1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GetElementPtrTypeIterator.h" 34 #include "llvm/IR/GlobalVariable.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/Module.h" 37 #include <cstdarg> 38 39 using namespace clang; 40 using namespace CodeGen; 41 using llvm::Value; 42 43 //===----------------------------------------------------------------------===// 44 // Scalar Expression Emitter 45 //===----------------------------------------------------------------------===// 46 47 namespace { 48 49 /// Determine whether the given binary operation may overflow. 50 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 51 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 52 /// the returned overflow check is precise. The returned value is 'true' for 53 /// all other opcodes, to be conservative. 54 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 55 BinaryOperator::Opcode Opcode, bool Signed, 56 llvm::APInt &Result) { 57 // Assume overflow is possible, unless we can prove otherwise. 58 bool Overflow = true; 59 const auto &LHSAP = LHS->getValue(); 60 const auto &RHSAP = RHS->getValue(); 61 if (Opcode == BO_Add) { 62 if (Signed) 63 Result = LHSAP.sadd_ov(RHSAP, Overflow); 64 else 65 Result = LHSAP.uadd_ov(RHSAP, Overflow); 66 } else if (Opcode == BO_Sub) { 67 if (Signed) 68 Result = LHSAP.ssub_ov(RHSAP, Overflow); 69 else 70 Result = LHSAP.usub_ov(RHSAP, Overflow); 71 } else if (Opcode == BO_Mul) { 72 if (Signed) 73 Result = LHSAP.smul_ov(RHSAP, Overflow); 74 else 75 Result = LHSAP.umul_ov(RHSAP, Overflow); 76 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 77 if (Signed && !RHS->isZero()) 78 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 79 else 80 return false; 81 } 82 return Overflow; 83 } 84 85 struct BinOpInfo { 86 Value *LHS; 87 Value *RHS; 88 QualType Ty; // Computation Type. 89 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 90 FPOptions FPFeatures; 91 const Expr *E; // Entire expr, for error unsupported. May not be binop. 92 93 /// Check if the binop can result in integer overflow. 94 bool mayHaveIntegerOverflow() const { 95 // Without constant input, we can't rule out overflow. 96 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 97 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 98 if (!LHSCI || !RHSCI) 99 return true; 100 101 llvm::APInt Result; 102 return ::mayHaveIntegerOverflow( 103 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 104 } 105 106 /// Check if the binop computes a division or a remainder. 107 bool isDivremOp() const { 108 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 109 Opcode == BO_RemAssign; 110 } 111 112 /// Check if the binop can result in an integer division by zero. 113 bool mayHaveIntegerDivisionByZero() const { 114 if (isDivremOp()) 115 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 116 return CI->isZero(); 117 return true; 118 } 119 120 /// Check if the binop can result in a float division by zero. 121 bool mayHaveFloatDivisionByZero() const { 122 if (isDivremOp()) 123 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 124 return CFP->isZero(); 125 return true; 126 } 127 }; 128 129 static bool MustVisitNullValue(const Expr *E) { 130 // If a null pointer expression's type is the C++0x nullptr_t, then 131 // it's not necessarily a simple constant and it must be evaluated 132 // for its potential side effects. 133 return E->getType()->isNullPtrType(); 134 } 135 136 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 137 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 138 const Expr *E) { 139 const Expr *Base = E->IgnoreImpCasts(); 140 if (E == Base) 141 return llvm::None; 142 143 QualType BaseTy = Base->getType(); 144 if (!BaseTy->isPromotableIntegerType() || 145 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 146 return llvm::None; 147 148 return BaseTy; 149 } 150 151 /// Check if \p E is a widened promoted integer. 152 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 153 return getUnwidenedIntegerType(Ctx, E).hasValue(); 154 } 155 156 /// Check if we can skip the overflow check for \p Op. 157 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 158 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 159 "Expected a unary or binary operator"); 160 161 // If the binop has constant inputs and we can prove there is no overflow, 162 // we can elide the overflow check. 163 if (!Op.mayHaveIntegerOverflow()) 164 return true; 165 166 // If a unary op has a widened operand, the op cannot overflow. 167 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 168 return IsWidenedIntegerOp(Ctx, UO->getSubExpr()); 169 170 // We usually don't need overflow checks for binops with widened operands. 171 // Multiplication with promoted unsigned operands is a special case. 172 const auto *BO = cast<BinaryOperator>(Op.E); 173 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 174 if (!OptionalLHSTy) 175 return false; 176 177 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 178 if (!OptionalRHSTy) 179 return false; 180 181 QualType LHSTy = *OptionalLHSTy; 182 QualType RHSTy = *OptionalRHSTy; 183 184 // This is the simple case: binops without unsigned multiplication, and with 185 // widened operands. No overflow check is needed here. 186 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 187 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 188 return true; 189 190 // For unsigned multiplication the overflow check can be elided if either one 191 // of the unpromoted types are less than half the size of the promoted type. 192 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 193 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 194 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 195 } 196 197 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 198 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 199 FPOptions FPFeatures) { 200 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 201 } 202 203 /// Propagate fast-math flags from \p Op to the instruction in \p V. 204 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 205 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 206 llvm::FastMathFlags FMF = I->getFastMathFlags(); 207 updateFastMathFlags(FMF, Op.FPFeatures); 208 I->setFastMathFlags(FMF); 209 } 210 return V; 211 } 212 213 class ScalarExprEmitter 214 : public StmtVisitor<ScalarExprEmitter, Value*> { 215 CodeGenFunction &CGF; 216 CGBuilderTy &Builder; 217 bool IgnoreResultAssign; 218 llvm::LLVMContext &VMContext; 219 public: 220 221 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 222 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 223 VMContext(cgf.getLLVMContext()) { 224 } 225 226 //===--------------------------------------------------------------------===// 227 // Utilities 228 //===--------------------------------------------------------------------===// 229 230 bool TestAndClearIgnoreResultAssign() { 231 bool I = IgnoreResultAssign; 232 IgnoreResultAssign = false; 233 return I; 234 } 235 236 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 237 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 238 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 239 return CGF.EmitCheckedLValue(E, TCK); 240 } 241 242 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 243 const BinOpInfo &Info); 244 245 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 246 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 247 } 248 249 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 250 const AlignValueAttr *AVAttr = nullptr; 251 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 252 const ValueDecl *VD = DRE->getDecl(); 253 254 if (VD->getType()->isReferenceType()) { 255 if (const auto *TTy = 256 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 257 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 258 } else { 259 // Assumptions for function parameters are emitted at the start of the 260 // function, so there is no need to repeat that here. 261 if (isa<ParmVarDecl>(VD)) 262 return; 263 264 AVAttr = VD->getAttr<AlignValueAttr>(); 265 } 266 } 267 268 if (!AVAttr) 269 if (const auto *TTy = 270 dyn_cast<TypedefType>(E->getType())) 271 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 272 273 if (!AVAttr) 274 return; 275 276 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 277 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 278 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 279 } 280 281 /// EmitLoadOfLValue - Given an expression with complex type that represents a 282 /// value l-value, this method emits the address of the l-value, then loads 283 /// and returns the result. 284 Value *EmitLoadOfLValue(const Expr *E) { 285 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 286 E->getExprLoc()); 287 288 EmitLValueAlignmentAssumption(E, V); 289 return V; 290 } 291 292 /// EmitConversionToBool - Convert the specified expression value to a 293 /// boolean (i1) truth value. This is equivalent to "Val != 0". 294 Value *EmitConversionToBool(Value *Src, QualType DstTy); 295 296 /// Emit a check that a conversion to or from a floating-point type does not 297 /// overflow. 298 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 299 Value *Src, QualType SrcType, QualType DstType, 300 llvm::Type *DstTy, SourceLocation Loc); 301 302 /// Emit a conversion from the specified type to the specified destination 303 /// type, both of which are LLVM scalar types. 304 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 305 SourceLocation Loc); 306 307 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 308 SourceLocation Loc, bool TreatBooleanAsSigned); 309 310 /// Emit a conversion from the specified complex type to the specified 311 /// destination type, where the destination type is an LLVM scalar type. 312 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 313 QualType SrcTy, QualType DstTy, 314 SourceLocation Loc); 315 316 /// EmitNullValue - Emit a value that corresponds to null for the given type. 317 Value *EmitNullValue(QualType Ty); 318 319 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 320 Value *EmitFloatToBoolConversion(Value *V) { 321 // Compare against 0.0 for fp scalars. 322 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 323 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 324 } 325 326 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 327 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 328 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 329 330 return Builder.CreateICmpNE(V, Zero, "tobool"); 331 } 332 333 Value *EmitIntToBoolConversion(Value *V) { 334 // Because of the type rules of C, we often end up computing a 335 // logical value, then zero extending it to int, then wanting it 336 // as a logical value again. Optimize this common case. 337 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 338 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 339 Value *Result = ZI->getOperand(0); 340 // If there aren't any more uses, zap the instruction to save space. 341 // Note that there can be more uses, for example if this 342 // is the result of an assignment. 343 if (ZI->use_empty()) 344 ZI->eraseFromParent(); 345 return Result; 346 } 347 } 348 349 return Builder.CreateIsNotNull(V, "tobool"); 350 } 351 352 //===--------------------------------------------------------------------===// 353 // Visitor Methods 354 //===--------------------------------------------------------------------===// 355 356 Value *Visit(Expr *E) { 357 ApplyDebugLocation DL(CGF, E); 358 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 359 } 360 361 Value *VisitStmt(Stmt *S) { 362 S->dump(CGF.getContext().getSourceManager()); 363 llvm_unreachable("Stmt can't have complex result type!"); 364 } 365 Value *VisitExpr(Expr *S); 366 367 Value *VisitParenExpr(ParenExpr *PE) { 368 return Visit(PE->getSubExpr()); 369 } 370 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 371 return Visit(E->getReplacement()); 372 } 373 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 374 return Visit(GE->getResultExpr()); 375 } 376 Value *VisitCoawaitExpr(CoawaitExpr *S) { 377 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 378 } 379 Value *VisitCoyieldExpr(CoyieldExpr *S) { 380 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 381 } 382 Value *VisitUnaryCoawait(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // Leaves. 387 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 388 return Builder.getInt(E->getValue()); 389 } 390 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 391 return llvm::ConstantFP::get(VMContext, E->getValue()); 392 } 393 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 394 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 395 } 396 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 397 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 398 } 399 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 400 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 401 } 402 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 403 return EmitNullValue(E->getType()); 404 } 405 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 406 return EmitNullValue(E->getType()); 407 } 408 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 409 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 410 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 411 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 412 return Builder.CreateBitCast(V, ConvertType(E->getType())); 413 } 414 415 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 417 } 418 419 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 420 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 421 } 422 423 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 424 if (E->isGLValue()) 425 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 426 427 // Otherwise, assume the mapping is the scalar directly. 428 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 429 } 430 431 Value *emitConstant(const CodeGenFunction::ConstantEmission &Constant, 432 Expr *E) { 433 assert(Constant && "not a constant"); 434 if (Constant.isReference()) 435 return EmitLoadOfLValue(Constant.getReferenceLValue(CGF, E), 436 E->getExprLoc()); 437 return Constant.getValue(); 438 } 439 440 // l-values. 441 Value *VisitDeclRefExpr(DeclRefExpr *E) { 442 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 443 return emitConstant(Constant, E); 444 return EmitLoadOfLValue(E); 445 } 446 447 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 448 return CGF.EmitObjCSelectorExpr(E); 449 } 450 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 451 return CGF.EmitObjCProtocolExpr(E); 452 } 453 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 454 return EmitLoadOfLValue(E); 455 } 456 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 457 if (E->getMethodDecl() && 458 E->getMethodDecl()->getReturnType()->isReferenceType()) 459 return EmitLoadOfLValue(E); 460 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 461 } 462 463 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 464 LValue LV = CGF.EmitObjCIsaExpr(E); 465 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 466 return V; 467 } 468 469 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 470 VersionTuple Version = E->getVersion(); 471 472 // If we're checking for a platform older than our minimum deployment 473 // target, we can fold the check away. 474 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 475 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 476 477 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 478 llvm::Value *Args[] = { 479 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 480 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 481 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 482 }; 483 484 return CGF.EmitBuiltinAvailable(Args); 485 } 486 487 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 488 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 489 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 490 Value *VisitMemberExpr(MemberExpr *E); 491 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 492 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 493 return EmitLoadOfLValue(E); 494 } 495 496 Value *VisitInitListExpr(InitListExpr *E); 497 498 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 499 assert(CGF.getArrayInitIndex() && 500 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 501 return CGF.getArrayInitIndex(); 502 } 503 504 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 505 return EmitNullValue(E->getType()); 506 } 507 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 508 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 509 return VisitCastExpr(E); 510 } 511 Value *VisitCastExpr(CastExpr *E); 512 513 Value *VisitCallExpr(const CallExpr *E) { 514 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 515 return EmitLoadOfLValue(E); 516 517 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 518 519 EmitLValueAlignmentAssumption(E, V); 520 return V; 521 } 522 523 Value *VisitStmtExpr(const StmtExpr *E); 524 525 // Unary Operators. 