1 //===--- CGVTables.cpp - Emit LLVM Code for C++ vtables -------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code dealing with C++ code generation of virtual tables. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CodeGenFunction.h" 16 #include "CodeGenModule.h" 17 #include "clang/AST/CXXInheritance.h" 18 #include "clang/AST/RecordLayout.h" 19 #include "clang/Basic/CodeGenOptions.h" 20 #include "clang/CodeGen/CGFunctionInfo.h" 21 #include "clang/CodeGen/ConstantInitBuilder.h" 22 #include "llvm/IR/IntrinsicInst.h" 23 #include "llvm/Support/Format.h" 24 #include "llvm/Transforms/Utils/Cloning.h" 25 #include <algorithm> 26 #include <cstdio> 27 28 using namespace clang; 29 using namespace CodeGen; 30 31 CodeGenVTables::CodeGenVTables(CodeGenModule &CGM) 32 : CGM(CGM), VTContext(CGM.getContext().getVTableContext()) {} 33 34 llvm::Constant *CodeGenModule::GetAddrOfThunk(StringRef Name, llvm::Type *FnTy, 35 GlobalDecl GD) { 36 return GetOrCreateLLVMFunction(Name, FnTy, GD, /*ForVTable=*/true, 37 /*DontDefer=*/true, /*IsThunk=*/true); 38 } 39 40 static void setThunkProperties(CodeGenModule &CGM, const ThunkInfo &Thunk, 41 llvm::Function *ThunkFn, bool ForVTable, 42 GlobalDecl GD) { 43 CGM.setFunctionLinkage(GD, ThunkFn); 44 CGM.getCXXABI().setThunkLinkage(ThunkFn, ForVTable, GD, 45 !Thunk.Return.isEmpty()); 46 47 // Set the right visibility. 48 CGM.setGVProperties(ThunkFn, GD); 49 50 if (!CGM.getCXXABI().exportThunk()) { 51 ThunkFn->setDLLStorageClass(llvm::GlobalValue::DefaultStorageClass); 52 ThunkFn->setDSOLocal(true); 53 } 54 55 if (CGM.supportsCOMDAT() && ThunkFn->isWeakForLinker()) 56 ThunkFn->setComdat(CGM.getModule().getOrInsertComdat(ThunkFn->getName())); 57 } 58 59 #ifndef NDEBUG 60 static bool similar(const ABIArgInfo &infoL, CanQualType typeL, 61 const ABIArgInfo &infoR, CanQualType typeR) { 62 return (infoL.getKind() == infoR.getKind() && 63 (typeL == typeR || 64 (isa<PointerType>(typeL) && isa<PointerType>(typeR)) || 65 (isa<ReferenceType>(typeL) && isa<ReferenceType>(typeR)))); 66 } 67 #endif 68 69 static RValue PerformReturnAdjustment(CodeGenFunction &CGF, 70 QualType ResultType, RValue RV, 71 const ThunkInfo &Thunk) { 72 // Emit the return adjustment. 73 bool NullCheckValue = !ResultType->isReferenceType(); 74 75 llvm::BasicBlock *AdjustNull = nullptr; 76 llvm::BasicBlock *AdjustNotNull = nullptr; 77 llvm::BasicBlock *AdjustEnd = nullptr; 78 79 llvm::Value *ReturnValue = RV.getScalarVal(); 80 81 if (NullCheckValue) { 82 AdjustNull = CGF.createBasicBlock("adjust.null"); 83 AdjustNotNull = CGF.createBasicBlock("adjust.notnull"); 84 AdjustEnd = CGF.createBasicBlock("adjust.end"); 85 86 llvm::Value *IsNull = CGF.Builder.CreateIsNull(ReturnValue); 87 CGF.Builder.CreateCondBr(IsNull, AdjustNull, AdjustNotNull); 88 CGF.EmitBlock(AdjustNotNull); 89 } 90 91 auto ClassDecl = ResultType->getPointeeType()->getAsCXXRecordDecl(); 92 auto ClassAlign = CGF.CGM.getClassPointerAlignment(ClassDecl); 93 ReturnValue = CGF.CGM.getCXXABI().performReturnAdjustment(CGF, 94 Address(ReturnValue, ClassAlign), 95 Thunk.Return); 96 97 if (NullCheckValue) { 98 CGF.Builder.CreateBr(AdjustEnd); 99 CGF.EmitBlock(AdjustNull); 100 CGF.Builder.CreateBr(AdjustEnd); 101 CGF.EmitBlock(AdjustEnd); 102 103 llvm::PHINode *PHI = CGF.Builder.CreatePHI(ReturnValue->getType(), 2); 104 PHI->addIncoming(ReturnValue, AdjustNotNull); 105 PHI->addIncoming(llvm::Constant::getNullValue(ReturnValue->getType()), 106 AdjustNull); 107 ReturnValue = PHI; 108 } 109 110 return RValue::get(ReturnValue); 111 } 112 113 /// This function clones a function's DISubprogram node and enters it into 114 /// a value map with the intent that the map can be utilized by the cloner 115 /// to short-circuit Metadata node mapping. 116 /// Furthermore, the function resolves any DILocalVariable nodes referenced 117 /// by dbg.value intrinsics so they can be properly mapped during cloning. 118 static void resolveTopLevelMetadata(llvm::Function *Fn, 119 llvm::ValueToValueMapTy &VMap) { 120 // Clone the DISubprogram node and put it into the Value map. 121 auto *DIS = Fn->getSubprogram(); 122 if (!DIS) 123 return; 124 auto *NewDIS = DIS->replaceWithDistinct(DIS->clone()); 125 VMap.MD()[DIS].reset(NewDIS); 126 127 // Find all llvm.dbg.declare intrinsics and resolve the DILocalVariable nodes 128 // they are referencing. 129 for (auto &BB : Fn->getBasicBlockList()) { 130 for (auto &I : BB) { 131 if (auto *DII = dyn_cast<llvm::DbgVariableIntrinsic>(&I)) { 132 auto *DILocal = DII->getVariable(); 133 if (!DILocal->isResolved()) 134 DILocal->resolve(); 135 } 136 } 137 } 138 } 139 140 // This function does roughly the same thing as GenerateThunk, but in a 141 // very different way, so that va_start and va_end work correctly. 142 // FIXME: This function assumes "this" is the first non-sret LLVM argument of 143 // a function, and that there is an alloca built in the entry block 144 // for all accesses to "this". 145 // FIXME: This function assumes there is only one "ret" statement per function. 