1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CFG.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89 
90   Value *EmitLoadOfLValue(LValue LV) {
91     return CGF.EmitLoadOfLValue(LV).getScalarVal();
92   }
93 
94   /// EmitLoadOfLValue - Given an expression with complex type that represents a
95   /// value l-value, this method emits the address of the l-value, then loads
96   /// and returns the result.
97   Value *EmitLoadOfLValue(const Expr *E) {
98     return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99   }
100 
101   /// EmitConversionToBool - Convert the specified expression value to a
102   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
103   Value *EmitConversionToBool(Value *Src, QualType DstTy);
104 
105   /// \brief Emit a check that a conversion to or from a floating-point type
106   /// does not overflow.
107   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108                                 Value *Src, QualType SrcType,
109                                 QualType DstType, llvm::Type *DstTy);
110 
111   /// EmitScalarConversion - Emit a conversion from the specified type to the
112   /// specified destination type, both of which are LLVM scalar types.
113   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114 
115   /// EmitComplexToScalarConversion - Emit a conversion from the specified
116   /// complex type to the specified destination type, where the destination type
117   /// is an LLVM scalar type.
118   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119                                        QualType SrcTy, QualType DstTy);
120 
121   /// EmitNullValue - Emit a value that corresponds to null for the given type.
122   Value *EmitNullValue(QualType Ty);
123 
124   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
125   Value *EmitFloatToBoolConversion(Value *V) {
126     // Compare against 0.0 for fp scalars.
127     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128     return Builder.CreateFCmpUNE(V, Zero, "tobool");
129   }
130 
131   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
132   Value *EmitPointerToBoolConversion(Value *V) {
133     Value *Zero = llvm::ConstantPointerNull::get(
134                                       cast<llvm::PointerType>(V->getType()));
135     return Builder.CreateICmpNE(V, Zero, "tobool");
136   }
137 
138   Value *EmitIntToBoolConversion(Value *V) {
139     // Because of the type rules of C, we often end up computing a
140     // logical value, then zero extending it to int, then wanting it
141     // as a logical value again.  Optimize this common case.
142     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144         Value *Result = ZI->getOperand(0);
145         // If there aren't any more uses, zap the instruction to save space.
146         // Note that there can be more uses, for example if this
147         // is the result of an assignment.
148         if (ZI->use_empty())
149           ZI->eraseFromParent();
150         return Result;
151       }
152     }
153 
154     return Builder.CreateIsNotNull(V, "tobool");
155   }
156 
157   //===--------------------------------------------------------------------===//
158   //                            Visitor Methods
159   //===--------------------------------------------------------------------===//
160 
161   Value *Visit(Expr *E) {
162     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163   }
164 
165   Value *VisitStmt(Stmt *S) {
166     S->dump(CGF.getContext().getSourceManager());
167     llvm_unreachable("Stmt can't have complex result type!");
168   }
169   Value *VisitExpr(Expr *S);
170 
171   Value *VisitParenExpr(ParenExpr *PE) {
172     return Visit(PE->getSubExpr());
173   }
174   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175     return Visit(E->getReplacement());
176   }
177   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178     return Visit(GE->getResultExpr());
179   }
180 
181   // Leaves.
182   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183     return Builder.getInt(E->getValue());
184   }
185   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186     return llvm::ConstantFP::get(VMContext, E->getValue());
187   }
188   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190   }
191   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193   }
194   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196   }
197   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198     return EmitNullValue(E->getType());
199   }
200   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201     return EmitNullValue(E->getType());
202   }
203   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
205   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207     return Builder.CreateBitCast(V, ConvertType(E->getType()));
208   }
209 
210   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212   }
213 
214   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216   }
217 
218   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219     if (E->isGLValue())
220       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221 
222     // Otherwise, assume the mapping is the scalar directly.
223     return CGF.getOpaqueRValueMapping(E).getScalarVal();
224   }
225 
226   // l-values.
227   Value *VisitDeclRefExpr(DeclRefExpr *E) {
228     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229       if (result.isReference())
230         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231       return result.getValue();
232     }
233     return EmitLoadOfLValue(E);
234   }
235 
236   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237     return CGF.EmitObjCSelectorExpr(E);
238   }
239   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240     return CGF.EmitObjCProtocolExpr(E);
241   }
242   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243     return EmitLoadOfLValue(E);
244   }
245   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246     if (E->getMethodDecl() &&
247         E->getMethodDecl()->getResultType()->isReferenceType())
248       return EmitLoadOfLValue(E);
249     return CGF.EmitObjCMessageExpr(E).getScalarVal();
250   }
251 
252   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253     LValue LV = CGF.EmitObjCIsaExpr(E);
254     Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255     return V;
256   }
257 
258   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260   Value *VisitMemberExpr(MemberExpr *E);
261   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
262   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263     return EmitLoadOfLValue(E);
264   }
265 
266   Value *VisitInitListExpr(InitListExpr *E);
267 
268   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269     return EmitNullValue(E->getType());
270   }
271   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272     if (E->getType()->isVariablyModifiedType())
273       CGF.EmitVariablyModifiedType(E->getType());
274     return VisitCastExpr(E);
275   }
276   Value *VisitCastExpr(CastExpr *E);
277 
278   Value *VisitCallExpr(const CallExpr *E) {
279     if (E->getCallReturnType()->isReferenceType())
280       return EmitLoadOfLValue(E);
281 
282     return CGF.EmitCallExpr(E).getScalarVal();
283   }
284 
285   Value *VisitStmtExpr(const StmtExpr *E);
286 
287   // Unary Operators.
288   Value *VisitUnaryPostDec(const UnaryOperator *E) {
289     LValue LV = EmitLValue(E->getSubExpr());
290     return EmitScalarPrePostIncDec(E, LV, false, false);
291   }
292   Value *VisitUnaryPostInc(const UnaryOperator *E) {
293     LValue LV = EmitLValue(E->getSubExpr());
294     return EmitScalarPrePostIncDec(E, LV, true, false);
295   }
296   Value *VisitUnaryPreDec(const UnaryOperator *E) {
297     LValue LV = EmitLValue(E->getSubExpr());
298     return EmitScalarPrePostIncDec(E, LV, false, true);
299   }
300   Value *VisitUnaryPreInc(const UnaryOperator *E) {
301     LValue LV = EmitLValue(E->getSubExpr());
302     return EmitScalarPrePostIncDec(E, LV, true, true);
303   }
304 
305   llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306                                                llvm::Value *InVal,
307                                                llvm::Value *NextVal,
308                                                bool IsInc);
309 
310   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311                                        bool isInc, bool isPre);
312 
313 
314   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315     if (isa<MemberPointerType>(E->getType())) // never sugared
316       return CGF.CGM.getMemberPointerConstant(E);
317 
318     return EmitLValue(E->getSubExpr()).getAddress();
319   }
320   Value *VisitUnaryDeref(const UnaryOperator *E) {
321     if (E->getType()->isVoidType())
322       return Visit(E->getSubExpr()); // the actual value should be unused
323     return EmitLoadOfLValue(E);
324   }
325   Value *VisitUnaryPlus(const UnaryOperator *E) {
326     // This differs from gcc, though, most likely due to a bug in gcc.
327     TestAndClearIgnoreResultAssign();
328     return Visit(E->getSubExpr());
329   }
330   Value *VisitUnaryMinus    (const UnaryOperator *E);
331   Value *VisitUnaryNot      (const UnaryOperator *E);
332   Value *VisitUnaryLNot     (const UnaryOperator *E);
333   Value *VisitUnaryReal     (const UnaryOperator *E);
334   Value *VisitUnaryImag     (const UnaryOperator *E);
335   Value *VisitUnaryExtension(const UnaryOperator *E) {
336     return Visit(E->getSubExpr());
337   }
338 
339   // C++
340   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341     return EmitLoadOfLValue(E);
342   }
343 
344   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345     return Visit(DAE->getExpr());
346   }
347   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
348     return CGF.LoadCXXThis();
349   }
350 
351   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
352     CGF.enterFullExpression(E);
353     CodeGenFunction::RunCleanupsScope Scope(CGF);
354     return Visit(E->getSubExpr());
355   }
356   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
357     return CGF.EmitCXXNewExpr(E);
358   }
359   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
360     CGF.EmitCXXDeleteExpr(E);
361     return 0;
362   }
363   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
364     return Builder.getInt1(E->getValue());
365   }
366 
367   Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
368     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
369   }
370 
371   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
372     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
373   }
374 
375   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
376     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
377   }
378 
379   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
380     // C++ [expr.pseudo]p1:
381     //   The result shall only be used as the operand for the function call
382     //   operator (), and the result of such a call has type void. The only
383     //   effect is the evaluation of the postfix-expression before the dot or
384     //   arrow.
385     CGF.EmitScalarExpr(E->getBase());
386     return 0;
387   }
388 
389   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
390     return EmitNullValue(E->getType());
391   }
392 
393   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
394     CGF.EmitCXXThrowExpr(E);
395     return 0;
396   }
397 
398   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
399     return Builder.getInt1(E->getValue());
400   }
401 
402   // Binary Operators.
403   Value *EmitMul(const BinOpInfo &Ops) {
404     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
405       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
406       case LangOptions::SOB_Defined:
407         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
408       case LangOptions::SOB_Undefined:
409         if (!CGF.SanOpts->SignedIntegerOverflow)
410           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
411         // Fall through.
412       case LangOptions::SOB_Trapping:
413         return EmitOverflowCheckedBinOp(Ops);
414       }
415     }
416 
417     if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
418       return EmitOverflowCheckedBinOp(Ops);
419 
420     if (Ops.LHS->getType()->isFPOrFPVectorTy())
421       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
422     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
423   }
424   /// Create a binary op that checks for overflow.
425   /// Currently only supports +, - and *.
426   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
427 
428   // Check for undefined division and modulus behaviors.
429   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
430                                                   llvm::Value *Zero,bool isDiv);
431   // Common helper for getting how wide LHS of shift is.
432   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
433   Value *EmitDiv(const BinOpInfo &Ops);
434   Value *EmitRem(const BinOpInfo &Ops);
435   Value *EmitAdd(const BinOpInfo &Ops);
436   Value *EmitSub(const BinOpInfo &Ops);
437   Value *EmitShl(const BinOpInfo &Ops);
438   Value *EmitShr(const BinOpInfo &Ops);
439   Value *EmitAnd(const BinOpInfo &Ops) {
440     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
441   }
442   Value *EmitXor(const BinOpInfo &Ops) {
443     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
444   }
445   Value *EmitOr (const BinOpInfo &Ops) {
446     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
447   }
448 
449   BinOpInfo EmitBinOps(const BinaryOperator *E);
450   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
451                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
452                                   Value *&Result);
453 
454   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
455                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
456 
457   // Binary operators and binary compound assignment operators.
458 #define HANDLEBINOP(OP) \
459   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
460     return Emit ## OP(EmitBinOps(E));                                      \
461   }                                                                        \
462   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
463     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
464   }
465   HANDLEBINOP(Mul)
466   HANDLEBINOP(Div)
467   HANDLEBINOP(Rem)
468   HANDLEBINOP(Add)
469   HANDLEBINOP(Sub)
470   HANDLEBINOP(Shl)
471   HANDLEBINOP(Shr)
472   HANDLEBINOP(And)
473   HANDLEBINOP(Xor)
474   HANDLEBINOP(Or)
475 #undef HANDLEBINOP
476 
477   // Comparisons.
478   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
479                      unsigned SICmpOpc, unsigned FCmpOpc);
480 #define VISITCOMP(CODE, UI, SI, FP) \
481     Value *VisitBin##CODE(const BinaryOperator *E) { \
482       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
483                          llvm::FCmpInst::FP); }
484   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
485   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
486   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
487   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
488   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
489   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
490 #undef VISITCOMP
491 
492   Value *VisitBinAssign     (const BinaryOperator *E);
493 
494   Value *VisitBinLAnd       (const BinaryOperator *E);
495   Value *VisitBinLOr        (const BinaryOperator *E);
496   Value *VisitBinComma      (const BinaryOperator *E);
497 
498   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
499   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
500 
501   // Other Operators.
