1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CGCXXABI.h" 15 #include "CGCleanup.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenFunction.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/CodeGenOptions.h" 27 #include "clang/Basic/FixedPoint.h" 28 #include "clang/Basic/TargetInfo.h" 29 #include "llvm/ADT/Optional.h" 30 #include "llvm/IR/CFG.h" 31 #include "llvm/IR/Constants.h" 32 #include "llvm/IR/DataLayout.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/GetElementPtrTypeIterator.h" 35 #include "llvm/IR/GlobalVariable.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/Module.h" 38 #include <cstdarg> 39 40 using namespace clang; 41 using namespace CodeGen; 42 using llvm::Value; 43 44 //===----------------------------------------------------------------------===// 45 // Scalar Expression Emitter 46 //===----------------------------------------------------------------------===// 47 48 namespace { 49 50 /// Determine whether the given binary operation may overflow. 51 /// Sets \p Result to the value of the operation for BO_Add, BO_Sub, BO_Mul, 52 /// and signed BO_{Div,Rem}. For these opcodes, and for unsigned BO_{Div,Rem}, 53 /// the returned overflow check is precise. The returned value is 'true' for 54 /// all other opcodes, to be conservative. 55 bool mayHaveIntegerOverflow(llvm::ConstantInt *LHS, llvm::ConstantInt *RHS, 56 BinaryOperator::Opcode Opcode, bool Signed, 57 llvm::APInt &Result) { 58 // Assume overflow is possible, unless we can prove otherwise. 59 bool Overflow = true; 60 const auto &LHSAP = LHS->getValue(); 61 const auto &RHSAP = RHS->getValue(); 62 if (Opcode == BO_Add) { 63 if (Signed) 64 Result = LHSAP.sadd_ov(RHSAP, Overflow); 65 else 66 Result = LHSAP.uadd_ov(RHSAP, Overflow); 67 } else if (Opcode == BO_Sub) { 68 if (Signed) 69 Result = LHSAP.ssub_ov(RHSAP, Overflow); 70 else 71 Result = LHSAP.usub_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Mul) { 73 if (Signed) 74 Result = LHSAP.smul_ov(RHSAP, Overflow); 75 else 76 Result = LHSAP.umul_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 78 if (Signed && !RHS->isZero()) 79 Result = LHSAP.sdiv_ov(RHSAP, Overflow); 80 else 81 return false; 82 } 83 return Overflow; 84 } 85 86 struct BinOpInfo { 87 Value *LHS; 88 Value *RHS; 89 QualType Ty; // Computation Type. 90 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 91 FPOptions FPFeatures; 92 const Expr *E; // Entire expr, for error unsupported. May not be binop. 93 94 /// Check if the binop can result in integer overflow. 95 bool mayHaveIntegerOverflow() const { 96 // Without constant input, we can't rule out overflow. 97 auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 98 auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 99 if (!LHSCI || !RHSCI) 100 return true; 101 102 llvm::APInt Result; 103 return ::mayHaveIntegerOverflow( 104 LHSCI, RHSCI, Opcode, Ty->hasSignedIntegerRepresentation(), Result); 105 } 106 107 /// Check if the binop computes a division or a remainder. 108 bool isDivremOp() const { 109 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 110 Opcode == BO_RemAssign; 111 } 112 113 /// Check if the binop can result in an integer division by zero. 114 bool mayHaveIntegerDivisionByZero() const { 115 if (isDivremOp()) 116 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 117 return CI->isZero(); 118 return true; 119 } 120 121 /// Check if the binop can result in a float division by zero. 122 bool mayHaveFloatDivisionByZero() const { 123 if (isDivremOp()) 124 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 125 return CFP->isZero(); 126 return true; 127 } 128 }; 129 130 static bool MustVisitNullValue(const Expr *E) { 131 // If a null pointer expression's type is the C++0x nullptr_t, then 132 // it's not necessarily a simple constant and it must be evaluated 133 // for its potential side effects. 134 return E->getType()->isNullPtrType(); 135 } 136 137 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 138 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 139 const Expr *E) { 140 const Expr *Base = E->IgnoreImpCasts(); 141 if (E == Base) 142 return llvm::None; 143 144 QualType BaseTy = Base->getType(); 145 if (!BaseTy->isPromotableIntegerType() || 146 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 147 return llvm::None; 148 149 return BaseTy; 150 } 151 152 /// Check if \p E is a widened promoted integer. 153 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 154 return getUnwidenedIntegerType(Ctx, E).hasValue(); 155 } 156 157 /// Check if we can skip the overflow check for \p Op. 158 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 159 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 160 "Expected a unary or binary operator"); 161 162 // If the binop has constant inputs and we can prove there is no overflow, 163 // we can elide the overflow check. 164 if (!Op.mayHaveIntegerOverflow()) 165 return true; 166 167 // If a unary op has a widened operand, the op cannot overflow. 168 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 169 return !UO->canOverflow(); 170 171 // We usually don't need overflow checks for binops with widened operands. 