1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 42 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 43 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 44 CGBuilderInserterTy(this)), 45 CurFn(nullptr), ReturnValue(Address::invalid()), 46 CapturedStmtInfo(nullptr), 47 SanOpts(CGM.getLangOpts().Sanitize), IsSanitizerScope(false), 48 CurFuncIsThunk(false), AutoreleaseResult(false), SawAsmBlock(false), 49 IsOutlinedSEHHelper(false), 50 BlockInfo(nullptr), BlockPointer(nullptr), 51 LambdaThisCaptureField(nullptr), NormalCleanupDest(nullptr), 52 NextCleanupDestIndex(1), FirstBlockInfo(nullptr), EHResumeBlock(nullptr), 53 ExceptionSlot(nullptr), EHSelectorSlot(nullptr), 54 DebugInfo(CGM.getModuleDebugInfo()), 55 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 56 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 57 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 58 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 59 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 60 CXXStructorImplicitParamDecl(nullptr), 61 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 62 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 63 TerminateHandler(nullptr), TrapBB(nullptr) { 64 if (!suppressNewContext) 65 CGM.getCXXABI().getMangleContext().startNewFunction(); 66 67 llvm::FastMathFlags FMF; 68 if (CGM.getLangOpts().FastMath) 69 FMF.setUnsafeAlgebra(); 70 if (CGM.getLangOpts().FiniteMathOnly) { 71 FMF.setNoNaNs(); 72 FMF.setNoInfs(); 73 } 74 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 75 FMF.setNoNaNs(); 76 } 77 if (CGM.getCodeGenOpts().NoSignedZeros) { 78 FMF.setNoSignedZeros(); 79 } 80 if (CGM.getCodeGenOpts().ReciprocalMath) { 81 FMF.setAllowReciprocal(); 82 } 83 Builder.setFastMathFlags(FMF); 84 } 85 86 CodeGenFunction::~CodeGenFunction() { 87 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 88 89 // If there are any unclaimed block infos, go ahead and destroy them 90 // now. This can happen if IR-gen gets clever and skips evaluating 91 // something. 92 if (FirstBlockInfo) 93 destroyBlockInfos(FirstBlockInfo); 94 95 if (getLangOpts().OpenMP) { 96 CGM.getOpenMPRuntime().functionFinished(*this); 97 } 98 } 99 100 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 101 AlignmentSource *Source) { 102 return getNaturalTypeAlignment(T->getPointeeType(), Source, 103 /*forPointee*/ true); 104 } 105 106 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 107 AlignmentSource *Source, 108 bool forPointeeType) { 109 // Honor alignment typedef attributes even on incomplete types. 110 // We also honor them straight for C++ class types, even as pointees; 111 // there's an expressivity gap here. 112 if (auto TT = T->getAs<TypedefType>()) { 113 if (auto Align = TT->getDecl()->getMaxAlignment()) { 114 if (Source) *Source = AlignmentSource::AttributedType; 115 return getContext().toCharUnitsFromBits(Align); 116 } 117 } 118 119 if (Source) *Source = AlignmentSource::Type; 120 121 CharUnits Alignment; 122 if (T->isIncompleteType()) { 123 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 124 } else { 125 // For C++ class pointees, we don't know whether we're pointing at a 126 // base or a complete object, so we generally need to use the 127 // non-virtual alignment. 128 const CXXRecordDecl *RD; 129 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 130 Alignment = CGM.getClassPointerAlignment(RD); 131 } else { 132 Alignment = getContext().getTypeAlignInChars(T); 133 } 134 135 // Cap to the global maximum type alignment unless the alignment 136 // was somehow explicit on the type. 137 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 138 if (Alignment.getQuantity() > MaxAlign && 139 !getContext().isAlignmentRequired(T)) 140 Alignment = CharUnits::fromQuantity(MaxAlign); 141 } 142 } 143 return Alignment; 144 } 145 146 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 147 AlignmentSource AlignSource; 148 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 149 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 150 CGM.getTBAAInfo(T)); 151 } 152 153 /// Given a value of type T* that may not be to a complete object, 154 /// construct an l-value with the natural pointee alignment of T. 155 LValue 156 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 157 AlignmentSource AlignSource; 158 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 159 return MakeAddrLValue(Address(V, Align), T, AlignSource); 160 } 161 162 163 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 164 return CGM.getTypes().ConvertTypeForMem(T); 165 } 166 167 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 168 return CGM.getTypes().ConvertType(T); 169 } 170 171 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 172 type = type.getCanonicalType(); 173 while (true) { 174 switch (type->getTypeClass()) { 175 #define TYPE(name, parent) 176 #define ABSTRACT_TYPE(name, parent) 177 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 178 #define DEPENDENT_TYPE(name, parent) case Type::name: 179 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 180 #include "clang/AST/TypeNodes.def" 181 llvm_unreachable("non-canonical or dependent type in IR-generation"); 182 183 case Type::Auto: 184 llvm_unreachable("undeduced auto type in IR-generation"); 185 186 // Various scalar types. 187 case Type::Builtin: 188 case Type::Pointer: 189 case Type::BlockPointer: 190 case Type::LValueReference: 191 case Type::RValueReference: 192 case Type::MemberPointer: 193 case Type::Vector: 194 case Type::ExtVector: 195 case Type::FunctionProto: 196 case Type::FunctionNoProto: 197 case Type::Enum: 198 case Type::ObjCObjectPointer: 199 case Type::Pipe: 200 return TEK_Scalar; 201 202 // Complexes. 203 case Type::Complex: 204 return TEK_Complex; 205 206 // Arrays, records, and Objective-C objects. 207 case Type::ConstantArray: 208 case Type::IncompleteArray: 209 case Type::VariableArray: 210 case Type::Record: 211 case Type::ObjCObject: 212 case Type::ObjCInterface: 213 return TEK_Aggregate; 214 215 // We operate on atomic values according to their underlying type. 216 case Type::Atomic: 217 type = cast<AtomicType>(type)->getValueType(); 218 continue; 219 } 220 llvm_unreachable("unknown type kind!"); 221 } 222 } 223 224 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 225 // For cleanliness, we try to avoid emitting the return block for 226 // simple cases. 227 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 228 229 if (CurBB) { 230 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 231 232 // We have a valid insert point, reuse it if it is empty or there are no 233 // explicit jumps to the return block. 234 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 235 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 236 delete ReturnBlock.getBlock(); 237 } else 238 EmitBlock(ReturnBlock.getBlock()); 239 return llvm::DebugLoc(); 240 } 241 242 // Otherwise, if the return block is the target of a single direct 243 // branch then we can just put the code in that block instead. This 244 // cleans up functions which started with a unified return block. 245 if (ReturnBlock.getBlock()->hasOneUse()) { 246 llvm::BranchInst *BI = 247 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 248 if (BI && BI->isUnconditional() && 249 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 250 // Record/return the DebugLoc of the simple 'return' expression to be used 251 // later by the actual 'ret' instruction. 252 llvm::DebugLoc Loc = BI->getDebugLoc(); 253 Builder.SetInsertPoint(BI->getParent()); 254 BI->eraseFromParent(); 255 delete ReturnBlock.getBlock(); 256 return Loc; 257 } 258 } 259 260 // FIXME: We are at an unreachable point, there is no reason to emit the block 261 // unless it has uses. However, we still need a place to put the debug 262 // region.end for now. 263 264 EmitBlock(ReturnBlock.getBlock()); 265 return llvm::DebugLoc(); 266 } 267 268 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 269 if (!BB) return; 270 if (!BB->use_empty()) 271 return CGF.CurFn->getBasicBlockList().push_back(BB); 272 delete BB; 273 } 274 275 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 276 assert(BreakContinueStack.empty() && 277 "mismatched push/pop in break/continue stack!"); 278 279 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 280 && NumSimpleReturnExprs == NumReturnExprs 281 && ReturnBlock.getBlock()->use_empty(); 282 // Usually the return expression is evaluated before the cleanup 283 // code. If the function contains only a simple return statement, 284 // such as a constant, the location before the cleanup code becomes 285 // the last useful breakpoint in the function, because the simple 286 // return expression will be evaluated after the cleanup code. To be 287 // safe, set the debug location for cleanup code to the location of 288 // the return statement. Otherwise the cleanup code should be at the 289 // end of the function's lexical scope. 