1 //===--- CodeGenFunction.cpp - Emit LLVM Code from ASTs for a Function ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This coordinates the per-function state used while generating code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGBlocks.h" 16 #include "CGCleanup.h" 17 #include "CGCUDARuntime.h" 18 #include "CGCXXABI.h" 19 #include "CGDebugInfo.h" 20 #include "CGOpenMPRuntime.h" 21 #include "CodeGenModule.h" 22 #include "CodeGenPGO.h" 23 #include "TargetInfo.h" 24 #include "clang/AST/ASTContext.h" 25 #include "clang/AST/Decl.h" 26 #include "clang/AST/DeclCXX.h" 27 #include "clang/AST/StmtCXX.h" 28 #include "clang/AST/StmtObjC.h" 29 #include "clang/Basic/Builtins.h" 30 #include "clang/Basic/TargetInfo.h" 31 #include "clang/CodeGen/CGFunctionInfo.h" 32 #include "clang/Frontend/CodeGenOptions.h" 33 #include "clang/Sema/SemaDiagnostic.h" 34 #include "llvm/IR/DataLayout.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/MDBuilder.h" 37 #include "llvm/IR/Operator.h" 38 using namespace clang; 39 using namespace CodeGen; 40 41 /// shouldEmitLifetimeMarkers - Decide whether we need emit the life-time 42 /// markers. 43 static bool shouldEmitLifetimeMarkers(const CodeGenOptions &CGOpts, 44 const LangOptions &LangOpts) { 45 if (CGOpts.DisableLifetimeMarkers) 46 return false; 47 48 // Asan uses markers for use-after-scope checks. 49 if (CGOpts.SanitizeAddressUseAfterScope) 50 return true; 51 52 // Disable lifetime markers in msan builds. 53 // FIXME: Remove this when msan works with lifetime markers. 54 if (LangOpts.Sanitize.has(SanitizerKind::Memory)) 55 return false; 56 57 // For now, only in optimized builds. 58 return CGOpts.OptimizationLevel != 0; 59 } 60 61 CodeGenFunction::CodeGenFunction(CodeGenModule &cgm, bool suppressNewContext) 62 : CodeGenTypeCache(cgm), CGM(cgm), Target(cgm.getTarget()), 63 Builder(cgm, cgm.getModule().getContext(), llvm::ConstantFolder(), 64 CGBuilderInserterTy(this)), 65 CurFn(nullptr), ReturnValue(Address::invalid()), 66 CapturedStmtInfo(nullptr), SanOpts(CGM.getLangOpts().Sanitize), 67 IsSanitizerScope(false), CurFuncIsThunk(false), AutoreleaseResult(false), 68 SawAsmBlock(false), IsOutlinedSEHHelper(false), BlockInfo(nullptr), 69 BlockPointer(nullptr), LambdaThisCaptureField(nullptr), 70 NormalCleanupDest(nullptr), NextCleanupDestIndex(1), 71 FirstBlockInfo(nullptr), EHResumeBlock(nullptr), ExceptionSlot(nullptr), 72 EHSelectorSlot(nullptr), DebugInfo(CGM.getModuleDebugInfo()), 73 DisableDebugInfo(false), DidCallStackSave(false), IndirectBranch(nullptr), 74 PGO(cgm), SwitchInsn(nullptr), SwitchWeights(nullptr), 75 CaseRangeBlock(nullptr), UnreachableBlock(nullptr), NumReturnExprs(0), 76 NumSimpleReturnExprs(0), CXXABIThisDecl(nullptr), 77 CXXABIThisValue(nullptr), CXXThisValue(nullptr), 78 CXXStructorImplicitParamDecl(nullptr), 79 CXXStructorImplicitParamValue(nullptr), OutermostConditional(nullptr), 80 CurLexicalScope(nullptr), TerminateLandingPad(nullptr), 81 TerminateHandler(nullptr), TrapBB(nullptr), 82 ShouldEmitLifetimeMarkers( 83 shouldEmitLifetimeMarkers(CGM.getCodeGenOpts(), CGM.getLangOpts())) { 84 if (!suppressNewContext) 85 CGM.getCXXABI().getMangleContext().startNewFunction(); 86 87 llvm::FastMathFlags FMF; 88 if (CGM.getLangOpts().FastMath) 89 FMF.setUnsafeAlgebra(); 90 if (CGM.getLangOpts().FiniteMathOnly) { 91 FMF.setNoNaNs(); 92 FMF.setNoInfs(); 93 } 94 if (CGM.getCodeGenOpts().NoNaNsFPMath) { 95 FMF.setNoNaNs(); 96 } 97 if (CGM.getCodeGenOpts().NoSignedZeros) { 98 FMF.setNoSignedZeros(); 99 } 100 if (CGM.getCodeGenOpts().ReciprocalMath) { 101 FMF.setAllowReciprocal(); 102 } 103 Builder.setFastMathFlags(FMF); 104 } 105 106 CodeGenFunction::~CodeGenFunction() { 107 assert(LifetimeExtendedCleanupStack.empty() && "failed to emit a cleanup"); 108 109 // If there are any unclaimed block infos, go ahead and destroy them 110 // now. This can happen if IR-gen gets clever and skips evaluating 111 // something. 112 if (FirstBlockInfo) 113 destroyBlockInfos(FirstBlockInfo); 114 115 if (getLangOpts().OpenMP) { 116 CGM.getOpenMPRuntime().functionFinished(*this); 117 } 118 } 119 120 CharUnits CodeGenFunction::getNaturalPointeeTypeAlignment(QualType T, 121 AlignmentSource *Source) { 122 return getNaturalTypeAlignment(T->getPointeeType(), Source, 123 /*forPointee*/ true); 124 } 125 126 CharUnits CodeGenFunction::getNaturalTypeAlignment(QualType T, 127 AlignmentSource *Source, 128 bool forPointeeType) { 129 // Honor alignment typedef attributes even on incomplete types. 130 // We also honor them straight for C++ class types, even as pointees; 131 // there's an expressivity gap here. 132 if (auto TT = T->getAs<TypedefType>()) { 133 if (auto Align = TT->getDecl()->getMaxAlignment()) { 134 if (Source) *Source = AlignmentSource::AttributedType; 135 return getContext().toCharUnitsFromBits(Align); 136 } 137 } 138 139 if (Source) *Source = AlignmentSource::Type; 140 141 CharUnits Alignment; 142 if (T->isIncompleteType()) { 143 Alignment = CharUnits::One(); // Shouldn't be used, but pessimistic is best. 144 } else { 145 // For C++ class pointees, we don't know whether we're pointing at a 146 // base or a complete object, so we generally need to use the 147 // non-virtual alignment. 148 const CXXRecordDecl *RD; 149 if (forPointeeType && (RD = T->getAsCXXRecordDecl())) { 150 Alignment = CGM.getClassPointerAlignment(RD); 151 } else { 152 Alignment = getContext().getTypeAlignInChars(T); 153 } 154 155 // Cap to the global maximum type alignment unless the alignment 156 // was somehow explicit on the type. 157 if (unsigned MaxAlign = getLangOpts().MaxTypeAlign) { 158 if (Alignment.getQuantity() > MaxAlign && 159 !getContext().isAlignmentRequired(T)) 160 Alignment = CharUnits::fromQuantity(MaxAlign); 161 } 162 } 163 return Alignment; 164 } 165 166 LValue CodeGenFunction::MakeNaturalAlignAddrLValue(llvm::Value *V, QualType T) { 167 AlignmentSource AlignSource; 168 CharUnits Alignment = getNaturalTypeAlignment(T, &AlignSource); 169 return LValue::MakeAddr(Address(V, Alignment), T, getContext(), AlignSource, 170 CGM.getTBAAInfo(T)); 171 } 172 173 /// Given a value of type T* that may not be to a complete object, 174 /// construct an l-value with the natural pointee alignment of T. 175 LValue 176 CodeGenFunction::MakeNaturalAlignPointeeAddrLValue(llvm::Value *V, QualType T) { 177 AlignmentSource AlignSource; 178 CharUnits Align = getNaturalTypeAlignment(T, &AlignSource, /*pointee*/ true); 179 return MakeAddrLValue(Address(V, Align), T, AlignSource); 180 } 181 182 183 llvm::Type *CodeGenFunction::ConvertTypeForMem(QualType T) { 184 return CGM.getTypes().ConvertTypeForMem(T); 185 } 186 187 llvm::Type *CodeGenFunction::ConvertType(QualType T) { 188 return CGM.getTypes().ConvertType(T); 189 } 190 191 TypeEvaluationKind CodeGenFunction::getEvaluationKind(QualType type) { 192 type = type.getCanonicalType(); 193 while (true) { 194 switch (type->getTypeClass()) { 195 #define TYPE(name, parent) 196 #define ABSTRACT_TYPE(name, parent) 197 #define NON_CANONICAL_TYPE(name, parent) case Type::name: 198 #define DEPENDENT_TYPE(name, parent) case Type::name: 199 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(name, parent) case Type::name: 200 #include "clang/AST/TypeNodes.def" 201 llvm_unreachable("non-canonical or dependent type in IR-generation"); 202 203 case Type::Auto: 204 llvm_unreachable("undeduced auto type in IR-generation"); 205 206 // Various scalar types. 207 case Type::Builtin: 208 case Type::Pointer: 209 case Type::BlockPointer: 210 case Type::LValueReference: 211 case Type::RValueReference: 212 case Type::MemberPointer: 213 case Type::Vector: 214 case Type::ExtVector: 215 case Type::FunctionProto: 216 case Type::FunctionNoProto: 217 case Type::Enum: 218 case Type::ObjCObjectPointer: 219 case Type::Pipe: 220 return TEK_Scalar; 221 222 // Complexes. 223 case Type::Complex: 224 return TEK_Complex; 225 226 // Arrays, records, and Objective-C objects. 227 case Type::ConstantArray: 228 case Type::IncompleteArray: 229 case Type::VariableArray: 230 case Type::Record: 231 case Type::ObjCObject: 232 case Type::ObjCInterface: 233 return TEK_Aggregate; 234 235 // We operate on atomic values according to their underlying type. 236 case Type::Atomic: 237 type = cast<AtomicType>(type)->getValueType(); 238 continue; 239 } 240 llvm_unreachable("unknown type kind!"); 241 } 242 } 243 244 llvm::DebugLoc CodeGenFunction::EmitReturnBlock() { 245 // For cleanliness, we try to avoid emitting the return block for 246 // simple cases. 247 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 248 249 if (CurBB) { 250 assert(!CurBB->getTerminator() && "Unexpected terminated block."); 251 252 // We have a valid insert point, reuse it if it is empty or there are no 253 // explicit jumps to the return block. 254 if (CurBB->empty() || ReturnBlock.getBlock()->use_empty()) { 255 ReturnBlock.getBlock()->replaceAllUsesWith(CurBB); 256 delete ReturnBlock.getBlock(); 257 } else 258 EmitBlock(ReturnBlock.getBlock()); 259 return llvm::DebugLoc(); 260 } 261 262 // Otherwise, if the return block is the target of a single direct 263 // branch then we can just put the code in that block instead. This 264 // cleans up functions which started with a unified return block. 265 if (ReturnBlock.getBlock()->hasOneUse()) { 266 llvm::BranchInst *BI = 267 dyn_cast<llvm::BranchInst>(*ReturnBlock.getBlock()->user_begin()); 268 if (BI && BI->isUnconditional() && 269 BI->getSuccessor(0) == ReturnBlock.getBlock()) { 270 // Record/return the DebugLoc of the simple 'return' expression to be used 271 // later by the actual 'ret' instruction. 