172 // Multiplication with promoted unsigned operands is a special case. 173 const auto *BO = cast<BinaryOperator>(Op.E); 174 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 175 if (!OptionalLHSTy) 176 return false; 177 178 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 179 if (!OptionalRHSTy) 180 return false; 181 182 QualType LHSTy = *OptionalLHSTy; 183 QualType RHSTy = *OptionalRHSTy; 184 185 // This is the simple case: binops without unsigned multiplication, and with 186 // widened operands. No overflow check is needed here. 187 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 188 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 189 return true; 190 191 // For unsigned multiplication the overflow check can be elided if either one 192 // of the unpromoted types are less than half the size of the promoted type. 193 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 194 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 195 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 196 } 197 198 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 199 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 200 FPOptions FPFeatures) { 201 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 202 } 203 204 /// Propagate fast-math flags from \p Op to the instruction in \p V. 205 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 206 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 207 llvm::FastMathFlags FMF = I->getFastMathFlags(); 208 updateFastMathFlags(FMF, Op.FPFeatures); 209 I->setFastMathFlags(FMF); 210 } 211 return V; 212 } 213 214 class ScalarExprEmitter 215 : public StmtVisitor<ScalarExprEmitter, Value*> { 216 CodeGenFunction &CGF; 217 CGBuilderTy &Builder; 218 bool IgnoreResultAssign; 219 llvm::LLVMContext &VMContext; 220 public: 221 222 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 223 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 224 VMContext(cgf.getLLVMContext()) { 225 } 226 227 //===--------------------------------------------------------------------===// 228 // Utilities 229 //===--------------------------------------------------------------------===// 230 231 bool TestAndClearIgnoreResultAssign() { 232 bool I = IgnoreResultAssign; 233 IgnoreResultAssign = false; 234 return I; 235 } 236 237 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 238 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 239 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 240 return CGF.EmitCheckedLValue(E, TCK); 241 } 242 243 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 244 const BinOpInfo &Info); 245 246 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 247 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 248 } 249 250 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 251 const AlignValueAttr *AVAttr = nullptr; 252 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 253 const ValueDecl *VD = DRE->getDecl(); 254 255 if (VD->getType()->isReferenceType()) { 256 if (const auto *TTy = 257 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 258 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 259 } else { 260 // Assumptions for function parameters are emitted at the start of the 261 // function, so there is no need to repeat that here, 262 // unless the alignment-assumption sanitizer is enabled, 263 // then we prefer the assumption over alignment attribute 264 // on IR function param. 265 if (isa<ParmVarDecl>(VD) && !CGF.SanOpts.has(SanitizerKind::Alignment)) 266 return; 267 268 AVAttr = VD->getAttr<AlignValueAttr>(); 269 } 270 } 271 272 if (!AVAttr) 273 if (const auto *TTy = 274 dyn_cast<TypedefType>(E->getType())) 275 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 276 277 if (!AVAttr) 278 return; 279 280 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 281 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 282 CGF.EmitAlignmentAssumption(V, E, AVAttr->getLocation(), 283 AlignmentCI->getZExtValue()); 284 } 285 286 /// EmitLoadOfLValue - Given an expression with complex type that represents a 287 /// value l-value, this method emits the address of the l-value, then loads 288 /// and returns the result. 289 Value *EmitLoadOfLValue(const Expr *E) { 290 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 291 E->getExprLoc()); 292 293 EmitLValueAlignmentAssumption(E, V); 294 return V; 295 } 296 297 /// EmitConversionToBool - Convert the specified expression value to a 298 /// boolean (i1) truth value. This is equivalent to "Val != 0". 299 Value *EmitConversionToBool(Value *Src, QualType DstTy); 300 301 /// Emit a check that a conversion to or from a floating-point type does not 302 /// overflow. 303 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 304 Value *Src, QualType SrcType, QualType DstType, 305 llvm::Type *DstTy, SourceLocation Loc); 306 307 /// Known implicit conversion check kinds. 308 /// Keep in sync with the enum of the same name in ubsan_handlers.h 309 enum ImplicitConversionCheckKind : unsigned char { 310 ICCK_IntegerTruncation = 0, // Legacy, was only used by clang 7. 