502   Value *VisitBlockExpr(const BlockExpr *BE);
503   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
504   Value *VisitChooseExpr(ChooseExpr *CE);
505   Value *VisitVAArgExpr(VAArgExpr *VE);
506   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
507     return CGF.EmitObjCStringLiteral(E);
508   }
509   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
510     return CGF.EmitObjCBoxedExpr(E);
511   }
512   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
513     return CGF.EmitObjCArrayLiteral(E);
514   }
515   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
516     return CGF.EmitObjCDictionaryLiteral(E);
517   }
518   Value *VisitAsTypeExpr(AsTypeExpr *CE);
519   Value *VisitAtomicExpr(AtomicExpr *AE);
520 };
521 }  // end anonymous namespace.
522 
523 //===----------------------------------------------------------------------===//
524 //                                Utilities
525 //===----------------------------------------------------------------------===//
526 
527 /// EmitConversionToBool - Convert the specified expression value to a
528 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
529 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
530   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
531 
532   if (SrcType->isRealFloatingType())
533     return EmitFloatToBoolConversion(Src);
534 
535   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
536     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
537 
538   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
539          "Unknown scalar type to convert");
540 
541   if (isa<llvm::IntegerType>(Src->getType()))
542     return EmitIntToBoolConversion(Src);
543 
544   assert(isa<llvm::PointerType>(Src->getType()));
545   return EmitPointerToBoolConversion(Src);
546 }
547 
548 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
549                                                  QualType OrigSrcType,
550                                                  Value *Src, QualType SrcType,
551                                                  QualType DstType,
552                                                  llvm::Type *DstTy) {
553   using llvm::APFloat;
554   using llvm::APSInt;
555 
556   llvm::Type *SrcTy = Src->getType();
557 
558   llvm::Value *Check = 0;
559   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
560     // Integer to floating-point. This can fail for unsigned short -> __half
561     // or unsigned __int128 -> float.
562     assert(DstType->isFloatingType());
563     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
564 
565     APFloat LargestFloat =
566       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
567     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
568 
569     bool IsExact;
570     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
571                                       &IsExact) != APFloat::opOK)
572       // The range of representable values of this floating point type includes
573       // all values of this integer type. Don't need an overflow check.
574       return;
575 
576     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
577     if (SrcIsUnsigned)
578       Check = Builder.CreateICmpULE(Src, Max);
579     else {
580       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
581       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
582       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
583       Check = Builder.CreateAnd(GE, LE);
584     }
585   } else {
586     const llvm::fltSemantics &SrcSema =
587       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
588     if (isa<llvm::IntegerType>(DstTy)) {
589       // Floating-point to integer. This has undefined behavior if the source is
590       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
591       // to an integer).
592       unsigned Width = CGF.getContext().getIntWidth(DstType);
593       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
594 
595       APSInt Min = APSInt::getMinValue(Width, Unsigned);
596       APFloat MinSrc(SrcSema, APFloat::uninitialized);
597       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
598           APFloat::opOverflow)
599         // Don't need an overflow check for lower bound. Just check for
600         // -Inf/NaN.
601         MinSrc = APFloat::getInf(SrcSema, true);
602       else
603         // Find the largest value which is too small to represent (before
604         // truncation toward zero).
605         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
606 
607       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
608       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
609       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
610           APFloat::opOverflow)
611         // Don't need an overflow check for upper bound. Just check for
612         // +Inf/NaN.
613         MaxSrc = APFloat::getInf(SrcSema, false);
614       else
615         // Find the smallest value which is too large to represent (before
616         // truncation toward zero).
617         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
618 
619       // If we're converting from __half, convert the range to float to match
620       // the type of src.
621       if (OrigSrcType->isHalfType()) {
622         const llvm::fltSemantics &Sema =
623           CGF.getContext().getFloatTypeSemantics(SrcType);
624         bool IsInexact;
625         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
626         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
627       }
628 
629       llvm::Value *GE =
630         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
631       llvm::Value *LE =
632         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
633       Check = Builder.CreateAnd(GE, LE);
634     } else {
635       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
636       //
637       // Floating-point to floating-point. This has undefined behavior if the
638       // source is not in the range of representable values of the destination
639       // type. The C and C++ standards are spectacularly unclear here. We
640       // diagnose finite out-of-range conversions, but allow infinities and NaNs
641       // to convert to the corresponding value in the smaller type.
642       //
643       // C11 Annex F gives all such conversions defined behavior for IEC 60559
644       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
645       // does not.
646 
647       // Converting from a lower rank to a higher rank can never have
648       // undefined behavior, since higher-rank types must have a superset
649       // of values of lower-rank types.
650       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
651         return;
652 
653       assert(!OrigSrcType->isHalfType() &&
654              "should not check conversion from __half, it has the lowest rank");
655 
656       const llvm::fltSemantics &DstSema =
657         CGF.getContext().getFloatTypeSemantics(DstType);
658       APFloat MinBad = APFloat::getLargest(DstSema, false);
659       APFloat MaxBad = APFloat::getInf(DstSema, false);
660 
661       bool IsInexact;
662       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
663       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
664 
665       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
666         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
667       llvm::Value *GE =
668         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
669       llvm::Value *LE =
670         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
671       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
672     }
673   }
674 
675   // FIXME: Provide a SourceLocation.
676   llvm::Constant *StaticArgs[] = {
677     CGF.EmitCheckTypeDescriptor(OrigSrcType),
678     CGF.EmitCheckTypeDescriptor(DstType)
679   };
680   CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
681                 CodeGenFunction::CRK_Recoverable);
682 }
683 
684 /// EmitScalarConversion - Emit a conversion from the specified type to the
685 /// specified destination type, both of which are LLVM scalar types.
686 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
687                                                QualType DstType) {
688   SrcType = CGF.getContext().getCanonicalType(SrcType);
689   DstType = CGF.getContext().getCanonicalType(DstType);
690   if (SrcType == DstType) return Src;
691 
692   if (DstType->isVoidType()) return 0;
693 
694   llvm::Value *OrigSrc = Src;
695   QualType OrigSrcType = SrcType;
696   llvm::Type *SrcTy = Src->getType();
697 
698   // If casting to/from storage-only half FP, use special intrinsics.
699   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
700     Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
701     SrcType = CGF.getContext().FloatTy;
702     SrcTy = CGF.FloatTy;
703   }
704 
705   // Handle conversions to bool first, they are special: comparisons against 0.
706   if (DstType->isBooleanType())
707     return EmitConversionToBool(Src, SrcType);
708 
709   llvm::Type *DstTy = ConvertType(DstType);
710 
711   // Ignore conversions like int -> uint.
712   if (SrcTy == DstTy)
713     return Src;
714 
715   // Handle pointer conversions next: pointers can only be converted to/from
716   // other pointers and integers. Check for pointer types in terms of LLVM, as
717   // some native types (like Obj-C id) may map to a pointer type.
718   if (isa<llvm::PointerType>(DstTy)) {
719     // The source value may be an integer, or a pointer.
720     if (isa<llvm::PointerType>(SrcTy))
721       return Builder.CreateBitCast(Src, DstTy, "conv");
722 
723     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
724     // First, convert to the correct width so that we control the kind of
725     // extension.
726     llvm::Type *MiddleTy = CGF.IntPtrTy;
727     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
728     llvm::Value* IntResult =
729         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
730     // Then, cast to pointer.
731     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
732   }
733 
734   if (isa<llvm::PointerType>(SrcTy)) {
735     // Must be an ptr to int cast.
736     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
737     return Builder.CreatePtrToInt(Src, DstTy, "conv");
738   }
739 
740   // A scalar can be splatted to an extended vector of the same element type
741   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
742     // Cast the scalar to element type
743     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
744     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
745 
746     // Splat the element across to all elements
747     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
748     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
749   }
750 
751   // Allow bitcast from vector to integer/fp of the same size.
752   if (isa<llvm::VectorType>(SrcTy) ||
753       isa<llvm::VectorType>(DstTy))
754     return Builder.CreateBitCast(Src, DstTy, "conv");
755 
756   // Finally, we have the arithmetic types: real int/float.
757   Value *Res = NULL;
758   llvm::Type *ResTy = DstTy;
759 
760   // An overflowing conversion has undefined behavior if either the source type
761   // or the destination type is a floating-point type.
762   if (CGF.SanOpts->FloatCastOverflow &&
763       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
764     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
765                              DstTy);
766 
767   // Cast to half via float
768   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
769     DstTy = CGF.FloatTy;
770 
771   if (isa<llvm::IntegerType>(SrcTy)) {
772     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
773     if (isa<llvm::IntegerType>(DstTy))
774       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
775     else if (InputSigned)
776       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
777     else
778       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
779   } else if (isa<llvm::IntegerType>(DstTy)) {
780     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
781     if (DstType->isSignedIntegerOrEnumerationType())
782       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
783     else
784       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
785   } else {
786     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
787            "Unknown real conversion");
788     if (DstTy->getTypeID() < SrcTy->getTypeID())
789       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
790     else
791       Res = Builder.CreateFPExt(Src, DstTy, "conv");
792   }
793 
794   if (DstTy != ResTy) {
795     assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
796     Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
797   }
798 
799   return Res;
800 }
801 
802 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
803 /// type to the specified destination type, where the destination type is an
804 /// LLVM scalar type.
805 Value *ScalarExprEmitter::
806 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
807                               QualType SrcTy, QualType DstTy) {
808   // Get the source element type.
809   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
810 
811   // Handle conversions to bool first, they are special: comparisons against 0.
812   if (DstTy->isBooleanType()) {
813     //  Complex != 0  -> (Real != 0) | (Imag != 0)
814     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
815     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
816     return Builder.CreateOr(Src.first, Src.second, "tobool");
817   }
818 
819   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
820   // the imaginary part of the complex value is discarded and the value of the
821   // real part is converted according to the conversion rules for the
822   // corresponding real type.
823   return EmitScalarConversion(Src.first, SrcTy, DstTy);
824 }
825 
826 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
827   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
828 }
829 
830 /// \brief Emit a sanitization check for the given "binary" operation (which
831 /// might actually be a unary increment which has been lowered to a binary
832 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
833 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
834   StringRef CheckName;
835   SmallVector<llvm::Constant *, 4> StaticData;
836   SmallVector<llvm::Value *, 2> DynamicData;
837 
838   BinaryOperatorKind Opcode = Info.Opcode;
839   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
840     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
841 
842   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
843   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
844   if (UO && UO->getOpcode() == UO_Minus) {
845     CheckName = "negate_overflow";
846     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
847     DynamicData.push_back(Info.RHS);
848   } else {
849     if (BinaryOperator::isShiftOp(Opcode)) {
850       // Shift LHS negative or too large, or RHS out of bounds.
851       CheckName = "shift_out_of_bounds";
852       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
853       StaticData.push_back(
854         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
855       StaticData.push_back(
856         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
857     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
858       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
859       CheckName = "divrem_overflow";
860       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
861     } else {
862       // Signed arithmetic overflow (+, -, *).
863       switch (Opcode) {
864       case BO_Add: CheckName = "add_overflow"; break;
865       case BO_Sub: CheckName = "sub_overflow"; break;
866       case BO_Mul: CheckName = "mul_overflow"; break;
867       default: llvm_unreachable("unexpected opcode for bin op check");
868       }
869       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
870     }
871     DynamicData.push_back(Info.LHS);
872     DynamicData.push_back(Info.RHS);
873   }
874 
875   CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
876                 CodeGenFunction::CRK_Recoverable);
877 }
878 
879 //===----------------------------------------------------------------------===//
880 //                            Visitor Methods
881 //===----------------------------------------------------------------------===//
882 
883 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
884   CGF.ErrorUnsupported(E, "scalar expression");
885   if (E->getType()->isVoidType())
886     return 0;
887   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
888 }
889 
890 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
891   // Vector Mask Case
892   if (E->getNumSubExprs() == 2 ||
893       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
894     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
895     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
896     Value *Mask;
897 
898     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
899     unsigned LHSElts = LTy->getNumElements();
900 
901     if (E->getNumSubExprs() == 3) {
902       Mask = CGF.EmitScalarExpr(E->getExpr(2));
903 
904       // Shuffle LHS & RHS into one input vector.