146 // FIXME: Cloning isn't correct in the presence of indirect goto! 147 // FIXME: This implementation of thunks bloats codesize by duplicating the 148 // function definition. There are alternatives: 149 // 1. Add some sort of stub support to LLVM for cases where we can 150 // do a this adjustment, then a sibcall. 151 // 2. We could transform the definition to take a va_list instead of an 152 // actual variable argument list, then have the thunks (including a 153 // no-op thunk for the regular definition) call va_start/va_end. 154 // There's a bit of per-call overhead for this solution, but it's 155 // better for codesize if the definition is long. 156 llvm::Function * 157 CodeGenFunction::GenerateVarArgsThunk(llvm::Function *Fn, 158 const CGFunctionInfo &FnInfo, 159 GlobalDecl GD, const ThunkInfo &Thunk) { 160 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 161 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 162 QualType ResultType = FPT->getReturnType(); 163 164 // Get the original function 165 assert(FnInfo.isVariadic()); 166 llvm::Type *Ty = CGM.getTypes().GetFunctionType(FnInfo); 167 llvm::Value *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 168 llvm::Function *BaseFn = cast<llvm::Function>(Callee); 169 170 // Clone to thunk. 171 llvm::ValueToValueMapTy VMap; 172 173 // We are cloning a function while some Metadata nodes are still unresolved. 174 // Ensure that the value mapper does not encounter any of them. 175 resolveTopLevelMetadata(BaseFn, VMap); 176 llvm::Function *NewFn = llvm::CloneFunction(BaseFn, VMap); 177 Fn->replaceAllUsesWith(NewFn); 178 NewFn->takeName(Fn); 179 Fn->eraseFromParent(); 180 Fn = NewFn; 181 182 // "Initialize" CGF (minimally). 183 CurFn = Fn; 184 185 // Get the "this" value 186 llvm::Function::arg_iterator AI = Fn->arg_begin(); 187 if (CGM.ReturnTypeUsesSRet(FnInfo)) 188 ++AI; 189 190 // Find the first store of "this", which will be to the alloca associated 191 // with "this". 192 Address ThisPtr(&*AI, CGM.getClassPointerAlignment(MD->getParent())); 193 llvm::BasicBlock *EntryBB = &Fn->front(); 194 llvm::BasicBlock::iterator ThisStore = 195 std::find_if(EntryBB->begin(), EntryBB->end(), [&](llvm::Instruction &I) { 196 return isa<llvm::StoreInst>(I) && 197 I.getOperand(0) == ThisPtr.getPointer(); 198 }); 199 assert(ThisStore != EntryBB->end() && 200 "Store of this should be in entry block?"); 201 // Adjust "this", if necessary. 202 Builder.SetInsertPoint(&*ThisStore); 203 llvm::Value *AdjustedThisPtr = 204 CGM.getCXXABI().performThisAdjustment(*this, ThisPtr, Thunk.This); 205 ThisStore->setOperand(0, AdjustedThisPtr); 206 207 if (!Thunk.Return.isEmpty()) { 208 // Fix up the returned value, if necessary. 209 for (llvm::BasicBlock &BB : *Fn) { 210 llvm::Instruction *T = BB.getTerminator(); 211 if (isa<llvm::ReturnInst>(T)) { 212 RValue RV = RValue::get(T->getOperand(0)); 213 T->eraseFromParent(); 214 Builder.SetInsertPoint(&BB); 215 RV = PerformReturnAdjustment(*this, ResultType, RV, Thunk); 216 Builder.CreateRet(RV.getScalarVal()); 217 break; 218 } 219 } 220 } 221 222 return Fn; 223 } 224 225 void CodeGenFunction::StartThunk(llvm::Function *Fn, GlobalDecl GD, 226 const CGFunctionInfo &FnInfo, 227 bool IsUnprototyped) { 228 assert(!CurGD.getDecl() && "CurGD was already set!"); 229 CurGD = GD; 230 CurFuncIsThunk = true; 231 232 // Build FunctionArgs. 233 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 234 QualType ThisType = MD->getThisType(); 235 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 236 QualType ResultType; 237 if (IsUnprototyped) 238 ResultType = CGM.getContext().VoidTy; 239 else if (CGM.getCXXABI().HasThisReturn(GD)) 240 ResultType = ThisType; 241 else if (CGM.getCXXABI().hasMostDerivedReturn(GD)) 242 ResultType = CGM.getContext().VoidPtrTy; 243 else 244 ResultType = FPT->getReturnType(); 245 FunctionArgList FunctionArgs; 246 247 // Create the implicit 'this' parameter declaration. 248 CGM.getCXXABI().buildThisParam(*this, FunctionArgs); 249 250 // Add the rest of the parameters, if we have a prototype to work with. 251 if (!IsUnprototyped) { 252 FunctionArgs.append(MD->param_begin(), MD->param_end()); 253 254 if (isa<CXXDestructorDecl>(MD)) 255 CGM.getCXXABI().addImplicitStructorParams(*this, ResultType, 256 FunctionArgs); 257 } 258 259 // Start defining the function. 260 auto NL = ApplyDebugLocation::CreateEmpty(*this); 261 StartFunction(GlobalDecl(), ResultType, Fn, FnInfo, FunctionArgs, 262 MD->getLocation()); 263 // Create a scope with an artificial location for the body of this function. 264 auto AL = ApplyDebugLocation::CreateArtificial(*this); 265 266 // Since we didn't pass a GlobalDecl to StartFunction, do this ourselves. 267 CGM.getCXXABI().EmitInstanceFunctionProlog(*this); 268 CXXThisValue = CXXABIThisValue; 269 CurCodeDecl = MD; 270 CurFuncDecl = MD; 271 } 272 273 void CodeGenFunction::FinishThunk() { 274 // Clear these to restore the invariants expected by 275 // StartFunction/FinishFunction. 