1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "clang/Frontend/CodeGenOptions.h"
15 #include "CodeGenFunction.h"
16 #include "CGCXXABI.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "CGDebugInfo.h"
20 #include "clang/AST/ASTContext.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/AST/StmtVisitor.h"
24 #include "clang/Basic/TargetInfo.h"
25 #include "llvm/Constants.h"
26 #include "llvm/Function.h"
27 #include "llvm/GlobalVariable.h"
28 #include "llvm/Intrinsics.h"
29 #include "llvm/Module.h"
30 #include "llvm/Support/CFG.h"
31 #include "llvm/Target/TargetData.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
49 };
50 
51 static bool MustVisitNullValue(const Expr *E) {
52   // If a null pointer expression's type is the C++0x nullptr_t, then
53   // it's not necessarily a simple constant and it must be evaluated
54   // for its potential side effects.
55   return E->getType()->isNullPtrType();
56 }
57 
58 class ScalarExprEmitter
59   : public StmtVisitor<ScalarExprEmitter, Value*> {
60   CodeGenFunction &CGF;
61   CGBuilderTy &Builder;
62   bool IgnoreResultAssign;
63   llvm::LLVMContext &VMContext;
64 public:
65 
66   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
67     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
68       VMContext(cgf.getLLVMContext()) {
69   }
70 
71   //===--------------------------------------------------------------------===//
72   //                               Utilities
73   //===--------------------------------------------------------------------===//
74 
75   bool TestAndClearIgnoreResultAssign() {
76     bool I = IgnoreResultAssign;
77     IgnoreResultAssign = false;
78     return I;
79   }
80 
81   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
82   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
83   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
84 
85   Value *EmitLoadOfLValue(LValue LV, QualType T) {
86     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
87   }
88 
89   /// EmitLoadOfLValue - Given an expression with complex type that represents a
90   /// value l-value, this method emits the address of the l-value, then loads
91   /// and returns the result.
92   Value *EmitLoadOfLValue(const Expr *E) {
93     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
94   }
95 
96   /// EmitConversionToBool - Convert the specified expression value to a
97   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
98   Value *EmitConversionToBool(Value *Src, QualType DstTy);
99 
100   /// EmitScalarConversion - Emit a conversion from the specified type to the
101   /// specified destination type, both of which are LLVM scalar types.
102   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
103 
104   /// EmitComplexToScalarConversion - Emit a conversion from the specified
105   /// complex type to the specified destination type, where the destination type
106   /// is an LLVM scalar type.
107   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
108                                        QualType SrcTy, QualType DstTy);
109 
110   /// EmitNullValue - Emit a value that corresponds to null for the given type.
111   Value *EmitNullValue(QualType Ty);
112 
113   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
114   Value *EmitFloatToBoolConversion(Value *V) {
115     // Compare against 0.0 for fp scalars.
116     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
117     return Builder.CreateFCmpUNE(V, Zero, "tobool");
118   }
119 
120   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
121   Value *EmitPointerToBoolConversion(Value *V) {
122     Value *Zero = llvm::ConstantPointerNull::get(
123                                       cast<llvm::PointerType>(V->getType()));
124     return Builder.CreateICmpNE(V, Zero, "tobool");
125   }
126 
127   Value *EmitIntToBoolConversion(Value *V) {
128     // Because of the type rules of C, we often end up computing a
129     // logical value, then zero extending it to int, then wanting it
130     // as a logical value again.  Optimize this common case.
131     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
132       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
133         Value *Result = ZI->getOperand(0);
134         // If there aren't any more uses, zap the instruction to save space.
135         // Note that there can be more uses, for example if this
136         // is the result of an assignment.
137         if (ZI->use_empty())
138           ZI->eraseFromParent();
139         return Result;
140       }
141     }
142 
143     return Builder.CreateIsNotNull(V, "tobool");
144   }
145 
146   //===--------------------------------------------------------------------===//
147   //                            Visitor Methods
148   //===--------------------------------------------------------------------===//
149 
150   Value *Visit(Expr *E) {
151     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
152   }
153 
154   Value *VisitStmt(Stmt *S) {
155     S->dump(CGF.getContext().getSourceManager());
156     assert(0 && "Stmt can't have complex result type!");
157     return 0;
158   }
159   Value *VisitExpr(Expr *S);
160 
161   Value *VisitParenExpr(ParenExpr *PE) {
162     return Visit(PE->getSubExpr());
163   }
164   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
165     return Visit(GE->getResultExpr());
166   }
167 
168   // Leaves.
169   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
170     return Builder.getInt(E->getValue());
171   }
172   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
173     return llvm::ConstantFP::get(VMContext, E->getValue());
174   }
175   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
176     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
177   }
178   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
179     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
180   }
181   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
182     return EmitNullValue(E->getType());
183   }
184   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
185     return EmitNullValue(E->getType());
186   }
187   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
188   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
189   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
190     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
191     return Builder.CreateBitCast(V, ConvertType(E->getType()));
192   }
193 
194   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
196   }
197 
198   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
199     if (E->isGLValue())
200       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getType());
201 
202     // Otherwise, assume the mapping is the scalar directly.
203     return CGF.getOpaqueRValueMapping(E).getScalarVal();
204   }
205 
206   // l-values.
207   Value *VisitDeclRefExpr(DeclRefExpr *E) {
208     Expr::EvalResult Result;
209     if (!E->Evaluate(Result, CGF.getContext()))
210       return EmitLoadOfLValue(E);
211 
212     assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
213 
214     llvm::Constant *C;
215     if (Result.Val.isInt())
216       C = Builder.getInt(Result.Val.getInt());
217     else if (Result.Val.isFloat())
218       C = llvm::ConstantFP::get(VMContext, Result.Val.getFloat());
219     else
220       return EmitLoadOfLValue(E);
221 
222     // Make sure we emit a debug reference to the global variable.
223     if (VarDecl *VD = dyn_cast<VarDecl>(E->getDecl())) {
224       if (!CGF.getContext().DeclMustBeEmitted(VD))
225         CGF.EmitDeclRefExprDbgValue(E, C);
226     } else if (isa<EnumConstantDecl>(E->getDecl())) {
227       CGF.EmitDeclRefExprDbgValue(E, C);
228     }
229 
230     return C;
231   }
232   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
233     return CGF.EmitObjCSelectorExpr(E);
234   }
235   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
236     return CGF.EmitObjCProtocolExpr(E);
237   }
238   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
239     return EmitLoadOfLValue(E);
240   }
241   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
242     assert(E->getObjectKind() == OK_Ordinary &&
243            "reached property reference without lvalue-to-rvalue");
244     return EmitLoadOfLValue(E);
245   }
246   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
247     if (E->getMethodDecl() &&
248         E->getMethodDecl()->getResultType()->isReferenceType())
249       return EmitLoadOfLValue(E);
250     return CGF.EmitObjCMessageExpr(E).getScalarVal();
251   }
252 
253   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
254     LValue LV = CGF.EmitObjCIsaExpr(E);
255     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
256     return V;
257   }
258 
259   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
260   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
261   Value *VisitMemberExpr(MemberExpr *E);
262   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
263   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
264     return EmitLoadOfLValue(E);
265   }
266 
267   Value *VisitInitListExpr(InitListExpr *E);
268 
269   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
270     return CGF.CGM.EmitNullConstant(E->getType());
271   }
272   Value *VisitCastExpr(CastExpr *E) {
273     // Make sure to evaluate VLA bounds now so that we have them for later.
274     if (E->getType()->isVariablyModifiedType())
275       CGF.EmitVLASize(E->getType());
276 
277     return EmitCastExpr(E);
278   }
279   Value *EmitCastExpr(CastExpr *E);
280 
281   Value *VisitCallExpr(const CallExpr *E) {
282     if (E->getCallReturnType()->isReferenceType())
283       return EmitLoadOfLValue(E);
284 
285     return CGF.EmitCallExpr(E).getScalarVal();
286   }
287 
288   Value *VisitStmtExpr(const StmtExpr *E);
289 
290   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
291 
292   // Unary Operators.
293   Value *VisitUnaryPostDec(const UnaryOperator *E) {
294     LValue LV = EmitLValue(E->getSubExpr());
295     return EmitScalarPrePostIncDec(E, LV, false, false);
296   }
297   Value *VisitUnaryPostInc(const UnaryOperator *E) {
298     LValue LV = EmitLValue(E->getSubExpr());
299     return EmitScalarPrePostIncDec(E, LV, true, false);
300   }
301   Value *VisitUnaryPreDec(const UnaryOperator *E) {
302     LValue LV = EmitLValue(E->getSubExpr());
303     return EmitScalarPrePostIncDec(E, LV, false, true);
304   }
305   Value *VisitUnaryPreInc(const UnaryOperator *E) {
306     LValue LV = EmitLValue(E->getSubExpr());
307     return EmitScalarPrePostIncDec(E, LV, true, true);
308   }
309 
310   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
311                                                llvm::Value *InVal,
312                                                llvm::Value *NextVal,
313                                                bool IsInc);
314 
315   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
316                                        bool isInc, bool isPre);
317 
318 
319   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
320     if (isa<MemberPointerType>(E->getType())) // never sugared
321       return CGF.CGM.getMemberPointerConstant(E);
322 
323     return EmitLValue(E->getSubExpr()).getAddress();
324   }
325   Value *VisitUnaryDeref(const UnaryOperator *E) {
326     if (E->getType()->isVoidType())
327       return Visit(E->getSubExpr()); // the actual value should be unused
328     return EmitLoadOfLValue(E);
329   }
330   Value *VisitUnaryPlus(const UnaryOperator *E) {
331     // This differs from gcc, though, most likely due to a bug in gcc.
332     TestAndClearIgnoreResultAssign();
333     return Visit(E->getSubExpr());
334   }
335   Value *VisitUnaryMinus    (const UnaryOperator *E);
336   Value *VisitUnaryNot      (const UnaryOperator *E);
337   Value *VisitUnaryLNot     (const UnaryOperator *E);
338   Value *VisitUnaryReal     (const UnaryOperator *E);
339   Value *VisitUnaryImag     (const UnaryOperator *E);
340   Value *VisitUnaryExtension(const UnaryOperator *E) {
341     return Visit(E->getSubExpr());
342   }
343 
344   // C++
345   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
346     return Visit(DAE->getExpr());
347   }
348   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
349     return CGF.LoadCXXThis();
350   }
351 
352   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
353     return CGF.EmitExprWithCleanups(E).getScalarVal();
354   }
355   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
356     return CGF.EmitCXXNewExpr(E);
357   }
358   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
359     CGF.EmitCXXDeleteExpr(E);
360     return 0;
361   }
362   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
363     return Builder.getInt1(E->getValue());
364   }
365 
366   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
367     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
368   }
369 
370   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
371     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
372   }
373 
374   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
375     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
376   }
377 
378   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
379     // C++ [expr.pseudo]p1:
380     //   The result shall only be used as the operand for the function call
381     //   operator (), and the result of such a call has type void. The only
382     //   effect is the evaluation of the postfix-expression before the dot or
383     //   arrow.
