1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Stmt nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGDebugInfo.h" 16 #include "CodeGenModule.h" 17 #include "TargetInfo.h" 18 #include "clang/AST/StmtVisitor.h" 19 #include "clang/Basic/Builtins.h" 20 #include "clang/Basic/PrettyStackTrace.h" 21 #include "clang/Basic/TargetInfo.h" 22 #include "llvm/ADT/StringExtras.h" 23 #include "llvm/IR/CallSite.h" 24 #include "llvm/IR/DataLayout.h" 25 #include "llvm/IR/InlineAsm.h" 26 #include "llvm/IR/Intrinsics.h" 27 #include "llvm/IR/MDBuilder.h" 28 29 using namespace clang; 30 using namespace CodeGen; 31 32 //===----------------------------------------------------------------------===// 33 // Statement Emission 34 //===----------------------------------------------------------------------===// 35 36 void CodeGenFunction::EmitStopPoint(const Stmt *S) { 37 if (CGDebugInfo *DI = getDebugInfo()) { 38 SourceLocation Loc; 39 Loc = S->getBeginLoc(); 40 DI->EmitLocation(Builder, Loc); 41 42 LastStopPoint = Loc; 43 } 44 } 45 46 void CodeGenFunction::EmitStmt(const Stmt *S, ArrayRef<const Attr *> Attrs) { 47 assert(S && "Null statement?"); 48 PGO.setCurrentStmt(S); 49 50 // These statements have their own debug info handling. 51 if (EmitSimpleStmt(S)) 52 return; 53 54 // Check if we are generating unreachable code. 55 if (!HaveInsertPoint()) { 56 // If so, and the statement doesn't contain a label, then we do not need to 57 // generate actual code. This is safe because (1) the current point is 58 // unreachable, so we don't need to execute the code, and (2) we've already 59 // handled the statements which update internal data structures (like the 60 // local variable map) which could be used by subsequent statements. 61 if (!ContainsLabel(S)) { 62 // Verify that any decl statements were handled as simple, they may be in 63 // scope of subsequent reachable statements. 64 assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!"); 65 return; 66 } 67 68 // Otherwise, make a new block to hold the code. 69 EnsureInsertPoint(); 70 } 71 72 // Generate a stoppoint if we are emitting debug info. 73 EmitStopPoint(S); 74 75 // Ignore all OpenMP directives except for simd if OpenMP with Simd is 76 // enabled. 77 if (getLangOpts().OpenMP && getLangOpts().OpenMPSimd) { 78 if (const auto *D = dyn_cast<OMPExecutableDirective>(S)) { 79 EmitSimpleOMPExecutableDirective(*D); 80 return; 81 } 82 } 83 84 switch (S->getStmtClass()) { 85 case Stmt::NoStmtClass: 86 case Stmt::CXXCatchStmtClass: 87 case Stmt::SEHExceptStmtClass: 88 case Stmt::SEHFinallyStmtClass: 89 case Stmt::MSDependentExistsStmtClass: 90 llvm_unreachable("invalid statement class to emit generically"); 91 case Stmt::NullStmtClass: 92 case Stmt::CompoundStmtClass: 93 case Stmt::DeclStmtClass: 94 case Stmt::LabelStmtClass: 95 case Stmt::AttributedStmtClass: 96 case Stmt::GotoStmtClass: 97 case Stmt::BreakStmtClass: 98 case Stmt::ContinueStmtClass: 99 case Stmt::DefaultStmtClass: 100 case Stmt::CaseStmtClass: 101 case Stmt::SEHLeaveStmtClass: 102 llvm_unreachable("should have emitted these statements as simple"); 103 104 #define STMT(Type, Base) 105 #define ABSTRACT_STMT(Op) 106 #define EXPR(Type, Base) \ 107 case Stmt::Type##Class: 108 #include "clang/AST/StmtNodes.inc" 109 { 110 // Remember the block we came in on. 111 llvm::BasicBlock *incoming = Builder.GetInsertBlock(); 112 assert(incoming && "expression emission must have an insertion point"); 113 114 EmitIgnoredExpr(cast<Expr>(S)); 115 116 llvm::BasicBlock *outgoing = Builder.GetInsertBlock(); 117 assert(outgoing && "expression emission cleared block!"); 118 119 // The expression emitters assume (reasonably!) that the insertion 120 // point is always set. To maintain that, the call-emission code 121 // for noreturn functions has to enter a new block with no 122 // predecessors. We want to kill that block and mark the current 123 // insertion point unreachable in the common case of a call like 124 // "exit();". Since expression emission doesn't otherwise create 125 // blocks with no predecessors, we can just test for that. 126 // However, we must be careful not to do this to our incoming 127 // block, because *statement* emission does sometimes create 128 // reachable blocks which will have no predecessors until later in 129 // the function. This occurs with, e.g., labels that are not 130 // reachable by fallthrough. 131 if (incoming != outgoing && outgoing->use_empty()) { 132 outgoing->eraseFromParent(); 133 Builder.ClearInsertionPoint(); 134 } 135 break; 136 } 137 138 case Stmt::IndirectGotoStmtClass: 139 EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break; 140 141 case Stmt::IfStmtClass: EmitIfStmt(cast<IfStmt>(*S)); break; 142 case Stmt::WhileStmtClass: EmitWhileStmt(cast<WhileStmt>(*S), Attrs); break; 143 case Stmt::DoStmtClass: EmitDoStmt(cast<DoStmt>(*S), Attrs); break; 144 case Stmt::ForStmtClass: EmitForStmt(cast<ForStmt>(*S), Attrs); break; 145 146 case Stmt::ReturnStmtClass: EmitReturnStmt(cast<ReturnStmt>(*S)); break; 147 148 case Stmt::SwitchStmtClass: EmitSwitchStmt(cast<SwitchStmt>(*S)); break; 149 case Stmt::GCCAsmStmtClass: // Intentional fall-through. 150 case Stmt::MSAsmStmtClass: EmitAsmStmt(cast<AsmStmt>(*S)); break; 151 case Stmt::CoroutineBodyStmtClass: 152 EmitCoroutineBody(cast<CoroutineBodyStmt>(*S)); 153 break; 154 case Stmt::CoreturnStmtClass: 155 EmitCoreturnStmt(cast<CoreturnStmt>(*S)); 156 break; 157 case Stmt::CapturedStmtClass: { 158 const CapturedStmt *CS = cast<CapturedStmt>(S); 159 EmitCapturedStmt(*CS, CS->getCapturedRegionKind()); 160 } 161 break; 162 case Stmt::ObjCAtTryStmtClass: 163 EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S)); 164 break; 165 case Stmt::ObjCAtCatchStmtClass: 166 llvm_unreachable( 167 "@catch statements should be handled by EmitObjCAtTryStmt"); 168 case Stmt::ObjCAtFinallyStmtClass: 169 llvm_unreachable( 170 "@finally statements should be handled by EmitObjCAtTryStmt"); 171 case Stmt::ObjCAtThrowStmtClass: 172 EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S)); 173 break; 174 case Stmt::ObjCAtSynchronizedStmtClass: 175 EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S)); 176 break; 177 case Stmt::ObjCForCollectionStmtClass: 178 EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S)); 179 break; 180 case Stmt::ObjCAutoreleasePoolStmtClass: 181 EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S)); 182 break; 183 184 case Stmt::CXXTryStmtClass: 185 EmitCXXTryStmt(cast<CXXTryStmt>(*S)); 186 break; 187 case Stmt::CXXForRangeStmtClass: 188 EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S), Attrs); 189 break; 190 case Stmt::SEHTryStmtClass: 191 EmitSEHTryStmt(cast<SEHTryStmt>(*S)); 192 break; 193 case Stmt::OMPParallelDirectiveClass: 194 EmitOMPParallelDirective(cast<OMPParallelDirective>(*S)); 195 break; 196 case Stmt::OMPSimdDirectiveClass: 197 EmitOMPSimdDirective(cast<OMPSimdDirective>(*S)); 198 break; 199 case Stmt::OMPForDirectiveClass: 200 EmitOMPForDirective(cast<OMPForDirective>(*S)); 201 break; 202 case Stmt::OMPForSimdDirectiveClass: 203 EmitOMPForSimdDirective(cast<OMPForSimdDirective>(*S)); 204 break; 205 case Stmt::OMPSectionsDirectiveClass: 206 EmitOMPSectionsDirective(cast<OMPSectionsDirective>(*S)); 207 break; 208 case Stmt::OMPSectionDirectiveClass: 209 EmitOMPSectionDirective(cast<OMPSectionDirective>(*S)); 210 break; 211 case Stmt::OMPSingleDirectiveClass: 212 EmitOMPSingleDirective(cast<OMPSingleDirective>(*S)); 213 break; 214 case Stmt::OMPMasterDirectiveClass: 215 EmitOMPMasterDirective(cast<OMPMasterDirective>(*S)); 216 break; 217 case Stmt::OMPCriticalDirectiveClass: 218 EmitOMPCriticalDirective(cast<OMPCriticalDirective>(*S)); 219 break; 220 case Stmt::OMPParallelForDirectiveClass: 221 EmitOMPParallelForDirective(cast<OMPParallelForDirective>(*S)); 222 break; 223 case Stmt::OMPParallelForSimdDirectiveClass: 224 EmitOMPParallelForSimdDirective(cast<OMPParallelForSimdDirective>(*S)); 225 break; 226 case Stmt::OMPParallelSectionsDirectiveClass: 227 EmitOMPParallelSectionsDirective(cast<OMPParallelSectionsDirective>(*S)); 228 break; 229 case Stmt::OMPTaskDirectiveClass: 230 EmitOMPTaskDirective(cast<OMPTaskDirective>(*S)); 231 break; 232 case Stmt::OMPTaskyieldDirectiveClass: 233 EmitOMPTaskyieldDirective(cast<OMPTaskyieldDirective>(*S)); 234 break; 235 case Stmt::OMPBarrierDirectiveClass: 236 EmitOMPBarrierDirective(cast<OMPBarrierDirective>(*S)); 237 break; 238 case Stmt::OMPTaskwaitDirectiveClass: 239 EmitOMPTaskwaitDirective(cast<OMPTaskwaitDirective>(*S)); 240 break; 241 case Stmt::OMPTaskgroupDirectiveClass: 242 EmitOMPTaskgroupDirective(cast<OMPTaskgroupDirective>(*S)); 243 break; 244 case Stmt::OMPFlushDirectiveClass: 245 EmitOMPFlushDirective(cast<OMPFlushDirective>(*S)); 246 break; 247 case Stmt::OMPOrderedDirectiveClass: 248 EmitOMPOrderedDirective(cast<OMPOrderedDirective>(*S)); 249 break; 250 case Stmt::OMPAtomicDirectiveClass: 251 EmitOMPAtomicDirective(cast<OMPAtomicDirective>(*S)); 252 break; 253 case Stmt::OMPTargetDirectiveClass: 254 EmitOMPTargetDirective(cast<OMPTargetDirective>(*S)); 255 break; 256 case Stmt::OMPTeamsDirectiveClass: 257 EmitOMPTeamsDirective(cast<OMPTeamsDirective>(*S)); 258 break; 259 case Stmt::OMPCancellationPointDirectiveClass: 260 EmitOMPCancellationPointDirective(cast<OMPCancellationPointDirective>(*S)); 261 break; 262 case Stmt::OMPCancelDirectiveClass: 263 EmitOMPCancelDirective(cast<OMPCancelDirective>(*S)); 264 break; 265 case Stmt::OMPTargetDataDirectiveClass: 266 EmitOMPTargetDataDirective(cast<OMPTargetDataDirective>(*S)); 267 break; 268 case Stmt::OMPTargetEnterDataDirectiveClass: 269 EmitOMPTargetEnterDataDirective(cast<OMPTargetEnterDataDirective>(*S)); 270 break; 271 case Stmt::OMPTargetExitDataDirectiveClass: 272 EmitOMPTargetExitDataDirective(cast<OMPTargetExitDataDirective>(*S)); 273 break; 274 case Stmt::OMPTargetParallelDirectiveClass: 275 EmitOMPTargetParallelDirective(cast<OMPTargetParallelDirective>(*S)); 276 break; 277 case Stmt::OMPTargetParallelForDirectiveClass: 278 EmitOMPTargetParallelForDirective(cast<OMPTargetParallelForDirective>(*S)); 279 break; 280 case Stmt::OMPTaskLoopDirectiveClass: 281 EmitOMPTaskLoopDirective(cast<OMPTaskLoopDirective>(*S)); 282 break; 283 case Stmt::OMPTaskLoopSimdDirectiveClass: 284 EmitOMPTaskLoopSimdDirective(cast<OMPTaskLoopSimdDirective>(*S)); 285 break; 286 case Stmt::OMPDistributeDirectiveClass: 287 EmitOMPDistributeDirective(cast<OMPDistributeDirective>(*S)); 288 break; 289 case Stmt::OMPTargetUpdateDirectiveClass: 290 EmitOMPTargetUpdateDirective(cast<OMPTargetUpdateDirective>(*S)); 291 break; 292 case Stmt::OMPDistributeParallelForDirectiveClass: 293 EmitOMPDistributeParallelForDirective( 294 cast<OMPDistributeParallelForDirective>(*S)); 295 break; 296 case Stmt::OMPDistributeParallelForSimdDirectiveClass: 297 EmitOMPDistributeParallelForSimdDirective( 298 cast<OMPDistributeParallelForSimdDirective>(*S)); 299 break; 300 case Stmt::OMPDistributeSimdDirectiveClass: 