1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP && CurFn) 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 119 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 120 AlignmentSource *Source) { 121 return getNaturalTypeAlignment(T->getPointeeType(), Source, 122 /*forPointee*/ true); 123 } 124 125 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 126 AlignmentSource *Source, 127 bool forPointeeType) { 128 // Honor alignment typedef attributes even on incomplete types. 129 // We also honor them straight for C++ class types, even as pointees; 130 // there's an expressivity gap here. 131 if (auto TT = T->getAs<TypedefType>()) { 132 if (auto Align = TT->getDecl()->getMaxAlignment()) { 133 if (Source) *Source = AlignmentSource::AttributedType; 134 return getContext().toCharUnitsFromBits(Align); 135 } 136 } 137 138 if (Source) *Source = AlignmentSource::Type; 139 140 CharUnits Alignment; 141 if (T->isIncompleteType()) { 142 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 143 } else { 144 // For C++ class pointees, we don't know whether we're pointing at a 145 // base or a complete object, so we generally need to use the 146 // non-virtual alignment. 147 const CXXRecordDecl *RD; 148 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 149 Alignment = CGM.getClassPointerAlignment(RD); 150 } else { 151 Alignment = getContext().getTypeAlignInChars(T); 152 } 153 154 // Cap to the global maximum type alignment unless the alignment 155 // was somehow explicit on the type. 156 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 157 if (Alignment.getQuantity() > MaxAlign && 158 !getContext().isAlignmentRequired(T)) 159 Alignment = CharUnits::fromQuantity(MaxAlign); 160 } 161 } 162 return Alignment; 163 } 164 165 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 166 AlignmentSource AlignSource; 167 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 168 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 169 CGM.getTBAAInfo(T)); 170 } 171 172 /// Given a value of type T* that may not be to a complete object, 173 /// construct an l-value with the natural pointee alignment of T. 174 LValue 175 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 176 AlignmentSource AlignSource; 177 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 178 return MakeAddrLValue(Address(V, Align), T, AlignSource); 179 } 180 181 182 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 183 return CGM.getTypes().ConvertTypeForMem(T); 184 } 185 186 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 187 return CGM.getTypes().ConvertType(T); 188 } 189 190 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 191 type = type.getCanonicalType(); 192 while (true) { 193 switch (type->getTypeClass()) { 194 #define TYPE(name, parent) 195 #define ABSTRACT_TYPE(name, parent) 196 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 197 #define DEPENDENT_TYPE(name, parent) case Type::name: 198 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 199 #include "clang/AST/TypeNodes.def" 200 llvm_unreachable("non-canonical or dependent type in IR-generation"); 201 202 case Type::Auto: 203 llvm_unreachable("undeduced auto type in IR-generation"); 204 205 // Various scalar types. 206 case Type::Builtin: 207 case Type::Pointer: 208 case Type::BlockPointer: 209 case Type::LValueReference: 210 case Type::RValueReference: 211 case Type::MemberPointer: 212 case Type::Vector: 213 case Type::ExtVector: 214 case Type::FunctionProto: 215 case Type::FunctionNoProto: 216 case Type::Enum: 217 case Type::ObjCObjectPointer: 218 case Type::Pipe: 219 return TEK_Scalar; 220 221 // Complexes. 222 case Type::Complex: 223 return TEK_Complex; 224 225 // Arrays, records, and Objective-C objects. 226 case Type::ConstantArray: 227 case Type::IncompleteArray: 228 case Type::VariableArray: 229 case Type::Record: 230 case Type::ObjCObject: 231 case Type::ObjCInterface: 232 return TEK_Aggregate; 233 234 // We operate on atomic values according to their underlying type. 235 case Type::Atomic: 236 type = cast<AtomicType>(type)->getValueType(); 237 continue; 238 } 239 llvm_unreachable("unknown type kind!"); 240 } 241 } 242 243 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 244 // For cleanliness, we try to avoid emitting the return block for 245 // simple cases. 246 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 247 248 if (CurBB) { 249 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 250 251 // We have a valid insert point, reuse it if it is empty or there are no 252 // explicit jumps to the return block. 253 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 254 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 255 delete ReturnBlock.getBlock(); 256 } else 257 EmitBlock(ReturnBlock.getBlock()); 258 return llvm::DebugLoc(); 259 } 260 261 // Otherwise, if the return block is the target of a single direct 262 // branch then we can just put the code in that block instead. This 263 // cleans up functions which started with a unified return block. 264 if (ReturnBlock.getBlock()->hasOneUse()) { 265 llvm::BranchInst *BI = 266 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 267 if (BI && BI->isUnconditional() && 268 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 269 // Record/return the DebugLoc of the simple 'return' expression to be used 270 // later by the actual 'ret' instruction. 271 llvm::DebugLoc Loc = BI->getDebugLoc(); 272 Builder.SetInsertPoint(BI->getParent()); 273 BI->eraseFromParent(); 274 delete ReturnBlock.getBlock(); 275 return Loc; 276 } 277 } 278 279 // FIXME: We are at an unreachable point, there is no reason to emit the block 280 // unless it has uses. However, we still need a place to put the debug 281 // region.end for now. 282 283 EmitBlock(ReturnBlock.getBlock()); 284 return llvm::DebugLoc(); 285 } 286 287 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 288 if (!BB) return; 289 if (!BB->use_empty()) 290 return CGF.CurFn->getBasicBlockList().push_back(BB); 291 delete BB; 292 } 293 294 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 295 assert(BreakContinueStack.empty() && 296 "mismatched push/pop in break/continue stack!"); 297 298 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 299 && NumSimpleReturnExprs == NumReturnExprs 300 && ReturnBlock.getBlock()->use_empty(); 301 // Usually the return expression is evaluated before the cleanup 302 // code. If the function contains only a simple return statement, 303 // such as a constant, the location before the cleanup code becomes 304 // the last useful breakpoint in the function, because the simple 305 // return expression will be evaluated after the cleanup code. To be 306 // safe, set the debug location for cleanup code to the location of 307 // the return statement. Otherwise the cleanup code should be at the 308 // end of the function's lexical scope. 309 // 310 // If there are multiple branches to the return block, the branch 311 // instructions will get the location of the return statements and 312 // all will be fine. 313 if (CGDebugInfo *DI = getDebugInfo()) { 314 if (OnlySimpleReturnStmts) 315 DI->EmitLocation(Builder, LastStopPoint); 316 else 317 DI->EmitLocation(Builder, EndLoc); 318 } 319 320 // Pop any cleanups that might have been associated with the 321 // parameters. Do this in whatever block we're currently in; it's 322 // important to do this before we enter the return block or return 323 // edges will be *really* confused. 324 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 325 bool HasOnlyLifetimeMarkers = 326 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 327 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 328 if (HasCleanups) { 329 // Make sure the line table doesn't jump back into the body for 330 // the ret after it's been at EndLoc. 331 if (CGDebugInfo *DI = getDebugInfo()) 332 if (OnlySimpleReturnStmts) 333 DI->EmitLocation(Builder, EndLoc); 334 335 PopCleanupBlocks(PrologueCleanupDepth); 336 } 337 338 // Emit function epilog (to return). 339 llvm::DebugLoc Loc = EmitReturnBlock(); 340 341 if (ShouldInstrumentFunction()) 342 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 343 344 // Emit debug descriptor for function end. 345 if (CGDebugInfo *DI = getDebugInfo()) 346 DI->EmitFunctionEnd(Builder); 347 348 // Reset the debug location to that of the simple 'return' expression, if any 349 // rather than that of the end of the function's scope '}'. 350 ApplyDebugLocation AL(*this, Loc); 351 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 352 EmitEndEHSpec(CurCodeDecl); 353 354 assert(EHStack.empty() && 355 "did not remove all scopes from cleanup stack!"); 356 357 // If someone did an indirect goto, emit the indirect goto block at the end of 358 // the function. 359 if (IndirectBranch) { 360 EmitBlock(IndirectBranch->getParent()); 361 Builder.ClearInsertionPoint(); 362 } 363 364 // If some of our locals escaped, insert a call to llvm.localescape in the 365 // entry block. 366 if (!EscapedLocals.empty()) { 367 // Invert the map from local to index into a simple vector. There should be 368 // no holes. 