384     CGF.EmitScalarExpr(E->getBase());
385     return 0;
386   }
387 
388   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
389     return EmitNullValue(E->getType());
390   }
391 
392   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
393     CGF.EmitCXXThrowExpr(E);
394     return 0;
395   }
396 
397   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
398     return Builder.getInt1(E->getValue());
399   }
400 
401   // Binary Operators.
402   Value *EmitMul(const BinOpInfo &Ops) {
403     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
404       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
405       case LangOptions::SOB_Undefined:
406         return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
407       case LangOptions::SOB_Defined:
408         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
409       case LangOptions::SOB_Trapping:
410         return EmitOverflowCheckedBinOp(Ops);
411       }
412     }
413 
414     if (Ops.LHS->getType()->isFPOrFPVectorTy())
415       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
416     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
417   }
418   bool isTrapvOverflowBehavior() {
419     return CGF.getContext().getLangOptions().getSignedOverflowBehavior()
420                == LangOptions::SOB_Trapping;
421   }
422   /// Create a binary op that checks for overflow.
423   /// Currently only supports +, - and *.
424   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
425   // Emit the overflow BB when -ftrapv option is activated.
426   void EmitOverflowBB(llvm::BasicBlock *overflowBB) {
427     Builder.SetInsertPoint(overflowBB);
428     llvm::Function *Trap = CGF.CGM.getIntrinsic(llvm::Intrinsic::trap);
429     Builder.CreateCall(Trap);
430     Builder.CreateUnreachable();
431   }
432   // Check for undefined division and modulus behaviors.
433   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434                                                   llvm::Value *Zero,bool isDiv);
435   Value *EmitDiv(const BinOpInfo &Ops);
436   Value *EmitRem(const BinOpInfo &Ops);
437   Value *EmitAdd(const BinOpInfo &Ops);
438   Value *EmitSub(const BinOpInfo &Ops);
439   Value *EmitShl(const BinOpInfo &Ops);
440   Value *EmitShr(const BinOpInfo &Ops);
441   Value *EmitAnd(const BinOpInfo &Ops) {
442     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
443   }
444   Value *EmitXor(const BinOpInfo &Ops) {
445     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
446   }
447   Value *EmitOr (const BinOpInfo &Ops) {
448     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
449   }
450 
451   BinOpInfo EmitBinOps(const BinaryOperator *E);
452   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
453                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
454                                   Value *&Result);
455 
456   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
457                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
458 
459   // Binary operators and binary compound assignment operators.
460 #define HANDLEBINOP(OP) \
461   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
462     return Emit ## OP(EmitBinOps(E));                                      \
463   }                                                                        \
464   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
465     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
466   }
467   HANDLEBINOP(Mul)
468   HANDLEBINOP(Div)
469   HANDLEBINOP(Rem)
470   HANDLEBINOP(Add)
471   HANDLEBINOP(Sub)
472   HANDLEBINOP(Shl)
473   HANDLEBINOP(Shr)
474   HANDLEBINOP(And)
475   HANDLEBINOP(Xor)
476   HANDLEBINOP(Or)
477 #undef HANDLEBINOP
478 
479   // Comparisons.
480   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
481                      unsigned SICmpOpc, unsigned FCmpOpc);
482 #define VISITCOMP(CODE, UI, SI, FP) \
483     Value *VisitBin##CODE(const BinaryOperator *E) { \
484       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
485                          llvm::FCmpInst::FP); }
486   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
487   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
488   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
489   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
490   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
491   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
492 #undef VISITCOMP
493 
494   Value *VisitBinAssign     (const BinaryOperator *E);
495 
496   Value *VisitBinLAnd       (const BinaryOperator *E);
497   Value *VisitBinLOr        (const BinaryOperator *E);
498   Value *VisitBinComma      (const BinaryOperator *E);
499 
500   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
501   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
502 
503   // Other Operators.
504   Value *VisitBlockExpr(const BlockExpr *BE);
505   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
506   Value *VisitChooseExpr(ChooseExpr *CE);
507   Value *VisitVAArgExpr(VAArgExpr *VE);
508   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
509     return CGF.EmitObjCStringLiteral(E);
510   }
511   Value *VisitAsTypeExpr(AsTypeExpr *CE);
512 };
513 }  // end anonymous namespace.
514 
515 //===----------------------------------------------------------------------===//
516 //                                Utilities
517 //===----------------------------------------------------------------------===//
518 
519 /// EmitConversionToBool - Convert the specified expression value to a
520 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
521 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
522   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
523 
524   if (SrcType->isRealFloatingType())
525     return EmitFloatToBoolConversion(Src);
526 
527   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
528     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
529 
530   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
531          "Unknown scalar type to convert");
532 
533   if (isa<llvm::IntegerType>(Src->getType()))
534     return EmitIntToBoolConversion(Src);
535 
536   assert(isa<llvm::PointerType>(Src->getType()));
537   return EmitPointerToBoolConversion(Src);
538 }
539 
540 /// EmitScalarConversion - Emit a conversion from the specified type to the
541 /// specified destination type, both of which are LLVM scalar types.
542 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
543                                                QualType DstType) {
544   SrcType = CGF.getContext().getCanonicalType(SrcType);
545   DstType = CGF.getContext().getCanonicalType(DstType);
546   if (SrcType == DstType) return Src;
547 
548   if (DstType->isVoidType()) return 0;
549 
550   // Handle conversions to bool first, they are special: comparisons against 0.
551   if (DstType->isBooleanType())
552     return EmitConversionToBool(Src, SrcType);
553 
554   const llvm::Type *DstTy = ConvertType(DstType);
555 
556   // Ignore conversions like int -> uint.
557   if (Src->getType() == DstTy)
558     return Src;
559 
560   // Handle pointer conversions next: pointers can only be converted to/from
561   // other pointers and integers. Check for pointer types in terms of LLVM, as
562   // some native types (like Obj-C id) may map to a pointer type.
563   if (isa<llvm::PointerType>(DstTy)) {
564     // The source value may be an integer, or a pointer.
565     if (isa<llvm::PointerType>(Src->getType()))
566       return Builder.CreateBitCast(Src, DstTy, "conv");
567 
568     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
569     // First, convert to the correct width so that we control the kind of
570     // extension.
571     const llvm::Type *MiddleTy = CGF.IntPtrTy;
572     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
573     llvm::Value* IntResult =
574         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
575     // Then, cast to pointer.
576     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
577   }
578 
579   if (isa<llvm::PointerType>(Src->getType())) {
580     // Must be an ptr to int cast.
581     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
582     return Builder.CreatePtrToInt(Src, DstTy, "conv");
583   }
584 
585   // A scalar can be splatted to an extended vector of the same element type
586   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
587     // Cast the scalar to element type
588     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
589     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
590 
591     // Insert the element in element zero of an undef vector
592     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
593     llvm::Value *Idx = Builder.getInt32(0);
594     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
595 
596     // Splat the element across to all elements
597     llvm::SmallVector<llvm::Constant*, 16> Args;
598     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
599     for (unsigned i = 0; i != NumElements; ++i)
600       Args.push_back(Builder.getInt32(0));
601 
602     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
603     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
604     return Yay;
605   }
606 
607   // Allow bitcast from vector to integer/fp of the same size.
608   if (isa<llvm::VectorType>(Src->getType()) ||
609       isa<llvm::VectorType>(DstTy))
610     return Builder.CreateBitCast(Src, DstTy, "conv");
611 
612   // Finally, we have the arithmetic types: real int/float.
613   if (isa<llvm::IntegerType>(Src->getType())) {
614     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
615     if (isa<llvm::IntegerType>(DstTy))
616       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
617     else if (InputSigned)
618       return Builder.CreateSIToFP(Src, DstTy, "conv");
619     else
620       return Builder.CreateUIToFP(Src, DstTy, "conv");
621   }
622 
623   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
624   if (isa<llvm::IntegerType>(DstTy)) {
625     if (DstType->isSignedIntegerOrEnumerationType())
626       return Builder.CreateFPToSI(Src, DstTy, "conv");
627     else
628       return Builder.CreateFPToUI(Src, DstTy, "conv");
629   }
630 
631   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
632   if (DstTy->getTypeID() < Src->getType()->getTypeID())
633     return Builder.CreateFPTrunc(Src, DstTy, "conv");
634   else
635     return Builder.CreateFPExt(Src, DstTy, "conv");
636 }
637 
638 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
639 /// type to the specified destination type, where the destination type is an
640 /// LLVM scalar type.
641 Value *ScalarExprEmitter::
642 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
643                               QualType SrcTy, QualType DstTy) {
644   // Get the source element type.
645   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
646 
647   // Handle conversions to bool first, they are special: comparisons against 0.
648   if (DstTy->isBooleanType()) {
649     //  Complex != 0  -> (Real != 0) | (Imag != 0)
650     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
651     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
652     return Builder.CreateOr(Src.first, Src.second, "tobool");
653   }
654 
655   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
656   // the imaginary part of the complex value is discarded and the value of the
657   // real part is converted according to the conversion rules for the
658   // corresponding real type.
659   return EmitScalarConversion(Src.first, SrcTy, DstTy);
660 }
661 
662 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
663   if (const MemberPointerType *MPT = Ty->getAs<MemberPointerType>())
664     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
665 
666   return llvm::Constant::getNullValue(ConvertType(Ty));
667 }
668 
669 //===----------------------------------------------------------------------===//
670 //                            Visitor Methods
671 //===----------------------------------------------------------------------===//
672 
673 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
674   CGF.ErrorUnsupported(E, "scalar expression");
675   if (E->getType()->isVoidType())
676     return 0;
677   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
678 }
679 
680 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
681   // Vector Mask Case
682   if (E->getNumSubExprs() == 2 ||
683       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
684     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
685     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
686     Value *Mask;
687 
688     const llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
689     unsigned LHSElts = LTy->getNumElements();
690 
691     if (E->getNumSubExprs() == 3) {
692       Mask = CGF.EmitScalarExpr(E->getExpr(2));
693 
694       // Shuffle LHS & RHS into one input vector.