301 EmitOMPDistributeSimdDirective(cast<OMPDistributeSimdDirective>(*S)); 302 break; 303 case Stmt::OMPTargetParallelForSimdDirectiveClass: 304 EmitOMPTargetParallelForSimdDirective( 305 cast<OMPTargetParallelForSimdDirective>(*S)); 306 break; 307 case Stmt::OMPTargetSimdDirectiveClass: 308 EmitOMPTargetSimdDirective(cast<OMPTargetSimdDirective>(*S)); 309 break; 310 case Stmt::OMPTeamsDistributeDirectiveClass: 311 EmitOMPTeamsDistributeDirective(cast<OMPTeamsDistributeDirective>(*S)); 312 break; 313 case Stmt::OMPTeamsDistributeSimdDirectiveClass: 314 EmitOMPTeamsDistributeSimdDirective( 315 cast<OMPTeamsDistributeSimdDirective>(*S)); 316 break; 317 case Stmt::OMPTeamsDistributeParallelForSimdDirectiveClass: 318 EmitOMPTeamsDistributeParallelForSimdDirective( 319 cast<OMPTeamsDistributeParallelForSimdDirective>(*S)); 320 break; 321 case Stmt::OMPTeamsDistributeParallelForDirectiveClass: 322 EmitOMPTeamsDistributeParallelForDirective( 323 cast<OMPTeamsDistributeParallelForDirective>(*S)); 324 break; 325 case Stmt::OMPTargetTeamsDirectiveClass: 326 EmitOMPTargetTeamsDirective(cast<OMPTargetTeamsDirective>(*S)); 327 break; 328 case Stmt::OMPTargetTeamsDistributeDirectiveClass: 329 EmitOMPTargetTeamsDistributeDirective( 330 cast<OMPTargetTeamsDistributeDirective>(*S)); 331 break; 332 case Stmt::OMPTargetTeamsDistributeParallelForDirectiveClass: 333 EmitOMPTargetTeamsDistributeParallelForDirective( 334 cast<OMPTargetTeamsDistributeParallelForDirective>(*S)); 335 break; 336 case Stmt::OMPTargetTeamsDistributeParallelForSimdDirectiveClass: 337 EmitOMPTargetTeamsDistributeParallelForSimdDirective( 338 cast<OMPTargetTeamsDistributeParallelForSimdDirective>(*S)); 339 break; 340 case Stmt::OMPTargetTeamsDistributeSimdDirectiveClass: 341 EmitOMPTargetTeamsDistributeSimdDirective( 342 cast<OMPTargetTeamsDistributeSimdDirective>(*S)); 343 break; 344 } 345 } 346 347 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) { 348 switch (S->getStmtClass()) { 349 default: return false; 350 case Stmt::NullStmtClass: break; 351 case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break; 352 case Stmt::DeclStmtClass: EmitDeclStmt(cast<DeclStmt>(*S)); break; 353 case Stmt::LabelStmtClass: EmitLabelStmt(cast<LabelStmt>(*S)); break; 354 case Stmt::AttributedStmtClass: 355 EmitAttributedStmt(cast<AttributedStmt>(*S)); break; 356 case Stmt::GotoStmtClass: EmitGotoStmt(cast<GotoStmt>(*S)); break; 357 case Stmt::BreakStmtClass: EmitBreakStmt(cast<BreakStmt>(*S)); break; 358 case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break; 359 case Stmt::DefaultStmtClass: EmitDefaultStmt(cast<DefaultStmt>(*S)); break; 360 case Stmt::CaseStmtClass: EmitCaseStmt(cast<CaseStmt>(*S)); break; 361 case Stmt::SEHLeaveStmtClass: EmitSEHLeaveStmt(cast<SEHLeaveStmt>(*S)); break; 362 } 363 364 return true; 365 } 366 367 /// EmitCompoundStmt - Emit a compound statement {..} node. If GetLast is true, 368 /// this captures the expression result of the last sub-statement and returns it 369 /// (for use by the statement expression extension). 370 Address CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast, 371 AggValueSlot AggSlot) { 372 PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(), 373 "LLVM IR generation of compound statement ('{}')"); 374 375 // Keep track of the current cleanup stack depth, including debug scopes. 376 LexicalScope Scope(*this, S.getSourceRange()); 377 378 return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot); 379 } 380 381 Address 382 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S, 383 bool GetLast, 384 AggValueSlot AggSlot) { 385 386 for (CompoundStmt::const_body_iterator I = S.body_begin(), 387 E = S.body_end()-GetLast; I != E; ++I) 388 EmitStmt(*I); 389 390 Address RetAlloca = Address::invalid(); 391 if (GetLast) { 392 // We have to special case labels here. They are statements, but when put 393 // at the end of a statement expression, they yield the value of their 394 // subexpression. Handle this by walking through all labels we encounter, 395 // emitting them before we evaluate the subexpr. 396 const Stmt *LastStmt = S.body_back(); 397 while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) { 398 EmitLabel(LS->getDecl()); 399 LastStmt = LS->getSubStmt(); 400 } 401 402 EnsureInsertPoint(); 403 404 QualType ExprTy = cast<Expr>(LastStmt)->getType(); 405 if (hasAggregateEvaluationKind(ExprTy)) { 406 EmitAggExpr(cast<Expr>(LastStmt), AggSlot); 407 } else { 408 // We can't return an RValue here because there might be cleanups at 409 // the end of the StmtExpr. Because of that, we have to emit the result 410 // here into a temporary alloca. 411 RetAlloca = CreateMemTemp(ExprTy); 412 EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(), 413 /*IsInit*/false); 414 } 415 416 } 417 418 return RetAlloca; 419 } 420 421 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) { 422 llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator()); 423 424 // If there is a cleanup stack, then we it isn't worth trying to 425 // simplify this block (we would need to remove it from the scope map 426 // and cleanup entry). 427 if (!EHStack.empty()) 428 return; 429 430 // Can only simplify direct branches. 431 if (!BI || !BI->isUnconditional()) 432 return; 433 434 // Can only simplify empty blocks. 435 if (BI->getIterator() != BB->begin()) 436 return; 437 438 BB->replaceAllUsesWith(BI->getSuccessor(0)); 439 BI->eraseFromParent(); 440 BB->eraseFromParent(); 441 } 442 443 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) { 444 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 445 446 // Fall out of the current block (if necessary). 447 EmitBranch(BB); 448 449 if (IsFinished && BB->use_empty()) { 450 delete BB; 451 return; 452 } 453 454 // Place the block after the current block, if possible, or else at 455 // the end of the function. 456 if (CurBB && CurBB->getParent()) 457 CurFn->getBasicBlockList().insertAfter(CurBB->getIterator(), BB); 458 else 459 CurFn->getBasicBlockList().push_back(BB); 460 Builder.SetInsertPoint(BB); 461 } 462 463 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) { 464 // Emit a branch from the current block to the target one if this 465 // was a real block. If this was just a fall-through block after a 466 // terminator, don't emit it. 467 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 468 469 if (!CurBB || CurBB->getTerminator()) { 470 // If there is no insert point or the previous block is already 471 // terminated, don't touch it. 472 } else { 473 // Otherwise, create a fall-through branch. 474 Builder.CreateBr(Target); 475 } 476 477 Builder.ClearInsertionPoint(); 478 } 479 480 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) { 481 bool inserted = false; 482 for (llvm::User *u : block->users()) { 483 if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(u)) { 484 CurFn->getBasicBlockList().insertAfter(insn->getParent()->getIterator(), 485 block); 486 inserted = true; 487 break; 488 } 489 } 490 491 if (!inserted) 492 CurFn->getBasicBlockList().push_back(block); 493 494 Builder.SetInsertPoint(block); 495 } 496 497 CodeGenFunction::JumpDest 498 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) { 499 JumpDest &Dest = LabelMap[D]; 500 if (Dest.isValid()) return Dest; 501 502 // Create, but don't insert, the new block. 503 Dest = JumpDest(createBasicBlock(D->getName()), 504 EHScopeStack::stable_iterator::invalid(), 505 NextCleanupDestIndex++); 506 return Dest; 507 } 508 509 void CodeGenFunction::EmitLabel(const LabelDecl *D) { 510 // Add this label to the current lexical scope if we're within any 511 // normal cleanups. Jumps "in" to this label --- when permitted by 512 // the language --- may need to be routed around such cleanups. 513 if (EHStack.hasNormalCleanups() && CurLexicalScope) 514 CurLexicalScope->addLabel(D); 515 516 JumpDest &Dest = LabelMap[D]; 517 518 // If we didn't need a forward reference to this label, just go 519 // ahead and create a destination at the current scope. 520 if (!Dest.isValid()) { 521 Dest = getJumpDestInCurrentScope(D->getName()); 522 523 // Otherwise, we need to give this label a target depth and remove 524 // it from the branch-fixups list. 525 } else { 526 assert(!Dest.getScopeDepth().isValid() && "already emitted label!"); 527 Dest.setScopeDepth(EHStack.stable_begin()); 528 ResolveBranchFixups(Dest.getBlock()); 529 } 530 531 EmitBlock(Dest.getBlock()); 532 incrementProfileCounter(D->getStmt()); 533 } 534 535 /// Change the cleanup scope of the labels in this lexical scope to 536 /// match the scope of the enclosing context. 537 void CodeGenFunction::LexicalScope::rescopeLabels() { 538 assert(!Labels.empty()); 539 EHScopeStack::stable_iterator innermostScope 540 = CGF.EHStack.getInnermostNormalCleanup(); 541 542 // Change the scope depth of all the labels. 543 for (SmallVectorImpl<const LabelDecl*>::const_iterator 544 i = Labels.begin(), e = Labels.end(); i != e; ++i) { 545 assert(CGF.LabelMap.count(*i)); 546 JumpDest &dest = CGF.LabelMap.find(*i)->second; 547 assert(dest.getScopeDepth().isValid()); 548 assert(innermostScope.encloses(dest.getScopeDepth())); 549 dest.setScopeDepth(innermostScope); 550 } 551 552 // Reparent the labels if the new scope also has cleanups. 553 if (innermostScope != EHScopeStack::stable_end() && ParentScope) { 554 ParentScope->Labels.append(Labels.begin(), Labels.end()); 555 } 556 } 557 558 559 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) { 560 EmitLabel(S.getDecl()); 561 EmitStmt(S.getSubStmt()); 562 } 563 564 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) { 565 EmitStmt(S.getSubStmt(), S.getAttrs()); 566 } 567 568 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) { 569 // If this code is reachable then emit a stop point (if generating 570 // debug info). We have to do this ourselves because we are on the 571 // "simple" statement path. 572 if (HaveInsertPoint()) 573 EmitStopPoint(&S); 574 575 EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel())); 576 } 577 578 579 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) { 580 if (const LabelDecl *Target = S.getConstantTarget()) { 581 EmitBranchThroughCleanup(getJumpDestForLabel(Target)); 582 return; 583 } 584 585 // Ensure that we have an i8* for our PHI node. 586 llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()), 587 Int8PtrTy, "addr"); 588 llvm::BasicBlock *CurBB = Builder.GetInsertBlock(); 589 590 // Get the basic block for the indirect goto. 591 llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock(); 592 593 // The first instruction in the block has to be the PHI for the switch dest, 594 // add an entry for this branch. 