1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Disable lifetime markers in msan builds. 49 // FIXME: Remove this when msan works with lifetime markers. 50 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 51 return false; 52 53 // Asan uses markers for use-after-scope checks. 54 if (CGOpts.SanitizeAddressUseAfterScope) 55 return true; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 LValueBaseInfo *BaseInfo) { 121 return getNaturalTypeAlignment(T->getPointeeType(), BaseInfo, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 LValueBaseInfo *BaseInfo, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (BaseInfo) 134 *BaseInfo = LValueBaseInfo(AlignmentSource::AttributedType, false); 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (BaseInfo) 140 *BaseInfo = LValueBaseInfo(AlignmentSource::Type, false); 141 142 CharUnits Alignment; 143 if (T->isIncompleteType()) { 144 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 145 } else { 146 // For C++ class pointees, we don't know whether we're pointing at a 147 // base or a complete object, so we generally need to use the 148 // non-virtual alignment. 149 const CXXRecordDecl *RD; 150 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 151 Alignment = CGM.getClassPointerAlignment(RD); 152 } else { 153 Alignment = getContext().getTypeAlignInChars(T); 154 if (T.getQualifiers().hasUnaligned()) 155 Alignment = CharUnits::One(); 156 } 157 158 // Cap to the global maximum type alignment unless the alignment 159 // was somehow explicit on the type. 160 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 161 if (Alignment.getQuantity() > MaxAlign && 162 !getContext().isAlignmentRequired(T)) 163 Alignment = CharUnits::fromQuantity(MaxAlign); 164 } 165 } 166 return Alignment; 167 } 168 169 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 170 LValueBaseInfo BaseInfo; 171 CharUnits Alignment = getNaturalTypeAlignment(T, &BaseInfo); 172 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), BaseInfo, 173 CGM.getTBAAInfo(T)); 174 } 175 176 /// Given a value of type T* that may not be to a complete object, 177 /// construct an l-value with the natural pointee alignment of T. 178 LValue 179 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 180 LValueBaseInfo BaseInfo; 181 CharUnits Align = getNaturalTypeAlignment(T, &BaseInfo, /*pointee*/ true); 182 return MakeAddrLValue(Address(V, Align), T, BaseInfo); 183 } 184 185 186 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 187 return CGM.getTypes().ConvertTypeForMem(T); 188 } 189 190 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 191 return CGM.getTypes().ConvertType(T); 192 } 193 194 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 195 type = type.getCanonicalType(); 196 while (true) { 197 switch (type->getTypeClass()) { 198 #define TYPE(name, parent) 199 #define ABSTRACT_TYPE(name, parent) 200 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 201 #define DEPENDENT_TYPE(name, parent) case Type::name: 202 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 203 #include "clang/AST/TypeNodes.def" 204 llvm_unreachable("non-canonical or dependent type in IR-generation"); 205 206 case Type::Auto: 207 case Type::DeducedTemplateSpecialization: 208 llvm_unreachable("undeduced type in IR-generation"); 209 210 // Various scalar types. 211 case Type::Builtin: 212 case Type::Pointer: 213 case Type::BlockPointer: 214 case Type::LValueReference: 215 case Type::RValueReference: 216 case Type::MemberPointer: 217 case Type::Vector: 218 case Type::ExtVector: 219 case Type::FunctionProto: 220 case Type::FunctionNoProto: 221 case Type::Enum: 222 case Type::ObjCObjectPointer: 223 case Type::Pipe: 224 return TEK_Scalar; 225 226 // Complexes. 227 case Type::Complex: 228 return TEK_Complex; 229 230 // Arrays, records, and Objective-C objects. 231 case Type::ConstantArray: 232 case Type::IncompleteArray: 233 case Type::VariableArray: 234 case Type::Record: 235 case Type::ObjCObject: 236 case Type::ObjCInterface: 237 return TEK_Aggregate; 238 239 // We operate on atomic values according to their underlying type. 240 case Type::Atomic: 241 type = cast<AtomicType>(type)->getValueType(); 242 continue; 243 } 244 llvm_unreachable("unknown type kind!"); 245 } 246 } 247 248 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 249 // For cleanliness, we try to avoid emitting the return block for 250 // simple cases. 251 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 252 253 if (CurBB) { 254 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 255 256 // We have a valid insert point, reuse it if it is empty or there are no 257 // explicit jumps to the return block. 258 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 259 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 260 delete ReturnBlock.getBlock(); 261 } else 262 EmitBlock(ReturnBlock.getBlock()); 263 return llvm::DebugLoc(); 264 } 265 266 // Otherwise, if the return block is the target of a single direct 267 // branch then we can just put the code in that block instead. This 268 // cleans up functions which started with a unified return block. 269 if (ReturnBlock.getBlock()->hasOneUse()) { 270 llvm::BranchInst *BI = 271 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 272 if (BI && BI->isUnconditional() && 273 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 274 // Record/return the DebugLoc of the simple 'return' expression to be used 275 // later by the actual 'ret' instruction. 276 llvm::DebugLoc Loc = BI->getDebugLoc(); 277 Builder.SetInsertPoint(BI->getParent()); 278 BI->eraseFromParent(); 279 delete ReturnBlock.getBlock(); 280 return Loc; 281 } 282 } 283 284 // FIXME: We are at an unreachable point, there is no reason to emit the block 285 // unless it has uses. However, we still need a place to put the debug 286 // region.end for now. 287 288 EmitBlock(ReturnBlock.getBlock()); 289 return llvm::DebugLoc(); 290 } 291 292 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 293 if (!BB) return; 294 if (!BB->use_empty()) 295 return CGF.CurFn->getBasicBlockList().push_back(BB); 296 delete BB; 297 } 298 299 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 300 assert(BreakContinueStack.empty() && 301 "mismatched push/pop in break/continue stack!"); 302 303 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 304 && NumSimpleReturnExprs == NumReturnExprs 305 && ReturnBlock.getBlock()->use_empty(); 306 // Usually the return expression is evaluated before the cleanup 307 // code. If the function contains only a simple return statement, 308 // such as a constant, the location before the cleanup code becomes 309 // the last useful breakpoint in the function, because the simple 310 // return expression will be evaluated after the cleanup code. To be 311 // safe, set the debug location for cleanup code to the location of 312 // the return statement. Otherwise the cleanup code should be at the 313 // end of the function's lexical scope. 314 // 315 // If there are multiple branches to the return block, the branch 316 // instructions will get the location of the return statements and 317 // all will be fine. 318 if (CGDebugInfo *DI = getDebugInfo()) { 319 if (OnlySimpleReturnStmts) 320 DI->EmitLocation(Builder, LastStopPoint); 321 else 322 DI->EmitLocation(Builder, EndLoc); 323 } 324 325 // Pop any cleanups that might have been associated with the 326 // parameters. Do this in whatever block we're currently in; it's 327 // important to do this before we enter the return block or return 328 // edges will be *really* confused. 329 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 330 bool HasOnlyLifetimeMarkers = 331 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 332 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 333 if (HasCleanups) { 334 // Make sure the line table doesn't jump back into the body for 335 // the ret after it's been at EndLoc. 336 if (CGDebugInfo *DI = getDebugInfo()) 337 if (OnlySimpleReturnStmts) 338 DI->EmitLocation(Builder, EndLoc); 339 340 PopCleanupBlocks(PrologueCleanupDepth); 341 } 342 343 // Emit function epilog (to return). 344 llvm::DebugLoc Loc = EmitReturnBlock(); 345 346 if (ShouldInstrumentFunction()) 347 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 348 349 // Emit debug descriptor for function end. 350 if (CGDebugInfo *DI = getDebugInfo()) 351 DI->EmitFunctionEnd(Builder, CurFn); 352 353 // Reset the debug location to that of the simple 'return' expression, if any 354 // rather than that of the end of the function's scope '}'. 355 ApplyDebugLocation AL(*this, Loc); 356 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 357 EmitEndEHSpec(CurCodeDecl); 358 359 assert(EHStack.empty() && 360 "did not remove all scopes from cleanup stack!"); 361 362 // If someone did an indirect goto, emit the indirect goto block at the end of 363 // the function. 364 if (IndirectBranch) { 365 EmitBlock(IndirectBranch->getParent()); 366 Builder.ClearInsertionPoint(); 367 } 368 369 // If some of our locals escaped, insert a call to llvm.localescape in the 370 // entry block. 371 if (!EscapedLocals.empty()) { 372 // Invert the map from local to index into a simple vector. There should be 373 // no holes. 