272 llvm::DebugLoc Loc = BI->getDebugLoc(); 273 Builder.SetInsertPoint(BI->getParent()); 274 BI->eraseFromParent(); 275 delete ReturnBlock.getBlock(); 276 return Loc; 277 } 278 } 279 280 // FIXME: We are at an unreachable point, there is no reason to emit the block 281 // unless it has uses. However, we still need a place to put the debug 282 // region.end for now. 283 284 EmitBlock(ReturnBlock.getBlock()); 285 return llvm::DebugLoc(); 286 } 287 288 static void EmitIfUsed(CodeGenFunction &CGF, llvm::BasicBlock *BB) { 289 if (!BB) return; 290 if (!BB->use_empty()) 291 return CGF.CurFn->getBasicBlockList().push_back(BB); 292 delete BB; 293 } 294 295 void CodeGenFunction::FinishFunction(SourceLocation EndLoc) { 296 assert(BreakContinueStack.empty() && 297 "mismatched push/pop in break/continue stack!"); 298 299 bool OnlySimpleReturnStmts = NumSimpleReturnExprs > 0 300 && NumSimpleReturnExprs == NumReturnExprs 301 && ReturnBlock.getBlock()->use_empty(); 302 // Usually the return expression is evaluated before the cleanup 303 // code. If the function contains only a simple return statement, 304 // such as a constant, the location before the cleanup code becomes 305 // the last useful breakpoint in the function, because the simple 306 // return expression will be evaluated after the cleanup code. To be 307 // safe, set the debug location for cleanup code to the location of 308 // the return statement. Otherwise the cleanup code should be at the 309 // end of the function's lexical scope. 310 // 311 // If there are multiple branches to the return block, the branch 312 // instructions will get the location of the return statements and 313 // all will be fine. 314 if (CGDebugInfo *DI = getDebugInfo()) { 315 if (OnlySimpleReturnStmts) 316 DI->EmitLocation(Builder, LastStopPoint); 317 else 318 DI->EmitLocation(Builder, EndLoc); 319 } 320 321 // Pop any cleanups that might have been associated with the 322 // parameters. Do this in whatever block we're currently in; it's 323 // important to do this before we enter the return block or return 324 // edges will be *really* confused. 325 bool HasCleanups = EHStack.stable_begin() != PrologueCleanupDepth; 326 bool HasOnlyLifetimeMarkers = 327 HasCleanups && EHStack.containsOnlyLifetimeMarkers(PrologueCleanupDepth); 328 bool EmitRetDbgLoc = !HasCleanups || HasOnlyLifetimeMarkers; 329 if (HasCleanups) { 330 // Make sure the line table doesn't jump back into the body for 331 // the ret after it's been at EndLoc. 332 if (CGDebugInfo *DI = getDebugInfo()) 333 if (OnlySimpleReturnStmts) 334 DI->EmitLocation(Builder, EndLoc); 335 336 PopCleanupBlocks(PrologueCleanupDepth); 337 } 338 339 // Emit function epilog (to return). 340 llvm::DebugLoc Loc = EmitReturnBlock(); 341 342 if (ShouldInstrumentFunction()) 343 EmitFunctionInstrumentation("__cyg_profile_func_exit"); 344 345 // Emit debug descriptor for function end. 346 if (CGDebugInfo *DI = getDebugInfo()) 347 DI->EmitFunctionEnd(Builder); 348 349 // Reset the debug location to that of the simple 'return' expression, if any 350 // rather than that of the end of the function's scope '}'. 351 ApplyDebugLocation AL(*this, Loc); 352 EmitFunctionEpilog(*CurFnInfo, EmitRetDbgLoc, EndLoc); 353 EmitEndEHSpec(CurCodeDecl); 354 355 assert(EHStack.empty() && 356 "did not remove all scopes from cleanup stack!"); 357 358 // If someone did an indirect goto, emit the indirect goto block at the end of 359 // the function. 360 if (IndirectBranch) { 361 EmitBlock(IndirectBranch->getParent()); 362 Builder.ClearInsertionPoint(); 363 } 364 365 // If some of our locals escaped, insert a call to llvm.localescape in the 366 // entry block. 367 if (!EscapedLocals.empty()) { 368 // Invert the map from local to index into a simple vector. There should be 369 // no holes. 370 SmallVector<llvm::Value *, 4> EscapeArgs; 371 EscapeArgs.resize(EscapedLocals.size()); 372 for (auto &Pair : EscapedLocals) 373 EscapeArgs[Pair.second] = Pair.first; 374 llvm::Function *FrameEscapeFn = llvm::Intrinsic::getDeclaration( 375 &CGM.getModule(), llvm::Intrinsic::localescape); 376 CGBuilderTy(*this, AllocaInsertPt).CreateCall(FrameEscapeFn, EscapeArgs); 377 } 378 379 // Remove the AllocaInsertPt instruction, which is just a convenience for us. 380 llvm::Instruction *Ptr = AllocaInsertPt; 381 AllocaInsertPt = nullptr; 382 Ptr->eraseFromParent(); 383 384 // If someone took the address of a label but never did an indirect goto, we 385 // made a zero entry PHI node, which is illegal, zap it now. 386 if (IndirectBranch) { 387 llvm::PHINode *PN = cast<llvm::PHINode>(IndirectBranch->getAddress()); 388 if (PN->getNumIncomingValues() == 0) { 389 PN->replaceAllUsesWith(llvm::UndefValue::get(PN->getType())); 390 PN->eraseFromParent(); 391 } 392 } 393 394 EmitIfUsed(*this, EHResumeBlock); 395 EmitIfUsed(*this, TerminateLandingPad); 396 EmitIfUsed(*this, TerminateHandler); 397 EmitIfUsed(*this, UnreachableBlock); 398 399 if (CGM.getCodeGenOpts().EmitDeclMetadata) 400 EmitDeclMetadata(); 401 402 for (SmallVectorImpl<std::pair<llvm::Instruction *, llvm::Value *> >::iterator 403 I = DeferredReplacements.begin(), 404 E = DeferredReplacements.end(); 405 I != E; ++I) { 406 I->first->replaceAllUsesWith(I->second); 407 I->first->eraseFromParent(); 408 } 409 } 410 411 /// ShouldInstrumentFunction - Return true if the current function should be 412 /// instrumented with __cyg_profile_func_* calls 413 bool CodeGenFunction::ShouldInstrumentFunction() { 414 if (!CGM.getCodeGenOpts().InstrumentFunctions) 415 return false; 416 if (!CurFuncDecl || CurFuncDecl->hasAttr<NoInstrumentFunctionAttr>()) 417 return false; 418 return true; 419 } 420 421 /// ShouldXRayInstrument - Return true if the current function should be 422 /// instrumented with XRay nop sleds. 423 bool CodeGenFunction::ShouldXRayInstrumentFunction() const { 424 return CGM.getCodeGenOpts().XRayInstrumentFunctions; 425 } 426 427 /// EmitFunctionInstrumentation - Emit LLVM code to call the specified 428 /// instrumentation function with the current function and the call site, if 429 /// function instrumentation is enabled. 430 void CodeGenFunction::EmitFunctionInstrumentation(const char *Fn) { 431 auto NL = ApplyDebugLocation::CreateArtificial(*this); 432 // void __cyg_profile_func_{enter,exit} (void *this_fn, void *call_site); 433 llvm::PointerType *PointerTy = Int8PtrTy; 434 llvm::Type *ProfileFuncArgs[] = { PointerTy, PointerTy }; 435 llvm::FunctionType *FunctionTy = 436 llvm::FunctionType::get(VoidTy, ProfileFuncArgs, false); 437 438 llvm::Constant *F = CGM.CreateRuntimeFunction(FunctionTy, Fn); 439 llvm::CallInst *CallSite = Builder.CreateCall( 440 CGM.getIntrinsic(llvm::Intrinsic::returnaddress), 441 llvm::ConstantInt::get(Int32Ty, 0), 442 "callsite"); 443 444 llvm::Value *args[] = { 445 llvm::ConstantExpr::getBitCast(CurFn, PointerTy), 446 CallSite 447 }; 448 449 EmitNounwindRuntimeCall(F, args); 450 } 451 452 static void removeImageAccessQualifier(std::string& TyName) { 453 std::string ReadOnlyQual("__read_only"); 454 std::string::size_type ReadOnlyPos = TyName.find(ReadOnlyQual); 455 if (ReadOnlyPos != std::string::npos) 456 // "+ 1" for the space after access qualifier. 457 TyName.erase(ReadOnlyPos, ReadOnlyQual.size() + 1); 458 else { 459 std::string WriteOnlyQual("__write_only"); 460 std::string::size_type WriteOnlyPos = TyName.find(WriteOnlyQual); 461 if (WriteOnlyPos != std::string::npos) 462 TyName.erase(WriteOnlyPos, WriteOnlyQual.size() + 1); 463 else { 464 std::string ReadWriteQual("__read_write"); 465 std::string::size_type ReadWritePos = TyName.find(ReadWriteQual); 466 if (ReadWritePos != std::string::npos) 467 TyName.erase(ReadWritePos, ReadWriteQual.size() + 1); 468 } 469 } 470 } 471 472 // Returns the address space id that should be produced to the 473 // kernel_arg_addr_space metadata. This is always fixed to the ids 474 // as specified in the SPIR 2.0 specification in order to differentiate 475 // for example in clGetKernelArgInfo() implementation between the address 476 // spaces with targets without unique mapping to the OpenCL address spaces 477 // (basically all single AS CPUs). 478 static unsigned ArgInfoAddressSpace(unsigned LangAS) { 479 switch (LangAS) { 480 case LangAS::opencl_global: return 1; 481 case LangAS::opencl_constant: return 2; 482 case LangAS::opencl_local: return 3; 483 case LangAS::opencl_generic: return 4; // Not in SPIR 2.0 specs. 484 default: 485 return 0; // Assume private. 486 } 487 } 488 489 // OpenCL v1.2 s5.6.4.6 allows the compiler to store kernel argument 490 // information in the program executable. The argument information stored 491 // includes the argument name, its type, the address and access qualifiers used. 492 static void GenOpenCLArgMetadata(const FunctionDecl *FD, llvm::Function *Fn, 493 CodeGenModule &CGM, llvm::LLVMContext &Context, 494 CGBuilderTy &Builder, ASTContext &ASTCtx) { 495 // Create MDNodes that represent the kernel arg metadata. 496 // Each MDNode is a list in the form of "key", N number of values which is 497 // the same number of values as their are kernel arguments. 498 499 const PrintingPolicy &Policy = ASTCtx.getPrintingPolicy(); 500 501 // MDNode for the kernel argument address space qualifiers. 502 SmallVector<llvm::Metadata *, 8> addressQuals; 503 504 // MDNode for the kernel argument access qualifiers (images only). 505 SmallVector<llvm::Metadata *, 8> accessQuals; 506 507 // MDNode for the kernel argument type names. 508 SmallVector<llvm::Metadata *, 8> argTypeNames; 509 510 // MDNode for the kernel argument base type names. 511 SmallVector<llvm::Metadata *, 8> argBaseTypeNames; 512 513 // MDNode for the kernel argument type qualifiers. 514 SmallVector<llvm::Metadata *, 8> argTypeQuals; 515 516 // MDNode for the kernel argument names. 517 SmallVector<llvm::Metadata *, 8> argNames; 518 519 for (unsigned i = 0, e = FD->getNumParams(); i != e; ++i) { 520 const ParmVarDecl *parm = FD->getParamDecl(i); 521 QualType ty = parm->getType(); 522 std::string typeQuals; 523 524 if (ty->isPointerType()) { 525 QualType pointeeTy = ty->getPointeeType(); 526 527 // Get address qualifier. 