290 // 291 // If there are multiple branches to the return block, the branch 292 // instructions will get the location of the return statements and 293 // all will be fine. 294 if (CGDebugInfo *DI = getDebugInfo()) { 295 if (OnlySimpleReturnStmts) 296 DI->EmitLocation(Builder, LastStopPoint); 297 else 298 DI->EmitLocation(Builder, EndLoc); 299 } 300 301 // Pop any cleanups that might have been associated with the 302 // parameters. Do this in whatever block we're currently in; it's 303 // important to do this before we enter the return block or return 304 // edges will be *really* confused. 305 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 306 bool HasOnlyLifetimeMarkers = 307 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 308 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 309 if (HasCleanups) { 310 // Make sure the line table doesn't jump back into the body for 311 // the ret after it's been at EndLoc. 312 if (CGDebugInfo *DI = getDebugInfo()) 313 if (OnlySimpleReturnStmts) 314 DI->EmitLocation(Builder, EndLoc); 315 316 PopCleanupBlocks(PrologueCleanupDepth); 317 } 318 319 // Emit function epilog (to return). 320 llvm::DebugLoc Loc = EmitReturnBlock(); 321 322 if (ShouldInstrumentFunction()) 323 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 324 325 // Emit debug descriptor for function end. 326 if (CGDebugInfo *DI = getDebugInfo()) 327 DI->EmitFunctionEnd(Builder); 328 329 // Reset the debug location to that of the simple 'return' expression, if any 330 // rather than that of the end of the function's scope '}'. 331 ApplyDebugLocation AL(*this, Loc); 332 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 333 EmitEndEHSpec(CurCodeDecl); 334 335 assert(EHStack.empty() && 336 "did not remove all scopes from cleanup stack!"); 337 338 // If someone did an indirect goto, emit the indirect goto block at the end of 339 // the function. 340 if (IndirectBranch) { 341 EmitBlock(IndirectBranch->getParent()); 342 Builder.ClearInsertionPoint(); 343 } 344 345 // If some of our locals escaped, insert a call to llvm.localescape in the 346 // entry block. 347 if (!EscapedLocals.empty()) { 348 // Invert the map from local to index into a simple vector. There should be 349 // no holes. 350 SmallVector<llvm::Value *, 4> EscapeArgs; 351 EscapeArgs.resize(EscapedLocals.size()); 352 for (auto &Pair : EscapedLocals) 353 EscapeArgs[Pair.second] = Pair.first; 354 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 355 &CGM.getModule(), llvm::Intrinsic::localescape); 356 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 357 } 358 359 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 360 llvm::Instruction *Ptr = AllocaInsertPt; 361 AllocaInsertPt = nullptr; 362 Ptr->eraseFromParent(); 363 364 // If someone took the address of a label but never did an indirect goto, we 365 // made a zero entry PHI node, which is illegal, zap it now. 366 if (IndirectBranch) { 367 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 368 if (PN->getNumIncomingValues() == 0) { 369 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 370 PN->eraseFromParent(); 371 } 372 } 373 374 EmitIfUsed(*this, EHResumeBlock); 375 EmitIfUsed(*this, TerminateLandingPad); 376 EmitIfUsed(*this, TerminateHandler); 377 EmitIfUsed(*this, UnreachableBlock); 378 379 if (CGM.getCodeGenOpts().EmitDeclMetadata) 380 EmitDeclMetadata(); 381 382 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 383 I = DeferredReplacements.begin(), 384 E = DeferredReplacements.end(); 385 I != E; ++I) { 386 I->first->replaceAllUsesWith(I->second); 387 I->first->eraseFromParent(); 388 } 389 } 390 391 /// ShouldInstrumentFunction - Return true if the current function should be 392 /// instrumented with __cyg_profile_func_* calls 393 bool CodeGenFunction::ShouldInstrumentFunction() { 394 if (!CGM.getCodeGenOpts().InstrumentFunctions) 395 return false; 396 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 397 return false; 398 return true; 399 } 400 401 /// ShouldXRayInstrument - Return true if the current function should be 402 /// instrumented with XRay nop sleds. 403 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 404 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 405 } 406 407 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 408 /// instrumentation function with the current function and the call site, if 409 /// function instrumentation is enabled. 410 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 411 auto NL = ApplyDebugLocation::CreateArtificial(*this); 412 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 413 llvm::PointerType *PointerTy = Int8PtrTy; 414 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 415 llvm::FunctionType *FunctionTy = 416 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 417 418 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 419 llvm::CallInst *CallSite = Builder.CreateCall( 420 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 421 llvm::ConstantInt::get(Int32Ty, 0), 422 "callsite"); 423 424 llvm::Value *args[] = { 425 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 426 CallSite 427 }; 428 429 EmitNounwindRuntimeCall(F, args); 430 } 431 432 void CodeGenFunction::EmitMCountInstrumentation() { 433 llvm::FunctionType *FTy = llvm::FunctionType::get(VoidTy, false); 434 435 llvm::Constant *MCountFn = 436 CGM.CreateRuntimeFunction(FTy, getTarget().getMCountName()); 437 EmitNounwindRuntimeCall(MCountFn); 438 } 439 440 // Returns the address space id that should be produced to the 441 // kernel_arg_addr_space metadata. This is always fixed to the ids 442 // as specified in the SPIR 2.0 specification in order to differentiate 443 // for example in clGetKernelArgInfo() implementation between the address 444 // spaces with targets without unique mapping to the OpenCL address spaces 445 // (basically all single AS CPUs). 446 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 447 switch (LangAS) { 448 case LangAS::opencl_global: return 1; 449 case LangAS::opencl_constant: return 2; 450 case LangAS::opencl_local: return 3; 451 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 452 default: 453 return 0; // Assume private. 454 } 455 } 456 457 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 458 // information in the program executable. The argument information stored 459 // includes the argument name, its type, the address and access qualifiers used. 460 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 461 CodeGenModule &CGM, llvm::LLVMContext &Context, 462 CGBuilderTy &Builder, ASTContext &ASTCtx) { 463 // Create MDNodes that represent the kernel arg metadata. 464 // Each MDNode is a list in the form of "key", N number of values which is 465 // the same number of values as their are kernel arguments. 466 467 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 468 469 // MDNode for the kernel argument address space qualifiers. 470 SmallVector<llvm::Metadata *, 8> addressQuals; 471 472 // MDNode for the kernel argument access qualifiers (images only). 473 SmallVector<llvm::Metadata *, 8> accessQuals; 474 475 // MDNode for the kernel argument type names. 476 SmallVector<llvm::Metadata *, 8> argTypeNames; 477 478 // MDNode for the kernel argument base type names. 479 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 480 481 // MDNode for the kernel argument type qualifiers. 482 SmallVector<llvm::Metadata *, 8> argTypeQuals; 483 484 // MDNode for the kernel argument names. 485 SmallVector<llvm::Metadata *, 8> argNames; 486 487 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 488 const ParmVarDecl *parm = FD->getParamDecl(i); 489 QualType ty = parm->getType(); 490 std::string typeQuals; 491 492 if (ty->isPointerType()) { 493 QualType pointeeTy = ty->getPointeeType(); 494 495 // Get address qualifier. 496 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 497 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 498 499 // Get argument type name. 500 std::string typeName = 501 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 502 503 // Turn "unsigned type" to "utype" 504 std::string::size_type pos = typeName.find("unsigned"); 505 if (pointeeTy.isCanonical() && pos != std::string::npos) 506 typeName.erase(pos+1, 8); 507 508 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 509 510 std::string baseTypeName = 511 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 512 Policy) + 513 "*"; 514 515 // Turn "unsigned type" to "utype" 516 pos = baseTypeName.find("unsigned"); 517 if (pos != std::string::npos) 518 baseTypeName.erase(pos+1, 8); 519 520 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 521 522 // Get argument type qualifiers: 523 if (ty.isRestrictQualified()) 524 typeQuals = "restrict"; 525 if (pointeeTy.isConstQualified() || 526 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 527 typeQuals += typeQuals.empty() ? "const" : " const"; 528 if (pointeeTy.isVolatileQualified()) 529 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 530 } else { 531 uint32_t AddrSpc = 0; 532 bool isPipe = ty->isPipeType(); 533 if (ty->isImageType() || isPipe) 534 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 535 536 addressQuals.push_back( 537 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 538 539 // Get argument type name. 540 std::string typeName; 