374 SmallVector<llvm::Value *, 4> EscapeArgs; 375 EscapeArgs.resize(EscapedLocals.size()); 376 for (auto &Pair : EscapedLocals) 377 EscapeArgs[Pair.second] = Pair.first; 378 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 379 &CGM.getModule(), llvm::Intrinsic::localescape); 380 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 381 } 382 383 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 384 llvm::Instruction *Ptr = AllocaInsertPt; 385 AllocaInsertPt = nullptr; 386 Ptr->eraseFromParent(); 387 388 // If someone took the address of a label but never did an indirect goto, we 389 // made a zero entry PHI node, which is illegal, zap it now. 390 if (IndirectBranch) { 391 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 392 if (PN->getNumIncomingValues() == 0) { 393 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 394 PN->eraseFromParent(); 395 } 396 } 397 398 EmitIfUsed(*this, EHResumeBlock); 399 EmitIfUsed(*this, TerminateLandingPad); 400 EmitIfUsed(*this, TerminateHandler); 401 EmitIfUsed(*this, UnreachableBlock); 402 403 if (CGM.getCodeGenOpts().EmitDeclMetadata) 404 EmitDeclMetadata(); 405 406 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 407 I = DeferredReplacements.begin(), 408 E = DeferredReplacements.end(); 409 I != E; ++I) { 410 I->first->replaceAllUsesWith(I->second); 411 I->first->eraseFromParent(); 412 } 413 } 414 415 /// ShouldInstrumentFunction - Return true if the current function should be 416 /// instrumented with __cyg_profile_func_* calls 417 bool CodeGenFunction::ShouldInstrumentFunction() { 418 if (!CGM.getCodeGenOpts().InstrumentFunctions) 419 return false; 420 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 421 return false; 422 return true; 423 } 424 425 /// ShouldXRayInstrument - Return true if the current function should be 426 /// instrumented with XRay nop sleds. 427 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 428 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 429 } 430 431 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 432 /// instrumentation function with the current function and the call site, if 433 /// function instrumentation is enabled. 434 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 435 auto NL = ApplyDebugLocation::CreateArtificial(*this); 436 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 437 llvm::PointerType *PointerTy = Int8PtrTy; 438 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 439 llvm::FunctionType *FunctionTy = 440 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 441 442 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 443 llvm::CallInst *CallSite = Builder.CreateCall( 444 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 445 llvm::ConstantInt::get(Int32Ty, 0), 446 "callsite"); 447 448 llvm::Value *args[] = { 449 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 450 CallSite 451 }; 452 453 EmitNounwindRuntimeCall(F, args); 454 } 455 456 static void removeImageAccessQualifier(std::string& TyName) { 457 std::string ReadOnlyQual("__read_only"); 458 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 459 if (ReadOnlyPos != std::string::npos) 460 // "+ 1" for the space after access qualifier. 461 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 462 else { 463 std::string WriteOnlyQual("__write_only"); 464 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 465 if (WriteOnlyPos != std::string::npos) 466 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 467 else { 468 std::string ReadWriteQual("__read_write"); 469 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 470 if (ReadWritePos != std::string::npos) 471 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 472 } 473 } 474 } 475 476 // Returns the address space id that should be produced to the 477 // kernel_arg_addr_space metadata. This is always fixed to the ids 478 // as specified in the SPIR 2.0 specification in order to differentiate 479 // for example in clGetKernelArgInfo() implementation between the address 480 // spaces with targets without unique mapping to the OpenCL address spaces 481 // (basically all single AS CPUs). 482 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 483 switch (LangAS) { 484 case LangAS::opencl_global: return 1; 485 case LangAS::opencl_constant: return 2; 486 case LangAS::opencl_local: return 3; 487 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 488 default: 489 return 0; // Assume private. 490 } 491 } 492 493 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 494 // information in the program executable. The argument information stored 495 // includes the argument name, its type, the address and access qualifiers used. 496 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 497 CodeGenModule &CGM, llvm::LLVMContext &Context, 498 CGBuilderTy &Builder, ASTContext &ASTCtx) { 499 // Create MDNodes that represent the kernel arg metadata. 500 // Each MDNode is a list in the form of "key", N number of values which is 501 // the same number of values as their are kernel arguments. 502 503 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 504 505 // MDNode for the kernel argument address space qualifiers. 506 SmallVector<llvm::Metadata *, 8> addressQuals; 507 508 // MDNode for the kernel argument access qualifiers (images only). 509 SmallVector<llvm::Metadata *, 8> accessQuals; 510 511 // MDNode for the kernel argument type names. 512 SmallVector<llvm::Metadata *, 8> argTypeNames; 513 514 // MDNode for the kernel argument base type names. 515 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 516 517 // MDNode for the kernel argument type qualifiers. 518 SmallVector<llvm::Metadata *, 8> argTypeQuals; 519 520 // MDNode for the kernel argument names. 521 SmallVector<llvm::Metadata *, 8> argNames; 522 523 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 524 const ParmVarDecl *parm = FD->getParamDecl(i); 525 QualType ty = parm->getType(); 526 std::string typeQuals; 527 528 if (ty->isPointerType()) { 529 QualType pointeeTy = ty->getPointeeType(); 530 531 // Get address qualifier. 532 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 533 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 534 535 // Get argument type name. 536 std::string typeName = 537 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 538 539 // Turn "unsigned type" to "utype" 540 std::string::size_type pos = typeName.find("unsigned"); 541 if (pointeeTy.isCanonical() && pos != std::string::npos) 542 typeName.erase(pos+1, 8); 543 544 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 545 546 std::string baseTypeName = 547 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 548 Policy) + 549 "*"; 550 551 // Turn "unsigned type" to "utype" 552 pos = baseTypeName.find("unsigned"); 553 if (pos != std::string::npos) 554 baseTypeName.erase(pos+1, 8); 555 556 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 557 558 // Get argument type qualifiers: 559 if (ty.isRestrictQualified()) 560 typeQuals = "restrict"; 561 if (pointeeTy.isConstQualified() || 562 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 563 typeQuals += typeQuals.empty() ? "const" : " const"; 564 if (pointeeTy.isVolatileQualified()) 565 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 566 } else { 567 uint32_t AddrSpc = 0; 568 bool isPipe = ty->isPipeType(); 569 if (ty->isImageType() || isPipe) 570 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 571 572 addressQuals.push_back( 573 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 574 575 // Get argument type name. 576 std::string typeName; 577 if (isPipe) 578 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 579 .getAsString(Policy); 580 else 581 typeName = ty.getUnqualifiedType().getAsString(Policy); 582 583 // Turn "unsigned type" to "utype" 584 std::string::size_type pos = typeName.find("unsigned"); 585 if (ty.isCanonical() && pos != std::string::npos) 586 typeName.erase(pos+1, 8); 587 588 std::string baseTypeName; 589 if (isPipe) 590 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 591 ->getElementType().getCanonicalType() 592 .getAsString(Policy); 593 else 594 baseTypeName = 595 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 596 597 // Remove access qualifiers on images 598 // (as they are inseparable from type in clang implementation, 599 // but OpenCL spec provides a special query to get access qualifier 600 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 601 if (ty->isImageType()) { 602 removeImageAccessQualifier(typeName); 603 removeImageAccessQualifier(baseTypeName); 604 } 605 606 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 607 608 // Turn "unsigned type" to "utype" 609 pos = baseTypeName.find("unsigned"); 610 if (pos != std::string::npos) 611 baseTypeName.erase(pos+1, 8); 612 613 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 614 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 624 if (A && A->isWriteOnly()) 625 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 626 else if (A && A->isReadWrite()) 627 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 628 else 629 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 630 } else 631 accessQuals.push_back(llvm::MDString::get(Context, "none")); 632 633 // Get argument name. 634 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 635 } 636 637 Fn->setMetadata("kernel_arg_addr_space", 638 llvm::MDNode::get(Context, addressQuals)); 639 Fn->setMetadata("kernel_arg_access_qual", 640 llvm::MDNode::get(Context, accessQuals)); 641 Fn->setMetadata("kernel_arg_type", 642 llvm::MDNode::get(Context, argTypeNames)); 643 Fn->setMetadata("kernel_arg_base_type", 644 llvm::MDNode::get(Context, argBaseTypeNames)); 645 Fn->setMetadata("kernel_arg_type_qual", 646 llvm::MDNode::get(Context, argTypeQuals)); 647 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 648 Fn->setMetadata("kernel_arg_name", 649 llvm::MDNode::get(Context, argNames)); 650 } 651 652 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 653 llvm::Function *Fn) 654 { 655 if (!FD->hasAttr<OpenCLKernelAttr>()) 656 return; 657 658 llvm::LLVMContext &Context = getLLVMContext(); 659 660 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 661 662 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 663 QualType HintQTy = A->getTypeHint(); 664 const ExtVectorType *HintEltQTy = HintQTy->getAs<ExtVectorType>(); 665 bool IsSignedInteger = 666 HintQTy->isSignedIntegerType() || 667 (HintEltQTy && HintEltQTy->getElementType()->isSignedIntegerType()); 668 llvm::Metadata *AttrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 670 CGM.getTypes().ConvertType(A->getTypeHint()))), 671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 672 llvm::IntegerType::get(Context, 32), 673 llvm::APInt(32, (uint64_t)(IsSignedInteger ? 