695       llvm::SmallVector<llvm::Constant*, 32> concat;
696       for (unsigned i = 0; i != LHSElts; ++i) {
697         concat.push_back(Builder.getInt32(2*i));
698         concat.push_back(Builder.getInt32(2*i+1));
699       }
700 
701       Value* CV = llvm::ConstantVector::get(concat);
702       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
703       LHSElts *= 2;
704     } else {
705       Mask = RHS;
706     }
707 
708     const llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
709     llvm::Constant* EltMask;
710 
711     // Treat vec3 like vec4.
712     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
713       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
714                                        (1 << llvm::Log2_32(LHSElts+2))-1);
715     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
716       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
717                                        (1 << llvm::Log2_32(LHSElts+1))-1);
718     else
719       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
720                                        (1 << llvm::Log2_32(LHSElts))-1);
721 
722     // Mask off the high bits of each shuffle index.
723     llvm::SmallVector<llvm::Constant *, 32> MaskV;
724     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i)
725       MaskV.push_back(EltMask);
726 
727     Value* MaskBits = llvm::ConstantVector::get(MaskV);
728     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
729 
730     // newv = undef
731     // mask = mask & maskbits
732     // for each elt
733     //   n = extract mask i
734     //   x = extract val n
735     //   newv = insert newv, x, i
736     const llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
737                                                         MTy->getNumElements());
738     Value* NewV = llvm::UndefValue::get(RTy);
739     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
740       Value *Indx = Builder.getInt32(i);
741       Indx = Builder.CreateExtractElement(Mask, Indx, "shuf_idx");
742       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
743 
744       // Handle vec3 special since the index will be off by one for the RHS.
745       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
746         Value *cmpIndx, *newIndx;
747         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
748                                         "cmp_shuf_idx");
749         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
750         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
751       }
752       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
753       NewV = Builder.CreateInsertElement(NewV, VExt, Indx, "shuf_ins");
754     }
755     return NewV;
756   }
757 
758   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
759   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
760 
761   // Handle vec3 special since the index will be off by one for the RHS.
762   const llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
763   llvm::SmallVector<llvm::Constant*, 32> indices;
764   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
765     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
766     if (VTy->getNumElements() == 3 && Idx > 3)
767       Idx -= 1;
768     indices.push_back(Builder.getInt32(Idx));
769   }
770 
771   Value *SV = llvm::ConstantVector::get(indices);
772   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
773 }
774 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
775   Expr::EvalResult Result;
776   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
777     if (E->isArrow())
778       CGF.EmitScalarExpr(E->getBase());
779     else
780       EmitLValue(E->getBase());
781     return Builder.getInt(Result.Val.getInt());
782   }
783 
784   // Emit debug info for aggregate now, if it was delayed to reduce
785   // debug info size.
786   CGDebugInfo *DI = CGF.getDebugInfo();
787   if (DI && CGF.CGM.getCodeGenOpts().LimitDebugInfo) {
788     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
789     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
790       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
791         DI->getOrCreateRecordType(PTy->getPointeeType(),
792                                   M->getParent()->getLocation());
793   }
794   return EmitLoadOfLValue(E);
795 }
796 
797 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
798   TestAndClearIgnoreResultAssign();
799 
800   // Emit subscript expressions in rvalue context's.  For most cases, this just
801   // loads the lvalue formed by the subscript expr.  However, we have to be
802   // careful, because the base of a vector subscript is occasionally an rvalue,
803   // so we can't get it as an lvalue.
804   if (!E->getBase()->getType()->isVectorType())
805     return EmitLoadOfLValue(E);
806 
807   // Handle the vector case.  The base must be a vector, the index must be an
808   // integer value.
809   Value *Base = Visit(E->getBase());
810   Value *Idx  = Visit(E->getIdx());
811   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerOrEnumerationType();
812   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
813   return Builder.CreateExtractElement(Base, Idx, "vecext");
814 }
815 
816 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
817                                   unsigned Off, const llvm::Type *I32Ty) {
818   int MV = SVI->getMaskValue(Idx);
819   if (MV == -1)
820     return llvm::UndefValue::get(I32Ty);
821   return llvm::ConstantInt::get(I32Ty, Off+MV);
822 }
823 
824 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
825   bool Ignore = TestAndClearIgnoreResultAssign();
826   (void)Ignore;
827   assert (Ignore == false && "init list ignored");
828   unsigned NumInitElements = E->getNumInits();
829 
830   if (E->hadArrayRangeDesignator())
831     CGF.ErrorUnsupported(E, "GNU array range designator extension");
832 
833   const llvm::VectorType *VType =
834     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
835 
836   // We have a scalar in braces. Just use the first element.
837   if (!VType)
838     return Visit(E->getInit(0));
839 
840   unsigned ResElts = VType->getNumElements();
841 
842   // Loop over initializers collecting the Value for each, and remembering
843   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
844   // us to fold the shuffle for the swizzle into the shuffle for the vector
845   // initializer, since LLVM optimizers generally do not want to touch
846   // shuffles.
847   unsigned CurIdx = 0;
848   bool VIsUndefShuffle = false;
849   llvm::Value *V = llvm::UndefValue::get(VType);
850   for (unsigned i = 0; i != NumInitElements; ++i) {
851     Expr *IE = E->getInit(i);
852     Value *Init = Visit(IE);
853     llvm::SmallVector<llvm::Constant*, 16> Args;
854 
855     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
856 
857     // Handle scalar elements.  If the scalar initializer is actually one
858     // element of a different vector of the same width, use shuffle instead of
859     // extract+insert.
860     if (!VVT) {
861       if (isa<ExtVectorElementExpr>(IE)) {
862         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
863 
864         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
865           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
866           Value *LHS = 0, *RHS = 0;
867           if (CurIdx == 0) {
868             // insert into undef -> shuffle (src, undef)
869             Args.push_back(C);
870             for (unsigned j = 1; j != ResElts; ++j)
871               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
872 
873             LHS = EI->getVectorOperand();
874             RHS = V;
875             VIsUndefShuffle = true;
876           } else if (VIsUndefShuffle) {
877             // insert into undefshuffle && size match -> shuffle (v, src)
878             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
879             for (unsigned j = 0; j != CurIdx; ++j)
880               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
881             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
882             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
883               Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
884 
885             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
886             RHS = EI->getVectorOperand();
887             VIsUndefShuffle = false;
888           }
889           if (!Args.empty()) {
890             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
891             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
892             ++CurIdx;
893             continue;
894           }
895         }
896       }
897       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
898                                       "vecinit");
899       VIsUndefShuffle = false;
900       ++CurIdx;
901       continue;
902     }
903 
904     unsigned InitElts = VVT->getNumElements();
905 
906     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
907     // input is the same width as the vector being constructed, generate an
908     // optimized shuffle of the swizzle input into the result.
909     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
910     if (isa<ExtVectorElementExpr>(IE)) {
911       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
912       Value *SVOp = SVI->getOperand(0);
913       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
914 
915       if (OpTy->getNumElements() == ResElts) {
916         for (unsigned j = 0; j != CurIdx; ++j) {
917           // If the current vector initializer is a shuffle with undef, merge
918           // this shuffle directly into it.
919           if (VIsUndefShuffle) {
920             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
921                                       CGF.Int32Ty));
922           } else {
923             Args.push_back(Builder.getInt32(j));
924           }
925         }
926         for (unsigned j = 0, je = InitElts; j != je; ++j)
927           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
928         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
929           Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
930 
931         if (VIsUndefShuffle)
932           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
933 
934         Init = SVOp;
935       }
936     }
937 
938     // Extend init to result vector length, and then shuffle its contribution
939     // to the vector initializer into V.
940     if (Args.empty()) {
941       for (unsigned j = 0; j != InitElts; ++j)
942         Args.push_back(Builder.getInt32(j));
943       for (unsigned j = InitElts; j != ResElts; ++j)
944         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
945       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
946       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
947                                          Mask, "vext");
948 
949       Args.clear();
950       for (unsigned j = 0; j != CurIdx; ++j)
951         Args.push_back(Builder.getInt32(j));
952       for (unsigned j = 0; j != InitElts; ++j)
953         Args.push_back(Builder.getInt32(j+Offset));
954       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
955         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
956     }
957 
958     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
959     // merging subsequent shuffles into this one.
960     if (CurIdx == 0)
961       std::swap(V, Init);
962     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
963     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
964     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
965     CurIdx += InitElts;
966   }
967 
968   // FIXME: evaluate codegen vs. shuffling against constant null vector.
969   // Emit remaining default initializers.
970   const llvm::Type *EltTy = VType->getElementType();
971 
972   // Emit remaining default initializers
973   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
974     Value *Idx = Builder.getInt32(CurIdx);
975     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
976     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
977   }
978   return V;
979 }
980 
981 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
982   const Expr *E = CE->getSubExpr();
983 
984   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
985     return false;
986 
987   if (isa<CXXThisExpr>(E)) {
988     // We always assume that 'this' is never null.
989     return false;
990   }
991 
992   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
993     // And that glvalue casts are never null.
994     if (ICE->getValueKind() != VK_RValue)
995       return false;
996   }
997 
998   return true;
999 }
1000 
1001 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1002 // have to handle a more broad range of conversions than explicit casts, as they
1003 // handle things like function to ptr-to-function decay etc.
1004 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
1005   Expr *E = CE->getSubExpr();
1006   QualType DestTy = CE->getType();
1007   CastKind Kind = CE->getCastKind();
1008 
1009   if (!DestTy->isVoidType())
1010     TestAndClearIgnoreResultAssign();
1011 
1012   // Since almost all cast kinds apply to scalars, this switch doesn't have
1013   // a default case, so the compiler will warn on a missing case.  The cases
1014   // are in the same order as in the CastKind enum.
1015   switch (Kind) {
1016   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1017 
1018   case CK_LValueBitCast:
1019   case CK_ObjCObjectLValueCast: {
1020     Value *V = EmitLValue(E).getAddress();
1021     V = Builder.CreateBitCast(V,
1022                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1023     return EmitLoadOfLValue(CGF.MakeAddrLValue(V, DestTy), DestTy);
1024   }
1025 
1026   case CK_AnyPointerToObjCPointerCast:
1027   case CK_AnyPointerToBlockPointerCast:
1028   case CK_BitCast: {
1029     Value *Src = Visit(const_cast<Expr*>(E));
1030     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1031   }
1032   case CK_NoOp:
1033   case CK_UserDefinedConversion:
1034     return Visit(const_cast<Expr*>(E));
1035 
1036   case CK_BaseToDerived: {
1037     const CXXRecordDecl *DerivedClassDecl =
1038       DestTy->getCXXRecordDeclForPointerType();
1039 
1040     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
1041                                         CE->path_begin(), CE->path_end(),
1042                                         ShouldNullCheckClassCastValue(CE));
1043   }
1044   case CK_UncheckedDerivedToBase:
1045   case CK_DerivedToBase: {
1046     const RecordType *DerivedClassTy =
1047       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
1048     CXXRecordDecl *DerivedClassDecl =
1049       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
1050 
1051     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1052                                      CE->path_begin(), CE->path_end(),
1053                                      ShouldNullCheckClassCastValue(CE));
1054   }
1055   case CK_Dynamic: {
1056     Value *V = Visit(const_cast<Expr*>(E));
1057     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1058     return CGF.EmitDynamicCast(V, DCE);
1059   }
1060 
1061   case CK_ArrayToPointerDecay: {
1062     assert(E->getType()->isArrayType() &&
1063            "Array to pointer decay must have array source type!");
1064 
1065     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1066 
1067     // Note that VLA pointers are always decayed, so we don't need to do
1068     // anything here.