369 SmallVector<llvm::Value *, 4> EscapeArgs; 370 EscapeArgs.resize(EscapedLocals.size()); 371 for (auto &Pair : EscapedLocals) 372 EscapeArgs[Pair.second] = Pair.first; 373 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 374 &CGM.getModule(), llvm::Intrinsic::localescape); 375 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 376 } 377 378 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 379 llvm::Instruction *Ptr = AllocaInsertPt; 380 AllocaInsertPt = nullptr; 381 Ptr->eraseFromParent(); 382 383 // If someone took the address of a label but never did an indirect goto, we 384 // made a zero entry PHI node, which is illegal, zap it now. 385 if (IndirectBranch) { 386 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 387 if (PN->getNumIncomingValues() == 0) { 388 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 389 PN->eraseFromParent(); 390 } 391 } 392 393 EmitIfUsed(*this, EHResumeBlock); 394 EmitIfUsed(*this, TerminateLandingPad); 395 EmitIfUsed(*this, TerminateHandler); 396 EmitIfUsed(*this, UnreachableBlock); 397 398 if (CGM.getCodeGenOpts().EmitDeclMetadata) 399 EmitDeclMetadata(); 400 401 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 402 I = DeferredReplacements.begin(), 403 E = DeferredReplacements.end(); 404 I != E; ++I) { 405 I->first->replaceAllUsesWith(I->second); 406 I->first->eraseFromParent(); 407 } 408 } 409 410 /// ShouldInstrumentFunction - Return true if the current function should be 411 /// instrumented with __cyg_profile_func_* calls 412 bool CodeGenFunction::ShouldInstrumentFunction() { 413 if (!CGM.getCodeGenOpts().InstrumentFunctions) 414 return false; 415 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 416 return false; 417 return true; 418 } 419 420 /// ShouldXRayInstrument - Return true if the current function should be 421 /// instrumented with XRay nop sleds. 422 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 423 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 424 } 425 426 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 427 /// instrumentation function with the current function and the call site, if 428 /// function instrumentation is enabled. 429 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 430 auto NL = ApplyDebugLocation::CreateArtificial(*this); 431 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 432 llvm::PointerType *PointerTy = Int8PtrTy; 433 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 434 llvm::FunctionType *FunctionTy = 435 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 436 437 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 438 llvm::CallInst *CallSite = Builder.CreateCall( 439 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 440 llvm::ConstantInt::get(Int32Ty, 0), 441 "callsite"); 442 443 llvm::Value *args[] = { 444 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 445 CallSite 446 }; 447 448 EmitNounwindRuntimeCall(F, args); 449 } 450 451 static void removeImageAccessQualifier(std::string& TyName) { 452 std::string ReadOnlyQual("__read_only"); 453 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 454 if (ReadOnlyPos != std::string::npos) 455 // "+ 1" for the space after access qualifier. 456 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 457 else { 458 std::string WriteOnlyQual("__write_only"); 459 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 460 if (WriteOnlyPos != std::string::npos) 461 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 462 else { 463 std::string ReadWriteQual("__read_write"); 464 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 465 if (ReadWritePos != std::string::npos) 466 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 467 } 468 } 469 } 470 471 // Returns the address space id that should be produced to the 472 // kernel_arg_addr_space metadata. This is always fixed to the ids 473 // as specified in the SPIR 2.0 specification in order to differentiate 474 // for example in clGetKernelArgInfo() implementation between the address 475 // spaces with targets without unique mapping to the OpenCL address spaces 476 // (basically all single AS CPUs). 477 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 478 switch (LangAS) { 479 case LangAS::opencl_global: return 1; 480 case LangAS::opencl_constant: return 2; 481 case LangAS::opencl_local: return 3; 482 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 483 default: 484 return 0; // Assume private. 485 } 486 } 487 488 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 489 // information in the program executable. The argument information stored 490 // includes the argument name, its type, the address and access qualifiers used. 491 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 492 CodeGenModule &CGM, llvm::LLVMContext &Context, 493 CGBuilderTy &Builder, ASTContext &ASTCtx) { 494 // Create MDNodes that represent the kernel arg metadata. 495 // Each MDNode is a list in the form of "key", N number of values which is 496 // the same number of values as their are kernel arguments. 497 498 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 499 500 // MDNode for the kernel argument address space qualifiers. 501 SmallVector<llvm::Metadata *, 8> addressQuals; 502 503 // MDNode for the kernel argument access qualifiers (images only). 504 SmallVector<llvm::Metadata *, 8> accessQuals; 505 506 // MDNode for the kernel argument type names. 507 SmallVector<llvm::Metadata *, 8> argTypeNames; 508 509 // MDNode for the kernel argument base type names. 510 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 511 512 // MDNode for the kernel argument type qualifiers. 513 SmallVector<llvm::Metadata *, 8> argTypeQuals; 514 515 // MDNode for the kernel argument names. 516 SmallVector<llvm::Metadata *, 8> argNames; 517 518 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 519 const ParmVarDecl *parm = FD->getParamDecl(i); 520 QualType ty = parm->getType(); 521 std::string typeQuals; 522 523 if (ty->isPointerType()) { 524 QualType pointeeTy = ty->getPointeeType(); 525 526 // Get address qualifier. 527 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 528 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 529 530 // Get argument type name. 531 std::string typeName = 532 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 533 534 // Turn "unsigned type" to "utype" 535 std::string::size_type pos = typeName.find("unsigned"); 536 if (pointeeTy.isCanonical() && pos != std::string::npos) 537 typeName.erase(pos+1, 8); 538 539 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 540 541 std::string baseTypeName = 542 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 543 Policy) + 544 "*"; 545 546 // Turn "unsigned type" to "utype" 547 pos = baseTypeName.find("unsigned"); 548 if (pos != std::string::npos) 549 baseTypeName.erase(pos+1, 8); 550 551 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 552 553 // Get argument type qualifiers: 554 if (ty.isRestrictQualified()) 555 typeQuals = "restrict"; 556 if (pointeeTy.isConstQualified() || 557 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 558 typeQuals += typeQuals.empty() ? "const" : " const"; 559 if (pointeeTy.isVolatileQualified()) 560 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 561 } else { 562 uint32_t AddrSpc = 0; 563 bool isPipe = ty->isPipeType(); 564 if (ty->isImageType() || isPipe) 565 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 566 567 addressQuals.push_back( 568 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 569 570 // Get argument type name. 571 std::string typeName; 572 if (isPipe) 573 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 574 .getAsString(Policy); 575 else 576 typeName = ty.getUnqualifiedType().getAsString(Policy); 577 578 // Turn "unsigned type" to "utype" 579 std::string::size_type pos = typeName.find("unsigned"); 580 if (ty.isCanonical() && pos != std::string::npos) 581 typeName.erase(pos+1, 8); 582 583 std::string baseTypeName; 584 if (isPipe) 585 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 586 ->getElementType().getCanonicalType() 587 .getAsString(Policy); 588 else 589 baseTypeName = 590 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 591 592 // Remove access qualifiers on images 593 // (as they are inseparable from type in clang implementation, 594 // but OpenCL spec provides a special query to get access qualifier 595 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 596 if (ty->isImageType()) { 597 removeImageAccessQualifier(typeName); 598 removeImageAccessQualifier(baseTypeName); 599 } 600 601 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 602 603 // Turn "unsigned type" to "utype" 604 pos = baseTypeName.find("unsigned"); 605 if (pos != std::string::npos) 606 baseTypeName.erase(pos+1, 8); 607 608 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 609 610 // Get argument type qualifiers: 611 if (ty.isConstQualified()) 612 typeQuals = "const"; 613 if (ty.isVolatileQualified()) 614 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 615 if (isPipe) 616 typeQuals = "pipe"; 617 } 618 619 