905       SmallVector<llvm::Constant*, 32> concat;
906       for (unsigned i = 0; i != LHSElts; ++i) {
907         concat.push_back(Builder.getInt32(2*i));
908         concat.push_back(Builder.getInt32(2*i+1));
909       }
910 
911       Value* CV = llvm::ConstantVector::get(concat);
912       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
913       LHSElts *= 2;
914     } else {
915       Mask = RHS;
916     }
917 
918     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
919     llvm::Constant* EltMask;
920 
921     // Treat vec3 like vec4.
922     if ((LHSElts == 6) && (E->getNumSubExprs() == 3))
923       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
924                                        (1 << llvm::Log2_32(LHSElts+2))-1);
925     else if ((LHSElts == 3) && (E->getNumSubExprs() == 2))
926       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
927                                        (1 << llvm::Log2_32(LHSElts+1))-1);
928     else
929       EltMask = llvm::ConstantInt::get(MTy->getElementType(),
930                                        (1 << llvm::Log2_32(LHSElts))-1);
931 
932     // Mask off the high bits of each shuffle index.
933     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
934                                                      EltMask);
935     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
936 
937     // newv = undef
938     // mask = mask & maskbits
939     // for each elt
940     //   n = extract mask i
941     //   x = extract val n
942     //   newv = insert newv, x, i
943     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
944                                                         MTy->getNumElements());
945     Value* NewV = llvm::UndefValue::get(RTy);
946     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
947       Value *IIndx = Builder.getInt32(i);
948       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
949       Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
950 
951       // Handle vec3 special since the index will be off by one for the RHS.
952       if ((LHSElts == 6) && (E->getNumSubExprs() == 3)) {
953         Value *cmpIndx, *newIndx;
954         cmpIndx = Builder.CreateICmpUGT(Indx, Builder.getInt32(3),
955                                         "cmp_shuf_idx");
956         newIndx = Builder.CreateSub(Indx, Builder.getInt32(1), "shuf_idx_adj");
957         Indx = Builder.CreateSelect(cmpIndx, newIndx, Indx, "sel_shuf_idx");
958       }
959       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
960       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
961     }
962     return NewV;
963   }
964 
965   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
966   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
967 
968   // Handle vec3 special since the index will be off by one for the RHS.
969   llvm::VectorType *VTy = cast<llvm::VectorType>(V1->getType());
970   SmallVector<llvm::Constant*, 32> indices;
971   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
972     unsigned Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
973     if (VTy->getNumElements() == 3 && Idx > 3)
974       Idx -= 1;
975     indices.push_back(Builder.getInt32(Idx));
976   }
977 
978   Value *SV = llvm::ConstantVector::get(indices);
979   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
980 }
981 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
982   llvm::APSInt Value;
983   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
984     if (E->isArrow())
985       CGF.EmitScalarExpr(E->getBase());
986     else
987       EmitLValue(E->getBase());
988     return Builder.getInt(Value);
989   }
990 
991   // Emit debug info for aggregate now, if it was delayed to reduce
992   // debug info size.
993   CGDebugInfo *DI = CGF.getDebugInfo();
994   if (DI &&
995       CGF.CGM.getCodeGenOpts().getDebugInfo()
996         == CodeGenOptions::LimitedDebugInfo) {
997     QualType PQTy = E->getBase()->IgnoreParenImpCasts()->getType();
998     if (const PointerType * PTy = dyn_cast<PointerType>(PQTy))
999       if (FieldDecl *M = dyn_cast<FieldDecl>(E->getMemberDecl()))
1000         DI->getOrCreateRecordType(PTy->getPointeeType(),
1001                                   M->getParent()->getLocation());
1002   }
1003   return EmitLoadOfLValue(E);
1004 }
1005 
1006 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1007   TestAndClearIgnoreResultAssign();
1008 
1009   // Emit subscript expressions in rvalue context's.  For most cases, this just
1010   // loads the lvalue formed by the subscript expr.  However, we have to be
1011   // careful, because the base of a vector subscript is occasionally an rvalue,
1012   // so we can't get it as an lvalue.
1013   if (!E->getBase()->getType()->isVectorType())
1014     return EmitLoadOfLValue(E);
1015 
1016   // Handle the vector case.  The base must be a vector, the index must be an
1017   // integer value.
1018   Value *Base = Visit(E->getBase());
1019   Value *Idx  = Visit(E->getIdx());
1020   QualType IdxTy = E->getIdx()->getType();
1021 
1022   if (CGF.SanOpts->Bounds)
1023     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1024 
1025   bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1026   Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1027   return Builder.CreateExtractElement(Base, Idx, "vecext");
1028 }
1029 
1030 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1031                                   unsigned Off, llvm::Type *I32Ty) {
1032   int MV = SVI->getMaskValue(Idx);
1033   if (MV == -1)
1034     return llvm::UndefValue::get(I32Ty);
1035   return llvm::ConstantInt::get(I32Ty, Off+MV);
1036 }
1037 
1038 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1039   bool Ignore = TestAndClearIgnoreResultAssign();
1040   (void)Ignore;
1041   assert (Ignore == false && "init list ignored");
1042   unsigned NumInitElements = E->getNumInits();
1043 
1044   if (E->hadArrayRangeDesignator())
1045     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1046 
1047   llvm::VectorType *VType =
1048     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1049 
1050   if (!VType) {
1051     if (NumInitElements == 0) {
1052       // C++11 value-initialization for the scalar.
1053       return EmitNullValue(E->getType());
1054     }
1055     // We have a scalar in braces. Just use the first element.
1056     return Visit(E->getInit(0));
1057   }
1058 
1059   unsigned ResElts = VType->getNumElements();
1060 
1061   // Loop over initializers collecting the Value for each, and remembering
1062   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1063   // us to fold the shuffle for the swizzle into the shuffle for the vector
1064   // initializer, since LLVM optimizers generally do not want to touch
1065   // shuffles.
1066   unsigned CurIdx = 0;
1067   bool VIsUndefShuffle = false;
1068   llvm::Value *V = llvm::UndefValue::get(VType);
1069   for (unsigned i = 0; i != NumInitElements; ++i) {
1070     Expr *IE = E->getInit(i);
1071     Value *Init = Visit(IE);
1072     SmallVector<llvm::Constant*, 16> Args;
1073 
1074     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1075 
1076     // Handle scalar elements.  If the scalar initializer is actually one
1077     // element of a different vector of the same width, use shuffle instead of
1078     // extract+insert.
1079     if (!VVT) {
1080       if (isa<ExtVectorElementExpr>(IE)) {
1081         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1082 
1083         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1084           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1085           Value *LHS = 0, *RHS = 0;
1086           if (CurIdx == 0) {
1087             // insert into undef -> shuffle (src, undef)
1088             Args.push_back(C);
1089             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1090 
1091             LHS = EI->getVectorOperand();
1092             RHS = V;
1093             VIsUndefShuffle = true;
1094           } else if (VIsUndefShuffle) {
1095             // insert into undefshuffle && size match -> shuffle (v, src)
1096             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1097             for (unsigned j = 0; j != CurIdx; ++j)
1098               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1099             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1100             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1101 
1102             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1103             RHS = EI->getVectorOperand();
1104             VIsUndefShuffle = false;
1105           }
1106           if (!Args.empty()) {
1107             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1108             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1109             ++CurIdx;
1110             continue;
1111           }
1112         }
1113       }
1114       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1115                                       "vecinit");
1116       VIsUndefShuffle = false;
1117       ++CurIdx;
1118       continue;
1119     }
1120 
1121     unsigned InitElts = VVT->getNumElements();
1122 
1123     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1124     // input is the same width as the vector being constructed, generate an
1125     // optimized shuffle of the swizzle input into the result.
1126     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1127     if (isa<ExtVectorElementExpr>(IE)) {
1128       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1129       Value *SVOp = SVI->getOperand(0);
1130       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1131 
1132       if (OpTy->getNumElements() == ResElts) {
1133         for (unsigned j = 0; j != CurIdx; ++j) {
1134           // If the current vector initializer is a shuffle with undef, merge
1135           // this shuffle directly into it.
1136           if (VIsUndefShuffle) {
1137             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1138                                       CGF.Int32Ty));
1139           } else {
1140             Args.push_back(Builder.getInt32(j));
1141           }
1142         }
1143         for (unsigned j = 0, je = InitElts; j != je; ++j)
1144           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1145         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1146 
1147         if (VIsUndefShuffle)
1148           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1149 
1150         Init = SVOp;
1151       }
1152     }
1153 
1154     // Extend init to result vector length, and then shuffle its contribution
1155     // to the vector initializer into V.
1156     if (Args.empty()) {
1157       for (unsigned j = 0; j != InitElts; ++j)
1158         Args.push_back(Builder.getInt32(j));
1159       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1160       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1161       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1162                                          Mask, "vext");
1163 
1164       Args.clear();
1165       for (unsigned j = 0; j != CurIdx; ++j)
1166         Args.push_back(Builder.getInt32(j));
1167       for (unsigned j = 0; j != InitElts; ++j)
1168         Args.push_back(Builder.getInt32(j+Offset));
1169       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1170     }
1171 
1172     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1173     // merging subsequent shuffles into this one.
1174     if (CurIdx == 0)
1175       std::swap(V, Init);
1176     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1177     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1178     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1179     CurIdx += InitElts;
1180   }
1181 
1182   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1183   // Emit remaining default initializers.
1184   llvm::Type *EltTy = VType->getElementType();
1185 
1186   // Emit remaining default initializers
1187   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1188     Value *Idx = Builder.getInt32(CurIdx);
1189     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1190     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1191   }
1192   return V;
1193 }
1194 
1195 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1196   const Expr *E = CE->getSubExpr();
1197 
1198   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1199     return false;
1200 
1201   if (isa<CXXThisExpr>(E)) {
1202     // We always assume that 'this' is never null.
1203     return false;
1204   }
1205 
1206   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1207     // And that glvalue casts are never null.
1208     if (ICE->getValueKind() != VK_RValue)
1209       return false;
1210   }
1211 
1212   return true;
1213 }
1214 
1215 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1216 // have to handle a more broad range of conversions than explicit casts, as they
1217 // handle things like function to ptr-to-function decay etc.
1218 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1219   Expr *E = CE->getSubExpr();
1220   QualType DestTy = CE->getType();
1221   CastKind Kind = CE->getCastKind();
1222 
1223   if (!DestTy->isVoidType())
1224     TestAndClearIgnoreResultAssign();
1225 
1226   // Since almost all cast kinds apply to scalars, this switch doesn't have
1227   // a default case, so the compiler will warn on a missing case.  The cases
1228   // are in the same order as in the CastKind enum.
1229   switch (Kind) {
1230   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1231   case CK_BuiltinFnToFnPtr:
1232     llvm_unreachable("builtin functions are handled elsewhere");
1233 
1234   case CK_LValueBitCast:
1235   case CK_ObjCObjectLValueCast: {
1236     Value *V = EmitLValue(E).getAddress();
1237     V = Builder.CreateBitCast(V,
1238                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1239     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1240   }
1241 
1242   case CK_CPointerToObjCPointerCast:
1243   case CK_BlockPointerToObjCPointerCast:
1244   case CK_AnyPointerToBlockPointerCast:
1245   case CK_BitCast: {
1246     Value *Src = Visit(const_cast<Expr*>(E));
1247     return Builder.CreateBitCast(Src, ConvertType(DestTy));
1248   }
1249   case CK_AtomicToNonAtomic:
1250   case CK_NonAtomicToAtomic:
1251   case CK_NoOp:
1252   case CK_UserDefinedConversion:
1253     return Visit(const_cast<Expr*>(E));
1254 
1255   case CK_BaseToDerived: {
1256     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1257     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1258 
1259     llvm::Value *V = Visit(E);
1260 
1261     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1262     // performed and the object is not of the derived type.
1263     if (CGF.SanitizePerformTypeCheck)
1264       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1265                         V, DestTy->getPointeeType());
1266 
1267     return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1268                                         CE->path_begin(), CE->path_end(),
1269                                         ShouldNullCheckClassCastValue(CE));
1270   }
1271   case CK_UncheckedDerivedToBase:
1272   case CK_DerivedToBase: {
1273     const CXXRecordDecl *DerivedClassDecl =
1274       E->getType()->getPointeeCXXRecordDecl();
1275     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1276 
1277     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1278                                      CE->path_begin(), CE->path_end(),
1279                                      ShouldNullCheckClassCastValue(CE));
1280   }
1281   case CK_Dynamic: {
1282     Value *V = Visit(const_cast<Expr*>(E));
1283     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1284     return CGF.EmitDynamicCast(V, DCE);
1285   }
1286 
1287   case CK_ArrayToPointerDecay: {
1288     assert(E->getType()->isArrayType() &&
1289            "Array to pointer decay must have array source type!");
1290 
1291     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1292 
1293     // Note that VLA pointers are always decayed, so we don't need to do
1294     // anything here.