595 cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB); 596 597 EmitBranch(IndGotoBB); 598 } 599 600 void CodeGenFunction::EmitIfStmt(const IfStmt &S) { 601 // C99 6.8.4.1: The first substatement is executed if the expression compares 602 // unequal to 0. The condition must be a scalar type. 603 LexicalScope ConditionScope(*this, S.getCond()->getSourceRange()); 604 605 if (S.getInit()) 606 EmitStmt(S.getInit()); 607 608 if (S.getConditionVariable()) 609 EmitDecl(*S.getConditionVariable()); 610 611 // If the condition constant folds and can be elided, try to avoid emitting 612 // the condition and the dead arm of the if/else. 613 bool CondConstant; 614 if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant, 615 S.isConstexpr())) { 616 // Figure out which block (then or else) is executed. 617 const Stmt *Executed = S.getThen(); 618 const Stmt *Skipped = S.getElse(); 619 if (!CondConstant) // Condition false? 620 std::swap(Executed, Skipped); 621 622 // If the skipped block has no labels in it, just emit the executed block. 623 // This avoids emitting dead code and simplifies the CFG substantially. 624 if (S.isConstexpr() || !ContainsLabel(Skipped)) { 625 if (CondConstant) 626 incrementProfileCounter(&S); 627 if (Executed) { 628 RunCleanupsScope ExecutedScope(*this); 629 EmitStmt(Executed); 630 } 631 return; 632 } 633 } 634 635 // Otherwise, the condition did not fold, or we couldn't elide it. Just emit 636 // the conditional branch. 637 llvm::BasicBlock *ThenBlock = createBasicBlock("if.then"); 638 llvm::BasicBlock *ContBlock = createBasicBlock("if.end"); 639 llvm::BasicBlock *ElseBlock = ContBlock; 640 if (S.getElse()) 641 ElseBlock = createBasicBlock("if.else"); 642 643 EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock, 644 getProfileCount(S.getThen())); 645 646 // Emit the 'then' code. 647 EmitBlock(ThenBlock); 648 incrementProfileCounter(&S); 649 { 650 RunCleanupsScope ThenScope(*this); 651 EmitStmt(S.getThen()); 652 } 653 EmitBranch(ContBlock); 654 655 // Emit the 'else' code if present. 656 if (const Stmt *Else = S.getElse()) { 657 { 658 // There is no need to emit line number for an unconditional branch. 659 auto NL = ApplyDebugLocation::CreateEmpty(*this); 660 EmitBlock(ElseBlock); 661 } 662 { 663 RunCleanupsScope ElseScope(*this); 664 EmitStmt(Else); 665 } 666 { 667 // There is no need to emit line number for an unconditional branch. 668 auto NL = ApplyDebugLocation::CreateEmpty(*this); 669 EmitBranch(ContBlock); 670 } 671 } 672 673 // Emit the continuation block for code after the if. 674 EmitBlock(ContBlock, true); 675 } 676 677 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S, 678 ArrayRef<const Attr *> WhileAttrs) { 679 // Emit the header for the loop, which will also become 680 // the continue target. 681 JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond"); 682 EmitBlock(LoopHeader.getBlock()); 683 684 const SourceRange &R = S.getSourceRange(); 685 LoopStack.push(LoopHeader.getBlock(), CGM.getContext(), WhileAttrs, 686 SourceLocToDebugLoc(R.getBegin()), 687 SourceLocToDebugLoc(R.getEnd())); 688 689 // Create an exit block for when the condition fails, which will 690 // also become the break target. 691 JumpDest LoopExit = getJumpDestInCurrentScope("while.end"); 692 693 // Store the blocks to use for break and continue. 694 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader)); 695 696 // C++ [stmt.while]p2: 697 // When the condition of a while statement is a declaration, the 698 // scope of the variable that is declared extends from its point 699 // of declaration (3.3.2) to the end of the while statement. 700 // [...] 701 // The object created in a condition is destroyed and created 702 // with each iteration of the loop. 703 RunCleanupsScope ConditionScope(*this); 704 705 if (S.getConditionVariable()) 706 EmitDecl(*S.getConditionVariable()); 707 708 // Evaluate the conditional in the while header. C99 6.8.5.1: The 709 // evaluation of the controlling expression takes place before each 710 // execution of the loop body. 711 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 712 713 // while(1) is common, avoid extra exit blocks. Be sure 714 // to correctly handle break/continue though. 715 bool EmitBoolCondBranch = true; 716 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 717 if (C->isOne()) 718 EmitBoolCondBranch = false; 719 720 // As long as the condition is true, go to the loop body. 721 llvm::BasicBlock *LoopBody = createBasicBlock("while.body"); 722 if (EmitBoolCondBranch) { 723 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 724 if (ConditionScope.requiresCleanups()) 725 ExitBlock = createBasicBlock("while.exit"); 726 Builder.CreateCondBr( 727 BoolCondVal, LoopBody, ExitBlock, 728 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 729 730 if (ExitBlock != LoopExit.getBlock()) { 731 EmitBlock(ExitBlock); 732 EmitBranchThroughCleanup(LoopExit); 733 } 734 } 735 736 // Emit the loop body. We have to emit this in a cleanup scope 737 // because it might be a singleton DeclStmt. 738 { 739 RunCleanupsScope BodyScope(*this); 740 EmitBlock(LoopBody); 741 incrementProfileCounter(&S); 742 EmitStmt(S.getBody()); 743 } 744 745 BreakContinueStack.pop_back(); 746 747 // Immediately force cleanup. 748 ConditionScope.ForceCleanup(); 749 750 EmitStopPoint(&S); 751 // Branch to the loop header again. 752 EmitBranch(LoopHeader.getBlock()); 753 754 LoopStack.pop(); 755 756 // Emit the exit block. 757 EmitBlock(LoopExit.getBlock(), true); 758 759 // The LoopHeader typically is just a branch if we skipped emitting 760 // a branch, try to erase it. 761 if (!EmitBoolCondBranch) 762 SimplifyForwardingBlocks(LoopHeader.getBlock()); 763 } 764 765 void CodeGenFunction::EmitDoStmt(const DoStmt &S, 766 ArrayRef<const Attr *> DoAttrs) { 767 JumpDest LoopExit = getJumpDestInCurrentScope("do.end"); 768 JumpDest LoopCond = getJumpDestInCurrentScope("do.cond"); 769 770 uint64_t ParentCount = getCurrentProfileCount(); 771 772 // Store the blocks to use for break and continue. 773 BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond)); 774 775 // Emit the body of the loop. 776 llvm::BasicBlock *LoopBody = createBasicBlock("do.body"); 777 778 EmitBlockWithFallThrough(LoopBody, &S); 779 { 780 RunCleanupsScope BodyScope(*this); 781 EmitStmt(S.getBody()); 782 } 783 784 EmitBlock(LoopCond.getBlock()); 785 786 const SourceRange &R = S.getSourceRange(); 787 LoopStack.push(LoopBody, CGM.getContext(), DoAttrs, 788 SourceLocToDebugLoc(R.getBegin()), 789 SourceLocToDebugLoc(R.getEnd())); 790 791 // C99 6.8.5.2: "The evaluation of the controlling expression takes place 792 // after each execution of the loop body." 793 794 // Evaluate the conditional in the while header. 795 // C99 6.8.5p2/p4: The first substatement is executed if the expression 796 // compares unequal to 0. The condition must be a scalar type. 797 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 798 799 BreakContinueStack.pop_back(); 800 801 // "do {} while (0)" is common in macros, avoid extra blocks. Be sure 802 // to correctly handle break/continue though. 803 bool EmitBoolCondBranch = true; 804 if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal)) 805 if (C->isZero()) 806 EmitBoolCondBranch = false; 807 808 // As long as the condition is true, iterate the loop. 809 if (EmitBoolCondBranch) { 810 uint64_t BackedgeCount = getProfileCount(S.getBody()) - ParentCount; 811 Builder.CreateCondBr( 812 BoolCondVal, LoopBody, LoopExit.getBlock(), 813 createProfileWeightsForLoop(S.getCond(), BackedgeCount)); 814 } 815 816 LoopStack.pop(); 817 818 // Emit the exit block. 819 EmitBlock(LoopExit.getBlock()); 820 821 // The DoCond block typically is just a branch if we skipped 822 // emitting a branch, try to erase it. 823 if (!EmitBoolCondBranch) 824 SimplifyForwardingBlocks(LoopCond.getBlock()); 825 } 826 827 void CodeGenFunction::EmitForStmt(const ForStmt &S, 828 ArrayRef<const Attr *> ForAttrs) { 829 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 830 831 LexicalScope ForScope(*this, S.getSourceRange()); 832 833 // Evaluate the first part before the loop. 834 if (S.getInit()) 835 EmitStmt(S.getInit()); 836 837 // Start the loop with a block that tests the condition. 838 // If there's an increment, the continue scope will be overwritten 839 // later. 840 JumpDest Continue = getJumpDestInCurrentScope("for.cond"); 841 llvm::BasicBlock *CondBlock = Continue.getBlock(); 842 EmitBlock(CondBlock); 843 844 const SourceRange &R = S.getSourceRange(); 845 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 846 SourceLocToDebugLoc(R.getBegin()), 847 SourceLocToDebugLoc(R.getEnd())); 848 849 // If the for loop doesn't have an increment we can just use the 850 // condition as the continue block. Otherwise we'll need to create 851 // a block for it (in the current scope, i.e. in the scope of the 852 // condition), and that we will become our continue block. 853 if (S.getInc()) 854 Continue = getJumpDestInCurrentScope("for.inc"); 855 856 // Store the blocks to use for break and continue. 857 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 858 859 // Create a cleanup scope for the condition variable cleanups. 860 LexicalScope ConditionScope(*this, S.getSourceRange()); 861 862 if (S.getCond()) { 863 // If the for statement has a condition scope, emit the local variable 864 // declaration. 865 if (S.getConditionVariable()) { 866 EmitDecl(*S.getConditionVariable()); 867 } 868 869 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 870 // If there are any cleanups between here and the loop-exit scope, 871 // create a block to stage a loop exit along. 872 if (ForScope.requiresCleanups()) 873 ExitBlock = createBasicBlock("for.cond.cleanup"); 874 875 // As long as the condition is true, iterate the loop. 876 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 877 878 // C99 6.8.5p2/p4: The first substatement is executed if the expression 879 // compares unequal to 0. The condition must be a scalar type. 880 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 881 Builder.CreateCondBr( 882 BoolCondVal, ForBody, ExitBlock, 883 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 884 885 if (ExitBlock != LoopExit.getBlock()) { 886 EmitBlock(ExitBlock); 887 EmitBranchThroughCleanup(LoopExit); 888 } 889 890 EmitBlock(ForBody); 891 } else { 892 // Treat it as a non-zero constant. Don't even create a new block for the 893 // body, just fall into it. 894 } 895 incrementProfileCounter(&S); 896 897 { 898 // Create a separate cleanup scope for the body, in case it is not 899 // a compound statement. 900 RunCleanupsScope BodyScope(*this); 901 EmitStmt(S.getBody()); 902 } 903 904 // If there is an increment, emit it next. 905 if (S.getInc()) { 906 EmitBlock(Continue.getBlock()); 907 EmitStmt(S.getInc()); 908 } 909 910 BreakContinueStack.pop_back(); 911 912 ConditionScope.ForceCleanup(); 913 914 EmitStopPoint(&S); 915 EmitBranch(CondBlock); 916 917 ForScope.ForceCleanup(); 918 919 LoopStack.pop(); 920 921 // Emit the fall-through block. 922 EmitBlock(LoopExit.getBlock(), true); 923 } 924 925 void 926 CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S, 927 ArrayRef<const Attr *> ForAttrs) { 928 JumpDest LoopExit = getJumpDestInCurrentScope("for.end"); 929 930 LexicalScope ForScope(*this, S.getSourceRange()); 931 932 // Evaluate the first pieces before the loop. 933 if (S.getInit()) 934 EmitStmt(S.getInit()); 935 EmitStmt(S.getRangeStmt()); 936 EmitStmt(S.getBeginStmt()); 937 EmitStmt(S.getEndStmt()); 938 939 // Start the loop with a block that tests the condition. 