276 CurCodeDecl = nullptr; 277 CurFuncDecl = nullptr; 278 279 FinishFunction(); 280 } 281 282 void CodeGenFunction::EmitCallAndReturnForThunk(llvm::Constant *CalleePtr, 283 const ThunkInfo *Thunk, 284 bool IsUnprototyped) { 285 assert(isa<CXXMethodDecl>(CurGD.getDecl()) && 286 "Please use a new CGF for this thunk"); 287 const CXXMethodDecl *MD = cast<CXXMethodDecl>(CurGD.getDecl()); 288 289 // Adjust the 'this' pointer if necessary 290 llvm::Value *AdjustedThisPtr = 291 Thunk ? CGM.getCXXABI().performThisAdjustment( 292 *this, LoadCXXThisAddress(), Thunk->This) 293 : LoadCXXThis(); 294 295 if (CurFnInfo->usesInAlloca() || IsUnprototyped) { 296 // We don't handle return adjusting thunks, because they require us to call 297 // the copy constructor. For now, fall through and pretend the return 298 // adjustment was empty so we don't crash. 299 if (Thunk && !Thunk->Return.isEmpty()) { 300 if (IsUnprototyped) 301 CGM.ErrorUnsupported( 302 MD, "return-adjusting thunk with incomplete parameter type"); 303 else 304 CGM.ErrorUnsupported( 305 MD, "non-trivial argument copy for return-adjusting thunk"); 306 } 307 EmitMustTailThunk(CurGD, AdjustedThisPtr, CalleePtr); 308 return; 309 } 310 311 // Start building CallArgs. 312 CallArgList CallArgs; 313 QualType ThisType = MD->getThisType(); 314 CallArgs.add(RValue::get(AdjustedThisPtr), ThisType); 315 316 if (isa<CXXDestructorDecl>(MD)) 317 CGM.getCXXABI().adjustCallArgsForDestructorThunk(*this, CurGD, CallArgs); 318 319 #ifndef NDEBUG 320 unsigned PrefixArgs = CallArgs.size() - 1; 321 #endif 322 // Add the rest of the arguments. 323 for (const ParmVarDecl *PD : MD->parameters()) 324 EmitDelegateCallArg(CallArgs, PD, SourceLocation()); 325 326 const FunctionProtoType *FPT = MD->getType()->getAs<FunctionProtoType>(); 327 328 #ifndef NDEBUG 329 const CGFunctionInfo &CallFnInfo = CGM.getTypes().arrangeCXXMethodCall( 330 CallArgs, FPT, RequiredArgs::forPrototypePlus(FPT, 1, MD), PrefixArgs); 331 assert(CallFnInfo.getRegParm() == CurFnInfo->getRegParm() && 332 CallFnInfo.isNoReturn() == CurFnInfo->isNoReturn() && 333 CallFnInfo.getCallingConvention() == CurFnInfo->getCallingConvention()); 334 assert(isa<CXXDestructorDecl>(MD) || // ignore dtor return types 335 similar(CallFnInfo.getReturnInfo(), CallFnInfo.getReturnType(), 336 CurFnInfo->getReturnInfo(), CurFnInfo->getReturnType())); 337 assert(CallFnInfo.arg_size() == CurFnInfo->arg_size()); 338 for (unsigned i = 0, e = CurFnInfo->arg_size(); i != e; ++i) 339 assert(similar(CallFnInfo.arg_begin()[i].info, 340 CallFnInfo.arg_begin()[i].type, 341 CurFnInfo->arg_begin()[i].info, 342 CurFnInfo->arg_begin()[i].type)); 343 #endif 344 345 // Determine whether we have a return value slot to use. 346 QualType ResultType = CGM.getCXXABI().HasThisReturn(CurGD) 347 ? ThisType 348 : CGM.getCXXABI().hasMostDerivedReturn(CurGD) 349 ? CGM.getContext().VoidPtrTy 350 : FPT->getReturnType(); 351 ReturnValueSlot Slot; 352 if (!ResultType->isVoidType() && 353 CurFnInfo->getReturnInfo().getKind() == ABIArgInfo::Indirect) 354 Slot = ReturnValueSlot(ReturnValue, ResultType.isVolatileQualified()); 355 356 // Now emit our call. 357 llvm::Instruction *CallOrInvoke; 358 CGCallee Callee = CGCallee::forDirect(CalleePtr, CurGD); 359 RValue RV = EmitCall(*CurFnInfo, Callee, Slot, CallArgs, &CallOrInvoke); 360 361 // Consider return adjustment if we have ThunkInfo. 362 if (Thunk && !Thunk->Return.isEmpty()) 363 RV = PerformReturnAdjustment(*this, ResultType, RV, *Thunk); 364 else if (llvm::CallInst* Call = dyn_cast<llvm::CallInst>(CallOrInvoke)) 365 Call->setTailCallKind(llvm::CallInst::TCK_Tail); 366 367 // Emit return. 368 if (!ResultType->isVoidType() && Slot.isNull()) 369 CGM.getCXXABI().EmitReturnFromThunk(*this, RV, ResultType); 370 371 // Disable the final ARC autorelease. 372 AutoreleaseResult = false; 373 374 FinishThunk(); 375 } 376 377 void CodeGenFunction::EmitMustTailThunk(GlobalDecl GD, 378 llvm::Value *AdjustedThisPtr, 379 llvm::Value *CalleePtr) { 380 // Emitting a musttail call thunk doesn't use any of the CGCall.cpp machinery 381 // to translate AST arguments into LLVM IR arguments. For thunks, we know 382 // that the caller prototype more or less matches the callee prototype with 383 // the exception of 'this'. 384 SmallVector<llvm::Value *, 8> Args; 385 for (llvm::Argument &A : CurFn->args()) 386 Args.push_back(&A); 387 388 // Set the adjusted 'this' pointer. 389 const ABIArgInfo &ThisAI = CurFnInfo->arg_begin()->info; 390 if (ThisAI.isDirect()) { 391 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 392 int ThisArgNo = RetAI.isIndirect() && !RetAI.isSRetAfterThis() ? 1 : 0; 393 llvm::Type *ThisType = Args[ThisArgNo]->getType(); 394 if (ThisType != AdjustedThisPtr->getType()) 395 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 396 Args[ThisArgNo] = AdjustedThisPtr; 397 } else { 398 assert(ThisAI.isInAlloca() && "this is passed directly or inalloca"); 399 Address ThisAddr = GetAddrOfLocalVar(CXXABIThisDecl); 400 llvm::Type *ThisType = ThisAddr.getElementType(); 401 if (ThisType != AdjustedThisPtr->getType()) 402 AdjustedThisPtr = Builder.CreateBitCast(AdjustedThisPtr, ThisType); 403 Builder.CreateStore(AdjustedThisPtr, ThisAddr); 404 } 405 406 // Emit the musttail call manually. Even if the prologue pushed cleanups, we 407 // don't actually want to run them. 408 llvm::CallInst *Call = Builder.CreateCall(CalleePtr, Args); 409 Call->setTailCallKind(llvm::CallInst::TCK_MustTail); 410 411 // Apply the standard set of call attributes. 