526 Value *VisitUnaryPostDec(const UnaryOperator *E) { 527 LValue LV = EmitLValue(E->getSubExpr()); 528 return EmitScalarPrePostIncDec(E, LV, false, false); 529 } 530 Value *VisitUnaryPostInc(const UnaryOperator *E) { 531 LValue LV = EmitLValue(E->getSubExpr()); 532 return EmitScalarPrePostIncDec(E, LV, true, false); 533 } 534 Value *VisitUnaryPreDec(const UnaryOperator *E) { 535 LValue LV = EmitLValue(E->getSubExpr()); 536 return EmitScalarPrePostIncDec(E, LV, false, true); 537 } 538 Value *VisitUnaryPreInc(const UnaryOperator *E) { 539 LValue LV = EmitLValue(E->getSubExpr()); 540 return EmitScalarPrePostIncDec(E, LV, true, true); 541 } 542 543 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 544 llvm::Value *InVal, 545 bool IsInc); 546 547 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 548 bool isInc, bool isPre); 549 550 551 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 552 if (isa<MemberPointerType>(E->getType())) // never sugared 553 return CGF.CGM.getMemberPointerConstant(E); 554 555 return EmitLValue(E->getSubExpr()).getPointer(); 556 } 557 Value *VisitUnaryDeref(const UnaryOperator *E) { 558 if (E->getType()->isVoidType()) 559 return Visit(E->getSubExpr()); // the actual value should be unused 560 return EmitLoadOfLValue(E); 561 } 562 Value *VisitUnaryPlus(const UnaryOperator *E) { 563 // This differs from gcc, though, most likely due to a bug in gcc. 564 TestAndClearIgnoreResultAssign(); 565 return Visit(E->getSubExpr()); 566 } 567 Value *VisitUnaryMinus (const UnaryOperator *E); 568 Value *VisitUnaryNot (const UnaryOperator *E); 569 Value *VisitUnaryLNot (const UnaryOperator *E); 570 Value *VisitUnaryReal (const UnaryOperator *E); 571 Value *VisitUnaryImag (const UnaryOperator *E); 572 Value *VisitUnaryExtension(const UnaryOperator *E) { 573 return Visit(E->getSubExpr()); 574 } 575 576 // C++ 577 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 578 return EmitLoadOfLValue(E); 579 } 580 581 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 582 return Visit(DAE->getExpr()); 583 } 584 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 585 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 586 return Visit(DIE->getExpr()); 587 } 588 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 589 return CGF.LoadCXXThis(); 590 } 591 592 Value *VisitExprWithCleanups(ExprWithCleanups *E); 593 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 594 return CGF.EmitCXXNewExpr(E); 595 } 596 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 597 CGF.EmitCXXDeleteExpr(E); 598 return nullptr; 599 } 600 601 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 602 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 603 } 604 605 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 606 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 607 } 608 609 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 610 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 611 } 612 613 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 614 // C++ [expr.pseudo]p1: 615 // The result shall only be used as the operand for the function call 616 // operator (), and the result of such a call has type void. The only 617 // effect is the evaluation of the postfix-expression before the dot or 618 // arrow. 619 CGF.EmitScalarExpr(E->getBase()); 620 return nullptr; 621 } 622 623 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 624 return EmitNullValue(E->getType()); 625 } 626 627 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 628 CGF.EmitCXXThrowExpr(E); 629 return nullptr; 630 } 631 632 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 633 return Builder.getInt1(E->getValue()); 634 } 635 636 // Binary Operators. 637 Value *EmitMul(const BinOpInfo &Ops) { 638 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 639 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 640 case LangOptions::SOB_Defined: 641 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 642 case LangOptions::SOB_Undefined: 643 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 644 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 645 // Fall through. 646 case LangOptions::SOB_Trapping: 647 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 648 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 649 return EmitOverflowCheckedBinOp(Ops); 650 } 651 } 652 653 if (Ops.Ty->isUnsignedIntegerType() && 654 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 655 !CanElideOverflowCheck(CGF.getContext(), Ops)) 656 return EmitOverflowCheckedBinOp(Ops); 657 658 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 659 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 660 return propagateFMFlags(V, Ops); 661 } 662 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 663 } 664 /// Create a binary op that checks for overflow. 665 /// Currently only supports +, - and *. 666 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 667 668 // Check for undefined division and modulus behaviors. 669 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 670 llvm::Value *Zero,bool isDiv); 671 // Common helper for getting how wide LHS of shift is. 672 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 673 Value *EmitDiv(const BinOpInfo &Ops); 674 Value *EmitRem(const BinOpInfo &Ops); 675 Value *EmitAdd(const BinOpInfo &Ops); 676 Value *EmitSub(const BinOpInfo &Ops); 677 Value *EmitShl(const BinOpInfo &Ops); 678 Value *EmitShr(const BinOpInfo &Ops); 679 Value *EmitAnd(const BinOpInfo &Ops) { 680 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 681 } 682 Value *EmitXor(const BinOpInfo &Ops) { 683 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 684 } 685 Value *EmitOr (const BinOpInfo &Ops) { 686 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 687 } 688 689 BinOpInfo EmitBinOps(const BinaryOperator *E); 690 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 691 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 692 Value *&Result); 693 694 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 695 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 696 697 // Binary operators and binary compound assignment operators. 698 #define HANDLEBINOP(OP) \ 699 Value *VisitBin ## OP(const BinaryOperator *E) { \ 700 return Emit ## OP(EmitBinOps(E)); \ 701 } \ 702 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 703 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 704 } 705 HANDLEBINOP(Mul) 706 HANDLEBINOP(Div) 707 HANDLEBINOP(Rem) 708 HANDLEBINOP(Add) 709 HANDLEBINOP(Sub) 710 HANDLEBINOP(Shl) 711 HANDLEBINOP(Shr) 712 HANDLEBINOP(And) 713 HANDLEBINOP(Xor) 714 HANDLEBINOP(Or) 715 #undef HANDLEBINOP 716 717 // Comparisons. 718 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 719 llvm::CmpInst::Predicate SICmpOpc, 720 llvm::CmpInst::Predicate FCmpOpc); 721 #define VISITCOMP(CODE, UI, SI, FP) \ 722 Value *VisitBin##CODE(const BinaryOperator *E) { \ 723 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 724 llvm::FCmpInst::FP); } 725 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 726 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 727 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 728 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 729 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 730 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 731 #undef VISITCOMP 732 733 Value *VisitBinAssign (const BinaryOperator *E); 734 735 Value *VisitBinLAnd (const BinaryOperator *E); 736 Value *VisitBinLOr (const BinaryOperator *E); 737 Value *VisitBinComma (const BinaryOperator *E); 738 739 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 740 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 741 742 // Other Operators. 743 Value *VisitBlockExpr(const BlockExpr *BE); 744 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 745 Value *VisitChooseExpr(ChooseExpr *CE); 746 Value *VisitVAArgExpr(VAArgExpr *VE); 747 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 748 return CGF.EmitObjCStringLiteral(E); 749 } 750 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 751 return CGF.EmitObjCBoxedExpr(E); 752 } 753 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 754 return CGF.EmitObjCArrayLiteral(E); 755 } 756 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 757 return CGF.EmitObjCDictionaryLiteral(E); 758 } 759 Value *VisitAsTypeExpr(AsTypeExpr *CE); 760 Value *VisitAtomicExpr(AtomicExpr *AE); 761 }; 762 } // end anonymous namespace. 763 764 //===----------------------------------------------------------------------===// 765 // Utilities 766 //===----------------------------------------------------------------------===// 767 768 /// EmitConversionToBool - Convert the specified expression value to a 769 /// boolean (i1) truth value. This is equivalent to "Val != 0". 770 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 771 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 772 773 if (SrcType->isRealFloatingType()) 774 return EmitFloatToBoolConversion(Src); 775 776 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 777 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 778 779 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 780 "Unknown scalar type to convert"); 781 782 if (isa<llvm::IntegerType>(Src->getType())) 783 return EmitIntToBoolConversion(Src); 784 785 assert(isa<llvm::PointerType>(Src->getType())); 786 return EmitPointerToBoolConversion(Src, SrcType); 787 } 788 789 void ScalarExprEmitter::EmitFloatConversionCheck( 790 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 791 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 792 CodeGenFunction::SanitizerScope SanScope(&CGF); 793 using llvm::APFloat; 794 using llvm::APSInt; 795 796 llvm::Type *SrcTy = Src->getType(); 797 798 llvm::Value *Check = nullptr; 799 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 800 // Integer to floating-point. This can fail for unsigned short -> __half 801 // or unsigned __int128 -> float. 802 assert(DstType->isFloatingType()); 803 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 804 805 APFloat LargestFloat = 806 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 807 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 808 809 bool IsExact; 810 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 811 &IsExact) != APFloat::opOK) 812 // The range of representable values of this floating point type includes 813 // all values of this integer type. Don't need an overflow check. 814 return; 815 816 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 817 if (SrcIsUnsigned) 818 Check = Builder.CreateICmpULE(Src, Max); 819 else { 820 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 821 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 822 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 823 Check = Builder.CreateAnd(GE, LE); 824 } 825 } else { 826 const llvm::fltSemantics &SrcSema = 827 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 828 if (isa<llvm::IntegerType>(DstTy)) { 829 // Floating-point to integer. This has undefined behavior if the source is 830 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 831 // to an integer). 832 unsigned Width = CGF.getContext().getIntWidth(DstType); 833 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 834 835 APSInt Min = APSInt::getMinValue(Width, Unsigned); 836 APFloat MinSrc(SrcSema, APFloat::uninitialized); 837 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 838 APFloat::opOverflow) 839 // Don't need an overflow check for lower bound. Just check for 840 // -Inf/NaN. 841 MinSrc = APFloat::getInf(SrcSema, true); 842 else 843 // Find the largest value which is too small to represent (before 844 // truncation toward zero). 845 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 846 847 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 848 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 849 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 850 APFloat::opOverflow) 851 // Don't need an overflow check for upper bound. Just check for 852 // +Inf/NaN. 853 MaxSrc = APFloat::getInf(SrcSema, false); 854 else 855 // Find the smallest value which is too large to represent (before 856 // truncation toward zero). 857 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 858 859 // If we're converting from __half, convert the range to float to match 860 // the type of src. 861 if (OrigSrcType->isHalfType()) { 862 const llvm::fltSemantics &Sema = 863 CGF.getContext().getFloatTypeSemantics(SrcType); 864 bool IsInexact; 865 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 866 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 867 } 868 869 llvm::Value *GE = 870 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 871 llvm::Value *LE = 872 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 873 Check = Builder.CreateAnd(GE, LE); 874 } else { 875 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 876 // 877 // Floating-point to floating-point. This has undefined behavior if the 878 // source is not in the range of representable values of the destination 879 // type. The C and C++ standards are spectacularly unclear here. We 880 // diagnose finite out-of-range conversions, but allow infinities and NaNs 881 // to convert to the corresponding value in the smaller type. 882 // 883 // C11 Annex F gives all such conversions defined behavior for IEC 60559 884 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 885 // does not. 886 887 // Converting from a lower rank to a higher rank can never have 888 // undefined behavior, since higher-rank types must have a superset 889 // of values of lower-rank types. 890 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 891 return; 892 893 assert(!OrigSrcType->isHalfType() && 894 "should not check conversion from __half, it has the lowest rank"); 895 896 const llvm::fltSemantics &DstSema = 897 CGF.getContext().getFloatTypeSemantics(DstType); 898 APFloat MinBad = APFloat::getLargest(DstSema, false); 899 APFloat MaxBad = APFloat::getInf(DstSema, false); 900 901 bool IsInexact; 902 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 903 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 904 905 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 906 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 907 llvm::Value *GE = 908 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 909 llvm::Value *LE = 910 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 911 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 912 } 913 } 914 915 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 916 CGF.EmitCheckTypeDescriptor(OrigSrcType), 917 CGF.EmitCheckTypeDescriptor(DstType)}; 918 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 919 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 920 } 921 922 /// Emit a conversion from the specified type to the specified destination type, 923 /// both of which are LLVM scalar types. 924 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 925 QualType DstType, 926 SourceLocation Loc) { 927 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 928 } 929 930 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 931 QualType DstType, 932 SourceLocation Loc, 933 bool TreatBooleanAsSigned) { 934 SrcType = CGF.getContext().getCanonicalType(SrcType); 935 DstType = CGF.getContext().getCanonicalType(DstType); 936 if (SrcType == DstType) return Src; 937 938 if (DstType->isVoidType()) return nullptr; 939 940 llvm::Value *OrigSrc = Src; 941 QualType OrigSrcType = SrcType; 942 llvm::Type *SrcTy = Src->getType(); 943 944 // Handle conversions to bool first, they are special: comparisons against 0. 945 if (DstType->isBooleanType()) 946 return EmitConversionToBool(Src, SrcType); 947 948 llvm::Type *DstTy = ConvertType(DstType); 949 950 // Cast from half through float if half isn't a native type. 951 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 952 // Cast to FP using the intrinsic if the half type itself isn't supported. 953 if (DstTy->isFloatingPointTy()) { 954 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 955 return Builder.CreateCall( 956 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 957 Src); 958 } else { 959 // Cast to other types through float, using either the intrinsic or FPExt, 960 // depending on whether the half type itself is supported 961 // (as opposed to operations on half, available with NativeHalfType). 962 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 963 Src = Builder.CreateCall( 964 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 965 CGF.CGM.FloatTy), 966 Src); 967 } else { 968 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 969 } 970 SrcType = CGF.getContext().FloatTy; 971 SrcTy = CGF.FloatTy; 972 } 973 } 974 975 // Ignore conversions like int -> uint. 976 if (SrcTy == DstTy) 977 return Src; 978 979 // Handle pointer conversions next: pointers can only be converted to/from 980 // other pointers and integers. Check for pointer types in terms of LLVM, as 981 // some native types (like Obj-C id) may map to a pointer type. 982 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 983 // The source value may be an integer, or a pointer. 984 if (isa<llvm::PointerType>(SrcTy)) 985 return Builder.CreateBitCast(Src, DstTy, "conv"); 986 987 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 988 // First, convert to the correct width so that we control the kind of 989 // extension. 990 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 991 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 992 llvm::Value* IntResult = 993 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 994 // Then, cast to pointer. 995 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 996 } 997 998 if (isa<llvm::PointerType>(SrcTy)) { 999 // Must be an ptr to int cast. 1000 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1001 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1002 } 1003 1004 // A scalar can be splatted to an extended vector of the same element type 1005 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1006 // Sema should add casts to make sure that the source expression's type is 1007 // the same as the vector's element type (sans qualifiers) 1008 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1009 SrcType.getTypePtr() && 1010 "Splatted expr doesn't match with vector element type?"); 1011 1012 // Splat the element across to all elements 1013 unsigned NumElements = DstTy->getVectorNumElements(); 1014 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1015 } 1016 1017 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1018 // Allow bitcast from vector to integer/fp of the same size. 1019 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1020 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1021 if (SrcSize == DstSize) 1022 return Builder.CreateBitCast(Src, DstTy, "conv"); 1023 1024 // Conversions between vectors of different sizes are not allowed except 1025 // when vectors of half are involved. Operations on storage-only half 1026 // vectors require promoting half vector operands to float vectors and 1027 // truncating the result, which is either an int or float vector, to a 1028 // short or half vector. 1029 1030 // Source and destination are both expected to be vectors. 1031 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1032 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1033 (void)DstElementTy; 1034 1035 assert(((SrcElementTy->isIntegerTy() && 1036 DstElementTy->isIntegerTy()) || 1037 (SrcElementTy->isFloatingPointTy() && 1038 DstElementTy->isFloatingPointTy())) && 1039 "unexpected conversion between a floating-point vector and an " 1040 "integer vector"); 1041 1042 // Truncate an i32 vector to an i16 vector. 1043 if (SrcElementTy->isIntegerTy()) 1044 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1045 1046 // Truncate a float vector to a half vector. 1047 if (SrcSize > DstSize) 1048 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1049 1050 // Promote a half vector to a float vector. 1051 return Builder.CreateFPExt(Src, DstTy, "conv"); 1052 } 1053 1054 // Finally, we have the arithmetic types: real int/float. 