99 guarantees that the VLA element 1703 // count must be nonzero. 1704 CGF.EmitBlock(loopBB); 1705 1706 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1707 cur->addIncoming(begin.getPointer(), originBB); 1708 1709 CharUnits curAlign = 1710 dest.getAlignment().alignmentOfArrayElement(baseSize); 1711 1712 // memcpy the individual element bit-pattern. 1713 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1714 /*volatile*/ false); 1715 1716 // Go to the next element. 1717 llvm::Value *next = 1718 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1719 1720 // Leave if that's the end of the VLA. 1721 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1722 Builder.CreateCondBr(done, contBB, loopBB); 1723 cur->addIncoming(next, loopBB); 1724 1725 CGF.EmitBlock(contBB); 1726 } 1727 1728 void 1729 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1730 // Ignore empty classes in C++. 1731 if (getLangOpts().CPlusPlus) { 1732 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1733 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1734 return; 1735 } 1736 } 1737 1738 // Cast the dest ptr to the appropriate i8 pointer type. 1739 if (DestPtr.getElementType() != Int8Ty) 1740 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1741 1742 // Get size and alignment info for this aggregate. 1743 CharUnits size = getContext().getTypeSizeInChars(Ty); 1744 1745 llvm::Value *SizeVal; 1746 const VariableArrayType *vla; 1747 1748 // Don't bother emitting a zero-byte memset. 1749 if (size.isZero()) { 1750 // But note that getTypeInfo returns 0 for a VLA. 1751 if (const VariableArrayType *vlaType = 1752 dyn_cast_or_null<VariableArrayType>( 1753 getContext().getAsArrayType(Ty))) { 1754 QualType eltType; 1755 llvm::Value *numElts; 1756 std::tie(numElts, eltType) = getVLASize(vlaType); 1757 1758 SizeVal = numElts; 1759 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1760 if (!eltSize.isOne()) 1761 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1762 vla = vlaType; 1763 } else { 1764 return; 1765 } 1766 } else { 1767 SizeVal = CGM.getSize(size); 1768 vla = nullptr; 1769 } 1770 1771 // If the type contains a pointer to data member we can't memset it to zero. 1772 // Instead, create a null constant and copy it to the destination. 1773 // TODO: there are other patterns besides zero that we can usefully memset, 1774 // like -1, which happens to be the pattern used by member-pointers. 1775 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1776 // For a VLA, emit a single element, then splat that over the VLA. 1777 if (vla) Ty = getContext().getBaseElementType(vla); 1778 1779 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1780 1781 llvm::GlobalVariable *NullVariable = 1782 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1783 /*isConstant=*/true, 1784 llvm::GlobalVariable::PrivateLinkage, 1785 NullConstant, Twine()); 1786 CharUnits NullAlign = DestPtr.getAlignment(); 1787 NullVariable->setAlignment(NullAlign.getQuantity()); 1788 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1789 NullAlign); 1790 1791 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1792 1793 // Get and call the appropriate llvm.memcpy overload. 1794 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1795 return; 1796 } 1797 1798 // Otherwise, just memset the whole thing to zero. This is legal 1799 // because in LLVM, all default initializers (other than the ones we just 1800 // handled above) are guaranteed to have a bit pattern of all zeros. 1801 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1802 } 1803 1804 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1805 // Make sure that there is a block for the indirect goto. 1806 if (!IndirectBranch) 1807 GetIndirectGotoBlock(); 1808 1809 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1810 1811 // Make sure the indirect branch includes all of the address-taken blocks. 1812 IndirectBranch->addDestination(BB); 1813 return llvm::BlockAddress::get(CurFn, BB); 1814 } 1815 1816 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1817 // If we already made the indirect branch for indirect goto, return its block. 1818 if (IndirectBranch) return IndirectBranch->getParent(); 1819 1820 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1821 1822 // Create the PHI node that indirect gotos will add entries to. 1823 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1824 "indirect.goto.dest"); 1825 1826 // Create the indirect branch instruction. 1827 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1828 return IndirectBranch->getParent(); 1829 } 1830 1831 /// Computes the length of an array in elements, as well as the base 1832 /// element type and a properly-typed first element pointer. 1833 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1834 QualType &baseType, 1835 Address &addr) { 1836 const ArrayType *arrayType = origArrayType; 1837 1838 // If it's a VLA, we have to load the stored size. Note that 1839 // this is the size of the VLA in bytes, not its size in elements. 