541 if (isPipe) 542 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 543 .getAsString(Policy); 544 else 545 typeName = ty.getUnqualifiedType().getAsString(Policy); 546 547 // Turn "unsigned type" to "utype" 548 std::string::size_type pos = typeName.find("unsigned"); 549 if (ty.isCanonical() && pos != std::string::npos) 550 typeName.erase(pos+1, 8); 551 552 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 553 554 std::string baseTypeName; 555 if (isPipe) 556 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 557 ->getElementType().getCanonicalType() 558 .getAsString(Policy); 559 else 560 baseTypeName = 561 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 562 563 // Turn "unsigned type" to "utype" 564 pos = baseTypeName.find("unsigned"); 565 if (pos != std::string::npos) 566 baseTypeName.erase(pos+1, 8); 567 568 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 569 570 // Get argument type qualifiers: 571 if (ty.isConstQualified()) 572 typeQuals = "const"; 573 if (ty.isVolatileQualified()) 574 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 575 if (isPipe) 576 typeQuals = "pipe"; 577 } 578 579 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 580 581 // Get image and pipe access qualifier: 582 if (ty->isImageType()|| ty->isPipeType()) { 583 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 584 if (A && A->isWriteOnly()) 585 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 586 else if (A && A->isReadWrite()) 587 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 588 else 589 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 590 } else 591 accessQuals.push_back(llvm::MDString::get(Context, "none")); 592 593 // Get argument name. 594 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 595 } 596 597 Fn->setMetadata("kernel_arg_addr_space", 598 llvm::MDNode::get(Context, addressQuals)); 599 Fn->setMetadata("kernel_arg_access_qual", 600 llvm::MDNode::get(Context, accessQuals)); 601 Fn->setMetadata("kernel_arg_type", 602 llvm::MDNode::get(Context, argTypeNames)); 603 Fn->setMetadata("kernel_arg_base_type", 604 llvm::MDNode::get(Context, argBaseTypeNames)); 605 Fn->setMetadata("kernel_arg_type_qual", 606 llvm::MDNode::get(Context, argTypeQuals)); 607 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 608 Fn->setMetadata("kernel_arg_name", 609 llvm::MDNode::get(Context, argNames)); 610 } 611 612 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 613 llvm::Function *Fn) 614 { 615 if (!FD->hasAttr<OpenCLKernelAttr>()) 616 return; 617 618 llvm::LLVMContext &Context = getLLVMContext(); 619 620 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 621 622 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 623 QualType hintQTy = A->getTypeHint(); 624 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 625 bool isSignedInteger = 626 hintQTy->isSignedIntegerType() || 627 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 628 llvm::Metadata *attrMDArgs[] = { 629 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 630 CGM.getTypes().ConvertType(A->getTypeHint()))), 631 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 632 llvm::IntegerType::get(Context, 32), 633 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 634 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 635 } 636 637 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 638 llvm::Metadata *attrMDArgs[] = { 639 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 640 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 641 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 642 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 643 } 644 645 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 646 llvm::Metadata *attrMDArgs[] = { 647 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 648 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 649 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 650 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 651 } 652 } 653 654 /// Determine whether the function F ends with a return stmt. 655 static bool endsWithReturn(const Decl* F) { 656 const Stmt *Body = nullptr; 657 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 658 Body = FD->getBody(); 659 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 660 Body = OMD->getBody(); 661 662 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 663 auto LastStmt = CS->body_rbegin(); 664 if (LastStmt != CS->body_rend()) 665 return isa<ReturnStmt>(*LastStmt); 666 } 667 return false; 668 } 669 670 void CodeGenFunction::StartFunction(GlobalDecl GD, 671 QualType RetTy, 672 llvm::Function *Fn, 673 const CGFunctionInfo &FnInfo, 674 const FunctionArgList &Args, 675 SourceLocation Loc, 676 SourceLocation StartLoc) { 677 assert(!CurFn && 678 "Do not use a CodeGenFunction object for more than one function"); 679 680 const Decl *D = GD.getDecl(); 681 682 DidCallStackSave = false; 683 CurCodeDecl = D; 684 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 685 if (FD->usesSEHTry()) 686 CurSEHParent = FD; 687 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 688 FnRetTy = RetTy; 689 CurFn = Fn; 690 CurFnInfo = &FnInfo; 691 assert(CurFn->isDeclaration() && "Function already has body?"); 692 693 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 694 SanOpts.clear(); 695 696 if (D) { 697 // Apply the no_sanitize* attributes to SanOpts. 698 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 699 SanOpts.Mask &= ~Attr->getMask(); 700 } 701 702 // Apply sanitizer attributes to the function. 703 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 704 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 705 if (SanOpts.has(SanitizerKind::Thread)) 706 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 707 if (SanOpts.has(SanitizerKind::Memory)) 708 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 709 if (SanOpts.has(SanitizerKind::SafeStack)) 710 Fn->addFnAttr(llvm::Attribute::SafeStack); 711 712 // Apply xray attributes to the function (as a string, for now) 713 if (D && ShouldXRayInstrumentFunction()) { 714 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 715 if (XRayAttr->alwaysXRayInstrument()) 716 Fn->addFnAttr("function-instrument", "xray-always"); 717 if (XRayAttr->neverXRayInstrument()) 718 Fn->addFnAttr("function-instrument", "xray-never"); 719 } else { 720 Fn->addFnAttr( 721 "xray-instruction-threshold", 722 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 723 } 724 } 725 726 // Pass inline keyword to optimizer if it appears explicitly on any 727 // declaration. Also, in the case of -fno-inline attach NoInline 728 // attribute to all functions that are not marked AlwaysInline, or 729 // to all functions that are not marked inline or implicitly inline 730 // in the case of -finline-hint-functions. 731 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 732 const CodeGenOptions& CodeGenOpts = CGM.getCodeGenOpts(); 733 if (!CodeGenOpts.NoInline) { 734 for (auto RI : FD->redecls()) 735 if (RI->isInlineSpecified()) { 736 Fn->addFnAttr(llvm::Attribute::InlineHint); 737 break; 738 } 739 if (CodeGenOpts.getInlining() == CodeGenOptions::OnlyHintInlining && 740 !FD->isInlined() && !Fn->hasFnAttribute(llvm::Attribute::InlineHint)) 741 Fn->addFnAttr(llvm::Attribute::NoInline); 742 } else if (!FD->hasAttr<AlwaysInlineAttr>()) 743 Fn->addFnAttr(llvm::Attribute::NoInline); 744 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 745 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 746 } 747 748 // Add no-jump-tables value. 749 Fn->addFnAttr("no-jump-tables", 750 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 751 752 if (getLangOpts().OpenCL) { 753 // Add metadata for a kernel function. 754 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 755 EmitOpenCLKernelMetadata(FD, Fn); 756 } 757 758 // If we are checking function types, emit a function type signature as 759 // prologue data. 760 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 761 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 762 if (llvm::Constant *PrologueSig = 763 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 764 llvm::Constant *FTRTTIConst = 765 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 766 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 767 llvm::Constant *PrologueStructConst = 768 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 769 Fn->setPrologueData(PrologueStructConst); 770 } 771 } 772 } 773 774 // If we're in C++ mode and the function name is "main", it is guaranteed 775 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 776 // used within a program"). 777 if (getLangOpts().CPlusPlus) 778 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 779 if (FD->isMain()) 780 Fn->addFnAttr(llvm::Attribute::NoRecurse); 781 782 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 783 784 // Create a marker to make it easy to insert allocas into the entryblock 785 // later. Don't create this with the builder, because we don't want it 786 // folded. 787 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 788 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 789 790 ReturnBlock = getJumpDestInCurrentScope("return"); 791 792 Builder.SetInsertPoint(EntryBB); 793 794 // Emit subprogram debug descriptor. 