1055 Value *Res = nullptr; 1056 llvm::Type *ResTy = DstTy; 1057 1058 // An overflowing conversion has undefined behavior if either the source type 1059 // or the destination type is a floating-point type. 1060 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1061 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1062 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1063 Loc); 1064 1065 // Cast to half through float if half isn't a native type. 1066 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1067 // Make sure we cast in a single step if from another FP type. 1068 if (SrcTy->isFloatingPointTy()) { 1069 // Use the intrinsic if the half type itself isn't supported 1070 // (as opposed to operations on half, available with NativeHalfType). 1071 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1072 return Builder.CreateCall( 1073 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1074 // If the half type is supported, just use an fptrunc. 1075 return Builder.CreateFPTrunc(Src, DstTy); 1076 } 1077 DstTy = CGF.FloatTy; 1078 } 1079 1080 if (isa<llvm::IntegerType>(SrcTy)) { 1081 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1082 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1083 InputSigned = true; 1084 } 1085 if (isa<llvm::IntegerType>(DstTy)) 1086 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1087 else if (InputSigned) 1088 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1089 else 1090 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1091 } else if (isa<llvm::IntegerType>(DstTy)) { 1092 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1093 if (DstType->isSignedIntegerOrEnumerationType()) 1094 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1095 else 1096 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1097 } else { 1098 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1099 "Unknown real conversion"); 1100 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1101 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1102 else 1103 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1104 } 1105 1106 if (DstTy != ResTy) { 1107 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1108 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1109 Res = Builder.CreateCall( 1110 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1111 Res); 1112 } else { 1113 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1114 } 1115 } 1116 1117 return Res; 1118 } 1119 1120 /// Emit a conversion from the specified complex type to the specified 1121 /// destination type, where the destination type is an LLVM scalar type. 1122 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1123 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1124 SourceLocation Loc) { 1125 // Get the source element type. 1126 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1127 1128 // Handle conversions to bool first, they are special: comparisons against 0. 1129 if (DstTy->isBooleanType()) { 1130 // Complex != 0 -> (Real != 0) | (Imag != 0) 1131 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1132 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1133 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1134 } 1135 1136 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1137 // the imaginary part of the complex value is discarded and the value of the 1138 // real part is converted according to the conversion rules for the 1139 // corresponding real type. 1140 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1141 } 1142 1143 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1144 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1145 } 1146 1147 /// \brief Emit a sanitization check for the given "binary" operation (which 1148 /// might actually be a unary increment which has been lowered to a binary 1149 /// operation). The check passes if all values in \p Checks (which are \c i1), 1150 /// are \c true. 1151 void ScalarExprEmitter::EmitBinOpCheck( 1152 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1153 assert(CGF.IsSanitizerScope); 1154 SanitizerHandler Check; 1155 SmallVector<llvm::Constant *, 4> StaticData; 1156 SmallVector<llvm::Value *, 2> DynamicData; 1157 1158 BinaryOperatorKind Opcode = Info.Opcode; 1159 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1160 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1161 1162 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1163 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1164 if (UO && UO->getOpcode() == UO_Minus) { 1165 Check = SanitizerHandler::NegateOverflow; 1166 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1167 DynamicData.push_back(Info.RHS); 1168 } else { 1169 if (BinaryOperator::isShiftOp(Opcode)) { 1170 // Shift LHS negative or too large, or RHS out of bounds. 1171 Check = SanitizerHandler::ShiftOutOfBounds; 1172 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1173 StaticData.push_back( 1174 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1175 StaticData.push_back( 1176 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1177 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1178 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1179 Check = SanitizerHandler::DivremOverflow; 1180 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1181 } else { 1182 // Arithmetic overflow (+, -, *). 1183 switch (Opcode) { 1184 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1185 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1186 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1187 default: llvm_unreachable("unexpected opcode for bin op check"); 1188 } 1189 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1190 } 1191 DynamicData.push_back(Info.LHS); 1192 DynamicData.push_back(Info.RHS); 1193 } 1194 1195 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1196 } 1197 1198 //===----------------------------------------------------------------------===// 1199 // Visitor Methods 1200 //===----------------------------------------------------------------------===// 1201 1202 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1203 CGF.ErrorUnsupported(E, "scalar expression"); 1204 if (E->getType()->isVoidType()) 1205 return nullptr; 1206 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1207 } 1208 1209 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1210 // Vector Mask Case 1211 if (E->getNumSubExprs() == 2) { 1212 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1213 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1214 Value *Mask; 1215 1216 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1217 unsigned LHSElts = LTy->getNumElements(); 1218 1219 Mask = RHS; 1220 1221 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1222 1223 // Mask off the high bits of each shuffle index. 1224 Value *MaskBits = 1225 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1226 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1227 1228 // newv = undef 1229 // mask = mask & maskbits 1230 // for each elt 1231 // n = extract mask i 1232 // x = extract val n 1233 // newv = insert newv, x, i 1234 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1235 MTy->getNumElements()); 1236 Value* NewV = llvm::UndefValue::get(RTy); 1237 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1238 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1239 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1240 1241 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1242 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1243 } 1244 return NewV; 1245 } 1246 1247 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1248 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1249 1250 SmallVector<llvm::Constant*, 32> indices; 1251 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1252 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1253 // Check for -1 and output it as undef in the IR. 1254 if (Idx.isSigned() && Idx.isAllOnesValue()) 1255 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1256 else 1257 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1258 } 1259 1260 Value *SV = llvm::ConstantVector::get(indices); 1261 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1262 } 1263 1264 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1265 QualType SrcType = E->getSrcExpr()->getType(), 1266 DstType = E->getType(); 1267 1268 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1269 1270 SrcType = CGF.getContext().getCanonicalType(SrcType); 1271 DstType = CGF.getContext().getCanonicalType(DstType); 1272 if (SrcType == DstType) return Src; 1273 1274 assert(SrcType->isVectorType() && 1275 "ConvertVector source type must be a vector"); 1276 assert(DstType->isVectorType() && 1277 "ConvertVector destination type must be a vector"); 1278 1279 llvm::Type *SrcTy = Src->getType(); 1280 llvm::Type *DstTy = ConvertType(DstType); 1281 1282 // Ignore conversions like int -> uint. 1283 if (SrcTy == DstTy) 1284 return Src; 1285 1286 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1287 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1288 1289 assert(SrcTy->isVectorTy() && 1290 "ConvertVector source IR type must be a vector"); 1291 assert(DstTy->isVectorTy() && 1292 "ConvertVector destination IR type must be a vector"); 1293 1294 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1295 *DstEltTy = DstTy->getVectorElementType(); 1296 1297 if (DstEltType->isBooleanType()) { 1298 assert((SrcEltTy->isFloatingPointTy() || 1299 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1300 1301 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1302 if (SrcEltTy->isFloatingPointTy()) { 1303 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1304 } else { 1305 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1306 } 1307 } 1308 1309 // We have the arithmetic types: real int/float. 1310 Value *Res = nullptr; 1311 1312 if (isa<llvm::IntegerType>(SrcEltTy)) { 1313 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1314 if (isa<llvm::IntegerType>(DstEltTy)) 1315 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1316 else if (InputSigned) 1317 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1318 else 1319 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1320 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1321 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1322 if (DstEltType->isSignedIntegerOrEnumerationType()) 1323 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1324 else 1325 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1326 } else { 1327 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1328 "Unknown real conversion"); 1329 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1330 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1331 else 1332 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1333 } 1334 1335 return Res; 1336 } 1337 1338 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1339 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1340 CGF.EmitIgnoredExpr(E->getBase()); 1341 return emitConstant(Constant, E); 1342 } else { 1343 llvm::APSInt Value; 1344 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1345 CGF.EmitIgnoredExpr(E->getBase()); 1346 return Builder.getInt(Value); 1347 } 1348 } 1349 1350 return EmitLoadOfLValue(E); 1351 } 1352 1353 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1354 TestAndClearIgnoreResultAssign(); 1355 1356 // Emit subscript expressions in rvalue context's. For most cases, this just 1357 // loads the lvalue formed by the subscript expr. However, we have to be 1358 // careful, because the base of a vector subscript is occasionally an rvalue, 1359 // so we can't get it as an lvalue. 1360 if (!E->getBase()->getType()->isVectorType()) 1361 return EmitLoadOfLValue(E); 1362 1363 // Handle the vector case. The base must be a vector, the index must be an 1364 // integer value. 1365 Value *Base = Visit(E->getBase()); 1366 Value *Idx = Visit(E->getIdx()); 1367 QualType IdxTy = E->getIdx()->getType(); 1368 1369 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1370 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1371 1372 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1373 } 1374 1375 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1376 unsigned Off, llvm::Type *I32Ty) { 1377 int MV = SVI->getMaskValue(Idx); 1378 if (MV == -1) 1379 return llvm::UndefValue::get(I32Ty); 1380 return llvm::ConstantInt::get(I32Ty, Off+MV); 1381 } 1382 1383 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1384 if (C->getBitWidth() != 32) { 1385 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1386 C->getZExtValue()) && 1387 "Index operand too large for shufflevector mask!"); 1388 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1389 } 1390 return C; 1391 } 1392 1393 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1394 bool Ignore = TestAndClearIgnoreResultAssign(); 1395 (void)Ignore; 1396 assert (Ignore == false && "init list ignored"); 1397 unsigned NumInitElements = E->getNumInits(); 1398 1399 if (E->hadArrayRangeDesignator()) 1400 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1401 1402 llvm::VectorType *VType = 1403 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1404 1405 if (!VType) { 1406 if (NumInitElements == 0) { 1407 // C++11 value-initialization for the scalar. 1408 return EmitNullValue(E->getType()); 1409 } 1410 // We have a scalar in braces. Just use the first element. 1411 return Visit(E->getInit(0)); 1412 } 1413 1414 unsigned ResElts = VType->getNumElements(); 1415 1416 // Loop over initializers collecting the Value for each, and remembering 1417 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1418 // us to fold the shuffle for the swizzle into the shuffle for the vector 1419 // initializer, since LLVM optimizers generally do not want to touch 1420 // shuffles. 1421 unsigned CurIdx = 0; 1422 bool VIsUndefShuffle = false; 1423 llvm::Value *V = llvm::UndefValue::get(VType); 1424 for (unsigned i = 0; i != NumInitElements; ++i) { 1425 Expr *IE = E->getInit(i); 1426 Value *Init = Visit(IE); 1427 SmallVector<llvm::Constant*, 16> Args; 1428 1429 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1430 1431 // Handle scalar elements. If the scalar initializer is actually one 1432 // element of a different vector of the same width, use shuffle instead of 1433 // extract+insert. 1434 if (!VVT) { 1435 if (isa<ExtVectorElementExpr>(IE)) { 1436 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1437 1438 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1439 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1440 Value *LHS = nullptr, *RHS = nullptr; 1441 if (CurIdx == 0) { 1442 // insert into undef -> shuffle (src, undef) 1443 // shufflemask must use an i32 1444 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1445 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1446 1447 LHS = EI->getVectorOperand(); 1448 RHS = V; 1449 VIsUndefShuffle = true; 1450 } else if (VIsUndefShuffle) { 1451 // insert into undefshuffle && size match -> shuffle (v, src) 1452 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1453 for (unsigned j = 0; j != CurIdx; ++j) 1454 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1455 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1456 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1457 1458 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1459 RHS = EI->getVectorOperand(); 1460 VIsUndefShuffle = false; 1461 } 1462 if (!Args.empty()) { 1463 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1464 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1465 ++CurIdx; 1466 continue; 1467 } 1468 } 1469 } 1470 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1471 "vecinit"); 1472 VIsUndefShuffle = false; 1473 ++CurIdx; 1474 continue; 1475 } 1476 1477 unsigned InitElts = VVT->getNumElements(); 1478 1479 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1480 // input is the same width as the vector being constructed, generate an 1481 // optimized shuffle of the swizzle input into the result. 1482 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1483 if (isa<ExtVectorElementExpr>(IE)) { 1484 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1485 Value *SVOp = SVI->getOperand(0); 1486 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1487 1488 if (OpTy->getNumElements() == ResElts) { 1489 for (unsigned j = 0; j != CurIdx; ++j) { 1490 // If the current vector initializer is a shuffle with undef, merge 1491 // this shuffle directly into it. 1492 if (VIsUndefShuffle) { 1493 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1494 CGF.Int32Ty)); 1495 } else { 1496 Args.push_back(Builder.getInt32(j)); 1497 } 1498 } 1499 for (unsigned j = 0, je = InitElts; j != je; ++j) 1500 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1501 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1502 1503 if (VIsUndefShuffle) 1504 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1505 1506 Init = SVOp; 1507 } 1508 } 1509 1510 // Extend init to result vector length, and then shuffle its contribution 1511 // to the vector initializer into V. 1512 if (Args.empty()) { 1513 for (unsigned j = 0; j != InitElts; ++j) 1514 Args.push_back(Builder.getInt32(j)); 1515 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1516 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1517 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1518 Mask, "vext"); 1519 1520 Args.clear(); 1521 for (unsigned j = 0; j != CurIdx; ++j) 1522 Args.push_back(Builder.getInt32(j)); 1523 for (unsigned j = 0; j != InitElts; ++j) 1524 Args.push_back(Builder.getInt32(j+Offset)); 1525 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1526 } 1527 1528 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1529 // merging subsequent shuffles into this one. 1530 if (CurIdx == 0) 1531 std::swap(V, Init); 1532 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1533 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1534 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1535 CurIdx += InitElts; 1536 } 1537 1538 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1539 // Emit remaining default initializers. 