1840 llvm::Value *numVLAElements = nullptr; 1841 if (isa<VariableArrayType>(arrayType)) { 1842 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1843 1844 // Walk into all VLAs. This doesn't require changes to addr, 1845 // which has type T* where T is the first non-VLA element type. 1846 do { 1847 QualType elementType = arrayType->getElementType(); 1848 arrayType = getContext().getAsArrayType(elementType); 1849 1850 // If we only have VLA components, 'addr' requires no adjustment. 1851 if (!arrayType) { 1852 baseType = elementType; 1853 return numVLAElements; 1854 } 1855 } while (isa<VariableArrayType>(arrayType)); 1856 1857 // We get out here only if we find a constant array type 1858 // inside the VLA. 1859 } 1860 1861 // We have some number of constant-length arrays, so addr should 1862 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1863 // down to the first element of addr. 1864 SmallVector<llvm::Value*, 8> gepIndices; 1865 1866 // GEP down to the array type. 1867 llvm::ConstantInt *zero = Builder.getInt32(0); 1868 gepIndices.push_back(zero); 1869 1870 uint64_t countFromCLAs = 1; 1871 QualType eltType; 1872 1873 llvm::ArrayType *llvmArrayType = 1874 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1875 while (llvmArrayType) { 1876 assert(isa<ConstantArrayType>(arrayType)); 1877 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1878 == llvmArrayType->getNumElements()); 1879 1880 gepIndices.push_back(zero); 1881 countFromCLAs *= llvmArrayType->getNumElements(); 1882 eltType = arrayType->getElementType(); 1883 1884 llvmArrayType = 1885 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1886 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1887 assert((!llvmArrayType || arrayType) && 1888 "LLVM and Clang types are out-of-synch"); 1889 } 1890 1891 if (arrayType) { 1892 // From this point onwards, the Clang array type has been emitted 1893 // as some other type (probably a packed struct). Compute the array 1894 // size, and just emit the 'begin' expression as a bitcast. 1895 while (arrayType) { 1896 countFromCLAs *= 1897 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1898 eltType = arrayType->getElementType(); 1899 arrayType = getContext().getAsArrayType(eltType); 1900 } 1901 1902 llvm::Type *baseType = ConvertType(eltType); 1903 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1904 } else { 1905 // Create the actual GEP. 1906 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1907 gepIndices, "array.begin"), 1908 addr.getAlignment()); 1909 } 1910 1911 baseType = eltType; 1912 1913 llvm::Value *numElements 1914 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1915 1916 // If we had any VLA dimensions, factor them in. 1917 if (numVLAElements) 1918 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1919 1920 return numElements; 1921 } 1922 1923 std::pair<llvm::Value*, QualType> 1924 CodeGenFunction::getVLASize(QualType type) { 1925 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1926 assert(vla && "type was not a variable array type!"); 1927 return getVLASize(vla); 1928 } 1929 1930 std::pair<llvm::Value*, QualType> 1931 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1932 // The number of elements so far; always size_t. 1933 llvm::Value *numElements = nullptr; 1934 1935 QualType elementType; 1936 do { 1937 elementType = type->getElementType(); 1938 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1939 assert(vlaSize && "no size for VLA!"); 1940 assert(vlaSize->getType() == SizeTy); 1941 1942 if (!numElements) { 1943 numElements = vlaSize; 1944 } else { 1945 // It's undefined behavior if this wraps around, so mark it that way. 1946 // FIXME: Teach -fsanitize=undefined to trap this. 1947 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1948 } 1949 } while ((type = getContext().getAsVariableArrayType(elementType))); 1950 1951 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1952 } 1953 1954 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1955 assert(type->isVariablyModifiedType() && 1956 "Must pass variably modified type to EmitVLASizes!"); 1957 1958 EnsureInsertPoint(); 1959 1960 // We're going to walk down into the type and look for VLA 1961 // expressions. 1962 do { 1963 assert(type->isVariablyModifiedType()); 1964 1965 const Type *ty = type.getTypePtr(); 1966 switch (ty->getTypeClass()) { 1967 1968 #define TYPE(Class, Base) 1969 #define ABSTRACT_TYPE(Class, Base) 1970 #define NON_CANONICAL_TYPE(Class, Base) 1971 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1972 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1973 #include "clang/AST/TypeNodes.def" 1974 llvm_unreachable("unexpected dependent type!"); 1975 1976 // These types are never variably-modified. 1977 case Type::Builtin: 1978 case Type::Complex: 1979 case Type::Vector: 1980 case Type::ExtVector: 1981 case Type::Record: 1982 case Type::Enum: 1983 case Type::Elaborated: 1984 case Type::TemplateSpecialization: 1985 case Type::ObjCTypeParam: 1986 case Type::ObjCObject: 1987 case Type::ObjCInterface: 1988 case Type::ObjCObjectPointer: 1989 llvm_unreachable("type class is never variably-modified!"); 1990 1991 case Type::Adjusted: 1992 type = cast<AdjustedType>(ty)->getAdjustedType(); 1993 break; 1994 1995 case Type::Decayed: 1996 type = cast<DecayedType>(ty)->getPointeeType(); 1997 break; 1998 1999 case Type::Pointer: 2000 type = cast<PointerType>(ty)->getPointeeType(); 2001 break; 2002 2003 case Type::BlockPointer: 2004 type = cast<BlockPointerType>(ty)->getPointeeType(); 2005 break; 2006 2007 case Type::LValueReference: 2008 case Type::RValueReference: 2009 type = cast<ReferenceType>(ty)->getPointeeType(); 2010 break; 2011 2012 case Type::MemberPointer: 2013 type = cast<MemberPointerType>(ty)->getPointeeType(); 2014 break; 2015 2016 case Type::ConstantArray: 2017 case Type::IncompleteArray: 2018 // Losing element qualification here is fine. 2019 type = cast<ArrayType>(ty)->getElementType(); 2020 break; 2021 2022 case Type::VariableArray: { 2023 // Losing element qualification here is fine. 2024 const VariableArrayType *vat = cast<VariableArrayType>(ty); 2025 2026 // Unknown size indication requires no size computation. 