795 if (CGDebugInfo *DI = getDebugInfo()) { 796 // Reconstruct the type from the argument list so that implicit parameters, 797 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 798 // convention. 799 CallingConv CC = CallingConv::CC_C; 800 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 801 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 802 CC = SrcFnTy->getCallConv(); 803 SmallVector<QualType, 16> ArgTypes; 804 for (const VarDecl *VD : Args) 805 ArgTypes.push_back(VD->getType()); 806 QualType FnType = getContext().getFunctionType( 807 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 808 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 809 } 810 811 if (ShouldInstrumentFunction()) 812 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 813 814 if (CGM.getCodeGenOpts().InstrumentForProfiling) 815 EmitMCountInstrumentation(); 816 817 if (RetTy->isVoidType()) { 818 // Void type; nothing to return. 819 ReturnValue = Address::invalid(); 820 821 // Count the implicit return. 822 if (!endsWithReturn(D)) 823 ++NumReturnExprs; 824 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 825 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 826 // Indirect aggregate return; emit returned value directly into sret slot. 827 // This reduces code size, and affects correctness in C++. 828 auto AI = CurFn->arg_begin(); 829 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 830 ++AI; 831 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 832 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 833 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 834 // Load the sret pointer from the argument struct and return into that. 835 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 836 llvm::Function::arg_iterator EI = CurFn->arg_end(); 837 --EI; 838 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 839 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 840 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 841 } else { 842 ReturnValue = CreateIRTemp(RetTy, "retval"); 843 844 // Tell the epilog emitter to autorelease the result. We do this 845 // now so that various specialized functions can suppress it 846 // during their IR-generation. 847 if (getLangOpts().ObjCAutoRefCount && 848 !CurFnInfo->isReturnsRetained() && 849 RetTy->isObjCRetainableType()) 850 AutoreleaseResult = true; 851 } 852 853 EmitStartEHSpec(CurCodeDecl); 854 855 PrologueCleanupDepth = EHStack.stable_begin(); 856 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 857 858 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 859 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 860 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 861 if (MD->getParent()->isLambda() && 862 MD->getOverloadedOperator() == OO_Call) { 863 // We're in a lambda; figure out the captures. 864 MD->getParent()->getCaptureFields(LambdaCaptureFields, 865 LambdaThisCaptureField); 866 if (LambdaThisCaptureField) { 867 // If the lambda captures the object referred to by '*this' - either by 868 // value or by reference, make sure CXXThisValue points to the correct 869 // object. 870 871 // Get the lvalue for the field (which is a copy of the enclosing object 872 // or contains the address of the enclosing object). 873 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 874 if (!LambdaThisCaptureField->getType()->isPointerType()) { 875 // If the enclosing object was captured by value, just use its address. 876 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 877 } else { 878 // Load the lvalue pointed to by the field, since '*this' was captured 879 // by reference. 880 CXXThisValue = 881 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 882 } 883 } 884 for (auto *FD : MD->getParent()->fields()) { 885 if (FD->hasCapturedVLAType()) { 886 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 887 SourceLocation()).getScalarVal(); 888 auto VAT = FD->getCapturedVLAType(); 889 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 890 } 891 } 892 } else { 893 // Not in a lambda; just use 'this' from the method. 894 // FIXME: Should we generate a new load for each use of 'this'? The 895 // fast register allocator would be happier... 896 CXXThisValue = CXXABIThisValue; 897 } 898 } 899 900 // If any of the arguments have a variably modified type, make sure to 901 // emit the type size. 902 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 903 i != e; ++i) { 904 const VarDecl *VD = *i; 905 906 // Dig out the type as written from ParmVarDecls; it's unclear whether 907 // the standard (C99 6.9.1p10) requires this, but we're following the 908 // precedent set by gcc. 909 QualType Ty; 910 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 911 Ty = PVD->getOriginalType(); 912 else 913 Ty = VD->getType(); 914 915 if (Ty->isVariablyModifiedType()) 916 EmitVariablyModifiedType(Ty); 917 } 918 // Emit a location at the end of the prologue. 919 if (CGDebugInfo *DI = getDebugInfo()) 920 DI->EmitLocation(Builder, StartLoc); 921 } 922 923 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 924 const Stmt *Body) { 925 incrementProfileCounter(Body); 926 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 927 EmitCompoundStmtWithoutScope(*S); 928 else 929 EmitStmt(Body); 930 } 931 932 /// When instrumenting to collect profile data, the counts for some blocks 933 /// such as switch cases need to not include the fall-through counts, so 934 /// emit a branch around the instrumentation code. When not instrumenting, 935 /// this just calls EmitBlock(). 936 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 937 const Stmt *S) { 938 llvm::BasicBlock *SkipCountBB = nullptr; 939 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 940 // When instrumenting for profiling, the fallthrough to certain 941 // statements needs to skip over the instrumentation code so that we 942 // get an accurate count. 943 SkipCountBB = createBasicBlock("skipcount"); 944 EmitBranch(SkipCountBB); 945 } 946 EmitBlock(BB); 947 uint64_t CurrentCount = getCurrentProfileCount(); 948 incrementProfileCounter(S); 949 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 950 if (SkipCountBB) 951 EmitBlock(SkipCountBB); 952 } 953 954 /// Tries to mark the given function nounwind based on the 955 /// non-existence of any throwing calls within it. We believe this is 956 /// lightweight enough to do at -O0. 957 static void TryMarkNoThrow(llvm::Function *F) { 958 // LLVM treats 'nounwind' on a function as part of the type, so we 959 // can't do this on functions that can be overwritten. 960 if (F->isInterposable()) return; 961 962 for (llvm::BasicBlock &BB : *F) 963 for (llvm::Instruction &I : BB) 964 if (I.mayThrow()) 965 return; 966 967 F->setDoesNotThrow(); 968 } 969 970 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 971 FunctionArgList &Args) { 972 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 973 QualType ResTy = FD->getReturnType(); 974 975 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 976 if (MD && MD->isInstance()) { 977 if (CGM.getCXXABI().HasThisReturn(GD)) 978 ResTy = MD->getThisType(getContext()); 979 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 980 ResTy = CGM.getContext().VoidPtrTy; 981 CGM.getCXXABI().buildThisParam(*this, Args); 982 } 983 984 // The base version of an inheriting constructor whose constructed base is a 985 // virtual base is not passed any arguments (because it doesn't actually call 986 // the inherited constructor). 987 bool PassedParams = true; 988 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 989 if (auto Inherited = CD->getInheritedConstructor()) 990 PassedParams = 991 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 992 993 if (PassedParams) { 994 for (auto *Param : FD->parameters()) { 995 Args.push_back(Param); 996 if (!Param->hasAttr<PassObjectSizeAttr>()) 997 continue; 998 999 IdentifierInfo *NoID = nullptr; 1000 auto *Implicit = ImplicitParamDecl::Create( 1001 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1002 getContext().getSizeType()); 1003 SizeArguments[Param] = Implicit; 1004 Args.push_back(Implicit); 1005 } 1006 } 1007 1008 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1009 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1010 1011 return ResTy; 1012 } 1013 1014 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1015 const CGFunctionInfo &FnInfo) { 1016 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1017 CurGD = GD; 1018 1019 FunctionArgList Args; 1020 QualType ResTy = BuildFunctionArgList(GD, Args); 1021 1022 // Check if we should generate debug info for this function. 1023 if (FD->hasAttr<NoDebugAttr>()) 1024 DebugInfo = nullptr; // disable debug info indefinitely for this function 1025 1026 SourceRange BodyRange; 1027 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1028 CurEHLocation = BodyRange.getEnd(); 1029 1030 // Use the location of the start of the function to determine where 1031 // the function definition is located. By default use the location 1032 // of the declaration as the location for the subprogram. A function 1033 // may lack a declaration in the source code if it is created by code 1034 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1035 SourceLocation Loc = FD->getLocation(); 1036 1037 // If this is a function specialization then use the pattern body 1038 // as the location for the function. 