412 unsigned CallingConv; 413 llvm::AttributeList Attrs; 414 CGM.ConstructAttributeList(CalleePtr->getName(), *CurFnInfo, GD, Attrs, 415 CallingConv, /*AttrOnCallSite=*/true); 416 Call->setAttributes(Attrs); 417 Call->setCallingConv(static_cast<llvm::CallingConv::ID>(CallingConv)); 418 419 if (Call->getType()->isVoidTy()) 420 Builder.CreateRetVoid(); 421 else 422 Builder.CreateRet(Call); 423 424 // Finish the function to maintain CodeGenFunction invariants. 425 // FIXME: Don't emit unreachable code. 426 EmitBlock(createBasicBlock()); 427 FinishFunction(); 428 } 429 430 void CodeGenFunction::generateThunk(llvm::Function *Fn, 431 const CGFunctionInfo &FnInfo, GlobalDecl GD, 432 const ThunkInfo &Thunk, 433 bool IsUnprototyped) { 434 StartThunk(Fn, GD, FnInfo, IsUnprototyped); 435 // Create a scope with an artificial location for the body of this function. 436 auto AL = ApplyDebugLocation::CreateArtificial(*this); 437 438 // Get our callee. Use a placeholder type if this method is unprototyped so 439 // that CodeGenModule doesn't try to set attributes. 440 llvm::Type *Ty; 441 if (IsUnprototyped) 442 Ty = llvm::StructType::get(getLLVMContext()); 443 else 444 Ty = CGM.getTypes().GetFunctionType(FnInfo); 445 446 llvm::Constant *Callee = CGM.GetAddrOfFunction(GD, Ty, /*ForVTable=*/true); 447 448 // Fix up the function type for an unprototyped musttail call. 449 if (IsUnprototyped) 450 Callee = llvm::ConstantExpr::getBitCast(Callee, Fn->getType()); 451 452 // Make the call and return the result. 453 EmitCallAndReturnForThunk(Callee, &Thunk, IsUnprototyped); 454 } 455 456 static bool shouldEmitVTableThunk(CodeGenModule &CGM, const CXXMethodDecl *MD, 457 bool IsUnprototyped, bool ForVTable) { 458 // Always emit thunks in the MS C++ ABI. We cannot rely on other TUs to 459 // provide thunks for us. 460 if (CGM.getTarget().getCXXABI().isMicrosoft()) 461 return true; 462 463 // In the Itanium C++ ABI, vtable thunks are provided by TUs that provide 464 // definitions of the main method. Therefore, emitting thunks with the vtable 465 // is purely an optimization. Emit the thunk if optimizations are enabled and 466 // all of the parameter types are complete. 467 if (ForVTable) 468 return CGM.getCodeGenOpts().OptimizationLevel && !IsUnprototyped; 469 470 // Always emit thunks along with the method definition. 471 return true; 472 } 473 474 llvm::Constant *CodeGenVTables::maybeEmitThunk(GlobalDecl GD, 475 const ThunkInfo &TI, 476 bool ForVTable) { 477 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 478 479 // First, get a declaration. Compute the mangled name. Don't worry about 480 // getting the function prototype right, since we may only need this 481 // declaration to fill in a vtable slot. 482 SmallString<256> Name; 483 MangleContext &MCtx = CGM.getCXXABI().getMangleContext(); 484 llvm::raw_svector_ostream Out(Name); 485 if (const CXXDestructorDecl *DD = dyn_cast<CXXDestructorDecl>(MD)) 486 MCtx.mangleCXXDtorThunk(DD, GD.getDtorType(), TI.This, Out); 487 else 488 MCtx.mangleThunk(MD, TI, Out); 489 llvm::Type *ThunkVTableTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 490 llvm::Constant *Thunk = CGM.GetAddrOfThunk(Name, ThunkVTableTy, GD); 491 492 // If we don't need to emit a definition, return this declaration as is. 493 bool IsUnprototyped = !CGM.getTypes().isFuncTypeConvertible( 494 MD->getType()->castAs<FunctionType>()); 495 if (!shouldEmitVTableThunk(CGM, MD, IsUnprototyped, ForVTable)) 496 return Thunk; 497 498 // Arrange a function prototype appropriate for a function definition. In some 499 // cases in the MS ABI, we may need to build an unprototyped musttail thunk. 500 const CGFunctionInfo &FnInfo = 501 IsUnprototyped ? CGM.getTypes().arrangeUnprototypedMustTailThunk(MD) 502 : CGM.getTypes().arrangeGlobalDeclaration(GD); 503 llvm::FunctionType *ThunkFnTy = CGM.getTypes().GetFunctionType(FnInfo); 504 505 // If the type of the underlying GlobalValue is wrong, we'll have to replace 506 // it. It should be a declaration. 507 llvm::Function *ThunkFn = cast<llvm::Function>(Thunk->stripPointerCasts()); 508 if (ThunkFn->getFunctionType() != ThunkFnTy) { 509 llvm::GlobalValue *OldThunkFn = ThunkFn; 510 511 assert(OldThunkFn->isDeclaration() && "Shouldn't replace non-declaration"); 512 513 // Remove the name from the old thunk function and get a new thunk. 514 OldThunkFn->setName(StringRef()); 515 ThunkFn = llvm::Function::Create(ThunkFnTy, llvm::Function::ExternalLinkage, 516 Name.str(), &CGM.getModule()); 517 CGM.SetLLVMFunctionAttributes(MD, FnInfo, ThunkFn); 518 519 // If needed, replace the old thunk with a bitcast. 520 if (!OldThunkFn->use_empty()) { 521 llvm::Constant *NewPtrForOldDecl = 522 llvm::ConstantExpr::getBitCast(ThunkFn, OldThunkFn->getType()); 523 OldThunkFn->replaceAllUsesWith(NewPtrForOldDecl); 524 } 525 526 // Remove the old thunk. 