2027 // Otherwise, evaluate and record it. 2028 if (const Expr *size = vat->getSizeExpr()) { 2029 // It's possible that we might have emitted this already, 2030 // e.g. with a typedef and a pointer to it. 2031 llvm::Value *&entry = VLASizeMap[size]; 2032 if (!entry) { 2033 llvm::Value *Size = EmitScalarExpr(size); 2034 2035 // C11 6.7.6.2p5: 2036 // If the size is an expression that is not an integer constant 2037 // expression [...] each time it is evaluated it shall have a value 2038 // greater than zero. 2039 if (SanOpts.has(SanitizerKind::VLABound) && 2040 size->getType()->isSignedIntegerType()) { 2041 SanitizerScope SanScope(this); 2042 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 2043 llvm::Constant *StaticArgs[] = { 2044 EmitCheckSourceLocation(size->getLocStart()), 2045 EmitCheckTypeDescriptor(size->getType()) 2046 }; 2047 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 2048 SanitizerKind::VLABound), 2049 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 2050 } 2051 2052 // Always zexting here would be wrong if it weren't 2053 // undefined behavior to have a negative bound. 2054 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 2055 } 2056 } 2057 type = vat->getElementType(); 2058 break; 2059 } 2060 2061 case Type::FunctionProto: 2062 case Type::FunctionNoProto: 2063 type = cast<FunctionType>(ty)->getReturnType(); 2064 break; 2065 2066 case Type::Paren: 2067 case Type::TypeOf: 2068 case Type::UnaryTransform: 2069 case Type::Attributed: 2070 case Type::SubstTemplateTypeParm: 2071 case Type::PackExpansion: 2072 // Keep walking after single level desugaring. 2073 type = type.getSingleStepDesugaredType(getContext()); 2074 break; 2075 2076 case Type::Typedef: 2077 case Type::Decltype: 2078 case Type::Auto: 2079 case Type::DeducedTemplateSpecialization: 2080 // Stop walking: nothing to do. 2081 return; 2082 2083 case Type::TypeOfExpr: 2084 // Stop walking: emit typeof expression. 2085 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 2086 return; 2087 2088 case Type::Atomic: 2089 type = cast<AtomicType>(ty)->getValueType(); 2090 break; 2091 2092 case Type::Pipe: 2093 type = cast<PipeType>(ty)->getElementType(); 2094 break; 2095 } 2096 } while (type->isVariablyModifiedType()); 2097 } 2098 2099 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 2100 if (getContext().getBuiltinVaListType()->isArrayType()) 2101 return EmitPointerWithAlignment(E); 2102 return EmitLValue(E).getAddress(); 2103 } 2104 2105 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 2106 return EmitLValue(E).getAddress(); 2107 } 2108 2109 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 2110 const APValue &Init) { 2111 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 2112 if (CGDebugInfo *Dbg = getDebugInfo()) 2113 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 2114 Dbg->EmitGlobalVariable(E->getDecl(), Init); 2115 } 2116 2117 CodeGenFunction::PeepholeProtection 2118 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 2119 // At the moment, the only aggressive peephole we do in IR gen 2120 // is trunc(zext) folding, but if we add more, we can easily 2121 // extend this protection. 2122 2123 if (!rvalue.isScalar()) return PeepholeProtection(); 2124 llvm::Value *value = rvalue.getScalarVal(); 2125 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2126 2127 // Just make an extra bitcast. 2128 assert(HaveInsertPoint()); 2129 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2130 Builder.GetInsertBlock()); 2131 2132 PeepholeProtection protection; 2133 protection.Inst = inst; 2134 return protection; 2135 } 2136 2137 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2138 if (!protection.Inst) return; 2139 2140 // In theory, we could try to duplicate the peepholes now, but whatever. 2141 protection.Inst->eraseFromParent(); 2142 } 2143 2144 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2145 llvm::Value *AnnotatedVal, 2146 StringRef AnnotationStr, 2147 SourceLocation Location) { 2148 llvm::Value *Args[4] = { 2149 AnnotatedVal, 2150 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2151 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2152 CGM.EmitAnnotationLineNo(Location) 2153 }; 2154 return Builder.CreateCall(AnnotationFn, Args); 2155 } 2156 2157 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2158 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2159 // FIXME We create a new bitcast for every annotation because that's what 2160 // llvm-gcc was doing. 