1 : 0))))}; 674 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, AttrMDArgs)); 675 } 676 677 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 678 llvm::Metadata *AttrMDArgs[] = { 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 682 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, AttrMDArgs)); 683 } 684 685 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 686 llvm::Metadata *AttrMDArgs[] = { 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 690 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, AttrMDArgs)); 691 } 692 693 if (const OpenCLIntelReqdSubGroupSizeAttr *A = 694 FD->getAttr<OpenCLIntelReqdSubGroupSizeAttr>()) { 695 llvm::Metadata *AttrMDArgs[] = { 696 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getSubGroupSize()))}; 697 Fn->setMetadata("intel_reqd_sub_group_size", 698 llvm::MDNode::get(Context, AttrMDArgs)); 699 } 700 } 701 702 /// Determine whether the function F ends with a return stmt. 703 static bool endsWithReturn(const Decl* F) { 704 const Stmt *Body = nullptr; 705 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 706 Body = FD->getBody(); 707 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 708 Body = OMD->getBody(); 709 710 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 711 auto LastStmt = CS->body_rbegin(); 712 if (LastStmt != CS->body_rend()) 713 return isa<ReturnStmt>(*LastStmt); 714 } 715 return false; 716 } 717 718 static void markAsIgnoreThreadCheckingAtRuntime(llvm::Function *Fn) { 719 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 720 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 721 } 722 723 void CodeGenFunction::StartFunction(GlobalDecl GD, 724 QualType RetTy, 725 llvm::Function *Fn, 726 const CGFunctionInfo &FnInfo, 727 const FunctionArgList &Args, 728 SourceLocation Loc, 729 SourceLocation StartLoc) { 730 assert(!CurFn && 731 "Do not use a CodeGenFunction object for more than one function"); 732 733 const Decl *D = GD.getDecl(); 734 735 DidCallStackSave = false; 736 CurCodeDecl = D; 737 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 738 if (FD->usesSEHTry()) 739 CurSEHParent = FD; 740 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 741 FnRetTy = RetTy; 742 CurFn = Fn; 743 CurFnInfo = &FnInfo; 744 assert(CurFn->isDeclaration() && "Function already has body?"); 745 746 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 747 SanOpts.clear(); 748 749 if (D) { 750 // Apply the no_sanitize* attributes to SanOpts. 751 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 752 SanOpts.Mask &= ~Attr->getMask(); 753 } 754 755 // Apply sanitizer attributes to the function. 756 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 757 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 758 if (SanOpts.has(SanitizerKind::Thread)) 759 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 760 if (SanOpts.has(SanitizerKind::Memory)) 761 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 762 if (SanOpts.has(SanitizerKind::SafeStack)) 763 Fn->addFnAttr(llvm::Attribute::SafeStack); 764 765 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 766 // .cxx_destruct, __destroy_helper_block_ and all of their calees at run time. 767 if (SanOpts.has(SanitizerKind::Thread)) { 768 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 769 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 770 if (OMD->getMethodFamily() == OMF_dealloc || 771 OMD->getMethodFamily() == OMF_initialize || 772 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 773 markAsIgnoreThreadCheckingAtRuntime(Fn); 774 } 775 } else if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) { 776 IdentifierInfo *II = FD->getIdentifier(); 777 if (II && II->isStr("__destroy_helper_block_")) 778 markAsIgnoreThreadCheckingAtRuntime(Fn); 779 } 780 } 781 782 // Apply xray attributes to the function (as a string, for now) 783 if (D && ShouldXRayInstrumentFunction()) { 784 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 785 if (XRayAttr->alwaysXRayInstrument()) 786 Fn->addFnAttr("function-instrument", "xray-always"); 787 if (XRayAttr->neverXRayInstrument()) 788 Fn->addFnAttr("function-instrument", "xray-never"); 789 if (const auto *LogArgs = D->getAttr<XRayLogArgsAttr>()) { 790 Fn->addFnAttr("xray-log-args", 791 llvm::utostr(LogArgs->getArgumentCount())); 792 } 793 } else { 794 if (!CGM.imbueXRayAttrs(Fn, Loc)) 795 Fn->addFnAttr( 796 "xray-instruction-threshold", 797 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 798 } 799 } 800 801 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 802 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 803 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 804 805 // Add no-jump-tables value. 806 Fn->addFnAttr("no-jump-tables", 807 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 808 809 if (getLangOpts().OpenCL) { 810 // Add metadata for a kernel function. 811 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 812 EmitOpenCLKernelMetadata(FD, Fn); 813 } 814 815 // If we are checking function types, emit a function type signature as 816 // prologue data. 817 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 818 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 819 if (llvm::Constant *PrologueSig = 820 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 821 llvm::Constant *FTRTTIConst = 822 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 823 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 824 llvm::Constant *PrologueStructConst = 825 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 826 Fn->setPrologueData(PrologueStructConst); 827 } 828 } 829 } 830 831 // If we're checking nullability, we need to know whether we can check the 832 // return value. Initialize the flag to 'true' and refine it in EmitParmDecl. 833 if (SanOpts.has(SanitizerKind::NullabilityReturn)) { 834 auto Nullability = FnRetTy->getNullability(getContext()); 835 if (Nullability && *Nullability == NullabilityKind::NonNull) { 836 if (!(SanOpts.has(SanitizerKind::ReturnsNonnullAttribute) && 837 CurCodeDecl && CurCodeDecl->getAttr<ReturnsNonNullAttr>())) 838 RetValNullabilityPrecondition = 839 llvm::ConstantInt::getTrue(getLLVMContext()); 840 } 841 } 842 843 // If we're in C++ mode and the function name is "main", it is guaranteed 844 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 845 // used within a program"). 846 if (getLangOpts().CPlusPlus) 847 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 848 if (FD->isMain()) 849 Fn->addFnAttr(llvm::Attribute::NoRecurse); 850 851 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 852 853 // Create a marker to make it easy to insert allocas into the entryblock 854 // later. Don't create this with the builder, because we don't want it 855 // folded. 856 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 857 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 858 859 ReturnBlock = getJumpDestInCurrentScope("return"); 860 861 Builder.SetInsertPoint(EntryBB); 862 863 // If we're checking the return value, allocate space for a pointer to a 864 // precise source location of the checked return statement. 865 if (requiresReturnValueCheck()) { 866 ReturnLocation = CreateDefaultAlignTempAlloca(Int8PtrTy, "return.sloc.ptr"); 867 InitTempAlloca(ReturnLocation, llvm::ConstantPointerNull::get(Int8PtrTy)); 868 } 869 870 // Emit subprogram debug descriptor. 871 if (CGDebugInfo *DI = getDebugInfo()) { 872 // Reconstruct the type from the argument list so that implicit parameters, 873 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 874 // convention. 875 CallingConv CC = CallingConv::CC_C; 876 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 877 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 878 CC = SrcFnTy->getCallConv(); 879 SmallVector<QualType, 16> ArgTypes; 880 for (const VarDecl *VD : Args) 881 ArgTypes.push_back(VD->getType()); 882 QualType FnType = getContext().getFunctionType( 883 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 884 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 885 } 886 887 if (ShouldInstrumentFunction()) 888 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 889 890 // Since emitting the mcount call here impacts optimizations such as function 891 // inlining, we just add an attribute to insert a mcount call in backend. 