1069     if (!E->getType()->isVariableArrayType()) {
1070       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1071       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1072                                  ->getElementType()) &&
1073              "Expected pointer to array");
1074       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1075     }
1076 
1077     return V;
1078   }
1079   case CK_FunctionToPointerDecay:
1080     return EmitLValue(E).getAddress();
1081 
1082   case CK_NullToPointer:
1083     if (MustVisitNullValue(E))
1084       (void) Visit(E);
1085 
1086     return llvm::ConstantPointerNull::get(
1087                                cast<llvm::PointerType>(ConvertType(DestTy)));
1088 
1089   case CK_NullToMemberPointer: {
1090     if (MustVisitNullValue(E))
1091       (void) Visit(E);
1092 
1093     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1094     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1095   }
1096 
1097   case CK_BaseToDerivedMemberPointer:
1098   case CK_DerivedToBaseMemberPointer: {
1099     Value *Src = Visit(E);
1100 
1101     // Note that the AST doesn't distinguish between checked and
1102     // unchecked member pointer conversions, so we always have to
1103     // implement checked conversions here.  This is inefficient when
1104     // actual control flow may be required in order to perform the
1105     // check, which it is for data member pointers (but not member
1106     // function pointers on Itanium and ARM).
1107     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1108   }
1109 
1110   case CK_FloatingRealToComplex:
1111   case CK_FloatingComplexCast:
1112   case CK_IntegralRealToComplex:
1113   case CK_IntegralComplexCast:
1114   case CK_IntegralComplexToFloatingComplex:
1115   case CK_FloatingComplexToIntegralComplex:
1116   case CK_ConstructorConversion:
1117   case CK_ToUnion:
1118     llvm_unreachable("scalar cast to non-scalar value");
1119     break;
1120 
1121   case CK_GetObjCProperty: {
1122     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1123     assert(E->isGLValue() && E->getObjectKind() == OK_ObjCProperty &&
1124            "CK_GetObjCProperty for non-lvalue or non-ObjCProperty");
1125     RValue RV = CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType());
1126     return RV.getScalarVal();
1127   }
1128 
1129   case CK_LValueToRValue:
1130     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1131     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1132     return Visit(const_cast<Expr*>(E));
1133 
1134   case CK_IntegralToPointer: {
1135     Value *Src = Visit(const_cast<Expr*>(E));
1136 
1137     // First, convert to the correct width so that we control the kind of
1138     // extension.
1139     const llvm::Type *MiddleTy = CGF.IntPtrTy;
1140     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1141     llvm::Value* IntResult =
1142       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1143 
1144     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1145   }
1146   case CK_PointerToIntegral: {
1147     Value *Src = Visit(const_cast<Expr*>(E));
1148 
1149     // Handle conversion to bool correctly.
1150     if (DestTy->isBooleanType())
1151       return EmitScalarConversion(Src, E->getType(), DestTy);
1152 
1153     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
1154   }
1155   case CK_ToVoid: {
1156     CGF.EmitIgnoredExpr(E);
1157     return 0;
1158   }
1159   case CK_VectorSplat: {
1160     const llvm::Type *DstTy = ConvertType(DestTy);
1161     Value *Elt = Visit(const_cast<Expr*>(E));
1162 
1163     // Insert the element in element zero of an undef vector
1164     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
1165     llvm::Value *Idx = Builder.getInt32(0);
1166     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
1167 
1168     // Splat the element across to all elements
1169     llvm::SmallVector<llvm::Constant*, 16> Args;
1170     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1171     llvm::Constant *Zero = Builder.getInt32(0);
1172     for (unsigned i = 0; i < NumElements; i++)
1173       Args.push_back(Zero);
1174 
1175     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1176     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
1177     return Yay;
1178   }
1179 
1180   case CK_IntegralCast:
1181   case CK_IntegralToFloating:
1182   case CK_FloatingToIntegral:
1183   case CK_FloatingCast:
1184     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1185 
1186   case CK_IntegralToBoolean:
1187     return EmitIntToBoolConversion(Visit(E));
1188   case CK_PointerToBoolean:
1189     return EmitPointerToBoolConversion(Visit(E));
1190   case CK_FloatingToBoolean:
1191     return EmitFloatToBoolConversion(Visit(E));
1192   case CK_MemberPointerToBoolean: {
1193     llvm::Value *MemPtr = Visit(E);
1194     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1195     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1196   }
1197 
1198   case CK_FloatingComplexToReal:
1199   case CK_IntegralComplexToReal:
1200     return CGF.EmitComplexExpr(E, false, true).first;
1201 
1202   case CK_FloatingComplexToBoolean:
1203   case CK_IntegralComplexToBoolean: {
1204     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1205 
1206     // TODO: kill this function off, inline appropriate case here
1207     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1208   }
1209 
1210   }
1211 
1212   llvm_unreachable("unknown scalar cast");
1213   return 0;
1214 }
1215 
1216 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1217   CodeGenFunction::StmtExprEvaluation eval(CGF);
1218   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1219     .getScalarVal();
1220 }
1221 
1222 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1223   LValue LV = CGF.EmitBlockDeclRefLValue(E);
1224   return CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
1225 }
1226 
1227 //===----------------------------------------------------------------------===//
1228 //                             Unary Operators
1229 //===----------------------------------------------------------------------===//
1230 
1231 llvm::Value *ScalarExprEmitter::
1232 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1233                                 llvm::Value *InVal,
1234                                 llvm::Value *NextVal, bool IsInc) {
1235   switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1236   case LangOptions::SOB_Undefined:
1237     return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1238     break;
1239   case LangOptions::SOB_Defined:
1240     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1241     break;
1242   case LangOptions::SOB_Trapping:
1243     BinOpInfo BinOp;
1244     BinOp.LHS = InVal;
1245     BinOp.RHS = NextVal;
1246     BinOp.Ty = E->getType();
1247     BinOp.Opcode = BO_Add;
1248     BinOp.E = E;
1249     return EmitOverflowCheckedBinOp(BinOp);
1250     break;
1251   }
1252   assert(false && "Unknown SignedOverflowBehaviorTy");
1253   return 0;
1254 }
1255 
1256 llvm::Value *
1257 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1258                                            bool isInc, bool isPre) {
1259 
1260   QualType type = E->getSubExpr()->getType();
1261   llvm::Value *value = EmitLoadOfLValue(LV, type);
1262   llvm::Value *input = value;
1263 
1264   int amount = (isInc ? 1 : -1);
1265 
1266   // Special case of integer increment that we have to check first: bool++.
1267   // Due to promotion rules, we get:
1268   //   bool++ -> bool = bool + 1
1269   //          -> bool = (int)bool + 1
1270   //          -> bool = ((int)bool + 1 != 0)
1271   // An interesting aspect of this is that increment is always true.
1272   // Decrement does not have this property.
1273   if (isInc && type->isBooleanType()) {
1274     value = Builder.getTrue();
1275 
1276   // Most common case by far: integer increment.
1277   } else if (type->isIntegerType()) {
1278 
1279     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1280 
1281     // Note that signed integer inc/dec with width less than int can't
1282     // overflow because of promotion rules; we're just eliding a few steps here.
1283     if (type->isSignedIntegerOrEnumerationType() &&
1284         value->getType()->getPrimitiveSizeInBits() >=
1285             CGF.CGM.IntTy->getBitWidth())
1286       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1287     else
1288       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1289 
1290   // Next most common: pointer increment.
1291   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1292     QualType type = ptr->getPointeeType();
1293 
1294     // VLA types don't have constant size.
1295     if (type->isVariableArrayType()) {
1296       llvm::Value *vlaSize =
1297         CGF.GetVLASize(CGF.getContext().getAsVariableArrayType(type));
1298       value = CGF.EmitCastToVoidPtr(value);
1299       if (!isInc) vlaSize = Builder.CreateNSWNeg(vlaSize, "vla.negsize");
1300       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1301         value = Builder.CreateGEP(value, vlaSize, "vla.inc");
1302       else
1303         value = Builder.CreateInBoundsGEP(value, vlaSize, "vla.inc");
1304       value = Builder.CreateBitCast(value, input->getType());
1305 
1306     // Arithmetic on function pointers (!) is just +-1.
1307     } else if (type->isFunctionType()) {
1308       llvm::Value *amt = Builder.getInt32(amount);
1309 
1310       value = CGF.EmitCastToVoidPtr(value);
1311       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1312         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1313       else
1314         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1315       value = Builder.CreateBitCast(value, input->getType());
1316 
1317     // For everything else, we can just do a simple increment.
1318     } else {
1319       llvm::Value *amt = Builder.getInt32(amount);
1320       if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1321         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1322       else
1323         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1324     }
1325 
1326   // Vector increment/decrement.
1327   } else if (type->isVectorType()) {
1328     if (type->hasIntegerRepresentation()) {
1329       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1330 
1331       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1332     } else {
1333       value = Builder.CreateFAdd(
1334                   value,
1335                   llvm::ConstantFP::get(value->getType(), amount),
1336                   isInc ? "inc" : "dec");
1337     }
1338 
1339   // Floating point.
1340   } else if (type->isRealFloatingType()) {
1341     // Add the inc/dec to the real part.
1342     llvm::Value *amt;
1343     if (value->getType()->isFloatTy())
1344       amt = llvm::ConstantFP::get(VMContext,
1345                                   llvm::APFloat(static_cast<float>(amount)));
1346     else if (value->getType()->isDoubleTy())
1347       amt = llvm::ConstantFP::get(VMContext,
1348                                   llvm::APFloat(static_cast<double>(amount)));
1349     else {
1350       llvm::APFloat F(static_cast<float>(amount));
1351       bool ignored;
1352       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1353                 &ignored);
1354       amt = llvm::ConstantFP::get(VMContext, F);
1355     }
1356     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1357 
1358   // Objective-C pointer types.