311 ICCK_UnsignedIntegerTruncation = 1, 312 ICCK_SignedIntegerTruncation = 2, 313 ICCK_IntegerSignChange = 3, 314 ICCK_SignedIntegerTruncationOrSignChange = 4, 315 }; 316 317 /// Emit a check that an [implicit] truncation of an integer does not 318 /// discard any bits. It is not UB, so we use the value after truncation. 319 void EmitIntegerTruncationCheck(Value *Src, QualType SrcType, Value *Dst, 320 QualType DstType, SourceLocation Loc); 321 322 /// Emit a check that an [implicit] conversion of an integer does not change 323 /// the sign of the value. It is not UB, so we use the value after conversion. 324 /// NOTE: Src and Dst may be the exact same value! (point to the same thing) 325 void EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, Value *Dst, 326 QualType DstType, SourceLocation Loc); 327 328 /// Emit a conversion from the specified type to the specified destination 329 /// type, both of which are LLVM scalar types. 330 struct ScalarConversionOpts { 331 bool TreatBooleanAsSigned; 332 bool EmitImplicitIntegerTruncationChecks; 333 bool EmitImplicitIntegerSignChangeChecks; 334 335 ScalarConversionOpts() 336 : TreatBooleanAsSigned(false), 337 EmitImplicitIntegerTruncationChecks(false), 338 EmitImplicitIntegerSignChangeChecks(false) {} 339 340 ScalarConversionOpts(clang::SanitizerSet SanOpts) 341 : TreatBooleanAsSigned(false), 342 EmitImplicitIntegerTruncationChecks( 343 SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)), 344 EmitImplicitIntegerSignChangeChecks( 345 SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) {} 346 }; 347 Value * 348 EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 349 SourceLocation Loc, 350 ScalarConversionOpts Opts = ScalarConversionOpts()); 351 352 Value *EmitFixedPointConversion(Value *Src, QualType SrcTy, QualType DstTy, 353 SourceLocation Loc); 354 355 /// Emit a conversion from the specified complex type to the specified 356 /// destination type, where the destination type is an LLVM scalar type. 357 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 358 QualType SrcTy, QualType DstTy, 359 SourceLocation Loc); 360 361 /// EmitNullValue - Emit a value that corresponds to null for the given type. 362 Value *EmitNullValue(QualType Ty); 363 364 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 365 Value *EmitFloatToBoolConversion(Value *V) { 366 // Compare against 0.0 for fp scalars. 367 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 368 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 369 } 370 371 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 372 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 373 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 374 375 return Builder.CreateICmpNE(V, Zero, "tobool"); 376 } 377 378 Value *EmitIntToBoolConversion(Value *V) { 379 // Because of the type rules of C, we often end up computing a 380 // logical value, then zero extending it to int, then wanting it 381 // as a logical value again. Optimize this common case. 382 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 383 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 384 Value *Result = ZI->getOperand(0); 385 // If there aren't any more uses, zap the instruction to save space. 386 // Note that there can be more uses, for example if this 387 // is the result of an assignment. 388 if (ZI->use_empty()) 389 ZI->eraseFromParent(); 390 return Result; 391 } 392 } 393 394 return Builder.CreateIsNotNull(V, "tobool"); 395 } 396 397 //===--------------------------------------------------------------------===// 398 // Visitor Methods 399 //===--------------------------------------------------------------------===// 400 401 Value *Visit(Expr *E) { 402 ApplyDebugLocation DL(CGF, E); 403 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 404 } 405 406 Value *VisitStmt(Stmt *S) { 407 S->dump(CGF.getContext().getSourceManager()); 408 llvm_unreachable("Stmt can't have complex result type!"); 409 } 410 Value *VisitExpr(Expr *S); 411 412 Value *VisitConstantExpr(ConstantExpr *E) { 413 return Visit(E->getSubExpr()); 414 } 415 Value *VisitParenExpr(ParenExpr *PE) { 416 return Visit(PE->getSubExpr()); 417 } 418 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 419 return Visit(E->getReplacement()); 420 } 421 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 422 return Visit(GE->getResultExpr()); 423 } 424 Value *VisitCoawaitExpr(CoawaitExpr *S) { 425 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 426 } 427 Value *VisitCoyieldExpr(CoyieldExpr *S) { 428 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 429 } 430 Value *VisitUnaryCoawait(const UnaryOperator *E) { 431 return Visit(E->getSubExpr()); 432 } 433 434 // Leaves. 