1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCUDARuntime.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGOpenMPRuntime.h" 19 #include "CodeGenModule.h" 20 #include "CodeGenPGO.h" 21 #include "TargetInfo.h" 22 #include "clang/AST/ASTContext.h" 23 #include "clang/AST/Decl.h" 24 #include "clang/AST/DeclCXX.h" 25 #include "clang/AST/StmtCXX.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/CodeGen/CGFunctionInfo.h" 28 #include "clang/Frontend/CodeGenOptions.h" 29 #include "llvm/IR/DataLayout.h" 30 #include "llvm/IR/Intrinsics.h" 31 #include "llvm/IR/MDBuilder.h" 32 #include "llvm/IR/Operator.h" 33 using namespace clang; 34 using namespace CodeGen; 35 36 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 37 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 38 Builder(cgm.getModule().getContext(), llvm::ConstantFolder(), 39 CGBuilderInserterTy(this)), 40 CapturedStmtInfo(nullptr), SanOpts(&CGM.getLangOpts().Sanitize), 41 IsSanitizerScope(false), AutoreleaseResult(false), BlockInfo(nullptr), 42 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 43 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 44 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 45 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 46 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 47 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 48 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 49 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 50 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 51 CXXDefaultInitExprThis(nullptr), CXXStructorImplicitParamDecl(nullptr), 52 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 53 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 54 TerminateHandler(nullptr), TrapBB(nullptr) { 55 if (!suppressNewContext) 56 CGM.getCXXABI().getMangleContext().startNewFunction(); 57 58 llvm::FastMathFlags FMF; 59 if (CGM.getLangOpts().FastMath) 60 FMF.setUnsafeAlgebra(); 61 if (CGM.getLangOpts().FiniteMathOnly) { 62 FMF.setNoNaNs(); 63 FMF.setNoInfs(); 64 } 65 Builder.SetFastMathFlags(FMF); 66 } 67 68 CodeGenFunction::~CodeGenFunction() { 69 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 70 71 // If there are any unclaimed block infos, go ahead and destroy them 72 // now. This can happen if IR-gen gets clever and skips evaluating 73 // something. 74 if (FirstBlockInfo) 75 destroyBlockInfos(FirstBlockInfo); 76 77 if (getLangOpts().OpenMP) { 78 CGM.getOpenMPRuntime().FunctionFinished(*this); 79 } 80 } 81 82 83 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 84 return CGM.getTypes().ConvertTypeForMem(T); 85 } 86 87 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 88 return CGM.getTypes().ConvertType(T); 89 } 90 91 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 92 type = type.getCanonicalType(); 93 while (true) { 94 switch (type->getTypeClass()) { 95 #define TYPE(name, parent) 96 #define ABSTRACT_TYPE(name, parent) 97 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 98 #define DEPENDENT_TYPE(name, parent) case Type::name: 99 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 100 #include "clang/AST/TypeNodes.def" 101 llvm_unreachable("non-canonical or dependent type in IR-generation"); 102 103 case Type::Auto: 104 llvm_unreachable("undeduced auto type in IR-generation"); 105 106 // Various scalar types. 107 case Type::Builtin: 108 case Type::Pointer: 109 case Type::BlockPointer: 110 case Type::LValueReference: 111 case Type::RValueReference: 112 case Type::MemberPointer: 113 case Type::Vector: 114 case Type::ExtVector: 115 case Type::FunctionProto: 116 case Type::FunctionNoProto: 117 case Type::Enum: 118 case Type::ObjCObjectPointer: 119 return TEK_Scalar; 120 121 // Complexes. 122 case Type::Complex: 123 return TEK_Complex; 124 125 // Arrays, records, and Objective-C objects. 126 case Type::ConstantArray: 127 case Type::IncompleteArray: 128 case Type::VariableArray: 129 case Type::Record: 130 case Type::ObjCObject: 131 case Type::ObjCInterface: 132 return TEK_Aggregate; 133 134 // We operate on atomic values according to their underlying type. 135 case Type::Atomic: 136 type = cast<AtomicType>(type)->getValueType(); 137 continue; 138 } 139 llvm_unreachable("unknown type kind!"); 140 } 141 } 142 143 void CodeGenFunction::EmitReturnBlock() { 144 // For cleanliness, we try to avoid emitting the return block for 145 // simple cases. 146 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 147 148 if (CurBB) { 149 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 150 151 // We have a valid insert point, reuse it if it is empty or there are no 152 // explicit jumps to the return block. 153 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 154 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 155 delete ReturnBlock.getBlock(); 156 } else 157 EmitBlock(ReturnBlock.getBlock()); 158 return; 159 } 160 161 // Otherwise, if the return block is the target of a single direct 162 // branch then we can just put the code in that block instead. This 163 // cleans up functions which started with a unified return block. 164 if (ReturnBlock.getBlock()->hasOneUse()) { 165 llvm::BranchInst *BI = 166 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 167 if (BI && BI->isUnconditional() && 168 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 169 // Reset insertion point, including debug location, and delete the 170 // branch. This is really subtle and only works because the next change 171 // in location will hit the caching in CGDebugInfo::EmitLocation and not 172 // override this. 173 Builder.SetCurrentDebugLocation(BI->getDebugLoc()); 174 Builder.SetInsertPoint(BI->getParent()); 175 BI->eraseFromParent(); 176 delete ReturnBlock.getBlock(); 177 return; 178 } 179 } 180 181 // FIXME: We are at an unreachable point, there is no reason to emit the block 182 // unless it has uses. However, we still need a place to put the debug 183 // region.end for now. 184 185 EmitBlock(ReturnBlock.getBlock()); 186 } 187 188 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 189 if (!BB) return; 190 if (!BB->use_empty()) 191 return CGF.CurFn->getBasicBlockList().push_back(BB); 192 delete BB; 193 } 194 195 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 196 assert(BreakContinueStack.empty() && 197 "mismatched push/pop in break/continue stack!"); 198 199 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 200 && NumSimpleReturnExprs == NumReturnExprs 201 && ReturnBlock.getBlock()->use_empty(); 202 // Usually the return expression is evaluated before the cleanup 203 // code. If the function contains only a simple return statement, 204 // such as a constant, the location before the cleanup code becomes 205 // the last useful breakpoint in the function, because the simple 206 // return expression will be evaluated after the cleanup code. To be 207 // safe, set the debug location for cleanup code to the location of 208 // the return statement. Otherwise the cleanup code should be at the 209 // end of the function's lexical scope. 210 // 211 // If there are multiple branches to the return block, the branch 212 // instructions will get the location of the return statements and 213 // all will be fine. 214 if (CGDebugInfo *DI = getDebugInfo()) { 215 if (OnlySimpleReturnStmts) 216 DI->EmitLocation(Builder, LastStopPoint); 217 else 218 DI->EmitLocation(Builder, EndLoc); 219 } 220 221 // Pop any cleanups that might have been associated with the 222 // parameters. Do this in whatever block we're currently in; it's 223 // important to do this before we enter the return block or return 224 // edges will be *really* confused. 