2161 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2162 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2163 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2164 I->getAnnotation(), D->getLocation()); 2165 } 2166 2167 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2168 Address Addr) { 2169 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2170 llvm::Value *V = Addr.getPointer(); 2171 llvm::Type *VTy = V->getType(); 2172 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2173 CGM.Int8PtrTy); 2174 2175 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2176 // FIXME Always emit the cast inst so we can differentiate between 2177 // annotation on the first field of a struct and annotation on the struct 2178 // itself. 2179 if (VTy != CGM.Int8PtrTy) 2180 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2181 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2182 V = Builder.CreateBitCast(V, VTy); 2183 } 2184 2185 return Address(V, Addr.getAlignment()); 2186 } 2187 2188 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2189 2190 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2191 : CGF(CGF) { 2192 assert(!CGF->IsSanitizerScope); 2193 CGF->IsSanitizerScope = true; 2194 } 2195 2196 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2197 CGF->IsSanitizerScope = false; 2198 } 2199 2200 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2201 const llvm::Twine &Name, 2202 llvm::BasicBlock *BB, 2203 llvm::BasicBlock::iterator InsertPt) const { 2204 LoopStack.InsertHelper(I); 2205 if (IsSanitizerScope) 2206 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2207 } 2208 2209 void CGBuilderInserter::InsertHelper( 2210 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2211 llvm::BasicBlock::iterator InsertPt) const { 2212 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2213 if (CGF) 2214 CGF->InsertHelper(I, Name, BB, InsertPt); 2215 } 2216 2217 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2218 CodeGenModule &CGM, const FunctionDecl *FD, 2219 std::string &FirstMissing) { 2220 // If there aren't any required features listed then go ahead and return. 2221 if (ReqFeatures.empty()) 2222 return false; 2223 2224 // Now build up the set of caller features and verify that all the required 2225 // features are there. 2226 llvm::StringMap<bool> CallerFeatureMap; 2227 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2228 2229 // If we have at least one of the features in the feature list return 2230 // true, otherwise return false. 2231 return std::all_of( 2232 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2233 SmallVector<StringRef, 1> OrFeatures; 2234 Feature.split(OrFeatures, "|"); 2235 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2236 [&](StringRef Feature) { 2237 if (!CallerFeatureMap.lookup(Feature)) { 2238 FirstMissing = Feature.str(); 2239 return false; 2240 } 2241 return true; 2242 }); 2243 }); 2244 } 2245 2246 // Emits an error if we don't have a valid set of target features for the 2247 // called function. 2248 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2249 const FunctionDecl *TargetDecl) { 2250 // Early exit if this is an indirect call. 2251 if (!TargetDecl) 2252 return; 2253 2254 // Get the current enclosing function if it exists. If it doesn't 2255 // we can't check the target features anyhow. 2256 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2257 if (!FD) 2258 return; 2259 2260 // Grab the required features for the call. For a builtin this is listed in 2261 // the td file with the default cpu, for an always_inline function this is any 2262 // listed cpu and any listed features. 2263 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2264 std::string MissingFeature; 2265 if (BuiltinID) { 2266 SmallVector<StringRef, 1> ReqFeatures; 2267 const char *FeatureList = 2268 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2269 // Return if the builtin doesn't have any required features. 2270 if (!FeatureList || StringRef(FeatureList) == "") 2271 return; 2272 StringRef(FeatureList).split(ReqFeatures, ","); 2273 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2274 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2275 << TargetDecl->getDeclName() 2276 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2277 2278 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2279 // Get the required features for the callee. 2280 SmallVector<StringRef, 1> ReqFeatures; 2281 llvm::StringMap<bool> CalleeFeatureMap; 2282 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2283 for (const auto &F : CalleeFeatureMap) { 2284 // Only positive features are "required". 2285 if (F.getValue()) 2286 ReqFeatures.push_back(F.getKey()); 2287 } 2288 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2289 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2290 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2291 } 2292 } 2293 2294 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2295 if (!CGM.getCodeGenOpts().SanitizeStats) 2296 return; 2297 2298 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2299 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2300 CGM.getSanStats().create(IRB, SSK); 2301 } 2302 2303 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2304 if (CGDebugInfo *DI = getDebugInfo()) 2305 return DI->SourceLocToDebugLoc(Location); 2306 2307 return llvm::DebugLoc(); 2308 } 2309