892 // The attribute "counting-function" is set to mcount function name which is 893 // architecture dependent. 894 if (CGM.getCodeGenOpts().InstrumentForProfiling) { 895 if (CGM.getCodeGenOpts().CallFEntry) 896 Fn->addFnAttr("fentry-call", "true"); 897 else { 898 if (!CurFuncDecl || !CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 899 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 900 } 901 } 902 903 if (RetTy->isVoidType()) { 904 // Void type; nothing to return. 905 ReturnValue = Address::invalid(); 906 907 // Count the implicit return. 908 if (!endsWithReturn(D)) 909 ++NumReturnExprs; 910 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 911 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 912 // Indirect aggregate return; emit returned value directly into sret slot. 913 // This reduces code size, and affects correctness in C++. 914 auto AI = CurFn->arg_begin(); 915 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 916 ++AI; 917 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 918 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 919 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 920 // Load the sret pointer from the argument struct and return into that. 921 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 922 llvm::Function::arg_iterator EI = CurFn->arg_end(); 923 --EI; 924 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 925 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 926 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 927 } else { 928 ReturnValue = CreateIRTemp(RetTy, "retval"); 929 930 // Tell the epilog emitter to autorelease the result. We do this 931 // now so that various specialized functions can suppress it 932 // during their IR-generation. 933 if (getLangOpts().ObjCAutoRefCount && 934 !CurFnInfo->isReturnsRetained() && 935 RetTy->isObjCRetainableType()) 936 AutoreleaseResult = true; 937 } 938 939 EmitStartEHSpec(CurCodeDecl); 940 941 PrologueCleanupDepth = EHStack.stable_begin(); 942 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 943 944 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 945 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 946 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 947 if (MD->getParent()->isLambda() && 948 MD->getOverloadedOperator() == OO_Call) { 949 // We're in a lambda; figure out the captures. 950 MD->getParent()->getCaptureFields(LambdaCaptureFields, 951 LambdaThisCaptureField); 952 if (LambdaThisCaptureField) { 953 // If the lambda captures the object referred to by '*this' - either by 954 // value or by reference, make sure CXXThisValue points to the correct 955 // object. 956 957 // Get the lvalue for the field (which is a copy of the enclosing object 958 // or contains the address of the enclosing object). 959 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 960 if (!LambdaThisCaptureField->getType()->isPointerType()) { 961 // If the enclosing object was captured by value, just use its address. 962 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 963 } else { 964 // Load the lvalue pointed to by the field, since '*this' was captured 965 // by reference. 966 CXXThisValue = 967 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 968 } 969 } 970 for (auto *FD : MD->getParent()->fields()) { 971 if (FD->hasCapturedVLAType()) { 972 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 973 SourceLocation()).getScalarVal(); 974 auto VAT = FD->getCapturedVLAType(); 975 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 976 } 977 } 978 } else { 979 // Not in a lambda; just use 'this' from the method. 980 // FIXME: Should we generate a new load for each use of 'this'? The 981 // fast register allocator would be happier... 982 CXXThisValue = CXXABIThisValue; 983 } 984 985 // Check the 'this' pointer once per function, if it's available. 986 if (CXXThisValue) { 987 SanitizerSet SkippedChecks; 988 SkippedChecks.set(SanitizerKind::ObjectSize, true); 989 QualType ThisTy = MD->getThisType(getContext()); 990 EmitTypeCheck(TCK_Load, Loc, CXXThisValue, ThisTy, 991 getContext().getTypeAlignInChars(ThisTy->getPointeeType()), 992 SkippedChecks); 993 } 994 } 995 996 // If any of the arguments have a variably modified type, make sure to 997 // emit the type size. 998 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 999 i != e; ++i) { 1000 const VarDecl *VD = *i; 1001 1002 // Dig out the type as written from ParmVarDecls; it's unclear whether 1003 // the standard (C99 6.9.1p10) requires this, but we're following the 1004 // precedent set by gcc. 1005 QualType Ty; 1006 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 1007 Ty = PVD->getOriginalType(); 1008 else 1009 Ty = VD->getType(); 1010 1011 if (Ty->isVariablyModifiedType()) 1012 EmitVariablyModifiedType(Ty); 1013 } 1014 // Emit a location at the end of the prologue. 1015 if (CGDebugInfo *DI = getDebugInfo()) 1016 DI->EmitLocation(Builder, StartLoc); 1017 } 1018 1019 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 1020 const Stmt *Body) { 1021 incrementProfileCounter(Body); 1022 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 1023 EmitCompoundStmtWithoutScope(*S); 1024 else 1025 EmitStmt(Body); 1026 } 1027 1028 /// When instrumenting to collect profile data, the counts for some blocks 1029 /// such as switch cases need to not include the fall-through counts, so 1030 /// emit a branch around the instrumentation code. When not instrumenting, 1031 /// this just calls EmitBlock(). 1032 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 1033 const Stmt *S) { 1034 llvm::BasicBlock *SkipCountBB = nullptr; 1035 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 1036 // When instrumenting for profiling, the fallthrough to certain 1037 // statements needs to skip over the instrumentation code so that we 1038 // get an accurate count. 1039 SkipCountBB = createBasicBlock("skipcount"); 1040 EmitBranch(SkipCountBB); 1041 } 1042 EmitBlock(BB); 1043 uint64_t CurrentCount = getCurrentProfileCount(); 1044 incrementProfileCounter(S); 1045 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 1046 if (SkipCountBB) 1047 EmitBlock(SkipCountBB); 1048 } 1049 1050 /// Tries to mark the given function nounwind based on the 1051 /// non-existence of any throwing calls within it. We believe this is 1052 /// lightweight enough to do at -O0. 1053 static void TryMarkNoThrow(llvm::Function *F) { 1054 // LLVM treats 'nounwind' on a function as part of the type, so we 1055 // can't do this on functions that can be overwritten. 1056 if (F->isInterposable()) return; 1057 1058 for (llvm::BasicBlock &BB : *F) 1059 for (llvm::Instruction &I : BB) 1060 if (I.mayThrow()) 1061 return; 1062 1063 F->setDoesNotThrow(); 1064 } 1065 1066 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1067 FunctionArgList &Args) { 1068 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1069 QualType ResTy = FD->getReturnType(); 1070 1071 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1072 if (MD && MD->isInstance()) { 1073 if (CGM.getCXXABI().HasThisReturn(GD)) 1074 ResTy = MD->getThisType(getContext()); 1075 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1076 ResTy = CGM.getContext().VoidPtrTy; 1077 CGM.getCXXABI().buildThisParam(*this, Args); 1078 } 1079 1080 // The base version of an inheriting constructor whose constructed base is a 1081 // virtual base is not passed any arguments (because it doesn't actually call 1082 // the inherited constructor). 1083 bool PassedParams = true; 1084 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1085 if (auto Inherited = CD->getInheritedConstructor()) 1086 PassedParams = 1087 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1088 1089 if (PassedParams) { 1090 for (auto *Param : FD->parameters()) { 1091 Args.push_back(Param); 1092 if (!Param->hasAttr<PassObjectSizeAttr>()) 1093 continue; 1094 1095 auto *Implicit = ImplicitParamDecl::Create( 1096 getContext(), Param->getDeclContext(), Param->getLocation(), 1097 /*Id=*/nullptr, getContext().getSizeType(), ImplicitParamDecl::Other); 1098 SizeArguments[Param] = Implicit; 1099 Args.push_back(Implicit); 1100 } 1101 } 1102 1103 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1104 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1105 1106 return ResTy; 1107 } 1108 1109 static bool 1110 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1111 const ASTContext &Context) { 1112 QualType T = FD->getReturnType(); 1113 // Avoid the optimization for functions that return a record type with a 1114 // trivial destructor or another trivially copyable type. 1115 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1116 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1117 return !ClassDecl->hasTrivialDestructor(); 1118 } 1119 return !T.isTriviallyCopyableType(Context); 1120 } 1121 1122 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1123 const CGFunctionInfo &FnInfo) { 1124 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1125 CurGD = GD; 1126 1127 FunctionArgList Args; 1128 QualType ResTy = BuildFunctionArgList(GD, Args); 1129 1130 // Check if we should generate debug info for this function. 1131 if (FD->hasAttr<NoDebugAttr>()) 1132 DebugInfo = nullptr; // disable debug info indefinitely for this function 1133 1134 // The function might not have a body if we're generating thunks for a 1135 // function declaration. 