1295     if (!E->getType()->isVariableArrayType()) {
1296       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1297       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1298                                  ->getElementType()) &&
1299              "Expected pointer to array");
1300       V = Builder.CreateStructGEP(V, 0, "arraydecay");
1301     }
1302 
1303     // Make sure the array decay ends up being the right type.  This matters if
1304     // the array type was of an incomplete type.
1305     return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1306   }
1307   case CK_FunctionToPointerDecay:
1308     return EmitLValue(E).getAddress();
1309 
1310   case CK_NullToPointer:
1311     if (MustVisitNullValue(E))
1312       (void) Visit(E);
1313 
1314     return llvm::ConstantPointerNull::get(
1315                                cast<llvm::PointerType>(ConvertType(DestTy)));
1316 
1317   case CK_NullToMemberPointer: {
1318     if (MustVisitNullValue(E))
1319       (void) Visit(E);
1320 
1321     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1322     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1323   }
1324 
1325   case CK_ReinterpretMemberPointer:
1326   case CK_BaseToDerivedMemberPointer:
1327   case CK_DerivedToBaseMemberPointer: {
1328     Value *Src = Visit(E);
1329 
1330     // Note that the AST doesn't distinguish between checked and
1331     // unchecked member pointer conversions, so we always have to
1332     // implement checked conversions here.  This is inefficient when
1333     // actual control flow may be required in order to perform the
1334     // check, which it is for data member pointers (but not member
1335     // function pointers on Itanium and ARM).
1336     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1337   }
1338 
1339   case CK_ARCProduceObject:
1340     return CGF.EmitARCRetainScalarExpr(E);
1341   case CK_ARCConsumeObject:
1342     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1343   case CK_ARCReclaimReturnedObject: {
1344     llvm::Value *value = Visit(E);
1345     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1346     return CGF.EmitObjCConsumeObject(E->getType(), value);
1347   }
1348   case CK_ARCExtendBlockObject:
1349     return CGF.EmitARCExtendBlockObject(E);
1350 
1351   case CK_CopyAndAutoreleaseBlockObject:
1352     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1353 
1354   case CK_FloatingRealToComplex:
1355   case CK_FloatingComplexCast:
1356   case CK_IntegralRealToComplex:
1357   case CK_IntegralComplexCast:
1358   case CK_IntegralComplexToFloatingComplex:
1359   case CK_FloatingComplexToIntegralComplex:
1360   case CK_ConstructorConversion:
1361   case CK_ToUnion:
1362     llvm_unreachable("scalar cast to non-scalar value");
1363 
1364   case CK_LValueToRValue:
1365     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1366     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1367     return Visit(const_cast<Expr*>(E));
1368 
1369   case CK_IntegralToPointer: {
1370     Value *Src = Visit(const_cast<Expr*>(E));
1371 
1372     // First, convert to the correct width so that we control the kind of
1373     // extension.
1374     llvm::Type *MiddleTy = CGF.IntPtrTy;
1375     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1376     llvm::Value* IntResult =
1377       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1378 
1379     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1380   }
1381   case CK_PointerToIntegral:
1382     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1383     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1384 
1385   case CK_ToVoid: {
1386     CGF.EmitIgnoredExpr(E);
1387     return 0;
1388   }
1389   case CK_VectorSplat: {
1390     llvm::Type *DstTy = ConvertType(DestTy);
1391     Value *Elt = Visit(const_cast<Expr*>(E));
1392     Elt = EmitScalarConversion(Elt, E->getType(),
1393                                DestTy->getAs<VectorType>()->getElementType());
1394 
1395     // Splat the element across to all elements
1396     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1397     return Builder.CreateVectorSplat(NumElements, Elt, "splat");;
1398   }
1399 
1400   case CK_IntegralCast:
1401   case CK_IntegralToFloating:
1402   case CK_FloatingToIntegral:
1403   case CK_FloatingCast:
1404     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1405   case CK_IntegralToBoolean:
1406     return EmitIntToBoolConversion(Visit(E));
1407   case CK_PointerToBoolean:
1408     return EmitPointerToBoolConversion(Visit(E));
1409   case CK_FloatingToBoolean:
1410     return EmitFloatToBoolConversion(Visit(E));
1411   case CK_MemberPointerToBoolean: {
1412     llvm::Value *MemPtr = Visit(E);
1413     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1414     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1415   }
1416 
1417   case CK_FloatingComplexToReal:
1418   case CK_IntegralComplexToReal:
1419     return CGF.EmitComplexExpr(E, false, true).first;
1420 
1421   case CK_FloatingComplexToBoolean:
1422   case CK_IntegralComplexToBoolean: {
1423     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1424 
1425     // TODO: kill this function off, inline appropriate case here
1426     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1427   }
1428 
1429   case CK_ZeroToOCLEvent: {
1430     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type");
1431     return llvm::Constant::getNullValue(ConvertType(DestTy));
1432   }
1433 
1434   }
1435 
1436   llvm_unreachable("unknown scalar cast");
1437 }
1438 
1439 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1440   CodeGenFunction::StmtExprEvaluation eval(CGF);
1441   return CGF.EmitCompoundStmt(*E->getSubStmt(), !E->getType()->isVoidType())
1442     .getScalarVal();
1443 }
1444 
1445 //===----------------------------------------------------------------------===//
1446 //                             Unary Operators
1447 //===----------------------------------------------------------------------===//
1448 
1449 llvm::Value *ScalarExprEmitter::
1450 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1451                                 llvm::Value *InVal,
1452                                 llvm::Value *NextVal, bool IsInc) {
1453   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1454   case LangOptions::SOB_Defined:
1455     return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1456   case LangOptions::SOB_Undefined:
1457     if (!CGF.SanOpts->SignedIntegerOverflow)
1458       return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1459     // Fall through.
1460   case LangOptions::SOB_Trapping:
1461     BinOpInfo BinOp;
1462     BinOp.LHS = InVal;
1463     BinOp.RHS = NextVal;
1464     BinOp.Ty = E->getType();
1465     BinOp.Opcode = BO_Add;
1466     BinOp.FPContractable = false;
1467     BinOp.E = E;
1468     return EmitOverflowCheckedBinOp(BinOp);
1469   }
1470   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1471 }
1472 
1473 llvm::Value *
1474 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1475                                            bool isInc, bool isPre) {
1476 
1477   QualType type = E->getSubExpr()->getType();
1478   llvm::PHINode *atomicPHI = 0;
1479   llvm::Value *value;
1480   llvm::Value *input;
1481 
1482   int amount = (isInc ? 1 : -1);
1483 
1484   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1485     type = atomicTy->getValueType();
1486     if (isInc && type->isBooleanType()) {
1487       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1488       if (isPre) {
1489         Builder.Insert(new llvm::StoreInst(True,
1490               LV.getAddress(), LV.isVolatileQualified(),
1491               LV.getAlignment().getQuantity(),
1492               llvm::SequentiallyConsistent));
1493         return Builder.getTrue();
1494       }
1495       // For atomic bool increment, we just store true and return it for
1496       // preincrement, do an atomic swap with true for postincrement
1497         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1498             LV.getAddress(), True, llvm::SequentiallyConsistent);
1499     }
1500     // Special case for atomic increment / decrement on integers, emit
1501     // atomicrmw instructions.  We skip this if we want to be doing overflow
1502     // checking, and fall into the slow path with the atomic cmpxchg loop.
1503     if (!type->isBooleanType() && type->isIntegerType() &&
1504         !(type->isUnsignedIntegerType() &&
1505          CGF.SanOpts->UnsignedIntegerOverflow) &&
1506         CGF.getLangOpts().getSignedOverflowBehavior() !=
1507          LangOptions::SOB_Trapping) {
1508       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1509         llvm::AtomicRMWInst::Sub;
1510       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1511         llvm::Instruction::Sub;
1512       llvm::Value *amt = CGF.EmitToMemory(
1513           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1514       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1515           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1516       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1517     }
1518     value = EmitLoadOfLValue(LV);
1519     input = value;
1520     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1521     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1522     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1523     value = CGF.EmitToMemory(value, type);
1524     Builder.CreateBr(opBB);
1525     Builder.SetInsertPoint(opBB);
1526     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1527     atomicPHI->addIncoming(value, startBB);
1528     value = atomicPHI;
1529   } else {
1530     value = EmitLoadOfLValue(LV);
1531     input = value;
1532   }
1533 
1534   // Special case of integer increment that we have to check first: bool++.
1535   // Due to promotion rules, we get:
1536   //   bool++ -> bool = bool + 1
1537   //          -> bool = (int)bool + 1
1538   //          -> bool = ((int)bool + 1 != 0)
1539   // An interesting aspect of this is that increment is always true.
1540   // Decrement does not have this property.
1541   if (isInc && type->isBooleanType()) {
1542     value = Builder.getTrue();
1543 
1544   // Most common case by far: integer increment.
1545   } else if (type->isIntegerType()) {
1546 
1547     llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1548 
1549     // Note that signed integer inc/dec with width less than int can't
1550     // overflow because of promotion rules; we're just eliding a few steps here.
1551     if (value->getType()->getPrimitiveSizeInBits() >=
1552             CGF.IntTy->getBitWidth() &&
1553         type->isSignedIntegerOrEnumerationType()) {
1554       value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1555     } else if (value->getType()->getPrimitiveSizeInBits() >=
1556                CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() &&
1557                CGF.SanOpts->UnsignedIntegerOverflow) {
1558       BinOpInfo BinOp;
1559       BinOp.LHS = value;
1560       BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1561       BinOp.Ty = E->getType();
1562       BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1563       BinOp.FPContractable = false;
1564       BinOp.E = E;
1565       value = EmitOverflowCheckedBinOp(BinOp);
1566     } else
1567       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1568 
1569   // Next most common: pointer increment.
1570   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1571     QualType type = ptr->getPointeeType();
1572 
1573     // VLA types don't have constant size.
1574     if (const VariableArrayType *vla
1575           = CGF.getContext().getAsVariableArrayType(type)) {
1576       llvm::Value *numElts = CGF.getVLASize(vla).first;
1577       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1578       if (CGF.getLangOpts().isSignedOverflowDefined())
1579         value = Builder.CreateGEP(value, numElts, "vla.inc");
1580       else
1581         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1582 
1583     // Arithmetic on function pointers (!) is just +-1.
1584     } else if (type->isFunctionType()) {
1585       llvm::Value *amt = Builder.getInt32(amount);
1586 
1587       value = CGF.EmitCastToVoidPtr(value);
1588       if (CGF.getLangOpts().isSignedOverflowDefined())
1589         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1590       else
1591         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1592       value = Builder.CreateBitCast(value, input->getType());
1593 
1594     // For everything else, we can just do a simple increment.
1595     } else {
1596       llvm::Value *amt = Builder.getInt32(amount);
1597       if (CGF.getLangOpts().isSignedOverflowDefined())
1598         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1599       else
1600         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1601     }
1602 
1603   // Vector increment/decrement.
1604   } else if (type->isVectorType()) {
1605     if (type->hasIntegerRepresentation()) {
1606       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1607 
1608       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1609     } else {
1610       value = Builder.CreateFAdd(
1611                   value,
1612                   llvm::ConstantFP::get(value->getType(), amount),
1613                   isInc ? "inc" : "dec");
1614     }
1615 
1616   // Floating point.
1617   } else if (type->isRealFloatingType()) {
1618     // Add the inc/dec to the real part.
1619     llvm::Value *amt;
1620 
1621     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1622       // Another special case: half FP increment should be done via float
1623       value =
1624     Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1625                        input);
1626     }
1627 
1628     if (value->getType()->isFloatTy())
1629       amt = llvm::ConstantFP::get(VMContext,
1630                                   llvm::APFloat(static_cast<float>(amount)));
1631     else if (value->getType()->isDoubleTy())
1632       amt = llvm::ConstantFP::get(VMContext,
1633                                   llvm::APFloat(static_cast<double>(amount)));
1634     else {
1635       llvm::APFloat F(static_cast<float>(amount));
1636       bool ignored;
1637       F.convert(CGF.Target.getLongDoubleFormat(), llvm::APFloat::rmTowardZero,
1638                 &ignored);
1639       amt = llvm::ConstantFP::get(VMContext, F);
1640     }
1641     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1642 
1643     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1644       value =
1645        Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1646                           value);
1647 
1648   // Objective-C pointer types.