225 bool EmitRetDbgLoc = true; 226 if (EHStack.stable_begin() != PrologueCleanupDepth) { 227 PopCleanupBlocks(PrologueCleanupDepth); 228 229 // Make sure the line table doesn't jump back into the body for 230 // the ret after it's been at EndLoc. 231 EmitRetDbgLoc = false; 232 233 if (CGDebugInfo *DI = getDebugInfo()) 234 if (OnlySimpleReturnStmts) 235 DI->EmitLocation(Builder, EndLoc); 236 } 237 238 // Emit function epilog (to return). 239 EmitReturnBlock(); 240 241 if (ShouldInstrumentFunction()) 242 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 243 244 // Emit debug descriptor for function end. 245 if (CGDebugInfo *DI = getDebugInfo()) { 246 DI->EmitFunctionEnd(Builder); 247 } 248 249 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 250 EmitEndEHSpec(CurCodeDecl); 251 252 assert(EHStack.empty() && 253 "did not remove all scopes from cleanup stack!"); 254 255 // If someone did an indirect goto, emit the indirect goto block at the end of 256 // the function. 257 if (IndirectBranch) { 258 EmitBlock(IndirectBranch->getParent()); 259 Builder.ClearInsertionPoint(); 260 } 261 262 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 263 llvm::Instruction *Ptr = AllocaInsertPt; 264 AllocaInsertPt = nullptr; 265 Ptr->eraseFromParent(); 266 267 // If someone took the address of a label but never did an indirect goto, we 268 // made a zero entry PHI node, which is illegal, zap it now. 269 if (IndirectBranch) { 270 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 271 if (PN->getNumIncomingValues() == 0) { 272 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 273 PN->eraseFromParent(); 274 } 275 } 276 277 EmitIfUsed(*this, EHResumeBlock); 278 EmitIfUsed(*this, TerminateLandingPad); 279 EmitIfUsed(*this, TerminateHandler); 280 EmitIfUsed(*this, UnreachableBlock); 281 282 if (CGM.getCodeGenOpts().EmitDeclMetadata) 283 EmitDeclMetadata(); 284 285 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 286 I = DeferredReplacements.begin(), 287 E = DeferredReplacements.end(); 288 I != E; ++I) { 289 I->first->replaceAllUsesWith(I->second); 290 I->first->eraseFromParent(); 291 } 292 } 293 294 /// ShouldInstrumentFunction - Return true if the current function should be 295 /// instrumented with __cyg_profile_func_* calls 296 bool CodeGenFunction::ShouldInstrumentFunction() { 297 if (!CGM.getCodeGenOpts().InstrumentFunctions) 298 return false; 299 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 300 return false; 301 return true; 302 } 303 304 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 305 /// instrumentation function with the current function and the call site, if 306 /// function instrumentation is enabled. 307 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 308 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 309 llvm::PointerType *PointerTy = Int8PtrTy; 310 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 311 llvm::FunctionType *FunctionTy = 312 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 313 314 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 315 llvm::CallInst *CallSite = Builder.CreateCall( 316 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 317 llvm::ConstantInt::get(Int32Ty, 0), 318 "callsite"); 319 320 llvm::Value *args[] = { 321 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 322 CallSite 323 }; 324 325 EmitNounwindRuntimeCall(F, args); 326 } 327 328 void CodeGenFunction::EmitMCountInstrumentation() { 329 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 330 331 llvm::Constant *MCountFn = 332 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 333 EmitNounwindRuntimeCall(MCountFn); 334 } 335 336 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 337 // information in the program executable. The argument information stored 338 // includes the argument name, its type, the address and access qualifiers used. 339 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 340 CodeGenModule &CGM,llvm::LLVMContext &Context, 341 SmallVector <llvm::Value*, 5> &kernelMDArgs, 342 CGBuilderTy& Builder, ASTContext &ASTCtx) { 343 // Create MDNodes that represent the kernel arg metadata. 344 // Each MDNode is a list in the form of "key", N number of values which is 345 // the same number of values as their are kernel arguments. 346 347 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 348 349 // MDNode for the kernel argument address space qualifiers. 350 SmallVector<llvm::Value*, 8> addressQuals; 351 addressQuals.push_back(llvm::MDString::get(Context, "kernel_arg_addr_space")); 352 353 // MDNode for the kernel argument access qualifiers (images only). 354 SmallVector<llvm::Value*, 8> accessQuals; 355 accessQuals.push_back(llvm::MDString::get(Context, "kernel_arg_access_qual")); 356 357 // MDNode for the kernel argument type names. 358 SmallVector<llvm::Value*, 8> argTypeNames; 359 argTypeNames.push_back(llvm::MDString::get(Context, "kernel_arg_type")); 360 361 // MDNode for the kernel argument type qualifiers. 362 SmallVector<llvm::Value*, 8> argTypeQuals; 363 argTypeQuals.push_back(llvm::MDString::get(Context, "kernel_arg_type_qual")); 364 365 // MDNode for the kernel argument names. 366 SmallVector<llvm::Value*, 8> argNames; 367 argNames.push_back(llvm::MDString::get(Context, "kernel_arg_name")); 368 369 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 370 const ParmVarDecl *parm = FD->getParamDecl(i); 371 QualType ty = parm->getType(); 372 std::string typeQuals; 373 374 if (ty->isPointerType()) { 375 QualType pointeeTy = ty->getPointeeType(); 376 377 // Get address qualifier. 378 addressQuals.push_back(Builder.getInt32(ASTCtx.getTargetAddressSpace( 379 pointeeTy.getAddressSpace()))); 380 381 // Get argument type name. 382 std::string typeName = 383 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 384 385 // Turn "unsigned type" to "utype" 386 std::string::size_type pos = typeName.find("unsigned"); 387 if (pos != std::string::npos) 388 typeName.erase(pos+1, 8); 389 390 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 391 392 // Get argument type qualifiers: 393 if (ty.isRestrictQualified()) 394 typeQuals = "restrict"; 395 if (pointeeTy.isConstQualified() || 396 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 397 typeQuals += typeQuals.empty() ? "const" : " const"; 398 if (pointeeTy.isVolatileQualified()) 399 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 400 } else { 401 uint32_t AddrSpc = 0; 402 if (ty->isImageType()) 403 AddrSpc = 404 CGM.getContext().getTargetAddressSpace(LangAS::opencl_global); 405 406 addressQuals.push_back(Builder.getInt32(AddrSpc)); 407 408 // Get argument type name. 409 std::string typeName = ty.getUnqualifiedType().getAsString(Policy); 410 411 // Turn "unsigned type" to "utype" 412 std::string::size_type pos = typeName.find("unsigned"); 413 if (pos != std::string::npos) 414 typeName.erase(pos+1, 8); 415 416 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 417 418 // Get argument type qualifiers: 419 if (ty.isConstQualified()) 420 typeQuals = "const"; 421 if (ty.isVolatileQualified()) 422 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 423 } 424 425 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 426 427 // Get image access qualifier: 428 if (ty->isImageType()) { 429 const OpenCLImageAccessAttr *A = parm->getAttr<OpenCLImageAccessAttr>(); 430 if (A && A->isWriteOnly()) 431 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 432 else 433 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 434 // FIXME: what about read_write? 