1540 llvm::Type *EltTy = VType->getElementType(); 1541 1542 // Emit remaining default initializers 1543 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1544 Value *Idx = Builder.getInt32(CurIdx); 1545 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1546 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1547 } 1548 return V; 1549 } 1550 1551 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1552 const Expr *E = CE->getSubExpr(); 1553 1554 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1555 return false; 1556 1557 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1558 // We always assume that 'this' is never null. 1559 return false; 1560 } 1561 1562 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1563 // And that glvalue casts are never null. 1564 if (ICE->getValueKind() != VK_RValue) 1565 return false; 1566 } 1567 1568 return true; 1569 } 1570 1571 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1572 // have to handle a more broad range of conversions than explicit casts, as they 1573 // handle things like function to ptr-to-function decay etc. 1574 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1575 Expr *E = CE->getSubExpr(); 1576 QualType DestTy = CE->getType(); 1577 CastKind Kind = CE->getCastKind(); 1578 1579 // These cases are generally not written to ignore the result of 1580 // evaluating their sub-expressions, so we clear this now. 1581 bool Ignored = TestAndClearIgnoreResultAssign(); 1582 1583 // Since almost all cast kinds apply to scalars, this switch doesn't have 1584 // a default case, so the compiler will warn on a missing case. The cases 1585 // are in the same order as in the CastKind enum. 1586 switch (Kind) { 1587 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1588 case CK_BuiltinFnToFnPtr: 1589 llvm_unreachable("builtin functions are handled elsewhere"); 1590 1591 case CK_LValueBitCast: 1592 case CK_ObjCObjectLValueCast: { 1593 Address Addr = EmitLValue(E).getAddress(); 1594 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1595 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1596 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1597 } 1598 1599 case CK_CPointerToObjCPointerCast: 1600 case CK_BlockPointerToObjCPointerCast: 1601 case CK_AnyPointerToBlockPointerCast: 1602 case CK_BitCast: { 1603 Value *Src = Visit(const_cast<Expr*>(E)); 1604 llvm::Type *SrcTy = Src->getType(); 1605 llvm::Type *DstTy = ConvertType(DestTy); 1606 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1607 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1608 llvm_unreachable("wrong cast for pointers in different address spaces" 1609 "(must be an address space cast)!"); 1610 } 1611 1612 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1613 if (auto PT = DestTy->getAs<PointerType>()) 1614 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1615 /*MayBeNull=*/true, 1616 CodeGenFunction::CFITCK_UnrelatedCast, 1617 CE->getLocStart()); 1618 } 1619 1620 return Builder.CreateBitCast(Src, DstTy); 1621 } 1622 case CK_AddressSpaceConversion: { 1623 Expr::EvalResult Result; 1624 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1625 Result.Val.isNullPointer()) { 1626 // If E has side effect, it is emitted even if its final result is a 1627 // null pointer. In that case, a DCE pass should be able to 1628 // eliminate the useless instructions emitted during translating E. 1629 if (Result.HasSideEffects) 1630 Visit(E); 1631 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1632 ConvertType(DestTy)), DestTy); 1633 } 1634 // Since target may map different address spaces in AST to the same address 1635 // space, an address space conversion may end up as a bitcast. 1636 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1637 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1638 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1639 } 1640 case CK_AtomicToNonAtomic: 1641 case CK_NonAtomicToAtomic: 1642 case CK_NoOp: 1643 case CK_UserDefinedConversion: 1644 return Visit(const_cast<Expr*>(E)); 1645 1646 case CK_BaseToDerived: { 1647 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1648 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1649 1650 Address Base = CGF.EmitPointerWithAlignment(E); 1651 Address Derived = 1652 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1653 CE->path_begin(), CE->path_end(), 1654 CGF.ShouldNullCheckClassCastValue(CE)); 1655 1656 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1657 // performed and the object is not of the derived type. 1658 if (CGF.sanitizePerformTypeCheck()) 1659 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1660 Derived.getPointer(), DestTy->getPointeeType()); 1661 1662 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1663 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1664 Derived.getPointer(), 1665 /*MayBeNull=*/true, 1666 CodeGenFunction::CFITCK_DerivedCast, 1667 CE->getLocStart()); 1668 1669 return Derived.getPointer(); 1670 } 1671 case CK_UncheckedDerivedToBase: 1672 case CK_DerivedToBase: { 1673 // The EmitPointerWithAlignment path does this fine; just discard 1674 // the alignment. 1675 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1676 } 1677 1678 case CK_Dynamic: { 1679 Address V = CGF.EmitPointerWithAlignment(E); 1680 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1681 return CGF.EmitDynamicCast(V, DCE); 1682 } 1683 1684 case CK_ArrayToPointerDecay: 1685 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1686 case CK_FunctionToPointerDecay: 1687 return EmitLValue(E).getPointer(); 1688 1689 case CK_NullToPointer: 1690 if (MustVisitNullValue(E)) 1691 (void) Visit(E); 1692 1693 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1694 DestTy); 1695 1696 case CK_NullToMemberPointer: { 1697 if (MustVisitNullValue(E)) 1698 (void) Visit(E); 1699 1700 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1701 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1702 } 1703 1704 case CK_ReinterpretMemberPointer: 1705 case CK_BaseToDerivedMemberPointer: 1706 case CK_DerivedToBaseMemberPointer: { 1707 Value *Src = Visit(E); 1708 1709 // Note that the AST doesn't distinguish between checked and 1710 // unchecked member pointer conversions, so we always have to 1711 // implement checked conversions here. This is inefficient when 1712 // actual control flow may be required in order to perform the 1713 // check, which it is for data member pointers (but not member 1714 // function pointers on Itanium and ARM). 1715 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1716 } 1717 1718 case CK_ARCProduceObject: 1719 return CGF.EmitARCRetainScalarExpr(E); 1720 case CK_ARCConsumeObject: 1721 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1722 case CK_ARCReclaimReturnedObject: 1723 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1724 case CK_ARCExtendBlockObject: 1725 return CGF.EmitARCExtendBlockObject(E); 1726 1727 case CK_CopyAndAutoreleaseBlockObject: 1728 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1729 1730 case CK_FloatingRealToComplex: 1731 case CK_FloatingComplexCast: 1732 case CK_IntegralRealToComplex: 1733 case CK_IntegralComplexCast: 1734 case CK_IntegralComplexToFloatingComplex: 1735 case CK_FloatingComplexToIntegralComplex: 1736 case CK_ConstructorConversion: 1737 case CK_ToUnion: 1738 llvm_unreachable("scalar cast to non-scalar value"); 1739 1740 case CK_LValueToRValue: 1741 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1742 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1743 return Visit(const_cast<Expr*>(E)); 1744 1745 case CK_IntegralToPointer: { 1746 Value *Src = Visit(const_cast<Expr*>(E)); 1747 1748 // First, convert to the correct width so that we control the kind of 1749 // extension. 1750 auto DestLLVMTy = ConvertType(DestTy); 1751 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1752 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1753 llvm::Value* IntResult = 1754 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1755 1756 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1757 } 1758 case CK_PointerToIntegral: 1759 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1760 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1761 1762 case CK_ToVoid: { 1763 CGF.EmitIgnoredExpr(E); 1764 return nullptr; 1765 } 1766 case CK_VectorSplat: { 1767 llvm::Type *DstTy = ConvertType(DestTy); 1768 Value *Elt = Visit(const_cast<Expr*>(E)); 1769 // Splat the element across to all elements 1770 unsigned NumElements = DstTy->getVectorNumElements(); 1771 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1772 } 1773 1774 case CK_IntegralCast: 1775 case CK_IntegralToFloating: 1776 case CK_FloatingToIntegral: 1777 case CK_FloatingCast: 1778 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1779 CE->getExprLoc()); 1780 case CK_BooleanToSignedIntegral: 1781 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1782 CE->getExprLoc(), 1783 /*TreatBooleanAsSigned=*/true); 1784 case CK_IntegralToBoolean: 1785 return EmitIntToBoolConversion(Visit(E)); 1786 case CK_PointerToBoolean: 1787 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1788 case CK_FloatingToBoolean: 1789 return EmitFloatToBoolConversion(Visit(E)); 1790 case CK_MemberPointerToBoolean: { 1791 llvm::Value *MemPtr = Visit(E); 1792 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1793 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1794 } 1795 1796 case CK_FloatingComplexToReal: 1797 case CK_IntegralComplexToReal: 1798 return CGF.EmitComplexExpr(E, false, true).first; 1799 1800 case CK_FloatingComplexToBoolean: 1801 case CK_IntegralComplexToBoolean: { 1802 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1803 1804 // TODO: kill this function off, inline appropriate case here 1805 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1806 CE->getExprLoc()); 1807 } 1808 1809 case CK_ZeroToOCLEvent: { 1810 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1811 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1812 } 1813 1814 case CK_ZeroToOCLQueue: { 1815 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1816 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1817 } 1818 1819 case CK_IntToOCLSampler: 1820 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1821 1822 } // end of switch 1823 1824 llvm_unreachable("unknown scalar cast"); 1825 } 1826 1827 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1828 CodeGenFunction::StmtExprEvaluation eval(CGF); 1829 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1830 !E->getType()->isVoidType()); 1831 if (!RetAlloca.isValid()) 1832 return nullptr; 1833 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1834 E->getExprLoc()); 1835 } 1836 1837 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1838 CGF.enterFullExpression(E); 1839 CodeGenFunction::RunCleanupsScope Scope(CGF); 1840 Value *V = Visit(E->getSubExpr()); 1841 // Defend against dominance problems caused by jumps out of expression 1842 // evaluation through the shared cleanup block. 1843 Scope.ForceCleanup({&V}); 1844 return V; 1845 } 1846 1847 //===----------------------------------------------------------------------===// 1848 // Unary Operators 1849 //===----------------------------------------------------------------------===// 1850 1851 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1852 llvm::Value *InVal, bool IsInc) { 1853 BinOpInfo BinOp; 1854 BinOp.LHS = InVal; 1855 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1856 BinOp.Ty = E->getType(); 1857 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1858 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1859 BinOp.E = E; 1860 return BinOp; 1861 } 1862 1863 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1864 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1865 llvm::Value *Amount = 1866 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1867 StringRef Name = IsInc ? "inc" : "dec"; 1868 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1869 case LangOptions::SOB_Defined: 1870 return Builder.CreateAdd(InVal, Amount, Name); 1871 case LangOptions::SOB_Undefined: 1872 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1873 return Builder.CreateNSWAdd(InVal, Amount, Name); 1874 // Fall through. 1875 case LangOptions::SOB_Trapping: 1876 if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr())) 1877 return Builder.CreateNSWAdd(InVal, Amount, Name); 1878 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1879 } 1880 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1881 } 1882 1883 llvm::Value * 1884 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1885 bool isInc, bool isPre) { 1886 1887 QualType type = E->getSubExpr()->getType(); 1888 llvm::PHINode *atomicPHI = nullptr; 1889 llvm::Value *value; 1890 llvm::Value *input; 1891 1892 int amount = (isInc ? 1 : -1); 1893 bool isSubtraction = !isInc; 1894 1895 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1896 type = atomicTy->getValueType(); 1897 if (isInc && type->isBooleanType()) { 1898 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1899 if (isPre) { 1900 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1901 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1902 return Builder.getTrue(); 1903 } 1904 // For atomic bool increment, we just store true and return it for 1905 // preincrement, do an atomic swap with true for postincrement 1906 return Builder.CreateAtomicRMW( 1907 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1908 llvm::AtomicOrdering::SequentiallyConsistent); 1909 } 1910 // Special case for atomic increment / decrement on integers, emit 1911 // atomicrmw instructions. We skip this if we want to be doing overflow 1912 // checking, and fall into the slow path with the atomic cmpxchg loop. 1913 if (!type->isBooleanType() && type->isIntegerType() && 1914 !(type->isUnsignedIntegerType() && 1915 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1916 CGF.getLangOpts().getSignedOverflowBehavior() != 1917 LangOptions::SOB_Trapping) { 1918 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1919 llvm::AtomicRMWInst::Sub; 1920 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1921 llvm::Instruction::Sub; 1922 llvm::Value *amt = CGF.EmitToMemory( 1923 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1924 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1925 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1926 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1927 } 1928 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1929 input = value; 1930 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1931 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1932 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1933 value = CGF.EmitToMemory(value, type); 1934 Builder.CreateBr(opBB); 1935 Builder.SetInsertPoint(opBB); 1936 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1937 atomicPHI->addIncoming(value, startBB); 1938 value = atomicPHI; 1939 } else { 1940 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1941 input = value; 1942 } 1943 1944 // Special case of integer increment that we have to check first: bool++. 1945 // Due to promotion rules, we get: 1946 // bool++ -> bool = bool + 1 1947 // -> bool = (int)bool + 1 1948 // -> bool = ((int)bool + 1 != 0) 1949 // An interesting aspect of this is that increment is always true. 1950 // Decrement does not have this property. 1951 if (isInc && type->isBooleanType()) { 1952 value = Builder.getTrue(); 1953 1954 // Most common case by far: integer increment. 1955 } else if (type->isIntegerType()) { 1956 // Note that signed integer inc/dec with width less than int can't 1957 // overflow because of promotion rules; we're just eliding a few steps here. 1958 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1959 CGF.IntTy->getIntegerBitWidth(); 1960 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1961 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1962 } else if (CanOverflow && type->isUnsignedIntegerType() && 1963 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1964 value = 1965 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1966 } else { 1967 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1968 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1969 } 1970 1971 // Next most common: pointer increment. 1972 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1973 QualType type = ptr->getPointeeType(); 1974 1975 // VLA types don't have constant size. 1976 if (const VariableArrayType *vla 1977 = CGF.getContext().getAsVariableArrayType(type)) { 1978 llvm::Value *numElts = CGF.getVLASize(vla).first; 1979 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1980 if (CGF.getLangOpts().isSignedOverflowDefined()) 1981 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1982 else 1983 value = CGF.EmitCheckedInBoundsGEP( 1984 value, numElts, /*SignedIndices=*/false, isSubtraction, 1985 E->getExprLoc(), "vla.inc"); 1986 1987 // Arithmetic on function pointers (!) is just +-1. 1988 } else if (type->isFunctionType()) { 1989 llvm::Value *amt = Builder.getInt32(amount); 1990 1991 value = CGF.EmitCastToVoidPtr(value); 1992 if (CGF.getLangOpts().isSignedOverflowDefined()) 1993 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1994 else 1995 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 1996 isSubtraction, E->getExprLoc(), 1997 "incdec.funcptr"); 1998 value = Builder.CreateBitCast(value, input->getType()); 1999 2000 // For everything else, we can just do a simple increment. 2001 } else { 2002 llvm::Value *amt = Builder.getInt32(amount); 2003 if (CGF.getLangOpts().isSignedOverflowDefined()) 2004 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2005 else 2006 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2007 isSubtraction, E->getExprLoc(), 2008 "incdec.ptr"); 2009 } 2010 2011 // Vector increment/decrement. 2012 } else if (type->isVectorType()) { 2013 if (type->hasIntegerRepresentation()) { 2014 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2015 2016 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2017 } else { 2018 value = Builder.CreateFAdd( 2019 value, 2020 llvm::ConstantFP::get(value->getType(), amount), 2021 isInc ? "inc" : "dec"); 2022 } 2023 2024 // Floating point. 2025 } else if (type->isRealFloatingType()) { 2026 // Add the inc/dec to the real part. 2027 llvm::Value *amt; 2028 2029 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2030 // Another special case: half FP increment should be done via float 2031 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2032 value = Builder.CreateCall( 2033 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2034 CGF.CGM.FloatTy), 2035 input, "incdec.conv"); 2036 } else { 2037 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2038 } 2039 } 2040 2041 if (value->getType()->isFloatTy()) 2042 amt = llvm::ConstantFP::get(VMContext, 2043 llvm::APFloat(static_cast<float>(amount))); 2044 else if (value->getType()->isDoubleTy()) 2045 amt = llvm::ConstantFP::get(VMContext, 2046 llvm::APFloat(static_cast<double>(amount))); 2047 else { 2048 // Remaining types are Half, LongDouble or __float128. Convert from float. 