1649   } else {
1650     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1651     value = CGF.EmitCastToVoidPtr(value);
1652 
1653     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1654     if (!isInc) size = -size;
1655     llvm::Value *sizeValue =
1656       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1657 
1658     if (CGF.getLangOpts().isSignedOverflowDefined())
1659       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1660     else
1661       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1662     value = Builder.CreateBitCast(value, input->getType());
1663   }
1664 
1665   if (atomicPHI) {
1666     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1667     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1668     llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1669         CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent);
1670     atomicPHI->addIncoming(old, opBB);
1671     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1672     Builder.CreateCondBr(success, contBB, opBB);
1673     Builder.SetInsertPoint(contBB);
1674     return isPre ? value : input;
1675   }
1676 
1677   // Store the updated result through the lvalue.
1678   if (LV.isBitField())
1679     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1680   else
1681     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1682 
1683   // If this is a postinc, return the value read from memory, otherwise use the
1684   // updated value.
1685   return isPre ? value : input;
1686 }
1687 
1688 
1689 
1690 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1691   TestAndClearIgnoreResultAssign();
1692   // Emit unary minus with EmitSub so we handle overflow cases etc.
1693   BinOpInfo BinOp;
1694   BinOp.RHS = Visit(E->getSubExpr());
1695 
1696   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1697     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1698   else
1699     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1700   BinOp.Ty = E->getType();
1701   BinOp.Opcode = BO_Sub;
1702   BinOp.FPContractable = false;
1703   BinOp.E = E;
1704   return EmitSub(BinOp);
1705 }
1706 
1707 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1708   TestAndClearIgnoreResultAssign();
1709   Value *Op = Visit(E->getSubExpr());
1710   return Builder.CreateNot(Op, "neg");
1711 }
1712 
1713 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1714   // Perform vector logical not on comparison with zero vector.
1715   if (E->getType()->isExtVectorType()) {
1716     Value *Oper = Visit(E->getSubExpr());
1717     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1718     Value *Result;
1719     if (Oper->getType()->isFPOrFPVectorTy())
1720       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1721     else
1722       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1723     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1724   }
1725 
1726   // Compare operand to zero.
1727   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1728 
1729   // Invert value.
1730   // TODO: Could dynamically modify easy computations here.  For example, if
1731   // the operand is an icmp ne, turn into icmp eq.
1732   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1733 
1734   // ZExt result to the expr type.
1735   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1736 }
1737 
1738 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1739   // Try folding the offsetof to a constant.
1740   llvm::APSInt Value;
1741   if (E->EvaluateAsInt(Value, CGF.getContext()))
1742     return Builder.getInt(Value);
1743 
1744   // Loop over the components of the offsetof to compute the value.
1745   unsigned n = E->getNumComponents();
1746   llvm::Type* ResultType = ConvertType(E->getType());
1747   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1748   QualType CurrentType = E->getTypeSourceInfo()->getType();
1749   for (unsigned i = 0; i != n; ++i) {
1750     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1751     llvm::Value *Offset = 0;
1752     switch (ON.getKind()) {
1753     case OffsetOfExpr::OffsetOfNode::Array: {
1754       // Compute the index
1755       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1756       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1757       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1758       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1759 
1760       // Save the element type
1761       CurrentType =
1762           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1763 
1764       // Compute the element size
1765       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1766           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1767 
1768       // Multiply out to compute the result
1769       Offset = Builder.CreateMul(Idx, ElemSize);
1770       break;
1771     }
1772 
1773     case OffsetOfExpr::OffsetOfNode::Field: {
1774       FieldDecl *MemberDecl = ON.getField();
1775       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1776       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1777 
1778       // Compute the index of the field in its parent.
1779       unsigned i = 0;
1780       // FIXME: It would be nice if we didn't have to loop here!
1781       for (RecordDecl::field_iterator Field = RD->field_begin(),
1782                                       FieldEnd = RD->field_end();
1783            Field != FieldEnd; ++Field, ++i) {
1784         if (*Field == MemberDecl)
1785           break;
1786       }
1787       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1788 
1789       // Compute the offset to the field
1790       int64_t OffsetInt = RL.getFieldOffset(i) /
1791                           CGF.getContext().getCharWidth();
1792       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1793 
1794       // Save the element type.
1795       CurrentType = MemberDecl->getType();
1796       break;
1797     }
1798 
1799     case OffsetOfExpr::OffsetOfNode::Identifier:
1800       llvm_unreachable("dependent __builtin_offsetof");
1801 
1802     case OffsetOfExpr::OffsetOfNode::Base: {
1803       if (ON.getBase()->isVirtual()) {
1804         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1805         continue;
1806       }
1807 
1808       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1809       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1810 
1811       // Save the element type.
1812       CurrentType = ON.getBase()->getType();
1813 
1814       // Compute the offset to the base.
1815       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1816       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1817       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1818       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1819       break;
1820     }
1821     }
1822     Result = Builder.CreateAdd(Result, Offset);
1823   }
1824   return Result;
1825 }
1826 
1827 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1828 /// argument of the sizeof expression as an integer.
1829 Value *
1830 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1831                               const UnaryExprOrTypeTraitExpr *E) {
1832   QualType TypeToSize = E->getTypeOfArgument();
1833   if (E->getKind() == UETT_SizeOf) {
1834     if (const VariableArrayType *VAT =
1835           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1836       if (E->isArgumentType()) {
1837         // sizeof(type) - make sure to emit the VLA size.
1838         CGF.EmitVariablyModifiedType(TypeToSize);
1839       } else {
1840         // C99 6.5.3.4p2: If the argument is an expression of type
1841         // VLA, it is evaluated.
1842         CGF.EmitIgnoredExpr(E->getArgumentExpr());
1843       }
1844 
1845       QualType eltType;
1846       llvm::Value *numElts;
1847       llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1848 
1849       llvm::Value *size = numElts;
1850 
1851       // Scale the number of non-VLA elements by the non-VLA element size.
1852       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1853       if (!eltSize.isOne())
1854         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1855 
1856       return size;
1857     }
1858   }
1859 
1860   // If this isn't sizeof(vla), the result must be constant; use the constant
1861   // folding logic so we don't have to duplicate it here.
1862   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1863 }
1864 
1865 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1866   Expr *Op = E->getSubExpr();
1867   if (Op->getType()->isAnyComplexType()) {
1868     // If it's an l-value, load through the appropriate subobject l-value.
1869     // Note that we have to ask E because Op might be an l-value that
1870     // this won't work for, e.g. an Obj-C property.
1871     if (E->isGLValue())
1872       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1873 
1874     // Otherwise, calculate and project.
1875     return CGF.EmitComplexExpr(Op, false, true).first;
1876   }
1877 
1878   return Visit(Op);
1879 }
1880 
1881 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1882   Expr *Op = E->getSubExpr();
1883   if (Op->getType()->isAnyComplexType()) {
1884     // If it's an l-value, load through the appropriate subobject l-value.
1885     // Note that we have to ask E because Op might be an l-value that
1886     // this won't work for, e.g. an Obj-C property.
1887     if (Op->isGLValue())
1888       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1889 
1890     // Otherwise, calculate and project.
1891     return CGF.EmitComplexExpr(Op, true, false).second;
1892   }
1893 
1894   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1895   // effects are evaluated, but not the actual value.
1896   if (Op->isGLValue())
1897     CGF.EmitLValue(Op);
1898   else
1899     CGF.EmitScalarExpr(Op, true);
1900   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1901 }
1902 
1903 //===----------------------------------------------------------------------===//
1904 //                           Binary Operators
1905 //===----------------------------------------------------------------------===//
1906 
1907 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1908   TestAndClearIgnoreResultAssign();
1909   BinOpInfo Result;
1910   Result.LHS = Visit(E->getLHS());
1911   Result.RHS = Visit(E->getRHS());
1912   Result.Ty  = E->getType();
1913   Result.Opcode = E->getOpcode();
1914   Result.FPContractable = E->isFPContractable();
1915   Result.E = E;
1916   return Result;
1917 }
1918 
1919 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1920                                               const CompoundAssignOperator *E,
1921                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1922                                                    Value *&Result) {
1923   QualType LHSTy = E->getLHS()->getType();
1924   BinOpInfo OpInfo;
1925 
1926   if (E->getComputationResultType()->isAnyComplexType()) {
1927     // This needs to go through the complex expression emitter, but it's a tad
1928     // complicated to do that... I'm leaving it out for now.  (Note that we do
1929     // actually need the imaginary part of the RHS for multiplication and
1930     // division.)
1931     CGF.ErrorUnsupported(E, "complex compound assignment");
1932     Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1933     return LValue();
1934   }
1935 
1936   // Emit the RHS first.  __block variables need to have the rhs evaluated
1937   // first, plus this should improve codegen a little.
1938   OpInfo.RHS = Visit(E->getRHS());
1939   OpInfo.Ty = E->getComputationResultType();
1940   OpInfo.Opcode = E->getOpcode();
1941   OpInfo.FPContractable = false;
1942   OpInfo.E = E;
1943   // Load/convert the LHS.
1944   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1945 
1946   llvm::PHINode *atomicPHI = 0;
1947   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
1948     QualType type = atomicTy->getValueType();
1949     if (!type->isBooleanType() && type->isIntegerType() &&
1950          !(type->isUnsignedIntegerType() &&
1951           CGF.SanOpts->UnsignedIntegerOverflow) &&
1952          CGF.getLangOpts().getSignedOverflowBehavior() !=
1953           LangOptions::SOB_Trapping) {
1954       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
1955       switch (OpInfo.Opcode) {
1956         // We don't have atomicrmw operands for *, %, /, <<, >>
1957         case BO_MulAssign: case BO_DivAssign:
1958         case BO_RemAssign:
1959         case BO_ShlAssign:
1960         case BO_ShrAssign:
1961           break;
1962         case BO_AddAssign:
1963           aop = llvm::AtomicRMWInst::Add;
1964           break;
1965         case BO_SubAssign:
1966           aop = llvm::AtomicRMWInst::Sub;
1967           break;
1968         case BO_AndAssign:
1969           aop = llvm::AtomicRMWInst::And;
1970           break;
1971         case BO_XorAssign:
1972           aop = llvm::AtomicRMWInst::Xor;
1973           break;
1974         case BO_OrAssign:
1975           aop = llvm::AtomicRMWInst::Or;
1976           break;
1977         default:
1978           llvm_unreachable("Invalid compound assignment type");
1979       }
1980       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
1981         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
1982               E->getRHS()->getType(), LHSTy), LHSTy);
1983         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
1984             llvm::SequentiallyConsistent);
1985         return LHSLV;
1986       }
1987     }
1988     // FIXME: For floating point types, we should be saving and restoring the
1989     // floating point environment in the loop.
1990     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1991     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1992     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1993     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
1994     Builder.CreateBr(opBB);
1995     Builder.SetInsertPoint(opBB);
1996     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1997     atomicPHI->addIncoming(OpInfo.LHS, startBB);
1998     OpInfo.LHS = atomicPHI;
1999   }
2000   else
2001     OpInfo.LHS = EmitLoadOfLValue(LHSLV);
2002 
2003   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2004                                     E->getComputationLHSType());
2005 
2006   // Expand the binary operator.
2007   Result = (this->*Func)(OpInfo);
2008 
2009   // Convert the result back to the LHS type.
2010   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2011 
2012   if (atomicPHI) {
2013     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2014     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2015     llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
2016         CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent);
2017     atomicPHI->addIncoming(old, opBB);
2018     llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
2019     Builder.CreateCondBr(success, contBB, opBB);
2020     Builder.SetInsertPoint(contBB);
2021     return LHSLV;
2022   }
2023 
2024   // Store the result value into the LHS lvalue. Bit-fields are handled
2025   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2026   // 'An assignment expression has the value of the left operand after the
2027   // assignment...'.