435 } else 436 accessQuals.push_back(llvm::MDString::get(Context, "none")); 437 438 // Get argument name. 439 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 440 } 441 442 kernelMDArgs.push_back(llvm::MDNode::get(Context, addressQuals)); 443 kernelMDArgs.push_back(llvm::MDNode::get(Context, accessQuals)); 444 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeNames)); 445 kernelMDArgs.push_back(llvm::MDNode::get(Context, argTypeQuals)); 446 kernelMDArgs.push_back(llvm::MDNode::get(Context, argNames)); 447 } 448 449 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 450 llvm::Function *Fn) 451 { 452 if (!FD->hasAttr<OpenCLKernelAttr>()) 453 return; 454 455 llvm::LLVMContext &Context = getLLVMContext(); 456 457 SmallVector <llvm::Value*, 5> kernelMDArgs; 458 kernelMDArgs.push_back(Fn); 459 460 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 461 GenOpenCLArgMetadata(FD, Fn, CGM, Context, kernelMDArgs, 462 Builder, getContext()); 463 464 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 465 QualType hintQTy = A->getTypeHint(); 466 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 467 bool isSignedInteger = 468 hintQTy->isSignedIntegerType() || 469 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 470 llvm::Value *attrMDArgs[] = { 471 llvm::MDString::get(Context, "vec_type_hint"), 472 llvm::UndefValue::get(CGM.getTypes().ConvertType(A->getTypeHint())), 473 llvm::ConstantInt::get( 474 llvm::IntegerType::get(Context, 32), 475 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))) 476 }; 477 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 478 } 479 480 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 481 llvm::Value *attrMDArgs[] = { 482 llvm::MDString::get(Context, "work_group_size_hint"), 483 Builder.getInt32(A->getXDim()), 484 Builder.getInt32(A->getYDim()), 485 Builder.getInt32(A->getZDim()) 486 }; 487 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 488 } 489 490 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 491 llvm::Value *attrMDArgs[] = { 492 llvm::MDString::get(Context, "reqd_work_group_size"), 493 Builder.getInt32(A->getXDim()), 494 Builder.getInt32(A->getYDim()), 495 Builder.getInt32(A->getZDim()) 496 }; 497 kernelMDArgs.push_back(llvm::MDNode::get(Context, attrMDArgs)); 498 } 499 500 llvm::MDNode *kernelMDNode = llvm::MDNode::get(Context, kernelMDArgs); 501 llvm::NamedMDNode *OpenCLKernelMetadata = 502 CGM.getModule().getOrInsertNamedMetadata("opencl.kernels"); 503 OpenCLKernelMetadata->addOperand(kernelMDNode); 504 } 505 506 /// Determine whether the function F ends with a return stmt. 507 static bool endsWithReturn(const Decl* F) { 508 const Stmt *Body = nullptr; 509 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 510 Body = FD->getBody(); 511 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 512 Body = OMD->getBody(); 513 514 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 515 auto LastStmt = CS->body_rbegin(); 516 if (LastStmt != CS->body_rend()) 517 return isa<ReturnStmt>(*LastStmt); 518 } 519 return false; 520 } 521 522 void CodeGenFunction::StartFunction(GlobalDecl GD, 523 QualType RetTy, 524 llvm::Function *Fn, 525 const CGFunctionInfo &FnInfo, 526 const FunctionArgList &Args, 527 SourceLocation Loc, 528 SourceLocation StartLoc) { 529 const Decl *D = GD.getDecl(); 530 531 DidCallStackSave = false; 532 CurCodeDecl = D; 533 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 534 FnRetTy = RetTy; 535 CurFn = Fn; 536 CurFnInfo = &FnInfo; 537 assert(CurFn->isDeclaration() && "Function already has body?"); 538 539 if (CGM.getSanitizerBlacklist().isIn(*Fn)) 540 SanOpts = &SanitizerOptions::Disabled; 541 542 // Pass inline keyword to optimizer if it appears explicitly on any 543 // declaration. Also, in the case of -fno-inline attach NoInline 544 // attribute to all function that are not marked AlwaysInline. 545 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 546 if (!CGM.getCodeGenOpts().NoInline) { 547 for (auto RI : FD->redecls()) 548 if (RI->isInlineSpecified()) { 549 Fn->addFnAttr(llvm::Attribute::InlineHint); 550 break; 551 } 552 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 553 Fn->addFnAttr(llvm::Attribute::NoInline); 554 } 555 556 if (getLangOpts().OpenCL) { 557 // Add metadata for a kernel function. 558 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 559 EmitOpenCLKernelMetadata(FD, Fn); 560 } 561 562 // If we are checking function types, emit a function type signature as 563 // prefix data. 564 if (getLangOpts().CPlusPlus && SanOpts->Function) { 565 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 566 if (llvm::Constant *PrefixSig = 567 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 568 llvm::Constant *FTRTTIConst = 569 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 570 llvm::Constant *PrefixStructElems[] = { PrefixSig, FTRTTIConst }; 571 llvm::Constant *PrefixStructConst = 572 llvm::ConstantStruct::getAnon(PrefixStructElems, /*Packed=*/true); 573 Fn->setPrefixData(PrefixStructConst); 574 } 575 } 576 } 577 578 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 579 580 // Create a marker to make it easy to insert allocas into the entryblock 581 // later. Don't create this with the builder, because we don't want it 582 // folded. 583 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 584 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "", EntryBB); 585 if (Builder.isNamePreserving()) 586 AllocaInsertPt->setName("allocapt"); 587 588 ReturnBlock = getJumpDestInCurrentScope("return"); 589 590 Builder.SetInsertPoint(EntryBB); 591 592 // Emit subprogram debug descriptor. 593 if (CGDebugInfo *DI = getDebugInfo()) { 594 SmallVector<QualType, 16> ArgTypes; 595 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 596 i != e; ++i) { 597 ArgTypes.push_back((*i)->getType()); 598 } 599 600 QualType FnType = 601 getContext().getFunctionType(RetTy, ArgTypes, 602 FunctionProtoType::ExtProtoInfo()); 603 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 604 } 605 606 if (ShouldInstrumentFunction()) 607 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 608 609 if (CGM.getCodeGenOpts().InstrumentForProfiling) 610 EmitMCountInstrumentation(); 611 612 if (RetTy->isVoidType()) { 613 // Void type; nothing to return. 614 ReturnValue = nullptr; 615 616 // Count the implicit return. 617 if (!endsWithReturn(D)) 618 ++NumReturnExprs; 619 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 620 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 621 // Indirect aggregate return; emit returned value directly into sret slot. 622 // This reduces code size, and affects correctness in C++. 623 auto AI = CurFn->arg_begin(); 624 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 625 ++AI; 626 ReturnValue = AI; 627 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 628 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 629 // Load the sret pointer from the argument struct and return into that. 630 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 631 llvm::Function::arg_iterator EI = CurFn->arg_end(); 632 --EI; 633 llvm::Value *Addr = Builder.CreateStructGEP(EI, Idx); 634 ReturnValue = Builder.CreateLoad(Addr, "agg.result"); 635 } else { 636 ReturnValue = CreateIRTemp(RetTy, "retval"); 637 638 // Tell the epilog emitter to autorelease the result. We do this 639 // now so that various specialized functions can suppress it 640 // during their IR-generation. 