435 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 436 return Builder.getInt(E->getValue()); 437 } 438 Value *VisitFixedPointLiteral(const FixedPointLiteral *E) { 439 return Builder.getInt(E->getValue()); 440 } 441 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 442 return llvm::ConstantFP::get(VMContext, E->getValue()); 443 } 444 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 445 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 446 } 447 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 448 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 449 } 450 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 451 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 452 } 453 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 454 return EmitNullValue(E->getType()); 455 } 456 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 457 return EmitNullValue(E->getType()); 458 } 459 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 460 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 461 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 462 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 463 return Builder.CreateBitCast(V, ConvertType(E->getType())); 464 } 465 466 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 467 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 468 } 469 470 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 471 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 472 } 473 474 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 475 if (E->isGLValue()) 476 return EmitLoadOfLValue(CGF.getOrCreateOpaqueLValueMapping(E), 477 E->getExprLoc()); 478 479 // Otherwise, assume the mapping is the scalar directly. 480 return CGF.getOrCreateOpaqueRValueMapping(E).getScalarVal(); 481 } 482 483 // l-values. 484 Value *VisitDeclRefExpr(DeclRefExpr *E) { 485 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) 486 return CGF.emitScalarConstant(Constant, E); 487 return EmitLoadOfLValue(E); 488 } 489 490 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 491 return CGF.EmitObjCSelectorExpr(E); 492 } 493 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 494 return CGF.EmitObjCProtocolExpr(E); 495 } 496 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 497 return EmitLoadOfLValue(E); 498 } 499 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 500 if (E->getMethodDecl() && 501 E->getMethodDecl()->getReturnType()->isReferenceType()) 502 return EmitLoadOfLValue(E); 503 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 504 } 505 506 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 507 LValue LV = CGF.EmitObjCIsaExpr(E); 508 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 509 return V; 510 } 511 512 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 513 VersionTuple Version = E->getVersion(); 514 515 // If we're checking for a platform older than our minimum deployment 516 // target, we can fold the check away. 517 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 518 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 519 520 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 521 llvm::Value *Args[] = { 522 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 523 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 524 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 525 }; 526 527 return CGF.EmitBuiltinAvailable(Args); 528 } 529 530 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 531 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 532 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 533 Value *VisitMemberExpr(MemberExpr *E); 534 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 535 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 536 return EmitLoadOfLValue(E); 537 } 538 539 Value *VisitInitListExpr(InitListExpr *E); 540 541 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 542 assert(CGF.getArrayInitIndex() && 543 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 544 return CGF.getArrayInitIndex(); 545 } 546 547 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 548 return EmitNullValue(E->getType()); 549 } 550 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 551 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 552 return VisitCastExpr(E); 553 } 554 Value *VisitCastExpr(CastExpr *E); 555 556 Value *VisitCallExpr(const CallExpr *E) { 557 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 558 return EmitLoadOfLValue(E); 559 560 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 561 562 EmitLValueAlignmentAssumption(E, V); 563 return V; 564 } 565 566 Value *VisitStmtExpr(const StmtExpr *E); 567 568 // Unary Operators. 569 Value *VisitUnaryPostDec(const UnaryOperator *E) { 570 LValue LV = EmitLValue(E->getSubExpr()); 571 return EmitScalarPrePostIncDec(E, LV, false, false); 572 } 573 Value *VisitUnaryPostInc(const UnaryOperator *E) { 574 LValue LV = EmitLValue(E->getSubExpr()); 575 return EmitScalarPrePostIncDec(E, LV, true, false); 576 } 577 Value *VisitUnaryPreDec(const UnaryOperator *E) { 578 LValue LV = EmitLValue(E->getSubExpr()); 579 return EmitScalarPrePostIncDec(E, LV, false, true); 580 } 581 Value *VisitUnaryPreInc(const UnaryOperator *E) { 582 LValue LV = EmitLValue(E->getSubExpr()); 583 return EmitScalarPrePostIncDec(E, LV, true, true); 584 } 585 586 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 587 llvm::Value *InVal, 588 bool IsInc); 589 590 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 591 bool isInc, bool