2028   if (LHSLV.isBitField())
2029     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2030   else
2031     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2032 
2033   return LHSLV;
2034 }
2035 
2036 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2037                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2038   bool Ignore = TestAndClearIgnoreResultAssign();
2039   Value *RHS;
2040   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2041 
2042   // If the result is clearly ignored, return now.
2043   if (Ignore)
2044     return 0;
2045 
2046   // The result of an assignment in C is the assigned r-value.
2047   if (!CGF.getLangOpts().CPlusPlus)
2048     return RHS;
2049 
2050   // If the lvalue is non-volatile, return the computed value of the assignment.
2051   if (!LHS.isVolatileQualified())
2052     return RHS;
2053 
2054   // Otherwise, reload the value.
2055   return EmitLoadOfLValue(LHS);
2056 }
2057 
2058 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2059     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2060   llvm::Value *Cond = 0;
2061 
2062   if (CGF.SanOpts->IntegerDivideByZero)
2063     Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2064 
2065   if (CGF.SanOpts->SignedIntegerOverflow &&
2066       Ops.Ty->hasSignedIntegerRepresentation()) {
2067     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2068 
2069     llvm::Value *IntMin =
2070       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2071     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2072 
2073     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2074     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2075     llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2076     Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2077   }
2078 
2079   if (Cond)
2080     EmitBinOpCheck(Cond, Ops);
2081 }
2082 
2083 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2084   if ((CGF.SanOpts->IntegerDivideByZero ||
2085        CGF.SanOpts->SignedIntegerOverflow) &&
2086       Ops.Ty->isIntegerType()) {
2087     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2088     EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2089   } else if (CGF.SanOpts->FloatDivideByZero &&
2090              Ops.Ty->isRealFloatingType()) {
2091     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2092     EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2093   }
2094 
2095   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2096     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2097     if (CGF.getLangOpts().OpenCL) {
2098       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2099       llvm::Type *ValTy = Val->getType();
2100       if (ValTy->isFloatTy() ||
2101           (isa<llvm::VectorType>(ValTy) &&
2102            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2103         CGF.SetFPAccuracy(Val, 2.5);
2104     }
2105     return Val;
2106   }
2107   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2108     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2109   else
2110     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2111 }
2112 
2113 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2114   // Rem in C can't be a floating point type: C99 6.5.5p2.
2115   if (CGF.SanOpts->IntegerDivideByZero) {
2116     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2117 
2118     if (Ops.Ty->isIntegerType())
2119       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2120   }
2121 
2122   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2123     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2124   else
2125     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2126 }
2127 
2128 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2129   unsigned IID;
2130   unsigned OpID = 0;
2131 
2132   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2133   switch (Ops.Opcode) {
2134   case BO_Add:
2135   case BO_AddAssign:
2136     OpID = 1;
2137     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2138                      llvm::Intrinsic::uadd_with_overflow;
2139     break;
2140   case BO_Sub:
2141   case BO_SubAssign:
2142     OpID = 2;
2143     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2144                      llvm::Intrinsic::usub_with_overflow;
2145     break;
2146   case BO_Mul:
2147   case BO_MulAssign:
2148     OpID = 3;
2149     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2150                      llvm::Intrinsic::umul_with_overflow;
2151     break;
2152   default:
2153     llvm_unreachable("Unsupported operation for overflow detection");
2154   }
2155   OpID <<= 1;
2156   if (isSigned)
2157     OpID |= 1;
2158 
2159   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2160 
2161   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2162 
2163   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2164   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2165   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2166 
2167   // Handle overflow with llvm.trap if no custom handler has been specified.
2168   const std::string *handlerName =
2169     &CGF.getLangOpts().OverflowHandler;
2170   if (handlerName->empty()) {
2171     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2172     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2173     if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2174       EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2175     else
2176       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2177     return result;
2178   }
2179 
2180   // Branch in case of overflow.
2181   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2182   llvm::Function::iterator insertPt = initialBB;
2183   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2184                                                       llvm::next(insertPt));
2185   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2186 
2187   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2188 
2189   // If an overflow handler is set, then we want to call it and then use its
2190   // result, if it returns.
2191   Builder.SetInsertPoint(overflowBB);
2192 
2193   // Get the overflow handler.
2194   llvm::Type *Int8Ty = CGF.Int8Ty;
2195   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2196   llvm::FunctionType *handlerTy =
2197       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2198   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2199 
2200   // Sign extend the args to 64-bit, so that we can use the same handler for
2201   // all types of overflow.
2202   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2203   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2204 
2205   // Call the handler with the two arguments, the operation, and the size of
2206   // the result.
2207   llvm::Value *handlerArgs[] = {
2208     lhs,
2209     rhs,
2210     Builder.getInt8(OpID),
2211     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2212   };
2213   llvm::Value *handlerResult =
2214     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2215 
2216   // Truncate the result back to the desired size.
2217   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2218   Builder.CreateBr(continueBB);
2219 
2220   Builder.SetInsertPoint(continueBB);
2221   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2222   phi->addIncoming(result, initialBB);
2223   phi->addIncoming(handlerResult, overflowBB);
2224 
2225   return phi;
2226 }
2227 
2228 /// Emit pointer + index arithmetic.
2229 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2230                                     const BinOpInfo &op,
2231                                     bool isSubtraction) {
2232   // Must have binary (not unary) expr here.  Unary pointer
2233   // increment/decrement doesn't use this path.
2234   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2235 
2236   Value *pointer = op.LHS;
2237   Expr *pointerOperand = expr->getLHS();
2238   Value *index = op.RHS;
2239   Expr *indexOperand = expr->getRHS();
2240 
2241   // In a subtraction, the LHS is always the pointer.
2242   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2243     std::swap(pointer, index);
2244     std::swap(pointerOperand, indexOperand);
2245   }
2246 
2247   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2248   if (width != CGF.PointerWidthInBits) {
2249     // Zero-extend or sign-extend the pointer value according to
2250     // whether the index is signed or not.
2251     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2252     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2253                                       "idx.ext");
2254   }
2255 
2256   // If this is subtraction, negate the index.
2257   if (isSubtraction)
2258     index = CGF.Builder.CreateNeg(index, "idx.neg");
2259 
2260   if (CGF.SanOpts->Bounds)
2261     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2262                         /*Accessed*/ false);
2263 
2264   const PointerType *pointerType
2265     = pointerOperand->getType()->getAs<PointerType>();
2266   if (!pointerType) {
2267     QualType objectType = pointerOperand->getType()
2268                                         ->castAs<ObjCObjectPointerType>()
2269                                         ->getPointeeType();
2270     llvm::Value *objectSize
2271       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2272 
2273     index = CGF.Builder.CreateMul(index, objectSize);
2274 
2275     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2276     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2277     return CGF.Builder.CreateBitCast(result, pointer->getType());
2278   }
2279 
2280   QualType elementType = pointerType->getPointeeType();
2281   if (const VariableArrayType *vla
2282         = CGF.getContext().getAsVariableArrayType(elementType)) {
2283     // The element count here is the total number of non-VLA elements.
2284     llvm::Value *numElements = CGF.getVLASize(vla).first;
2285 
2286     // Effectively, the multiply by the VLA size is part of the GEP.
2287     // GEP indexes are signed, and scaling an index isn't permitted to
2288     // signed-overflow, so we use the same semantics for our explicit
2289     // multiply.  We suppress this if overflow is not undefined behavior.
2290     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2291       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2292       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2293     } else {
2294       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2295       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2296     }
2297     return pointer;
2298   }
2299 
2300   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2301   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2302   // future proof.
2303   if (elementType->isVoidType() || elementType->isFunctionType()) {
2304     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2305     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2306     return CGF.Builder.CreateBitCast(result, pointer->getType());
2307   }
2308 
2309   if (CGF.getLangOpts().isSignedOverflowDefined())
2310     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2311 
2312   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2313 }
2314 
2315 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2316 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2317 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2318 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2319 // efficient operations.
2320 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2321                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2322                            bool negMul, bool negAdd) {
2323   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2324 
2325   Value *MulOp0 = MulOp->getOperand(0);
2326   Value *MulOp1 = MulOp->getOperand(1);
2327   if (negMul) {
2328     MulOp0 =
2329       Builder.CreateFSub(
2330         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2331         "neg");
2332   } else if (negAdd) {
2333     Addend =
2334       Builder.CreateFSub(
2335         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2336         "neg");
2337   }
2338 
2339   Value *FMulAdd =
2340     Builder.CreateCall3(
2341       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2342                            MulOp0, MulOp1, Addend);
2343    MulOp->eraseFromParent();
2344 
2345    return FMulAdd;
2346 }
2347 
2348 // Check whether it would be legal to emit an fmuladd intrinsic call to
2349 // represent op and if so, build the fmuladd.
2350 //
2351 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2352 // Does NOT check the type of the operation - it's assumed that this function
2353 // will be called from contexts where it's known that the type is contractable.
2354 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2355                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2356                          bool isSub=false) {
2357 
2358   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2359           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2360          "Only fadd/fsub can be the root of an fmuladd.");
2361 
2362   // Check whether this op is marked as fusable.
2363   if (!op.FPContractable)
2364     return 0;
2365 
2366   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2367   // either disabled, or handled entirely by the LLVM backend).
2368   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2369     return 0;
2370 
2371   // We have a potentially fusable op. Look for a mul on one of the operands.
2372   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2373     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2374       assert(LHSBinOp->getNumUses() == 0 &&
2375              "Operations with multiple uses shouldn't be contracted.");
2376       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2377     }
2378   } else if (llvm::BinaryOperator* RHSBinOp =
2379                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2380     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2381       assert(RHSBinOp->getNumUses() == 0 &&
2382              "Operations with multiple uses shouldn't be contracted.");
2383       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2384     }
2385   }
2386 
2387   return 0;
2388 }
2389 
2390 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2391   if (op.LHS->getType()->isPointerTy() ||
2392       op.RHS->getType()->isPointerTy())
2393     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2394 
2395   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2396     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2397     case LangOptions::SOB_Defined:
2398       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2399     case LangOptions::SOB_Undefined:
2400       if (!CGF.SanOpts->SignedIntegerOverflow)
2401         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2402       // Fall through.
2403     case LangOptions::SOB_Trapping:
2404       return EmitOverflowCheckedBinOp(op);
2405     }
2406   }
2407 
2408   if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2409     return EmitOverflowCheckedBinOp(op);
2410 
2411   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2412     // Try to form an fmuladd.
2413     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2414       return FMulAdd;
2415 
2416     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2417   }
2418 
2419   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2420 }
2421 
2422 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2423   // The LHS is always a pointer if either side is.
2424   if (!op.LHS->getType()->isPointerTy()) {
2425     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2426       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2427       case LangOptions::SOB_Defined:
2428         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2429       case LangOptions::SOB_Undefined:
2430         if (!CGF.SanOpts->SignedIntegerOverflow)
2431           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2432         // Fall through.
2433       case LangOptions::SOB_Trapping:
2434         return EmitOverflowCheckedBinOp(op);
2435       }
2436     }
2437 
2438     if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2439       return EmitOverflowCheckedBinOp(op);
2440 
2441     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2442       // Try to form an fmuladd.
2443       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2444         return FMulAdd;
2445       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2446     }
2447 
2448     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2449   }
2450 
2451   // If the RHS is not a pointer, then we have normal pointer
2452   // arithmetic.
2453   if (!op.RHS->getType()->isPointerTy())
2454     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2455 
2456   // Otherwise, this is a pointer subtraction.
2457 
2458   // Do the raw subtraction part.
2459   llvm::Value *LHS
2460     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2461   llvm::Value *RHS
2462     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2463   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2464 
2465   // Okay, figure out the element size.
2466   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2467   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2468 
2469   llvm::Value *divisor = 0;
2470 
2471   // For a variable-length array, this is going to be non-constant.
2472   if (const VariableArrayType *vla
2473         = CGF.getContext().getAsVariableArrayType(elementType)) {
2474     llvm::Value *numElements;
2475     llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2476 
2477     divisor = numElements;
2478 
2479     // Scale the number of non-VLA elements by the non-VLA element size.
2480     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2481     if (!eltSize.isOne())
2482       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2483 
2484   // For everything elese, we can just compute it, safe in the
2485   // assumption that Sema won't let anything through that we can't
2486   // safely compute the size of.