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 620 621 // Get image and pipe access qualifier: 622 if (ty->isImageType()|| ty->isPipeType()) { 623 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 624 if (A && A->isWriteOnly()) 625 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 626 else if (A && A->isReadWrite()) 627 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 628 else 629 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 630 } else 631 accessQuals.push_back(llvm::MDString::get(Context, "none")); 632 633 // Get argument name. 634 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 635 } 636 637 Fn->setMetadata("kernel_arg_addr_space", 638 llvm::MDNode::get(Context, addressQuals)); 639 Fn->setMetadata("kernel_arg_access_qual", 640 llvm::MDNode::get(Context, accessQuals)); 641 Fn->setMetadata("kernel_arg_type", 642 llvm::MDNode::get(Context, argTypeNames)); 643 Fn->setMetadata("kernel_arg_base_type", 644 llvm::MDNode::get(Context, argBaseTypeNames)); 645 Fn->setMetadata("kernel_arg_type_qual", 646 llvm::MDNode::get(Context, argTypeQuals)); 647 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 648 Fn->setMetadata("kernel_arg_name", 649 llvm::MDNode::get(Context, argNames)); 650 } 651 652 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 653 llvm::Function *Fn) 654 { 655 if (!FD->hasAttr<OpenCLKernelAttr>()) 656 return; 657 658 llvm::LLVMContext &Context = getLLVMContext(); 659 660 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 661 662 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 663 QualType hintQTy = A->getTypeHint(); 664 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 665 bool isSignedInteger = 666 hintQTy->isSignedIntegerType() || 667 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 668 llvm::Metadata *attrMDArgs[] = { 669 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 670 CGM.getTypes().ConvertType(A->getTypeHint()))), 671 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 672 llvm::IntegerType::get(Context, 32), 673 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 674 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 675 } 676 677 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 678 llvm::Metadata *attrMDArgs[] = { 679 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 682 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 683 } 684 685 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 686 llvm::Metadata *attrMDArgs[] = { 687 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 690 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 691 } 692 } 693 694 /// Determine whether the function F ends with a return stmt. 695 static bool endsWithReturn(const Decl* F) { 696 const Stmt *Body = nullptr; 697 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 698 Body = FD->getBody(); 699 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 700 Body = OMD->getBody(); 701 702 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 703 auto LastStmt = CS->body_rbegin(); 704 if (LastStmt != CS->body_rend()) 705 return isa<ReturnStmt>(*LastStmt); 706 } 707 return false; 708 } 709 710 void CodeGenFunction::StartFunction(GlobalDecl GD, 711 QualType RetTy, 712 llvm::Function *Fn, 713 const CGFunctionInfo &FnInfo, 714 const FunctionArgList &Args, 715 SourceLocation Loc, 716 SourceLocation StartLoc) { 717 assert(!CurFn && 718 "Do not use a CodeGenFunction object for more than one function"); 719 720 const Decl *D = GD.getDecl(); 721 722 DidCallStackSave = false; 723 CurCodeDecl = D; 724 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 725 if (FD->usesSEHTry()) 726 CurSEHParent = FD; 727 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 728 FnRetTy = RetTy; 729 CurFn = Fn; 730 CurFnInfo = &FnInfo; 731 assert(CurFn->isDeclaration() && "Function already has body?"); 732 733 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 734 SanOpts.clear(); 735 736 if (D) { 737 // Apply the no_sanitize* attributes to SanOpts. 738 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 739 SanOpts.Mask &= ~Attr->getMask(); 740 } 741 742 // Apply sanitizer attributes to the function. 743 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 744 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 745 if (SanOpts.has(SanitizerKind::Thread)) 746 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 747 if (SanOpts.has(SanitizerKind::Memory)) 748 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 749 if (SanOpts.has(SanitizerKind::SafeStack)) 750 Fn->addFnAttr(llvm::Attribute::SafeStack); 751 752 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 753 // .cxx_destruct and all of their calees at run time. 754 if (SanOpts.has(SanitizerKind::Thread)) { 755 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 756 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 757 if (OMD->getMethodFamily() == OMF_dealloc || 758 OMD->getMethodFamily() == OMF_initialize || 759 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 760 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 761 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 762 } 763 } 764 } 765 766 // Apply xray attributes to the function (as a string, for now) 767 if (D && ShouldXRayInstrumentFunction()) { 768 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 769 if (XRayAttr->alwaysXRayInstrument()) 770 Fn->addFnAttr("function-instrument", "xray-always"); 771 if (XRayAttr->neverXRayInstrument()) 772 Fn->addFnAttr("function-instrument", "xray-never"); 773 } else { 774 Fn->addFnAttr( 775 "xray-instruction-threshold", 776 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 777 } 778 } 779 780 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 781 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 782 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 783 784 // Add no-jump-tables value. 785 Fn->addFnAttr("no-jump-tables", 786 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 787 788 if (getLangOpts().OpenCL) { 789 // Add metadata for a kernel function. 790 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 791 EmitOpenCLKernelMetadata(FD, Fn); 792 } 793 794 // If we are checking function types, emit a function type signature as 795 // prologue data. 796 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 797 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 798 if (llvm::Constant *PrologueSig = 799 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 800 llvm::Constant *FTRTTIConst = 801 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 802 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 803 llvm::Constant *PrologueStructConst = 804 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 805 Fn->setPrologueData(PrologueStructConst); 806 } 807 } 808 } 809 810 // If we're in C++ mode and the function name is "main", it is guaranteed 811 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 812 // used within a program"). 813 if (getLangOpts().CPlusPlus) 814 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 815 if (FD->isMain()) 816 Fn->addFnAttr(llvm::Attribute::NoRecurse); 817 818 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 819 820 // Create a marker to make it easy to insert allocas into the entryblock 821 // later. Don't create this with the builder, because we don't want it 822 // folded. 823 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 824 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 825 826 ReturnBlock = getJumpDestInCurrentScope("return"); 827 828 Builder.SetInsertPoint(EntryBB); 829 830 // Emit subprogram debug descriptor. 831 if (CGDebugInfo *DI = getDebugInfo()) { 832 // Reconstruct the type from the argument list so that implicit parameters, 833 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 834 // convention. 835 CallingConv CC = CallingConv::CC_C; 836 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 837 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 838 CC = SrcFnTy->getCallConv(); 839 SmallVector<QualType, 16> ArgTypes; 840 for (const VarDecl *VD : Args) 841 ArgTypes.push_back(VD->getType()); 842 QualType FnType = getContext().getFunctionType( 843 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 844 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 845 } 846 847 if (ShouldInstrumentFunction()) 848 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 849 850 // Since emitting the mcount call here impacts optimizations such as function 851 // inlining, we just add an attribute to insert a mcount call in backend. 852 // The attribute "counting-function" is set to mcount function name which is 853 // architecture dependent. 854 if (CGM.getCodeGenOpts().InstrumentForProfiling) 855 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 856 857 if (RetTy->isVoidType()) { 858 // Void type; nothing to return. 859 ReturnValue = Address::invalid(); 860 861 // Count the implicit return. 862 if (!endsWithReturn(D)) 863 ++NumReturnExprs; 864 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 865 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 866 // Indirect aggregate return; emit returned value directly into sret slot. 867 // This reduces code size, and affects correctness in C++. 