528 addressQuals.push_back(llvm::ConstantAsMetadata::get(Builder.getInt32( 529 ArgInfoAddressSpace(pointeeTy.getAddressSpace())))); 530 531 // Get argument type name. 532 std::string typeName = 533 pointeeTy.getUnqualifiedType().getAsString(Policy) + "*"; 534 535 // Turn "unsigned type" to "utype" 536 std::string::size_type pos = typeName.find("unsigned"); 537 if (pointeeTy.isCanonical() && pos != std::string::npos) 538 typeName.erase(pos+1, 8); 539 540 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 541 542 std::string baseTypeName = 543 pointeeTy.getUnqualifiedType().getCanonicalType().getAsString( 544 Policy) + 545 "*"; 546 547 // Turn "unsigned type" to "utype" 548 pos = baseTypeName.find("unsigned"); 549 if (pos != std::string::npos) 550 baseTypeName.erase(pos+1, 8); 551 552 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 553 554 // Get argument type qualifiers: 555 if (ty.isRestrictQualified()) 556 typeQuals = "restrict"; 557 if (pointeeTy.isConstQualified() || 558 (pointeeTy.getAddressSpace() == LangAS::opencl_constant)) 559 typeQuals += typeQuals.empty() ? "const" : " const"; 560 if (pointeeTy.isVolatileQualified()) 561 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 562 } else { 563 uint32_t AddrSpc = 0; 564 bool isPipe = ty->isPipeType(); 565 if (ty->isImageType() || isPipe) 566 AddrSpc = ArgInfoAddressSpace(LangAS::opencl_global); 567 568 addressQuals.push_back( 569 llvm::ConstantAsMetadata::get(Builder.getInt32(AddrSpc))); 570 571 // Get argument type name. 572 std::string typeName; 573 if (isPipe) 574 typeName = ty.getCanonicalType()->getAs<PipeType>()->getElementType() 575 .getAsString(Policy); 576 else 577 typeName = ty.getUnqualifiedType().getAsString(Policy); 578 579 // Turn "unsigned type" to "utype" 580 std::string::size_type pos = typeName.find("unsigned"); 581 if (ty.isCanonical() && pos != std::string::npos) 582 typeName.erase(pos+1, 8); 583 584 std::string baseTypeName; 585 if (isPipe) 586 baseTypeName = ty.getCanonicalType()->getAs<PipeType>() 587 ->getElementType().getCanonicalType() 588 .getAsString(Policy); 589 else 590 baseTypeName = 591 ty.getUnqualifiedType().getCanonicalType().getAsString(Policy); 592 593 // Remove access qualifiers on images 594 // (as they are inseparable from type in clang implementation, 595 // but OpenCL spec provides a special query to get access qualifier 596 // via clGetKernelArgInfo with CL_KERNEL_ARG_ACCESS_QUALIFIER): 597 if (ty->isImageType()) { 598 removeImageAccessQualifier(typeName); 599 removeImageAccessQualifier(baseTypeName); 600 } 601 602 argTypeNames.push_back(llvm::MDString::get(Context, typeName)); 603 604 // Turn "unsigned type" to "utype" 605 pos = baseTypeName.find("unsigned"); 606 if (pos != std::string::npos) 607 baseTypeName.erase(pos+1, 8); 608 609 argBaseTypeNames.push_back(llvm::MDString::get(Context, baseTypeName)); 610 611 // Get argument type qualifiers: 612 if (ty.isConstQualified()) 613 typeQuals = "const"; 614 if (ty.isVolatileQualified()) 615 typeQuals += typeQuals.empty() ? "volatile" : " volatile"; 616 if (isPipe) 617 typeQuals = "pipe"; 618 } 619 620 argTypeQuals.push_back(llvm::MDString::get(Context, typeQuals)); 621 622 // Get image and pipe access qualifier: 623 if (ty->isImageType()|| ty->isPipeType()) { 624 const OpenCLAccessAttr *A = parm->getAttr<OpenCLAccessAttr>(); 625 if (A && A->isWriteOnly()) 626 accessQuals.push_back(llvm::MDString::get(Context, "write_only")); 627 else if (A && A->isReadWrite()) 628 accessQuals.push_back(llvm::MDString::get(Context, "read_write")); 629 else 630 accessQuals.push_back(llvm::MDString::get(Context, "read_only")); 631 } else 632 accessQuals.push_back(llvm::MDString::get(Context, "none")); 633 634 // Get argument name. 635 argNames.push_back(llvm::MDString::get(Context, parm->getName())); 636 } 637 638 Fn->setMetadata("kernel_arg_addr_space", 639 llvm::MDNode::get(Context, addressQuals)); 640 Fn->setMetadata("kernel_arg_access_qual", 641 llvm::MDNode::get(Context, accessQuals)); 642 Fn->setMetadata("kernel_arg_type", 643 llvm::MDNode::get(Context, argTypeNames)); 644 Fn->setMetadata("kernel_arg_base_type", 645 llvm::MDNode::get(Context, argBaseTypeNames)); 646 Fn->setMetadata("kernel_arg_type_qual", 647 llvm::MDNode::get(Context, argTypeQuals)); 648 if (CGM.getCodeGenOpts().EmitOpenCLArgMetadata) 649 Fn->setMetadata("kernel_arg_name", 650 llvm::MDNode::get(Context, argNames)); 651 } 652 653 void CodeGenFunction::EmitOpenCLKernelMetadata(const FunctionDecl *FD, 654 llvm::Function *Fn) 655 { 656 if (!FD->hasAttr<OpenCLKernelAttr>()) 657 return; 658 659 llvm::LLVMContext &Context = getLLVMContext(); 660 661 GenOpenCLArgMetadata(FD, Fn, CGM, Context, Builder, getContext()); 662 663 if (const VecTypeHintAttr *A = FD->getAttr<VecTypeHintAttr>()) { 664 QualType hintQTy = A->getTypeHint(); 665 const ExtVectorType *hintEltQTy = hintQTy->getAs<ExtVectorType>(); 666 bool isSignedInteger = 667 hintQTy->isSignedIntegerType() || 668 (hintEltQTy && hintEltQTy->getElementType()->isSignedIntegerType()); 669 llvm::Metadata *attrMDArgs[] = { 670 llvm::ConstantAsMetadata::get(llvm::UndefValue::get( 671 CGM.getTypes().ConvertType(A->getTypeHint()))), 672 llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 673 llvm::IntegerType::get(Context, 32), 674 llvm::APInt(32, (uint64_t)(isSignedInteger ? 1 : 0))))}; 675 Fn->setMetadata("vec_type_hint", llvm::MDNode::get(Context, attrMDArgs)); 676 } 677 678 if (const WorkGroupSizeHintAttr *A = FD->getAttr<WorkGroupSizeHintAttr>()) { 679 llvm::Metadata *attrMDArgs[] = { 680 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 681 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 682 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 683 Fn->setMetadata("work_group_size_hint", llvm::MDNode::get(Context, attrMDArgs)); 684 } 685 686 if (const ReqdWorkGroupSizeAttr *A = FD->getAttr<ReqdWorkGroupSizeAttr>()) { 687 llvm::Metadata *attrMDArgs[] = { 688 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getXDim())), 689 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getYDim())), 690 llvm::ConstantAsMetadata::get(Builder.getInt32(A->getZDim()))}; 691 Fn->setMetadata("reqd_work_group_size", llvm::MDNode::get(Context, attrMDArgs)); 692 } 693 } 694 695 /// Determine whether the function F ends with a return stmt. 696 static bool endsWithReturn(const Decl* F) { 697 const Stmt *Body = nullptr; 698 if (auto *FD = dyn_cast_or_null<FunctionDecl>(F)) 699 Body = FD->getBody(); 700 else if (auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(F)) 701 Body = OMD->getBody(); 702 703 if (auto *CS = dyn_cast_or_null<CompoundStmt>(Body)) { 704 auto LastStmt = CS->body_rbegin(); 705 if (LastStmt != CS->body_rend()) 706 return isa<ReturnStmt>(*LastStmt); 707 } 708 return false; 709 } 710 711 void CodeGenFunction::StartFunction(GlobalDecl GD, 712 QualType RetTy, 713 llvm::Function *Fn, 714 const CGFunctionInfo &FnInfo, 715 const FunctionArgList &Args, 716 SourceLocation Loc, 717 SourceLocation StartLoc) { 718 assert(!CurFn && 719 "Do not use a CodeGenFunction object for more than one function"); 720 721 const Decl *D = GD.getDecl(); 722 723 DidCallStackSave = false; 724 CurCodeDecl = D; 725 if (const auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 726 if (FD->usesSEHTry()) 727 CurSEHParent = FD; 728 CurFuncDecl = (D ? D->getNonClosureContext() : nullptr); 729 FnRetTy = RetTy; 730 CurFn = Fn; 731 CurFnInfo = &FnInfo; 732 assert(CurFn->isDeclaration() && "Function already has body?"); 733 734 if (CGM.isInSanitizerBlacklist(Fn, Loc)) 735 SanOpts.clear(); 736 737 if (D) { 738 // Apply the no_sanitize* attributes to SanOpts. 739 for (auto Attr : D->specific_attrs<NoSanitizeAttr>()) 740 SanOpts.Mask &= ~Attr->getMask(); 741 } 742 743 // Apply sanitizer attributes to the function. 744 if (SanOpts.hasOneOf(SanitizerKind::Address | SanitizerKind::KernelAddress)) 745 Fn->addFnAttr(llvm::Attribute::SanitizeAddress); 746 if (SanOpts.has(SanitizerKind::Thread)) 747 Fn->addFnAttr(llvm::Attribute::SanitizeThread); 748 if (SanOpts.has(SanitizerKind::Memory)) 749 Fn->addFnAttr(llvm::Attribute::SanitizeMemory); 750 if (SanOpts.has(SanitizerKind::SafeStack)) 751 Fn->addFnAttr(llvm::Attribute::SafeStack); 752 753 // Ignore TSan memory acesses from within ObjC/ObjC++ dealloc, initialize, 754 // .cxx_destruct and all of their calees at run time. 755 if (SanOpts.has(SanitizerKind::Thread)) { 756 if (const auto *OMD = dyn_cast_or_null<ObjCMethodDecl>(D)) { 757 IdentifierInfo *II = OMD->getSelector().getIdentifierInfoForSlot(0); 758 if (OMD->getMethodFamily() == OMF_dealloc || 759 OMD->getMethodFamily() == OMF_initialize || 760 (OMD->getSelector().isUnarySelector() && II->isStr(".cxx_destruct"))) { 761 Fn->addFnAttr("sanitize_thread_no_checking_at_run_time"); 762 Fn->removeFnAttr(llvm::Attribute::SanitizeThread); 763 } 764 } 765 } 766 767 // Apply xray attributes to the function (as a string, for now) 768 if (D && ShouldXRayInstrumentFunction()) { 769 if (const auto *XRayAttr = D->getAttr<XRayInstrumentAttr>()) { 770 if (XRayAttr->alwaysXRayInstrument()) 771 Fn->addFnAttr("function-instrument", "xray-always"); 772 if (XRayAttr->neverXRayInstrument()) 773 Fn->addFnAttr("function-instrument", "xray-never"); 774 } else { 775 Fn->addFnAttr( 776 "xray-instruction-threshold", 777 llvm::itostr(CGM.getCodeGenOpts().XRayInstructionThreshold)); 778 } 779 } 780 781 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 782 if (CGM.getLangOpts().OpenMP && FD->hasAttr<OMPDeclareSimdDeclAttr>()) 783 CGM.getOpenMPRuntime().emitDeclareSimdFunction(FD, Fn); 784 785 // Add no-jump-tables value. 786 Fn->addFnAttr("no-jump-tables", 787 llvm::toStringRef(CGM.getCodeGenOpts().NoUseJumpTables)); 788 789 if (getLangOpts().OpenCL) { 790 // Add metadata for a kernel function. 791 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 792 EmitOpenCLKernelMetadata(FD, Fn); 793 } 794 795 // If we are checking function types, emit a function type signature as 796 // prologue data. 797 if (getLangOpts().CPlusPlus && SanOpts.has(SanitizerKind::Function)) { 798 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) { 799 if (llvm::Constant *PrologueSig = 800 CGM.getTargetCodeGenInfo().getUBSanFunctionSignature(CGM)) { 801 llvm::Constant *FTRTTIConst = 802 CGM.GetAddrOfRTTIDescriptor(FD->getType(), /*ForEH=*/true); 803 llvm::Constant *PrologueStructElems[] = { PrologueSig, FTRTTIConst }; 804 llvm::Constant *PrologueStructConst = 805 llvm::ConstantStruct::getAnon(PrologueStructElems, /*Packed=*/true); 806 Fn->setPrologueData(PrologueStructConst); 807 } 808 } 809 } 810 811 // If we're in C++ mode and the function name is "main", it is guaranteed 812 // to be norecurse by the standard (3.6.1.3 "The function main shall not be 813 // used within a program"). 