2487   } else {
2488     CharUnits elementSize;
2489     // Handle GCC extension for pointer arithmetic on void* and
2490     // function pointer types.
2491     if (elementType->isVoidType() || elementType->isFunctionType())
2492       elementSize = CharUnits::One();
2493     else
2494       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2495 
2496     // Don't even emit the divide for element size of 1.
2497     if (elementSize.isOne())
2498       return diffInChars;
2499 
2500     divisor = CGF.CGM.getSize(elementSize);
2501   }
2502 
2503   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2504   // pointer difference in C is only defined in the case where both operands
2505   // are pointing to elements of an array.
2506   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2507 }
2508 
2509 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2510   llvm::IntegerType *Ty;
2511   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2512     Ty = cast<llvm::IntegerType>(VT->getElementType());
2513   else
2514     Ty = cast<llvm::IntegerType>(LHS->getType());
2515   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2516 }
2517 
2518 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2519   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2520   // RHS to the same size as the LHS.
2521   Value *RHS = Ops.RHS;
2522   if (Ops.LHS->getType() != RHS->getType())
2523     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2524 
2525   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2526       isa<llvm::IntegerType>(Ops.LHS->getType())) {
2527     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2528     llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2529 
2530     if (Ops.Ty->hasSignedIntegerRepresentation()) {
2531       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2532       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2533       llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2534       Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2535 
2536       // Check whether we are shifting any non-zero bits off the top of the
2537       // integer.
2538       CGF.EmitBlock(CheckBitsShifted);
2539       llvm::Value *BitsShiftedOff =
2540         Builder.CreateLShr(Ops.LHS,
2541                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2542                                              /*NUW*/true, /*NSW*/true),
2543                            "shl.check");
2544       if (CGF.getLangOpts().CPlusPlus) {
2545         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2546         // Under C++11's rules, shifting a 1 bit into the sign bit is
2547         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2548         // define signed left shifts, so we use the C99 and C++11 rules there).
2549         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2550         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2551       }
2552       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2553       llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2554       CGF.EmitBlock(Cont);
2555       llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2556       P->addIncoming(Valid, Orig);
2557       P->addIncoming(SecondCheck, CheckBitsShifted);
2558       Valid = P;
2559     }
2560 
2561     EmitBinOpCheck(Valid, Ops);
2562   }
2563   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2564   if (CGF.getLangOpts().OpenCL)
2565     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2566 
2567   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2568 }
2569 
2570 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2571   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2572   // RHS to the same size as the LHS.
2573   Value *RHS = Ops.RHS;
2574   if (Ops.LHS->getType() != RHS->getType())
2575     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2576 
2577   if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2578       isa<llvm::IntegerType>(Ops.LHS->getType()))
2579     EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2580 
2581   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2582   if (CGF.getLangOpts().OpenCL)
2583     RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2584 
2585   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2586     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2587   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2588 }
2589 
2590 enum IntrinsicType { VCMPEQ, VCMPGT };
2591 // return corresponding comparison intrinsic for given vector type
2592 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2593                                         BuiltinType::Kind ElemKind) {
2594   switch (ElemKind) {
2595   default: llvm_unreachable("unexpected element type");
2596   case BuiltinType::Char_U:
2597   case BuiltinType::UChar:
2598     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2599                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2600   case BuiltinType::Char_S:
2601   case BuiltinType::SChar:
2602     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2603                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2604   case BuiltinType::UShort:
2605     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2606                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2607   case BuiltinType::Short:
2608     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2609                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2610   case BuiltinType::UInt:
2611   case BuiltinType::ULong:
2612     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2613                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2614   case BuiltinType::Int:
2615   case BuiltinType::Long:
2616     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2617                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2618   case BuiltinType::Float:
2619     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2620                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2621   }
2622 }
2623 
2624 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2625                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2626   TestAndClearIgnoreResultAssign();
2627   Value *Result;
2628   QualType LHSTy = E->getLHS()->getType();
2629   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2630     assert(E->getOpcode() == BO_EQ ||
2631            E->getOpcode() == BO_NE);
2632     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2633     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2634     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2635                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2636   } else if (!LHSTy->isAnyComplexType()) {
2637     Value *LHS = Visit(E->getLHS());
2638     Value *RHS = Visit(E->getRHS());
2639 
2640     // If AltiVec, the comparison results in a numeric type, so we use
2641     // intrinsics comparing vectors and giving 0 or 1 as a result
2642     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2643       // constants for mapping CR6 register bits to predicate result
2644       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2645 
2646       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2647 
2648       // in several cases vector arguments order will be reversed
2649       Value *FirstVecArg = LHS,
2650             *SecondVecArg = RHS;
2651 
2652       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2653       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2654       BuiltinType::Kind ElementKind = BTy->getKind();
2655 
2656       switch(E->getOpcode()) {
2657       default: llvm_unreachable("is not a comparison operation");
2658       case BO_EQ:
2659         CR6 = CR6_LT;
2660         ID = GetIntrinsic(VCMPEQ, ElementKind);
2661         break;
2662       case BO_NE:
2663         CR6 = CR6_EQ;
2664         ID = GetIntrinsic(VCMPEQ, ElementKind);
2665         break;
2666       case BO_LT:
2667         CR6 = CR6_LT;
2668         ID = GetIntrinsic(VCMPGT, ElementKind);
2669         std::swap(FirstVecArg, SecondVecArg);
2670         break;
2671       case BO_GT:
2672         CR6 = CR6_LT;
2673         ID = GetIntrinsic(VCMPGT, ElementKind);
2674         break;
2675       case BO_LE:
2676         if (ElementKind == BuiltinType::Float) {
2677           CR6 = CR6_LT;
2678           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2679           std::swap(FirstVecArg, SecondVecArg);
2680         }
2681         else {
2682           CR6 = CR6_EQ;
2683           ID = GetIntrinsic(VCMPGT, ElementKind);
2684         }
2685         break;
2686       case BO_GE:
2687         if (ElementKind == BuiltinType::Float) {
2688           CR6 = CR6_LT;
2689           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2690         }
2691         else {
2692           CR6 = CR6_EQ;
2693           ID = GetIntrinsic(VCMPGT, ElementKind);
2694           std::swap(FirstVecArg, SecondVecArg);
2695         }
2696         break;
2697       }
2698 
2699       Value *CR6Param = Builder.getInt32(CR6);
2700       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2701       Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2702       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2703     }
2704 
2705     if (LHS->getType()->isFPOrFPVectorTy()) {
2706       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2707                                   LHS, RHS, "cmp");
2708     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2709       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2710                                   LHS, RHS, "cmp");
2711     } else {
2712       // Unsigned integers and pointers.
2713       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2714                                   LHS, RHS, "cmp");
2715     }
2716 
2717     // If this is a vector comparison, sign extend the result to the appropriate
2718     // vector integer type and return it (don't convert to bool).
2719     if (LHSTy->isVectorType())
2720       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2721 
2722   } else {
2723     // Complex Comparison: can only be an equality comparison.
2724     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2725     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2726 
2727     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2728 
2729     Value *ResultR, *ResultI;
2730     if (CETy->isRealFloatingType()) {
2731       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2732                                    LHS.first, RHS.first, "cmp.r");
2733       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2734                                    LHS.second, RHS.second, "cmp.i");
2735     } else {
2736       // Complex comparisons can only be equality comparisons.  As such, signed
2737       // and unsigned opcodes are the same.
2738       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2739                                    LHS.first, RHS.first, "cmp.r");
2740       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2741                                    LHS.second, RHS.second, "cmp.i");
2742     }
2743 
2744     if (E->getOpcode() == BO_EQ) {
2745       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2746     } else {
2747       assert(E->getOpcode() == BO_NE &&
2748              "Complex comparison other than == or != ?");
2749       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2750     }
2751   }
2752 
2753   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2754 }
2755 
2756 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2757   bool Ignore = TestAndClearIgnoreResultAssign();
2758 
2759   Value *RHS;
2760   LValue LHS;
2761 
2762   switch (E->getLHS()->getType().getObjCLifetime()) {
2763   case Qualifiers::OCL_Strong:
2764     llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2765     break;
2766 
2767   case Qualifiers::OCL_Autoreleasing:
2768     llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2769     break;
2770 
2771   case Qualifiers::OCL_Weak:
2772     RHS = Visit(E->getRHS());
2773     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2774     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2775     break;
2776 
2777   // No reason to do any of these differently.
2778   case Qualifiers::OCL_None:
2779   case Qualifiers::OCL_ExplicitNone:
2780     // __block variables need to have the rhs evaluated first, plus
2781     // this should improve codegen just a little.
2782     RHS = Visit(E->getRHS());
2783     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2784 
2785     // Store the value into the LHS.  Bit-fields are handled specially
2786     // because the result is altered by the store, i.e., [C99 6.5.16p1]
2787     // 'An assignment expression has the value of the left operand after
2788     // the assignment...'.
2789     if (LHS.isBitField())
2790       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2791     else
2792       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2793   }
2794 
2795   // If the result is clearly ignored, return now.
2796   if (Ignore)
2797     return 0;
2798 
2799   // The result of an assignment in C is the assigned r-value.
2800   if (!CGF.getLangOpts().CPlusPlus)
2801     return RHS;
2802 
2803   // If the lvalue is non-volatile, return the computed value of the assignment.
2804   if (!LHS.isVolatileQualified())
2805     return RHS;
2806 
2807   // Otherwise, reload the value.
2808   return EmitLoadOfLValue(LHS);
2809 }
2810 
2811 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2812   // Perform vector logical and on comparisons with zero vectors.
2813   if (E->getType()->isVectorType()) {
2814     Value *LHS = Visit(E->getLHS());
2815     Value *RHS = Visit(E->getRHS());
2816     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2817     if (LHS->getType()->isFPOrFPVectorTy()) {
2818       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2819       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2820     } else {
2821       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2822       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2823     }
2824     Value *And = Builder.CreateAnd(LHS, RHS);
2825     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2826   }
2827 
2828   llvm::Type *ResTy = ConvertType(E->getType());
2829 
2830   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2831   // If we have 1 && X, just emit X without inserting the control flow.
2832   bool LHSCondVal;
2833   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2834     if (LHSCondVal) { // If we have 1 && X, just emit X.
2835       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2836       // ZExt result to int or bool.
2837       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2838     }
2839 
2840     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2841     if (!CGF.ContainsLabel(E->getRHS()))
2842       return llvm::Constant::getNullValue(ResTy);
2843   }
2844 
2845   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2846   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
2847 
2848   CodeGenFunction::ConditionalEvaluation eval(CGF);
2849 
2850   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
2851   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2852 
2853   // Any edges into the ContBlock are now from an (indeterminate number of)
2854   // edges from this first condition.  All of these values will be false.  Start
2855   // setting up the PHI node in the Cont Block for this.
2856   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2857                                             "", ContBlock);
2858   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2859        PI != PE; ++PI)
2860     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2861 
2862   eval.begin(CGF);
2863   CGF.EmitBlock(RHSBlock);
2864   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2865   eval.end(CGF);
2866 
2867   // Reaquire the RHS block, as there may be subblocks inserted.
2868   RHSBlock = Builder.GetInsertBlock();
2869 
2870   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2871   // into the phi node for the edge with the value of RHSCond.
2872   if (CGF.getDebugInfo())
2873     // There is no need to emit line number for unconditional branch.
2874     Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2875   CGF.EmitBlock(ContBlock);
2876   PN->addIncoming(RHSCond, RHSBlock);
2877 
2878   // ZExt result to int.
2879   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2880 }
2881 
2882 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2883   // Perform vector logical or on comparisons with zero vectors.
2884   if (E->getType()->isVectorType()) {
2885     Value *LHS = Visit(E->getLHS());
2886     Value *RHS = Visit(E->getRHS());
2887     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2888     if (LHS->getType()->isFPOrFPVectorTy()) {
2889       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2890       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2891     } else {
2892       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2893       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2894     }
2895     Value *Or = Builder.CreateOr(LHS, RHS);
2896     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2897   }
2898 
2899   llvm::Type *ResTy = ConvertType(E->getType());
2900 
2901   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2902   // If we have 0 || X, just emit X without inserting the control flow.