940 // If there's an increment, the continue scope will be overwritten 941 // later. 942 llvm::BasicBlock *CondBlock = createBasicBlock("for.cond"); 943 EmitBlock(CondBlock); 944 945 const SourceRange &R = S.getSourceRange(); 946 LoopStack.push(CondBlock, CGM.getContext(), ForAttrs, 947 SourceLocToDebugLoc(R.getBegin()), 948 SourceLocToDebugLoc(R.getEnd())); 949 950 // If there are any cleanups between here and the loop-exit scope, 951 // create a block to stage a loop exit along. 952 llvm::BasicBlock *ExitBlock = LoopExit.getBlock(); 953 if (ForScope.requiresCleanups()) 954 ExitBlock = createBasicBlock("for.cond.cleanup"); 955 956 // The loop body, consisting of the specified body and the loop variable. 957 llvm::BasicBlock *ForBody = createBasicBlock("for.body"); 958 959 // The body is executed if the expression, contextually converted 960 // to bool, is true. 961 llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond()); 962 Builder.CreateCondBr( 963 BoolCondVal, ForBody, ExitBlock, 964 createProfileWeightsForLoop(S.getCond(), getProfileCount(S.getBody()))); 965 966 if (ExitBlock != LoopExit.getBlock()) { 967 EmitBlock(ExitBlock); 968 EmitBranchThroughCleanup(LoopExit); 969 } 970 971 EmitBlock(ForBody); 972 incrementProfileCounter(&S); 973 974 // Create a block for the increment. In case of a 'continue', we jump there. 975 JumpDest Continue = getJumpDestInCurrentScope("for.inc"); 976 977 // Store the blocks to use for break and continue. 978 BreakContinueStack.push_back(BreakContinue(LoopExit, Continue)); 979 980 { 981 // Create a separate cleanup scope for the loop variable and body. 982 LexicalScope BodyScope(*this, S.getSourceRange()); 983 EmitStmt(S.getLoopVarStmt()); 984 EmitStmt(S.getBody()); 985 } 986 987 EmitStopPoint(&S); 988 // If there is an increment, emit it next. 989 EmitBlock(Continue.getBlock()); 990 EmitStmt(S.getInc()); 991 992 BreakContinueStack.pop_back(); 993 994 EmitBranch(CondBlock); 995 996 ForScope.ForceCleanup(); 997 998 LoopStack.pop(); 999 1000 // Emit the fall-through block. 1001 EmitBlock(LoopExit.getBlock(), true); 1002 } 1003 1004 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) { 1005 if (RV.isScalar()) { 1006 Builder.CreateStore(RV.getScalarVal(), ReturnValue); 1007 } else if (RV.isAggregate()) { 1008 LValue Dest = MakeAddrLValue(ReturnValue, Ty); 1009 LValue Src = MakeAddrLValue(RV.getAggregateAddress(), Ty); 1010 EmitAggregateCopy(Dest, Src, Ty, overlapForReturnValue()); 1011 } else { 1012 EmitStoreOfComplex(RV.getComplexVal(), MakeAddrLValue(ReturnValue, Ty), 1013 /*init*/ true); 1014 } 1015 EmitBranchThroughCleanup(ReturnBlock); 1016 } 1017 1018 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand 1019 /// if the function returns void, or may be missing one if the function returns 1020 /// non-void. Fun stuff :). 1021 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) { 1022 if (requiresReturnValueCheck()) { 1023 llvm::Constant *SLoc = EmitCheckSourceLocation(S.getBeginLoc()); 1024 auto *SLocPtr = 1025 new llvm::GlobalVariable(CGM.getModule(), SLoc->getType(), false, 1026 llvm::GlobalVariable::PrivateLinkage, SLoc); 1027 SLocPtr->setUnnamedAddr(llvm::GlobalValue::UnnamedAddr::Global); 1028 CGM.getSanitizerMetadata()->disableSanitizerForGlobal(SLocPtr); 1029 assert(ReturnLocation.isValid() && "No valid return location"); 1030 Builder.CreateStore(Builder.CreateBitCast(SLocPtr, Int8PtrTy), 1031 ReturnLocation); 1032 } 1033 1034 // Returning from an outlined SEH helper is UB, and we already warn on it. 1035 if (IsOutlinedSEHHelper) { 1036 Builder.CreateUnreachable(); 1037 Builder.ClearInsertionPoint(); 1038 } 1039 1040 // Emit the result value, even if unused, to evaluate the side effects. 1041 const Expr *RV = S.getRetValue(); 1042 1043 // Treat block literals in a return expression as if they appeared 1044 // in their own scope. This permits a small, easily-implemented 1045 // exception to our over-conservative rules about not jumping to 1046 // statements following block literals with non-trivial cleanups. 1047 RunCleanupsScope cleanupScope(*this); 1048 if (const FullExpr *fe = dyn_cast_or_null<FullExpr>(RV)) { 1049 enterFullExpression(fe); 1050 RV = fe->getSubExpr(); 1051 } 1052 1053 // FIXME: Clean this up by using an LValue for ReturnTemp, 1054 // EmitStoreThroughLValue, and EmitAnyExpr. 1055 if (getLangOpts().ElideConstructors && 1056 S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) { 1057 // Apply the named return value optimization for this return statement, 1058 // which means doing nothing: the appropriate result has already been 1059 // constructed into the NRVO variable. 1060 1061 // If there is an NRVO flag for this variable, set it to 1 into indicate 1062 // that the cleanup code should not destroy the variable. 1063 if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()]) 1064 Builder.CreateFlagStore(Builder.getTrue(), NRVOFlag); 1065 } else if (!ReturnValue.isValid() || (RV && RV->getType()->isVoidType())) { 1066 // Make sure not to return anything, but evaluate the expression 1067 // for side effects. 1068 if (RV) 1069 EmitAnyExpr(RV); 1070 } else if (!RV) { 1071 // Do nothing (return value is left uninitialized) 1072 } else if (FnRetTy->isReferenceType()) { 1073 // If this function returns a reference, take the address of the expression 1074 // rather than the value. 1075 RValue Result = EmitReferenceBindingToExpr(RV); 1076 Builder.CreateStore(Result.getScalarVal(), ReturnValue); 1077 } else { 1078 switch (getEvaluationKind(RV->getType())) { 1079 case TEK_Scalar: 1080 Builder.CreateStore(EmitScalarExpr(RV), ReturnValue); 1081 break; 1082 case TEK_Complex: 1083 EmitComplexExprIntoLValue(RV, MakeAddrLValue(ReturnValue, RV->getType()), 1084 /*isInit*/ true); 1085 break; 1086 case TEK_Aggregate: 1087 EmitAggExpr(RV, AggValueSlot::forAddr( 1088 ReturnValue, Qualifiers(), 1089 AggValueSlot::IsDestructed, 1090 AggValueSlot::DoesNotNeedGCBarriers, 1091 AggValueSlot::IsNotAliased, 1092 overlapForReturnValue())); 1093 break; 1094 } 1095 } 1096 1097 ++NumReturnExprs; 1098 if (!RV || RV->isEvaluatable(getContext())) 1099 ++NumSimpleReturnExprs; 1100 1101 cleanupScope.ForceCleanup(); 1102 EmitBranchThroughCleanup(ReturnBlock); 1103 } 1104 1105 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) { 1106 // As long as debug info is modeled with instructions, we have to ensure we 1107 // have a place to insert here and write the stop point here. 1108 if (HaveInsertPoint()) 1109 EmitStopPoint(&S); 1110 1111 for (const auto *I : S.decls()) 1112 EmitDecl(*I); 1113 } 1114 1115 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) { 1116 assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!"); 1117 1118 // If this code is reachable then emit a stop point (if generating 1119 // debug info). We have to do this ourselves because we are on the 1120 // "simple" statement path. 1121 if (HaveInsertPoint()) 1122 EmitStopPoint(&S); 1123 1124 EmitBranchThroughCleanup(BreakContinueStack.back().BreakBlock); 1125 } 1126 1127 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) { 1128 assert(!BreakContinueStack.empty() && "continue stmt not in a loop!"); 1129 1130 // If this code is reachable then emit a stop point (if generating 1131 // debug info). We have to do this ourselves because we are on the 1132 // "simple" statement path. 1133 if (HaveInsertPoint()) 1134 EmitStopPoint(&S); 1135 1136 EmitBranchThroughCleanup(BreakContinueStack.back().ContinueBlock); 1137 } 1138 1139 /// EmitCaseStmtRange - If case statement range is not too big then 1140 /// add multiple cases to switch instruction, one for each value within 1141 /// the range. If range is too big then emit "if" condition check. 1142 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) { 1143 assert(S.getRHS() && "Expected RHS value in CaseStmt"); 1144 1145 llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext()); 1146 llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext()); 1147 1148 // Emit the code for this case. We do this first to make sure it is 1149 // properly chained from our predecessor before generating the 1150 // switch machinery to enter this block. 1151 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1152 EmitBlockWithFallThrough(CaseDest, &S); 1153 EmitStmt(S.getSubStmt()); 1154 1155 // If range is empty, do nothing. 1156 if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS)) 1157 return; 1158 1159 llvm::APInt Range = RHS - LHS; 1160 // FIXME: parameters such as this should not be hardcoded. 1161 if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) { 1162 // Range is small enough to add multiple switch instruction cases. 1163 uint64_t Total = getProfileCount(&S); 1164 unsigned NCases = Range.getZExtValue() + 1; 1165 // We only have one region counter for the entire set of cases here, so we 1166 // need to divide the weights evenly between the generated cases, ensuring 1167 // that the total weight is preserved. E.g., a weight of 5 over three cases 1168 // will be distributed as weights of 2, 2, and 1. 1169 uint64_t Weight = Total / NCases, Rem = Total % NCases; 1170 for (unsigned I = 0; I != NCases; ++I) { 1171 if (SwitchWeights) 1172 SwitchWeights->push_back(Weight + (Rem ? 1 : 0)); 1173 if (Rem) 1174 Rem--; 1175 SwitchInsn->addCase(Builder.getInt(LHS), CaseDest); 1176 ++LHS; 1177 } 1178 return; 1179 } 1180 1181 // The range is too big. Emit "if" condition into a new block, 1182 // making sure to save and restore the current insertion point. 1183 llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock(); 1184 1185 // Push this test onto the chain of range checks (which terminates 1186 // in the default basic block). The switch's default will be changed 1187 // to the top of this chain after switch emission is complete. 1188 llvm::BasicBlock *FalseDest = CaseRangeBlock; 1189 CaseRangeBlock = createBasicBlock("sw.caserange"); 1190 1191 CurFn->getBasicBlockList().push_back(CaseRangeBlock); 1192 Builder.SetInsertPoint(CaseRangeBlock); 1193 1194 // Emit range check. 1195 llvm::Value *Diff = 1196 Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS)); 1197 llvm::Value *Cond = 1198 Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds"); 1199 1200 llvm::MDNode *Weights = nullptr; 1201 if (SwitchWeights) { 1202 uint64_t ThisCount = getProfileCount(&S); 1203 uint64_t DefaultCount = (*SwitchWeights)[0]; 1204 Weights = createProfileWeights(ThisCount, DefaultCount); 1205 1206 // Since we're chaining the switch default through each large case range, we 1207 // need to update the weight for the default, ie, the first case, to include 1208 // this case. 1209 (*SwitchWeights)[0] += ThisCount; 1210 } 1211 Builder.CreateCondBr(Cond, CaseDest, FalseDest, Weights); 1212 1213 // Restore the appropriate insertion point. 