527 OldThunkFn->eraseFromParent(); 528 } 529 530 bool ABIHasKeyFunctions = CGM.getTarget().getCXXABI().hasKeyFunctions(); 531 bool UseAvailableExternallyLinkage = ForVTable && ABIHasKeyFunctions; 532 533 if (!ThunkFn->isDeclaration()) { 534 if (!ABIHasKeyFunctions || UseAvailableExternallyLinkage) { 535 // There is already a thunk emitted for this function, do nothing. 536 return ThunkFn; 537 } 538 539 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 540 return ThunkFn; 541 } 542 543 // If this will be unprototyped, add the "thunk" attribute so that LLVM knows 544 // that the return type is meaningless. These thunks can be used to call 545 // functions with differing return types, and the caller is required to cast 546 // the prototype appropriately to extract the correct value. 547 if (IsUnprototyped) 548 ThunkFn->addFnAttr("thunk"); 549 550 CGM.SetLLVMFunctionAttributesForDefinition(GD.getDecl(), ThunkFn); 551 552 if (!IsUnprototyped && ThunkFn->isVarArg()) { 553 // Varargs thunks are special; we can't just generate a call because 554 // we can't copy the varargs. Our implementation is rather 555 // expensive/sucky at the moment, so don't generate the thunk unless 556 // we have to. 557 // FIXME: Do something better here; GenerateVarArgsThunk is extremely ugly. 558 if (UseAvailableExternallyLinkage) 559 return ThunkFn; 560 ThunkFn = CodeGenFunction(CGM).GenerateVarArgsThunk(ThunkFn, FnInfo, GD, 561 TI); 562 } else { 563 // Normal thunk body generation. 564 CodeGenFunction(CGM).generateThunk(ThunkFn, FnInfo, GD, TI, IsUnprototyped); 565 } 566 567 setThunkProperties(CGM, TI, ThunkFn, ForVTable, GD); 568 return ThunkFn; 569 } 570 571 void CodeGenVTables::EmitThunks(GlobalDecl GD) { 572 const CXXMethodDecl *MD = 573 cast<CXXMethodDecl>(GD.getDecl())->getCanonicalDecl(); 574 575 // We don't need to generate thunks for the base destructor. 576 if (isa<CXXDestructorDecl>(MD) && GD.getDtorType() == Dtor_Base) 577 return; 578 579 const VTableContextBase::ThunkInfoVectorTy *ThunkInfoVector = 580 VTContext->getThunkInfo(GD); 581 582 if (!ThunkInfoVector) 583 return; 584 585 for (const ThunkInfo& Thunk : *ThunkInfoVector) 586 maybeEmitThunk(GD, Thunk, /*ForVTable=*/false); 587 } 588 589 void CodeGenVTables::addVTableComponent( 590 ConstantArrayBuilder &builder, const VTableLayout &layout, 591 unsigned idx, llvm::Constant *rtti, unsigned &nextVTableThunkIndex) { 592 auto &component = layout.vtable_components()[idx]; 593 594 auto addOffsetConstant = [&](CharUnits offset) { 595 builder.add(llvm::ConstantExpr::getIntToPtr( 596 llvm::ConstantInt::get(CGM.PtrDiffTy, offset.getQuantity()), 597 CGM.Int8PtrTy)); 598 }; 599 600 switch (component.getKind()) { 601 case VTableComponent::CK_VCallOffset: 602 return addOffsetConstant(component.getVCallOffset()); 603 604 case VTableComponent::CK_VBaseOffset: 605 return addOffsetConstant(component.getVBaseOffset()); 606 607 case VTableComponent::CK_OffsetToTop: 608 return addOffsetConstant(component.getOffsetToTop()); 609 610 case VTableComponent::CK_RTTI: 611 return builder.add(llvm::ConstantExpr::getBitCast(rtti, CGM.Int8PtrTy)); 612 613 case VTableComponent::CK_FunctionPointer: 614 case VTableComponent::CK_CompleteDtorPointer: 615 case VTableComponent::CK_DeletingDtorPointer: { 616 GlobalDecl GD; 617 618 // Get the right global decl. 619 switch (component.getKind()) { 620 default: 621 llvm_unreachable("Unexpected vtable component kind"); 622 case VTableComponent::CK_FunctionPointer: 623 GD = component.getFunctionDecl(); 624 break; 625 case VTableComponent::CK_CompleteDtorPointer: 626 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Complete); 627 break; 628 case VTableComponent::CK_DeletingDtorPointer: 629 GD = GlobalDecl(component.getDestructorDecl(), Dtor_Deleting); 630 break; 631 } 632 633 if (CGM.getLangOpts().CUDA) { 634 // Emit NULL for methods we can't codegen on this 635 // side. Otherwise we'd end up with vtable with unresolved 636 // references. 637 const CXXMethodDecl *MD = cast<CXXMethodDecl>(GD.getDecl()); 638 // OK on device side: functions w/ __device__ attribute 639 // OK on host side: anything except __device__-only functions. 640 bool CanEmitMethod = 641 CGM.getLangOpts().CUDAIsDevice 642 ? MD->hasAttr<CUDADeviceAttr>() 643 : (MD->hasAttr<CUDAHostAttr>() || !MD->hasAttr<CUDADeviceAttr>()); 644 if (!CanEmitMethod) 645 return builder.addNullPointer(CGM.Int8PtrTy); 646 // Method is acceptable, continue processing as usual. 647 } 648 649 auto getSpecialVirtualFn = [&](StringRef name) { 650 llvm::FunctionType *fnTy = 651 llvm::FunctionType::get(CGM.VoidTy, /*isVarArg=*/false); 652 llvm::Constant *fn = CGM.CreateRuntimeFunction(fnTy, name); 653 if (auto f = dyn_cast<llvm::Function>(fn)) 654 f->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 655 return llvm::ConstantExpr::getBitCast(fn, CGM.Int8PtrTy); 656 }; 657 658 llvm::Constant *fnPtr; 659 660 // Pure virtual member functions. 661 if (cast<CXXMethodDecl>(GD.getDecl())->isPure()) { 662 if (!PureVirtualFn) 663 PureVirtualFn = 664 getSpecialVirtualFn(CGM.getCXXABI().GetPureVirtualCallName()); 665 fnPtr = PureVirtualFn; 666 667 // Deleted virtual member functions. 