814 if (getLangOpts().CPlusPlus) 815 if (const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(D)) 816 if (FD->isMain()) 817 Fn->addFnAttr(llvm::Attribute::NoRecurse); 818 819 llvm::BasicBlock *EntryBB = createBasicBlock("entry", CurFn); 820 821 // Create a marker to make it easy to insert allocas into the entryblock 822 // later. Don't create this with the builder, because we don't want it 823 // folded. 824 llvm::Value *Undef = llvm::UndefValue::get(Int32Ty); 825 AllocaInsertPt = new llvm::BitCastInst(Undef, Int32Ty, "allocapt", EntryBB); 826 827 ReturnBlock = getJumpDestInCurrentScope("return"); 828 829 Builder.SetInsertPoint(EntryBB); 830 831 // Emit subprogram debug descriptor. 832 if (CGDebugInfo *DI = getDebugInfo()) { 833 // Reconstruct the type from the argument list so that implicit parameters, 834 // such as 'this' and 'vtt', show up in the debug info. Preserve the calling 835 // convention. 836 CallingConv CC = CallingConv::CC_C; 837 if (auto *FD = dyn_cast_or_null<FunctionDecl>(D)) 838 if (const auto *SrcFnTy = FD->getType()->getAs<FunctionType>()) 839 CC = SrcFnTy->getCallConv(); 840 SmallVector<QualType, 16> ArgTypes; 841 for (const VarDecl *VD : Args) 842 ArgTypes.push_back(VD->getType()); 843 QualType FnType = getContext().getFunctionType( 844 RetTy, ArgTypes, FunctionProtoType::ExtProtoInfo(CC)); 845 DI->EmitFunctionStart(GD, Loc, StartLoc, FnType, CurFn, Builder); 846 } 847 848 if (ShouldInstrumentFunction()) 849 EmitFunctionInstrumentation("__cyg_profile_func_enter"); 850 851 // Since emitting the mcount call here impacts optimizations such as function 852 // inlining, we just add an attribute to insert a mcount call in backend. 853 // The attribute "counting-function" is set to mcount function name which is 854 // architecture dependent. 855 if (CGM.getCodeGenOpts().InstrumentForProfiling) 856 Fn->addFnAttr("counting-function", getTarget().getMCountName()); 857 858 if (RetTy->isVoidType()) { 859 // Void type; nothing to return. 860 ReturnValue = Address::invalid(); 861 862 // Count the implicit return. 863 if (!endsWithReturn(D)) 864 ++NumReturnExprs; 865 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect && 866 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 867 // Indirect aggregate return; emit returned value directly into sret slot. 868 // This reduces code size, and affects correctness in C++. 869 auto AI = CurFn->arg_begin(); 870 if (CurFnInfo->getReturnInfo().isSRetAfterThis()) 871 ++AI; 872 ReturnValue = Address(&*AI, CurFnInfo->getReturnInfo().getIndirectAlign()); 873 } else if (CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::InAlloca && 874 !hasScalarEvaluationKind(CurFnInfo->getReturnType())) { 875 // Load the sret pointer from the argument struct and return into that. 876 unsigned Idx = CurFnInfo->getReturnInfo().getInAllocaFieldIndex(); 877 llvm::Function::arg_iterator EI = CurFn->arg_end(); 878 --EI; 879 llvm::Value *Addr = Builder.CreateStructGEP(nullptr, &*EI, Idx); 880 Addr = Builder.CreateAlignedLoad(Addr, getPointerAlign(), "agg.result"); 881 ReturnValue = Address(Addr, getNaturalTypeAlignment(RetTy)); 882 } else { 883 ReturnValue = CreateIRTemp(RetTy, "retval"); 884 885 // Tell the epilog emitter to autorelease the result. We do this 886 // now so that various specialized functions can suppress it 887 // during their IR-generation. 888 if (getLangOpts().ObjCAutoRefCount && 889 !CurFnInfo->isReturnsRetained() && 890 RetTy->isObjCRetainableType()) 891 AutoreleaseResult = true; 892 } 893 894 EmitStartEHSpec(CurCodeDecl); 895 896 PrologueCleanupDepth = EHStack.stable_begin(); 897 EmitFunctionProlog(*CurFnInfo, CurFn, Args); 898 899 if (D && isa<CXXMethodDecl>(D) && cast<CXXMethodDecl>(D)->isInstance()) { 900 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 901 const CXXMethodDecl *MD = cast<CXXMethodDecl>(D); 902 if (MD->getParent()->isLambda() && 903 MD->getOverloadedOperator() == OO_Call) { 904 // We're in a lambda; figure out the captures. 905 MD->getParent()->getCaptureFields(LambdaCaptureFields, 906 LambdaThisCaptureField); 907 if (LambdaThisCaptureField) { 908 // If the lambda captures the object referred to by '*this' - either by 909 // value or by reference, make sure CXXThisValue points to the correct 910 // object. 911 912 // Get the lvalue for the field (which is a copy of the enclosing object 913 // or contains the address of the enclosing object). 914 LValue ThisFieldLValue = EmitLValueForLambdaField(LambdaThisCaptureField); 915 if (!LambdaThisCaptureField->getType()->isPointerType()) { 916 // If the enclosing object was captured by value, just use its address. 917 CXXThisValue = ThisFieldLValue.getAddress().getPointer(); 918 } else { 919 // Load the lvalue pointed to by the field, since '*this' was captured 920 // by reference. 921 CXXThisValue = 922 EmitLoadOfLValue(ThisFieldLValue, SourceLocation()).getScalarVal(); 923 } 924 } 925 for (auto *FD : MD->getParent()->fields()) { 926 if (FD->hasCapturedVLAType()) { 927 auto *ExprArg = EmitLoadOfLValue(EmitLValueForLambdaField(FD), 928 SourceLocation()).getScalarVal(); 929 auto VAT = FD->getCapturedVLAType(); 930 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 931 } 932 } 933 } else { 934 // Not in a lambda; just use 'this' from the method. 935 // FIXME: Should we generate a new load for each use of 'this'? The 936 // fast register allocator would be happier... 937 CXXThisValue = CXXABIThisValue; 938 } 939 } 940 941 // If any of the arguments have a variably modified type, make sure to 942 // emit the type size. 943 for (FunctionArgList::const_iterator i = Args.begin(), e = Args.end(); 944 i != e; ++i) { 945 const VarDecl *VD = *i; 946 947 // Dig out the type as written from ParmVarDecls; it's unclear whether 948 // the standard (C99 6.9.1p10) requires this, but we're following the 949 // precedent set by gcc. 950 QualType Ty; 951 if (const ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(VD)) 952 Ty = PVD->getOriginalType(); 953 else 954 Ty = VD->getType(); 955 956 if (Ty->isVariablyModifiedType()) 957 EmitVariablyModifiedType(Ty); 958 } 959 // Emit a location at the end of the prologue. 960 if (CGDebugInfo *DI = getDebugInfo()) 961 DI->EmitLocation(Builder, StartLoc); 962 } 963 964 void CodeGenFunction::EmitFunctionBody(FunctionArgList &Args, 965 const Stmt *Body) { 966 incrementProfileCounter(Body); 967 if (const CompoundStmt *S = dyn_cast<CompoundStmt>(Body)) 968 EmitCompoundStmtWithoutScope(*S); 969 else 970 EmitStmt(Body); 971 } 972 973 /// When instrumenting to collect profile data, the counts for some blocks 974 /// such as switch cases need to not include the fall-through counts, so 975 /// emit a branch around the instrumentation code. When not instrumenting, 976 /// this just calls EmitBlock(). 977 void CodeGenFunction::EmitBlockWithFallThrough(llvm::BasicBlock *BB, 978 const Stmt *S) { 979 llvm::BasicBlock *SkipCountBB = nullptr; 980 if (HaveInsertPoint() && CGM.getCodeGenOpts().hasProfileClangInstr()) { 981 // When instrumenting for profiling, the fallthrough to certain 982 // statements needs to skip over the instrumentation code so that we 983 // get an accurate count. 984 SkipCountBB = createBasicBlock("skipcount"); 985 EmitBranch(SkipCountBB); 986 } 987 EmitBlock(BB); 988 uint64_t CurrentCount = getCurrentProfileCount(); 989 incrementProfileCounter(S); 990 setCurrentProfileCount(getCurrentProfileCount() + CurrentCount); 991 if (SkipCountBB) 992 EmitBlock(SkipCountBB); 993 } 994 995 /// Tries to mark the given function nounwind based on the 996 /// non-existence of any throwing calls within it. We believe this is 997 /// lightweight enough to do at -O0. 998 static void TryMarkNoThrow(llvm::Function *F) { 999 // LLVM treats 'nounwind' on a function as part of the type, so we 1000 // can't do this on functions that can be overwritten. 1001 if (F->isInterposable()) return; 1002 1003 for (llvm::BasicBlock &BB : *F) 1004 for (llvm::Instruction &I : BB) 1005 if (I.mayThrow()) 1006 return; 1007 1008 F->setDoesNotThrow(); 1009 } 1010 1011 QualType CodeGenFunction::BuildFunctionArgList(GlobalDecl GD, 1012 FunctionArgList &Args) { 1013 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1014 QualType ResTy = FD->getReturnType(); 1015 1016 const CXXMethodDecl *MD = dyn_cast<CXXMethodDecl>(FD); 1017 if (MD && MD->isInstance()) { 1018 if (CGM.getCXXABI().HasThisReturn(GD)) 1019 ResTy = MD->getThisType(getContext()); 1020 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 1021 ResTy = CGM.getContext().VoidPtrTy; 1022 CGM.getCXXABI().buildThisParam(*this, Args); 1023 } 1024 1025 // The base version of an inheriting constructor whose constructed base is a 1026 // virtual base is not passed any arguments (because it doesn't actually call 1027 // the inherited constructor). 1028 bool PassedParams = true; 1029 if (const CXXConstructorDecl *CD = dyn_cast<CXXConstructorDecl>(FD)) 1030 if (auto Inherited = CD->getInheritedConstructor()) 1031 PassedParams = 1032 getTypes().inheritingCtorHasParams(Inherited, GD.getCtorType()); 1033 1034 if (PassedParams) { 1035 for (auto *Param : FD->parameters()) { 1036 Args.push_back(Param); 1037 if (!Param->hasAttr<PassObjectSizeAttr>()) 1038 continue; 1039 1040 IdentifierInfo *NoID = nullptr; 1041 auto *Implicit = ImplicitParamDecl::Create( 1042 getContext(), Param->getDeclContext(), Param->getLocation(), NoID, 1043 getContext().getSizeType()); 1044 SizeArguments[Param] = Implicit; 1045 Args.push_back(Implicit); 1046 } 1047 } 1048 1049 if (MD && (isa<CXXConstructorDecl>(MD) || isa<CXXDestructorDecl>(MD))) 1050 CGM.getCXXABI().addImplicitStructorParams(*this, ResTy, Args); 1051 1052 return ResTy; 1053 } 1054 1055 static bool 1056 shouldUseUndefinedBehaviorReturnOptimization(const FunctionDecl *FD, 1057 const ASTContext &Context) { 1058 QualType T = FD->getReturnType(); 1059 // Avoid the optimization for functions that return a record type with a 1060 // trivial destructor or another trivially copyable type. 1061 if (const RecordType *RT = T.getCanonicalType()->getAs<RecordType>()) { 1062 if (const auto *ClassDecl = dyn_cast<CXXRecordDecl>(RT->getDecl())) 1063 return !ClassDecl->hasTrivialDestructor(); 1064 } 1065 return !T.isTriviallyCopyableType(Context); 1066 } 1067 1068 void CodeGenFunction::GenerateCode(GlobalDecl GD, llvm::Function *Fn, 1069 const CGFunctionInfo &FnInfo) { 1070 const FunctionDecl *FD = cast<FunctionDecl>(GD.getDecl()); 1071 CurGD = GD; 1072 1073 FunctionArgList Args; 1074 QualType ResTy = BuildFunctionArgList(GD, Args); 1075 1076 // Check if we should generate debug info for this function. 