1136 SourceRange BodyRange; 1137 if (Stmt *Body = FD->getBody()) 1138 BodyRange = Body->getSourceRange(); 1139 else 1140 BodyRange = FD->getLocation(); 1141 CurEHLocation = BodyRange.getEnd(); 1142 1143 // Use the location of the start of the function to determine where 1144 // the function definition is located. By default use the location 1145 // of the declaration as the location for the subprogram. A function 1146 // may lack a declaration in the source code if it is created by code 1147 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1148 SourceLocation Loc = FD->getLocation(); 1149 1150 // If this is a function specialization then use the pattern body 1151 // as the location for the function. 1152 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1153 if (SpecDecl->hasBody(SpecDecl)) 1154 Loc = SpecDecl->getLocation(); 1155 1156 Stmt *Body = FD->getBody(); 1157 1158 // Initialize helper which will detect jumps which can cause invalid lifetime 1159 // markers. 1160 if (Body && ShouldEmitLifetimeMarkers) 1161 Bypasses.Init(Body); 1162 1163 // Emit the standard function prologue. 1164 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1165 1166 // Generate the body of the function. 1167 PGO.assignRegionCounters(GD, CurFn); 1168 if (isa<CXXDestructorDecl>(FD)) 1169 EmitDestructorBody(Args); 1170 else if (isa<CXXConstructorDecl>(FD)) 1171 EmitConstructorBody(Args); 1172 else if (getLangOpts().CUDA && 1173 !getLangOpts().CUDAIsDevice && 1174 FD->hasAttr<CUDAGlobalAttr>()) 1175 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1176 else if (isa<CXXConversionDecl>(FD) && 1177 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1178 // The lambda conversion to block pointer is special; the semantics can't be 1179 // expressed in the AST, so IRGen needs to special-case it. 1180 EmitLambdaToBlockPointerBody(Args); 1181 } else if (isa<CXXMethodDecl>(FD) && 1182 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1183 // The lambda static invoker function is special, because it forwards or 1184 // clones the body of the function call operator (but is actually static). 1185 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1186 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1187 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1188 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1189 // Implicit copy-assignment gets the same special treatment as implicit 1190 // copy-constructors. 1191 emitImplicitAssignmentOperatorBody(Args); 1192 } else if (Body) { 1193 EmitFunctionBody(Args, Body); 1194 } else 1195 llvm_unreachable("no definition for emitted function"); 1196 1197 // C++11 [stmt.return]p2: 1198 // Flowing off the end of a function [...] results in undefined behavior in 1199 // a value-returning function. 1200 // C11 6.9.1p12: 1201 // If the '}' that terminates a function is reached, and the value of the 1202 // function call is used by the caller, the behavior is undefined. 1203 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1204 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1205 bool ShouldEmitUnreachable = 1206 CGM.getCodeGenOpts().StrictReturn || 1207 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1208 if (SanOpts.has(SanitizerKind::Return)) { 1209 SanitizerScope SanScope(this); 1210 llvm::Value *IsFalse = Builder.getFalse(); 1211 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1212 SanitizerHandler::MissingReturn, 1213 EmitCheckSourceLocation(FD->getLocation()), None); 1214 } else if (ShouldEmitUnreachable) { 1215 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1216 EmitTrapCall(llvm::Intrinsic::trap); 1217 } 1218 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1219 Builder.CreateUnreachable(); 1220 Builder.ClearInsertionPoint(); 1221 } 1222 } 1223 1224 // Emit the standard function epilogue. 1225 FinishFunction(BodyRange.getEnd()); 1226 1227 // If we haven't marked the function nothrow through other means, do 1228 // a quick pass now to see if we can. 1229 if (!CurFn->doesNotThrow()) 1230 TryMarkNoThrow(CurFn); 1231 } 1232 1233 /// ContainsLabel - Return true if the statement contains a label in it. If 1234 /// this statement is not executed normally, it not containing a label means 1235 /// that we can just remove the code. 1236 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1237 // Null statement, not a label! 1238 if (!S) return false; 1239 1240 // If this is a label, we have to emit the code, consider something like: 1241 // if (0) { ... foo: bar(); } goto foo; 1242 // 1243 // TODO: If anyone cared, we could track __label__'s, since we know that you 1244 // can't jump to one from outside their declared region. 1245 if (isa<LabelStmt>(S)) 1246 return true; 1247 1248 // If this is a case/default statement, and we haven't seen a switch, we have 1249 // to emit the code. 1250 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1251 return true; 1252 1253 // If this is a switch statement, we want to ignore cases below it. 1254 if (isa<SwitchStmt>(S)) 1255 IgnoreCaseStmts = true; 1256 1257 // Scan subexpressions for verboten labels. 1258 for (const Stmt *SubStmt : S->children()) 1259 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1260 return true; 1261 1262 return false; 1263 } 1264 1265 /// containsBreak - Return true if the statement contains a break out of it. 1266 /// If the statement (recursively) contains a switch or loop with a break 1267 /// inside of it, this is fine. 1268 bool CodeGenFunction::containsBreak(const Stmt *S) { 1269 // Null statement, not a label! 1270 if (!S) return false; 1271 1272 // If this is a switch or loop that defines its own break scope, then we can 1273 // include it and anything inside of it. 1274 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1275 isa<ForStmt>(S)) 1276 return false; 1277 1278 if (isa<BreakStmt>(S)) 1279 return true; 1280 1281 // Scan subexpressions for verboten breaks. 1282 for (const Stmt *SubStmt : S->children()) 1283 if (containsBreak(SubStmt)) 1284 return true; 1285 1286 return false; 1287 } 1288 1289 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1290 if (!S) return false; 1291 1292 // Some statement kinds add a scope and thus never add a decl to the current 1293 // scope. Note, this list is longer than the list of statements that might 1294 // have an unscoped decl nested within them, but this way is conservatively 1295 // correct even if more statement kinds are added. 1296 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1297 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1298 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1299 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1300 return false; 1301 1302 if (isa<DeclStmt>(S)) 1303 return true; 1304 1305 for (const Stmt *SubStmt : S->children()) 1306 if (mightAddDeclToScope(SubStmt)) 1307 return true; 1308 1309 return false; 1310 } 1311 1312 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1313 /// to a constant, or if it does but contains a label, return false. If it 1314 /// constant folds return true and set the boolean result in Result. 1315 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1316 bool &ResultBool, 1317 bool AllowLabels) { 1318 llvm::APSInt ResultInt; 1319 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1320 return false; 1321 1322 ResultBool = ResultInt.getBoolValue(); 1323 return true; 1324 } 1325 1326 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1327 /// to a constant, or if it does but contains a label, return false. If it 1328 /// constant folds return true and set the folded value. 1329 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1330 llvm::APSInt &ResultInt, 1331 bool AllowLabels) { 1332 // FIXME: Rename and handle conversion of other evaluatable things 1333 // to bool. 1334 llvm::APSInt Int; 1335 if (!Cond->EvaluateAsInt(Int, getContext())) 1336 return false; // Not foldable, not integer or not fully evaluatable. 1337 1338 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1339 return false; // Contains a label. 1340 1341 ResultInt = Int; 1342 return true; 1343 } 1344 1345 1346 1347 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1348 /// statement) to the specified blocks. Based on the condition, this might try 1349 /// to simplify the codegen of the conditional based on the branch. 1350 /// 1351 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1352 llvm::BasicBlock *TrueBlock, 1353 llvm::BasicBlock *FalseBlock, 1354 uint64_t TrueCount) { 1355 Cond = Cond->IgnoreParens(); 1356 1357 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1358 1359 // Handle X && Y in a condition. 1360 if (CondBOp->getOpcode() == BO_LAnd) { 1361 // If we have "1 && X", simplify the code. "0 && X" would have constant 1362 // folded if the case was simple enough. 1363 bool ConstantBool = false; 1364 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1365 ConstantBool) { 1366 // br(1 && X) -> br(X). 1367 incrementProfileCounter(CondBOp); 1368 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1369 TrueCount); 1370 } 1371 1372 // If we have "X && 1", simplify the code to use an uncond branch. 1373 // "X && 0" would have been constant folded to 0. 1374 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1375 ConstantBool) { 1376 // br(X && 1) -> br(X). 