1039 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1040 if (SpecDecl->hasBody(SpecDecl)) 1041 Loc = SpecDecl->getLocation(); 1042 1043 // Emit the standard function prologue. 1044 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1045 1046 // Generate the body of the function. 1047 PGO.assignRegionCounters(GD, CurFn); 1048 if (isa<CXXDestructorDecl>(FD)) 1049 EmitDestructorBody(Args); 1050 else if (isa<CXXConstructorDecl>(FD)) 1051 EmitConstructorBody(Args); 1052 else if (getLangOpts().CUDA && 1053 !getLangOpts().CUDAIsDevice && 1054 FD->hasAttr<CUDAGlobalAttr>()) 1055 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1056 else if (isa<CXXConversionDecl>(FD) && 1057 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1058 // The lambda conversion to block pointer is special; the semantics can't be 1059 // expressed in the AST, so IRGen needs to special-case it. 1060 EmitLambdaToBlockPointerBody(Args); 1061 } else if (isa<CXXMethodDecl>(FD) && 1062 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1063 // The lambda static invoker function is special, because it forwards or 1064 // clones the body of the function call operator (but is actually static). 1065 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1066 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1067 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1068 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1069 // Implicit copy-assignment gets the same special treatment as implicit 1070 // copy-constructors. 1071 emitImplicitAssignmentOperatorBody(Args); 1072 } else if (Stmt *Body = FD->getBody()) { 1073 EmitFunctionBody(Args, Body); 1074 } else 1075 llvm_unreachable("no definition for emitted function"); 1076 1077 // C++11 [stmt.return]p2: 1078 // Flowing off the end of a function [...] results in undefined behavior in 1079 // a value-returning function. 1080 // C11 6.9.1p12: 1081 // If the '}' that terminates a function is reached, and the value of the 1082 // function call is used by the caller, the behavior is undefined. 1083 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1084 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1085 if (SanOpts.has(SanitizerKind::Return)) { 1086 SanitizerScope SanScope(this); 1087 llvm::Value *IsFalse = Builder.getFalse(); 1088 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1089 "missing_return", EmitCheckSourceLocation(FD->getLocation()), 1090 None); 1091 } else if (CGM.getCodeGenOpts().OptimizationLevel == 0) { 1092 EmitTrapCall(llvm::Intrinsic::trap); 1093 } 1094 Builder.CreateUnreachable(); 1095 Builder.ClearInsertionPoint(); 1096 } 1097 1098 // Emit the standard function epilogue. 1099 FinishFunction(BodyRange.getEnd()); 1100 1101 // If we haven't marked the function nothrow through other means, do 1102 // a quick pass now to see if we can. 1103 if (!CurFn->doesNotThrow()) 1104 TryMarkNoThrow(CurFn); 1105 } 1106 1107 /// ContainsLabel - Return true if the statement contains a label in it. If 1108 /// this statement is not executed normally, it not containing a label means 1109 /// that we can just remove the code. 1110 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1111 // Null statement, not a label! 1112 if (!S) return false; 1113 1114 // If this is a label, we have to emit the code, consider something like: 1115 // if (0) { ... foo: bar(); } goto foo; 1116 // 1117 // TODO: If anyone cared, we could track __label__'s, since we know that you 1118 // can't jump to one from outside their declared region. 1119 if (isa<LabelStmt>(S)) 1120 return true; 1121 1122 // If this is a case/default statement, and we haven't seen a switch, we have 1123 // to emit the code. 1124 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1125 return true; 1126 1127 // If this is a switch statement, we want to ignore cases below it. 1128 if (isa<SwitchStmt>(S)) 1129 IgnoreCaseStmts = true; 1130 1131 // Scan subexpressions for verboten labels. 1132 for (const Stmt *SubStmt : S->children()) 1133 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1134 return true; 1135 1136 return false; 1137 } 1138 1139 /// containsBreak - Return true if the statement contains a break out of it. 1140 /// If the statement (recursively) contains a switch or loop with a break 1141 /// inside of it, this is fine. 1142 bool CodeGenFunction::containsBreak(const Stmt *S) { 1143 // Null statement, not a label! 1144 if (!S) return false; 1145 1146 // If this is a switch or loop that defines its own break scope, then we can 1147 // include it and anything inside of it. 1148 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1149 isa<ForStmt>(S)) 1150 return false; 1151 1152 if (isa<BreakStmt>(S)) 1153 return true; 1154 1155 // Scan subexpressions for verboten breaks. 1156 for (const Stmt *SubStmt : S->children()) 1157 if (containsBreak(SubStmt)) 1158 return true; 1159 1160 return false; 1161 } 1162 1163 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1164 if (!S) return false; 1165 1166 // Some statement kinds add a scope and thus never add a decl to the current 1167 // scope. Note, this list is longer than the list of statements that might 1168 // have an unscoped decl nested within them, but this way is conservatively 1169 // correct even if more statement kinds are added. 1170 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1171 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1172 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1173 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1174 return false; 1175 1176 if (isa<DeclStmt>(S)) 1177 return true; 1178 1179 for (const Stmt *SubStmt : S->children()) 1180 if (mightAddDeclToScope(SubStmt)) 1181 return true; 1182 1183 return false; 1184 } 1185 1186 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1187 /// to a constant, or if it does but contains a label, return false. If it 1188 /// constant folds return true and set the boolean result in Result. 1189 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1190 bool &ResultBool, 1191 bool AllowLabels) { 1192 llvm::APSInt ResultInt; 1193 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1194 return false; 1195 1196 ResultBool = ResultInt.getBoolValue(); 1197 return true; 1198 } 1199 1200 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1201 /// to a constant, or if it does but contains a label, return false. If it 1202 /// constant folds return true and set the folded value. 1203 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1204 llvm::APSInt &ResultInt, 1205 bool AllowLabels) { 1206 // FIXME: Rename and handle conversion of other evaluatable things 1207 // to bool. 1208 llvm::APSInt Int; 1209 if (!Cond->EvaluateAsInt(Int, getContext())) 1210 return false; // Not foldable, not integer or not fully evaluatable. 1211 1212 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1213 return false; // Contains a label. 1214 1215 ResultInt = Int; 1216 return true; 1217 } 1218 1219 1220 1221 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1222 /// statement) to the specified blocks. Based on the condition, this might try 1223 /// to simplify the codegen of the conditional based on the branch. 1224 /// 1225 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1226 llvm::BasicBlock *TrueBlock, 1227 llvm::BasicBlock *FalseBlock, 1228 uint64_t TrueCount) { 1229 Cond = Cond->IgnoreParens(); 1230 1231 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1232 1233 // Handle X && Y in a condition. 1234 if (CondBOp->getOpcode() == BO_LAnd) { 1235 // If we have "1 && X", simplify the code. "0 && X" would have constant 1236 // folded if the case was simple enough. 1237 bool ConstantBool = false; 1238 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1239 ConstantBool) { 1240 // br(1 && X) -> br(X). 1241 incrementProfileCounter(CondBOp); 1242 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1243 TrueCount); 1244 } 1245 1246 // If we have "X && 1", simplify the code to use an uncond branch. 1247 // "X && 0" would have been constant folded to 0. 1248 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1249 ConstantBool) { 1250 // br(X && 1) -> br(X). 1251 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1252 TrueCount); 1253 } 1254 1255 // Emit the LHS as a conditional. If the LHS conditional is false, we 1256 // want to jump to the FalseBlock. 1257 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1258 // The counter tells us how often we evaluate RHS, and all of TrueCount 1259 // can be propagated to that branch. 1260 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1261 1262 ConditionalEvaluation eval(*this); 1263 { 1264 ApplyDebugLocation DL(*this, Cond); 1265 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1266 EmitBlock(LHSTrue); 1267 } 1268 1269 incrementProfileCounter(CondBOp); 1270 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1271 1272 // Any temporaries created here are conditional. 