1077 if (FD->hasAttr<NoDebugAttr>()) 1078 DebugInfo = nullptr; // disable debug info indefinitely for this function 1079 1080 SourceRange BodyRange; 1081 if (Stmt *Body = FD->getBody()) BodyRange = Body->getSourceRange(); 1082 CurEHLocation = BodyRange.getEnd(); 1083 1084 // Use the location of the start of the function to determine where 1085 // the function definition is located. By default use the location 1086 // of the declaration as the location for the subprogram. A function 1087 // may lack a declaration in the source code if it is created by code 1088 // gen. (examples: _GLOBAL__I_a, __cxx_global_array_dtor, thunk). 1089 SourceLocation Loc = FD->getLocation(); 1090 1091 // If this is a function specialization then use the pattern body 1092 // as the location for the function. 1093 if (const FunctionDecl *SpecDecl = FD->getTemplateInstantiationPattern()) 1094 if (SpecDecl->hasBody(SpecDecl)) 1095 Loc = SpecDecl->getLocation(); 1096 1097 Stmt *Body = FD->getBody(); 1098 1099 // Initialize helper which will detect jumps which can cause invalid lifetime 1100 // markers. 1101 if (Body && ShouldEmitLifetimeMarkers) 1102 Bypasses.Init(Body); 1103 1104 // Emit the standard function prologue. 1105 StartFunction(GD, ResTy, Fn, FnInfo, Args, Loc, BodyRange.getBegin()); 1106 1107 // Generate the body of the function. 1108 PGO.assignRegionCounters(GD, CurFn); 1109 if (isa<CXXDestructorDecl>(FD)) 1110 EmitDestructorBody(Args); 1111 else if (isa<CXXConstructorDecl>(FD)) 1112 EmitConstructorBody(Args); 1113 else if (getLangOpts().CUDA && 1114 !getLangOpts().CUDAIsDevice && 1115 FD->hasAttr<CUDAGlobalAttr>()) 1116 CGM.getCUDARuntime().emitDeviceStub(*this, Args); 1117 else if (isa<CXXConversionDecl>(FD) && 1118 cast<CXXConversionDecl>(FD)->isLambdaToBlockPointerConversion()) { 1119 // The lambda conversion to block pointer is special; the semantics can't be 1120 // expressed in the AST, so IRGen needs to special-case it. 1121 EmitLambdaToBlockPointerBody(Args); 1122 } else if (isa<CXXMethodDecl>(FD) && 1123 cast<CXXMethodDecl>(FD)->isLambdaStaticInvoker()) { 1124 // The lambda static invoker function is special, because it forwards or 1125 // clones the body of the function call operator (but is actually static). 1126 EmitLambdaStaticInvokeFunction(cast<CXXMethodDecl>(FD)); 1127 } else if (FD->isDefaulted() && isa<CXXMethodDecl>(FD) && 1128 (cast<CXXMethodDecl>(FD)->isCopyAssignmentOperator() || 1129 cast<CXXMethodDecl>(FD)->isMoveAssignmentOperator())) { 1130 // Implicit copy-assignment gets the same special treatment as implicit 1131 // copy-constructors. 1132 emitImplicitAssignmentOperatorBody(Args); 1133 } else if (Body) { 1134 EmitFunctionBody(Args, Body); 1135 } else 1136 llvm_unreachable("no definition for emitted function"); 1137 1138 // C++11 [stmt.return]p2: 1139 // Flowing off the end of a function [...] results in undefined behavior in 1140 // a value-returning function. 1141 // C11 6.9.1p12: 1142 // If the '}' that terminates a function is reached, and the value of the 1143 // function call is used by the caller, the behavior is undefined. 1144 if (getLangOpts().CPlusPlus && !FD->hasImplicitReturnZero() && !SawAsmBlock && 1145 !FD->getReturnType()->isVoidType() && Builder.GetInsertBlock()) { 1146 bool ShouldEmitUnreachable = 1147 CGM.getCodeGenOpts().StrictReturn || 1148 shouldUseUndefinedBehaviorReturnOptimization(FD, getContext()); 1149 if (SanOpts.has(SanitizerKind::Return)) { 1150 SanitizerScope SanScope(this); 1151 llvm::Value *IsFalse = Builder.getFalse(); 1152 EmitCheck(std::make_pair(IsFalse, SanitizerKind::Return), 1153 SanitizerHandler::MissingReturn, 1154 EmitCheckSourceLocation(FD->getLocation()), None); 1155 } else if (ShouldEmitUnreachable) { 1156 if (CGM.getCodeGenOpts().OptimizationLevel == 0) 1157 EmitTrapCall(llvm::Intrinsic::trap); 1158 } 1159 if (SanOpts.has(SanitizerKind::Return) || ShouldEmitUnreachable) { 1160 Builder.CreateUnreachable(); 1161 Builder.ClearInsertionPoint(); 1162 } 1163 } 1164 1165 // Emit the standard function epilogue. 1166 FinishFunction(BodyRange.getEnd()); 1167 1168 // If we haven't marked the function nothrow through other means, do 1169 // a quick pass now to see if we can. 1170 if (!CurFn->doesNotThrow()) 1171 TryMarkNoThrow(CurFn); 1172 } 1173 1174 /// ContainsLabel - Return true if the statement contains a label in it. If 1175 /// this statement is not executed normally, it not containing a label means 1176 /// that we can just remove the code. 1177 bool CodeGenFunction::ContainsLabel(const Stmt *S, bool IgnoreCaseStmts) { 1178 // Null statement, not a label! 1179 if (!S) return false; 1180 1181 // If this is a label, we have to emit the code, consider something like: 1182 // if (0) { ... foo: bar(); } goto foo; 1183 // 1184 // TODO: If anyone cared, we could track __label__'s, since we know that you 1185 // can't jump to one from outside their declared region. 1186 if (isa<LabelStmt>(S)) 1187 return true; 1188 1189 // If this is a case/default statement, and we haven't seen a switch, we have 1190 // to emit the code. 1191 if (isa<SwitchCase>(S) && !IgnoreCaseStmts) 1192 return true; 1193 1194 // If this is a switch statement, we want to ignore cases below it. 1195 if (isa<SwitchStmt>(S)) 1196 IgnoreCaseStmts = true; 1197 1198 // Scan subexpressions for verboten labels. 1199 for (const Stmt *SubStmt : S->children()) 1200 if (ContainsLabel(SubStmt, IgnoreCaseStmts)) 1201 return true; 1202 1203 return false; 1204 } 1205 1206 /// containsBreak - Return true if the statement contains a break out of it. 1207 /// If the statement (recursively) contains a switch or loop with a break 1208 /// inside of it, this is fine. 1209 bool CodeGenFunction::containsBreak(const Stmt *S) { 1210 // Null statement, not a label! 1211 if (!S) return false; 1212 1213 // If this is a switch or loop that defines its own break scope, then we can 1214 // include it and anything inside of it. 1215 if (isa<SwitchStmt>(S) || isa<WhileStmt>(S) || isa<DoStmt>(S) || 1216 isa<ForStmt>(S)) 1217 return false; 1218 1219 if (isa<BreakStmt>(S)) 1220 return true; 1221 1222 // Scan subexpressions for verboten breaks. 1223 for (const Stmt *SubStmt : S->children()) 1224 if (containsBreak(SubStmt)) 1225 return true; 1226 1227 return false; 1228 } 1229 1230 bool CodeGenFunction::mightAddDeclToScope(const Stmt *S) { 1231 if (!S) return false; 1232 1233 // Some statement kinds add a scope and thus never add a decl to the current 1234 // scope. Note, this list is longer than the list of statements that might 1235 // have an unscoped decl nested within them, but this way is conservatively 1236 // correct even if more statement kinds are added. 1237 if (isa<IfStmt>(S) || isa<SwitchStmt>(S) || isa<WhileStmt>(S) || 1238 isa<DoStmt>(S) || isa<ForStmt>(S) || isa<CompoundStmt>(S) || 1239 isa<CXXForRangeStmt>(S) || isa<CXXTryStmt>(S) || 1240 isa<ObjCForCollectionStmt>(S) || isa<ObjCAtTryStmt>(S)) 1241 return false; 1242 1243 if (isa<DeclStmt>(S)) 1244 return true; 1245 1246 for (const Stmt *SubStmt : S->children()) 1247 if (mightAddDeclToScope(SubStmt)) 1248 return true; 1249 1250 return false; 1251 } 1252 1253 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1254 /// to a constant, or if it does but contains a label, return false. If it 1255 /// constant folds return true and set the boolean result in Result. 1256 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1257 bool &ResultBool, 1258 bool AllowLabels) { 1259 llvm::APSInt ResultInt; 1260 if (!ConstantFoldsToSimpleInteger(Cond, ResultInt, AllowLabels)) 1261 return false; 1262 1263 ResultBool = ResultInt.getBoolValue(); 1264 return true; 1265 } 1266 1267 /// ConstantFoldsToSimpleInteger - If the specified expression does not fold 1268 /// to a constant, or if it does but contains a label, return false. If it 1269 /// constant folds return true and set the folded value. 1270 bool CodeGenFunction::ConstantFoldsToSimpleInteger(const Expr *Cond, 1271 llvm::APSInt &ResultInt, 1272 bool AllowLabels) { 1273 // FIXME: Rename and handle conversion of other evaluatable things 1274 // to bool. 1275 llvm::APSInt Int; 1276 if (!Cond->EvaluateAsInt(Int, getContext())) 1277 return false; // Not foldable, not integer or not fully evaluatable. 1278 1279 if (!AllowLabels && CodeGenFunction::ContainsLabel(Cond)) 1280 return false; // Contains a label. 1281 1282 ResultInt = Int; 1283 return true; 1284 } 1285 1286 1287 1288 /// EmitBranchOnBoolExpr - Emit a branch on a boolean condition (e.g. for an if 1289 /// statement) to the specified blocks. Based on the condition, this might try 1290 /// to simplify the codegen of the conditional based on the branch. 1291 /// 1292 void CodeGenFunction::EmitBranchOnBoolExpr(const Expr *Cond, 1293 llvm::BasicBlock *TrueBlock, 1294 llvm::BasicBlock *FalseBlock, 1295 uint64_t TrueCount) { 1296 Cond = Cond->IgnoreParens(); 1297 1298 if (const BinaryOperator *CondBOp = dyn_cast<BinaryOperator>(Cond)) { 1299 1300 // Handle X && Y in a condition. 1301 if (CondBOp->getOpcode() == BO_LAnd) { 1302 // If we have "1 && X", simplify the code. "0 && X" would have constant 1303 // folded if the case was simple enough. 