1377 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1378 TrueCount); 1379 } 1380 1381 // Emit the LHS as a conditional. If the LHS conditional is false, we 1382 // want to jump to the FalseBlock. 1383 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1384 // The counter tells us how often we evaluate RHS, and all of TrueCount 1385 // can be propagated to that branch. 1386 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1387 1388 ConditionalEvaluation eval(*this); 1389 { 1390 ApplyDebugLocation DL(*this, Cond); 1391 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1392 EmitBlock(LHSTrue); 1393 } 1394 1395 incrementProfileCounter(CondBOp); 1396 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1397 1398 // Any temporaries created here are conditional. 1399 eval.begin(*this); 1400 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1401 eval.end(*this); 1402 1403 return; 1404 } 1405 1406 if (CondBOp->getOpcode() == BO_LOr) { 1407 // If we have "0 || X", simplify the code. "1 || X" would have constant 1408 // folded if the case was simple enough. 1409 bool ConstantBool = false; 1410 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1411 !ConstantBool) { 1412 // br(0 || X) -> br(X). 1413 incrementProfileCounter(CondBOp); 1414 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1415 TrueCount); 1416 } 1417 1418 // If we have "X || 0", simplify the code to use an uncond branch. 1419 // "X || 1" would have been constant folded to 1. 1420 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1421 !ConstantBool) { 1422 // br(X || 0) -> br(X). 1423 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1424 TrueCount); 1425 } 1426 1427 // Emit the LHS as a conditional. If the LHS conditional is true, we 1428 // want to jump to the TrueBlock. 1429 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1430 // We have the count for entry to the RHS and for the whole expression 1431 // being true, so we can divy up True count between the short circuit and 1432 // the RHS. 1433 uint64_t LHSCount = 1434 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1435 uint64_t RHSCount = TrueCount - LHSCount; 1436 1437 ConditionalEvaluation eval(*this); 1438 { 1439 ApplyDebugLocation DL(*this, Cond); 1440 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1441 EmitBlock(LHSFalse); 1442 } 1443 1444 incrementProfileCounter(CondBOp); 1445 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1446 1447 // Any temporaries created here are conditional. 1448 eval.begin(*this); 1449 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1450 1451 eval.end(*this); 1452 1453 return; 1454 } 1455 } 1456 1457 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1458 // br(!x, t, f) -> br(x, f, t) 1459 if (CondUOp->getOpcode() == UO_LNot) { 1460 // Negate the count. 1461 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1462 // Negate the condition and swap the destination blocks. 1463 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1464 FalseCount); 1465 } 1466 } 1467 1468 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1469 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1470 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1471 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1472 1473 ConditionalEvaluation cond(*this); 1474 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1475 getProfileCount(CondOp)); 1476 1477 // When computing PGO branch weights, we only know the overall count for 1478 // the true block. This code is essentially doing tail duplication of the 1479 // naive code-gen, introducing new edges for which counts are not 1480 // available. Divide the counts proportionally between the LHS and RHS of 1481 // the conditional operator. 1482 uint64_t LHSScaledTrueCount = 0; 1483 if (TrueCount) { 1484 double LHSRatio = 1485 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1486 LHSScaledTrueCount = TrueCount * LHSRatio; 1487 } 1488 1489 cond.begin(*this); 1490 EmitBlock(LHSBlock); 1491 incrementProfileCounter(CondOp); 1492 { 1493 ApplyDebugLocation DL(*this, Cond); 1494 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1495 LHSScaledTrueCount); 1496 } 1497 cond.end(*this); 1498 1499 cond.begin(*this); 1500 EmitBlock(RHSBlock); 1501 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1502 TrueCount - LHSScaledTrueCount); 1503 cond.end(*this); 1504 1505 return; 1506 } 1507 1508 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1509 // Conditional operator handling can give us a throw expression as a 1510 // condition for a case like: 1511 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1512 // Fold this to: 1513 // br(c, throw x, br(y, t, f)) 1514 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1515 return; 1516 } 1517 1518 // If the branch has a condition wrapped by __builtin_unpredictable, 1519 // create metadata that specifies that the branch is unpredictable. 1520 // Don't bother if not optimizing because that metadata would not be used. 1521 llvm::MDNode *Unpredictable = nullptr; 1522 auto *Call = dyn_cast<CallExpr>(Cond); 1523 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1524 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1525 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1526 llvm::MDBuilder MDHelper(getLLVMContext()); 1527 Unpredictable = MDHelper.createUnpredictable(); 1528 } 1529 } 1530 1531 // Create branch weights based on the number of times we get here and the 1532 // number of times the condition should be true. 1533 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1534 llvm::MDNode *Weights = 1535 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1536 1537 // Emit the code with the fully general case. 1538 llvm::Value *CondV; 1539 { 1540 ApplyDebugLocation DL(*this, Cond); 1541 CondV = EvaluateExprAsBool(Cond); 1542 } 1543 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1544 } 1545 1546 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1547 /// specified stmt yet. 1548 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1549 CGM.ErrorUnsupported(S, Type); 1550 } 1551 1552 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1553 /// variable-length array whose elements have a non-zero bit-pattern. 1554 /// 1555 /// \param baseType the inner-most element type of the array 1556 /// \param src - a char* pointing to the bit-pattern for a single 1557 /// base element of the array 1558 /// \param sizeInChars - the total size of the VLA, in chars 1559 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1560 Address dest, Address src, 1561 llvm::Value *sizeInChars) { 1562 CGBuilderTy &Builder = CGF.Builder; 1563 1564 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1565 llvm::Value *baseSizeInChars 1566 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1567 1568 Address begin = 1569 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1570 llvm::Value *end = 1571 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1572 1573 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1574 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1575 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1576 1577 // Make a loop over the VLA. C99 guarantees that the VLA element 1578 // count must be nonzero. 1579 CGF.EmitBlock(loopBB); 1580 1581 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1582 cur->addIncoming(begin.getPointer(), originBB); 1583 1584 CharUnits curAlign = 1585 dest.getAlignment().alignmentOfArrayElement(baseSize); 1586 1587 // memcpy the individual element bit-pattern. 1588 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1589 /*volatile*/ false); 1590 1591 // Go to the next element. 1592 llvm::Value *next = 1593 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1594 1595 // Leave if that's the end of the VLA. 1596 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1597 Builder.CreateCondBr(done, contBB, loopBB); 1598 cur->addIncoming(next, loopBB); 1599 1600 CGF.EmitBlock(contBB); 1601 } 1602 1603 void 1604 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1605 // Ignore empty classes in C++. 1606 if (getLangOpts().CPlusPlus) { 1607 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1608 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1609 return; 1610 } 1611 } 1612 1613 // Cast the dest ptr to the appropriate i8 pointer type. 1614 if (DestPtr.getElementType() != Int8Ty) 1615 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1616 1617 // Get size and alignment info for this aggregate. 1618 CharUnits size = getContext().getTypeSizeInChars(Ty); 1619 1620 llvm::Value *SizeVal; 1621 const VariableArrayType *vla; 1622 1623 // Don't bother emitting a zero-byte memset. 1624 if (size.isZero()) { 1625 // But note that getTypeInfo returns 0 for a VLA. 1626 if (const VariableArrayType *vlaType = 1627 dyn_cast_or_null<VariableArrayType>( 1628 getContext().getAsArrayType(Ty))) { 1629 QualType eltType; 1630 llvm::Value *numElts; 1631 std::tie(numElts, eltType) = getVLASize(vlaType); 1632 1633 SizeVal = numElts; 1634 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1635 if (!eltSize.isOne()) 1636 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1637 vla = vlaType; 1638 } else { 1639 return; 1640 } 1641 } else { 1642 SizeVal = CGM.getSize(size); 1643 vla = nullptr; 1644 } 1645 1646 // If the type contains a pointer to data member we can't memset it to zero. 1647 // Instead, create a null constant and copy it to the destination. 