1273 eval.begin(*this); 1274 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1275 eval.end(*this); 1276 1277 return; 1278 } 1279 1280 if (CondBOp->getOpcode() == BO_LOr) { 1281 // If we have "0 || X", simplify the code. "1 || X" would have constant 1282 // folded if the case was simple enough. 1283 bool ConstantBool = false; 1284 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1285 !ConstantBool) { 1286 // br(0 || X) -> br(X). 1287 incrementProfileCounter(CondBOp); 1288 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1289 TrueCount); 1290 } 1291 1292 // If we have "X || 0", simplify the code to use an uncond branch. 1293 // "X || 1" would have been constant folded to 1. 1294 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1295 !ConstantBool) { 1296 // br(X || 0) -> br(X). 1297 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1298 TrueCount); 1299 } 1300 1301 // Emit the LHS as a conditional. If the LHS conditional is true, we 1302 // want to jump to the TrueBlock. 1303 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1304 // We have the count for entry to the RHS and for the whole expression 1305 // being true, so we can divy up True count between the short circuit and 1306 // the RHS. 1307 uint64_t LHSCount = 1308 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1309 uint64_t RHSCount = TrueCount - LHSCount; 1310 1311 ConditionalEvaluation eval(*this); 1312 { 1313 ApplyDebugLocation DL(*this, Cond); 1314 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1315 EmitBlock(LHSFalse); 1316 } 1317 1318 incrementProfileCounter(CondBOp); 1319 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1320 1321 // Any temporaries created here are conditional. 1322 eval.begin(*this); 1323 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1324 1325 eval.end(*this); 1326 1327 return; 1328 } 1329 } 1330 1331 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1332 // br(!x, t, f) -> br(x, f, t) 1333 if (CondUOp->getOpcode() == UO_LNot) { 1334 // Negate the count. 1335 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1336 // Negate the condition and swap the destination blocks. 1337 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1338 FalseCount); 1339 } 1340 } 1341 1342 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1343 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1344 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1345 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1346 1347 ConditionalEvaluation cond(*this); 1348 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1349 getProfileCount(CondOp)); 1350 1351 // When computing PGO branch weights, we only know the overall count for 1352 // the true block. This code is essentially doing tail duplication of the 1353 // naive code-gen, introducing new edges for which counts are not 1354 // available. Divide the counts proportionally between the LHS and RHS of 1355 // the conditional operator. 1356 uint64_t LHSScaledTrueCount = 0; 1357 if (TrueCount) { 1358 double LHSRatio = 1359 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1360 LHSScaledTrueCount = TrueCount * LHSRatio; 1361 } 1362 1363 cond.begin(*this); 1364 EmitBlock(LHSBlock); 1365 incrementProfileCounter(CondOp); 1366 { 1367 ApplyDebugLocation DL(*this, Cond); 1368 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1369 LHSScaledTrueCount); 1370 } 1371 cond.end(*this); 1372 1373 cond.begin(*this); 1374 EmitBlock(RHSBlock); 1375 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1376 TrueCount - LHSScaledTrueCount); 1377 cond.end(*this); 1378 1379 return; 1380 } 1381 1382 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1383 // Conditional operator handling can give us a throw expression as a 1384 // condition for a case like: 1385 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1386 // Fold this to: 1387 // br(c, throw x, br(y, t, f)) 1388 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1389 return; 1390 } 1391 1392 // If the branch has a condition wrapped by __builtin_unpredictable, 1393 // create metadata that specifies that the branch is unpredictable. 1394 // Don't bother if not optimizing because that metadata would not be used. 1395 llvm::MDNode *Unpredictable = nullptr; 1396 auto *Call = dyn_cast<CallExpr>(Cond); 1397 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1398 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1399 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1400 llvm::MDBuilder MDHelper(getLLVMContext()); 1401 Unpredictable = MDHelper.createUnpredictable(); 1402 } 1403 } 1404 1405 // Create branch weights based on the number of times we get here and the 1406 // number of times the condition should be true. 1407 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1408 llvm::MDNode *Weights = 1409 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1410 1411 // Emit the code with the fully general case. 1412 llvm::Value *CondV; 1413 { 1414 ApplyDebugLocation DL(*this, Cond); 1415 CondV = EvaluateExprAsBool(Cond); 1416 } 1417 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1418 } 1419 1420 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1421 /// specified stmt yet. 1422 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1423 CGM.ErrorUnsupported(S, Type); 1424 } 1425 1426 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1427 /// variable-length array whose elements have a non-zero bit-pattern. 1428 /// 1429 /// \param baseType the inner-most element type of the array 1430 /// \param src - a char* pointing to the bit-pattern for a single 1431 /// base element of the array 1432 /// \param sizeInChars - the total size of the VLA, in chars 1433 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1434 Address dest, Address src, 1435 llvm::Value *sizeInChars) { 1436 CGBuilderTy &Builder = CGF.Builder; 1437 1438 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1439 llvm::Value *baseSizeInChars 1440 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1441 1442 Address begin = 1443 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1444 llvm::Value *end = 1445 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1446 1447 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1448 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1449 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1450 1451 // Make a loop over the VLA. C99 guarantees that the VLA element 1452 // count must be nonzero. 1453 CGF.EmitBlock(loopBB); 1454 1455 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1456 cur->addIncoming(begin.getPointer(), originBB); 1457 1458 CharUnits curAlign = 1459 dest.getAlignment().alignmentOfArrayElement(baseSize); 1460 1461 // memcpy the individual element bit-pattern. 1462 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1463 /*volatile*/ false); 1464 1465 // Go to the next element. 1466 llvm::Value *next = 1467 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1468 1469 // Leave if that's the end of the VLA. 1470 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1471 Builder.CreateCondBr(done, contBB, loopBB); 1472 cur->addIncoming(next, loopBB); 1473 1474 CGF.EmitBlock(contBB); 1475 } 1476 1477 void 1478 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1479 // Ignore empty classes in C++. 1480 if (getLangOpts().CPlusPlus) { 1481 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1482 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1483 return; 1484 } 1485 } 1486 1487 // Cast the dest ptr to the appropriate i8 pointer type. 1488 if (DestPtr.getElementType() != Int8Ty) 1489 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1490 1491 // Get size and alignment info for this aggregate. 1492 CharUnits size = getContext().getTypeSizeInChars(Ty); 1493 1494 llvm::Value *SizeVal; 1495 const VariableArrayType *vla; 1496 1497 // Don't bother emitting a zero-byte memset. 1498 if (size.isZero()) { 1499 // But note that getTypeInfo returns 0 for a VLA. 1500 if (const VariableArrayType *vlaType = 1501 dyn_cast_or_null<VariableArrayType>( 1502 getContext().getAsArrayType(Ty))) { 1503 QualType eltType; 1504 llvm::Value *numElts; 1505 std::tie(numElts, eltType) = getVLASize(vlaType); 1506 1507 SizeVal = numElts; 1508 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1509 if (!eltSize.isOne()) 1510 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1511 vla = vlaType; 1512 } else { 1513 return; 1514 } 1515 } else { 1516 SizeVal = CGM.getSize(size); 1517 vla = nullptr; 1518 } 1519 1520 // If the type contains a pointer to data member we can't memset it to zero. 1521 // Instead, create a null constant and copy it to the destination. 1522 // TODO: there are other patterns besides zero that we can usefully memset, 1523 // like -1, which happens to be the pattern used by member-pointers. 