868 auto AI = CurFn->arg_begin(); 869 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 870 ++AI; 871 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 872 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 873 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 874 // Load the sret pointer from the argument struct and return into that. 875 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 876 llvm::Function::arg_iterator EI = CurFn->arg_end(); 877 --EI; 878 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 879 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 880 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 881 } else { 882 ReturnValue = CreateIRTemp(RetTy, "retval"); 883 884 // Tell the epilog emitter to autorelease the result. We do this 885 // now so that various specialized functions can suppress it 886 // during their IR-generation. 887 if (getLangOpts().ObjCAutoRefCount && 888 !CurFnInfo->isReturnsRetained() && 889 RetTy->isObjCRetainableType()) 890 AutoreleaseResult = true; 891 } 892 893 EmitStartEHSpec(CurCodeDecl); 894 895 PrologueCleanupDepth = EHStack.stable_begin(); 896 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 897 898 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 899 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 900 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 901 if (MD->getParent()->isLambda() && 902 MD->getOverloadedOperator() == OO_Call) { 903 // We're in a lambda; figure out the captures. 904 MD->getParent()->getCaptureFields(LambdaCaptureFields, 905 LambdaThisCaptureField); 906 if (LambdaThisCaptureField) { 907 // If the lambda captures the object referred to by '*this' - either by 908 // value or by reference, make sure CXXThisValue points to the correct 909 // object. 910 911 // Get the lvalue for the field (which is a copy of the enclosing object 912 // or contains the address of the enclosing object). 913 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 914 if (!LambdaThisCaptureField->getType()->isPointerType()) { 915 // If the enclosing object was captured by value, just use its address. 916 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 917 } else { 918 // Load the lvalue pointed to by the field, since '*this' was captured 919 // by reference. 920 CXXThisValue = 921 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 922 } 923 } 924 for (auto *FD : MD->getParent()->fields()) { 925 if (FD->hasCapturedVLAType()) { 926 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 927 SourceLocation()).getScalarVal(); 928 auto VAT = FD->getCapturedVLAType(); 929 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 930 } 931 } 932 } else { 933 // Not in a lambda; just use 'this' from the method. 934 // FIXME: Should we generate a new load for each use of 'this'? The 935 // fast register allocator would be happier... 936 CXXThisValue = CXXABIThisValue; 937 } 938 } 939 940 // If any of the arguments have a variably modified type, make sure to 941 // emit the type size. 942 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 943 i != e; ++i) { 944 const VarDecl *VD = *i; 945 946 // Dig out the type as written from ParmVarDecls; it's unclear whether 947 // the standard (C99 6.9.1p10) requires this, but we're following the 948 // precedent set by gcc. 949 QualType Ty; 950 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 951 Ty = PVD->getOriginalType(); 952 else 953 Ty = VD->getType(); 954 955 if (Ty->isVariablyModifiedType()) 956 EmitVariablyModifiedType(Ty); 957 } 958 // Emit a location at the end of the prologue. 959 if (CGDebugInfo *DI = getDebugInfo()) 960 DI->EmitLocation(Builder, StartLoc); 961 } 962 963 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 964 const Stmt *Body) { 965 incrementProfileCounter(Body); 966 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 967 EmitCompoundStmtWithoutScope(*S); 968 else 969 EmitStmt(Body); 970 } 971 972 /// When instrumenting to collect profile data, the counts for some blocks 973 /// such as switch cases need to not include the fall-through counts, so 974 /// emit a branch around the instrumentation code. When not instrumenting, 975 /// this just calls EmitBlock(). 976 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 977 const Stmt *S) { 978 llvm::BasicBlock *SkipCountBB = nullptr; 979 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 980 // When instrumenting for profiling, the fallthrough to certain 981 // statements needs to skip over the instrumentation code so that we 982 // get an accurate count. 983 SkipCountBB = createBasicBlock("skipcount"); 984 EmitBranch(SkipCountBB); 985 } 986 EmitBlock(BB); 987 uint64_t CurrentCount = getCurrentProfileCount(); 988 incrementProfileCounter(S); 989 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 990 if (SkipCountBB) 991 EmitBlock(SkipCountBB); 992 } 993 994 /// Tries to mark the given function nounwind based on the 995 /// non-existence of any throwing calls within it. We believe this is 996 /// lightweight enough to do at -O0. 997 static void TryMarkNoThrow(llvm::Function *F) { 998 // LLVM treats 'nounwind' on a function as part of the type, so we 999 // can't do this on functions that can be overwritten. 1000 if (F->isInterposable()) return; 1001 1002 for (llvm::BasicBlock &BB : *F) 1003 for (llvm::Instruction &I : BB) 1004 if (I.mayThrow()) 1005 return; 1006 1007 F->setDoesNotThrow(); 1008 } 1009 1010 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1011 FunctionArgList &Args) { 1012 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1013 QualType ResTy = FD->getReturnType(); 1014 1015 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1016 if (MD && MD->isInstance()) { 1017 if (CGM.getCXXABI().HasThisReturn(GD)) 1018 ResTy = MD->getThisType(getContext()); 1019 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1020 ResTy = CGM.getContext().VoidPtrTy; 1021 CGM.getCXXABI().buildThisParam(*this, Args); 1022 } 1023 1024 // The base version of an inheriting constructor whose constructed base is a 1025 // virtual base is not passed any arguments (because it doesn't actually call 1026 // the inherited constructor). 1027 bool PassedParams = true; 1028 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1029 if (auto Inherited = CD->getInheritedConstructor()) 1030 PassedParams = 1031 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1032 1033 if (PassedParams) { 1034 for (auto *Param : FD->parameters()) { 1035 Args.push_back(Param); 1036 if (!Param->hasAttr<PassObjectSizeAttr>()) 1037 continue; 1038 1039 IdentifierInfo *NoID = nullptr; 1040 auto *Implicit = ImplicitParamDecl::Create( 1041 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1042 getContext().getSizeType()); 1043 SizeArguments[Param] = Implicit; 1044 Args.push_back(Implicit); 1045 } 1046 } 1047 1048 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1049 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1050 1051 return ResTy; 1052 } 1053 1054 static bool 1055 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1056 const ASTContext &Context) { 1057 QualType T = FD->getReturnType(); 1058 // Avoid the optimization for functions that return a record type with a 1059 // trivial destructor or another trivially copyable type. 1060 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1061 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1062 return !ClassDecl->hasTrivialDestructor(); 1063 } 1064 return !T.isTriviallyCopyableType(Context); 1065 } 1066 1067 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1068 const CGFunctionInfo &FnInfo) { 1069 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1070 CurGD = GD; 1071 1072 FunctionArgList Args; 1073 QualType ResTy = BuildFunctionArgList(GD, Args); 1074 1075 // Check if we should generate debug info for this function. 1076 if (FD->hasAttr<NoDebugAttr>()) 1077 DebugInfo = nullptr; // disable debug info indefinitely for this function 1078 1079 SourceRange BodyRange; 1080 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1081 CurEHLocation = BodyRange.getEnd(); 1082 1083 // Use the location of the start of the function to determine where 1084 // the function definition is located. By default use the location 1085 // of the declaration as the location for the subprogram. A function 1086 // may lack a declaration in the source code if it is created by code 1087 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1088 SourceLocation Loc = FD->getLocation(); 1089 1090 // If this is a function specialization then use the pattern body 1091 // as the location for the function. 1092 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1093 if (SpecDecl->hasBody(SpecDecl)) 1094 Loc = SpecDecl->getLocation(); 1095 1096 Stmt *Body = FD->getBody(); 1097 1098 // Initialize helper which will detect jumps which can cause invalid lifetime 1099 // markers. 1100 if (Body && ShouldEmitLifetimeMarkers) 1101 Bypasses.Init(Body); 1102 1103 // Emit the standard function prologue. 