1304 bool ConstantBool = false; 1305 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1306 ConstantBool) { 1307 // br(1 && X) -> br(X). 1308 incrementProfileCounter(CondBOp); 1309 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1310 TrueCount); 1311 } 1312 1313 // If we have "X && 1", simplify the code to use an uncond branch. 1314 // "X && 0" would have been constant folded to 0. 1315 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1316 ConstantBool) { 1317 // br(X && 1) -> br(X). 1318 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1319 TrueCount); 1320 } 1321 1322 // Emit the LHS as a conditional. If the LHS conditional is false, we 1323 // want to jump to the FalseBlock. 1324 llvm::BasicBlock *LHSTrue = createBasicBlock("land.lhs.true"); 1325 // The counter tells us how often we evaluate RHS, and all of TrueCount 1326 // can be propagated to that branch. 1327 uint64_t RHSCount = getProfileCount(CondBOp->getRHS()); 1328 1329 ConditionalEvaluation eval(*this); 1330 { 1331 ApplyDebugLocation DL(*this, Cond); 1332 EmitBranchOnBoolExpr(CondBOp->getLHS(), LHSTrue, FalseBlock, RHSCount); 1333 EmitBlock(LHSTrue); 1334 } 1335 1336 incrementProfileCounter(CondBOp); 1337 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1338 1339 // Any temporaries created here are conditional. 1340 eval.begin(*this); 1341 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, TrueCount); 1342 eval.end(*this); 1343 1344 return; 1345 } 1346 1347 if (CondBOp->getOpcode() == BO_LOr) { 1348 // If we have "0 || X", simplify the code. "1 || X" would have constant 1349 // folded if the case was simple enough. 1350 bool ConstantBool = false; 1351 if (ConstantFoldsToSimpleInteger(CondBOp->getLHS(), ConstantBool) && 1352 !ConstantBool) { 1353 // br(0 || X) -> br(X). 1354 incrementProfileCounter(CondBOp); 1355 return EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, 1356 TrueCount); 1357 } 1358 1359 // If we have "X || 0", simplify the code to use an uncond branch. 1360 // "X || 1" would have been constant folded to 1. 1361 if (ConstantFoldsToSimpleInteger(CondBOp->getRHS(), ConstantBool) && 1362 !ConstantBool) { 1363 // br(X || 0) -> br(X). 1364 return EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, FalseBlock, 1365 TrueCount); 1366 } 1367 1368 // Emit the LHS as a conditional. If the LHS conditional is true, we 1369 // want to jump to the TrueBlock. 1370 llvm::BasicBlock *LHSFalse = createBasicBlock("lor.lhs.false"); 1371 // We have the count for entry to the RHS and for the whole expression 1372 // being true, so we can divy up True count between the short circuit and 1373 // the RHS. 1374 uint64_t LHSCount = 1375 getCurrentProfileCount() - getProfileCount(CondBOp->getRHS()); 1376 uint64_t RHSCount = TrueCount - LHSCount; 1377 1378 ConditionalEvaluation eval(*this); 1379 { 1380 ApplyDebugLocation DL(*this, Cond); 1381 EmitBranchOnBoolExpr(CondBOp->getLHS(), TrueBlock, LHSFalse, LHSCount); 1382 EmitBlock(LHSFalse); 1383 } 1384 1385 incrementProfileCounter(CondBOp); 1386 setCurrentProfileCount(getProfileCount(CondBOp->getRHS())); 1387 1388 // Any temporaries created here are conditional. 1389 eval.begin(*this); 1390 EmitBranchOnBoolExpr(CondBOp->getRHS(), TrueBlock, FalseBlock, RHSCount); 1391 1392 eval.end(*this); 1393 1394 return; 1395 } 1396 } 1397 1398 if (const UnaryOperator *CondUOp = dyn_cast<UnaryOperator>(Cond)) { 1399 // br(!x, t, f) -> br(x, f, t) 1400 if (CondUOp->getOpcode() == UO_LNot) { 1401 // Negate the count. 1402 uint64_t FalseCount = getCurrentProfileCount() - TrueCount; 1403 // Negate the condition and swap the destination blocks. 1404 return EmitBranchOnBoolExpr(CondUOp->getSubExpr(), FalseBlock, TrueBlock, 1405 FalseCount); 1406 } 1407 } 1408 1409 if (const ConditionalOperator *CondOp = dyn_cast<ConditionalOperator>(Cond)) { 1410 // br(c ? x : y, t, f) -> br(c, br(x, t, f), br(y, t, f)) 1411 llvm::BasicBlock *LHSBlock = createBasicBlock("cond.true"); 1412 llvm::BasicBlock *RHSBlock = createBasicBlock("cond.false"); 1413 1414 ConditionalEvaluation cond(*this); 1415 EmitBranchOnBoolExpr(CondOp->getCond(), LHSBlock, RHSBlock, 1416 getProfileCount(CondOp)); 1417 1418 // When computing PGO branch weights, we only know the overall count for 1419 // the true block. This code is essentially doing tail duplication of the 1420 // naive code-gen, introducing new edges for which counts are not 1421 // available. Divide the counts proportionally between the LHS and RHS of 1422 // the conditional operator. 1423 uint64_t LHSScaledTrueCount = 0; 1424 if (TrueCount) { 1425 double LHSRatio = 1426 getProfileCount(CondOp) / (double)getCurrentProfileCount(); 1427 LHSScaledTrueCount = TrueCount * LHSRatio; 1428 } 1429 1430 cond.begin(*this); 1431 EmitBlock(LHSBlock); 1432 incrementProfileCounter(CondOp); 1433 { 1434 ApplyDebugLocation DL(*this, Cond); 1435 EmitBranchOnBoolExpr(CondOp->getLHS(), TrueBlock, FalseBlock, 1436 LHSScaledTrueCount); 1437 } 1438 cond.end(*this); 1439 1440 cond.begin(*this); 1441 EmitBlock(RHSBlock); 1442 EmitBranchOnBoolExpr(CondOp->getRHS(), TrueBlock, FalseBlock, 1443 TrueCount - LHSScaledTrueCount); 1444 cond.end(*this); 1445 1446 return; 1447 } 1448 1449 if (const CXXThrowExpr *Throw = dyn_cast<CXXThrowExpr>(Cond)) { 1450 // Conditional operator handling can give us a throw expression as a 1451 // condition for a case like: 1452 // br(c ? throw x : y, t, f) -> br(c, br(throw x, t, f), br(y, t, f) 1453 // Fold this to: 1454 // br(c, throw x, br(y, t, f)) 1455 EmitCXXThrowExpr(Throw, /*KeepInsertionPoint*/false); 1456 return; 1457 } 1458 1459 // If the branch has a condition wrapped by __builtin_unpredictable, 1460 // create metadata that specifies that the branch is unpredictable. 1461 // Don't bother if not optimizing because that metadata would not be used. 1462 llvm::MDNode *Unpredictable = nullptr; 1463 auto *Call = dyn_cast<CallExpr>(Cond); 1464 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1465 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1466 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1467 llvm::MDBuilder MDHelper(getLLVMContext()); 1468 Unpredictable = MDHelper.createUnpredictable(); 1469 } 1470 } 1471 1472 // Create branch weights based on the number of times we get here and the 1473 // number of times the condition should be true. 1474 uint64_t CurrentCount = std::max(getCurrentProfileCount(), TrueCount); 1475 llvm::MDNode *Weights = 1476 createProfileWeights(TrueCount, CurrentCount - TrueCount); 1477 1478 // Emit the code with the fully general case. 1479 llvm::Value *CondV; 1480 { 1481 ApplyDebugLocation DL(*this, Cond); 1482 CondV = EvaluateExprAsBool(Cond); 1483 } 1484 Builder.CreateCondBr(CondV, TrueBlock, FalseBlock, Weights, Unpredictable); 1485 } 1486 1487 /// ErrorUnsupported - Print out an error that codegen doesn't support the 1488 /// specified stmt yet. 1489 void CodeGenFunction::ErrorUnsupported(const Stmt *S, const char *Type) { 1490 CGM.ErrorUnsupported(S, Type); 1491 } 1492 1493 /// emitNonZeroVLAInit - Emit the "zero" initialization of a 1494 /// variable-length array whose elements have a non-zero bit-pattern. 1495 /// 1496 /// \param baseType the inner-most element type of the array 1497 /// \param src - a char* pointing to the bit-pattern for a single 1498 /// base element of the array 1499 /// \param sizeInChars - the total size of the VLA, in chars 1500 static void emitNonZeroVLAInit(CodeGenFunction &CGF, QualType baseType, 1501 Address dest, Address src, 1502 llvm::Value *sizeInChars) { 1503 CGBuilderTy &Builder = CGF.Builder; 1504 1505 CharUnits baseSize = CGF.getContext().getTypeSizeInChars(baseType); 1506 llvm::Value *baseSizeInChars 1507 = llvm::ConstantInt::get(CGF.IntPtrTy, baseSize.getQuantity()); 1508 1509 Address begin = 1510 Builder.CreateElementBitCast(dest, CGF.Int8Ty, "vla.begin"); 1511 llvm::Value *end = 1512 Builder.CreateInBoundsGEP(begin.getPointer(), sizeInChars, "vla.end"); 1513 1514 llvm::BasicBlock *originBB = CGF.Builder.GetInsertBlock(); 1515 llvm::BasicBlock *loopBB = CGF.createBasicBlock("vla-init.loop"); 1516 llvm::BasicBlock *contBB = CGF.createBasicBlock("vla-init.cont"); 1517 1518 // Make a loop over the VLA. C99 guarantees that the VLA element 1519 // count must be nonzero. 1520 CGF.EmitBlock(loopBB); 1521 1522 llvm::PHINode *cur = Builder.CreatePHI(begin.getType(), 2, "vla.cur"); 1523 cur->addIncoming(begin.getPointer(), originBB); 1524 1525 CharUnits curAlign = 1526 dest.getAlignment().alignmentOfArrayElement(baseSize); 1527 1528 // memcpy the individual element bit-pattern. 1529 Builder.CreateMemCpy(Address(cur, curAlign), src, baseSizeInChars, 1530 /*volatile*/ false); 1531 1532 // Go to the next element. 1533 llvm::Value *next = 1534 Builder.CreateInBoundsGEP(CGF.Int8Ty, cur, baseSizeInChars, "vla.next"); 1535 1536 // Leave if that's the end of the VLA. 1537 llvm::Value *done = Builder.CreateICmpEQ(next, end, "vla-init.isdone"); 1538 Builder.CreateCondBr(done, contBB, loopBB); 1539 cur->addIncoming(next, loopBB); 1540 1541 CGF.EmitBlock(contBB); 1542 } 1543 1544 void 1545 CodeGenFunction::EmitNullInitialization(Address DestPtr, QualType Ty) { 1546 // Ignore empty classes in C++. 1547 if (getLangOpts().CPlusPlus) { 1548 if (const RecordType *RT = Ty->getAs<RecordType>()) { 1549 if (cast<CXXRecordDecl>(RT->getDecl())->isEmpty()) 1550 return; 1551 } 1552 } 1553 1554 // Cast the dest ptr to the appropriate i8 pointer type. 1555 if (DestPtr.getElementType() != Int8Ty) 1556 DestPtr = Builder.CreateElementBitCast(DestPtr, Int8Ty); 1557 1558 // Get size and alignment info for this aggregate. 1559 CharUnits size = getContext().getTypeSizeInChars(Ty); 1560 1561 llvm::Value *SizeVal; 1562 const VariableArrayType *vla; 1563 1564 // Don't bother emitting a zero-byte memset. 