1214 if (RestoreBB) 1215 Builder.SetInsertPoint(RestoreBB); 1216 else 1217 Builder.ClearInsertionPoint(); 1218 } 1219 1220 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) { 1221 // If there is no enclosing switch instance that we're aware of, then this 1222 // case statement and its block can be elided. This situation only happens 1223 // when we've constant-folded the switch, are emitting the constant case, 1224 // and part of the constant case includes another case statement. For 1225 // instance: switch (4) { case 4: do { case 5: } while (1); } 1226 if (!SwitchInsn) { 1227 EmitStmt(S.getSubStmt()); 1228 return; 1229 } 1230 1231 // Handle case ranges. 1232 if (S.getRHS()) { 1233 EmitCaseStmtRange(S); 1234 return; 1235 } 1236 1237 llvm::ConstantInt *CaseVal = 1238 Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext())); 1239 1240 // If the body of the case is just a 'break', try to not emit an empty block. 1241 // If we're profiling or we're not optimizing, leave the block in for better 1242 // debug and coverage analysis. 1243 if (!CGM.getCodeGenOpts().hasProfileClangInstr() && 1244 CGM.getCodeGenOpts().OptimizationLevel > 0 && 1245 isa<BreakStmt>(S.getSubStmt())) { 1246 JumpDest Block = BreakContinueStack.back().BreakBlock; 1247 1248 // Only do this optimization if there are no cleanups that need emitting. 1249 if (isObviouslyBranchWithoutCleanups(Block)) { 1250 if (SwitchWeights) 1251 SwitchWeights->push_back(getProfileCount(&S)); 1252 SwitchInsn->addCase(CaseVal, Block.getBlock()); 1253 1254 // If there was a fallthrough into this case, make sure to redirect it to 1255 // the end of the switch as well. 1256 if (Builder.GetInsertBlock()) { 1257 Builder.CreateBr(Block.getBlock()); 1258 Builder.ClearInsertionPoint(); 1259 } 1260 return; 1261 } 1262 } 1263 1264 llvm::BasicBlock *CaseDest = createBasicBlock("sw.bb"); 1265 EmitBlockWithFallThrough(CaseDest, &S); 1266 if (SwitchWeights) 1267 SwitchWeights->push_back(getProfileCount(&S)); 1268 SwitchInsn->addCase(CaseVal, CaseDest); 1269 1270 // Recursively emitting the statement is acceptable, but is not wonderful for 1271 // code where we have many case statements nested together, i.e.: 1272 // case 1: 1273 // case 2: 1274 // case 3: etc. 1275 // Handling this recursively will create a new block for each case statement 1276 // that falls through to the next case which is IR intensive. It also causes 1277 // deep recursion which can run into stack depth limitations. Handle 1278 // sequential non-range case statements specially. 1279 const CaseStmt *CurCase = &S; 1280 const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt()); 1281 1282 // Otherwise, iteratively add consecutive cases to this switch stmt. 1283 while (NextCase && NextCase->getRHS() == nullptr) { 1284 CurCase = NextCase; 1285 llvm::ConstantInt *CaseVal = 1286 Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext())); 1287 1288 if (SwitchWeights) 1289 SwitchWeights->push_back(getProfileCount(NextCase)); 1290 if (CGM.getCodeGenOpts().hasProfileClangInstr()) { 1291 CaseDest = createBasicBlock("sw.bb"); 1292 EmitBlockWithFallThrough(CaseDest, &S); 1293 } 1294 1295 SwitchInsn->addCase(CaseVal, CaseDest); 1296 NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt()); 1297 } 1298 1299 // Normal default recursion for non-cases. 1300 EmitStmt(CurCase->getSubStmt()); 1301 } 1302 1303 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) { 1304 // If there is no enclosing switch instance that we're aware of, then this 1305 // default statement can be elided. This situation only happens when we've 1306 // constant-folded the switch. 1307 if (!SwitchInsn) { 1308 EmitStmt(S.getSubStmt()); 1309 return; 1310 } 1311 1312 llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest(); 1313 assert(DefaultBlock->empty() && 1314 "EmitDefaultStmt: Default block already defined?"); 1315 1316 EmitBlockWithFallThrough(DefaultBlock, &S); 1317 1318 EmitStmt(S.getSubStmt()); 1319 } 1320 1321 /// CollectStatementsForCase - Given the body of a 'switch' statement and a 1322 /// constant value that is being switched on, see if we can dead code eliminate 1323 /// the body of the switch to a simple series of statements to emit. Basically, 1324 /// on a switch (5) we want to find these statements: 1325 /// case 5: 1326 /// printf(...); <-- 1327 /// ++i; <-- 1328 /// break; 1329 /// 1330 /// and add them to the ResultStmts vector. If it is unsafe to do this 1331 /// transformation (for example, one of the elided statements contains a label 1332 /// that might be jumped to), return CSFC_Failure. If we handled it and 'S' 1333 /// should include statements after it (e.g. the printf() line is a substmt of 1334 /// the case) then return CSFC_FallThrough. If we handled it and found a break 1335 /// statement, then return CSFC_Success. 1336 /// 1337 /// If Case is non-null, then we are looking for the specified case, checking 1338 /// that nothing we jump over contains labels. If Case is null, then we found 1339 /// the case and are looking for the break. 1340 /// 1341 /// If the recursive walk actually finds our Case, then we set FoundCase to 1342 /// true. 1343 /// 1344 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success }; 1345 static CSFC_Result CollectStatementsForCase(const Stmt *S, 1346 const SwitchCase *Case, 1347 bool &FoundCase, 1348 SmallVectorImpl<const Stmt*> &ResultStmts) { 1349 // If this is a null statement, just succeed. 1350 if (!S) 1351 return Case ? CSFC_Success : CSFC_FallThrough; 1352 1353 // If this is the switchcase (case 4: or default) that we're looking for, then 1354 // we're in business. Just add the substatement. 1355 if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) { 1356 if (S == Case) { 1357 FoundCase = true; 1358 return CollectStatementsForCase(SC->getSubStmt(), nullptr, FoundCase, 1359 ResultStmts); 1360 } 1361 1362 // Otherwise, this is some other case or default statement, just ignore it. 1363 return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase, 1364 ResultStmts); 1365 } 1366 1367 // If we are in the live part of the code and we found our break statement, 1368 // return a success! 1369 if (!Case && isa<BreakStmt>(S)) 1370 return CSFC_Success; 1371 1372 // If this is a switch statement, then it might contain the SwitchCase, the 1373 // break, or neither. 1374 if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) { 1375 // Handle this as two cases: we might be looking for the SwitchCase (if so 1376 // the skipped statements must be skippable) or we might already have it. 1377 CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end(); 1378 bool StartedInLiveCode = FoundCase; 1379 unsigned StartSize = ResultStmts.size(); 1380 1381 // If we've not found the case yet, scan through looking for it. 1382 if (Case) { 1383 // Keep track of whether we see a skipped declaration. The code could be 1384 // using the declaration even if it is skipped, so we can't optimize out 1385 // the decl if the kept statements might refer to it. 1386 bool HadSkippedDecl = false; 1387 1388 // If we're looking for the case, just see if we can skip each of the 1389 // substatements. 1390 for (; Case && I != E; ++I) { 1391 HadSkippedDecl |= CodeGenFunction::mightAddDeclToScope(*I); 1392 1393 switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) { 1394 case CSFC_Failure: return CSFC_Failure; 1395 case CSFC_Success: 1396 // A successful result means that either 1) that the statement doesn't 1397 // have the case and is skippable, or 2) does contain the case value 1398 // and also contains the break to exit the switch. In the later case, 1399 // we just verify the rest of the statements are elidable. 1400 if (FoundCase) { 1401 // If we found the case and skipped declarations, we can't do the 1402 // optimization. 1403 if (HadSkippedDecl) 1404 return CSFC_Failure; 1405 1406 for (++I; I != E; ++I) 1407 if (CodeGenFunction::ContainsLabel(*I, true)) 1408 return CSFC_Failure; 1409 return CSFC_Success; 1410 } 1411 break; 1412 case CSFC_FallThrough: 1413 // If we have a fallthrough condition, then we must have found the 1414 // case started to include statements. Consider the rest of the 1415 // statements in the compound statement as candidates for inclusion. 1416 assert(FoundCase && "Didn't find case but returned fallthrough?"); 1417 // We recursively found Case, so we're not looking for it anymore. 1418 Case = nullptr; 1419 1420 // If we found the case and skipped declarations, we can't do the 1421 // optimization. 1422 if (HadSkippedDecl) 1423 return CSFC_Failure; 1424 break; 1425 } 1426 } 1427 1428 if (!FoundCase) 1429 return CSFC_Success; 1430 1431 assert(!HadSkippedDecl && "fallthrough after skipping decl"); 1432 } 1433 1434 // If we have statements in our range, then we know that the statements are 1435 // live and need to be added to the set of statements we're tracking. 1436 bool AnyDecls = false; 1437 for (; I != E; ++I) { 1438 AnyDecls |= CodeGenFunction::mightAddDeclToScope(*I); 1439 1440 switch (CollectStatementsForCase(*I, nullptr, FoundCase, ResultStmts)) { 1441 case CSFC_Failure: return CSFC_Failure; 1442 case CSFC_FallThrough: 1443 // A fallthrough result means that the statement was simple and just 1444 // included in ResultStmt, keep adding them afterwards. 1445 break; 1446 case CSFC_Success: 1447 // A successful result means that we found the break statement and 1448 // stopped statement inclusion. We just ensure that any leftover stmts 1449 // are skippable and return success ourselves. 1450 for (++I; I != E; ++I) 1451 if (CodeGenFunction::ContainsLabel(*I, true)) 1452 return CSFC_Failure; 1453 return CSFC_Success; 1454 } 1455 } 1456 1457 // If we're about to fall out of a scope without hitting a 'break;', we 1458 // can't perform the optimization if there were any decls in that scope 1459 // (we'd lose their end-of-lifetime). 1460 if (AnyDecls) { 1461 // If the entire compound statement was live, there's one more thing we 1462 // can try before giving up: emit the whole thing as a single statement. 1463 // We can do that unless the statement contains a 'break;'. 1464 // FIXME: Such a break must be at the end of a construct within this one. 1465 // We could emit this by just ignoring the BreakStmts entirely. 1466 if (StartedInLiveCode && !CodeGenFunction::containsBreak(S)) { 1467 ResultStmts.resize(StartSize); 1468 ResultStmts.push_back(S); 1469 } else { 1470 return CSFC_Failure; 1471 } 1472 } 1473 1474 return CSFC_FallThrough; 1475 } 1476 1477 // Okay, this is some other statement that we don't handle explicitly, like a 1478 // for statement or increment etc. If we are skipping over this statement, 1479 // just verify it doesn't have labels, which would make it invalid to elide. 