isPre); 592 593 594 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 595 if (isa<MemberPointerType>(E->getType())) // never sugared 596 return CGF.CGM.getMemberPointerConstant(E); 597 598 return EmitLValue(E->getSubExpr()).getPointer(); 599 } 600 Value *VisitUnaryDeref(const UnaryOperator *E) { 601 if (E->getType()->isVoidType()) 602 return Visit(E->getSubExpr()); // the actual value should be unused 603 return EmitLoadOfLValue(E); 604 } 605 Value *VisitUnaryPlus(const UnaryOperator *E) { 606 // This differs from gcc, though, most likely due to a bug in gcc. 607 TestAndClearIgnoreResultAssign(); 608 return Visit(E->getSubExpr()); 609 } 610 Value *VisitUnaryMinus (const UnaryOperator *E); 611 Value *VisitUnaryNot (const UnaryOperator *E); 612 Value *VisitUnaryLNot (const UnaryOperator *E); 613 Value *VisitUnaryReal (const UnaryOperator *E); 614 Value *VisitUnaryImag (const UnaryOperator *E); 615 Value *VisitUnaryExtension(const UnaryOperator *E) { 616 return Visit(E->getSubExpr()); 617 } 618 619 // C++ 620 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 621 return EmitLoadOfLValue(E); 622 } 623 624 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 625 return Visit(DAE->getExpr()); 626 } 627 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 628 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 629 return Visit(DIE->getExpr()); 630 } 631 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 632 return CGF.LoadCXXThis(); 633 } 634 635 Value *VisitExprWithCleanups(ExprWithCleanups *E); 636 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 637 return CGF.EmitCXXNewExpr(E); 638 } 639 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 640 CGF.EmitCXXDeleteExpr(E); 641 return nullptr; 642 } 643 644 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 645 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 646 } 647 648 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 649 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 650 } 651 652 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 653 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 654 } 655 656 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 657 // C++ [expr.pseudo]p1: 658 // The result shall only be used as the operand for the function call 659 // operator (), and the result of such a call has type void. The only 660 // effect is the evaluation of the postfix-expression before the dot or 661 // arrow. 662 CGF.EmitScalarExpr(E->getBase()); 663 return nullptr; 664 } 665 666 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 667 return EmitNullValue(E->getType()); 668 } 669 670 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 671 CGF.EmitCXXThrowExpr(E); 672 return nullptr; 673 } 674 675 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 676 return Builder.getInt1(E->getValue()); 677 } 678 679 // Binary Operators. 680 Value *EmitMul(const BinOpInfo &Ops) { 681 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 682 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 683 case LangOptions::SOB_Defined: 684 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 685 case LangOptions::SOB_Undefined: 686 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 687 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 688 LLVM_FALLTHROUGH; 689 case LangOptions::SOB_Trapping: 690 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 691 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 692 return EmitOverflowCheckedBinOp(Ops); 693 } 694 } 695 696 if (Ops.Ty->isUnsignedIntegerType() && 697 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 698 !CanElideOverflowCheck(CGF.getContext(), Ops)) 699 return EmitOverflowCheckedBinOp(Ops); 700 701 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 702 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 703 return propagateFMFlags(V, Ops); 704 } 705 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 706 } 707 /// Create a binary op that checks for overflow. 708 /// Currently only supports +, - and *. 709 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 710 711 // Check for undefined division and modulus behaviors. 712 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 713 llvm::Value *Zero,bool isDiv); 714 // Common helper for getting how wide LHS of shift is. 715 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 716 Value *EmitDiv(const BinOpInfo &Ops); 717 Value *EmitRem(const BinOpInfo &Ops); 718 Value *EmitAdd(const BinOpInfo &Ops); 719 Value *EmitSub(const BinOpInfo &Ops); 720 Value *EmitShl(const BinOpInfo &Ops); 721 Value *EmitShr(const BinOpInfo &Ops); 722 Value *EmitAnd(const BinOpInfo &Ops) { 723 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 724 } 725 Value *EmitXor(const BinOpInfo &Ops) { 726 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 727 } 728 Value *EmitOr (const BinOpInfo &Ops) { 729 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 730 } 731 732 BinOpInfo EmitBinOps(const BinaryOperator *E); 733 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 734 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 735 Value *&Result); 736 737 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 738 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 739 740 // Binary operators and binary compound assignment operators. 