1524 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1525 // For a VLA, emit a single element, then splat that over the VLA. 1526 if (vla) Ty = getContext().getBaseElementType(vla); 1527 1528 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1529 1530 llvm::GlobalVariable *NullVariable = 1531 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1532 /*isConstant=*/true, 1533 llvm::GlobalVariable::PrivateLinkage, 1534 NullConstant, Twine()); 1535 CharUnits NullAlign = DestPtr.getAlignment(); 1536 NullVariable->setAlignment(NullAlign.getQuantity()); 1537 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1538 NullAlign); 1539 1540 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1541 1542 // Get and call the appropriate llvm.memcpy overload. 1543 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1544 return; 1545 } 1546 1547 // Otherwise, just memset the whole thing to zero. This is legal 1548 // because in LLVM, all default initializers (other than the ones we just 1549 // handled above) are guaranteed to have a bit pattern of all zeros. 1550 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1551 } 1552 1553 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1554 // Make sure that there is a block for the indirect goto. 1555 if (!IndirectBranch) 1556 GetIndirectGotoBlock(); 1557 1558 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1559 1560 // Make sure the indirect branch includes all of the address-taken blocks. 1561 IndirectBranch->addDestination(BB); 1562 return llvm::BlockAddress::get(CurFn, BB); 1563 } 1564 1565 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1566 // If we already made the indirect branch for indirect goto, return its block. 1567 if (IndirectBranch) return IndirectBranch->getParent(); 1568 1569 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1570 1571 // Create the PHI node that indirect gotos will add entries to. 1572 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1573 "indirect.goto.dest"); 1574 1575 // Create the indirect branch instruction. 1576 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1577 return IndirectBranch->getParent(); 1578 } 1579 1580 /// Computes the length of an array in elements, as well as the base 1581 /// element type and a properly-typed first element pointer. 1582 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1583 QualType &baseType, 1584 Address &addr) { 1585 const ArrayType *arrayType = origArrayType; 1586 1587 // If it's a VLA, we have to load the stored size. Note that 1588 // this is the size of the VLA in bytes, not its size in elements. 1589 llvm::Value *numVLAElements = nullptr; 1590 if (isa<VariableArrayType>(arrayType)) { 1591 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1592 1593 // Walk into all VLAs. This doesn't require changes to addr, 1594 // which has type T* where T is the first non-VLA element type. 1595 do { 1596 QualType elementType = arrayType->getElementType(); 1597 arrayType = getContext().getAsArrayType(elementType); 1598 1599 // If we only have VLA components, 'addr' requires no adjustment. 1600 if (!arrayType) { 1601 baseType = elementType; 1602 return numVLAElements; 1603 } 1604 } while (isa<VariableArrayType>(arrayType)); 1605 1606 // We get out here only if we find a constant array type 1607 // inside the VLA. 1608 } 1609 1610 // We have some number of constant-length arrays, so addr should 1611 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1612 // down to the first element of addr. 1613 SmallVector<llvm::Value*, 8> gepIndices; 1614 1615 // GEP down to the array type. 1616 llvm::ConstantInt *zero = Builder.getInt32(0); 1617 gepIndices.push_back(zero); 1618 1619 uint64_t countFromCLAs = 1; 1620 QualType eltType; 1621 1622 llvm::ArrayType *llvmArrayType = 1623 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1624 while (llvmArrayType) { 1625 assert(isa<ConstantArrayType>(arrayType)); 1626 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1627 == llvmArrayType->getNumElements()); 1628 1629 gepIndices.push_back(zero); 1630 countFromCLAs *= llvmArrayType->getNumElements(); 1631 eltType = arrayType->getElementType(); 1632 1633 llvmArrayType = 1634 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1635 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1636 assert((!llvmArrayType || arrayType) && 1637 "LLVM and Clang types are out-of-synch"); 1638 } 1639 1640 if (arrayType) { 1641 // From this point onwards, the Clang array type has been emitted 1642 // as some other type (probably a packed struct). Compute the array 1643 // size, and just emit the 'begin' expression as a bitcast. 1644 while (arrayType) { 1645 countFromCLAs *= 1646 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1647 eltType = arrayType->getElementType(); 1648 arrayType = getContext().getAsArrayType(eltType); 1649 } 1650 1651 llvm::Type *baseType = ConvertType(eltType); 1652 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1653 } else { 1654 // Create the actual GEP. 1655 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1656 gepIndices, "array.begin"), 1657 addr.getAlignment()); 1658 } 1659 1660 baseType = eltType; 1661 1662 llvm::Value *numElements 1663 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1664 1665 // If we had any VLA dimensions, factor them in. 1666 if (numVLAElements) 1667 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1668 1669 return numElements; 1670 } 1671 1672 std::pair<llvm::Value*, QualType> 1673 CodeGenFunction::getVLASize(QualType type) { 1674 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1675 assert(vla && "type was not a variable array type!"); 1676 return getVLASize(vla); 1677 } 1678 1679 std::pair<llvm::Value*, QualType> 1680 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1681 // The number of elements so far; always size_t. 1682 llvm::Value *numElements = nullptr; 1683 1684 QualType elementType; 1685 do { 1686 elementType = type->getElementType(); 1687 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1688 assert(vlaSize && "no size for VLA!"); 1689 assert(vlaSize->getType() == SizeTy); 1690 1691 if (!numElements) { 1692 numElements = vlaSize; 1693 } else { 1694 // It's undefined behavior if this wraps around, so mark it that way. 1695 // FIXME: Teach -fsanitize=undefined to trap this. 1696 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1697 } 1698 } while ((type = getContext().getAsVariableArrayType(elementType))); 1699 1700 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1701 } 1702 1703 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1704 assert(type->isVariablyModifiedType() && 1705 "Must pass variably modified type to EmitVLASizes!"); 1706 1707 EnsureInsertPoint(); 1708 1709 // We're going to walk down into the type and look for VLA 1710 // expressions. 1711 do { 1712 assert(type->isVariablyModifiedType()); 1713 1714 const Type *ty = type.getTypePtr(); 1715 switch (ty->getTypeClass()) { 1716 1717 #define TYPE(Class, Base) 1718 #define ABSTRACT_TYPE(Class, Base) 1719 #define NON_CANONICAL_TYPE(Class, Base) 1720 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1721 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1722 #include "clang/AST/TypeNodes.def" 1723 llvm_unreachable("unexpected dependent type!"); 1724 1725 // These types are never variably-modified. 1726 case Type::Builtin: 1727 case Type::Complex: 1728 case Type::Vector: 1729 case Type::ExtVector: 1730 case Type::Record: 1731 case Type::Enum: 1732 case Type::Elaborated: 1733 case Type::TemplateSpecialization: 1734 case Type::ObjCObject: 1735 case Type::ObjCInterface: 1736 case Type::ObjCObjectPointer: 1737 llvm_unreachable("type class is never variably-modified!"); 1738 1739 case Type::Adjusted: 1740 type = cast<AdjustedType>(ty)->getAdjustedType(); 1741 break; 1742 1743 case Type::Decayed: 1744 type = cast<DecayedType>(ty)->getPointeeType(); 1745 break; 1746 1747 case Type::Pointer: 1748 type = cast<PointerType>(ty)->getPointeeType(); 1749 break; 1750 1751 case Type::BlockPointer: 1752 type = cast<BlockPointerType>(ty)->getPointeeType(); 1753 break; 1754 1755 case Type::LValueReference: 1756 case Type::RValueReference: 1757 type = cast<ReferenceType>(ty)->getPointeeType(); 1758 break; 1759 1760 case Type::MemberPointer: 1761 type = cast<MemberPointerType>(ty)->getPointeeType(); 1762 break; 1763 1764 case Type::ConstantArray: 1765 case Type::IncompleteArray: 1766 // Losing element qualification here is fine. 1767 type = cast<ArrayType>(ty)->getElementType(); 1768 break; 1769 1770 case Type::VariableArray: { 1771 // Losing element qualification here is fine. 1772 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1773 1774 // Unknown size indication requires no size computation. 