2049 llvm::APFloat F(static_cast<float>(amount)); 2050 bool ignored; 2051 const llvm::fltSemantics *FS; 2052 // Don't use getFloatTypeSemantics because Half isn't 2053 // necessarily represented using the "half" LLVM type. 2054 if (value->getType()->isFP128Ty()) 2055 FS = &CGF.getTarget().getFloat128Format(); 2056 else if (value->getType()->isHalfTy()) 2057 FS = &CGF.getTarget().getHalfFormat(); 2058 else 2059 FS = &CGF.getTarget().getLongDoubleFormat(); 2060 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2061 amt = llvm::ConstantFP::get(VMContext, F); 2062 } 2063 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2064 2065 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2066 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2067 value = Builder.CreateCall( 2068 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2069 CGF.CGM.FloatTy), 2070 value, "incdec.conv"); 2071 } else { 2072 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2073 } 2074 } 2075 2076 // Objective-C pointer types. 2077 } else { 2078 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2079 value = CGF.EmitCastToVoidPtr(value); 2080 2081 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2082 if (!isInc) size = -size; 2083 llvm::Value *sizeValue = 2084 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2085 2086 if (CGF.getLangOpts().isSignedOverflowDefined()) 2087 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2088 else 2089 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2090 /*SignedIndices=*/false, isSubtraction, 2091 E->getExprLoc(), "incdec.objptr"); 2092 value = Builder.CreateBitCast(value, input->getType()); 2093 } 2094 2095 if (atomicPHI) { 2096 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2097 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2098 auto Pair = CGF.EmitAtomicCompareExchange( 2099 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2100 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2101 llvm::Value *success = Pair.second; 2102 atomicPHI->addIncoming(old, opBB); 2103 Builder.CreateCondBr(success, contBB, opBB); 2104 Builder.SetInsertPoint(contBB); 2105 return isPre ? value : input; 2106 } 2107 2108 // Store the updated result through the lvalue. 2109 if (LV.isBitField()) 2110 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2111 else 2112 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2113 2114 // If this is a postinc, return the value read from memory, otherwise use the 2115 // updated value. 2116 return isPre ? value : input; 2117 } 2118 2119 2120 2121 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2122 TestAndClearIgnoreResultAssign(); 2123 // Emit unary minus with EmitSub so we handle overflow cases etc. 2124 BinOpInfo BinOp; 2125 BinOp.RHS = Visit(E->getSubExpr()); 2126 2127 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2128 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2129 else 2130 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2131 BinOp.Ty = E->getType(); 2132 BinOp.Opcode = BO_Sub; 2133 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2134 BinOp.E = E; 2135 return EmitSub(BinOp); 2136 } 2137 2138 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2139 TestAndClearIgnoreResultAssign(); 2140 Value *Op = Visit(E->getSubExpr()); 2141 return Builder.CreateNot(Op, "neg"); 2142 } 2143 2144 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2145 // Perform vector logical not on comparison with zero vector. 2146 if (E->getType()->isExtVectorType()) { 2147 Value *Oper = Visit(E->getSubExpr()); 2148 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2149 Value *Result; 2150 if (Oper->getType()->isFPOrFPVectorTy()) 2151 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2152 else 2153 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2154 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2155 } 2156 2157 // Compare operand to zero. 2158 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2159 2160 // Invert value. 2161 // TODO: Could dynamically modify easy computations here. For example, if 2162 // the operand is an icmp ne, turn into icmp eq. 2163 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2164 2165 // ZExt result to the expr type. 2166 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2167 } 2168 2169 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2170 // Try folding the offsetof to a constant. 2171 llvm::APSInt Value; 2172 if (E->EvaluateAsInt(Value, CGF.getContext())) 2173 return Builder.getInt(Value); 2174 2175 // Loop over the components of the offsetof to compute the value. 2176 unsigned n = E->getNumComponents(); 2177 llvm::Type* ResultType = ConvertType(E->getType()); 2178 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2179 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2180 for (unsigned i = 0; i != n; ++i) { 2181 OffsetOfNode ON = E->getComponent(i); 2182 llvm::Value *Offset = nullptr; 2183 switch (ON.getKind()) { 2184 case OffsetOfNode::Array: { 2185 // Compute the index 2186 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2187 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2188 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2189 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2190 2191 // Save the element type 2192 CurrentType = 2193 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2194 2195 // Compute the element size 2196 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2197 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2198 2199 // Multiply out to compute the result 2200 Offset = Builder.CreateMul(Idx, ElemSize); 2201 break; 2202 } 2203 2204 case OffsetOfNode::Field: { 2205 FieldDecl *MemberDecl = ON.getField(); 2206 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2207 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2208 2209 // Compute the index of the field in its parent. 2210 unsigned i = 0; 2211 // FIXME: It would be nice if we didn't have to loop here! 2212 for (RecordDecl::field_iterator Field = RD->field_begin(), 2213 FieldEnd = RD->field_end(); 2214 Field != FieldEnd; ++Field, ++i) { 2215 if (*Field == MemberDecl) 2216 break; 2217 } 2218 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2219 2220 // Compute the offset to the field 2221 int64_t OffsetInt = RL.getFieldOffset(i) / 2222 CGF.getContext().getCharWidth(); 2223 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2224 2225 // Save the element type. 2226 CurrentType = MemberDecl->getType(); 2227 break; 2228 } 2229 2230 case OffsetOfNode::Identifier: 2231 llvm_unreachable("dependent __builtin_offsetof"); 2232 2233 case OffsetOfNode::Base: { 2234 if (ON.getBase()->isVirtual()) { 2235 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2236 continue; 2237 } 2238 2239 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2240 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2241 2242 // Save the element type. 2243 CurrentType = ON.getBase()->getType(); 2244 2245 // Compute the offset to the base. 2246 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2247 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2248 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2249 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2250 break; 2251 } 2252 } 2253 Result = Builder.CreateAdd(Result, Offset); 2254 } 2255 return Result; 2256 } 2257 2258 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2259 /// argument of the sizeof expression as an integer. 2260 Value * 2261 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2262 const UnaryExprOrTypeTraitExpr *E) { 2263 QualType TypeToSize = E->getTypeOfArgument(); 2264 if (E->getKind() == UETT_SizeOf) { 2265 if (const VariableArrayType *VAT = 2266 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2267 if (E->isArgumentType()) { 2268 // sizeof(type) - make sure to emit the VLA size. 2269 CGF.EmitVariablyModifiedType(TypeToSize); 2270 } else { 2271 // C99 6.5.3.4p2: If the argument is an expression of type 2272 // VLA, it is evaluated. 2273 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2274 } 2275 2276 QualType eltType; 2277 llvm::Value *numElts; 2278 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2279 2280 llvm::Value *size = numElts; 2281 2282 // Scale the number of non-VLA elements by the non-VLA element size. 2283 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2284 if (!eltSize.isOne()) 2285 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2286 2287 return size; 2288 } 2289 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2290 auto Alignment = 2291 CGF.getContext() 2292 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2293 E->getTypeOfArgument()->getPointeeType())) 2294 .getQuantity(); 2295 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2296 } 2297 2298 // If this isn't sizeof(vla), the result must be constant; use the constant 2299 // folding logic so we don't have to duplicate it here. 2300 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2301 } 2302 2303 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2304 Expr *Op = E->getSubExpr(); 2305 if (Op->getType()->isAnyComplexType()) { 2306 // If it's an l-value, load through the appropriate subobject l-value. 2307 // Note that we have to ask E because Op might be an l-value that 2308 // this won't work for, e.g. an Obj-C property. 2309 if (E->isGLValue()) 2310 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2311 E->getExprLoc()).getScalarVal(); 2312 2313 // Otherwise, calculate and project. 2314 return CGF.EmitComplexExpr(Op, false, true).first; 2315 } 2316 2317 return Visit(Op); 2318 } 2319 2320 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2321 Expr *Op = E->getSubExpr(); 2322 if (Op->getType()->isAnyComplexType()) { 2323 // If it's an l-value, load through the appropriate subobject l-value. 2324 // Note that we have to ask E because Op might be an l-value that 2325 // this won't work for, e.g. an Obj-C property. 2326 if (Op->isGLValue()) 2327 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2328 E->getExprLoc()).getScalarVal(); 2329 2330 // Otherwise, calculate and project. 2331 return CGF.EmitComplexExpr(Op, true, false).second; 2332 } 2333 2334 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2335 // effects are evaluated, but not the actual value. 2336 if (Op->isGLValue()) 2337 CGF.EmitLValue(Op); 2338 else 2339 CGF.EmitScalarExpr(Op, true); 2340 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2341 } 2342 2343 //===----------------------------------------------------------------------===// 2344 // Binary Operators 2345 //===----------------------------------------------------------------------===// 2346 2347 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2348 TestAndClearIgnoreResultAssign(); 2349 BinOpInfo Result; 2350 Result.LHS = Visit(E->getLHS()); 2351 Result.RHS = Visit(E->getRHS()); 2352 Result.Ty = E->getType(); 2353 Result.Opcode = E->getOpcode(); 2354 Result.FPFeatures = E->getFPFeatures(); 2355 Result.E = E; 2356 return Result; 2357 } 2358 2359 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2360 const CompoundAssignOperator *E, 2361 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2362 Value *&Result) { 2363 QualType LHSTy = E->getLHS()->getType(); 2364 BinOpInfo OpInfo; 2365 2366 if (E->getComputationResultType()->isAnyComplexType()) 2367 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2368 2369 // Emit the RHS first. __block variables need to have the rhs evaluated 2370 // first, plus this should improve codegen a little. 2371 OpInfo.RHS = Visit(E->getRHS()); 2372 OpInfo.Ty = E->getComputationResultType(); 2373 OpInfo.Opcode = E->getOpcode(); 2374 OpInfo.FPFeatures = E->getFPFeatures(); 2375 OpInfo.E = E; 2376 // Load/convert the LHS. 2377 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2378 2379 llvm::PHINode *atomicPHI = nullptr; 2380 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2381 QualType type = atomicTy->getValueType(); 2382 if (!type->isBooleanType() && type->isIntegerType() && 2383 !(type->isUnsignedIntegerType() && 2384 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2385 CGF.getLangOpts().getSignedOverflowBehavior() != 2386 LangOptions::SOB_Trapping) { 2387 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2388 switch (OpInfo.Opcode) { 2389 // We don't have atomicrmw operands for *, %, /, <<, >> 2390 case BO_MulAssign: case BO_DivAssign: 2391 case BO_RemAssign: 2392 case BO_ShlAssign: 2393 case BO_ShrAssign: 2394 break; 2395 case BO_AddAssign: 2396 aop = llvm::AtomicRMWInst::Add; 2397 break; 2398 case BO_SubAssign: 2399 aop = llvm::AtomicRMWInst::Sub; 2400 break; 2401 case BO_AndAssign: 2402 aop = llvm::AtomicRMWInst::And; 2403 break; 2404 case BO_XorAssign: 2405 aop = llvm::AtomicRMWInst::Xor; 2406 break; 2407 case BO_OrAssign: 2408 aop = llvm::AtomicRMWInst::Or; 2409 break; 2410 default: 2411 llvm_unreachable("Invalid compound assignment type"); 2412 } 2413 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2414 llvm::Value *amt = CGF.EmitToMemory( 2415 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2416 E->getExprLoc()), 2417 LHSTy); 2418 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2419 llvm::AtomicOrdering::SequentiallyConsistent); 2420 return LHSLV; 2421 } 2422 } 2423 // FIXME: For floating point types, we should be saving and restoring the 2424 // floating point environment in the loop. 2425 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2426 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2427 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2428 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2429 Builder.CreateBr(opBB); 2430 Builder.SetInsertPoint(opBB); 2431 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2432 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2433 OpInfo.LHS = atomicPHI; 2434 } 2435 else 2436 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2437 2438 SourceLocation Loc = E->getExprLoc(); 2439 OpInfo.LHS = 2440 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2441 2442 // Expand the binary operator. 2443 Result = (this->*Func)(OpInfo); 2444 2445 // Convert the result back to the LHS type. 2446 Result = 2447 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2448 2449 if (atomicPHI) { 2450 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2451 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2452 auto Pair = CGF.EmitAtomicCompareExchange( 2453 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2454 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2455 llvm::Value *success = Pair.second; 2456 atomicPHI->addIncoming(old, opBB); 2457 Builder.CreateCondBr(success, contBB, opBB); 2458 Builder.SetInsertPoint(contBB); 2459 return LHSLV; 2460 } 2461 2462 // Store the result value into the LHS lvalue. Bit-fields are handled 2463 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2464 // 'An assignment expression has the value of the left operand after the 2465 // assignment...'. 2466 if (LHSLV.isBitField()) 2467 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2468 else 2469 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2470 2471 return LHSLV; 2472 } 2473 2474 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2475 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2476 bool Ignore = TestAndClearIgnoreResultAssign(); 2477 Value *RHS; 2478 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2479 2480 // If the result is clearly ignored, return now. 2481 if (Ignore) 2482 return nullptr; 2483 2484 // The result of an assignment in C is the assigned r-value. 2485 if (!CGF.getLangOpts().CPlusPlus) 2486 return RHS; 2487 2488 // If the lvalue is non-volatile, return the computed value of the assignment. 2489 if (!LHS.isVolatileQualified()) 2490 return RHS; 2491 2492 // Otherwise, reload the value. 2493 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2494 } 2495 2496 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2497 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2498 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2499 2500 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2501 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2502 SanitizerKind::IntegerDivideByZero)); 2503 } 2504 2505 const auto *BO = cast<BinaryOperator>(Ops.E); 2506 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2507 Ops.Ty->hasSignedIntegerRepresentation() && 2508 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2509 Ops.mayHaveIntegerOverflow()) { 2510 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2511 2512 llvm::Value *IntMin = 2513 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2514 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2515 2516 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2517 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2518 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2519 Checks.push_back( 2520 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2521 } 2522 2523 if (Checks.size() > 0) 2524 EmitBinOpCheck(Checks, Ops); 2525 } 2526 2527 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2528 { 2529 CodeGenFunction::SanitizerScope SanScope(&CGF); 2530 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2531 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2532 Ops.Ty->isIntegerType() && 2533 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2534 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2535 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2536 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2537 Ops.Ty->isRealFloatingType() && 2538 Ops.mayHaveFloatDivisionByZero()) { 2539 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2540 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2541 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2542 Ops); 2543 } 2544 } 2545 2546 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2547 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2548 if (CGF.getLangOpts().OpenCL && 2549 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2550 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2551 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2552 // build option allows an application to specify that single precision 2553 // floating-point divide (x/y and 1/x) and sqrt used in the program 2554 // source are correctly rounded. 2555 llvm::Type *ValTy = Val->getType(); 2556 if (ValTy->isFloatTy() || 2557 (isa<llvm::VectorType>(ValTy) && 2558 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2559 CGF.SetFPAccuracy(Val, 2.5); 2560 } 2561 return Val; 2562 } 2563 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2564 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2565 else 2566 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2567 } 2568 2569 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2570 // Rem in C can't be a floating point type: C99 6.5.5p2. 