741 #define HANDLEBINOP(OP) \ 742 Value *VisitBin ## OP(const BinaryOperator *E) { \ 743 return Emit ## OP(EmitBinOps(E)); \ 744 } \ 745 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 746 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 747 } 748 HANDLEBINOP(Mul) 749 HANDLEBINOP(Div) 750 HANDLEBINOP(Rem) 751 HANDLEBINOP(Add) 752 HANDLEBINOP(Sub) 753 HANDLEBINOP(Shl) 754 HANDLEBINOP(Shr) 755 HANDLEBINOP(And) 756 HANDLEBINOP(Xor) 757 HANDLEBINOP(Or) 758 #undef HANDLEBINOP 759 760 // Comparisons. 761 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 762 llvm::CmpInst::Predicate SICmpOpc, 763 llvm::CmpInst::Predicate FCmpOpc); 764 #define VISITCOMP(CODE, UI, SI, FP) \ 765 Value *VisitBin##CODE(const BinaryOperator *E) { \ 766 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 767 llvm::FCmpInst::FP); } 768 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 769 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 770 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 771 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 772 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 773 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 774 #undef VISITCOMP 775 776 Value *VisitBinAssign (const BinaryOperator *E); 777 778 Value *VisitBinLAnd (const BinaryOperator *E); 779 Value *VisitBinLOr (const BinaryOperator *E); 780 Value *VisitBinComma (const BinaryOperator *E); 781 782 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 783 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 784 785 // Other Operators. 786 Value *VisitBlockExpr(const BlockExpr *BE); 787 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 788 Value *VisitChooseExpr(ChooseExpr *CE); 789 Value *VisitVAArgExpr(VAArgExpr *VE); 790 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 791 return CGF.EmitObjCStringLiteral(E); 792 } 793 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 794 return CGF.EmitObjCBoxedExpr(E); 795 } 796 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 797 return CGF.EmitObjCArrayLiteral(E); 798 } 799 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 800 return CGF.EmitObjCDictionaryLiteral(E); 801 } 802 Value *VisitAsTypeExpr(AsTypeExpr *CE); 803 Value *VisitAtomicExpr(AtomicExpr *AE); 804 }; 805 } // end anonymous namespace. 806 807 //===----------------------------------------------------------------------===// 808 // Utilities 809 //===----------------------------------------------------------------------===// 810 811 /// EmitConversionToBool - Convert the specified expression value to a 812 /// boolean (i1) truth value. This is equivalent to "Val != 0". 813 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 814 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 815 816 if (SrcType->isRealFloatingType()) 817 return EmitFloatToBoolConversion(Src); 818 819 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 820 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 821 822 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 823 "Unknown scalar type to convert"); 824 825 if (isa<llvm::IntegerType>(Src->getType())) 826 return EmitIntToBoolConversion(Src); 827 828 assert(isa<llvm::PointerType>(Src->getType())); 829 return EmitPointerToBoolConversion(Src, SrcType); 830 } 831 832 void ScalarExprEmitter::EmitFloatConversionCheck( 833 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 834 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 835 CodeGenFunction::SanitizerScope SanScope(&CGF); 836 using llvm::APFloat; 837 using llvm::APSInt; 838 839 llvm::Type *SrcTy = Src->getType(); 840 841 llvm::Value *Check = nullptr; 842 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 843 // Integer to floating-point. This can fail for unsigned short -> __half 844 // or unsigned __int128 -> float. 845 assert(DstType->isFloatingType()); 846 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 847 848 APFloat LargestFloat = 849 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 850 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 851 852 bool IsExact; 853 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 854 &IsExact) != APFloat::opOK) 855 // The range of representable values of this floating point type includes 856 // all values of this integer type. Don't need an overflow check. 857 return; 858 859 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 860 if (SrcIsUnsigned) 861 Check = Builder.CreateICmpULE(Src, Max); 862 else { 863 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 864 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 865 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 866 Check = Builder.CreateAnd(GE, LE); 867 } 868 } else { 869 const llvm::fltSemantics &SrcSema = 870 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 871 if (isa<llvm::IntegerType>(DstTy)) { 872 // Floating-point to integer. This has undefined behavior if the source is 873 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 874 // to an integer). 