641 if (getLangOpts().ObjCAutoRefCount && 642 !CurFnInfo->isReturnsRetained() && 643 RetTy->isObjCRetainableType()) 644 AutoreleaseResult = true; 645 } 646 647 EmitStartEHSpec(CurCodeDecl); 648 649 PrologueCleanupDepth = EHStack.stable_begin(); 650 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 651 652 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 653 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 654 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 655 if (MD->getParent()->isLambda() && 656 MD->getOverloadedOperator() == OO_Call) { 657 // We're in a lambda; figure out the captures. 658 MD->getParent()->getCaptureFields(LambdaCaptureFields, 659 LambdaThisCaptureField); 660 if (LambdaThisCaptureField) { 661 // If this lambda captures this, load it. 662 LValue ThisLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 663 CXXThisValue = EmitLoadOfLValue(ThisLValue, 664 SourceLocation()).getScalarVal(); 665 } 666 } else { 667 // Not in a lambda; just use 'this' from the method. 668 // FIXME: Should we generate a new load for each use of 'this'? The 669 // fast register allocator would be happier... 670 CXXThisValue = CXXABIThisValue; 671 } 672 } 673 674 // If any of the arguments have a variably modified type, make sure to 675 // emit the type size. 676 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 677 i != e; ++i) { 678 const VarDecl *VD = *i; 679 680 // Dig out the type as written from ParmVarDecls; it's unclear whether 681 // the standard (C99 6.9.1p10) requires this, but we're following the 682 // precedent set by gcc. 683 QualType Ty; 684 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 685 Ty = PVD->getOriginalType(); 686 else 687 Ty = VD->getType(); 688 689 if (Ty->isVariablyModifiedType()) 690 EmitVariablyModifiedType(Ty); 691 } 692 // Emit a location at the end of the prologue. 693 if (CGDebugInfo *DI = getDebugInfo()) 694 DI->EmitLocation(Builder, StartLoc); 695 } 696 697 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 698 const Stmt *Body) { 699 RegionCounter Cnt = getPGORegionCounter(Body); 700 Cnt.beginRegion(Builder); 701 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 702 EmitCompoundStmtWithoutScope(*S); 703 else 704 EmitStmt(Body); 705 } 706 707 /// When instrumenting to collect profile data, the counts for some blocks 708 /// such as switch cases need to not include the fall-through counts, so 709 /// emit a branch around the instrumentation code. When not instrumenting, 710 /// this just calls EmitBlock(). 711 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 712 RegionCounter &Cnt) { 713 llvm::BasicBlock *SkipCountBB = nullptr; 714 if (HaveInsertPoint() && CGM.getCodeGenOpts().ProfileInstrGenerate) { 715 // When instrumenting for profiling, the fallthrough to certain 716 // statements needs to skip over the instrumentation code so that we 717 // get an accurate count. 718 SkipCountBB = createBasicBlock("skipcount"); 719 EmitBranch(SkipCountBB); 720 } 721 EmitBlock(BB); 722 Cnt.beginRegion(Builder, /*AddIncomingFallThrough=*/true); 723 if (SkipCountBB) 724 EmitBlock(SkipCountBB); 725 } 726 727 /// Tries to mark the given function nounwind based on the 728 /// non-existence of any throwing calls within it. We believe this is 729 /// lightweight enough to do at -O0. 730 static void TryMarkNoThrow(llvm::Function *F) { 731 // LLVM treats 'nounwind' on a function as part of the type, so we 732 // can't do this on functions that can be overwritten. 733 if (F->mayBeOverridden()) return; 734 735 for (llvm::Function::iterator FI = F->begin(), FE = F->end(); FI != FE; ++FI) 736 for (llvm::BasicBlock::iterator 737 BI = FI->begin(), BE = FI->end(); BI != BE; ++BI) 738 if (llvm::CallInst *Call = dyn_cast<llvm::CallInst>(&*BI)) { 739 if (!Call->doesNotThrow()) 740 return; 741 } else if (isa<llvm::ResumeInst>(&*BI)) { 742 return; 743 } 744 F->setDoesNotThrow(); 745 } 746 747 static void EmitSizedDeallocationFunction(CodeGenFunction &CGF, 748 const FunctionDecl *UnsizedDealloc) { 749 // This is a weak discardable definition of the sized deallocation function. 750 CGF.CurFn->setLinkage(llvm::Function::LinkOnceAnyLinkage); 751 752 // Call the unsized deallocation function and forward the first argument 753 // unchanged. 754 llvm::Constant *Unsized = CGF.CGM.GetAddrOfFunction(UnsizedDealloc); 755 CGF.Builder.CreateCall(Unsized, &*CGF.CurFn->arg_begin()); 756 } 757 758 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 759 const CGFunctionInfo &FnInfo) { 760 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 761 762 // Check if we should generate debug info for this function. 763 if (FD->hasAttr<NoDebugAttr>()) 764 DebugInfo = nullptr; // disable debug info indefinitely for this function 765 766 FunctionArgList Args; 767 QualType ResTy = FD->getReturnType(); 768 769 CurGD = GD; 770 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 771 if (MD && MD->isInstance()) { 772 if (CGM.getCXXABI().HasThisReturn(GD)) 773 ResTy = MD->getThisType(getContext()); 774 CGM.getCXXABI().buildThisParam(*this, Args); 775 } 776 777 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) 778 Args.push_back(FD->getParamDecl(i)); 779 780 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 781 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 782 783 SourceRange BodyRange; 784 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 785 CurEHLocation = BodyRange.getEnd(); 786 787 // Use the location of the start of the function to determine where 788 // the function definition is located. By default use the location 789 // of the declaration as the location for the subprogram. A function 790 // may lack a declaration in the source code if it is created by code 791 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 792 SourceLocation Loc = FD->getLocation(); 793 794 // If this is a function specialization then use the pattern body 795 // as the location for the function. 796 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 797 if (SpecDecl->hasBody(SpecDecl)) 798 Loc = SpecDecl->getLocation(); 799 800 // Emit the standard function prologue. 801 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 802 803 // Generate the body of the function. 804 PGO.assignRegionCounters(GD.getDecl(), CurFn); 805 if (isa<CXXDestructorDecl>(FD)) 806 EmitDestructorBody(Args); 807 else if (isa<CXXConstructorDecl>(FD)) 808 EmitConstructorBody(Args); 809 else if (getLangOpts().CUDA && 810 !CGM.getCodeGenOpts().CUDAIsDevice && 811 FD->hasAttr<CUDAGlobalAttr>()) 812 CGM.getCUDARuntime().EmitDeviceStubBody(*this, Args); 813 else if (isa<CXXConversionDecl>(FD) && 814 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 815 // The lambda conversion to block pointer is special; the semantics can't be 816 // expressed in the AST, so IRGen needs to special-case it. 817 EmitLambdaToBlockPointerBody(Args); 818 } else if (isa<CXXMethodDecl>(FD) && 819 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 820 // The lambda static invoker function is special, because it forwards or 821 // clones the body of the function call operator (but is actually static). 822 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 823 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 824 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 825 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 826 // Implicit copy-assignment gets the same special treatment as implicit 827 // copy-constructors. 828 emitImplicitAssignmentOperatorBody(Args); 829 } else if (Stmt *Body = FD->getBody()) { 830 EmitFunctionBody(Args, Body); 831 } else if (FunctionDecl *UnsizedDealloc = 832 FD->getCorrespondingUnsizedGlobalDeallocationFunction()) { 833 // Global sized deallocation functions get an implicit weak definition if 834 // they don't have an explicit definition. 