2571 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2572 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2573 Ops.Ty->isIntegerType() && 2574 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2575 CodeGenFunction::SanitizerScope SanScope(&CGF); 2576 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2577 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2578 } 2579 2580 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2581 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2582 else 2583 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2584 } 2585 2586 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2587 unsigned IID; 2588 unsigned OpID = 0; 2589 2590 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2591 switch (Ops.Opcode) { 2592 case BO_Add: 2593 case BO_AddAssign: 2594 OpID = 1; 2595 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2596 llvm::Intrinsic::uadd_with_overflow; 2597 break; 2598 case BO_Sub: 2599 case BO_SubAssign: 2600 OpID = 2; 2601 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2602 llvm::Intrinsic::usub_with_overflow; 2603 break; 2604 case BO_Mul: 2605 case BO_MulAssign: 2606 OpID = 3; 2607 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2608 llvm::Intrinsic::umul_with_overflow; 2609 break; 2610 default: 2611 llvm_unreachable("Unsupported operation for overflow detection"); 2612 } 2613 OpID <<= 1; 2614 if (isSigned) 2615 OpID |= 1; 2616 2617 CodeGenFunction::SanitizerScope SanScope(&CGF); 2618 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2619 2620 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2621 2622 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2623 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2624 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2625 2626 // Handle overflow with llvm.trap if no custom handler has been specified. 2627 const std::string *handlerName = 2628 &CGF.getLangOpts().OverflowHandler; 2629 if (handlerName->empty()) { 2630 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2631 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2632 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2633 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2634 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2635 : SanitizerKind::UnsignedIntegerOverflow; 2636 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2637 } else 2638 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2639 return result; 2640 } 2641 2642 // Branch in case of overflow. 2643 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2644 llvm::BasicBlock *continueBB = 2645 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2646 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2647 2648 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2649 2650 // If an overflow handler is set, then we want to call it and then use its 2651 // result, if it returns. 2652 Builder.SetInsertPoint(overflowBB); 2653 2654 // Get the overflow handler. 2655 llvm::Type *Int8Ty = CGF.Int8Ty; 2656 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2657 llvm::FunctionType *handlerTy = 2658 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2659 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2660 2661 // Sign extend the args to 64-bit, so that we can use the same handler for 2662 // all types of overflow. 2663 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2664 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2665 2666 // Call the handler with the two arguments, the operation, and the size of 2667 // the result. 2668 llvm::Value *handlerArgs[] = { 2669 lhs, 2670 rhs, 2671 Builder.getInt8(OpID), 2672 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2673 }; 2674 llvm::Value *handlerResult = 2675 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2676 2677 // Truncate the result back to the desired size. 2678 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2679 Builder.CreateBr(continueBB); 2680 2681 Builder.SetInsertPoint(continueBB); 2682 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2683 phi->addIncoming(result, initialBB); 2684 phi->addIncoming(handlerResult, overflowBB); 2685 2686 return phi; 2687 } 2688 2689 /// Emit pointer + index arithmetic. 2690 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2691 const BinOpInfo &op, 2692 bool isSubtraction) { 2693 // Must have binary (not unary) expr here. Unary pointer 2694 // increment/decrement doesn't use this path. 2695 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2696 2697 Value *pointer = op.LHS; 2698 Expr *pointerOperand = expr->getLHS(); 2699 Value *index = op.RHS; 2700 Expr *indexOperand = expr->getRHS(); 2701 2702 // In a subtraction, the LHS is always the pointer. 2703 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2704 std::swap(pointer, index); 2705 std::swap(pointerOperand, indexOperand); 2706 } 2707 2708 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2709 2710 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2711 auto &DL = CGF.CGM.getDataLayout(); 2712 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2713 2714 // Some versions of glibc and gcc use idioms (particularly in their malloc 2715 // routines) that add a pointer-sized integer (known to be a pointer value) 2716 // to a null pointer in order to cast the value back to an integer or as 2717 // part of a pointer alignment algorithm. This is undefined behavior, but 2718 // we'd like to be able to compile programs that use it. 2719 // 2720 // Normally, we'd generate a GEP with a null-pointer base here in response 2721 // to that code, but it's also UB to dereference a pointer created that 2722 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 2723 // generate a direct cast of the integer value to a pointer. 2724 // 2725 // The idiom (p = nullptr + N) is not met if any of the following are true: 2726 // 2727 // The operation is subtraction. 2728 // The index is not pointer-sized. 2729 // The pointer type is not byte-sized. 2730 // 2731 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 2732 op.Opcode, 2733 expr->getLHS(), 2734 expr->getRHS())) 2735 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 2736 2737 if (width != DL.getTypeSizeInBits(PtrTy)) { 2738 // Zero-extend or sign-extend the pointer value according to 2739 // whether the index is signed or not. 2740 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2741 "idx.ext"); 2742 } 2743 2744 // If this is subtraction, negate the index. 2745 if (isSubtraction) 2746 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2747 2748 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2749 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2750 /*Accessed*/ false); 2751 2752 const PointerType *pointerType 2753 = pointerOperand->getType()->getAs<PointerType>(); 2754 if (!pointerType) { 2755 QualType objectType = pointerOperand->getType() 2756 ->castAs<ObjCObjectPointerType>() 2757 ->getPointeeType(); 2758 llvm::Value *objectSize 2759 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2760 2761 index = CGF.Builder.CreateMul(index, objectSize); 2762 2763 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2764 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2765 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2766 } 2767 2768 QualType elementType = pointerType->getPointeeType(); 2769 if (const VariableArrayType *vla 2770 = CGF.getContext().getAsVariableArrayType(elementType)) { 2771 // The element count here is the total number of non-VLA elements. 2772 llvm::Value *numElements = CGF.getVLASize(vla).first; 2773 2774 // Effectively, the multiply by the VLA size is part of the GEP. 2775 // GEP indexes are signed, and scaling an index isn't permitted to 2776 // signed-overflow, so we use the same semantics for our explicit 2777 // multiply. We suppress this if overflow is not undefined behavior. 2778 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2779 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2780 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2781 } else { 2782 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2783 pointer = 2784 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2785 op.E->getExprLoc(), "add.ptr"); 2786 } 2787 return pointer; 2788 } 2789 2790 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2791 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2792 // future proof. 2793 if (elementType->isVoidType() || elementType->isFunctionType()) { 2794 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2795 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2796 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2797 } 2798 2799 if (CGF.getLangOpts().isSignedOverflowDefined()) 2800 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2801 2802 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 2803 op.E->getExprLoc(), "add.ptr"); 2804 } 2805 2806 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2807 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2808 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2809 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2810 // efficient operations. 2811 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2812 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2813 bool negMul, bool negAdd) { 2814 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2815 2816 Value *MulOp0 = MulOp->getOperand(0); 2817 Value *MulOp1 = MulOp->getOperand(1); 2818 if (negMul) { 2819 MulOp0 = 2820 Builder.CreateFSub( 2821 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2822 "neg"); 2823 } else if (negAdd) { 2824 Addend = 2825 Builder.CreateFSub( 2826 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2827 "neg"); 2828 } 2829 2830 Value *FMulAdd = Builder.CreateCall( 2831 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2832 {MulOp0, MulOp1, Addend}); 2833 MulOp->eraseFromParent(); 2834 2835 return FMulAdd; 2836 } 2837 2838 // Check whether it would be legal to emit an fmuladd intrinsic call to 2839 // represent op and if so, build the fmuladd. 2840 // 2841 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2842 // Does NOT check the type of the operation - it's assumed that this function 2843 // will be called from contexts where it's known that the type is contractable. 2844 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2845 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2846 bool isSub=false) { 2847 2848 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2849 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2850 "Only fadd/fsub can be the root of an fmuladd."); 2851 2852 // Check whether this op is marked as fusable. 2853 if (!op.FPFeatures.allowFPContractWithinStatement()) 2854 return nullptr; 2855 2856 // We have a potentially fusable op. Look for a mul on one of the operands. 2857 // Also, make sure that the mul result isn't used directly. In that case, 2858 // there's no point creating a muladd operation. 2859 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2860 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2861 LHSBinOp->use_empty()) 2862 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2863 } 2864 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2865 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2866 RHSBinOp->use_empty()) 2867 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2868 } 2869 2870 return nullptr; 2871 } 2872 2873 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2874 if (op.LHS->getType()->isPointerTy() || 2875 op.RHS->getType()->isPointerTy()) 2876 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 2877 2878 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2879 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2880 case LangOptions::SOB_Defined: 2881 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2882 case LangOptions::SOB_Undefined: 2883 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2884 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2885 // Fall through. 2886 case LangOptions::SOB_Trapping: 2887 if (CanElideOverflowCheck(CGF.getContext(), op)) 2888 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2889 return EmitOverflowCheckedBinOp(op); 2890 } 2891 } 2892 2893 if (op.Ty->isUnsignedIntegerType() && 2894 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2895 !CanElideOverflowCheck(CGF.getContext(), op)) 2896 return EmitOverflowCheckedBinOp(op); 2897 2898 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2899 // Try to form an fmuladd. 2900 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2901 return FMulAdd; 2902 2903 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2904 return propagateFMFlags(V, op); 2905 } 2906 2907 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2908 } 2909 2910 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2911 // The LHS is always a pointer if either side is. 2912 if (!op.LHS->getType()->isPointerTy()) { 2913 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2914 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2915 case LangOptions::SOB_Defined: 2916 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2917 case LangOptions::SOB_Undefined: 2918 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2919 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2920 // Fall through. 2921 case LangOptions::SOB_Trapping: 2922 if (CanElideOverflowCheck(CGF.getContext(), op)) 2923 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2924 return EmitOverflowCheckedBinOp(op); 2925 } 2926 } 2927 2928 if (op.Ty->isUnsignedIntegerType() && 2929 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2930 !CanElideOverflowCheck(CGF.getContext(), op)) 2931 return EmitOverflowCheckedBinOp(op); 2932 2933 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2934 // Try to form an fmuladd. 2935 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2936 return FMulAdd; 2937 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2938 return propagateFMFlags(V, op); 2939 } 2940 2941 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2942 } 2943 2944 // If the RHS is not a pointer, then we have normal pointer 2945 // arithmetic. 2946 if (!op.RHS->getType()->isPointerTy()) 2947 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 2948 2949 // Otherwise, this is a pointer subtraction. 2950 2951 // Do the raw subtraction part. 2952 llvm::Value *LHS 2953 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2954 llvm::Value *RHS 2955 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2956 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2957 2958 // Okay, figure out the element size. 2959 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2960 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2961 2962 llvm::Value *divisor = nullptr; 2963 2964 // For a variable-length array, this is going to be non-constant. 2965 if (const VariableArrayType *vla 2966 = CGF.getContext().getAsVariableArrayType(elementType)) { 2967 llvm::Value *numElements; 2968 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2969 2970 divisor = numElements; 2971 2972 // Scale the number of non-VLA elements by the non-VLA element size. 2973 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2974 if (!eltSize.isOne()) 2975 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2976 2977 // For everything elese, we can just compute it, safe in the 2978 // assumption that Sema won't let anything through that we can't 2979 // safely compute the size of. 2980 } else { 2981 CharUnits elementSize; 2982 // Handle GCC extension for pointer arithmetic on void* and 2983 // function pointer types. 2984 if (elementType->isVoidType() || elementType->isFunctionType()) 2985 elementSize = CharUnits::One(); 2986 else 2987 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2988 2989 // Don't even emit the divide for element size of 1. 2990 if (elementSize.isOne()) 2991 return diffInChars; 2992 2993 divisor = CGF.CGM.getSize(elementSize); 2994 } 2995 2996 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2997 // pointer difference in C is only defined in the case where both operands 2998 // are pointing to elements of an array. 2999 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3000 } 3001 3002 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3003 llvm::IntegerType *Ty; 3004 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3005 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3006 else 3007 Ty = cast<llvm::IntegerType>(LHS->getType()); 3008 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3009 } 3010 3011 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3012 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3013 // RHS to the same size as the LHS. 3014 Value *RHS = Ops.RHS; 3015 if (Ops.LHS->getType() != RHS->getType()) 3016 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3017 3018 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3019 Ops.Ty->hasSignedIntegerRepresentation() && 3020 !CGF.getLangOpts().isSignedOverflowDefined(); 3021 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3022 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3023 if (CGF.getLangOpts().OpenCL) 3024 RHS = 3025 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3026 else if ((SanitizeBase || SanitizeExponent) && 3027 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3028 CodeGenFunction::SanitizerScope SanScope(&CGF); 3029 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3030 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3031 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3032 3033 if (SanitizeExponent) { 3034 Checks.push_back( 3035 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3036 } 3037 3038 if (SanitizeBase) { 3039 // Check whether we are shifting any non-zero bits off the top of the 3040 // integer. We only emit this check if exponent is valid - otherwise 3041 // instructions below will have undefined behavior themselves. 3042 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3043 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3044 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3045 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3046 llvm::Value *PromotedWidthMinusOne = 3047 (RHS == Ops.RHS) ? WidthMinusOne 3048 : GetWidthMinusOneValue(Ops.LHS, RHS); 3049 CGF.EmitBlock(CheckShiftBase); 3050 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3051 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3052 /*NUW*/ true, /*NSW*/ true), 3053 "shl.check"); 3054 if (CGF.getLangOpts().CPlusPlus) { 3055 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3056 // Under C++11's rules, shifting a 1 bit into the sign bit is 3057 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3058 // define signed left shifts, so we use the C99 and C++11 rules there). 