1359   } else {
1360     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1361     value = CGF.EmitCastToVoidPtr(value);
1362 
1363     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1364     if (!isInc) size = -size;
1365     llvm::Value *sizeValue =
1366       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1367 
1368     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1369       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1370     else
1371       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1372     value = Builder.CreateBitCast(value, input->getType());
1373   }
1374 
1375   // Store the updated result through the lvalue.
1376   if (LV.isBitField())
1377     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, type, &value);
1378   else
1379     CGF.EmitStoreThroughLValue(RValue::get(value), LV, type);
1380 
1381   // If this is a postinc, return the value read from memory, otherwise use the
1382   // updated value.
1383   return isPre ? value : input;
1384 }
1385 
1386 
1387 
1388 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1389   TestAndClearIgnoreResultAssign();
1390   // Emit unary minus with EmitSub so we handle overflow cases etc.
1391   BinOpInfo BinOp;
1392   BinOp.RHS = Visit(E->getSubExpr());
1393 
1394   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1395     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1396   else
1397     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1398   BinOp.Ty = E->getType();
1399   BinOp.Opcode = BO_Sub;
1400   BinOp.E = E;
1401   return EmitSub(BinOp);
1402 }
1403 
1404 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1405   TestAndClearIgnoreResultAssign();
1406   Value *Op = Visit(E->getSubExpr());
1407   return Builder.CreateNot(Op, "neg");
1408 }
1409 
1410 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1411   // Compare operand to zero.
1412   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1413 
1414   // Invert value.
1415   // TODO: Could dynamically modify easy computations here.  For example, if
1416   // the operand is an icmp ne, turn into icmp eq.
1417   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1418 
1419   // ZExt result to the expr type.
1420   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1421 }
1422 
1423 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1424   // Try folding the offsetof to a constant.
1425   Expr::EvalResult EvalResult;
1426   if (E->Evaluate(EvalResult, CGF.getContext()))
1427     return Builder.getInt(EvalResult.Val.getInt());
1428 
1429   // Loop over the components of the offsetof to compute the value.
1430   unsigned n = E->getNumComponents();
1431   const llvm::Type* ResultType = ConvertType(E->getType());
1432   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1433   QualType CurrentType = E->getTypeSourceInfo()->getType();
1434   for (unsigned i = 0; i != n; ++i) {
1435     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1436     llvm::Value *Offset = 0;
1437     switch (ON.getKind()) {
1438     case OffsetOfExpr::OffsetOfNode::Array: {
1439       // Compute the index
1440       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1441       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1442       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1443       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1444 
1445       // Save the element type
1446       CurrentType =
1447           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1448 
1449       // Compute the element size
1450       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1451           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1452 
1453       // Multiply out to compute the result
1454       Offset = Builder.CreateMul(Idx, ElemSize);
1455       break;
1456     }
1457 
1458     case OffsetOfExpr::OffsetOfNode::Field: {
1459       FieldDecl *MemberDecl = ON.getField();
1460       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1461       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1462 
1463       // Compute the index of the field in its parent.
1464       unsigned i = 0;
1465       // FIXME: It would be nice if we didn't have to loop here!
1466       for (RecordDecl::field_iterator Field = RD->field_begin(),
1467                                       FieldEnd = RD->field_end();
1468            Field != FieldEnd; (void)++Field, ++i) {
1469         if (*Field == MemberDecl)
1470           break;
1471       }
1472       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1473 
1474       // Compute the offset to the field
1475       int64_t OffsetInt = RL.getFieldOffset(i) /
1476                           CGF.getContext().getCharWidth();
1477       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1478 
1479       // Save the element type.
1480       CurrentType = MemberDecl->getType();
1481       break;
1482     }
1483 
1484     case OffsetOfExpr::OffsetOfNode::Identifier:
1485       llvm_unreachable("dependent __builtin_offsetof");
1486 
1487     case OffsetOfExpr::OffsetOfNode::Base: {
1488       if (ON.getBase()->isVirtual()) {
1489         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1490         continue;
1491       }
1492 
1493       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1494       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1495 
1496       // Save the element type.
1497       CurrentType = ON.getBase()->getType();
1498 
1499       // Compute the offset to the base.
1500       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1501       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1502       int64_t OffsetInt = RL.getBaseClassOffsetInBits(BaseRD) /
1503                           CGF.getContext().getCharWidth();
1504       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1505       break;
1506     }
1507     }
1508     Result = Builder.CreateAdd(Result, Offset);
1509   }
1510   return Result;
1511 }
1512 
1513 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1514 /// argument of the sizeof expression as an integer.
1515 Value *
1516 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1517                               const UnaryExprOrTypeTraitExpr *E) {
1518   QualType TypeToSize = E->getTypeOfArgument();
1519   if (E->getKind() == UETT_SizeOf) {
1520     if (const VariableArrayType *VAT =
1521           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1522       if (E->isArgumentType()) {
1523         // sizeof(type) - make sure to emit the VLA size.
1524         CGF.EmitVLASize(TypeToSize);
1525       } else {
1526         // C99 6.5.3.4p2: If the argument is an expression of type
1527         // VLA, it is evaluated.
1528         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1529       }
1530 
1531       return CGF.GetVLASize(VAT);
1532     }
1533   }
1534 
1535   // If this isn't sizeof(vla), the result must be constant; use the constant
1536   // folding logic so we don't have to duplicate it here.
1537   Expr::EvalResult Result;
1538   E->Evaluate(Result, CGF.getContext());
1539   return Builder.getInt(Result.Val.getInt());
1540 }
1541 
1542 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1543   Expr *Op = E->getSubExpr();
1544   if (Op->getType()->isAnyComplexType()) {
1545     // If it's an l-value, load through the appropriate subobject l-value.
1546     // Note that we have to ask E because Op might be an l-value that
1547     // this won't work for, e.g. an Obj-C property.
1548     if (E->isGLValue())
1549       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1550                 .getScalarVal();
1551 
1552     // Otherwise, calculate and project.
1553     return CGF.EmitComplexExpr(Op, false, true).first;
1554   }
1555 
1556   return Visit(Op);
1557 }
1558 
1559 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1560   Expr *Op = E->getSubExpr();
1561   if (Op->getType()->isAnyComplexType()) {
1562     // If it's an l-value, load through the appropriate subobject l-value.
1563     // Note that we have to ask E because Op might be an l-value that
1564     // this won't work for, e.g. an Obj-C property.
1565     if (Op->isGLValue())
1566       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), E->getType())
1567                 .getScalarVal();
1568 
1569     // Otherwise, calculate and project.
1570     return CGF.EmitComplexExpr(Op, true, false).second;
1571   }
1572 
1573   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1574   // effects are evaluated, but not the actual value.
1575   CGF.EmitScalarExpr(Op, true);
1576   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1577 }
1578 
1579 //===----------------------------------------------------------------------===//
1580 //                           Binary Operators
1581 //===----------------------------------------------------------------------===//
1582 
1583 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1584   TestAndClearIgnoreResultAssign();
1585   BinOpInfo Result;
1586   Result.LHS = Visit(E->getLHS());
1587   Result.RHS = Visit(E->getRHS());
1588   Result.Ty  = E->getType();
1589   Result.Opcode = E->getOpcode();
1590   Result.E = E;
1591   return Result;
1592 }
1593 
1594 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1595                                               const CompoundAssignOperator *E,
1596                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1597                                                    Value *&Result) {
1598   QualType LHSTy = E->getLHS()->getType();
1599   BinOpInfo OpInfo;
1600 
1601   if (E->getComputationResultType()->isAnyComplexType()) {
1602     // This needs to go through the complex expression emitter, but it's a tad
1603     // complicated to do that... I'm leaving it out for now.  (Note that we do
1604     // actually need the imaginary part of the RHS for multiplication and
1605     // division.)
1606     CGF.ErrorUnsupported(E, "complex compound assignment");
1607     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1608     return LValue();
1609   }
1610 
1611   // Emit the RHS first.  __block variables need to have the rhs evaluated
1612   // first, plus this should improve codegen a little.
1613   OpInfo.RHS = Visit(E->getRHS());
1614   OpInfo.Ty = E->getComputationResultType();
1615   OpInfo.Opcode = E->getOpcode();
1616   OpInfo.E = E;
1617   // Load/convert the LHS.
1618   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1619   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1620   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1621                                     E->getComputationLHSType());
1622 
1623   // Expand the binary operator.
1624   Result = (this->*Func)(OpInfo);
1625 
1626   // Convert the result back to the LHS type.
1627   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1628 
1629   // Store the result value into the LHS lvalue. Bit-fields are handled
1630   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1631   // 'An assignment expression has the value of the left operand after the
1632   // assignment...'.
1633   if (LHSLV.isBitField())
1634     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1635                                        &Result);
1636   else
1637     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1638 
1639   return LHSLV;
1640 }
1641 
1642 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1643                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1644   bool Ignore = TestAndClearIgnoreResultAssign();
1645   Value *RHS;
1646   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
1647 
1648   // If the result is clearly ignored, return now.
1649   if (Ignore)
1650     return 0;
1651 
1652   // The result of an assignment in C is the assigned r-value.
1653   if (!CGF.getContext().getLangOptions().CPlusPlus)
1654     return RHS;
1655 
1656   // Objective-C property assignment never reloads the value following a store.
1657   if (LHS.isPropertyRef())
1658     return RHS;
1659 
1660   // If the lvalue is non-volatile, return the computed value of the assignment.
1661   if (!LHS.isVolatileQualified())
1662     return RHS;
1663 
1664   // Otherwise, reload the value.