835 EmitSizedDeallocationFunction(*this, UnsizedDealloc); 836 } else 837 llvm_unreachable("no definition for emitted function"); 838 839 // C++11 [stmt.return]p2: 840 // Flowing off the end of a function [...] results in undefined behavior in 841 // a value-returning function. 842 // C11 6.9.1p12: 843 // If the '}' that terminates a function is reached, and the value of the 844 // function call is used by the caller, the behavior is undefined. 845 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && 846 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 847 if (SanOpts->Return) { 848 SanitizerScope SanScope(this); 849 EmitCheck(Builder.getFalse(), "missing_return", 850 EmitCheckSourceLocation(FD->getLocation()), 851 ArrayRef<llvm::Value *>(), CRK_Unrecoverable); 852 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) 853 Builder.CreateCall(CGM.getIntrinsic(llvm::Intrinsic::trap)); 854 Builder.CreateUnreachable(); 855 Builder.ClearInsertionPoint(); 856 } 857 858 // Emit the standard function epilogue. 859 FinishFunction(BodyRange.getEnd()); 860 861 // If we haven't marked the function nothrow through other means, do 862 // a quick pass now to see if we can. 863 if (!CurFn->doesNotThrow()) 864 TryMarkNoThrow(CurFn); 865 866 PGO.emitInstrumentationData(); 867 PGO.destroyRegionCounters(); 868 } 869 870 /// ContainsLabel - Return true if the statement contains a label in it. If 871 /// this statement is not executed normally, it not containing a label means 872 /// that we can just remove the code. 873 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 874 // Null statement, not a label! 875 if (!S) return false; 876 877 // If this is a label, we have to emit the code, consider something like: 878 // if (0) { ... foo: bar(); } goto foo; 879 // 880 // TODO: If anyone cared, we could track __label__'s, since we know that you 881 // can't jump to one from outside their declared region. 882 if (isa<LabelStmt>(S)) 883 return true; 884 885 // If this is a case/default statement, and we haven't seen a switch, we have 886 // to emit the code. 887 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 888 return true; 889 890 // If this is a switch statement, we want to ignore cases below it. 891 if (isa<SwitchStmt>(S)) 892 IgnoreCaseStmts = true; 893 894 // Scan subexpressions for verboten labels. 895 for (Stmt::const_child_range I = S->children(); I; ++I) 896 if (ContainsLabel(*I, IgnoreCaseStmts)) 897 return true; 898 899 return false; 900 } 901 902 /// containsBreak - Return true if the statement contains a break out of it. 903 /// If the statement (recursively) contains a switch or loop with a break 904 /// inside of it, this is fine. 905 bool CodeGenFunction::containsBreak(const Stmt *S) { 906 // Null statement, not a label! 907 if (!S) return false; 908 909 // If this is a switch or loop that defines its own break scope, then we can 910 // include it and anything inside of it. 911 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 912 isa<ForStmt>(S)) 913 return false; 914 915 if (isa<BreakStmt>(S)) 916 return true; 917 918 // Scan subexpressions for verboten breaks. 919 for (Stmt::const_child_range I = S->children(); I; ++I) 920 if (containsBreak(*I)) 921 return true; 922 923 return false; 924 } 925 926 927 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 928 /// to a constant, or if it does but contains a label, return false. If it 929 /// constant folds return true and set the boolean result in Result. 930 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 931 bool &ResultBool) { 932 llvm::APSInt ResultInt; 933 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt)) 934 return false; 935 936 ResultBool = ResultInt.getBoolValue(); 937 return true; 938 } 939 940 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 941 /// to a constant, or if it does but contains a label, return false. If it 942 /// constant folds return true and set the folded value. 943 bool CodeGenFunction:: 944 ConstantFoldsToSimpleInteger(const Expr *Cond, llvm::APSInt &ResultInt) { 945 // FIXME: Rename and handle conversion of other evaluatable things 946 // to bool. 947 llvm::APSInt Int; 948 if (!Cond->EvaluateAsInt(Int, getContext())) 949 return false; // Not foldable, not integer or not fully evaluatable. 950 951 if (CodeGenFunction::ContainsLabel(Cond)) 952 return false; // Contains a label. 953 954 ResultInt = Int; 955 return true; 956 } 957 958 959 960 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 961 /// statement) to the specified blocks. Based on the condition, this might try 962 /// to simplify the codegen of the conditional based on the branch. 963 /// 964 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 965 llvm::BasicBlock *TrueBlock, 966 llvm::BasicBlock *FalseBlock, 967 uint64_t TrueCount) { 968 Cond = Cond->IgnoreParens(); 969 970 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 971 972 // Handle X && Y in a condition. 973 if (CondBOp->getOpcode() == BO_LAnd) { 974 RegionCounter Cnt = getPGORegionCounter(CondBOp); 975 976 // If we have "1 && X", simplify the code. "0 && X" would have constant 977 // folded if the case was simple enough. 978 bool ConstantBool = false; 979 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 980 ConstantBool) { 981 // br(1 && X) -> br(X). 982 Cnt.beginRegion(Builder); 983 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 984 TrueCount); 985 } 986 987 // If we have "X && 1", simplify the code to use an uncond branch. 988 // "X && 0" would have been constant folded to 0. 989 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 990 ConstantBool) { 991 // br(X && 1) -> br(X). 992 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 993 TrueCount); 994 } 995 996 // Emit the LHS as a conditional. If the LHS conditional is false, we 997 // want to jump to the FalseBlock. 998 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 999 // The counter tells us how often we evaluate RHS, and all of TrueCount 1000 // can be propagated to that branch. 1001 uint64_t RHSCount = Cnt.getCount(); 1002 1003 ConditionalEvaluation eval(*this); 1004 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1005 EmitBlock(LHSTrue); 1006 1007 // Any temporaries created here are conditional. 1008 Cnt.beginRegion(Builder); 1009 eval.begin(*this); 1010 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1011 eval.end(*this); 1012 1013 return; 1014 } 1015 1016 if (CondBOp->getOpcode() == BO_LOr) { 1017 RegionCounter Cnt = getPGORegionCounter(CondBOp); 1018 1019 // If we have "0 || X", simplify the code. "1 || X" would have constant 1020 // folded if the case was simple enough. 1021 bool ConstantBool = false; 1022 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1023 !ConstantBool) { 1024 // br(0 || X) -> br(X). 1025 Cnt.beginRegion(Builder); 1026 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1027 TrueCount); 1028 } 1029 1030 // If we have "X || 0", simplify the code to use an uncond branch. 1031 // "X || 1" would have been constant folded to 1. 1032 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1033 !ConstantBool) { 1034 // br(X || 0) -> br(X). 1035 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1036 TrueCount); 1037 } 1038 1039 // Emit the LHS as a conditional. If the LHS conditional is true, we 1040 // want to jump to the TrueBlock. 