1775 // Otherwise, evaluate and record it. 1776 if (const Expr *size = vat->getSizeExpr()) { 1777 // It's possible that we might have emitted this already, 1778 // e.g. with a typedef and a pointer to it. 1779 llvm::Value *&entry = VLASizeMap[size]; 1780 if (!entry) { 1781 llvm::Value *Size = EmitScalarExpr(size); 1782 1783 // C11 6.7.6.2p5: 1784 // If the size is an expression that is not an integer constant 1785 // expression [...] each time it is evaluated it shall have a value 1786 // greater than zero. 1787 if (SanOpts.has(SanitizerKind::VLABound) && 1788 size->getType()->isSignedIntegerType()) { 1789 SanitizerScope SanScope(this); 1790 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1791 llvm::Constant *StaticArgs[] = { 1792 EmitCheckSourceLocation(size->getLocStart()), 1793 EmitCheckTypeDescriptor(size->getType()) 1794 }; 1795 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1796 SanitizerKind::VLABound), 1797 "vla_bound_not_positive", StaticArgs, Size); 1798 } 1799 1800 // Always zexting here would be wrong if it weren't 1801 // undefined behavior to have a negative bound. 1802 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1803 } 1804 } 1805 type = vat->getElementType(); 1806 break; 1807 } 1808 1809 case Type::FunctionProto: 1810 case Type::FunctionNoProto: 1811 type = cast<FunctionType>(ty)->getReturnType(); 1812 break; 1813 1814 case Type::Paren: 1815 case Type::TypeOf: 1816 case Type::UnaryTransform: 1817 case Type::Attributed: 1818 case Type::SubstTemplateTypeParm: 1819 case Type::PackExpansion: 1820 // Keep walking after single level desugaring. 1821 type = type.getSingleStepDesugaredType(getContext()); 1822 break; 1823 1824 case Type::Typedef: 1825 case Type::Decltype: 1826 case Type::Auto: 1827 // Stop walking: nothing to do. 1828 return; 1829 1830 case Type::TypeOfExpr: 1831 // Stop walking: emit typeof expression. 1832 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1833 return; 1834 1835 case Type::Atomic: 1836 type = cast<AtomicType>(ty)->getValueType(); 1837 break; 1838 1839 case Type::Pipe: 1840 type = cast<PipeType>(ty)->getElementType(); 1841 break; 1842 } 1843 } while (type->isVariablyModifiedType()); 1844 } 1845 1846 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1847 if (getContext().getBuiltinVaListType()->isArrayType()) 1848 return EmitPointerWithAlignment(E); 1849 return EmitLValue(E).getAddress(); 1850 } 1851 1852 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1853 return EmitLValue(E).getAddress(); 1854 } 1855 1856 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1857 llvm::Constant *Init) { 1858 assert (Init && "Invalid DeclRefExpr initializer!"); 1859 if (CGDebugInfo *Dbg = getDebugInfo()) 1860 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1861 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1862 } 1863 1864 CodeGenFunction::PeepholeProtection 1865 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1866 // At the moment, the only aggressive peephole we do in IR gen 1867 // is trunc(zext) folding, but if we add more, we can easily 1868 // extend this protection. 1869 1870 if (!rvalue.isScalar()) return PeepholeProtection(); 1871 llvm::Value *value = rvalue.getScalarVal(); 1872 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1873 1874 // Just make an extra bitcast. 1875 assert(HaveInsertPoint()); 1876 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1877 Builder.GetInsertBlock()); 1878 1879 PeepholeProtection protection; 1880 protection.Inst = inst; 1881 return protection; 1882 } 1883 1884 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1885 if (!protection.Inst) return; 1886 1887 // In theory, we could try to duplicate the peepholes now, but whatever. 1888 protection.Inst->eraseFromParent(); 1889 } 1890 1891 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1892 llvm::Value *AnnotatedVal, 1893 StringRef AnnotationStr, 1894 SourceLocation Location) { 1895 llvm::Value *Args[4] = { 1896 AnnotatedVal, 1897 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1898 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1899 CGM.EmitAnnotationLineNo(Location) 1900 }; 1901 return Builder.CreateCall(AnnotationFn, Args); 1902 } 1903 1904 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1905 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1906 // FIXME We create a new bitcast for every annotation because that's what 1907 // llvm-gcc was doing. 1908 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1909 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1910 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1911 I->getAnnotation(), D->getLocation()); 1912 } 1913 1914 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1915 Address Addr) { 1916 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1917 llvm::Value *V = Addr.getPointer(); 1918 llvm::Type *VTy = V->getType(); 1919 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1920 CGM.Int8PtrTy); 1921 1922 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1923 // FIXME Always emit the cast inst so we can differentiate between 1924 // annotation on the first field of a struct and annotation on the struct 1925 // itself. 1926 if (VTy != CGM.Int8PtrTy) 1927 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1928 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1929 V = Builder.CreateBitCast(V, VTy); 1930 } 1931 1932 return Address(V, Addr.getAlignment()); 1933 } 1934 1935 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 1936 1937 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 1938 : CGF(CGF) { 1939 assert(!CGF->IsSanitizerScope); 1940 CGF->IsSanitizerScope = true; 1941 } 1942 1943 CodeGenFunction::SanitizerScope::~SanitizerScope() { 1944 CGF->IsSanitizerScope = false; 1945 } 1946 1947 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 1948 const llvm::Twine &Name, 1949 llvm::BasicBlock *BB, 1950 llvm::BasicBlock::iterator InsertPt) const { 1951 LoopStack.InsertHelper(I); 1952 if (IsSanitizerScope) 1953 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 1954 } 1955 1956 void CGBuilderInserter::InsertHelper( 1957 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 1958 llvm::BasicBlock::iterator InsertPt) const { 1959 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 1960 if (CGF) 1961 CGF->InsertHelper(I, Name, BB, InsertPt); 1962 } 1963 1964 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 1965 CodeGenModule &CGM, const FunctionDecl *FD, 1966 std::string &FirstMissing) { 1967 // If there aren't any required features listed then go ahead and return. 1968 if (ReqFeatures.empty()) 1969 return false; 1970 1971 // Now build up the set of caller features and verify that all the required 1972 // features are there. 1973 llvm::StringMap<bool> CallerFeatureMap; 1974 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 1975 1976 // If we have at least one of the features in the feature list return 1977 // true, otherwise return false. 1978 return std::all_of( 1979 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 1980 SmallVector<StringRef, 1> OrFeatures; 1981 Feature.split(OrFeatures, "|"); 1982 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 1983 [&](StringRef Feature) { 1984 if (!CallerFeatureMap.lookup(Feature)) { 1985 FirstMissing = Feature.str(); 1986 return false; 1987 } 1988 return true; 1989 }); 1990 }); 1991 } 1992 1993 // Emits an error if we don't have a valid set of target features for the 1994 // called function. 1995 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 1996 const FunctionDecl *TargetDecl) { 1997 // Early exit if this is an indirect call. 1998 if (!TargetDecl) 1999 return; 2000 2001 // Get the current enclosing function if it exists. If it doesn't 2002 // we can't check the target features anyhow. 2003 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2004 if (!FD) 2005 return; 2006 2007 // Grab the required features for the call. For a builtin this is listed in 2008 // the td file with the default cpu, for an always_inline function this is any 2009 // listed cpu and any listed features. 2010 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2011 std::string MissingFeature; 2012 if (BuiltinID) { 2013 SmallVector<StringRef, 1> ReqFeatures; 2014 const char *FeatureList = 2015 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2016 // Return if the builtin doesn't have any required features. 2017 if (!FeatureList || StringRef(FeatureList) == "") 2018 return; 2019 StringRef(FeatureList).split(ReqFeatures, ","); 2020 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2021 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2022 << TargetDecl->getDeclName() 2023 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2024 2025 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2026 // Get the required features for the callee. 2027 SmallVector<StringRef, 1> ReqFeatures; 2028 llvm::StringMap<bool> CalleeFeatureMap; 2029 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2030 for (const auto &F : CalleeFeatureMap) { 2031 // Only positive features are "required". 2032 if (F.getValue()) 2033 ReqFeatures.push_back(F.getKey()); 2034 } 2035 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2036 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2037 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2038 } 2039 } 2040 2041 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2042 if (!CGM.getCodeGenOpts().SanitizeStats) 2043 return; 2044 2045 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2046 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2047 CGM.getSanStats().create(IRB, SSK); 2048 } 2049