668 } else if (cast<CXXMethodDecl>(GD.getDecl())->isDeleted()) { 669 if (!DeletedVirtualFn) 670 DeletedVirtualFn = 671 getSpecialVirtualFn(CGM.getCXXABI().GetDeletedVirtualCallName()); 672 fnPtr = DeletedVirtualFn; 673 674 // Thunks. 675 } else if (nextVTableThunkIndex < layout.vtable_thunks().size() && 676 layout.vtable_thunks()[nextVTableThunkIndex].first == idx) { 677 auto &thunkInfo = layout.vtable_thunks()[nextVTableThunkIndex].second; 678 679 nextVTableThunkIndex++; 680 fnPtr = maybeEmitThunk(GD, thunkInfo, /*ForVTable=*/true); 681 682 // Otherwise we can use the method definition directly. 683 } else { 684 llvm::Type *fnTy = CGM.getTypes().GetFunctionTypeForVTable(GD); 685 fnPtr = CGM.GetAddrOfFunction(GD, fnTy, /*ForVTable=*/true); 686 } 687 688 fnPtr = llvm::ConstantExpr::getBitCast(fnPtr, CGM.Int8PtrTy); 689 builder.add(fnPtr); 690 return; 691 } 692 693 case VTableComponent::CK_UnusedFunctionPointer: 694 return builder.addNullPointer(CGM.Int8PtrTy); 695 } 696 697 llvm_unreachable("Unexpected vtable component kind"); 698 } 699 700 llvm::Type *CodeGenVTables::getVTableType(const VTableLayout &layout) { 701 SmallVector<llvm::Type *, 4> tys; 702 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 703 tys.push_back(llvm::ArrayType::get(CGM.Int8PtrTy, layout.getVTableSize(i))); 704 } 705 706 return llvm::StructType::get(CGM.getLLVMContext(), tys); 707 } 708 709 void CodeGenVTables::createVTableInitializer(ConstantStructBuilder &builder, 710 const VTableLayout &layout, 711 llvm::Constant *rtti) { 712 unsigned nextVTableThunkIndex = 0; 713 for (unsigned i = 0, e = layout.getNumVTables(); i != e; ++i) { 714 auto vtableElem = builder.beginArray(CGM.Int8PtrTy); 715 size_t thisIndex = layout.getVTableOffset(i); 716 size_t nextIndex = thisIndex + layout.getVTableSize(i); 717 for (unsigned i = thisIndex; i != nextIndex; ++i) { 718 addVTableComponent(vtableElem, layout, i, rtti, nextVTableThunkIndex); 719 } 720 vtableElem.finishAndAddTo(builder); 721 } 722 } 723 724 llvm::GlobalVariable * 725 CodeGenVTables::GenerateConstructionVTable(const CXXRecordDecl *RD, 726 const BaseSubobject &Base, 727 bool BaseIsVirtual, 728 llvm::GlobalVariable::LinkageTypes Linkage, 729 VTableAddressPointsMapTy& AddressPoints) { 730 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 731 DI->completeClassData(Base.getBase()); 732 733 std::unique_ptr<VTableLayout> VTLayout( 734 getItaniumVTableContext().createConstructionVTableLayout( 735 Base.getBase(), Base.getBaseOffset(), BaseIsVirtual, RD)); 736 737 // Add the address points. 738 AddressPoints = VTLayout->getAddressPoints(); 739 740 // Get the mangled construction vtable name. 741 SmallString<256> OutName; 742 llvm::raw_svector_ostream Out(OutName); 743 cast<ItaniumMangleContext>(CGM.getCXXABI().getMangleContext()) 744 .mangleCXXCtorVTable(RD, Base.getBaseOffset().getQuantity(), 745 Base.getBase(), Out); 746 StringRef Name = OutName.str(); 747 748 llvm::Type *VTType = getVTableType(*VTLayout); 749 750 // Construction vtable symbols are not part of the Itanium ABI, so we cannot 751 // guarantee that they actually will be available externally. Instead, when 752 // emitting an available_externally VTT, we provide references to an internal 753 // linkage construction vtable. The ABI only requires complete-object vtables 754 // to be the same for all instances of a type, not construction vtables. 755 if (Linkage == llvm::GlobalVariable::AvailableExternallyLinkage) 756 Linkage = llvm::GlobalVariable::InternalLinkage; 757 758 unsigned Align = CGM.getDataLayout().getABITypeAlignment(VTType); 759 760 // Create the variable that will hold the construction vtable. 761 llvm::GlobalVariable *VTable = 762 CGM.CreateOrReplaceCXXRuntimeVariable(Name, VTType, Linkage, Align); 763 CGM.setGVProperties(VTable, RD); 764 765 // V-tables are always unnamed_addr. 766 VTable->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 767 768 llvm::Constant *RTTI = CGM.GetAddrOfRTTIDescriptor( 769 CGM.getContext().getTagDeclType(Base.getBase())); 770 771 // Create and set the initializer. 772 ConstantInitBuilder builder(CGM); 773 auto components = builder.beginStruct(); 774 createVTableInitializer(components, *VTLayout, RTTI); 775 components.finishAndSetAsInitializer(VTable); 776 777 CGM.EmitVTableTypeMetadata(VTable, *VTLayout.get()); 778 779 return VTable; 780 } 781 782 static bool shouldEmitAvailableExternallyVTable(const CodeGenModule &CGM, 783 const CXXRecordDecl *RD) { 784 return CGM.getCodeGenOpts().OptimizationLevel > 0 && 785 CGM.getCXXABI().canSpeculativelyEmitVTable(RD); 786 } 787 788 /// Compute the required linkage of the vtable for the given class. 789 /// 790 /// Note that we only call this at the end of the translation unit. 791 llvm::GlobalVariable::LinkageTypes 792 CodeGenModule::getVTableLinkage(const CXXRecordDecl *RD) { 793 if (!RD->isExternallyVisible()) 794 return llvm::GlobalVariable::InternalLinkage; 795 796 // We're at the end of the translation unit, so the current key 797 // function is fully correct. 