1104 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1105 1106 // Generate the body of the function. 1107 PGO.assignRegionCounters(GD, CurFn); 1108 if (isa<CXXDestructorDecl>(FD)) 1109 EmitDestructorBody(Args); 1110 else if (isa<CXXConstructorDecl>(FD)) 1111 EmitConstructorBody(Args); 1112 else if (getLangOpts().CUDA && 1113 !getLangOpts().CUDAIsDevice && 1114 FD->hasAttr<CUDAGlobalAttr>()) 1115 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1116 else if (isa<CXXConversionDecl>(FD) && 1117 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1118 // The lambda conversion to block pointer is special; the semantics can't be 1119 // expressed in the AST, so IRGen needs to special-case it. 1120 EmitLambdaToBlockPointerBody(Args); 1121 } else if (isa<CXXMethodDecl>(FD) && 1122 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1123 // The lambda static invoker function is special, because it forwards or 1124 // clones the body of the function call operator (but is actually static). 1125 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1126 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1127 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1128 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1129 // Implicit copy-assignment gets the same special treatment as implicit 1130 // copy-constructors. 1131 emitImplicitAssignmentOperatorBody(Args); 1132 } else if (Body) { 1133 EmitFunctionBody(Args, Body); 1134 } else 1135 llvm_unreachable("no definition for emitted function"); 1136 1137 // C++11 [stmt.return]p2: 1138 // Flowing off the end of a function [...] results in undefined behavior in 1139 // a value-returning function. 1140 // C11 6.9.1p12: 1141 // If the '}' that terminates a function is reached, and the value of the 1142 // function call is used by the caller, the behavior is undefined. 1143 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1144 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1145 bool ShouldEmitUnreachable = 1146 CGM.getCodeGenOpts().StrictReturn || 1147 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1148 if (SanOpts.has(SanitizerKind::Return)) { 1149 SanitizerScope SanScope(this); 1150 llvm::Value *IsFalse = Builder.getFalse(); 1151 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1152 SanitizerHandler::MissingReturn, 1153 EmitCheckSourceLocation(FD->getLocation()), None); 1154 } else if (ShouldEmitUnreachable) { 1155 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1156 EmitTrapCall(llvm::Intrinsic::trap); 1157 } 1158 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1159 Builder.CreateUnreachable(); 1160 Builder.ClearInsertionPoint(); 1161 } 1162 } 1163 1164 // Emit the standard function epilogue. 1165 FinishFunction(BodyRange.getEnd()); 1166 1167 // If we haven't marked the function nothrow through other means, do 1168 // a quick pass now to see if we can. 1169 if (!CurFn->doesNotThrow()) 1170 TryMarkNoThrow(CurFn); 1171 } 1172 1173 /// ContainsLabel - Return true if the statement contains a label in it. If 1174 /// this statement is not executed normally, it not containing a label means 1175 /// that we can just remove the code. 1176 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1177 // Null statement, not a label! 1178 if (!S) return false; 1179 1180 // If this is a label, we have to emit the code, consider something like: 1181 // if (0) { ... foo: bar(); } goto foo; 1182 // 1183 // TODO: If anyone cared, we could track __label__'s, since we know that you 1184 // can't jump to one from outside their declared region. 1185 if (isa<LabelStmt>(S)) 1186 return true; 1187 1188 // If this is a case/default statement, and we haven't seen a switch, we have 1189 // to emit the code. 1190 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1191 return true; 1192 1193 // If this is a switch statement, we want to ignore cases below it. 1194 if (isa<SwitchStmt>(S)) 1195 IgnoreCaseStmts = true; 1196 1197 // Scan subexpressions for verboten labels. 1198 for (const Stmt *SubStmt : S->children()) 1199 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1200 return true; 1201 1202 return false; 1203 } 1204 1205 /// containsBreak - Return true if the statement contains a break out of it. 1206 /// If the statement (recursively) contains a switch or loop with a break 1207 /// inside of it, this is fine. 1208 bool CodeGenFunction::containsBreak(const Stmt *S) { 1209 // Null statement, not a label! 1210 if (!S) return false; 1211 1212 // If this is a switch or loop that defines its own break scope, then we can 1213 // include it and anything inside of it. 1214 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1215 isa<ForStmt>(S)) 1216 return false; 1217 1218 if (isa<BreakStmt>(S)) 1219 return true; 1220 1221 // Scan subexpressions for verboten breaks. 1222 for (const Stmt *SubStmt : S->children()) 1223 if (containsBreak(SubStmt)) 1224 return true; 1225 1226 return false; 1227 } 1228 1229 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1230 if (!S) return false; 1231 1232 // Some statement kinds add a scope and thus never add a decl to the current 1233 // scope. Note, this list is longer than the list of statements that might 1234 // have an unscoped decl nested within them, but this way is conservatively 1235 // correct even if more statement kinds are added. 1236 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1237 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1238 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1239 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1240 return false; 1241 1242 if (isa<DeclStmt>(S)) 1243 return true; 1244 1245 for (const Stmt *SubStmt : S->children()) 1246 if (mightAddDeclToScope(SubStmt)) 1247 return true; 1248 1249 return false; 1250 } 1251 1252 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1253 /// to a constant, or if it does but contains a label, return false. If it 1254 /// constant folds return true and set the boolean result in Result. 1255 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1256 bool &ResultBool, 1257 bool AllowLabels) { 1258 llvm::APSInt ResultInt; 1259 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1260 return false; 1261 1262 ResultBool = ResultInt.getBoolValue(); 1263 return true; 1264 } 1265 1266 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1267 /// to a constant, or if it does but contains a label, return false. If it 1268 /// constant folds return true and set the folded value. 1269 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1270 llvm::APSInt &ResultInt, 1271 bool AllowLabels) { 1272 // FIXME: Rename and handle conversion of other evaluatable things 1273 // to bool. 1274 llvm::APSInt Int; 1275 if (!Cond->EvaluateAsInt(Int, getContext())) 1276 return false; // Not foldable, not integer or not fully evaluatable. 1277 1278 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1279 return false; // Contains a label. 1280 1281 ResultInt = Int; 1282 return true; 1283 } 1284 1285 1286 1287 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1288 /// statement) to the specified blocks. Based on the condition, this might try 1289 /// to simplify the codegen of the conditional based on the branch. 1290 /// 1291 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1292 llvm::BasicBlock *TrueBlock, 1293 llvm::BasicBlock *FalseBlock, 1294 uint64_t TrueCount) { 1295 Cond = Cond->IgnoreParens(); 1296 1297 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1298 1299 // Handle X && Y in a condition. 1300 if (CondBOp->getOpcode() == BO_LAnd) { 1301 // If we have "1 && X", simplify the code. "0 && X" would have constant 1302 // folded if the case was simple enough. 1303 bool ConstantBool = false; 1304 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1305 ConstantBool) { 1306 // br(1 && X) -> br(X). 1307 incrementProfileCounter(CondBOp); 1308 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1309 TrueCount); 1310 } 1311 1312 // If we have "X && 1", simplify the code to use an uncond branch. 1313 // "X && 0" would have been constant folded to 0. 1314 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1315 ConstantBool) { 1316 // br(X && 1) -> br(X). 1317 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1318 TrueCount); 1319 } 1320 1321 // Emit the LHS as a conditional. If the LHS conditional is false, we 1322 // want to jump to the FalseBlock. 1323 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1324 // The counter tells us how often we evaluate RHS, and all of TrueCount 1325 // can be propagated to that branch. 1326 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1327 1328 ConditionalEvaluation eval(*this); 1329 { 1330 ApplyDebugLocation DL(*this, Cond); 1331 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1332 EmitBlock(LHSTrue); 1333 } 1334 1335 incrementProfileCounter(CondBOp); 1336 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1337 1338 // Any temporaries created here are conditional. 