1648 // TODO: there are other patterns besides zero that we can usefully memset, 1649 // like -1, which happens to be the pattern used by member-pointers. 1650 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1651 // For a VLA, emit a single element, then splat that over the VLA. 1652 if (vla) Ty = getContext().getBaseElementType(vla); 1653 1654 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1655 1656 llvm::GlobalVariable *NullVariable = 1657 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1658 /*isConstant=*/true, 1659 llvm::GlobalVariable::PrivateLinkage, 1660 NullConstant, Twine()); 1661 CharUnits NullAlign = DestPtr.getAlignment(); 1662 NullVariable->setAlignment(NullAlign.getQuantity()); 1663 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1664 NullAlign); 1665 1666 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1667 1668 // Get and call the appropriate llvm.memcpy overload. 1669 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1670 return; 1671 } 1672 1673 // Otherwise, just memset the whole thing to zero. This is legal 1674 // because in LLVM, all default initializers (other than the ones we just 1675 // handled above) are guaranteed to have a bit pattern of all zeros. 1676 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1677 } 1678 1679 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1680 // Make sure that there is a block for the indirect goto. 1681 if (!IndirectBranch) 1682 GetIndirectGotoBlock(); 1683 1684 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1685 1686 // Make sure the indirect branch includes all of the address-taken blocks. 1687 IndirectBranch->addDestination(BB); 1688 return llvm::BlockAddress::get(CurFn, BB); 1689 } 1690 1691 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1692 // If we already made the indirect branch for indirect goto, return its block. 1693 if (IndirectBranch) return IndirectBranch->getParent(); 1694 1695 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1696 1697 // Create the PHI node that indirect gotos will add entries to. 1698 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1699 "indirect.goto.dest"); 1700 1701 // Create the indirect branch instruction. 1702 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1703 return IndirectBranch->getParent(); 1704 } 1705 1706 /// Computes the length of an array in elements, as well as the base 1707 /// element type and a properly-typed first element pointer. 1708 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1709 QualType &baseType, 1710 Address &addr) { 1711 const ArrayType *arrayType = origArrayType; 1712 1713 // If it's a VLA, we have to load the stored size. Note that 1714 // this is the size of the VLA in bytes, not its size in elements. 1715 llvm::Value *numVLAElements = nullptr; 1716 if (isa<VariableArrayType>(arrayType)) { 1717 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1718 1719 // Walk into all VLAs. This doesn't require changes to addr, 1720 // which has type T* where T is the first non-VLA element type. 1721 do { 1722 QualType elementType = arrayType->getElementType(); 1723 arrayType = getContext().getAsArrayType(elementType); 1724 1725 // If we only have VLA components, 'addr' requires no adjustment. 1726 if (!arrayType) { 1727 baseType = elementType; 1728 return numVLAElements; 1729 } 1730 } while (isa<VariableArrayType>(arrayType)); 1731 1732 // We get out here only if we find a constant array type 1733 // inside the VLA. 1734 } 1735 1736 // We have some number of constant-length arrays, so addr should 1737 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1738 // down to the first element of addr. 1739 SmallVector<llvm::Value*, 8> gepIndices; 1740 1741 // GEP down to the array type. 1742 llvm::ConstantInt *zero = Builder.getInt32(0); 1743 gepIndices.push_back(zero); 1744 1745 uint64_t countFromCLAs = 1; 1746 QualType eltType; 1747 1748 llvm::ArrayType *llvmArrayType = 1749 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1750 while (llvmArrayType) { 1751 assert(isa<ConstantArrayType>(arrayType)); 1752 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1753 == llvmArrayType->getNumElements()); 1754 1755 gepIndices.push_back(zero); 1756 countFromCLAs *= llvmArrayType->getNumElements(); 1757 eltType = arrayType->getElementType(); 1758 1759 llvmArrayType = 1760 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1761 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1762 assert((!llvmArrayType || arrayType) && 1763 "LLVM and Clang types are out-of-synch"); 1764 } 1765 1766 if (arrayType) { 1767 // From this point onwards, the Clang array type has been emitted 1768 // as some other type (probably a packed struct). Compute the array 1769 // size, and just emit the 'begin' expression as a bitcast. 1770 while (arrayType) { 1771 countFromCLAs *= 1772 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1773 eltType = arrayType->getElementType(); 1774 arrayType = getContext().getAsArrayType(eltType); 1775 } 1776 1777 llvm::Type *baseType = ConvertType(eltType); 1778 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1779 } else { 1780 // Create the actual GEP. 1781 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1782 gepIndices, "array.begin"), 1783 addr.getAlignment()); 1784 } 1785 1786 baseType = eltType; 1787 1788 llvm::Value *numElements 1789 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1790 1791 // If we had any VLA dimensions, factor them in. 1792 if (numVLAElements) 1793 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1794 1795 return numElements; 1796 } 1797 1798 std::pair<llvm::Value*, QualType> 1799 CodeGenFunction::getVLASize(QualType type) { 1800 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1801 assert(vla && "type was not a variable array type!"); 1802 return getVLASize(vla); 1803 } 1804 1805 std::pair<llvm::Value*, QualType> 1806 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1807 // The number of elements so far; always size_t. 1808 llvm::Value *numElements = nullptr; 1809 1810 QualType elementType; 1811 do { 1812 elementType = type->getElementType(); 1813 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1814 assert(vlaSize && "no size for VLA!"); 1815 assert(vlaSize->getType() == SizeTy); 1816 1817 if (!numElements) { 1818 numElements = vlaSize; 1819 } else { 1820 // It's undefined behavior if this wraps around, so mark it that way. 1821 // FIXME: Teach -fsanitize=undefined to trap this. 1822 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1823 } 1824 } while ((type = getContext().getAsVariableArrayType(elementType))); 1825 1826 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1827 } 1828 1829 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1830 assert(type->isVariablyModifiedType() && 1831 "Must pass variably modified type to EmitVLASizes!"); 1832 1833 EnsureInsertPoint(); 1834 1835 // We're going to walk down into the type and look for VLA 1836 // expressions. 1837 do { 1838 assert(type->isVariablyModifiedType()); 1839 1840 const Type *ty = type.getTypePtr(); 1841 switch (ty->getTypeClass()) { 1842 1843 #define TYPE(Class, Base) 1844 #define ABSTRACT_TYPE(Class, Base) 1845 #define NON_CANONICAL_TYPE(Class, Base) 1846 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1847 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1848 #include "clang/AST/TypeNodes.def" 1849 llvm_unreachable("unexpected dependent type!"); 1850 1851 // These types are never variably-modified. 1852 case Type::Builtin: 1853 case Type::Complex: 1854 case Type::Vector: 1855 case Type::ExtVector: 1856 case Type::Record: 1857 case Type::Enum: 1858 case Type::Elaborated: 1859 case Type::TemplateSpecialization: 1860 case Type::ObjCTypeParam: 1861 case Type::ObjCObject: 1862 case Type::ObjCInterface: 1863 case Type::ObjCObjectPointer: 1864 llvm_unreachable("type class is never variably-modified!"); 1865 1866 case Type::Adjusted: 1867 type = cast<AdjustedType>(ty)->getAdjustedType(); 1868 break; 1869 1870 case Type::Decayed: 1871 type = cast<DecayedType>(ty)->getPointeeType(); 1872 break; 1873 1874 case Type::Pointer: 1875 type = cast<PointerType>(ty)->getPointeeType(); 1876 break; 1877 1878 case Type::BlockPointer: 1879 type = cast<BlockPointerType>(ty)->getPointeeType(); 1880 break; 1881 1882 case Type::LValueReference: 1883 case Type::RValueReference: 1884 type = cast<ReferenceType>(ty)->getPointeeType(); 1885 break; 1886 1887 case Type::MemberPointer: 1888 type = cast<MemberPointerType>(ty)->getPointeeType(); 1889 break; 1890 1891 case Type::ConstantArray: 1892 case Type::IncompleteArray: 1893 // Losing element qualification here is fine. 1894 type = cast<ArrayType>(ty)->getElementType(); 1895 break; 1896 1897 case Type::VariableArray: { 1898 // Losing element qualification here is fine. 1899 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1900 1901 // Unknown size indication requires no size computation. 