798 const CXXMethodDecl *keyFunction = Context.getCurrentKeyFunction(RD); 799 if (keyFunction && !RD->hasAttr<DLLImportAttr>()) { 800 // If this class has a key function, use that to determine the 801 // linkage of the vtable. 802 const FunctionDecl *def = nullptr; 803 if (keyFunction->hasBody(def)) 804 keyFunction = cast<CXXMethodDecl>(def); 805 806 switch (keyFunction->getTemplateSpecializationKind()) { 807 case TSK_Undeclared: 808 case TSK_ExplicitSpecialization: 809 assert((def || CodeGenOpts.OptimizationLevel > 0 || 810 CodeGenOpts.getDebugInfo() != codegenoptions::NoDebugInfo) && 811 "Shouldn't query vtable linkage without key function, " 812 "optimizations, or debug info"); 813 if (!def && CodeGenOpts.OptimizationLevel > 0) 814 return llvm::GlobalVariable::AvailableExternallyLinkage; 815 816 if (keyFunction->isInlined()) 817 return !Context.getLangOpts().AppleKext ? 818 llvm::GlobalVariable::LinkOnceODRLinkage : 819 llvm::Function::InternalLinkage; 820 821 return llvm::GlobalVariable::ExternalLinkage; 822 823 case TSK_ImplicitInstantiation: 824 return !Context.getLangOpts().AppleKext ? 825 llvm::GlobalVariable::LinkOnceODRLinkage : 826 llvm::Function::InternalLinkage; 827 828 case TSK_ExplicitInstantiationDefinition: 829 return !Context.getLangOpts().AppleKext ? 830 llvm::GlobalVariable::WeakODRLinkage : 831 llvm::Function::InternalLinkage; 832 833 case TSK_ExplicitInstantiationDeclaration: 834 llvm_unreachable("Should not have been asked to emit this"); 835 } 836 } 837 838 // -fapple-kext mode does not support weak linkage, so we must use 839 // internal linkage. 840 if (Context.getLangOpts().AppleKext) 841 return llvm::Function::InternalLinkage; 842 843 llvm::GlobalVariable::LinkageTypes DiscardableODRLinkage = 844 llvm::GlobalValue::LinkOnceODRLinkage; 845 llvm::GlobalVariable::LinkageTypes NonDiscardableODRLinkage = 846 llvm::GlobalValue::WeakODRLinkage; 847 if (RD->hasAttr<DLLExportAttr>()) { 848 // Cannot discard exported vtables. 849 DiscardableODRLinkage = NonDiscardableODRLinkage; 850 } else if (RD->hasAttr<DLLImportAttr>()) { 851 // Imported vtables are available externally. 852 DiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 853 NonDiscardableODRLinkage = llvm::GlobalVariable::AvailableExternallyLinkage; 854 } 855 856 switch (RD->getTemplateSpecializationKind()) { 857 case TSK_Undeclared: 858 case TSK_ExplicitSpecialization: 859 case TSK_ImplicitInstantiation: 860 return DiscardableODRLinkage; 861 862 case TSK_ExplicitInstantiationDeclaration: 863 // Explicit instantiations in MSVC do not provide vtables, so we must emit 864 // our own. 865 if (getTarget().getCXXABI().isMicrosoft()) 866 return DiscardableODRLinkage; 867 return shouldEmitAvailableExternallyVTable(*this, RD) 868 ? llvm::GlobalVariable::AvailableExternallyLinkage 869 : llvm::GlobalVariable::ExternalLinkage; 870 871 case TSK_ExplicitInstantiationDefinition: 872 return NonDiscardableODRLinkage; 873 } 874 875 llvm_unreachable("Invalid TemplateSpecializationKind!"); 876 } 877 878 /// This is a callback from Sema to tell us that a particular vtable is 879 /// required to be emitted in this translation unit. 880 /// 881 /// This is only called for vtables that _must_ be emitted (mainly due to key 882 /// functions). For weak vtables, CodeGen tracks when they are needed and 883 /// emits them as-needed. 884 void CodeGenModule::EmitVTable(CXXRecordDecl *theClass) { 885 VTables.GenerateClassData(theClass); 886 } 887 888 void 889 CodeGenVTables::GenerateClassData(const CXXRecordDecl *RD) { 890 if (CGDebugInfo *DI = CGM.getModuleDebugInfo()) 891 DI->completeClassData(RD); 892 893 if (RD->getNumVBases()) 894 CGM.getCXXABI().emitVirtualInheritanceTables(RD); 895 896 CGM.getCXXABI().emitVTableDefinitions(*this, RD); 897 } 898 899 /// At this point in the translation unit, does it appear that can we 900 /// rely on the vtable being defined elsewhere in the program? 901 /// 902 /// The response is really only definitive when called at the end of 903 /// the translation unit. 904 /// 905 /// The only semantic restriction here is that the object file should 906 /// not contain a vtable definition when that vtable is defined 907 /// strongly elsewhere. Otherwise, we'd just like to avoid emitting 908 /// vtables when unnecessary. 909 bool CodeGenVTables::isVTableExternal(const CXXRecordDecl *RD) { 910 assert(RD->isDynamicClass() && "Non-dynamic classes have no VTable."); 911 912 // We always synthesize vtables if they are needed in the MS ABI. MSVC doesn't 913 // emit them even if there is an explicit template instantiation. 914 if (CGM.getTarget().getCXXABI().isMicrosoft()) 915 return false; 916 917 // If we have an explicit instantiation declaration (and not a 918 // definition), the vtable is defined elsewhere. 