1041 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1042 // We have the count for entry to the RHS and for the whole expression 1043 // being true, so we can divy up True count between the short circuit and 1044 // the RHS. 1045 uint64_t LHSCount = Cnt.getParentCount() - Cnt.getCount(); 1046 uint64_t RHSCount = TrueCount - LHSCount; 1047 1048 ConditionalEvaluation eval(*this); 1049 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1050 EmitBlock(LHSFalse); 1051 1052 // Any temporaries created here are conditional. 1053 Cnt.beginRegion(Builder); 1054 eval.begin(*this); 1055 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1056 1057 eval.end(*this); 1058 1059 return; 1060 } 1061 } 1062 1063 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1064 // br(!x, t, f) -> br(x, f, t) 1065 if (CondUOp->getOpcode() == UO_LNot) { 1066 // Negate the count. 1067 uint64_t FalseCount = PGO.getCurrentRegionCount() - TrueCount; 1068 // Negate the condition and swap the destination blocks. 1069 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1070 FalseCount); 1071 } 1072 } 1073 1074 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1075 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1076 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1077 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1078 1079 RegionCounter Cnt = getPGORegionCounter(CondOp); 1080 ConditionalEvaluation cond(*this); 1081 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, Cnt.getCount()); 1082 1083 // When computing PGO branch weights, we only know the overall count for 1084 // the true block. This code is essentially doing tail duplication of the 1085 // naive code-gen, introducing new edges for which counts are not 1086 // available. Divide the counts proportionally between the LHS and RHS of 1087 // the conditional operator. 1088 uint64_t LHSScaledTrueCount = 0; 1089 if (TrueCount) { 1090 double LHSRatio = Cnt.getCount() / (double) Cnt.getParentCount(); 1091 LHSScaledTrueCount = TrueCount * LHSRatio; 1092 } 1093 1094 cond.begin(*this); 1095 EmitBlock(LHSBlock); 1096 Cnt.beginRegion(Builder); 1097 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1098 LHSScaledTrueCount); 1099 cond.end(*this); 1100 1101 cond.begin(*this); 1102 EmitBlock(RHSBlock); 1103 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1104 TrueCount - LHSScaledTrueCount); 1105 cond.end(*this); 1106 1107 return; 1108 } 1109 1110 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1111 // Conditional operator handling can give us a throw expression as a 1112 // condition for a case like: 1113 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1114 // Fold this to: 1115 // br(c, throw x, br(y, t, f)) 1116 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1117 return; 1118 } 1119 1120 // Create branch weights based on the number of times we get here and the 1121 // number of times the condition should be true. 1122 uint64_t CurrentCount = std::max(PGO.getCurrentRegionCount(), TrueCount); 1123 llvm::MDNode *Weights = PGO.createBranchWeights(TrueCount, 1124 CurrentCount - TrueCount); 1125 1126 // Emit the code with the fully general case. 1127 llvm::Value *CondV = EvaluateExprAsBool(Cond); 1128 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights); 1129 } 1130 1131 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1132 /// specified stmt yet. 1133 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1134 CGM.ErrorUnsupported(S, Type); 1135 } 1136 1137 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1138 /// variable-length array whose elements have a non-zero bit-pattern. 1139 /// 1140 /// \param baseType the inner-most element type of the array 1141 /// \param src - a char* pointing to the bit-pattern for a single 1142 /// base element of the array 1143 /// \param sizeInChars - the total size of the VLA, in chars 1144 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1145 llvm::Value *dest, llvm::Value *src, 1146 llvm::Value *sizeInChars) { 1147 std::pair<CharUnits,CharUnits> baseSizeAndAlign 1148 = CGF.getContext().getTypeInfoInChars(baseType); 1149 1150 CGBuilderTy &Builder = CGF.Builder; 1151 1152 llvm::Value *baseSizeInChars 1153 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSizeAndAlign.first.getQuantity()); 1154 1155 llvm::Type *i8p = Builder.getInt8PtrTy(); 1156 1157 llvm::Value *begin = Builder.CreateBitCast(dest, i8p, "vla.begin"); 1158 llvm::Value *end = Builder.CreateInBoundsGEP(dest, sizeInChars, "vla.end"); 1159 1160 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1161 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1162 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1163 1164 // Make a loop over the VLA. C99 guarantees that the VLA element 1165 // count must be nonzero. 1166 CGF.EmitBlock(loopBB); 1167 1168 llvm::PHINode *cur = Builder.CreatePHI(i8p, 2, "vla.cur"); 1169 cur->addIncoming(begin, originBB); 1170 1171 // memcpy the individual element bit-pattern. 1172 Builder.CreateMemCpy(cur, src, baseSizeInChars, 1173 baseSizeAndAlign.second.getQuantity(), 1174 /*volatile*/ false); 1175 1176 // Go to the next element. 1177 llvm::Value *next = Builder.CreateConstInBoundsGEP1_32(cur, 1, "vla.next"); 1178 1179 // Leave if that's the end of the VLA. 1180 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1181 Builder.CreateCondBr(done, contBB, loopBB); 1182 cur->addIncoming(next, loopBB); 1183 1184 CGF.EmitBlock(contBB); 1185 } 1186 1187 void 1188 CodeGenFunction::EmitNullInitialization(llvm::Value *DestPtr, QualType Ty) { 1189 // Ignore empty classes in C++. 1190 if (getLangOpts().CPlusPlus) { 1191 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1192 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1193 return; 1194 } 1195 } 1196 1197 // Cast the dest ptr to the appropriate i8 pointer type. 1198 unsigned DestAS = 1199 cast<llvm::PointerType>(DestPtr->getType())->getAddressSpace(); 1200 llvm::Type *BP = Builder.getInt8PtrTy(DestAS); 1201 if (DestPtr->getType() != BP) 1202 DestPtr = Builder.CreateBitCast(DestPtr, BP); 1203 1204 // Get size and alignment info for this aggregate. 1205 std::pair<CharUnits, CharUnits> TypeInfo = 1206 getContext().getTypeInfoInChars(Ty); 1207 CharUnits Size = TypeInfo.first; 1208 CharUnits Align = TypeInfo.second; 1209 1210 llvm::Value *SizeVal; 1211 const VariableArrayType *vla; 1212 1213 // Don't bother emitting a zero-byte memset. 1214 if (Size.isZero()) { 1215 // But note that getTypeInfo returns 0 for a VLA. 1216 if (const VariableArrayType *vlaType = 1217 dyn_cast_or_null<VariableArrayType>( 1218 getContext().getAsArrayType(Ty))) { 1219 QualType eltType; 1220 llvm::Value *numElts; 1221 std::tie(numElts, eltType) = getVLASize(vlaType); 1222 1223 SizeVal = numElts; 1224 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1225 if (!eltSize.isOne()) 1226 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1227 vla = vlaType; 1228 } else { 1229 return; 1230 } 1231 } else { 1232 SizeVal = CGM.getSize(Size); 1233 vla = nullptr; 1234 } 1235 1236 // If the type contains a pointer to data member we can't memset it to zero. 1237 // Instead, create a null constant and copy it to the destination. 1238 // TODO: there are other patterns besides zero that we can usefully memset, 1239 // like -1, which happens to be the pattern used by member-pointers. 