1480 if (Case) { 1481 if (CodeGenFunction::ContainsLabel(S, true)) 1482 return CSFC_Failure; 1483 return CSFC_Success; 1484 } 1485 1486 // Otherwise, we want to include this statement. Everything is cool with that 1487 // so long as it doesn't contain a break out of the switch we're in. 1488 if (CodeGenFunction::containsBreak(S)) return CSFC_Failure; 1489 1490 // Otherwise, everything is great. Include the statement and tell the caller 1491 // that we fall through and include the next statement as well. 1492 ResultStmts.push_back(S); 1493 return CSFC_FallThrough; 1494 } 1495 1496 /// FindCaseStatementsForValue - Find the case statement being jumped to and 1497 /// then invoke CollectStatementsForCase to find the list of statements to emit 1498 /// for a switch on constant. See the comment above CollectStatementsForCase 1499 /// for more details. 1500 static bool FindCaseStatementsForValue(const SwitchStmt &S, 1501 const llvm::APSInt &ConstantCondValue, 1502 SmallVectorImpl<const Stmt*> &ResultStmts, 1503 ASTContext &C, 1504 const SwitchCase *&ResultCase) { 1505 // First step, find the switch case that is being branched to. We can do this 1506 // efficiently by scanning the SwitchCase list. 1507 const SwitchCase *Case = S.getSwitchCaseList(); 1508 const DefaultStmt *DefaultCase = nullptr; 1509 1510 for (; Case; Case = Case->getNextSwitchCase()) { 1511 // It's either a default or case. Just remember the default statement in 1512 // case we're not jumping to any numbered cases. 1513 if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) { 1514 DefaultCase = DS; 1515 continue; 1516 } 1517 1518 // Check to see if this case is the one we're looking for. 1519 const CaseStmt *CS = cast<CaseStmt>(Case); 1520 // Don't handle case ranges yet. 1521 if (CS->getRHS()) return false; 1522 1523 // If we found our case, remember it as 'case'. 1524 if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue) 1525 break; 1526 } 1527 1528 // If we didn't find a matching case, we use a default if it exists, or we 1529 // elide the whole switch body! 1530 if (!Case) { 1531 // It is safe to elide the body of the switch if it doesn't contain labels 1532 // etc. If it is safe, return successfully with an empty ResultStmts list. 1533 if (!DefaultCase) 1534 return !CodeGenFunction::ContainsLabel(&S); 1535 Case = DefaultCase; 1536 } 1537 1538 // Ok, we know which case is being jumped to, try to collect all the 1539 // statements that follow it. This can fail for a variety of reasons. Also, 1540 // check to see that the recursive walk actually found our case statement. 1541 // Insane cases like this can fail to find it in the recursive walk since we 1542 // don't handle every stmt kind: 1543 // switch (4) { 1544 // while (1) { 1545 // case 4: ... 1546 bool FoundCase = false; 1547 ResultCase = Case; 1548 return CollectStatementsForCase(S.getBody(), Case, FoundCase, 1549 ResultStmts) != CSFC_Failure && 1550 FoundCase; 1551 } 1552 1553 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) { 1554 // Handle nested switch statements. 1555 llvm::SwitchInst *SavedSwitchInsn = SwitchInsn; 1556 SmallVector<uint64_t, 16> *SavedSwitchWeights = SwitchWeights; 1557 llvm::BasicBlock *SavedCRBlock = CaseRangeBlock; 1558 1559 // See if we can constant fold the condition of the switch and therefore only 1560 // emit the live case statement (if any) of the switch. 1561 llvm::APSInt ConstantCondValue; 1562 if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) { 1563 SmallVector<const Stmt*, 4> CaseStmts; 1564 const SwitchCase *Case = nullptr; 1565 if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts, 1566 getContext(), Case)) { 1567 if (Case) 1568 incrementProfileCounter(Case); 1569 RunCleanupsScope ExecutedScope(*this); 1570 1571 if (S.getInit()) 1572 EmitStmt(S.getInit()); 1573 1574 // Emit the condition variable if needed inside the entire cleanup scope 1575 // used by this special case for constant folded switches. 1576 if (S.getConditionVariable()) 1577 EmitDecl(*S.getConditionVariable()); 1578 1579 // At this point, we are no longer "within" a switch instance, so 1580 // we can temporarily enforce this to ensure that any embedded case 1581 // statements are not emitted. 1582 SwitchInsn = nullptr; 1583 1584 // Okay, we can dead code eliminate everything except this case. Emit the 1585 // specified series of statements and we're good. 1586 for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i) 1587 EmitStmt(CaseStmts[i]); 1588 incrementProfileCounter(&S); 1589 1590 // Now we want to restore the saved switch instance so that nested 1591 // switches continue to function properly 1592 SwitchInsn = SavedSwitchInsn; 1593 1594 return; 1595 } 1596 } 1597 1598 JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog"); 1599 1600 RunCleanupsScope ConditionScope(*this); 1601 1602 if (S.getInit()) 1603 EmitStmt(S.getInit()); 1604 1605 if (S.getConditionVariable()) 1606 EmitDecl(*S.getConditionVariable()); 1607 llvm::Value *CondV = EmitScalarExpr(S.getCond()); 1608 1609 // Create basic block to hold stuff that comes after switch 1610 // statement. We also need to create a default block now so that 1611 // explicit case ranges tests can have a place to jump to on 1612 // failure. 1613 llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default"); 1614 SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock); 1615 if (PGO.haveRegionCounts()) { 1616 // Walk the SwitchCase list to find how many there are. 1617 uint64_t DefaultCount = 0; 1618 unsigned NumCases = 0; 1619 for (const SwitchCase *Case = S.getSwitchCaseList(); 1620 Case; 1621 Case = Case->getNextSwitchCase()) { 1622 if (isa<DefaultStmt>(Case)) 1623 DefaultCount = getProfileCount(Case); 1624 NumCases += 1; 1625 } 1626 SwitchWeights = new SmallVector<uint64_t, 16>(); 1627 SwitchWeights->reserve(NumCases); 1628 // The default needs to be first. We store the edge count, so we already 1629 // know the right weight. 1630 SwitchWeights->push_back(DefaultCount); 1631 } 1632 CaseRangeBlock = DefaultBlock; 1633 1634 // Clear the insertion point to indicate we are in unreachable code. 1635 Builder.ClearInsertionPoint(); 1636 1637 // All break statements jump to NextBlock. If BreakContinueStack is non-empty 1638 // then reuse last ContinueBlock. 1639 JumpDest OuterContinue; 1640 if (!BreakContinueStack.empty()) 1641 OuterContinue = BreakContinueStack.back().ContinueBlock; 1642 1643 BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue)); 1644 1645 // Emit switch body. 1646 EmitStmt(S.getBody()); 1647 1648 BreakContinueStack.pop_back(); 1649 1650 // Update the default block in case explicit case range tests have 1651 // been chained on top. 1652 SwitchInsn->setDefaultDest(CaseRangeBlock); 1653 1654 // If a default was never emitted: 1655 if (!DefaultBlock->getParent()) { 1656 // If we have cleanups, emit the default block so that there's a 1657 // place to jump through the cleanups from. 1658 if (ConditionScope.requiresCleanups()) { 1659 EmitBlock(DefaultBlock); 1660 1661 // Otherwise, just forward the default block to the switch end. 1662 } else { 1663 DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock()); 1664 delete DefaultBlock; 1665 } 1666 } 1667 1668 ConditionScope.ForceCleanup(); 1669 1670 // Emit continuation. 1671 EmitBlock(SwitchExit.getBlock(), true); 1672 incrementProfileCounter(&S); 1673 1674 // If the switch has a condition wrapped by __builtin_unpredictable, 1675 // create metadata that specifies that the switch is unpredictable. 1676 // Don't bother if not optimizing because that metadata would not be used. 1677 auto *Call = dyn_cast<CallExpr>(S.getCond()); 1678 if (Call && CGM.getCodeGenOpts().OptimizationLevel != 0) { 1679 auto *FD = dyn_cast_or_null<FunctionDecl>(Call->getCalleeDecl()); 1680 if (FD && FD->getBuiltinID() == Builtin::BI__builtin_unpredictable) { 1681 llvm::MDBuilder MDHelper(getLLVMContext()); 1682 SwitchInsn->setMetadata(llvm::LLVMContext::MD_unpredictable, 1683 MDHelper.createUnpredictable()); 1684 } 1685 } 1686 1687 if (SwitchWeights) { 1688 assert(SwitchWeights->size() == 1 + SwitchInsn->getNumCases() && 1689 "switch weights do not match switch cases"); 1690 // If there's only one jump destination there's no sense weighting it. 1691 if (SwitchWeights->size() > 1) 1692 SwitchInsn->setMetadata(llvm::LLVMContext::MD_prof, 1693 createProfileWeights(*SwitchWeights)); 1694 delete SwitchWeights; 1695 } 1696 SwitchInsn = SavedSwitchInsn; 1697 SwitchWeights = SavedSwitchWeights; 1698 CaseRangeBlock = SavedCRBlock; 1699 } 1700 1701 static std::string 1702 SimplifyConstraint(const char *Constraint, const TargetInfo &Target, 1703 SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=nullptr) { 1704 std::string Result; 1705 1706 while (*Constraint) { 1707 switch (*Constraint) { 1708 default: 1709 Result += Target.convertConstraint(Constraint); 1710 break; 1711 // Ignore these 1712 case '*': 1713 case '?': 1714 case '!': 1715 case '=': // Will see this and the following in mult-alt constraints. 1716 case '+': 1717 break; 1718 case '#': // Ignore the rest of the constraint alternative. 1719 while (Constraint[1] && Constraint[1] != ',') 1720 Constraint++; 1721 break; 1722 case '&': 1723 case '%': 1724 Result += *Constraint; 1725 while (Constraint[1] && Constraint[1] == *Constraint) 1726 Constraint++; 1727 break; 1728 case ',': 1729 Result += "|"; 1730 break; 1731 case 'g': 1732 Result += "imr"; 1733 break; 1734 case '[': { 1735 assert(OutCons && 1736 "Must pass output names to constraints with a symbolic name"); 1737 unsigned Index; 1738 bool result = Target.resolveSymbolicName(Constraint, *OutCons, Index); 1739 assert(result && "Could not resolve symbolic name"); (void)result; 1740 Result += llvm::utostr(Index); 1741 break; 1742 } 1743 } 1744 1745 Constraint++; 1746 } 1747 1748 return Result; 1749 } 1750 1751 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared 1752 /// as using a particular register add that as a constraint that will be used 1753 /// in this asm stmt. 1754 static std::string 1755 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr, 1756 const TargetInfo &Target, CodeGenModule &CGM, 1757 const AsmStmt &Stmt, const bool EarlyClobber) { 1758 const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr); 1759 if (!AsmDeclRef) 1760 return Constraint; 1761 const ValueDecl &Value = *AsmDeclRef->getDecl(); 1762 const VarDecl *Variable = dyn_cast<VarDecl>(&Value); 1763 if (!Variable) 1764 return Constraint; 1765 if (Variable->getStorageClass() != SC_Register) 1766 return Constraint; 1767 AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>(); 1768 if (!Attr) 1769 return Constraint; 1770 StringRef Register = Attr->getLabel(); 1771 assert(Target.isValidGCCRegisterName(Register)); 1772 // We're using validateOutputConstraint here because we only care if 1773 // this is a register constraint. 