2903   bool LHSCondVal;
2904   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2905     if (!LHSCondVal) { // If we have 0 || X, just emit X.
2906       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2907       // ZExt result to int or bool.
2908       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2909     }
2910 
2911     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2912     if (!CGF.ContainsLabel(E->getRHS()))
2913       return llvm::ConstantInt::get(ResTy, 1);
2914   }
2915 
2916   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2917   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2918 
2919   CodeGenFunction::ConditionalEvaluation eval(CGF);
2920 
2921   // Branch on the LHS first.  If it is true, go to the success (cont) block.
2922   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2923 
2924   // Any edges into the ContBlock are now from an (indeterminate number of)
2925   // edges from this first condition.  All of these values will be true.  Start
2926   // setting up the PHI node in the Cont Block for this.
2927   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2928                                             "", ContBlock);
2929   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2930        PI != PE; ++PI)
2931     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2932 
2933   eval.begin(CGF);
2934 
2935   // Emit the RHS condition as a bool value.
2936   CGF.EmitBlock(RHSBlock);
2937   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2938 
2939   eval.end(CGF);
2940 
2941   // Reaquire the RHS block, as there may be subblocks inserted.
2942   RHSBlock = Builder.GetInsertBlock();
2943 
2944   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
2945   // into the phi node for the edge with the value of RHSCond.
2946   CGF.EmitBlock(ContBlock);
2947   PN->addIncoming(RHSCond, RHSBlock);
2948 
2949   // ZExt result to int.
2950   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2951 }
2952 
2953 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2954   CGF.EmitIgnoredExpr(E->getLHS());
2955   CGF.EnsureInsertPoint();
2956   return Visit(E->getRHS());
2957 }
2958 
2959 //===----------------------------------------------------------------------===//
2960 //                             Other Operators
2961 //===----------------------------------------------------------------------===//
2962 
2963 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2964 /// expression is cheap enough and side-effect-free enough to evaluate
2965 /// unconditionally instead of conditionally.  This is used to convert control
2966 /// flow into selects in some cases.
2967 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2968                                                    CodeGenFunction &CGF) {
2969   E = E->IgnoreParens();
2970 
2971   // Anything that is an integer or floating point constant is fine.
2972   if (E->isConstantInitializer(CGF.getContext(), false))
2973     return true;
2974 
2975   // Non-volatile automatic variables too, to get "cond ? X : Y" where
2976   // X and Y are local variables.
2977   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2978     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2979       if (VD->hasLocalStorage() && !(CGF.getContext()
2980                                      .getCanonicalType(VD->getType())
2981                                      .isVolatileQualified()))
2982         return true;
2983 
2984   return false;
2985 }
2986 
2987 
2988 Value *ScalarExprEmitter::
2989 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2990   TestAndClearIgnoreResultAssign();
2991 
2992   // Bind the common expression if necessary.
2993   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2994 
2995   Expr *condExpr = E->getCond();
2996   Expr *lhsExpr = E->getTrueExpr();
2997   Expr *rhsExpr = E->getFalseExpr();
2998 
2999   // If the condition constant folds and can be elided, try to avoid emitting
3000   // the condition and the dead arm.
3001   bool CondExprBool;
3002   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3003     Expr *live = lhsExpr, *dead = rhsExpr;
3004     if (!CondExprBool) std::swap(live, dead);
3005 
3006     // If the dead side doesn't have labels we need, just emit the Live part.
3007     if (!CGF.ContainsLabel(dead)) {
3008       Value *Result = Visit(live);
3009 
3010       // If the live part is a throw expression, it acts like it has a void
3011       // type, so evaluating it returns a null Value*.  However, a conditional
3012       // with non-void type must return a non-null Value*.
3013       if (!Result && !E->getType()->isVoidType())
3014         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3015 
3016       return Result;
3017     }
3018   }
3019 
3020   // OpenCL: If the condition is a vector, we can treat this condition like
3021   // the select function.
3022   if (CGF.getLangOpts().OpenCL
3023       && condExpr->getType()->isVectorType()) {
3024     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3025     llvm::Value *LHS = Visit(lhsExpr);
3026     llvm::Value *RHS = Visit(rhsExpr);
3027 
3028     llvm::Type *condType = ConvertType(condExpr->getType());
3029     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3030 
3031     unsigned numElem = vecTy->getNumElements();
3032     llvm::Type *elemType = vecTy->getElementType();
3033 
3034     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3035     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3036     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3037                                           llvm::VectorType::get(elemType,
3038                                                                 numElem),
3039                                           "sext");
3040     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3041 
3042     // Cast float to int to perform ANDs if necessary.
3043     llvm::Value *RHSTmp = RHS;
3044     llvm::Value *LHSTmp = LHS;
3045     bool wasCast = false;
3046     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3047     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3048       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3049       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3050       wasCast = true;
3051     }
3052 
3053     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3054     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3055     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3056     if (wasCast)
3057       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3058 
3059     return tmp5;
3060   }
3061 
3062   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3063   // select instead of as control flow.  We can only do this if it is cheap and
3064   // safe to evaluate the LHS and RHS unconditionally.
3065   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3066       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3067     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3068     llvm::Value *LHS = Visit(lhsExpr);
3069     llvm::Value *RHS = Visit(rhsExpr);
3070     if (!LHS) {
3071       // If the conditional has void type, make sure we return a null Value*.
3072       assert(!RHS && "LHS and RHS types must match");
3073       return 0;
3074     }
3075     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3076   }
3077 
3078   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3079   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3080   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3081 
3082   CodeGenFunction::ConditionalEvaluation eval(CGF);
3083   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
3084 
3085   CGF.EmitBlock(LHSBlock);
3086   eval.begin(CGF);
3087   Value *LHS = Visit(lhsExpr);
3088   eval.end(CGF);
3089 
3090   LHSBlock = Builder.GetInsertBlock();
3091   Builder.CreateBr(ContBlock);
3092 
3093   CGF.EmitBlock(RHSBlock);
3094   eval.begin(CGF);
3095   Value *RHS = Visit(rhsExpr);
3096   eval.end(CGF);
3097 
3098   RHSBlock = Builder.GetInsertBlock();
3099   CGF.EmitBlock(ContBlock);
3100 
3101   // If the LHS or RHS is a throw expression, it will be legitimately null.
3102   if (!LHS)
3103     return RHS;
3104   if (!RHS)
3105     return LHS;
3106 
3107   // Create a PHI node for the real part.
3108   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3109   PN->addIncoming(LHS, LHSBlock);
3110   PN->addIncoming(RHS, RHSBlock);
3111   return PN;
3112 }
3113 
3114 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3115   return Visit(E->getChosenSubExpr(CGF.getContext()));
3116 }
3117 
3118 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3119   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3120   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3121 
3122   // If EmitVAArg fails, we fall back to the LLVM instruction.
3123   if (!ArgPtr)
3124     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3125 
3126   // FIXME Volatility.
3127   return Builder.CreateLoad(ArgPtr);
3128 }
3129 
3130 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3131   return CGF.EmitBlockLiteral(block);
3132 }
3133 
3134 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3135   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3136   llvm::Type *DstTy = ConvertType(E->getType());
3137 
3138   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3139   // a shuffle vector instead of a bitcast.
3140   llvm::Type *SrcTy = Src->getType();
3141   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3142     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3143     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3144     if ((numElementsDst == 3 && numElementsSrc == 4)
3145         || (numElementsDst == 4 && numElementsSrc == 3)) {
3146 
3147 
3148       // In the case of going from int4->float3, a bitcast is needed before
3149       // doing a shuffle.
3150       llvm::Type *srcElemTy =
3151       cast<llvm::VectorType>(SrcTy)->getElementType();
3152       llvm::Type *dstElemTy =
3153       cast<llvm::VectorType>(DstTy)->getElementType();
3154 
3155       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3156           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3157         // Create a float type of the same size as the source or destination.
3158         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3159                                                                  numElementsSrc);
3160 
3161         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3162       }
3163 
3164       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3165 
3166       SmallVector<llvm::Constant*, 3> Args;
3167       Args.push_back(Builder.getInt32(0));
3168       Args.push_back(Builder.getInt32(1));
3169       Args.push_back(Builder.getInt32(2));
3170 
3171       if (numElementsDst == 4)
3172         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3173 
3174       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3175 
3176       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3177     }
3178   }
3179 
3180   return Builder.CreateBitCast(Src, DstTy, "astype");
3181 }
3182 
3183 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3184   return CGF.EmitAtomicExpr(E).getScalarVal();
3185 }
3186 
3187 //===----------------------------------------------------------------------===//
3188 //                         Entry Point into this File
3189 //===----------------------------------------------------------------------===//
3190 
3191 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3192 /// type, ignoring the result.
3193 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3194   assert(E && hasScalarEvaluationKind(E->getType()) &&
3195          "Invalid scalar expression to emit");
3196 
3197   if (isa<CXXDefaultArgExpr>(E))
3198     disableDebugInfo();
3199   Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3200     .Visit(const_cast<Expr*>(E));
3201   if (isa<CXXDefaultArgExpr>(E))
3202     enableDebugInfo();
3203   return V;
3204 }
3205 
3206 /// EmitScalarConversion - Emit a conversion from the specified type to the
3207 /// specified destination type, both of which are LLVM scalar types.
3208 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3209                                              QualType DstTy) {
3210   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3211          "Invalid scalar expression to emit");
3212   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3213 }
3214 
3215 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3216 /// type to the specified destination type, where the destination type is an
3217 /// LLVM scalar type.
3218 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3219                                                       QualType SrcTy,
3220                                                       QualType DstTy) {
3221   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3222          "Invalid complex -> scalar conversion");
3223   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3224                                                                 DstTy);
3225 }
3226 
3227 
3228 llvm::Value *CodeGenFunction::
3229 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3230                         bool isInc, bool isPre) {
3231   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3232 }
3233 
3234 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3235   llvm::Value *V;
3236   // object->isa or (*object).isa
3237   // Generate code as for: *(Class*)object
3238   // build Class* type
3239   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3240 
3241   Expr *BaseExpr = E->getBase();
3242   if (BaseExpr->isRValue()) {
3243     V = CreateMemTemp(E->getType(), "resval");
3244     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3245     Builder.CreateStore(Src, V);
3246     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3247       MakeNaturalAlignAddrLValue(V, E->getType()));
3248   } else {
3249     if (E->isArrow())
3250       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3251     else
3252       V = EmitLValue(BaseExpr).getAddress();
3253   }
3254 
3255   // build Class* type
3256   ClassPtrTy = ClassPtrTy->getPointerTo();
3257   V = Builder.CreateBitCast(V, ClassPtrTy);
3258   return MakeNaturalAlignAddrLValue(V, E->getType());
3259 }
3260 
3261 
3262 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3263                                             const CompoundAssignOperator *E) {
3264   ScalarExprEmitter Scalar(*this);
3265   Value *Result = 0;
3266   switch (E->getOpcode()) {
3267 #define COMPOUND_OP(Op)                                                       \
3268     case BO_##Op##Assign:                                                     \
3269       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3270                                              Result)
3271   COMPOUND_OP(Mul);
3272   COMPOUND_OP(Div);
3273   COMPOUND_OP(Rem);
3274   COMPOUND_OP(Add);
3275   COMPOUND_OP(Sub);
3276   COMPOUND_OP(Shl);
3277   COMPOUND_OP(Shr);
3278   COMPOUND_OP(And);
3279   COMPOUND_OP(Xor);
3280   COMPOUND_OP(Or);
3281 #undef COMPOUND_OP
3282 
3283   case BO_PtrMemD:
3284   case BO_PtrMemI:
3285   case BO_Mul:
3286   case BO_Div:
3287   case BO_Rem:
3288   case BO_Add:
3289   case BO_Sub:
3290   case BO_Shl:
3291   case BO_Shr:
3292   case BO_LT:
3293   case BO_GT:
3294   case BO_LE:
3295   case BO_GE:
3296   case BO_EQ:
3297   case BO_NE:
3298   case BO_And:
3299   case BO_Xor:
3300   case BO_Or:
3301   case BO_LAnd:
3302   case BO_LOr:
3303   case BO_Assign:
3304   case BO_Comma:
3305     llvm_unreachable("Not valid compound assignment operators");
3306   }
3307 
3308   llvm_unreachable("Unhandled compound assignment operator");
3309 }
3310