1565 if (size.isZero()) { 1566 // But note that getTypeInfo returns 0 for a VLA. 1567 if (const VariableArrayType *vlaType = 1568 dyn_cast_or_null<VariableArrayType>( 1569 getContext().getAsArrayType(Ty))) { 1570 QualType eltType; 1571 llvm::Value *numElts; 1572 std::tie(numElts, eltType) = getVLASize(vlaType); 1573 1574 SizeVal = numElts; 1575 CharUnits eltSize = getContext().getTypeSizeInChars(eltType); 1576 if (!eltSize.isOne()) 1577 SizeVal = Builder.CreateNUWMul(SizeVal, CGM.getSize(eltSize)); 1578 vla = vlaType; 1579 } else { 1580 return; 1581 } 1582 } else { 1583 SizeVal = CGM.getSize(size); 1584 vla = nullptr; 1585 } 1586 1587 // If the type contains a pointer to data member we can't memset it to zero. 1588 // Instead, create a null constant and copy it to the destination. 1589 // TODO: there are other patterns besides zero that we can usefully memset, 1590 // like -1, which happens to be the pattern used by member-pointers. 1591 if (!CGM.getTypes().isZeroInitializable(Ty)) { 1592 // For a VLA, emit a single element, then splat that over the VLA. 1593 if (vla) Ty = getContext().getBaseElementType(vla); 1594 1595 llvm::Constant *NullConstant = CGM.EmitNullConstant(Ty); 1596 1597 llvm::GlobalVariable *NullVariable = 1598 new llvm::GlobalVariable(CGM.getModule(), NullConstant->getType(), 1599 /*isConstant=*/true, 1600 llvm::GlobalVariable::PrivateLinkage, 1601 NullConstant, Twine()); 1602 CharUnits NullAlign = DestPtr.getAlignment(); 1603 NullVariable->setAlignment(NullAlign.getQuantity()); 1604 Address SrcPtr(Builder.CreateBitCast(NullVariable, Builder.getInt8PtrTy()), 1605 NullAlign); 1606 1607 if (vla) return emitNonZeroVLAInit(*this, Ty, DestPtr, SrcPtr, SizeVal); 1608 1609 // Get and call the appropriate llvm.memcpy overload. 1610 Builder.CreateMemCpy(DestPtr, SrcPtr, SizeVal, false); 1611 return; 1612 } 1613 1614 // Otherwise, just memset the whole thing to zero. This is legal 1615 // because in LLVM, all default initializers (other than the ones we just 1616 // handled above) are guaranteed to have a bit pattern of all zeros. 1617 Builder.CreateMemSet(DestPtr, Builder.getInt8(0), SizeVal, false); 1618 } 1619 1620 llvm::BlockAddress *CodeGenFunction::GetAddrOfLabel(const LabelDecl *L) { 1621 // Make sure that there is a block for the indirect goto. 1622 if (!IndirectBranch) 1623 GetIndirectGotoBlock(); 1624 1625 llvm::BasicBlock *BB = getJumpDestForLabel(L).getBlock(); 1626 1627 // Make sure the indirect branch includes all of the address-taken blocks. 1628 IndirectBranch->addDestination(BB); 1629 return llvm::BlockAddress::get(CurFn, BB); 1630 } 1631 1632 llvm::BasicBlock *CodeGenFunction::GetIndirectGotoBlock() { 1633 // If we already made the indirect branch for indirect goto, return its block. 1634 if (IndirectBranch) return IndirectBranch->getParent(); 1635 1636 CGBuilderTy TmpBuilder(*this, createBasicBlock("indirectgoto")); 1637 1638 // Create the PHI node that indirect gotos will add entries to. 1639 llvm::Value *DestVal = TmpBuilder.CreatePHI(Int8PtrTy, 0, 1640 "indirect.goto.dest"); 1641 1642 // Create the indirect branch instruction. 1643 IndirectBranch = TmpBuilder.CreateIndirectBr(DestVal); 1644 return IndirectBranch->getParent(); 1645 } 1646 1647 /// Computes the length of an array in elements, as well as the base 1648 /// element type and a properly-typed first element pointer. 1649 llvm::Value *CodeGenFunction::emitArrayLength(const ArrayType *origArrayType, 1650 QualType &baseType, 1651 Address &addr) { 1652 const ArrayType *arrayType = origArrayType; 1653 1654 // If it's a VLA, we have to load the stored size. Note that 1655 // this is the size of the VLA in bytes, not its size in elements. 1656 llvm::Value *numVLAElements = nullptr; 1657 if (isa<VariableArrayType>(arrayType)) { 1658 numVLAElements = getVLASize(cast<VariableArrayType>(arrayType)).first; 1659 1660 // Walk into all VLAs. This doesn't require changes to addr, 1661 // which has type T* where T is the first non-VLA element type. 1662 do { 1663 QualType elementType = arrayType->getElementType(); 1664 arrayType = getContext().getAsArrayType(elementType); 1665 1666 // If we only have VLA components, 'addr' requires no adjustment. 1667 if (!arrayType) { 1668 baseType = elementType; 1669 return numVLAElements; 1670 } 1671 } while (isa<VariableArrayType>(arrayType)); 1672 1673 // We get out here only if we find a constant array type 1674 // inside the VLA. 1675 } 1676 1677 // We have some number of constant-length arrays, so addr should 1678 // have LLVM type [M x [N x [...]]]*. Build a GEP that walks 1679 // down to the first element of addr. 1680 SmallVector<llvm::Value*, 8> gepIndices; 1681 1682 // GEP down to the array type. 1683 llvm::ConstantInt *zero = Builder.getInt32(0); 1684 gepIndices.push_back(zero); 1685 1686 uint64_t countFromCLAs = 1; 1687 QualType eltType; 1688 1689 llvm::ArrayType *llvmArrayType = 1690 dyn_cast<llvm::ArrayType>(addr.getElementType()); 1691 while (llvmArrayType) { 1692 assert(isa<ConstantArrayType>(arrayType)); 1693 assert(cast<ConstantArrayType>(arrayType)->getSize().getZExtValue() 1694 == llvmArrayType->getNumElements()); 1695 1696 gepIndices.push_back(zero); 1697 countFromCLAs *= llvmArrayType->getNumElements(); 1698 eltType = arrayType->getElementType(); 1699 1700 llvmArrayType = 1701 dyn_cast<llvm::ArrayType>(llvmArrayType->getElementType()); 1702 arrayType = getContext().getAsArrayType(arrayType->getElementType()); 1703 assert((!llvmArrayType || arrayType) && 1704 "LLVM and Clang types are out-of-synch"); 1705 } 1706 1707 if (arrayType) { 1708 // From this point onwards, the Clang array type has been emitted 1709 // as some other type (probably a packed struct). Compute the array 1710 // size, and just emit the 'begin' expression as a bitcast. 1711 while (arrayType) { 1712 countFromCLAs *= 1713 cast<ConstantArrayType>(arrayType)->getSize().getZExtValue(); 1714 eltType = arrayType->getElementType(); 1715 arrayType = getContext().getAsArrayType(eltType); 1716 } 1717 1718 llvm::Type *baseType = ConvertType(eltType); 1719 addr = Builder.CreateElementBitCast(addr, baseType, "array.begin"); 1720 } else { 1721 // Create the actual GEP. 1722 addr = Address(Builder.CreateInBoundsGEP(addr.getPointer(), 1723 gepIndices, "array.begin"), 1724 addr.getAlignment()); 1725 } 1726 1727 baseType = eltType; 1728 1729 llvm::Value *numElements 1730 = llvm::ConstantInt::get(SizeTy, countFromCLAs); 1731 1732 // If we had any VLA dimensions, factor them in. 1733 if (numVLAElements) 1734 numElements = Builder.CreateNUWMul(numVLAElements, numElements); 1735 1736 return numElements; 1737 } 1738 1739 std::pair<llvm::Value*, QualType> 1740 CodeGenFunction::getVLASize(QualType type) { 1741 const VariableArrayType *vla = getContext().getAsVariableArrayType(type); 1742 assert(vla && "type was not a variable array type!"); 1743 return getVLASize(vla); 1744 } 1745 1746 std::pair<llvm::Value*, QualType> 1747 CodeGenFunction::getVLASize(const VariableArrayType *type) { 1748 // The number of elements so far; always size_t. 1749 llvm::Value *numElements = nullptr; 1750 1751 QualType elementType; 1752 do { 1753 elementType = type->getElementType(); 1754 llvm::Value *vlaSize = VLASizeMap[type->getSizeExpr()]; 1755 assert(vlaSize && "no size for VLA!"); 1756 assert(vlaSize->getType() == SizeTy); 1757 1758 if (!numElements) { 1759 numElements = vlaSize; 1760 } else { 1761 // It's undefined behavior if this wraps around, so mark it that way. 1762 // FIXME: Teach -fsanitize=undefined to trap this. 1763 numElements = Builder.CreateNUWMul(numElements, vlaSize); 1764 } 1765 } while ((type = getContext().getAsVariableArrayType(elementType))); 1766 1767 return std::pair<llvm::Value*,QualType>(numElements, elementType); 1768 } 1769 1770 void CodeGenFunction::EmitVariablyModifiedType(QualType type) { 1771 assert(type->isVariablyModifiedType() && 1772 "Must pass variably modified type to EmitVLASizes!"); 1773 1774 EnsureInsertPoint(); 1775 1776 // We're going to walk down into the type and look for VLA 1777 // expressions. 1778 do { 1779 assert(type->isVariablyModifiedType()); 1780 1781 const Type *ty = type.getTypePtr(); 1782 switch (ty->getTypeClass()) { 1783 1784 #define TYPE(Class, Base) 1785 #define ABSTRACT_TYPE(Class, Base) 1786 #define NON_CANONICAL_TYPE(Class, Base) 1787 #define DEPENDENT_TYPE(Class, Base) case Type::Class: 1788 #define NON_CANONICAL_UNLESS_DEPENDENT_TYPE(Class, Base) 1789 #include "clang/AST/TypeNodes.def" 1790 llvm_unreachable("unexpected dependent type!"); 1791 1792 // These types are never variably-modified. 1793 case Type::Builtin: 1794 case Type::Complex: 1795 case Type::Vector: 1796 case Type::ExtVector: 1797 case Type::Record: 1798 case Type::Enum: 1799 case Type::Elaborated: 1800 case Type::TemplateSpecialization: 1801 case Type::ObjCTypeParam: 1802 case Type::ObjCObject: 1803 case Type::ObjCInterface: 1804 case Type::ObjCObjectPointer: 1805 llvm_unreachable("type class is never variably-modified!"); 1806 1807 case Type::Adjusted: 1808 type = cast<AdjustedType>(ty)->getAdjustedType(); 1809 break; 1810 1811 case Type::Decayed: 1812 type = cast<DecayedType>(ty)->getPointeeType(); 1813 break; 1814 1815 case Type::Pointer: 1816 type = cast<PointerType>(ty)->getPointeeType(); 1817 break; 1818 1819 case Type::BlockPointer: 1820 type = cast<BlockPointerType>(ty)->getPointeeType(); 1821 break; 1822 1823 case Type::LValueReference: 1824 case Type::RValueReference: 1825 type = cast<ReferenceType>(ty)->getPointeeType(); 1826 break; 1827 1828 case Type::MemberPointer: 1829 type = cast<MemberPointerType>(ty)->getPointeeType(); 1830 break; 1831 1832 case Type::ConstantArray: 1833 case Type::IncompleteArray: 1834 // Losing element qualification here is fine. 1835 type = cast<ArrayType>(ty)->getElementType(); 1836 break; 1837 1838 case Type::VariableArray: { 1839 // Losing element qualification here is fine. 1840 const VariableArrayType *vat = cast<VariableArrayType>(ty); 1841 1842 // Unknown size indication requires no size computation. 