1774 TargetInfo::ConstraintInfo Info(Constraint, ""); 1775 if (Target.validateOutputConstraint(Info) && 1776 !Info.allowsRegister()) { 1777 CGM.ErrorUnsupported(&Stmt, "__asm__"); 1778 return Constraint; 1779 } 1780 // Canonicalize the register here before returning it. 1781 Register = Target.getNormalizedGCCRegisterName(Register); 1782 return (EarlyClobber ? "&{" : "{") + Register.str() + "}"; 1783 } 1784 1785 llvm::Value* 1786 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info, 1787 LValue InputValue, QualType InputType, 1788 std::string &ConstraintStr, 1789 SourceLocation Loc) { 1790 llvm::Value *Arg; 1791 if (Info.allowsRegister() || !Info.allowsMemory()) { 1792 if (CodeGenFunction::hasScalarEvaluationKind(InputType)) { 1793 Arg = EmitLoadOfLValue(InputValue, Loc).getScalarVal(); 1794 } else { 1795 llvm::Type *Ty = ConvertType(InputType); 1796 uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty); 1797 if (Size <= 64 && llvm::isPowerOf2_64(Size)) { 1798 Ty = llvm::IntegerType::get(getLLVMContext(), Size); 1799 Ty = llvm::PointerType::getUnqual(Ty); 1800 1801 Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(), 1802 Ty)); 1803 } else { 1804 Arg = InputValue.getPointer(); 1805 ConstraintStr += '*'; 1806 } 1807 } 1808 } else { 1809 Arg = InputValue.getPointer(); 1810 ConstraintStr += '*'; 1811 } 1812 1813 return Arg; 1814 } 1815 1816 llvm::Value* CodeGenFunction::EmitAsmInput( 1817 const TargetInfo::ConstraintInfo &Info, 1818 const Expr *InputExpr, 1819 std::string &ConstraintStr) { 1820 // If this can't be a register or memory, i.e., has to be a constant 1821 // (immediate or symbolic), try to emit it as such. 1822 if (!Info.allowsRegister() && !Info.allowsMemory()) { 1823 if (Info.requiresImmediateConstant()) { 1824 Expr::EvalResult EVResult; 1825 InputExpr->EvaluateAsRValue(EVResult, getContext(), true); 1826 1827 llvm::APSInt IntResult; 1828 if (!EVResult.Val.toIntegralConstant(IntResult, InputExpr->getType(), 1829 getContext())) 1830 llvm_unreachable("Invalid immediate constant!"); 1831 1832 return llvm::ConstantInt::get(getLLVMContext(), IntResult); 1833 } 1834 1835 Expr::EvalResult Result; 1836 if (InputExpr->EvaluateAsInt(Result, getContext())) 1837 return llvm::ConstantInt::get(getLLVMContext(), Result.Val.getInt()); 1838 } 1839 1840 if (Info.allowsRegister() || !Info.allowsMemory()) 1841 if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType())) 1842 return EmitScalarExpr(InputExpr); 1843 if (InputExpr->getStmtClass() == Expr::CXXThisExprClass) 1844 return EmitScalarExpr(InputExpr); 1845 InputExpr = InputExpr->IgnoreParenNoopCasts(getContext()); 1846 LValue Dest = EmitLValue(InputExpr); 1847 return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr, 1848 InputExpr->getExprLoc()); 1849 } 1850 1851 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline 1852 /// asm call instruction. The !srcloc MDNode contains a list of constant 1853 /// integers which are the source locations of the start of each line in the 1854 /// asm. 1855 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str, 1856 CodeGenFunction &CGF) { 1857 SmallVector<llvm::Metadata *, 8> Locs; 1858 // Add the location of the first line to the MDNode. 1859 Locs.push_back(llvm::ConstantAsMetadata::get(llvm::ConstantInt::get( 1860 CGF.Int32Ty, Str->getBeginLoc().getRawEncoding()))); 1861 StringRef StrVal = Str->getString(); 1862 if (!StrVal.empty()) { 1863 const SourceManager &SM = CGF.CGM.getContext().getSourceManager(); 1864 const LangOptions &LangOpts = CGF.CGM.getLangOpts(); 1865 unsigned StartToken = 0; 1866 unsigned ByteOffset = 0; 1867 1868 // Add the location of the start of each subsequent line of the asm to the 1869 // MDNode. 1870 for (unsigned i = 0, e = StrVal.size() - 1; i != e; ++i) { 1871 if (StrVal[i] != '\n') continue; 1872 SourceLocation LineLoc = Str->getLocationOfByte( 1873 i + 1, SM, LangOpts, CGF.getTarget(), &StartToken, &ByteOffset); 1874 Locs.push_back(llvm::ConstantAsMetadata::get( 1875 llvm::ConstantInt::get(CGF.Int32Ty, LineLoc.getRawEncoding()))); 1876 } 1877 } 1878 1879 return llvm::MDNode::get(CGF.getLLVMContext(), Locs); 1880 } 1881 1882 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) { 1883 // Assemble the final asm string. 1884 std::string AsmString = S.generateAsmString(getContext()); 1885 1886 // Get all the output and input constraints together. 1887 SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos; 1888 SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos; 1889 1890 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1891 StringRef Name; 1892 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1893 Name = GAS->getOutputName(i); 1894 TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name); 1895 bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid; 1896 assert(IsValid && "Failed to parse output constraint"); 1897 OutputConstraintInfos.push_back(Info); 1898 } 1899 1900 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 1901 StringRef Name; 1902 if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S)) 1903 Name = GAS->getInputName(i); 1904 TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name); 1905 bool IsValid = 1906 getTarget().validateInputConstraint(OutputConstraintInfos, Info); 1907 assert(IsValid && "Failed to parse input constraint"); (void)IsValid; 1908 InputConstraintInfos.push_back(Info); 1909 } 1910 1911 std::string Constraints; 1912 1913 std::vector<LValue> ResultRegDests; 1914 std::vector<QualType> ResultRegQualTys; 1915 std::vector<llvm::Type *> ResultRegTypes; 1916 std::vector<llvm::Type *> ResultTruncRegTypes; 1917 std::vector<llvm::Type *> ArgTypes; 1918 std::vector<llvm::Value*> Args; 1919 1920 // Keep track of inout constraints. 1921 std::string InOutConstraints; 1922 std::vector<llvm::Value*> InOutArgs; 1923 std::vector<llvm::Type*> InOutArgTypes; 1924 1925 // An inline asm can be marked readonly if it meets the following conditions: 1926 // - it doesn't have any sideeffects 1927 // - it doesn't clobber memory 1928 // - it doesn't return a value by-reference 1929 // It can be marked readnone if it doesn't have any input memory constraints 1930 // in addition to meeting the conditions listed above. 1931 bool ReadOnly = true, ReadNone = true; 1932 1933 for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) { 1934 TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i]; 1935 1936 // Simplify the output constraint. 1937 std::string OutputConstraint(S.getOutputConstraint(i)); 1938 OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1, 1939 getTarget(), &OutputConstraintInfos); 1940 1941 const Expr *OutExpr = S.getOutputExpr(i); 1942 OutExpr = OutExpr->IgnoreParenNoopCasts(getContext()); 1943 1944 OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr, 1945 getTarget(), CGM, S, 1946 Info.earlyClobber()); 1947 1948 LValue Dest = EmitLValue(OutExpr); 1949 if (!Constraints.empty()) 1950 Constraints += ','; 1951 1952 // If this is a register output, then make the inline asm return it 1953 // by-value. If this is a memory result, return the value by-reference. 1954 if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) { 1955 Constraints += "=" + OutputConstraint; 1956 ResultRegQualTys.push_back(OutExpr->getType()); 1957 ResultRegDests.push_back(Dest); 1958 ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType())); 1959 ResultTruncRegTypes.push_back(ResultRegTypes.back()); 1960 1961 // If this output is tied to an input, and if the input is larger, then 1962 // we need to set the actual result type of the inline asm node to be the 1963 // same as the input type. 1964 if (Info.hasMatchingInput()) { 1965 unsigned InputNo; 1966 for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) { 1967 TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo]; 1968 if (Input.hasTiedOperand() && Input.getTiedOperand() == i) 1969 break; 1970 } 1971 assert(InputNo != S.getNumInputs() && "Didn't find matching input!"); 1972 1973 QualType InputTy = S.getInputExpr(InputNo)->getType(); 1974 QualType OutputType = OutExpr->getType(); 1975 1976 uint64_t InputSize = getContext().getTypeSize(InputTy); 1977 if (getContext().getTypeSize(OutputType) < InputSize) { 1978 // Form the asm to return the value as a larger integer or fp type. 1979 ResultRegTypes.back() = ConvertType(InputTy); 1980 } 1981 } 1982 if (llvm::Type* AdjTy = 1983 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 1984 ResultRegTypes.back())) 1985 ResultRegTypes.back() = AdjTy; 1986 else { 1987 CGM.getDiags().Report(S.getAsmLoc(), 1988 diag::err_asm_invalid_type_in_input) 1989 << OutExpr->getType() << OutputConstraint; 1990 } 1991 1992 // Update largest vector width for any vector types. 1993 if (auto *VT = dyn_cast<llvm::VectorType>(ResultRegTypes.back())) 1994 LargestVectorWidth = std::max(LargestVectorWidth, 1995 VT->getPrimitiveSizeInBits()); 1996 } else { 1997 ArgTypes.push_back(Dest.getAddress().getType()); 1998 Args.push_back(Dest.getPointer()); 1999 Constraints += "=*"; 2000 Constraints += OutputConstraint; 2001 ReadOnly = ReadNone = false; 2002 } 2003 2004 if (Info.isReadWrite()) { 2005 InOutConstraints += ','; 2006 2007 const Expr *InputExpr = S.getOutputExpr(i); 2008 llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(), 2009 InOutConstraints, 2010 InputExpr->getExprLoc()); 2011 2012 if (llvm::Type* AdjTy = 2013 getTargetHooks().adjustInlineAsmType(*this, OutputConstraint, 2014 Arg->getType())) 2015 Arg = Builder.CreateBitCast(Arg, AdjTy); 2016 2017 // Update largest vector width for any vector types. 2018 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2019 LargestVectorWidth = std::max(LargestVectorWidth, 2020 VT->getPrimitiveSizeInBits()); 2021 if (Info.allowsRegister()) 2022 InOutConstraints += llvm::utostr(i); 2023 else 2024 InOutConstraints += OutputConstraint; 2025 2026 InOutArgTypes.push_back(Arg->getType()); 2027 InOutArgs.push_back(Arg); 2028 } 2029 } 2030 2031 // If this is a Microsoft-style asm blob, store the return registers (EAX:EDX) 2032 // to the return value slot. Only do this when returning in registers. 2033 if (isa<MSAsmStmt>(&S)) { 2034 const ABIArgInfo &RetAI = CurFnInfo->getReturnInfo(); 2035 if (RetAI.isDirect() || RetAI.isExtend()) { 2036 // Make a fake lvalue for the return value slot. 2037 LValue ReturnSlot = MakeAddrLValue(ReturnValue, FnRetTy); 2038 CGM.getTargetCodeGenInfo().addReturnRegisterOutputs( 2039 *this, ReturnSlot, Constraints, ResultRegTypes, ResultTruncRegTypes, 2040 ResultRegDests, AsmString, S.getNumOutputs()); 2041 SawAsmBlock = true; 2042 } 2043 } 2044 2045 for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) { 2046 const Expr *InputExpr = S.getInputExpr(i); 2047 2048 TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i]; 2049 2050 if (Info.allowsMemory()) 2051 ReadNone = false; 2052 2053 if (!Constraints.empty()) 2054 Constraints += ','; 2055 2056 // Simplify the input constraint. 