3059 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3060 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3061 } 3062 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3063 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3064 CGF.EmitBlock(Cont); 3065 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3066 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3067 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3068 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3069 } 3070 3071 assert(!Checks.empty()); 3072 EmitBinOpCheck(Checks, Ops); 3073 } 3074 3075 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3076 } 3077 3078 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3079 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3080 // RHS to the same size as the LHS. 3081 Value *RHS = Ops.RHS; 3082 if (Ops.LHS->getType() != RHS->getType()) 3083 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3084 3085 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3086 if (CGF.getLangOpts().OpenCL) 3087 RHS = 3088 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3089 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3090 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3091 CodeGenFunction::SanitizerScope SanScope(&CGF); 3092 llvm::Value *Valid = 3093 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3094 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3095 } 3096 3097 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3098 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3099 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3100 } 3101 3102 enum IntrinsicType { VCMPEQ, VCMPGT }; 3103 // return corresponding comparison intrinsic for given vector type 3104 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3105 BuiltinType::Kind ElemKind) { 3106 switch (ElemKind) { 3107 default: llvm_unreachable("unexpected element type"); 3108 case BuiltinType::Char_U: 3109 case BuiltinType::UChar: 3110 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3111 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3112 case BuiltinType::Char_S: 3113 case BuiltinType::SChar: 3114 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3115 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3116 case BuiltinType::UShort: 3117 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3118 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3119 case BuiltinType::Short: 3120 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3121 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3122 case BuiltinType::UInt: 3123 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3124 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3125 case BuiltinType::Int: 3126 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3127 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3128 case BuiltinType::ULong: 3129 case BuiltinType::ULongLong: 3130 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3131 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3132 case BuiltinType::Long: 3133 case BuiltinType::LongLong: 3134 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3135 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3136 case BuiltinType::Float: 3137 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3138 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3139 case BuiltinType::Double: 3140 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3141 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3142 } 3143 } 3144 3145 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3146 llvm::CmpInst::Predicate UICmpOpc, 3147 llvm::CmpInst::Predicate SICmpOpc, 3148 llvm::CmpInst::Predicate FCmpOpc) { 3149 TestAndClearIgnoreResultAssign(); 3150 Value *Result; 3151 QualType LHSTy = E->getLHS()->getType(); 3152 QualType RHSTy = E->getRHS()->getType(); 3153 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3154 assert(E->getOpcode() == BO_EQ || 3155 E->getOpcode() == BO_NE); 3156 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3157 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3158 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3159 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3160 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3161 Value *LHS = Visit(E->getLHS()); 3162 Value *RHS = Visit(E->getRHS()); 3163 3164 // If AltiVec, the comparison results in a numeric type, so we use 3165 // intrinsics comparing vectors and giving 0 or 1 as a result 3166 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3167 // constants for mapping CR6 register bits to predicate result 3168 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3169 3170 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3171 3172 // in several cases vector arguments order will be reversed 3173 Value *FirstVecArg = LHS, 3174 *SecondVecArg = RHS; 3175 3176 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3177 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3178 BuiltinType::Kind ElementKind = BTy->getKind(); 3179 3180 switch(E->getOpcode()) { 3181 default: llvm_unreachable("is not a comparison operation"); 3182 case BO_EQ: 3183 CR6 = CR6_LT; 3184 ID = GetIntrinsic(VCMPEQ, ElementKind); 3185 break; 3186 case BO_NE: 3187 CR6 = CR6_EQ; 3188 ID = GetIntrinsic(VCMPEQ, ElementKind); 3189 break; 3190 case BO_LT: 3191 CR6 = CR6_LT; 3192 ID = GetIntrinsic(VCMPGT, ElementKind); 3193 std::swap(FirstVecArg, SecondVecArg); 3194 break; 3195 case BO_GT: 3196 CR6 = CR6_LT; 3197 ID = GetIntrinsic(VCMPGT, ElementKind); 3198 break; 3199 case BO_LE: 3200 if (ElementKind == BuiltinType::Float) { 3201 CR6 = CR6_LT; 3202 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3203 std::swap(FirstVecArg, SecondVecArg); 3204 } 3205 else { 3206 CR6 = CR6_EQ; 3207 ID = GetIntrinsic(VCMPGT, ElementKind); 3208 } 3209 break; 3210 case BO_GE: 3211 if (ElementKind == BuiltinType::Float) { 3212 CR6 = CR6_LT; 3213 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3214 } 3215 else { 3216 CR6 = CR6_EQ; 3217 ID = GetIntrinsic(VCMPGT, ElementKind); 3218 std::swap(FirstVecArg, SecondVecArg); 3219 } 3220 break; 3221 } 3222 3223 Value *CR6Param = Builder.getInt32(CR6); 3224 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3225 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3226 3227 // The result type of intrinsic may not be same as E->getType(). 3228 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3229 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3230 // do nothing, if ResultTy is not i1 at the same time, it will cause 3231 // crash later. 3232 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3233 if (ResultTy->getBitWidth() > 1 && 3234 E->getType() == CGF.getContext().BoolTy) 3235 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3236 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3237 E->getExprLoc()); 3238 } 3239 3240 if (LHS->getType()->isFPOrFPVectorTy()) { 3241 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3242 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3243 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3244 } else { 3245 // Unsigned integers and pointers. 3246 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3247 } 3248 3249 // If this is a vector comparison, sign extend the result to the appropriate 3250 // vector integer type and return it (don't convert to bool). 3251 if (LHSTy->isVectorType()) 3252 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3253 3254 } else { 3255 // Complex Comparison: can only be an equality comparison. 3256 CodeGenFunction::ComplexPairTy LHS, RHS; 3257 QualType CETy; 3258 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3259 LHS = CGF.EmitComplexExpr(E->getLHS()); 3260 CETy = CTy->getElementType(); 3261 } else { 3262 LHS.first = Visit(E->getLHS()); 3263 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3264 CETy = LHSTy; 3265 } 3266 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3267 RHS = CGF.EmitComplexExpr(E->getRHS()); 3268 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3269 CTy->getElementType()) && 3270 "The element types must always match."); 3271 (void)CTy; 3272 } else { 3273 RHS.first = Visit(E->getRHS()); 3274 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3275 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3276 "The element types must always match."); 3277 } 3278 3279 Value *ResultR, *ResultI; 3280 if (CETy->isRealFloatingType()) { 3281 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3282 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3283 } else { 3284 // Complex comparisons can only be equality comparisons. As such, signed 3285 // and unsigned opcodes are the same. 3286 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3287 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3288 } 3289 3290 if (E->getOpcode() == BO_EQ) { 3291 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3292 } else { 3293 assert(E->getOpcode() == BO_NE && 3294 "Complex comparison other than == or != ?"); 3295 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3296 } 3297 } 3298 3299 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3300 E->getExprLoc()); 3301 } 3302 3303 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3304 bool Ignore = TestAndClearIgnoreResultAssign(); 3305 3306 Value *RHS; 3307 LValue LHS; 3308 3309 switch (E->getLHS()->getType().getObjCLifetime()) { 3310 case Qualifiers::OCL_Strong: 3311 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3312 break; 3313 3314 case Qualifiers::OCL_Autoreleasing: 3315 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3316 break; 3317 3318 case Qualifiers::OCL_ExplicitNone: 3319 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3320 break; 3321 3322 case Qualifiers::OCL_Weak: 3323 RHS = Visit(E->getRHS()); 3324 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3325 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3326 break; 3327 3328 case Qualifiers::OCL_None: 3329 // __block variables need to have the rhs evaluated first, plus 3330 // this should improve codegen just a little. 3331 RHS = Visit(E->getRHS()); 3332 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3333 3334 // Store the value into the LHS. Bit-fields are handled specially 3335 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3336 // 'An assignment expression has the value of the left operand after 3337 // the assignment...'. 3338 if (LHS.isBitField()) { 3339 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3340 } else { 3341 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3342 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3343 } 3344 } 3345 3346 // If the result is clearly ignored, return now. 3347 if (Ignore) 3348 return nullptr; 3349 3350 // The result of an assignment in C is the assigned r-value. 3351 if (!CGF.getLangOpts().CPlusPlus) 3352 return RHS; 3353 3354 // If the lvalue is non-volatile, return the computed value of the assignment. 3355 if (!LHS.isVolatileQualified()) 3356 return RHS; 3357 3358 // Otherwise, reload the value. 3359 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3360 } 3361 3362 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3363 // Perform vector logical and on comparisons with zero vectors. 3364 if (E->getType()->isVectorType()) { 3365 CGF.incrementProfileCounter(E); 3366 3367 Value *LHS = Visit(E->getLHS()); 3368 Value *RHS = Visit(E->getRHS()); 3369 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3370 if (LHS->getType()->isFPOrFPVectorTy()) { 3371 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3372 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3373 } else { 3374 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3375 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3376 } 3377 Value *And = Builder.CreateAnd(LHS, RHS); 3378 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3379 } 3380 3381 llvm::Type *ResTy = ConvertType(E->getType()); 3382 3383 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3384 // If we have 1 && X, just emit X without inserting the control flow. 3385 bool LHSCondVal; 3386 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3387 if (LHSCondVal) { // If we have 1 && X, just emit X. 3388 CGF.incrementProfileCounter(E); 3389 3390 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3391 // ZExt result to int or bool. 3392 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3393 } 3394 3395 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3396 if (!CGF.ContainsLabel(E->getRHS())) 3397 return llvm::Constant::getNullValue(ResTy); 3398 } 3399 3400 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3401 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3402 3403 CodeGenFunction::ConditionalEvaluation eval(CGF); 3404 3405 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3406 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3407 CGF.getProfileCount(E->getRHS())); 3408 3409 // Any edges into the ContBlock are now from an (indeterminate number of) 3410 // edges from this first condition. All of these values will be false. Start 3411 // setting up the PHI node in the Cont Block for this. 3412 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3413 "", ContBlock); 3414 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3415 PI != PE; ++PI) 3416 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3417 3418 eval.begin(CGF); 3419 CGF.EmitBlock(RHSBlock); 3420 CGF.incrementProfileCounter(E); 3421 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3422 eval.end(CGF); 3423 3424 // Reaquire the RHS block, as there may be subblocks inserted. 3425 RHSBlock = Builder.GetInsertBlock(); 3426 3427 // Emit an unconditional branch from this block to ContBlock. 3428 { 3429 // There is no need to emit line number for unconditional branch. 3430 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3431 CGF.EmitBlock(ContBlock); 3432 } 3433 // Insert an entry into the phi node for the edge with the value of RHSCond. 3434 PN->addIncoming(RHSCond, RHSBlock); 3435 3436 // ZExt result to int. 3437 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3438 } 3439 3440 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3441 // Perform vector logical or on comparisons with zero vectors. 3442 if (E->getType()->isVectorType()) { 3443 CGF.incrementProfileCounter(E); 3444 3445 Value *LHS = Visit(E->getLHS()); 3446 Value *RHS = Visit(E->getRHS()); 3447 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3448 if (LHS->getType()->isFPOrFPVectorTy()) { 3449 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3450 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3451 } else { 3452 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3453 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3454 } 3455 Value *Or = Builder.CreateOr(LHS, RHS); 3456 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3457 } 3458 3459 llvm::Type *ResTy = ConvertType(E->getType()); 3460 3461 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3462 // If we have 0 || X, just emit X without inserting the control flow. 3463 bool LHSCondVal; 3464 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3465 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3466 CGF.incrementProfileCounter(E); 3467 3468 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3469 // ZExt result to int or bool. 3470 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3471 } 3472 3473 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3474 if (!CGF.ContainsLabel(E->getRHS())) 3475 return llvm::ConstantInt::get(ResTy, 1); 3476 } 3477 3478 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3479 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3480 3481 CodeGenFunction::ConditionalEvaluation eval(CGF); 3482 3483 // Branch on the LHS first. If it is true, go to the success (cont) block. 3484 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3485 CGF.getCurrentProfileCount() - 3486 CGF.getProfileCount(E->getRHS())); 3487 3488 // Any edges into the ContBlock are now from an (indeterminate number of) 3489 // edges from this first condition. All of these values will be true. Start 3490 // setting up the PHI node in the Cont Block for this. 3491 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3492 "", ContBlock); 3493 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3494 PI != PE; ++PI) 3495 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3496 3497 eval.begin(CGF); 3498 3499 // Emit the RHS condition as a bool value. 3500 CGF.EmitBlock(RHSBlock); 3501 CGF.incrementProfileCounter(E); 3502 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3503 3504 eval.end(CGF); 3505 3506 // Reaquire the RHS block, as there may be subblocks inserted. 3507 RHSBlock = Builder.GetInsertBlock(); 3508 3509 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3510 // into the phi node for the edge with the value of RHSCond. 3511 CGF.EmitBlock(ContBlock); 3512 PN->addIncoming(RHSCond, RHSBlock); 3513 3514 // ZExt result to int. 3515 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3516 } 3517 3518 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3519 CGF.EmitIgnoredExpr(E->getLHS()); 3520 CGF.EnsureInsertPoint(); 3521 return Visit(E->getRHS()); 3522 } 3523 3524 //===----------------------------------------------------------------------===// 3525 // Other Operators 3526 //===----------------------------------------------------------------------===// 3527 3528 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3529 /// expression is cheap enough and side-effect-free enough to evaluate 3530 /// unconditionally instead of conditionally. This is used to convert control 3531 /// flow into selects in some cases. 3532 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3533 CodeGenFunction &CGF) { 3534 // Anything that is an integer or floating point constant is fine. 3535 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3536 3537 // Even non-volatile automatic variables can't be evaluated unconditionally. 3538 // Referencing a thread_local may cause non-trivial initialization work to 3539 // occur. If we're inside a lambda and one of the variables is from the scope 3540 // outside the lambda, that function may have returned already. Reading its 3541 // locals is a bad idea. Also, these reads may introduce races there didn't 3542 // exist in the source-level program. 