1902 // Otherwise, evaluate and record it. 1903 if (const Expr *size = vat->getSizeExpr()) { 1904 // It's possible that we might have emitted this already, 1905 // e.g. with a typedef and a pointer to it. 1906 llvm::Value *&entry = VLASizeMap[size]; 1907 if (!entry) { 1908 llvm::Value *Size = EmitScalarExpr(size); 1909 1910 // C11 6.7.6.2p5: 1911 // If the size is an expression that is not an integer constant 1912 // expression [...] each time it is evaluated it shall have a value 1913 // greater than zero. 1914 if (SanOpts.has(SanitizerKind::VLABound) && 1915 size->getType()->isSignedIntegerType()) { 1916 SanitizerScope SanScope(this); 1917 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1918 llvm::Constant *StaticArgs[] = { 1919 EmitCheckSourceLocation(size->getLocStart()), 1920 EmitCheckTypeDescriptor(size->getType()) 1921 }; 1922 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1923 SanitizerKind::VLABound), 1924 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1925 } 1926 1927 // Always zexting here would be wrong if it weren't 1928 // undefined behavior to have a negative bound. 1929 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1930 } 1931 } 1932 type = vat->getElementType(); 1933 break; 1934 } 1935 1936 case Type::FunctionProto: 1937 case Type::FunctionNoProto: 1938 type = cast<FunctionType>(ty)->getReturnType(); 1939 break; 1940 1941 case Type::Paren: 1942 case Type::TypeOf: 1943 case Type::UnaryTransform: 1944 case Type::Attributed: 1945 case Type::SubstTemplateTypeParm: 1946 case Type::PackExpansion: 1947 // Keep walking after single level desugaring. 1948 type = type.getSingleStepDesugaredType(getContext()); 1949 break; 1950 1951 case Type::Typedef: 1952 case Type::Decltype: 1953 case Type::Auto: 1954 case Type::DeducedTemplateSpecialization: 1955 // Stop walking: nothing to do. 1956 return; 1957 1958 case Type::TypeOfExpr: 1959 // Stop walking: emit typeof expression. 1960 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1961 return; 1962 1963 case Type::Atomic: 1964 type = cast<AtomicType>(ty)->getValueType(); 1965 break; 1966 1967 case Type::Pipe: 1968 type = cast<PipeType>(ty)->getElementType(); 1969 break; 1970 } 1971 } while (type->isVariablyModifiedType()); 1972 } 1973 1974 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1975 if (getContext().getBuiltinVaListType()->isArrayType()) 1976 return EmitPointerWithAlignment(E); 1977 return EmitLValue(E).getAddress(); 1978 } 1979 1980 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1981 return EmitLValue(E).getAddress(); 1982 } 1983 1984 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1985 const APValue &Init) { 1986 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1987 if (CGDebugInfo *Dbg = getDebugInfo()) 1988 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1989 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1990 } 1991 1992 CodeGenFunction::PeepholeProtection 1993 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1994 // At the moment, the only aggressive peephole we do in IR gen 1995 // is trunc(zext) folding, but if we add more, we can easily 1996 // extend this protection. 1997 1998 if (!rvalue.isScalar()) return PeepholeProtection(); 1999 llvm::Value *value = rvalue.getScalarVal(); 2000 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 2001 2002 // Just make an extra bitcast. 2003 assert(HaveInsertPoint()); 2004 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 2005 Builder.GetInsertBlock()); 2006 2007 PeepholeProtection protection; 2008 protection.Inst = inst; 2009 return protection; 2010 } 2011 2012 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 2013 if (!protection.Inst) return; 2014 2015 // In theory, we could try to duplicate the peepholes now, but whatever. 2016 protection.Inst->eraseFromParent(); 2017 } 2018 2019 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 2020 llvm::Value *AnnotatedVal, 2021 StringRef AnnotationStr, 2022 SourceLocation Location) { 2023 llvm::Value *Args[4] = { 2024 AnnotatedVal, 2025 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 2026 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 2027 CGM.EmitAnnotationLineNo(Location) 2028 }; 2029 return Builder.CreateCall(AnnotationFn, Args); 2030 } 2031 2032 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 2033 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2034 // FIXME We create a new bitcast for every annotation because that's what 2035 // llvm-gcc was doing. 2036 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 2037 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 2038 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 2039 I->getAnnotation(), D->getLocation()); 2040 } 2041 2042 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 2043 Address Addr) { 2044 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 2045 llvm::Value *V = Addr.getPointer(); 2046 llvm::Type *VTy = V->getType(); 2047 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 2048 CGM.Int8PtrTy); 2049 2050 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 2051 // FIXME Always emit the cast inst so we can differentiate between 2052 // annotation on the first field of a struct and annotation on the struct 2053 // itself. 2054 if (VTy != CGM.Int8PtrTy) 2055 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 2056 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 2057 V = Builder.CreateBitCast(V, VTy); 2058 } 2059 2060 return Address(V, Addr.getAlignment()); 2061 } 2062 2063 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2064 2065 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2066 : CGF(CGF) { 2067 assert(!CGF->IsSanitizerScope); 2068 CGF->IsSanitizerScope = true; 2069 } 2070 2071 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2072 CGF->IsSanitizerScope = false; 2073 } 2074 2075 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2076 const llvm::Twine &Name, 2077 llvm::BasicBlock *BB, 2078 llvm::BasicBlock::iterator InsertPt) const { 2079 LoopStack.InsertHelper(I); 2080 if (IsSanitizerScope) 2081 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2082 } 2083 2084 void CGBuilderInserter::InsertHelper( 2085 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2086 llvm::BasicBlock::iterator InsertPt) const { 2087 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2088 if (CGF) 2089 CGF->InsertHelper(I, Name, BB, InsertPt); 2090 } 2091 2092 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2093 CodeGenModule &CGM, const FunctionDecl *FD, 2094 std::string &FirstMissing) { 2095 // If there aren't any required features listed then go ahead and return. 2096 if (ReqFeatures.empty()) 2097 return false; 2098 2099 // Now build up the set of caller features and verify that all the required 2100 // features are there. 2101 llvm::StringMap<bool> CallerFeatureMap; 2102 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2103 2104 // If we have at least one of the features in the feature list return 2105 // true, otherwise return false. 2106 return std::all_of( 2107 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2108 SmallVector<StringRef, 1> OrFeatures; 2109 Feature.split(OrFeatures, "|"); 2110 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2111 [&](StringRef Feature) { 2112 if (!CallerFeatureMap.lookup(Feature)) { 2113 FirstMissing = Feature.str(); 2114 return false; 2115 } 2116 return true; 2117 }); 2118 }); 2119 } 2120 2121 // Emits an error if we don't have a valid set of target features for the 2122 // called function. 2123 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2124 const FunctionDecl *TargetDecl) { 2125 // Early exit if this is an indirect call. 2126 if (!TargetDecl) 2127 return; 2128 2129 // Get the current enclosing function if it exists. If it doesn't 2130 // we can't check the target features anyhow. 2131 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2132 if (!FD) 2133 return; 2134 2135 // Grab the required features for the call. For a builtin this is listed in 2136 // the td file with the default cpu, for an always_inline function this is any 2137 // listed cpu and any listed features. 2138 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2139 std::string MissingFeature; 2140 if (BuiltinID) { 2141 SmallVector<StringRef, 1> ReqFeatures; 2142 const char *FeatureList = 2143 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2144 // Return if the builtin doesn't have any required features. 2145 if (!FeatureList || StringRef(FeatureList) == "") 2146 return; 2147 StringRef(FeatureList).split(ReqFeatures, ","); 2148 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2149 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2150 << TargetDecl->getDeclName() 2151 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2152 2153 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2154 // Get the required features for the callee. 2155 SmallVector<StringRef, 1> ReqFeatures; 2156 llvm::StringMap<bool> CalleeFeatureMap; 2157 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2158 for (const auto &F : CalleeFeatureMap) { 2159 // Only positive features are "required". 2160 if (F.getValue()) 2161 ReqFeatures.push_back(F.getKey()); 2162 } 2163 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2164 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2165 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2166 } 2167 } 2168 2169 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2170 if (!CGM.getCodeGenOpts().SanitizeStats) 2171 return; 2172 2173 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2174 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2175 CGM.getSanStats().create(IRB, SSK); 2176 } 2177 2178 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2179 if (CGDebugInfo *DI = getDebugInfo()) 2180 return DI->SourceLocToDebugLoc(Location); 2181 2182 return llvm::DebugLoc(); 2183 } 2184