1665   return EmitLoadOfLValue(LHS, E->getType());
1666 }
1667 
1668 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
1669      					    const BinOpInfo &Ops,
1670 				     	    llvm::Value *Zero, bool isDiv) {
1671   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1672   llvm::BasicBlock *contBB =
1673     CGF.createBasicBlock(isDiv ? "div.cont" : "rem.cont", CGF.CurFn);
1674 
1675   const llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
1676 
1677   if (Ops.Ty->hasSignedIntegerRepresentation()) {
1678     llvm::Value *IntMin =
1679       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
1680     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
1681 
1682     llvm::Value *Cond1 = Builder.CreateICmpEQ(Ops.RHS, Zero);
1683     llvm::Value *LHSCmp = Builder.CreateICmpEQ(Ops.LHS, IntMin);
1684     llvm::Value *RHSCmp = Builder.CreateICmpEQ(Ops.RHS, NegOne);
1685     llvm::Value *Cond2 = Builder.CreateAnd(LHSCmp, RHSCmp, "and");
1686     Builder.CreateCondBr(Builder.CreateOr(Cond1, Cond2, "or"),
1687                          overflowBB, contBB);
1688   } else {
1689     CGF.Builder.CreateCondBr(Builder.CreateICmpEQ(Ops.RHS, Zero),
1690                              overflowBB, contBB);
1691   }
1692   EmitOverflowBB(overflowBB);
1693   Builder.SetInsertPoint(contBB);
1694 }
1695 
1696 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1697   if (isTrapvOverflowBehavior()) {
1698     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1699 
1700     if (Ops.Ty->isIntegerType())
1701       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
1702     else if (Ops.Ty->isRealFloatingType()) {
1703       llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow",
1704                                                           CGF.CurFn);
1705       llvm::BasicBlock *DivCont = CGF.createBasicBlock("div.cont", CGF.CurFn);
1706       CGF.Builder.CreateCondBr(Builder.CreateFCmpOEQ(Ops.RHS, Zero),
1707                                overflowBB, DivCont);
1708       EmitOverflowBB(overflowBB);
1709       Builder.SetInsertPoint(DivCont);
1710     }
1711   }
1712   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1713     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1714   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
1715     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1716   else
1717     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1718 }
1719 
1720 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1721   // Rem in C can't be a floating point type: C99 6.5.5p2.
1722   if (isTrapvOverflowBehavior()) {
1723     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
1724 
1725     if (Ops.Ty->isIntegerType())
1726       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
1727   }
1728 
1729   if (Ops.Ty->hasUnsignedIntegerRepresentation())
1730     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1731   else
1732     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1733 }
1734 
1735 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1736   unsigned IID;
1737   unsigned OpID = 0;
1738 
1739   switch (Ops.Opcode) {
1740   case BO_Add:
1741   case BO_AddAssign:
1742     OpID = 1;
1743     IID = llvm::Intrinsic::sadd_with_overflow;
1744     break;
1745   case BO_Sub:
1746   case BO_SubAssign:
1747     OpID = 2;
1748     IID = llvm::Intrinsic::ssub_with_overflow;
1749     break;
1750   case BO_Mul:
1751   case BO_MulAssign:
1752     OpID = 3;
1753     IID = llvm::Intrinsic::smul_with_overflow;
1754     break;
1755   default:
1756     assert(false && "Unsupported operation for overflow detection");
1757     IID = 0;
1758   }
1759   OpID <<= 1;
1760   OpID |= 1;
1761 
1762   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1763 
1764   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1765 
1766   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1767   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1768   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1769 
1770   // Branch in case of overflow.
1771   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1772   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
1773   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn);
1774 
1775   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1776 
1777   // Handle overflow with llvm.trap.
1778   const std::string *handlerName =
1779     &CGF.getContext().getLangOptions().OverflowHandler;
1780   if (handlerName->empty()) {
1781     EmitOverflowBB(overflowBB);
1782     Builder.SetInsertPoint(continueBB);
1783     return result;
1784   }
1785 
1786   // If an overflow handler is set, then we want to call it and then use its
1787   // result, if it returns.
1788   Builder.SetInsertPoint(overflowBB);
1789 
1790   // Get the overflow handler.
1791   const llvm::Type *Int8Ty = llvm::Type::getInt8Ty(VMContext);
1792   const llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
1793   llvm::FunctionType *handlerTy =
1794       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
1795   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
1796 
1797   // Sign extend the args to 64-bit, so that we can use the same handler for
1798   // all types of overflow.
1799   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
1800   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
1801 
1802   // Call the handler with the two arguments, the operation, and the size of
1803   // the result.
1804   llvm::Value *handlerResult = Builder.CreateCall4(handler, lhs, rhs,
1805       Builder.getInt8(OpID),
1806       Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()));
1807 
1808   // Truncate the result back to the desired size.
1809   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1810   Builder.CreateBr(continueBB);
1811 
1812   Builder.SetInsertPoint(continueBB);
1813   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
1814   phi->addIncoming(result, initialBB);
1815   phi->addIncoming(handlerResult, overflowBB);
1816 
1817   return phi;
1818 }
1819 
1820 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1821   if (!Ops.Ty->isAnyPointerType()) {
1822     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1823       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1824       case LangOptions::SOB_Undefined:
1825         return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1826       case LangOptions::SOB_Defined:
1827         return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1828       case LangOptions::SOB_Trapping:
1829         return EmitOverflowCheckedBinOp(Ops);
1830       }
1831     }
1832 
1833     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1834       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1835 
1836     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1837   }
1838 
1839   // Must have binary (not unary) expr here.  Unary pointer decrement doesn't
1840   // use this path.
1841   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1842 
1843   if (Ops.Ty->isPointerType() &&
1844       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1845     // The amount of the addition needs to account for the VLA size
1846     CGF.ErrorUnsupported(BinOp, "VLA pointer addition");
1847   }
1848 
1849   Value *Ptr, *Idx;
1850   Expr *IdxExp;
1851   const PointerType *PT = BinOp->getLHS()->getType()->getAs<PointerType>();
1852   const ObjCObjectPointerType *OPT =
1853     BinOp->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1854   if (PT || OPT) {
1855     Ptr = Ops.LHS;
1856     Idx = Ops.RHS;
1857     IdxExp = BinOp->getRHS();
1858   } else {  // int + pointer
1859     PT = BinOp->getRHS()->getType()->getAs<PointerType>();
1860     OPT = BinOp->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1861     assert((PT || OPT) && "Invalid add expr");
1862     Ptr = Ops.RHS;
1863     Idx = Ops.LHS;
1864     IdxExp = BinOp->getLHS();
1865   }
1866 
1867   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1868   if (Width < CGF.PointerWidthInBits) {
1869     // Zero or sign extend the pointer value based on whether the index is
1870     // signed or not.
1871     const llvm::Type *IdxType = CGF.IntPtrTy;
1872     if (IdxExp->getType()->isSignedIntegerOrEnumerationType())
1873       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1874     else
1875       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1876   }
1877   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1878   // Handle interface types, which are not represented with a concrete type.
1879   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1880     llvm::Value *InterfaceSize =
1881       llvm::ConstantInt::get(Idx->getType(),
1882           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1883     Idx = Builder.CreateMul(Idx, InterfaceSize);
1884     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1885     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1886     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1887     return Builder.CreateBitCast(Res, Ptr->getType());
1888   }
1889 
1890   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1891   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1892   // future proof.
1893   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1894     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1895     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1896     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1897     return Builder.CreateBitCast(Res, Ptr->getType());
1898   }
1899 
1900   if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1901     return Builder.CreateGEP(Ptr, Idx, "add.ptr");
1902   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1903 }
1904 
1905 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1906   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1907     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
1908       switch (CGF.getContext().getLangOptions().getSignedOverflowBehavior()) {
1909       case LangOptions::SOB_Undefined:
1910         return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1911       case LangOptions::SOB_Defined:
1912         return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1913       case LangOptions::SOB_Trapping:
1914         return EmitOverflowCheckedBinOp(Ops);
1915       }
1916     }
1917 
1918     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1919       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1920 
1921     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1922   }
1923 
1924   // Must have binary (not unary) expr here.  Unary pointer increment doesn't
1925   // use this path.
1926   const BinaryOperator *BinOp = cast<BinaryOperator>(Ops.E);
1927 
1928   if (BinOp->getLHS()->getType()->isPointerType() &&
1929       BinOp->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1930     // The amount of the addition needs to account for the VLA size for
1931     // ptr-int
1932     // The amount of the division needs to account for the VLA size for
1933     // ptr-ptr.
1934     CGF.ErrorUnsupported(BinOp, "VLA pointer subtraction");
1935   }
1936 
1937   const QualType LHSType = BinOp->getLHS()->getType();
1938   const QualType LHSElementType = LHSType->getPointeeType();
1939   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1940     // pointer - int
1941     Value *Idx = Ops.RHS;
1942     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1943     if (Width < CGF.PointerWidthInBits) {
1944       // Zero or sign extend the pointer value based on whether the index is
1945       // signed or not.
1946       const llvm::Type *IdxType = CGF.IntPtrTy;
1947       if (BinOp->getRHS()->getType()->isSignedIntegerOrEnumerationType())
1948         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1949       else
1950         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1951     }
1952     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1953 
1954     // Handle interface types, which are not represented with a concrete type.
1955     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1956       llvm::Value *InterfaceSize =
1957         llvm::ConstantInt::get(Idx->getType(),
1958                                CGF.getContext().
1959                                  getTypeSizeInChars(OIT).getQuantity());
1960       Idx = Builder.CreateMul(Idx, InterfaceSize);
1961       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1962       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1963       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1964       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1965     }
1966 
1967     // Explicitly handle GNU void* and function pointer arithmetic
1968     // extensions. The GNU void* casts amount to no-ops since our void* type is
1969     // i8*, but this is future proof.
1970     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1971       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1972       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1973       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1974       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1975     }
1976 
1977     if (CGF.getContext().getLangOptions().isSignedOverflowDefined())
1978       return Builder.CreateGEP(Ops.LHS, Idx, "sub.ptr");
1979     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1980   }
1981 
1982   // pointer - pointer
1983   Value *LHS = Ops.LHS;
1984   Value *RHS = Ops.RHS;
1985 
1986   CharUnits ElementSize;
1987 
1988   // Handle GCC extension for pointer arithmetic on void* and function pointer
1989   // types.
1990   if (LHSElementType->isVoidType() || LHSElementType->isFunctionType())
1991     ElementSize = CharUnits::One();
1992   else
1993     ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1994 
1995   const llvm::Type *ResultType = ConvertType(Ops.Ty);
1996   LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1997   RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1998   Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1999 
2000   // Optimize out the shift for element size of 1.
2001   if (ElementSize.isOne())
2002     return BytesBetween;
2003 
2004   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2005   // pointer difference in C is only defined in the case where both operands
2006   // are pointing to elements of an array.
2007   Value *BytesPerElt =
2008       llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
2009   return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
2010 }
2011 
2012 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2013   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2014   // RHS to the same size as the LHS.
2015   Value *RHS = Ops.RHS;
2016   if (Ops.LHS->getType() != RHS->getType())
2017     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2018 
2019   if (CGF.CatchUndefined
2020       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2021     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2022     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2023     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2024                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2025                              Cont, CGF.getTrapBB());
2026     CGF.EmitBlock(Cont);
2027   }
2028 
2029   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2030 }
2031 
2032 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2033   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2034   // RHS to the same size as the LHS.