1339 eval.begin(*this); 1340 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1341 eval.end(*this); 1342 1343 return; 1344 } 1345 1346 if (CondBOp->getOpcode() == BO_LOr) { 1347 // If we have "0 || X", simplify the code. "1 || X" would have constant 1348 // folded if the case was simple enough. 1349 bool ConstantBool = false; 1350 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1351 !ConstantBool) { 1352 // br(0 || X) -> br(X). 1353 incrementProfileCounter(CondBOp); 1354 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1355 TrueCount); 1356 } 1357 1358 // If we have "X || 0", simplify the code to use an uncond branch. 1359 // "X || 1" would have been constant folded to 1. 1360 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1361 !ConstantBool) { 1362 // br(X || 0) -> br(X). 1363 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1364 TrueCount); 1365 } 1366 1367 // Emit the LHS as a conditional. If the LHS conditional is true, we 1368 // want to jump to the TrueBlock. 1369 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1370 // We have the count for entry to the RHS and for the whole expression 1371 // being true, so we can divy up True count between the short circuit and 1372 // the RHS. 1373 uint64_t LHSCount = 1374 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1375 uint64_t RHSCount = TrueCount - LHSCount; 1376 1377 ConditionalEvaluation eval(*this); 1378 { 1379 ApplyDebugLocation DL(*this, Cond); 1380 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1381 EmitBlock(LHSFalse); 1382 } 1383 1384 incrementProfileCounter(CondBOp); 1385 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1386 1387 // Any temporaries created here are conditional. 1388 eval.begin(*this); 1389 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1390 1391 eval.end(*this); 1392 1393 return; 1394 } 1395 } 1396 1397 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1398 // br(!x, t, f) -> br(x, f, t) 1399 if (CondUOp->getOpcode() == UO_LNot) { 1400 // Negate the count. 1401 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1402 // Negate the condition and swap the destination blocks. 1403 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1404 FalseCount); 1405 } 1406 } 1407 1408 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1409 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1410 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1411 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1412 1413 ConditionalEvaluation cond(*this); 1414 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1415 getProfileCount(CondOp)); 1416 1417 // When computing PGO branch weights, we only know the overall count for 1418 // the true block. This code is essentially doing tail duplication of the 1419 // naive code-gen, introducing new edges for which counts are not 1420 // available. Divide the counts proportionally between the LHS and RHS of 1421 // the conditional operator. 1422 uint64_t LHSScaledTrueCount = 0; 1423 if (TrueCount) { 1424 double LHSRatio = 1425 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1426 LHSScaledTrueCount = TrueCount * LHSRatio; 1427 } 1428 1429 cond.begin(*this); 1430 EmitBlock(LHSBlock); 1431 incrementProfileCounter(CondOp); 1432 { 1433 ApplyDebugLocation DL(*this, Cond); 1434 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1435 LHSScaledTrueCount); 1436 } 1437 cond.end(*this); 1438 1439 cond.begin(*this); 1440 EmitBlock(RHSBlock); 1441 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1442 TrueCount - LHSScaledTrueCount); 1443 cond.end(*this); 1444 1445 return; 1446 } 1447 1448 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1449 // Conditional operator handling can give us a throw expression as a 1450 // condition for a case like: 1451 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1452 // Fold this to: 1453 // br(c, throw x, br(y, t, f)) 1454 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1455 return; 1456 } 1457 1458 // If the branch has a condition wrapped by __builtin_unpredictable, 1459 // create metadata that specifies that the branch is unpredictable. 1460 // Don't bother if not optimizing because that metadata would not be used. 1461 llvm::MDNode *Unpredictable = nullptr; 1462 auto *Call = dyn_cast<CallExpr>(Cond); 1463 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1464 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1465 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1466 llvm::MDBuilder MDHelper(getLLVMContext()); 1467 Unpredictable = MDHelper.createUnpredictable(); 1468 } 1469 } 1470 1471 // Create branch weights based on the number of times we get here and the 1472 // number of times the condition should be true. 1473 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1474 llvm::MDNode *Weights = 1475 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1476 1477 // Emit the code with the fully general case. 1478 llvm::Value *CondV; 1479 { 1480 ApplyDebugLocation DL(*this, Cond); 1481 CondV = EvaluateExprAsBool(Cond); 1482 } 1483 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1484 } 1485 1486 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1487 /// specified stmt yet. 1488 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1489 CGM.ErrorUnsupported(S, Type); 1490 } 1491 1492 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1493 /// variable-length array whose elements have a non-zero bit-pattern. 1494 /// 1495 /// \param baseType the inner-most element type of the array 1496 /// \param src - a char* pointing to the bit-pattern for a single 1497 /// base element of the array 1498 /// \param sizeInChars - the total size of the VLA, in chars 1499 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1500 Address dest, Address src, 1501 llvm::Value *sizeInChars) { 1502 CGBuilderTy &Builder = CGF.Builder; 1503 1504 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1505 llvm::Value *baseSizeInChars 1506 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1507 1508 Address begin = 1509 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1510 llvm::Value *end = 1511 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1512 1513 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1514 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1515 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1516 1517 // Make a loop over the VLA. C99 guarantees that the VLA element 1518 // count must be nonzero. 1519 CGF.EmitBlock(loopBB); 1520 1521 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1522 cur->addIncoming(begin.getPointer(), originBB); 1523 1524 CharUnits curAlign = 1525 dest.getAlignment().alignmentOfArrayElement(baseSize); 1526 1527 // memcpy the individual element bit-pattern. 1528 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1529 /*volatile*/ false); 1530 1531 // Go to the next element. 1532 llvm::Value *next = 1533 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1534 1535 // Leave if that's the end of the VLA. 1536 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1537 Builder.CreateCondBr(done, contBB, loopBB); 1538 cur->addIncoming(next, loopBB); 1539 1540 CGF.EmitBlock(contBB); 1541 } 1542 1543 void 1544 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1545 // Ignore empty classes in C++. 1546 if (getLangOpts().CPlusPlus) { 1547 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1548 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1549 return; 1550 } 1551 } 1552 1553 // Cast the dest ptr to the appropriate i8 pointer type. 1554 if (DestPtr.getElementType() != Int8Ty) 1555 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1556 1557 // Get size and alignment info for this aggregate. 1558 CharUnits size = getContext().getTypeSizeInChars(Ty); 1559 1560 llvm::Value *SizeVal; 1561 const VariableArrayType *vla; 1562 1563 // Don't bother emitting a zero-byte memset. 1564 if (size.isZero()) { 1565 // But note that getTypeInfo returns 0 for a VLA. 1566 if (const VariableArrayType *vlaType = 1567 dyn_cast_or_null<VariableArrayType>( 1568 getContext().getAsArrayType(Ty))) { 1569 QualType eltType; 1570 llvm::Value *numElts; 1571 std::tie(numElts, eltType) = getVLASize(vlaType); 1572 1573 SizeVal = numElts; 1574 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1575 if (!eltSize.isOne()) 1576 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1577 vla = vlaType; 1578 } else { 1579 return; 1580 } 1581 } else { 1582 SizeVal = CGM.getSize(size); 1583 vla = nullptr; 1584 } 1585 1586 // If the type contains a pointer to data member we can't memset it to zero. 1587 // Instead, create a null constant and copy it to the destination. 1588 // TODO: there are other patterns besides zero that we can usefully memset, 1589 // like -1, which happens to be the pattern used by member-pointers. 1590 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1591 // For a VLA, emit a single element, then splat that over the VLA. 1592 if (vla) Ty = getContext().getBaseElementType(vla); 1593 1594 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1595 1596 llvm::GlobalVariable *NullVariable = 1597 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1598 /*isConstant=*/true, 1599 llvm::GlobalVariable::PrivateLinkage, 1600 NullConstant, Twine()); 1601 CharUnits NullAlign = DestPtr.getAlignment(); 1602 NullVariable->setAlignment(NullAlign.getQuantity()); 1603 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1604 NullAlign); 1605 1606 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1607 1608 // Get and call the appropriate llvm.memcpy overload. 