2057 std::string InputConstraint(S.getInputConstraint(i)); 2058 InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(), 2059 &OutputConstraintInfos); 2060 2061 InputConstraint = AddVariableConstraints( 2062 InputConstraint, *InputExpr->IgnoreParenNoopCasts(getContext()), 2063 getTarget(), CGM, S, false /* No EarlyClobber */); 2064 2065 llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints); 2066 2067 // If this input argument is tied to a larger output result, extend the 2068 // input to be the same size as the output. The LLVM backend wants to see 2069 // the input and output of a matching constraint be the same size. Note 2070 // that GCC does not define what the top bits are here. We use zext because 2071 // that is usually cheaper, but LLVM IR should really get an anyext someday. 2072 if (Info.hasTiedOperand()) { 2073 unsigned Output = Info.getTiedOperand(); 2074 QualType OutputType = S.getOutputExpr(Output)->getType(); 2075 QualType InputTy = InputExpr->getType(); 2076 2077 if (getContext().getTypeSize(OutputType) > 2078 getContext().getTypeSize(InputTy)) { 2079 // Use ptrtoint as appropriate so that we can do our extension. 2080 if (isa<llvm::PointerType>(Arg->getType())) 2081 Arg = Builder.CreatePtrToInt(Arg, IntPtrTy); 2082 llvm::Type *OutputTy = ConvertType(OutputType); 2083 if (isa<llvm::IntegerType>(OutputTy)) 2084 Arg = Builder.CreateZExt(Arg, OutputTy); 2085 else if (isa<llvm::PointerType>(OutputTy)) 2086 Arg = Builder.CreateZExt(Arg, IntPtrTy); 2087 else { 2088 assert(OutputTy->isFloatingPointTy() && "Unexpected output type"); 2089 Arg = Builder.CreateFPExt(Arg, OutputTy); 2090 } 2091 } 2092 } 2093 if (llvm::Type* AdjTy = 2094 getTargetHooks().adjustInlineAsmType(*this, InputConstraint, 2095 Arg->getType())) 2096 Arg = Builder.CreateBitCast(Arg, AdjTy); 2097 else 2098 CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input) 2099 << InputExpr->getType() << InputConstraint; 2100 2101 // Update largest vector width for any vector types. 2102 if (auto *VT = dyn_cast<llvm::VectorType>(Arg->getType())) 2103 LargestVectorWidth = std::max(LargestVectorWidth, 2104 VT->getPrimitiveSizeInBits()); 2105 2106 ArgTypes.push_back(Arg->getType()); 2107 Args.push_back(Arg); 2108 Constraints += InputConstraint; 2109 } 2110 2111 // Append the "input" part of inout constraints last. 2112 for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) { 2113 ArgTypes.push_back(InOutArgTypes[i]); 2114 Args.push_back(InOutArgs[i]); 2115 } 2116 Constraints += InOutConstraints; 2117 2118 // Clobbers 2119 for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) { 2120 StringRef Clobber = S.getClobber(i); 2121 2122 if (Clobber == "memory") 2123 ReadOnly = ReadNone = false; 2124 else if (Clobber != "cc") 2125 Clobber = getTarget().getNormalizedGCCRegisterName(Clobber); 2126 2127 if (!Constraints.empty()) 2128 Constraints += ','; 2129 2130 Constraints += "~{"; 2131 Constraints += Clobber; 2132 Constraints += '}'; 2133 } 2134 2135 // Add machine specific clobbers 2136 std::string MachineClobbers = getTarget().getClobbers(); 2137 if (!MachineClobbers.empty()) { 2138 if (!Constraints.empty()) 2139 Constraints += ','; 2140 Constraints += MachineClobbers; 2141 } 2142 2143 llvm::Type *ResultType; 2144 if (ResultRegTypes.empty()) 2145 ResultType = VoidTy; 2146 else if (ResultRegTypes.size() == 1) 2147 ResultType = ResultRegTypes[0]; 2148 else 2149 ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes); 2150 2151 llvm::FunctionType *FTy = 2152 llvm::FunctionType::get(ResultType, ArgTypes, false); 2153 2154 bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0; 2155 llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ? 2156 llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT; 2157 llvm::InlineAsm *IA = 2158 llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect, 2159 /* IsAlignStack */ false, AsmDialect); 2160 llvm::CallInst *Result = 2161 Builder.CreateCall(IA, Args, getBundlesForFunclet(IA)); 2162 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2163 llvm::Attribute::NoUnwind); 2164 2165 // Attach readnone and readonly attributes. 2166 if (!HasSideEffect) { 2167 if (ReadNone) 2168 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2169 llvm::Attribute::ReadNone); 2170 else if (ReadOnly) 2171 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2172 llvm::Attribute::ReadOnly); 2173 } 2174 2175 // Slap the source location of the inline asm into a !srcloc metadata on the 2176 // call. 2177 if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S)) { 2178 Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(), 2179 *this)); 2180 } else { 2181 // At least put the line number on MS inline asm blobs. 2182 auto Loc = llvm::ConstantInt::get(Int32Ty, S.getAsmLoc().getRawEncoding()); 2183 Result->setMetadata("srcloc", 2184 llvm::MDNode::get(getLLVMContext(), 2185 llvm::ConstantAsMetadata::get(Loc))); 2186 } 2187 2188 if (getLangOpts().assumeFunctionsAreConvergent()) { 2189 // Conservatively, mark all inline asm blocks in CUDA or OpenCL as 2190 // convergent (meaning, they may call an intrinsically convergent op, such 2191 // as bar.sync, and so can't have certain optimizations applied around 2192 // them). 2193 Result->addAttribute(llvm::AttributeList::FunctionIndex, 2194 llvm::Attribute::Convergent); 2195 } 2196 2197 // Extract all of the register value results from the asm. 2198 std::vector<llvm::Value*> RegResults; 2199 if (ResultRegTypes.size() == 1) { 2200 RegResults.push_back(Result); 2201 } else { 2202 for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) { 2203 llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult"); 2204 RegResults.push_back(Tmp); 2205 } 2206 } 2207 2208 assert(RegResults.size() == ResultRegTypes.size()); 2209 assert(RegResults.size() == ResultTruncRegTypes.size()); 2210 assert(RegResults.size() == ResultRegDests.size()); 2211 for (unsigned i = 0, e = RegResults.size(); i != e; ++i) { 2212 llvm::Value *Tmp = RegResults[i]; 2213 2214 // If the result type of the LLVM IR asm doesn't match the result type of 2215 // the expression, do the conversion. 2216 if (ResultRegTypes[i] != ResultTruncRegTypes[i]) { 2217 llvm::Type *TruncTy = ResultTruncRegTypes[i]; 2218 2219 // Truncate the integer result to the right size, note that TruncTy can be 2220 // a pointer. 2221 if (TruncTy->isFloatingPointTy()) 2222 Tmp = Builder.CreateFPTrunc(Tmp, TruncTy); 2223 else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) { 2224 uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy); 2225 Tmp = Builder.CreateTrunc(Tmp, 2226 llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize)); 2227 Tmp = Builder.CreateIntToPtr(Tmp, TruncTy); 2228 } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) { 2229 uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType()); 2230 Tmp = Builder.CreatePtrToInt(Tmp, 2231 llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize)); 2232 Tmp = Builder.CreateTrunc(Tmp, TruncTy); 2233 } else if (TruncTy->isIntegerTy()) { 2234 Tmp = Builder.CreateZExtOrTrunc(Tmp, TruncTy); 2235 } else if (TruncTy->isVectorTy()) { 2236 Tmp = Builder.CreateBitCast(Tmp, TruncTy); 2237 } 2238 } 2239 2240 EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]); 2241 } 2242 } 2243 2244 LValue CodeGenFunction::InitCapturedStruct(const CapturedStmt &S) { 2245 const RecordDecl *RD = S.getCapturedRecordDecl(); 2246 QualType RecordTy = getContext().getRecordType(RD); 2247 2248 // Initialize the captured struct. 2249 LValue SlotLV = 2250 MakeAddrLValue(CreateMemTemp(RecordTy, "agg.captured"), RecordTy); 2251 2252 RecordDecl::field_iterator CurField = RD->field_begin(); 2253 for (CapturedStmt::const_capture_init_iterator I = S.capture_init_begin(), 2254 E = S.capture_init_end(); 2255 I != E; ++I, ++CurField) { 2256 LValue LV = EmitLValueForFieldInitialization(SlotLV, *CurField); 2257 if (CurField->hasCapturedVLAType()) { 2258 auto VAT = CurField->getCapturedVLAType(); 2259 EmitStoreThroughLValue(RValue::get(VLASizeMap[VAT->getSizeExpr()]), LV); 2260 } else { 2261 EmitInitializerForField(*CurField, LV, *I); 2262 } 2263 } 2264 2265 return SlotLV; 2266 } 2267 2268 /// Generate an outlined function for the body of a CapturedStmt, store any 2269 /// captured variables into the captured struct, and call the outlined function. 2270 llvm::Function * 2271 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) { 2272 LValue CapStruct = InitCapturedStruct(S); 2273 2274 // Emit the CapturedDecl 2275 CodeGenFunction CGF(CGM, true); 2276 CGCapturedStmtRAII CapInfoRAII(CGF, new CGCapturedStmtInfo(S, K)); 2277 llvm::Function *F = CGF.GenerateCapturedStmtFunction(S); 2278 delete CGF.CapturedStmtInfo; 2279 2280 // Emit call to the helper function. 2281 EmitCallOrInvoke(F, CapStruct.getPointer()); 2282 2283 return F; 2284 } 2285 2286 Address CodeGenFunction::GenerateCapturedStmtArgument(const CapturedStmt &S) { 2287 LValue CapStruct = InitCapturedStruct(S); 2288 return CapStruct.getAddress(); 2289 } 2290 2291 /// Creates the outlined function for a CapturedStmt. 2292 llvm::Function * 2293 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedStmt &S) { 2294 assert(CapturedStmtInfo && 2295 "CapturedStmtInfo should be set when generating the captured function"); 2296 const CapturedDecl *CD = S.getCapturedDecl(); 2297 const RecordDecl *RD = S.getCapturedRecordDecl(); 2298 SourceLocation Loc = S.getBeginLoc(); 2299 assert(CD->hasBody() && "missing CapturedDecl body"); 2300 2301 // Build the argument list. 2302 ASTContext &Ctx = CGM.getContext(); 2303 FunctionArgList Args; 2304 Args.append(CD->param_begin(), CD->param_end()); 2305 2306 // Create the function declaration. 2307 const CGFunctionInfo &FuncInfo = 2308 CGM.getTypes().arrangeBuiltinFunctionDeclaration(Ctx.VoidTy, Args); 2309 llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo); 2310 2311 llvm::Function *F = 2312 llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage, 2313 CapturedStmtInfo->getHelperName(), &CGM.getModule()); 2314 CGM.SetInternalFunctionAttributes(CD, F, FuncInfo); 2315 if (CD->isNothrow()) 2316 F->addFnAttr(llvm::Attribute::NoUnwind); 2317 2318 // Generate the function. 2319 StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getLocation(), 2320 CD->getBody()->getBeginLoc()); 2321 // Set the context parameter in CapturedStmtInfo. 2322 Address DeclPtr = GetAddrOfLocalVar(CD->getContextParam()); 2323 CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr)); 2324 2325 // Initialize variable-length arrays. 2326 LValue Base = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(), 2327 Ctx.getTagDeclType(RD)); 2328 for (auto *FD : RD->fields()) { 2329 if (FD->hasCapturedVLAType()) { 2330 auto *ExprArg = 2331 EmitLoadOfLValue(EmitLValueForField(Base, FD), S.getBeginLoc()) 2332 .getScalarVal(); 2333 auto VAT = FD->getCapturedVLAType(); 2334 VLASizeMap[VAT->getSizeExpr()] = ExprArg; 2335 } 2336 } 2337 2338 // If 'this' is captured, load it into CXXThisValue. 2339 if (CapturedStmtInfo->isCXXThisExprCaptured()) { 2340 FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl(); 2341 LValue ThisLValue = EmitLValueForField(Base, FD); 2342 CXXThisValue = EmitLoadOfLValue(ThisLValue, Loc).getScalarVal(); 2343 } 2344 2345 PGO.assignRegionCounters(GlobalDecl(CD), F); 2346 CapturedStmtInfo->EmitBody(*this, CD->getBody()); 2347 FinishFunction(CD->getBodyRBrace()); 2348 2349 return F; 2350 } 2351