1240 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1241 // For a VLA, emit a single element, then splat that over the VLA. 1242 if (vla) Ty = getContext().getBaseElementType(vla); 1243 1244 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1245 1246 llvm::GlobalVariable *NullVariable = 1247 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1248 /*isConstant=*/true, 1249 llvm::GlobalVariable::PrivateLinkage, 1250 NullConstant, Twine()); 1251 llvm::Value *SrcPtr = 1252 Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()); 1253 1254 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1255 1256 // Get and call the appropriate llvm.memcpy overload. 1257 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, Align.getQuantity(), false); 1258 return; 1259 } 1260 1261 // Otherwise, just memset the whole thing to zero. This is legal 1262 // because in LLVM, all default initializers (other than the ones we just 1263 // handled above) are guaranteed to have a bit pattern of all zeros. 1264 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, 1265 Align.getQuantity(), false); 1266 } 1267 1268 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1269 // Make sure that there is a block for the indirect goto. 1270 if (!IndirectBranch) 1271 GetIndirectGotoBlock(); 1272 1273 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1274 1275 // Make sure the indirect branch includes all of the address-taken blocks. 1276 IndirectBranch->addDestination(BB); 1277 return llvm::BlockAddress::get(CurFn, BB); 1278 } 1279 1280 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1281 // If we already made the indirect branch for indirect goto, return its block. 1282 if (IndirectBranch) return IndirectBranch->getParent(); 1283 1284 CGBuilderTy TmpBuilder(createBasicBlock("indirectgoto")); 1285 1286 // Create the PHI node that indirect gotos will add entries to. 1287 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1288 "indirect.goto.dest"); 1289 1290 // Create the indirect branch instruction. 1291 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1292 return IndirectBranch->getParent(); 1293 } 1294 1295 /// Computes the length of an array in elements, as well as the base 1296 /// element type and a properly-typed first element pointer. 1297 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1298 QualType &baseType, 1299 llvm::Value *&addr) { 1300 const ArrayType *arrayType = origArrayType; 1301 1302 // If it's a VLA, we have to load the stored size. Note that 1303 // this is the size of the VLA in bytes, not its size in elements. 1304 llvm::Value *numVLAElements = nullptr; 1305 if (isa<VariableArrayType>(arrayType)) { 1306 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1307 1308 // Walk into all VLAs. This doesn't require changes to addr, 1309 // which has type T* where T is the first non-VLA element type. 1310 do { 1311 QualType elementType = arrayType->getElementType(); 1312 arrayType = getContext().getAsArrayType(elementType); 1313 1314 // If we only have VLA components, 'addr' requires no adjustment. 1315 if (!arrayType) { 1316 baseType = elementType; 1317 return numVLAElements; 1318 } 1319 } while (isa<VariableArrayType>(arrayType)); 1320 1321 // We get out here only if we find a constant array type 1322 // inside the VLA. 1323 } 1324 1325 // We have some number of constant-length arrays, so addr should 1326 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1327 // down to the first element of addr. 1328 SmallVector<llvm::Value*, 8> gepIndices; 1329 1330 // GEP down to the array type. 1331 llvm::ConstantInt *zero = Builder.getInt32(0); 1332 gepIndices.push_back(zero); 1333 1334 uint64_t countFromCLAs = 1; 1335 QualType eltType; 1336 1337 llvm::ArrayType *llvmArrayType = 1338 dyn_cast<llvm::ArrayType>( 1339 cast<llvm::PointerType>(addr->getType())->getElementType()); 1340 while (llvmArrayType) { 1341 assert(isa<ConstantArrayType>(arrayType)); 1342 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1343 == llvmArrayType->getNumElements()); 1344 1345 gepIndices.push_back(zero); 1346 countFromCLAs *= llvmArrayType->getNumElements(); 1347 eltType = arrayType->getElementType(); 1348 1349 llvmArrayType = 1350 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1351 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1352 assert((!llvmArrayType || arrayType) && 1353 "LLVM and Clang types are out-of-synch"); 1354 } 1355 1356 if (arrayType) { 1357 // From this point onwards, the Clang array type has been emitted 1358 // as some other type (probably a packed struct). Compute the array 1359 // size, and just emit the 'begin' expression as a bitcast. 1360 while (arrayType) { 1361 countFromCLAs *= 1362 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1363 eltType = arrayType->getElementType(); 1364 arrayType = getContext().getAsArrayType(eltType); 1365 } 1366 1367 unsigned AddressSpace = addr->getType()->getPointerAddressSpace(); 1368 llvm::Type *BaseType = ConvertType(eltType)->getPointerTo(AddressSpace); 1369 addr = Builder.CreateBitCast(addr, BaseType, "array.begin"); 1370 } else { 1371 // Create the actual GEP. 1372 addr = Builder.CreateInBoundsGEP(addr, gepIndices, "array.begin"); 1373 } 1374 1375 baseType = eltType; 1376 1377 llvm::Value *numElements 1378 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1379 1380 // If we had any VLA dimensions, factor them in. 1381 if (numVLAElements) 1382 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1383 1384 return numElements; 1385 } 1386 1387 std::pair<llvm::Value*, QualType> 1388 CodeGenFunction::getVLASize(QualType type) { 1389 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1390 assert(vla && "type was not a variable array type!"); 1391 return getVLASize(vla); 1392 } 1393 1394 std::pair<llvm::Value*, QualType> 1395 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1396 // The number of elements so far; always size_t. 1397 llvm::Value *numElements = nullptr; 1398 1399 QualType elementType; 1400 do { 1401 elementType = type->getElementType(); 1402 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1403 assert(vlaSize && "no size for VLA!"); 1404 assert(vlaSize->getType() == SizeTy); 1405 1406 if (!numElements) { 1407 numElements = vlaSize; 1408 } else { 1409 // It's undefined behavior if this wraps around, so mark it that way. 1410 // FIXME: Teach -fsanitize=undefined to trap this. 1411 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1412 } 1413 } while ((type = getContext().getAsVariableArrayType(elementType))); 1414 1415 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1416 } 1417 1418 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1419 assert(type->isVariablyModifiedType() && 1420 "Must pass variably modified type to EmitVLASizes!"); 1421 1422 EnsureInsertPoint(); 1423 1424 // We're going to walk down into the type and look for VLA 1425 // expressions. 1426 do { 1427 assert(type->isVariablyModifiedType()); 1428 1429 const Type *ty = type.getTypePtr(); 1430 switch (ty->getTypeClass()) { 1431 1432 #define TYPE(Class, Base) 1433 #define ABSTRACT_TYPE(Class, Base) 1434 #define NON_CANONICAL_TYPE(Class, Base) 1435 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1436 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1437 #include "clang/AST/TypeNodes.def" 1438 llvm_unreachable("unexpected dependent type!"); 1439 1440 // These types are never variably-modified. 