1609 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1610 return; 1611 } 1612 1613 // Otherwise, just memset the whole thing to zero. This is legal 1614 // because in LLVM, all default initializers (other than the ones we just 1615 // handled above) are guaranteed to have a bit pattern of all zeros. 1616 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1617 } 1618 1619 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1620 // Make sure that there is a block for the indirect goto. 1621 if (!IndirectBranch) 1622 GetIndirectGotoBlock(); 1623 1624 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1625 1626 // Make sure the indirect branch includes all of the address-taken blocks. 1627 IndirectBranch->addDestination(BB); 1628 return llvm::BlockAddress::get(CurFn, BB); 1629 } 1630 1631 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1632 // If we already made the indirect branch for indirect goto, return its block. 1633 if (IndirectBranch) return IndirectBranch->getParent(); 1634 1635 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1636 1637 // Create the PHI node that indirect gotos will add entries to. 1638 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1639 "indirect.goto.dest"); 1640 1641 // Create the indirect branch instruction. 1642 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1643 return IndirectBranch->getParent(); 1644 } 1645 1646 /// Computes the length of an array in elements, as well as the base 1647 /// element type and a properly-typed first element pointer. 1648 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1649 QualType &baseType, 1650 Address &addr) { 1651 const ArrayType *arrayType = origArrayType; 1652 1653 // If it's a VLA, we have to load the stored size. Note that 1654 // this is the size of the VLA in bytes, not its size in elements. 1655 llvm::Value *numVLAElements = nullptr; 1656 if (isa<VariableArrayType>(arrayType)) { 1657 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1658 1659 // Walk into all VLAs. This doesn't require changes to addr, 1660 // which has type T* where T is the first non-VLA element type. 1661 do { 1662 QualType elementType = arrayType->getElementType(); 1663 arrayType = getContext().getAsArrayType(elementType); 1664 1665 // If we only have VLA components, 'addr' requires no adjustment. 1666 if (!arrayType) { 1667 baseType = elementType; 1668 return numVLAElements; 1669 } 1670 } while (isa<VariableArrayType>(arrayType)); 1671 1672 // We get out here only if we find a constant array type 1673 // inside the VLA. 1674 } 1675 1676 // We have some number of constant-length arrays, so addr should 1677 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1678 // down to the first element of addr. 1679 SmallVector<llvm::Value*, 8> gepIndices; 1680 1681 // GEP down to the array type. 1682 llvm::ConstantInt *zero = Builder.getInt32(0); 1683 gepIndices.push_back(zero); 1684 1685 uint64_t countFromCLAs = 1; 1686 QualType eltType; 1687 1688 llvm::ArrayType *llvmArrayType = 1689 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1690 while (llvmArrayType) { 1691 assert(isa<ConstantArrayType>(arrayType)); 1692 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1693 == llvmArrayType->getNumElements()); 1694 1695 gepIndices.push_back(zero); 1696 countFromCLAs *= llvmArrayType->getNumElements(); 1697 eltType = arrayType->getElementType(); 1698 1699 llvmArrayType = 1700 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1701 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1702 assert((!llvmArrayType || arrayType) && 1703 "LLVM and Clang types are out-of-synch"); 1704 } 1705 1706 if (arrayType) { 1707 // From this point onwards, the Clang array type has been emitted 1708 // as some other type (probably a packed struct). Compute the array 1709 // size, and just emit the 'begin' expression as a bitcast. 1710 while (arrayType) { 1711 countFromCLAs *= 1712 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1713 eltType = arrayType->getElementType(); 1714 arrayType = getContext().getAsArrayType(eltType); 1715 } 1716 1717 llvm::Type *baseType = ConvertType(eltType); 1718 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1719 } else { 1720 // Create the actual GEP. 1721 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1722 gepIndices, "array.begin"), 1723 addr.getAlignment()); 1724 } 1725 1726 baseType = eltType; 1727 1728 llvm::Value *numElements 1729 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1730 1731 // If we had any VLA dimensions, factor them in. 1732 if (numVLAElements) 1733 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1734 1735 return numElements; 1736 } 1737 1738 std::pair<llvm::Value*, QualType> 1739 CodeGenFunction::getVLASize(QualType type) { 1740 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1741 assert(vla && "type was not a variable array type!"); 1742 return getVLASize(vla); 1743 } 1744 1745 std::pair<llvm::Value*, QualType> 1746 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1747 // The number of elements so far; always size_t. 1748 llvm::Value *numElements = nullptr; 1749 1750 QualType elementType; 1751 do { 1752 elementType = type->getElementType(); 1753 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1754 assert(vlaSize && "no size for VLA!"); 1755 assert(vlaSize->getType() == SizeTy); 1756 1757 if (!numElements) { 1758 numElements = vlaSize; 1759 } else { 1760 // It's undefined behavior if this wraps around, so mark it that way. 1761 // FIXME: Teach -fsanitize=undefined to trap this. 1762 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1763 } 1764 } while ((type = getContext().getAsVariableArrayType(elementType))); 1765 1766 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1767 } 1768 1769 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1770 assert(type->isVariablyModifiedType() && 1771 "Must pass variably modified type to EmitVLASizes!"); 1772 1773 EnsureInsertPoint(); 1774 1775 // We're going to walk down into the type and look for VLA 1776 // expressions. 1777 do { 1778 assert(type->isVariablyModifiedType()); 1779 1780 const Type *ty = type.getTypePtr(); 1781 switch (ty->getTypeClass()) { 1782 1783 #define TYPE(Class, Base) 1784 #define ABSTRACT_TYPE(Class, Base) 1785 #define NON_CANONICAL_TYPE(Class, Base) 1786 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1787 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1788 #include "clang/AST/TypeNodes.def" 1789 llvm_unreachable("unexpected dependent type!"); 1790 1791 // These types are never variably-modified. 1792 case Type::Builtin: 1793 case Type::Complex: 1794 case Type::Vector: 1795 case Type::ExtVector: 1796 case Type::Record: 1797 case Type::Enum: 1798 case Type::Elaborated: 1799 case Type::TemplateSpecialization: 1800 case Type::ObjCTypeParam: 1801 case Type::ObjCObject: 1802 case Type::ObjCInterface: 1803 case Type::ObjCObjectPointer: 1804 llvm_unreachable("type class is never variably-modified!"); 1805 1806 case Type::Adjusted: 1807 type = cast<AdjustedType>(ty)->getAdjustedType(); 1808 break; 1809 1810 case Type::Decayed: 1811 type = cast<DecayedType>(ty)->getPointeeType(); 1812 break; 1813 1814 case Type::Pointer: 1815 type = cast<PointerType>(ty)->getPointeeType(); 1816 break; 1817 1818 case Type::BlockPointer: 1819 type = cast<BlockPointerType>(ty)->getPointeeType(); 1820 break; 1821 1822 case Type::LValueReference: 1823 case Type::RValueReference: 1824 type = cast<ReferenceType>(ty)->getPointeeType(); 1825 break; 1826 1827 case Type::MemberPointer: 1828 type = cast<MemberPointerType>(ty)->getPointeeType(); 1829 break; 1830 1831 case Type::ConstantArray: 1832 case Type::IncompleteArray: 1833 // Losing element qualification here is fine. 1834 type = cast<ArrayType>(ty)->getElementType(); 1835 break; 1836 1837 case Type::VariableArray: { 1838 // Losing element qualification here is fine. 1839 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1840 1841 // Unknown size indication requires no size computation. 1842 // Otherwise, evaluate and record it. 1843 if (const Expr *size = vat->getSizeExpr()) { 1844 // It's possible that we might have emitted this already, 1845 // e.g. with a typedef and a pointer to it. 1846 llvm::Value *&entry = VLASizeMap[size]; 1847 if (!entry) { 1848 llvm::Value *Size = EmitScalarExpr(size); 1849 1850 // C11 6.7.6.2p5: 1851 // If the size is an expression that is not an integer constant 1852 // expression [...] each time it is evaluated it shall have a value 1853 // greater than zero. 1854 if (SanOpts.has(SanitizerKind::VLABound) && 1855 size->getType()->isSignedIntegerType()) { 1856 SanitizerScope SanScope(this); 1857 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1858 llvm::Constant *StaticArgs[] = { 1859 EmitCheckSourceLocation(size->getLocStart()), 1860 EmitCheckTypeDescriptor(size->getType()) 1861 }; 1862 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1863 SanitizerKind::VLABound), 1864 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1865 } 1866 1867 // Always zexting here would be wrong if it weren't 1868 // undefined behavior to have a negative bound. 