3543 } 3544 3545 3546 Value *ScalarExprEmitter:: 3547 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3548 TestAndClearIgnoreResultAssign(); 3549 3550 // Bind the common expression if necessary. 3551 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3552 3553 Expr *condExpr = E->getCond(); 3554 Expr *lhsExpr = E->getTrueExpr(); 3555 Expr *rhsExpr = E->getFalseExpr(); 3556 3557 // If the condition constant folds and can be elided, try to avoid emitting 3558 // the condition and the dead arm. 3559 bool CondExprBool; 3560 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3561 Expr *live = lhsExpr, *dead = rhsExpr; 3562 if (!CondExprBool) std::swap(live, dead); 3563 3564 // If the dead side doesn't have labels we need, just emit the Live part. 3565 if (!CGF.ContainsLabel(dead)) { 3566 if (CondExprBool) 3567 CGF.incrementProfileCounter(E); 3568 Value *Result = Visit(live); 3569 3570 // If the live part is a throw expression, it acts like it has a void 3571 // type, so evaluating it returns a null Value*. However, a conditional 3572 // with non-void type must return a non-null Value*. 3573 if (!Result && !E->getType()->isVoidType()) 3574 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3575 3576 return Result; 3577 } 3578 } 3579 3580 // OpenCL: If the condition is a vector, we can treat this condition like 3581 // the select function. 3582 if (CGF.getLangOpts().OpenCL 3583 && condExpr->getType()->isVectorType()) { 3584 CGF.incrementProfileCounter(E); 3585 3586 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3587 llvm::Value *LHS = Visit(lhsExpr); 3588 llvm::Value *RHS = Visit(rhsExpr); 3589 3590 llvm::Type *condType = ConvertType(condExpr->getType()); 3591 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3592 3593 unsigned numElem = vecTy->getNumElements(); 3594 llvm::Type *elemType = vecTy->getElementType(); 3595 3596 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3597 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3598 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3599 llvm::VectorType::get(elemType, 3600 numElem), 3601 "sext"); 3602 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3603 3604 // Cast float to int to perform ANDs if necessary. 3605 llvm::Value *RHSTmp = RHS; 3606 llvm::Value *LHSTmp = LHS; 3607 bool wasCast = false; 3608 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3609 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3610 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3611 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3612 wasCast = true; 3613 } 3614 3615 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3616 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3617 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3618 if (wasCast) 3619 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3620 3621 return tmp5; 3622 } 3623 3624 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3625 // select instead of as control flow. We can only do this if it is cheap and 3626 // safe to evaluate the LHS and RHS unconditionally. 3627 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3628 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3629 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3630 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3631 3632 CGF.incrementProfileCounter(E, StepV); 3633 3634 llvm::Value *LHS = Visit(lhsExpr); 3635 llvm::Value *RHS = Visit(rhsExpr); 3636 if (!LHS) { 3637 // If the conditional has void type, make sure we return a null Value*. 3638 assert(!RHS && "LHS and RHS types must match"); 3639 return nullptr; 3640 } 3641 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3642 } 3643 3644 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3645 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3646 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3647 3648 CodeGenFunction::ConditionalEvaluation eval(CGF); 3649 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3650 CGF.getProfileCount(lhsExpr)); 3651 3652 CGF.EmitBlock(LHSBlock); 3653 CGF.incrementProfileCounter(E); 3654 eval.begin(CGF); 3655 Value *LHS = Visit(lhsExpr); 3656 eval.end(CGF); 3657 3658 LHSBlock = Builder.GetInsertBlock(); 3659 Builder.CreateBr(ContBlock); 3660 3661 CGF.EmitBlock(RHSBlock); 3662 eval.begin(CGF); 3663 Value *RHS = Visit(rhsExpr); 3664 eval.end(CGF); 3665 3666 RHSBlock = Builder.GetInsertBlock(); 3667 CGF.EmitBlock(ContBlock); 3668 3669 // If the LHS or RHS is a throw expression, it will be legitimately null. 3670 if (!LHS) 3671 return RHS; 3672 if (!RHS) 3673 return LHS; 3674 3675 // Create a PHI node for the real part. 3676 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3677 PN->addIncoming(LHS, LHSBlock); 3678 PN->addIncoming(RHS, RHSBlock); 3679 return PN; 3680 } 3681 3682 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3683 return Visit(E->getChosenSubExpr()); 3684 } 3685 3686 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3687 QualType Ty = VE->getType(); 3688 3689 if (Ty->isVariablyModifiedType()) 3690 CGF.EmitVariablyModifiedType(Ty); 3691 3692 Address ArgValue = Address::invalid(); 3693 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3694 3695 llvm::Type *ArgTy = ConvertType(VE->getType()); 3696 3697 // If EmitVAArg fails, emit an error. 3698 if (!ArgPtr.isValid()) { 3699 CGF.ErrorUnsupported(VE, "va_arg expression"); 3700 return llvm::UndefValue::get(ArgTy); 3701 } 3702 3703 // FIXME Volatility. 3704 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3705 3706 // If EmitVAArg promoted the type, we must truncate it. 3707 if (ArgTy != Val->getType()) { 3708 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3709 Val = Builder.CreateIntToPtr(Val, ArgTy); 3710 else 3711 Val = Builder.CreateTrunc(Val, ArgTy); 3712 } 3713 3714 return Val; 3715 } 3716 3717 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3718 return CGF.EmitBlockLiteral(block); 3719 } 3720 3721 // Convert a vec3 to vec4, or vice versa. 3722 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3723 Value *Src, unsigned NumElementsDst) { 3724 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3725 SmallVector<llvm::Constant*, 4> Args; 3726 Args.push_back(Builder.getInt32(0)); 3727 Args.push_back(Builder.getInt32(1)); 3728 Args.push_back(Builder.getInt32(2)); 3729 if (NumElementsDst == 4) 3730 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3731 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3732 return Builder.CreateShuffleVector(Src, UnV, Mask); 3733 } 3734 3735 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3736 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3737 // but could be scalar or vectors of different lengths, and either can be 3738 // pointer. 3739 // There are 4 cases: 3740 // 1. non-pointer -> non-pointer : needs 1 bitcast 3741 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3742 // 3. pointer -> non-pointer 3743 // a) pointer -> intptr_t : needs 1 ptrtoint 3744 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3745 // 4. non-pointer -> pointer 3746 // a) intptr_t -> pointer : needs 1 inttoptr 3747 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3748 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3749 // allow casting directly between pointer types and non-integer non-pointer 3750 // types. 3751 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3752 const llvm::DataLayout &DL, 3753 Value *Src, llvm::Type *DstTy, 3754 StringRef Name = "") { 3755 auto SrcTy = Src->getType(); 3756 3757 // Case 1. 3758 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3759 return Builder.CreateBitCast(Src, DstTy, Name); 3760 3761 // Case 2. 3762 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3763 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3764 3765 // Case 3. 3766 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3767 // Case 3b. 3768 if (!DstTy->isIntegerTy()) 3769 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3770 // Cases 3a and 3b. 3771 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3772 } 3773 3774 // Case 4b. 3775 if (!SrcTy->isIntegerTy()) 3776 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3777 // Cases 4a and 4b. 3778 return Builder.CreateIntToPtr(Src, DstTy, Name); 3779 } 3780 3781 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3782 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3783 llvm::Type *DstTy = ConvertType(E->getType()); 3784 3785 llvm::Type *SrcTy = Src->getType(); 3786 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3787 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3788 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3789 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3790 3791 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3792 // vector to get a vec4, then a bitcast if the target type is different. 3793 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3794 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3795 3796 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3797 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3798 DstTy); 3799 } 3800 3801 Src->setName("astype"); 3802 return Src; 3803 } 3804 3805 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3806 // to vec4 if the original type is not vec4, then a shuffle vector to 3807 // get a vec3. 3808 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3809 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3810 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3811 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3812 Vec4Ty); 3813 } 3814 3815 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3816 Src->setName("astype"); 3817 return Src; 3818 } 3819 3820 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3821 Src, DstTy, "astype"); 3822 } 3823 3824 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3825 return CGF.EmitAtomicExpr(E).getScalarVal(); 3826 } 3827 3828 //===----------------------------------------------------------------------===// 3829 // Entry Point into this File 3830 //===----------------------------------------------------------------------===// 3831 3832 /// Emit the computation of the specified expression of scalar type, ignoring 3833 /// the result. 3834 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3835 assert(E && hasScalarEvaluationKind(E->getType()) && 3836 "Invalid scalar expression to emit"); 3837 3838 return ScalarExprEmitter(*this, IgnoreResultAssign) 3839 .Visit(const_cast<Expr *>(E)); 3840 } 3841 3842 /// Emit a conversion from the specified type to the specified destination type, 3843 /// both of which are LLVM scalar types. 3844 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3845 QualType DstTy, 3846 SourceLocation Loc) { 3847 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3848 "Invalid scalar expression to emit"); 3849 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3850 } 3851 3852 /// Emit a conversion from the specified complex type to the specified 3853 /// destination type, where the destination type is an LLVM scalar type. 3854 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3855 QualType SrcTy, 3856 QualType DstTy, 3857 SourceLocation Loc) { 3858 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3859 "Invalid complex -> scalar conversion"); 3860 return ScalarExprEmitter(*this) 3861 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3862 } 3863 3864 3865 llvm::Value *CodeGenFunction:: 3866 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3867 bool isInc, bool isPre) { 3868 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3869 } 3870 3871 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3872 // object->isa or (*object).isa 3873 // Generate code as for: *(Class*)object 3874 3875 Expr *BaseExpr = E->getBase(); 3876 Address Addr = Address::invalid(); 3877 if (BaseExpr->isRValue()) { 3878 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3879 } else { 3880 Addr = EmitLValue(BaseExpr).getAddress(); 3881 } 3882 3883 // Cast the address to Class*. 3884 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3885 return MakeAddrLValue(Addr, E->getType()); 3886 } 3887 3888 3889 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3890 const CompoundAssignOperator *E) { 3891 ScalarExprEmitter Scalar(*this); 3892 Value *Result = nullptr; 3893 switch (E->getOpcode()) { 3894 #define COMPOUND_OP(Op) \ 3895 case BO_##Op##Assign: \ 3896 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3897 Result) 3898 COMPOUND_OP(Mul); 3899 COMPOUND_OP(Div); 3900 COMPOUND_OP(Rem); 3901 COMPOUND_OP(Add); 3902 COMPOUND_OP(Sub); 3903 COMPOUND_OP(Shl); 3904 COMPOUND_OP(Shr); 3905 COMPOUND_OP(And); 3906 COMPOUND_OP(Xor); 3907 COMPOUND_OP(Or); 3908 #undef COMPOUND_OP 3909 3910 case BO_PtrMemD: 3911 case BO_PtrMemI: 3912 case BO_Mul: 3913 case BO_Div: 3914 case BO_Rem: 3915 case BO_Add: 3916 case BO_Sub: 3917 case BO_Shl: 3918 case BO_Shr: 3919 case BO_LT: 3920 case BO_GT: 3921 case BO_LE: 3922 case BO_GE: 3923 case BO_EQ: 3924 case BO_NE: 3925 case BO_Cmp: 3926 case BO_And: 3927 case BO_Xor: 3928 case BO_Or: 3929 case BO_LAnd: 3930 case BO_LOr: 3931 case BO_Assign: 3932 case BO_Comma: 3933 llvm_unreachable("Not valid compound assignment operators"); 3934 } 3935 3936 llvm_unreachable("Unhandled compound assignment operator"); 3937 } 3938 3939 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 3940 ArrayRef<Value *> IdxList, 3941 bool SignedIndices, 3942 bool IsSubtraction, 3943 SourceLocation Loc, 3944 const Twine &Name) { 3945 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 3946 3947 // If the pointer overflow sanitizer isn't enabled, do nothing. 3948 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 3949 return GEPVal; 3950 3951 // If the GEP has already been reduced to a constant, leave it be. 3952 if (isa<llvm::Constant>(GEPVal)) 3953 return GEPVal; 3954 3955 // Only check for overflows in the default address space. 3956 if (GEPVal->getType()->getPointerAddressSpace()) 3957 return GEPVal; 3958 3959 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 3960 assert(GEP->isInBounds() && "Expected inbounds GEP"); 3961 3962 SanitizerScope SanScope(this); 3963 auto &VMContext = getLLVMContext(); 3964 const auto &DL = CGM.getDataLayout(); 3965 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 3966 3967 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 3968 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 3969 auto *SAddIntrinsic = 3970 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 3971 auto *SMulIntrinsic = 3972 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 3973 3974 // The total (signed) byte offset for the GEP. 3975 llvm::Value *TotalOffset = nullptr; 3976 // The offset overflow flag - true if the total offset overflows. 3977 llvm::Value *OffsetOverflows = Builder.getFalse(); 3978 3979 /// Return the result of the given binary operation. 3980 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 3981 llvm::Value *RHS) -> llvm::Value * { 3982 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 3983 3984 // If the operands are constants, return a constant result. 3985 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 3986 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 3987 llvm::APInt N; 3988 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 3989 /*Signed=*/true, N); 3990 if (HasOverflow) 3991 OffsetOverflows = Builder.getTrue(); 3992 return llvm::ConstantInt::get(VMContext, N); 3993 } 3994 } 3995 3996 // Otherwise, compute the result with checked arithmetic. 3997 auto *ResultAndOverflow = Builder.CreateCall( 3998 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 3999 OffsetOverflows = Builder.CreateOr( 4000 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4001 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4002 }; 4003 4004 // Determine the total byte offset by looking at each GEP operand. 4005 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4006 GTI != GTE; ++GTI) { 4007 llvm::Value *LocalOffset; 4008 auto *Index = GTI.getOperand(); 4009 // Compute the local offset contributed by this indexing step: 4010 if (auto *STy = GTI.getStructTypeOrNull()) { 4011 // For struct indexing, the local offset is the byte position of the 4012 // specified field. 4013 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4014 LocalOffset = llvm::ConstantInt::get( 4015 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4016 } else { 4017 // Otherwise this is array-like indexing. The local offset is the index 4018 // multiplied by the element size. 4019 auto *ElementSize = llvm::ConstantInt::get( 4020 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4021 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4022 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4023 } 4024 4025 // If this is the first offset, set it as the total offset. Otherwise, add 4026 // the local offset into the running total. 4027 if (!TotalOffset || TotalOffset == Zero) 4028 TotalOffset = LocalOffset; 4029 else 4030 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4031 } 4032 4033 // Common case: if the total offset is zero, don't emit a check. 4034 if (TotalOffset == Zero) 4035 return GEPVal; 4036 4037 // Now that we've computed the total offset, add it to the base pointer (with 4038 // wrapping semantics). 4039 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4040 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4041 4042 // The GEP is valid if: 4043 // 1) The total offset doesn't overflow, and 4044 // 2) The sign of the difference between the computed address and the base 4045 // pointer matches the sign of the total offset. 4046 llvm::Value *ValidGEP; 4047 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4048 if (SignedIndices) { 4049 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4050 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4051 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4052 ValidGEP = Builder.CreateAnd( 4053 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4054 NoOffsetOverflow); 4055 } else if (!SignedIndices && !IsSubtraction) { 4056 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4057 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4058 } else { 4059 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4060 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4061 } 4062 4063 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4064 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4065 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4066 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4067 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4068 4069 return GEPVal; 4070 } 4071