1441 case Type::Builtin: 1442 case Type::Complex: 1443 case Type::Vector: 1444 case Type::ExtVector: 1445 case Type::Record: 1446 case Type::Enum: 1447 case Type::Elaborated: 1448 case Type::TemplateSpecialization: 1449 case Type::ObjCObject: 1450 case Type::ObjCInterface: 1451 case Type::ObjCObjectPointer: 1452 llvm_unreachable("type class is never variably-modified!"); 1453 1454 case Type::Adjusted: 1455 type = cast<AdjustedType>(ty)->getAdjustedType(); 1456 break; 1457 1458 case Type::Decayed: 1459 type = cast<DecayedType>(ty)->getPointeeType(); 1460 break; 1461 1462 case Type::Pointer: 1463 type = cast<PointerType>(ty)->getPointeeType(); 1464 break; 1465 1466 case Type::BlockPointer: 1467 type = cast<BlockPointerType>(ty)->getPointeeType(); 1468 break; 1469 1470 case Type::LValueReference: 1471 case Type::RValueReference: 1472 type = cast<ReferenceType>(ty)->getPointeeType(); 1473 break; 1474 1475 case Type::MemberPointer: 1476 type = cast<MemberPointerType>(ty)->getPointeeType(); 1477 break; 1478 1479 case Type::ConstantArray: 1480 case Type::IncompleteArray: 1481 // Losing element qualification here is fine. 1482 type = cast<ArrayType>(ty)->getElementType(); 1483 break; 1484 1485 case Type::VariableArray: { 1486 // Losing element qualification here is fine. 1487 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1488 1489 // Unknown size indication requires no size computation. 1490 // Otherwise, evaluate and record it. 1491 if (const Expr *size = vat->getSizeExpr()) { 1492 // It's possible that we might have emitted this already, 1493 // e.g. with a typedef and a pointer to it. 1494 llvm::Value *&entry = VLASizeMap[size]; 1495 if (!entry) { 1496 llvm::Value *Size = EmitScalarExpr(size); 1497 1498 // C11 6.7.6.2p5: 1499 // If the size is an expression that is not an integer constant 1500 // expression [...] each time it is evaluated it shall have a value 1501 // greater than zero. 1502 if (SanOpts->VLABound && 1503 size->getType()->isSignedIntegerType()) { 1504 SanitizerScope SanScope(this); 1505 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1506 llvm::Constant *StaticArgs[] = { 1507 EmitCheckSourceLocation(size->getLocStart()), 1508 EmitCheckTypeDescriptor(size->getType()) 1509 }; 1510 EmitCheck(Builder.CreateICmpSGT(Size, Zero), 1511 "vla_bound_not_positive", StaticArgs, Size, 1512 CRK_Recoverable); 1513 } 1514 1515 // Always zexting here would be wrong if it weren't 1516 // undefined behavior to have a negative bound. 1517 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1518 } 1519 } 1520 type = vat->getElementType(); 1521 break; 1522 } 1523 1524 case Type::FunctionProto: 1525 case Type::FunctionNoProto: 1526 type = cast<FunctionType>(ty)->getReturnType(); 1527 break; 1528 1529 case Type::Paren: 1530 case Type::TypeOf: 1531 case Type::UnaryTransform: 1532 case Type::Attributed: 1533 case Type::SubstTemplateTypeParm: 1534 case Type::PackExpansion: 1535 // Keep walking after single level desugaring. 1536 type = type.getSingleStepDesugaredType(getContext()); 1537 break; 1538 1539 case Type::Typedef: 1540 case Type::Decltype: 1541 case Type::Auto: 1542 // Stop walking: nothing to do. 1543 return; 1544 1545 case Type::TypeOfExpr: 1546 // Stop walking: emit typeof expression. 1547 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1548 return; 1549 1550 case Type::Atomic: 1551 type = cast<AtomicType>(ty)->getValueType(); 1552 break; 1553 } 1554 } while (type->isVariablyModifiedType()); 1555 } 1556 1557 llvm::Value* CodeGenFunction::EmitVAListRef(const Expr* E) { 1558 if (getContext().getBuiltinVaListType()->isArrayType()) 1559 return EmitScalarExpr(E); 1560 return EmitLValue(E).getAddress(); 1561 } 1562 1563 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1564 llvm::Constant *Init) { 1565 assert (Init && "Invalid DeclRefExpr initializer!"); 1566 if (CGDebugInfo *Dbg = getDebugInfo()) 1567 if (CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) 1568 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1569 } 1570 1571 CodeGenFunction::PeepholeProtection 1572 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1573 // At the moment, the only aggressive peephole we do in IR gen 1574 // is trunc(zext) folding, but if we add more, we can easily 1575 // extend this protection. 1576 1577 if (!rvalue.isScalar()) return PeepholeProtection(); 1578 llvm::Value *value = rvalue.getScalarVal(); 1579 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1580 1581 // Just make an extra bitcast. 1582 assert(HaveInsertPoint()); 1583 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1584 Builder.GetInsertBlock()); 1585 1586 PeepholeProtection protection; 1587 protection.Inst = inst; 1588 return protection; 1589 } 1590 1591 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1592 if (!protection.Inst) return; 1593 1594 // In theory, we could try to duplicate the peepholes now, but whatever. 1595 protection.Inst->eraseFromParent(); 1596 } 1597 1598 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1599 llvm::Value *AnnotatedVal, 1600 StringRef AnnotationStr, 1601 SourceLocation Location) { 1602 llvm::Value *Args[4] = { 1603 AnnotatedVal, 1604 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1605 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1606 CGM.EmitAnnotationLineNo(Location) 1607 }; 1608 return Builder.CreateCall(AnnotationFn, Args); 1609 } 1610 1611 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1612 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1613 // FIXME We create a new bitcast for every annotation because that's what 1614 // llvm-gcc was doing. 1615 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1616 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1617 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1618 I->getAnnotation(), D->getLocation()); 1619 } 1620 1621 llvm::Value *CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1622 llvm::Value *V) { 1623 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1624 llvm::Type *VTy = V->getType(); 1625 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1626 CGM.Int8PtrTy); 1627 1628 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1629 // FIXME Always emit the cast inst so we can differentiate between 1630 // annotation on the first field of a struct and annotation on the struct 1631 // itself. 1632 if (VTy != CGM.Int8PtrTy) 1633 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1634 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1635 V = Builder.CreateBitCast(V, VTy); 1636 } 1637 1638 return V; 1639 } 1640 1641 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1642 1643 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1644 : CGF(CGF) { 1645 assert(!CGF->IsSanitizerScope); 1646 CGF->IsSanitizerScope = true; 1647 } 1648 1649 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1650 CGF->IsSanitizerScope = false; 1651 } 1652 1653 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1654 const llvm::Twine &Name, 1655 llvm::BasicBlock *BB, 1656 llvm::BasicBlock::iterator InsertPt) const { 1657 LoopStack.InsertHelper(I); 1658 if (IsSanitizerScope) { 1659 I->setMetadata( 1660 CGM.getModule().getMDKindID("nosanitize"), 1661 llvm::MDNode::get(CGM.getLLVMContext(), ArrayRef<llvm::Value *>())); 1662 } 1663 } 1664 1665 template <bool PreserveNames> 1666 void CGBuilderInserter<PreserveNames>::InsertHelper( 1667 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1668 llvm::BasicBlock::iterator InsertPt) const { 1669 llvm::IRBuilderDefaultInserter<PreserveNames>::InsertHelper(I, Name, BB, 1670 InsertPt); 1671 if (CGF) 1672 CGF->InsertHelper(I, Name, BB, InsertPt); 1673 } 1674 1675 #ifdef NDEBUG 1676 #define PreserveNames false 1677 #else 1678 #define PreserveNames true 1679 #endif 1680 template void CGBuilderInserter<PreserveNames>::InsertHelper( 1681 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1682 llvm::BasicBlock::iterator InsertPt) const; 1683 #undef PreserveNames 1684