2035   Value *RHS = Ops.RHS;
2036   if (Ops.LHS->getType() != RHS->getType())
2037     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2038 
2039   if (CGF.CatchUndefined
2040       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
2041     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
2042     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2043     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
2044                                  llvm::ConstantInt::get(RHS->getType(), Width)),
2045                              Cont, CGF.getTrapBB());
2046     CGF.EmitBlock(Cont);
2047   }
2048 
2049   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2050     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2051   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2052 }
2053 
2054 enum IntrinsicType { VCMPEQ, VCMPGT };
2055 // return corresponding comparison intrinsic for given vector type
2056 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2057                                         BuiltinType::Kind ElemKind) {
2058   switch (ElemKind) {
2059   default: assert(0 && "unexpected element type");
2060   case BuiltinType::Char_U:
2061   case BuiltinType::UChar:
2062     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2063                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2064     break;
2065   case BuiltinType::Char_S:
2066   case BuiltinType::SChar:
2067     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2068                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2069     break;
2070   case BuiltinType::UShort:
2071     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2072                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2073     break;
2074   case BuiltinType::Short:
2075     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2076                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2077     break;
2078   case BuiltinType::UInt:
2079   case BuiltinType::ULong:
2080     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2081                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2082     break;
2083   case BuiltinType::Int:
2084   case BuiltinType::Long:
2085     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2086                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2087     break;
2088   case BuiltinType::Float:
2089     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2090                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2091     break;
2092   }
2093   return llvm::Intrinsic::not_intrinsic;
2094 }
2095 
2096 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2097                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2098   TestAndClearIgnoreResultAssign();
2099   Value *Result;
2100   QualType LHSTy = E->getLHS()->getType();
2101   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2102     assert(E->getOpcode() == BO_EQ ||
2103            E->getOpcode() == BO_NE);
2104     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2105     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2106     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2107                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2108   } else if (!LHSTy->isAnyComplexType()) {
2109     Value *LHS = Visit(E->getLHS());
2110     Value *RHS = Visit(E->getRHS());
2111 
2112     // If AltiVec, the comparison results in a numeric type, so we use
2113     // intrinsics comparing vectors and giving 0 or 1 as a result
2114     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2115       // constants for mapping CR6 register bits to predicate result
2116       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2117 
2118       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2119 
2120       // in several cases vector arguments order will be reversed
2121       Value *FirstVecArg = LHS,
2122             *SecondVecArg = RHS;
2123 
2124       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2125       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2126       BuiltinType::Kind ElementKind = BTy->getKind();
2127 
2128       switch(E->getOpcode()) {
2129       default: assert(0 && "is not a comparison operation");
2130       case BO_EQ:
2131         CR6 = CR6_LT;
2132         ID = GetIntrinsic(VCMPEQ, ElementKind);
2133         break;
2134       case BO_NE:
2135         CR6 = CR6_EQ;
2136         ID = GetIntrinsic(VCMPEQ, ElementKind);
2137         break;
2138       case BO_LT:
2139         CR6 = CR6_LT;
2140         ID = GetIntrinsic(VCMPGT, ElementKind);
2141         std::swap(FirstVecArg, SecondVecArg);
2142         break;
2143       case BO_GT:
2144         CR6 = CR6_LT;
2145         ID = GetIntrinsic(VCMPGT, ElementKind);
2146         break;
2147       case BO_LE:
2148         if (ElementKind == BuiltinType::Float) {
2149           CR6 = CR6_LT;
2150           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2151           std::swap(FirstVecArg, SecondVecArg);
2152         }
2153         else {
2154           CR6 = CR6_EQ;
2155           ID = GetIntrinsic(VCMPGT, ElementKind);
2156         }
2157         break;
2158       case BO_GE:
2159         if (ElementKind == BuiltinType::Float) {
2160           CR6 = CR6_LT;
2161           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2162         }
2163         else {
2164           CR6 = CR6_EQ;
2165           ID = GetIntrinsic(VCMPGT, ElementKind);
2166           std::swap(FirstVecArg, SecondVecArg);
2167         }
2168         break;
2169       }
2170 
2171       Value *CR6Param = Builder.getInt32(CR6);
2172       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2173       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2174       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2175     }
2176 
2177     if (LHS->getType()->isFPOrFPVectorTy()) {
2178       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2179                                   LHS, RHS, "cmp");
2180     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2181       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2182                                   LHS, RHS, "cmp");
2183     } else {
2184       // Unsigned integers and pointers.
2185       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2186                                   LHS, RHS, "cmp");
2187     }
2188 
2189     // If this is a vector comparison, sign extend the result to the appropriate
2190     // vector integer type and return it (don't convert to bool).
2191     if (LHSTy->isVectorType())
2192       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2193 
2194   } else {
2195     // Complex Comparison: can only be an equality comparison.
2196     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2197     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2198 
2199     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2200 
2201     Value *ResultR, *ResultI;
2202     if (CETy->isRealFloatingType()) {
2203       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2204                                    LHS.first, RHS.first, "cmp.r");
2205       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2206                                    LHS.second, RHS.second, "cmp.i");
2207     } else {
2208       // Complex comparisons can only be equality comparisons.  As such, signed
2209       // and unsigned opcodes are the same.
2210       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2211                                    LHS.first, RHS.first, "cmp.r");
2212       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2213                                    LHS.second, RHS.second, "cmp.i");
2214     }
2215 
2216     if (E->getOpcode() == BO_EQ) {
2217       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2218     } else {
2219       assert(E->getOpcode() == BO_NE &&
2220              "Complex comparison other than == or != ?");
2221       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2222     }
2223   }
2224 
2225   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2226 }
2227 
2228 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2229   bool Ignore = TestAndClearIgnoreResultAssign();
2230 
2231   // __block variables need to have the rhs evaluated first, plus this should
2232   // improve codegen just a little.
2233   Value *RHS = Visit(E->getRHS());
2234   LValue LHS = EmitCheckedLValue(E->getLHS());
2235 
2236   // Store the value into the LHS.  Bit-fields are handled specially
2237   // because the result is altered by the store, i.e., [C99 6.5.16p1]
2238   // 'An assignment expression has the value of the left operand after
2239   // the assignment...'.
2240   if (LHS.isBitField())
2241     CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
2242                                        &RHS);
2243   else
2244     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
2245 
2246   // If the result is clearly ignored, return now.
2247   if (Ignore)
2248     return 0;
2249 
2250   // The result of an assignment in C is the assigned r-value.
2251   if (!CGF.getContext().getLangOptions().CPlusPlus)
2252     return RHS;
2253 
2254   // Objective-C property assignment never reloads the value following a store.
2255   if (LHS.isPropertyRef())
2256     return RHS;
2257 
2258   // If the lvalue is non-volatile, return the computed value of the assignment.
2259   if (!LHS.isVolatileQualified())
2260     return RHS;
2261 
2262   // Otherwise, reload the value.
2263   return EmitLoadOfLValue(LHS, E->getType());
2264 }
2265 
2266 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2267   const llvm::Type *ResTy = ConvertType(E->getType());
2268 
2269   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2270   // If we have 1 && X, just emit X without inserting the control flow.
2271   bool LHSCondVal;
2272   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2273     if (LHSCondVal) { // If we have 1 && X, just emit X.
2274       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2275       // ZExt result to int or bool.
2276       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2277     }
2278 
2279     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2280     if (!CGF.ContainsLabel(E->getRHS()))
2281       return llvm::Constant::getNullValue(ResTy);
2282   }
2283 
2284   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2285   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2286 
2287   CodeGenFunction::ConditionalEvaluation eval(CGF);
2288 
2289   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2290   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2291 
2292   // Any edges into the ContBlock are now from an (indeterminate number of)
2293   // edges from this first condition.  All of these values will be false.  Start
2294   // setting up the PHI node in the Cont Block for this.
2295   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2296                                             "", ContBlock);
2297   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2298        PI != PE; ++PI)
2299     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2300 
2301   eval.begin(CGF);
2302   CGF.EmitBlock(RHSBlock);
2303   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2304   eval.end(CGF);
2305 
2306   // Reaquire the RHS block, as there may be subblocks inserted.
2307   RHSBlock = Builder.GetInsertBlock();
2308 
2309   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2310   // into the phi node for the edge with the value of RHSCond.
2311   if (CGF.getDebugInfo())
2312     // There is no need to emit line number for unconditional branch.
2313     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2314   CGF.EmitBlock(ContBlock);
2315   PN->addIncoming(RHSCond, RHSBlock);
2316 
2317   // ZExt result to int.
2318   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2319 }
2320 
2321 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2322   const llvm::Type *ResTy = ConvertType(E->getType());
2323 
2324   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2325   // If we have 0 || X, just emit X without inserting the control flow.
2326   bool LHSCondVal;
2327   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2328     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2329       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2330       // ZExt result to int or bool.
2331       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2332     }
2333 
2334     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2335     if (!CGF.ContainsLabel(E->getRHS()))
2336       return llvm::ConstantInt::get(ResTy, 1);
2337   }
2338 
2339   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2340   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2341 
2342   CodeGenFunction::ConditionalEvaluation eval(CGF);
2343 
2344   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2345   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2346 
2347   // Any edges into the ContBlock are now from an (indeterminate number of)
2348   // edges from this first condition.  All of these values will be true.  Start
2349   // setting up the PHI node in the Cont Block for this.
2350   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2351                                             "", ContBlock);
2352   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2353        PI != PE; ++PI)
2354     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2355 
2356   eval.begin(CGF);
2357 
2358   // Emit the RHS condition as a bool value.
2359   CGF.EmitBlock(RHSBlock);
2360   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2361 
2362   eval.end(CGF);
2363 
2364   // Reaquire the RHS block, as there may be subblocks inserted.
2365   RHSBlock = Builder.GetInsertBlock();
2366 
2367   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2368   // into the phi node for the edge with the value of RHSCond.
2369   CGF.EmitBlock(ContBlock);
2370   PN->addIncoming(RHSCond, RHSBlock);
2371 
2372   // ZExt result to int.
2373   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2374 }
2375 
2376 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2377   CGF.EmitIgnoredExpr(E->getLHS());
2378   CGF.EnsureInsertPoint();
2379   return Visit(E->getRHS());
2380 }
2381 
2382 //===----------------------------------------------------------------------===//
2383 //                             Other Operators
2384 //===----------------------------------------------------------------------===//
2385 
2386 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2387 /// expression is cheap enough and side-effect-free enough to evaluate
2388 /// unconditionally instead of conditionally.  This is used to convert control
2389 /// flow into selects in some cases.