1843 // Otherwise, evaluate and record it. 1844 if (const Expr *size = vat->getSizeExpr()) { 1845 // It's possible that we might have emitted this already, 1846 // e.g. with a typedef and a pointer to it. 1847 llvm::Value *&entry = VLASizeMap[size]; 1848 if (!entry) { 1849 llvm::Value *Size = EmitScalarExpr(size); 1850 1851 // C11 6.7.6.2p5: 1852 // If the size is an expression that is not an integer constant 1853 // expression [...] each time it is evaluated it shall have a value 1854 // greater than zero. 1855 if (SanOpts.has(SanitizerKind::VLABound) && 1856 size->getType()->isSignedIntegerType()) { 1857 SanitizerScope SanScope(this); 1858 llvm::Value *Zero = llvm::Constant::getNullValue(Size->getType()); 1859 llvm::Constant *StaticArgs[] = { 1860 EmitCheckSourceLocation(size->getLocStart()), 1861 EmitCheckTypeDescriptor(size->getType()) 1862 }; 1863 EmitCheck(std::make_pair(Builder.CreateICmpSGT(Size, Zero), 1864 SanitizerKind::VLABound), 1865 SanitizerHandler::VLABoundNotPositive, StaticArgs, Size); 1866 } 1867 1868 // Always zexting here would be wrong if it weren't 1869 // undefined behavior to have a negative bound. 1870 entry = Builder.CreateIntCast(Size, SizeTy, /*signed*/ false); 1871 } 1872 } 1873 type = vat->getElementType(); 1874 break; 1875 } 1876 1877 case Type::FunctionProto: 1878 case Type::FunctionNoProto: 1879 type = cast<FunctionType>(ty)->getReturnType(); 1880 break; 1881 1882 case Type::Paren: 1883 case Type::TypeOf: 1884 case Type::UnaryTransform: 1885 case Type::Attributed: 1886 case Type::SubstTemplateTypeParm: 1887 case Type::PackExpansion: 1888 // Keep walking after single level desugaring. 1889 type = type.getSingleStepDesugaredType(getContext()); 1890 break; 1891 1892 case Type::Typedef: 1893 case Type::Decltype: 1894 case Type::Auto: 1895 // Stop walking: nothing to do. 1896 return; 1897 1898 case Type::TypeOfExpr: 1899 // Stop walking: emit typeof expression. 1900 EmitIgnoredExpr(cast<TypeOfExprType>(ty)->getUnderlyingExpr()); 1901 return; 1902 1903 case Type::Atomic: 1904 type = cast<AtomicType>(ty)->getValueType(); 1905 break; 1906 1907 case Type::Pipe: 1908 type = cast<PipeType>(ty)->getElementType(); 1909 break; 1910 } 1911 } while (type->isVariablyModifiedType()); 1912 } 1913 1914 Address CodeGenFunction::EmitVAListRef(const Expr* E) { 1915 if (getContext().getBuiltinVaListType()->isArrayType()) 1916 return EmitPointerWithAlignment(E); 1917 return EmitLValue(E).getAddress(); 1918 } 1919 1920 Address CodeGenFunction::EmitMSVAListRef(const Expr *E) { 1921 return EmitLValue(E).getAddress(); 1922 } 1923 1924 void CodeGenFunction::EmitDeclRefExprDbgValue(const DeclRefExpr *E, 1925 const APValue &Init) { 1926 assert(!Init.isUninit() && "Invalid DeclRefExpr initializer!"); 1927 if (CGDebugInfo *Dbg = getDebugInfo()) 1928 if (CGM.getCodeGenOpts().getDebugInfo() >= codegenoptions::LimitedDebugInfo) 1929 Dbg->EmitGlobalVariable(E->getDecl(), Init); 1930 } 1931 1932 CodeGenFunction::PeepholeProtection 1933 CodeGenFunction::protectFromPeepholes(RValue rvalue) { 1934 // At the moment, the only aggressive peephole we do in IR gen 1935 // is trunc(zext) folding, but if we add more, we can easily 1936 // extend this protection. 1937 1938 if (!rvalue.isScalar()) return PeepholeProtection(); 1939 llvm::Value *value = rvalue.getScalarVal(); 1940 if (!isa<llvm::ZExtInst>(value)) return PeepholeProtection(); 1941 1942 // Just make an extra bitcast. 1943 assert(HaveInsertPoint()); 1944 llvm::Instruction *inst = new llvm::BitCastInst(value, value->getType(), "", 1945 Builder.GetInsertBlock()); 1946 1947 PeepholeProtection protection; 1948 protection.Inst = inst; 1949 return protection; 1950 } 1951 1952 void CodeGenFunction::unprotectFromPeepholes(PeepholeProtection protection) { 1953 if (!protection.Inst) return; 1954 1955 // In theory, we could try to duplicate the peepholes now, but whatever. 1956 protection.Inst->eraseFromParent(); 1957 } 1958 1959 llvm::Value *CodeGenFunction::EmitAnnotationCall(llvm::Value *AnnotationFn, 1960 llvm::Value *AnnotatedVal, 1961 StringRef AnnotationStr, 1962 SourceLocation Location) { 1963 llvm::Value *Args[4] = { 1964 AnnotatedVal, 1965 Builder.CreateBitCast(CGM.EmitAnnotationString(AnnotationStr), Int8PtrTy), 1966 Builder.CreateBitCast(CGM.EmitAnnotationUnit(Location), Int8PtrTy), 1967 CGM.EmitAnnotationLineNo(Location) 1968 }; 1969 return Builder.CreateCall(AnnotationFn, Args); 1970 } 1971 1972 void CodeGenFunction::EmitVarAnnotations(const VarDecl *D, llvm::Value *V) { 1973 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1974 // FIXME We create a new bitcast for every annotation because that's what 1975 // llvm-gcc was doing. 1976 for (const auto *I : D->specific_attrs<AnnotateAttr>()) 1977 EmitAnnotationCall(CGM.getIntrinsic(llvm::Intrinsic::var_annotation), 1978 Builder.CreateBitCast(V, CGM.Int8PtrTy, V->getName()), 1979 I->getAnnotation(), D->getLocation()); 1980 } 1981 1982 Address CodeGenFunction::EmitFieldAnnotations(const FieldDecl *D, 1983 Address Addr) { 1984 assert(D->hasAttr<AnnotateAttr>() && "no annotate attribute"); 1985 llvm::Value *V = Addr.getPointer(); 1986 llvm::Type *VTy = V->getType(); 1987 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::ptr_annotation, 1988 CGM.Int8PtrTy); 1989 1990 for (const auto *I : D->specific_attrs<AnnotateAttr>()) { 1991 // FIXME Always emit the cast inst so we can differentiate between 1992 // annotation on the first field of a struct and annotation on the struct 1993 // itself. 1994 if (VTy != CGM.Int8PtrTy) 1995 V = Builder.Insert(new llvm::BitCastInst(V, CGM.Int8PtrTy)); 1996 V = EmitAnnotationCall(F, V, I->getAnnotation(), D->getLocation()); 1997 V = Builder.CreateBitCast(V, VTy); 1998 } 1999 2000 return Address(V, Addr.getAlignment()); 2001 } 2002 2003 CodeGenFunction::CGCapturedStmtInfo::~CGCapturedStmtInfo() { } 2004 2005 CodeGenFunction::SanitizerScope::SanitizerScope(CodeGenFunction *CGF) 2006 : CGF(CGF) { 2007 assert(!CGF->IsSanitizerScope); 2008 CGF->IsSanitizerScope = true; 2009 } 2010 2011 CodeGenFunction::SanitizerScope::~SanitizerScope() { 2012 CGF->IsSanitizerScope = false; 2013 } 2014 2015 void CodeGenFunction::InsertHelper(llvm::Instruction *I, 2016 const llvm::Twine &Name, 2017 llvm::BasicBlock *BB, 2018 llvm::BasicBlock::iterator InsertPt) const { 2019 LoopStack.InsertHelper(I); 2020 if (IsSanitizerScope) 2021 CGM.getSanitizerMetadata()->disableSanitizerForInstruction(I); 2022 } 2023 2024 void CGBuilderInserter::InsertHelper( 2025 llvm::Instruction *I, const llvm::Twine &Name, llvm::BasicBlock *BB, 2026 llvm::BasicBlock::iterator InsertPt) const { 2027 llvm::IRBuilderDefaultInserter::InsertHelper(I, Name, BB, InsertPt); 2028 if (CGF) 2029 CGF->InsertHelper(I, Name, BB, InsertPt); 2030 } 2031 2032 static bool hasRequiredFeatures(const SmallVectorImpl<StringRef> &ReqFeatures, 2033 CodeGenModule &CGM, const FunctionDecl *FD, 2034 std::string &FirstMissing) { 2035 // If there aren't any required features listed then go ahead and return. 2036 if (ReqFeatures.empty()) 2037 return false; 2038 2039 // Now build up the set of caller features and verify that all the required 2040 // features are there. 2041 llvm::StringMap<bool> CallerFeatureMap; 2042 CGM.getFunctionFeatureMap(CallerFeatureMap, FD); 2043 2044 // If we have at least one of the features in the feature list return 2045 // true, otherwise return false. 2046 return std::all_of( 2047 ReqFeatures.begin(), ReqFeatures.end(), [&](StringRef Feature) { 2048 SmallVector<StringRef, 1> OrFeatures; 2049 Feature.split(OrFeatures, "|"); 2050 return std::any_of(OrFeatures.begin(), OrFeatures.end(), 2051 [&](StringRef Feature) { 2052 if (!CallerFeatureMap.lookup(Feature)) { 2053 FirstMissing = Feature.str(); 2054 return false; 2055 } 2056 return true; 2057 }); 2058 }); 2059 } 2060 2061 // Emits an error if we don't have a valid set of target features for the 2062 // called function. 2063 void CodeGenFunction::checkTargetFeatures(const CallExpr *E, 2064 const FunctionDecl *TargetDecl) { 2065 // Early exit if this is an indirect call. 2066 if (!TargetDecl) 2067 return; 2068 2069 // Get the current enclosing function if it exists. If it doesn't 2070 // we can't check the target features anyhow. 2071 const FunctionDecl *FD = dyn_cast_or_null<FunctionDecl>(CurFuncDecl); 2072 if (!FD) 2073 return; 2074 2075 // Grab the required features for the call. For a builtin this is listed in 2076 // the td file with the default cpu, for an always_inline function this is any 2077 // listed cpu and any listed features. 2078 unsigned BuiltinID = TargetDecl->getBuiltinID(); 2079 std::string MissingFeature; 2080 if (BuiltinID) { 2081 SmallVector<StringRef, 1> ReqFeatures; 2082 const char *FeatureList = 2083 CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2084 // Return if the builtin doesn't have any required features. 2085 if (!FeatureList || StringRef(FeatureList) == "") 2086 return; 2087 StringRef(FeatureList).split(ReqFeatures, ","); 2088 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2089 CGM.getDiags().Report(E->getLocStart(), diag::err_builtin_needs_feature) 2090 << TargetDecl->getDeclName() 2091 << CGM.getContext().BuiltinInfo.getRequiredFeatures(BuiltinID); 2092 2093 } else if (TargetDecl->hasAttr<TargetAttr>()) { 2094 // Get the required features for the callee. 2095 SmallVector<StringRef, 1> ReqFeatures; 2096 llvm::StringMap<bool> CalleeFeatureMap; 2097 CGM.getFunctionFeatureMap(CalleeFeatureMap, TargetDecl); 2098 for (const auto &F : CalleeFeatureMap) { 2099 // Only positive features are "required". 2100 if (F.getValue()) 2101 ReqFeatures.push_back(F.getKey()); 2102 } 2103 if (!hasRequiredFeatures(ReqFeatures, CGM, FD, MissingFeature)) 2104 CGM.getDiags().Report(E->getLocStart(), diag::err_function_needs_feature) 2105 << FD->getDeclName() << TargetDecl->getDeclName() << MissingFeature; 2106 } 2107 } 2108 2109 void CodeGenFunction::EmitSanitizerStatReport(llvm::SanitizerStatKind SSK) { 2110 if (!CGM.getCodeGenOpts().SanitizeStats) 2111 return; 2112 2113 llvm::IRBuilder<> IRB(Builder.GetInsertBlock(), Builder.GetInsertPoint()); 2114 IRB.SetCurrentDebugLocation(Builder.getCurrentDebugLocation()); 2115 CGM.getSanStats().create(IRB, SSK); 2116 } 2117 2118 llvm::DebugLoc CodeGenFunction::SourceLocToDebugLoc(SourceLocation Location) { 2119 if (CGDebugInfo *DI = getDebugInfo()) 2120 return DI->SourceLocToDebugLoc(Location); 2121 2122 return llvm::DebugLoc(); 2123 } 2124