875 unsigned Width = CGF.getContext().getIntWidth(DstType); 876 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 877 878 APSInt Min = APSInt::getMinValue(Width, Unsigned); 879 APFloat MinSrc(SrcSema, APFloat::uninitialized); 880 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 881 APFloat::opOverflow) 882 // Don't need an overflow check for lower bound. Just check for 883 // -Inf/NaN. 884 MinSrc = APFloat::getInf(SrcSema, true); 885 else 886 // Find the largest value which is too small to represent (before 887 // truncation toward zero). 888 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 889 890 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 891 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 892 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 893 APFloat::opOverflow) 894 // Don't need an overflow check for upper bound. Just check for 895 // +Inf/NaN. 896 MaxSrc = APFloat::getInf(SrcSema, false); 897 else 898 // Find the smallest value which is too large to represent (before 899 // truncation toward zero). 900 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 901 902 // If we're converting from __half, convert the range to float to match 903 // the type of src. 904 if (OrigSrcType->isHalfType()) { 905 const llvm::fltSemantics &Sema = 906 CGF.getContext().getFloatTypeSemantics(SrcType); 907 bool IsInexact; 908 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 909 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 910 } 911 912 llvm::Value *GE = 913 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 914 llvm::Value *LE = 915 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 916 Check = Builder.CreateAnd(GE, LE); 917 } else { 918 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 919 // 920 // Floating-point to floating-point. This has undefined behavior if the 921 // source is not in the range of representable values of the destination 922 // type. The C and C++ standards are spectacularly unclear here. We 923 // diagnose finite out-of-range conversions, but allow infinities and NaNs 924 // to convert to the corresponding value in the smaller type. 925 // 926 // C11 Annex F gives all such conversions defined behavior for IEC 60559 927 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 928 // does not. 929 930 // Converting from a lower rank to a higher rank can never have 931 // undefined behavior, since higher-rank types must have a superset 932 // of values of lower-rank types. 933 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 934 return; 935 936 assert(!OrigSrcType->isHalfType() && 937 "should not check conversion from __half, it has the lowest rank"); 938 939 const llvm::fltSemantics &DstSema = 940 CGF.getContext().getFloatTypeSemantics(DstType); 941 APFloat MinBad = APFloat::getLargest(DstSema, false); 942 APFloat MaxBad = APFloat::getInf(DstSema, false); 943 944 bool IsInexact; 945 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 946 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 947 948 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 949 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 950 llvm::Value *GE = 951 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 952 llvm::Value *LE = 953 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 954 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 955 } 956 } 957 958 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 959 CGF.EmitCheckTypeDescriptor(OrigSrcType), 960 CGF.EmitCheckTypeDescriptor(DstType)}; 961 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 962 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 963 } 964 965 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 966 // Returns 'i1 false' when the truncation Src -> Dst was lossy. 967 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 968 std::pair<llvm::Value *, SanitizerMask>> 969 EmitIntegerTruncationCheckHelper(Value *Src, QualType SrcType, Value *Dst, 970 QualType DstType, CGBuilderTy &Builder) { 971 llvm::Type *SrcTy = Src->getType(); 972 llvm::Type *DstTy = Dst->getType(); 973 (void)DstTy; // Only used in assert() 974 975 // This should be truncation of integral types. 976 assert(Src != Dst); 977 assert(SrcTy->getScalarSizeInBits() > Dst->getType()->getScalarSizeInBits()); 978 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 979 "non-integer llvm type"); 980 981 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 982 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 983 984 // If both (src and dst) types are unsigned, then it's an unsigned truncation. 985 // Else, it is a signed truncation. 986 ScalarExprEmitter::ImplicitConversionCheckKind Kind; 987 SanitizerMask Mask; 988 if (!SrcSigned && !DstSigned) { 989 Kind = ScalarExprEmitter::ICCK_UnsignedIntegerTruncation; 990 Mask = SanitizerKind::ImplicitUnsignedIntegerTruncation; 991 } else { 992 Kind = ScalarExprEmitter::ICCK_SignedIntegerTruncation; 993 Mask = SanitizerKind::ImplicitSignedIntegerTruncation; 994 } 995 996 llvm::Value *Check = nullptr; 997 // 1. Extend the truncated value back to the same width as the Src. 998 Check = Builder.CreateIntCast(Dst, SrcTy, DstSigned, "anyext"); 999 // 2. Equality-compare with the original source value 1000 Check = Builder.CreateICmpEQ(Check, Src, "truncheck"); 1001 // If the comparison result is 'i1 false', then the truncation was lossy. 