2390 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2391                                                    CodeGenFunction &CGF) {
2392   E = E->IgnoreParens();
2393 
2394   // Anything that is an integer or floating point constant is fine.
2395   if (E->isConstantInitializer(CGF.getContext(), false))
2396     return true;
2397 
2398   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2399   // X and Y are local variables.
2400   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2401     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2402       if (VD->hasLocalStorage() && !(CGF.getContext()
2403                                      .getCanonicalType(VD->getType())
2404                                      .isVolatileQualified()))
2405         return true;
2406 
2407   return false;
2408 }
2409 
2410 
2411 Value *ScalarExprEmitter::
2412 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2413   TestAndClearIgnoreResultAssign();
2414 
2415   // Bind the common expression if necessary.
2416   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2417 
2418   Expr *condExpr = E->getCond();
2419   Expr *lhsExpr = E->getTrueExpr();
2420   Expr *rhsExpr = E->getFalseExpr();
2421 
2422   // If the condition constant folds and can be elided, try to avoid emitting
2423   // the condition and the dead arm.
2424   bool CondExprBool;
2425   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2426     Expr *live = lhsExpr, *dead = rhsExpr;
2427     if (!CondExprBool) std::swap(live, dead);
2428 
2429     // If the dead side doesn't have labels we need, and if the Live side isn't
2430     // the gnu missing ?: extension (which we could handle, but don't bother
2431     // to), just emit the Live part.
2432     if (!CGF.ContainsLabel(dead))
2433       return Visit(live);
2434   }
2435 
2436   // OpenCL: If the condition is a vector, we can treat this condition like
2437   // the select function.
2438   if (CGF.getContext().getLangOptions().OpenCL
2439       && condExpr->getType()->isVectorType()) {
2440     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2441     llvm::Value *LHS = Visit(lhsExpr);
2442     llvm::Value *RHS = Visit(rhsExpr);
2443 
2444     const llvm::Type *condType = ConvertType(condExpr->getType());
2445     const llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
2446 
2447     unsigned numElem = vecTy->getNumElements();
2448     const llvm::Type *elemType = vecTy->getElementType();
2449 
2450     std::vector<llvm::Constant*> Zvals;
2451     for (unsigned i = 0; i < numElem; ++i)
2452       Zvals.push_back(llvm::ConstantInt::get(elemType, 0));
2453 
2454     llvm::Value *zeroVec = llvm::ConstantVector::get(Zvals);
2455     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
2456     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
2457                                           llvm::VectorType::get(elemType,
2458                                                                 numElem),
2459                                           "sext");
2460     llvm::Value *tmp2 = Builder.CreateNot(tmp);
2461 
2462     // Cast float to int to perform ANDs if necessary.
2463     llvm::Value *RHSTmp = RHS;
2464     llvm::Value *LHSTmp = LHS;
2465     bool wasCast = false;
2466     const llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
2467     if (rhsVTy->getElementType()->isFloatTy()) {
2468       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
2469       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
2470       wasCast = true;
2471     }
2472 
2473     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
2474     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
2475     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
2476     if (wasCast)
2477       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
2478 
2479     return tmp5;
2480   }
2481 
2482   // If this is a really simple expression (like x ? 4 : 5), emit this as a
2483   // select instead of as control flow.  We can only do this if it is cheap and
2484   // safe to evaluate the LHS and RHS unconditionally.
2485   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
2486       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
2487     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
2488     llvm::Value *LHS = Visit(lhsExpr);
2489     llvm::Value *RHS = Visit(rhsExpr);
2490     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
2491   }
2492 
2493   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
2494   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
2495   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
2496 
2497   CodeGenFunction::ConditionalEvaluation eval(CGF);
2498   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
2499 
2500   CGF.EmitBlock(LHSBlock);
2501   eval.begin(CGF);
2502   Value *LHS = Visit(lhsExpr);
2503   eval.end(CGF);
2504 
2505   LHSBlock = Builder.GetInsertBlock();
2506   Builder.CreateBr(ContBlock);
2507 
2508   CGF.EmitBlock(RHSBlock);
2509   eval.begin(CGF);
2510   Value *RHS = Visit(rhsExpr);
2511   eval.end(CGF);
2512 
2513   RHSBlock = Builder.GetInsertBlock();
2514   CGF.EmitBlock(ContBlock);
2515 
2516   // If the LHS or RHS is a throw expression, it will be legitimately null.
2517   if (!LHS)
2518     return RHS;
2519   if (!RHS)
2520     return LHS;
2521 
2522   // Create a PHI node for the real part.
2523   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
2524   PN->addIncoming(LHS, LHSBlock);
2525   PN->addIncoming(RHS, RHSBlock);
2526   return PN;
2527 }
2528 
2529 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
2530   return Visit(E->getChosenSubExpr(CGF.getContext()));
2531 }
2532 
2533 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
2534   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
2535   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
2536 
2537   // If EmitVAArg fails, we fall back to the LLVM instruction.
2538   if (!ArgPtr)
2539     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
2540 
2541   // FIXME Volatility.
2542   return Builder.CreateLoad(ArgPtr);
2543 }
2544 
2545 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
2546   return CGF.EmitBlockLiteral(block);
2547 }
2548 
2549 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
2550   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
2551   const llvm::Type * DstTy = ConvertType(E->getDstType());
2552 
2553   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
2554   // a shuffle vector instead of a bitcast.
2555   const llvm::Type *SrcTy = Src->getType();
2556   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
2557     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
2558     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
2559     if ((numElementsDst == 3 && numElementsSrc == 4)
2560         || (numElementsDst == 4 && numElementsSrc == 3)) {
2561 
2562 
2563       // In the case of going from int4->float3, a bitcast is needed before
2564       // doing a shuffle.
2565       const llvm::Type *srcElemTy =
2566       cast<llvm::VectorType>(SrcTy)->getElementType();
2567       const llvm::Type *dstElemTy =
2568       cast<llvm::VectorType>(DstTy)->getElementType();
2569 
2570       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
2571           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
2572         // Create a float type of the same size as the source or destination.
2573         const llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
2574                                                                  numElementsSrc);
2575 
2576         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
2577       }
2578 
2579       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
2580 
2581       llvm::SmallVector<llvm::Constant*, 3> Args;
2582       Args.push_back(Builder.getInt32(0));
2583       Args.push_back(Builder.getInt32(1));
2584       Args.push_back(Builder.getInt32(2));
2585 
2586       if (numElementsDst == 4)
2587         Args.push_back(llvm::UndefValue::get(
2588                                              llvm::Type::getInt32Ty(CGF.getLLVMContext())));
2589 
2590       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
2591 
2592       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
2593     }
2594   }
2595 
2596   return Builder.CreateBitCast(Src, DstTy, "astype");
2597 }
2598 
2599 //===----------------------------------------------------------------------===//
2600 //                         Entry Point into this File
2601 //===----------------------------------------------------------------------===//
2602 
2603 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
2604 /// type, ignoring the result.
2605 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
2606   assert(E && !hasAggregateLLVMType(E->getType()) &&
2607          "Invalid scalar expression to emit");
2608 
2609   if (isa<CXXDefaultArgExpr>(E))
2610     disableDebugInfo();
2611   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
2612     .Visit(const_cast<Expr*>(E));
2613   if (isa<CXXDefaultArgExpr>(E))
2614     enableDebugInfo();
2615   return V;
2616 }
2617 
2618 /// EmitScalarConversion - Emit a conversion from the specified type to the
2619 /// specified destination type, both of which are LLVM scalar types.
2620 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
2621                                              QualType DstTy) {
2622   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
2623          "Invalid scalar expression to emit");
2624   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
2625 }
2626 
2627 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
2628 /// type to the specified destination type, where the destination type is an
2629 /// LLVM scalar type.
2630 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
2631                                                       QualType SrcTy,
2632                                                       QualType DstTy) {
2633   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
2634          "Invalid complex -> scalar conversion");
2635   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
2636                                                                 DstTy);
2637 }
2638 
2639 
2640 llvm::Value *CodeGenFunction::
2641 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
2642                         bool isInc, bool isPre) {
2643   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
2644 }
2645 
2646 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
2647   llvm::Value *V;
2648   // object->isa or (*object).isa
2649   // Generate code as for: *(Class*)object
2650   // build Class* type
2651   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
2652 
2653   Expr *BaseExpr = E->getBase();
2654   if (BaseExpr->isRValue()) {
2655     V = CreateTempAlloca(ClassPtrTy, "resval");
2656     llvm::Value *Src = EmitScalarExpr(BaseExpr);
2657     Builder.CreateStore(Src, V);
2658     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
2659       MakeAddrLValue(V, E->getType()), E->getType());
2660   } else {
2661     if (E->isArrow())
2662       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
2663     else
2664       V = EmitLValue(BaseExpr).getAddress();
2665   }
2666 
2667   // build Class* type
2668   ClassPtrTy = ClassPtrTy->getPointerTo();
2669   V = Builder.CreateBitCast(V, ClassPtrTy);
2670   return MakeAddrLValue(V, E->getType());
2671 }
2672 
2673 
2674 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
2675                                             const CompoundAssignOperator *E) {
2676   ScalarExprEmitter Scalar(*this);
2677   Value *Result = 0;
2678   switch (E->getOpcode()) {
2679 #define COMPOUND_OP(Op)                                                       \
2680     case BO_##Op##Assign:                                                     \
2681       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
2682                                              Result)
2683   COMPOUND_OP(Mul);
2684   COMPOUND_OP(Div);
2685   COMPOUND_OP(Rem);
2686   COMPOUND_OP(Add);
2687   COMPOUND_OP(Sub);
2688   COMPOUND_OP(Shl);
2689   COMPOUND_OP(Shr);
2690   COMPOUND_OP(And);
2691   COMPOUND_OP(Xor);
2692   COMPOUND_OP(Or);
2693 #undef COMPOUND_OP
2694 
2695   case BO_PtrMemD:
2696   case BO_PtrMemI:
2697   case BO_Mul:
2698   case BO_Div:
2699   case BO_Rem:
2700   case BO_Add:
2701   case BO_Sub:
2702   case BO_Shl:
2703   case BO_Shr:
2704   case BO_LT:
2705   case BO_GT:
2706   case BO_LE:
2707   case BO_GE:
2708   case BO_EQ:
2709   case BO_NE:
2710   case BO_And:
2711   case BO_Xor:
2712   case BO_Or:
2713   case BO_LAnd:
2714   case BO_LOr:
2715   case BO_Assign:
2716   case BO_Comma:
2717     assert(false && "Not valid compound assignment operators");
2718     break;
2719   }
2720 
2721   llvm_unreachable("Unhandled compound assignment operator");
2722 }
2723