1869 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1870 } 1871 } 1872 type = vat->getElementType(); 1873 break; 1874 } 1875 1876 case Type::FunctionProto: 1877 case Type::FunctionNoProto: 1878 type = cast<FunctionType>(ty)->getReturnType(); 1879 break; 1880 1881 case Type::Paren: 1882 case Type::TypeOf: 1883 case Type::UnaryTransform: 1884 case Type::Attributed: 1885 case Type::SubstTemplateTypeParm: 1886 case Type::PackExpansion: 1887 // Keep walking after single level desugaring. 1888 type = type.getSingleStepDesugaredType(getContext()); 1889 break; 1890 1891 case Type::Typedef: 1892 case Type::Decltype: 1893 case Type::Auto: 1894 // Stop walking: nothing to do. 1895 return; 1896 1897 case Type::TypeOfExpr: 1898 // Stop walking: emit typeof expression. 1899 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1900 return; 1901 1902 case Type::Atomic: 1903 type = cast<AtomicType>(ty)->getValueType(); 1904 break; 1905 1906 case Type::Pipe: 1907 type = cast<PipeType>(ty)->getElementType(); 1908 break; 1909 } 1910 } while (type->isVariablyModifiedType()); 1911 } 1912 1913 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1914 if (getContext().getBuiltinVaListType()->isArrayType()) 1915 return EmitPointerWithAlignment(E); 1916 return EmitLValue(E).getAddress(); 1917 } 1918 1919 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1920 return EmitLValue(E).getAddress(); 1921 } 1922 1923 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1924 const APValue &Init) { 1925 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1926 if (CGDebugInfo *Dbg = getDebugInfo()) 1927 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1928 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1929 } 1930 1931 CodeGenFunction::PeepholeProtection 1932 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1933 // At the moment, the only aggressive peephole we do in IR gen 1934 // is trunc(zext) folding, but if we add more, we can easily 1935 // extend this protection. 1936 1937 if (!rvalue.isScalar()) return PeepholeProtection(); 1938 llvm::Value *value = rvalue.getScalarVal(); 1939 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1940 1941 // Just make an extra bitcast. 1942 assert(HaveInsertPoint()); 1943 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1944 Builder.GetInsertBlock()); 1945 1946 PeepholeProtection protection; 1947 protection.Inst = inst; 1948 return protection; 1949 } 1950 1951 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1952 if (!protection.Inst) return; 1953 1954 // In theory, we could try to duplicate the peepholes now, but whatever. 1955 protection.Inst->eraseFromParent(); 1956 } 1957 1958 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1959 llvm::Value *AnnotatedVal, 1960 StringRef AnnotationStr, 1961 SourceLocation Location) { 1962 llvm::Value *Args[4] = { 1963 AnnotatedVal, 1964 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1965 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1966 CGM.EmitAnnotationLineNo(Location) 1967 }; 1968 return Builder.CreateCall(AnnotationFn, Args); 1969 } 1970 1971 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1972 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1973 // FIXME We create a new bitcast for every annotation because that's what 1974 // llvm-gcc was doing. 1975 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1976 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1977 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1978 I->getAnnotation(), D->getLocation()); 1979 } 1980 1981 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1982 Address Addr) { 1983 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1984 llvm::Value *V = Addr.getPointer(); 1985 llvm::Type *VTy = V->getType(); 1986 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1987 CGM.Int8PtrTy); 1988 1989 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1990 // FIXME Always emit the cast inst so we can differentiate between 1991 // annotation on the first field of a struct and annotation on the struct 1992 // itself. 1993 if (VTy != CGM.Int8PtrTy) 1994 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1995 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1996 V = Builder.CreateBitCast(V, VTy); 1997 } 1998 1999 return Address(V, Addr.getAlignment()); 2000 } 2001 2002 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2003 2004 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2005 : CGF(CGF) { 2006 assert(!CGF->IsSanitizerScope); 2007 CGF->IsSanitizerScope = true; 2008 } 2009 2010 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2011 CGF->IsSanitizerScope = false; 2012 } 2013 2014 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2015 const llvm::Twine &Name, 2016 llvm::BasicBlock *BB, 2017 llvm::BasicBlock::iterator InsertPt) const { 2018 LoopStack.InsertHelper(I); 2019 if (IsSanitizerScope) 2020 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2021 } 2022 2023 void CGBuilderInserter::InsertHelper( 2024 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2025 llvm::BasicBlock::iterator InsertPt) const { 2026 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2027 if (CGF) 2028 CGF->InsertHelper(I, Name, BB, InsertPt); 2029 } 2030 2031 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2032 CodeGenModule &CGM, const FunctionDecl *FD, 2033 std::string &FirstMissing) { 2034 // If there aren't any required features listed then go ahead and return. 2035 if (ReqFeatures.empty()) 2036 return false; 2037 2038 // Now build up the set of caller features and verify that all the required 2039 // features are there. 2040 llvm::StringMap<bool> CallerFeatureMap; 2041 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2042 2043 // If we have at least one of the features in the feature list return 2044 // true, otherwise return false. 2045 return std::all_of( 2046 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2047 SmallVector<StringRef, 1> OrFeatures; 2048 Feature.split(OrFeatures, "|"); 2049 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2050 [&](StringRef Feature) { 2051 if (!CallerFeatureMap.lookup(Feature)) { 2052 FirstMissing = Feature.str(); 2053 return false; 2054 } 2055 return true; 2056 }); 2057 }); 2058 } 2059 2060 // Emits an error if we don't have a valid set of target features for the 2061 // called function. 2062 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2063 const FunctionDecl *TargetDecl) { 2064 // Early exit if this is an indirect call. 2065 if (!TargetDecl) 2066 return; 2067 2068 // Get the current enclosing function if it exists. If it doesn't 2069 // we can't check the target features anyhow. 2070 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2071 if (!FD) 2072 return; 2073 2074 // Grab the required features for the call. For a builtin this is listed in 2075 // the td file with the default cpu, for an always_inline function this is any 2076 // listed cpu and any listed features. 2077 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2078 std::string MissingFeature; 2079 if (BuiltinID) { 2080 SmallVector<StringRef, 1> ReqFeatures; 2081 const char *FeatureList = 2082 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2083 // Return if the builtin doesn't have any required features. 2084 if (!FeatureList || StringRef(FeatureList) == "") 2085 return; 2086 StringRef(FeatureList).split(ReqFeatures, ","); 2087 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2088 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2089 << TargetDecl->getDeclName() 2090 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2091 2092 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2093 // Get the required features for the callee. 2094 SmallVector<StringRef, 1> ReqFeatures; 2095 llvm::StringMap<bool> CalleeFeatureMap; 2096 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2097 for (const auto &F : CalleeFeatureMap) { 2098 // Only positive features are "required". 2099 if (F.getValue()) 2100 ReqFeatures.push_back(F.getKey()); 2101 } 2102 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2103 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2104 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2105 } 2106 } 2107 2108 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2109 if (!CGM.getCodeGenOpts().SanitizeStats) 2110 return; 2111 2112 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2113 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2114 CGM.getSanStats().create(IRB, SSK); 2115 } 2116 2117 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2118 if (CGDebugInfo *DI = getDebugInfo()) 2119 return DI->SourceLocToDebugLoc(Location); 2120 2121 return llvm::DebugLoc(); 2122 } 2123