919 TemplateSpecializationKind TSK = RD->getTemplateSpecializationKind(); 920 if (TSK == TSK_ExplicitInstantiationDeclaration) 921 return true; 922 923 // Otherwise, if the class is an instantiated template, the 924 // vtable must be defined here. 925 if (TSK == TSK_ImplicitInstantiation || 926 TSK == TSK_ExplicitInstantiationDefinition) 927 return false; 928 929 // Otherwise, if the class doesn't have a key function (possibly 930 // anymore), the vtable must be defined here. 931 const CXXMethodDecl *keyFunction = CGM.getContext().getCurrentKeyFunction(RD); 932 if (!keyFunction) 933 return false; 934 935 // Otherwise, if we don't have a definition of the key function, the 936 // vtable must be defined somewhere else. 937 return !keyFunction->hasBody(); 938 } 939 940 /// Given that we're currently at the end of the translation unit, and 941 /// we've emitted a reference to the vtable for this class, should 942 /// we define that vtable? 943 static bool shouldEmitVTableAtEndOfTranslationUnit(CodeGenModule &CGM, 944 const CXXRecordDecl *RD) { 945 // If vtable is internal then it has to be done. 946 if (!CGM.getVTables().isVTableExternal(RD)) 947 return true; 948 949 // If it's external then maybe we will need it as available_externally. 950 return shouldEmitAvailableExternallyVTable(CGM, RD); 951 } 952 953 /// Given that at some point we emitted a reference to one or more 954 /// vtables, and that we are now at the end of the translation unit, 955 /// decide whether we should emit them. 956 void CodeGenModule::EmitDeferredVTables() { 957 #ifndef NDEBUG 958 // Remember the size of DeferredVTables, because we're going to assume 959 // that this entire operation doesn't modify it. 960 size_t savedSize = DeferredVTables.size(); 961 #endif 962 963 for (const CXXRecordDecl *RD : DeferredVTables) 964 if (shouldEmitVTableAtEndOfTranslationUnit(*this, RD)) 965 VTables.GenerateClassData(RD); 966 else if (shouldOpportunisticallyEmitVTables()) 967 OpportunisticVTables.push_back(RD); 968 969 assert(savedSize == DeferredVTables.size() && 970 "deferred extra vtables during vtable emission?"); 971 DeferredVTables.clear(); 972 } 973 974 bool CodeGenModule::HasHiddenLTOVisibility(const CXXRecordDecl *RD) { 975 LinkageInfo LV = RD->getLinkageAndVisibility(); 976 if (!isExternallyVisible(LV.getLinkage())) 977 return true; 978 979 if (RD->hasAttr<LTOVisibilityPublicAttr>() || RD->hasAttr<UuidAttr>()) 980 return false; 981 982 if (getTriple().isOSBinFormatCOFF()) { 983 if (RD->hasAttr<DLLExportAttr>() || RD->hasAttr<DLLImportAttr>()) 984 return false; 985 } else { 986 if (LV.getVisibility() != HiddenVisibility) 987 return false; 988 } 989 990 if (getCodeGenOpts().LTOVisibilityPublicStd) { 991 const DeclContext *DC = RD; 992 while (1) { 993 auto *D = cast<Decl>(DC); 994 DC = DC->getParent(); 995 if (isa<TranslationUnitDecl>(DC->getRedeclContext())) { 996 if (auto *ND = dyn_cast<NamespaceDecl>(D)) 997 if (const IdentifierInfo *II = ND->getIdentifier()) 998 if (II->isStr("std") || II->isStr("stdext")) 999 return false; 1000 break; 1001 } 1002 } 1003 } 1004 1005 return true; 1006 } 1007 1008 void CodeGenModule::EmitVTableTypeMetadata(llvm::GlobalVariable *VTable, 1009 const VTableLayout &VTLayout) { 1010 if (!getCodeGenOpts().LTOUnit) 1011 return; 1012 1013 CharUnits PointerWidth = 1014 Context.toCharUnitsFromBits(Context.getTargetInfo().getPointerWidth(0)); 1015 1016 typedef std::pair<const CXXRecordDecl *, unsigned> AddressPoint; 1017 std::vector<AddressPoint> AddressPoints; 1018 for (auto &&AP : VTLayout.getAddressPoints()) 1019 AddressPoints.push_back(std::make_pair( 1020 AP.first.getBase(), VTLayout.getVTableOffset(AP.second.VTableIndex) + 1021 AP.second.AddressPointIndex)); 1022 1023 // Sort the address points for determinism. 1024 llvm::sort(AddressPoints, [this](const AddressPoint &AP1, 1025 const AddressPoint &AP2) { 1026 if (&AP1 == &AP2) 1027 return false; 1028 1029 std::string S1; 1030 llvm::raw_string_ostream O1(S1); 1031 getCXXABI().getMangleContext().mangleTypeName( 1032 QualType(AP1.first->getTypeForDecl(), 0), O1); 1033 O1.flush(); 1034 1035 std::string S2; 1036 llvm::raw_string_ostream O2(S2); 1037 getCXXABI().getMangleContext().mangleTypeName( 1038 QualType(AP2.first->getTypeForDecl(), 0), O2); 1039 O2.flush(); 1040 1041 if (S1 < S2) 1042 return true; 1043 if (S1 != S2) 1044 return false; 1045 1046 return AP1.second < AP2.second; 1047 }); 1048 1049 ArrayRef<VTableComponent> Comps = VTLayout.vtable_components(); 1050 for (auto AP : AddressPoints) { 1051 // Create type metadata for the address point. 1052 AddVTableTypeMetadata(VTable, PointerWidth * AP.second, AP.first); 1053 1054 // The class associated with each address point could also potentially be 1055 // used for indirect calls via a member function pointer, so we need to 1056 // annotate the address of each function pointer with the appropriate member 1057 // function pointer type. 1058 for (unsigned I = 0; I != Comps.size(); ++I) { 1059 if (Comps[I].getKind() != VTableComponent::CK_FunctionPointer) 1060 continue; 1061 llvm::Metadata *MD = CreateMetadataIdentifierForVirtualMemPtrType( 1062 Context.getMemberPointerType( 1063 Comps[I].getFunctionDecl()->getType(), 1064 Context.getRecordType(AP.first).getTypePtr())); 1065 VTable->addTypeMetadata((PointerWidth * I).getQuantity(), MD); 1066 } 1067 } 1068 } 1069