1002 return std::make_pair(Kind, std::make_pair(Check, Mask)); 1003 } 1004 1005 void ScalarExprEmitter::EmitIntegerTruncationCheck(Value *Src, QualType SrcType, 1006 Value *Dst, QualType DstType, 1007 SourceLocation Loc) { 1008 if (!CGF.SanOpts.hasOneOf(SanitizerKind::ImplicitIntegerTruncation)) 1009 return; 1010 1011 // We only care about int->int conversions here. 1012 // We ignore conversions to/from pointer and/or bool. 1013 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1014 return; 1015 1016 unsigned SrcBits = Src->getType()->getScalarSizeInBits(); 1017 unsigned DstBits = Dst->getType()->getScalarSizeInBits(); 1018 // This must be truncation. Else we do not care. 1019 if (SrcBits <= DstBits) 1020 return; 1021 1022 assert(!DstType->isBooleanType() && "we should not get here with booleans."); 1023 1024 // If the integer sign change sanitizer is enabled, 1025 // and we are truncating from larger unsigned type to smaller signed type, 1026 // let that next sanitizer deal with it. 1027 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1028 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1029 if (CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange) && 1030 (!SrcSigned && DstSigned)) 1031 return; 1032 1033 CodeGenFunction::SanitizerScope SanScope(&CGF); 1034 1035 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1036 std::pair<llvm::Value *, SanitizerMask>> 1037 Check = 1038 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1039 // If the comparison result is 'i1 false', then the truncation was lossy. 1040 1041 // Do we care about this type of truncation? 1042 if (!CGF.SanOpts.has(Check.second.second)) 1043 return; 1044 1045 llvm::Constant *StaticArgs[] = { 1046 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1047 CGF.EmitCheckTypeDescriptor(DstType), 1048 llvm::ConstantInt::get(Builder.getInt8Ty(), Check.first)}; 1049 CGF.EmitCheck(Check.second, SanitizerHandler::ImplicitConversion, StaticArgs, 1050 {Src, Dst}); 1051 } 1052 1053 // Should be called within CodeGenFunction::SanitizerScope RAII scope. 1054 // Returns 'i1 false' when the conversion Src -> Dst changed the sign. 1055 static std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1056 std::pair<llvm::Value *, SanitizerMask>> 1057 EmitIntegerSignChangeCheckHelper(Value *Src, QualType SrcType, Value *Dst, 1058 QualType DstType, CGBuilderTy &Builder) { 1059 llvm::Type *SrcTy = Src->getType(); 1060 llvm::Type *DstTy = Dst->getType(); 1061 1062 assert(isa<llvm::IntegerType>(SrcTy) && isa<llvm::IntegerType>(DstTy) && 1063 "non-integer llvm type"); 1064 1065 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1066 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1067 (void)SrcSigned; // Only used in assert() 1068 (void)DstSigned; // Only used in assert() 1069 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1070 unsigned DstBits = DstTy->getScalarSizeInBits(); 1071 (void)SrcBits; // Only used in assert() 1072 (void)DstBits; // Only used in assert() 1073 1074 assert(((SrcBits != DstBits) || (SrcSigned != DstSigned)) && 1075 "either the widths should be different, or the signednesses."); 1076 1077 // NOTE: zero value is considered to be non-negative. 1078 auto EmitIsNegativeTest = [&Builder](Value *V, QualType VType, 1079 const char *Name) -> Value * { 1080 // Is this value a signed type? 1081 bool VSigned = VType->isSignedIntegerOrEnumerationType(); 1082 llvm::Type *VTy = V->getType(); 1083 if (!VSigned) { 1084 // If the value is unsigned, then it is never negative. 1085 // FIXME: can we encounter non-scalar VTy here? 1086 return llvm::ConstantInt::getFalse(VTy->getContext()); 1087 } 1088 // Get the zero of the same type with which we will be comparing. 1089 llvm::Constant *Zero = llvm::ConstantInt::get(VTy, 0); 1090 // %V.isnegative = icmp slt %V, 0 1091 // I.e is %V *strictly* less than zero, does it have negative value? 1092 return Builder.CreateICmp(llvm::ICmpInst::ICMP_SLT, V, Zero, 1093 llvm::Twine(Name) + "." + V->getName() + 1094 ".negativitycheck"); 1095 }; 1096 1097 // 1. Was the old Value negative? 1098 llvm::Value *SrcIsNegative = EmitIsNegativeTest(Src, SrcType, "src"); 1099 // 2. Is the new Value negative? 1100 llvm::Value *DstIsNegative = EmitIsNegativeTest(Dst, DstType, "dst"); 1101 // 3. Now, was the 'negativity status' preserved during the conversion? 1102 // NOTE: conversion from negative to zero is considered to change the sign. 1103 // (We want to get 'false' when the conversion changed the sign) 1104 // So we should just equality-compare the negativity statuses. 1105 llvm::Value *Check = nullptr; 1106 Check = Builder.CreateICmpEQ(SrcIsNegative, DstIsNegative, "signchangecheck"); 1107 // If the comparison result is 'false', then the conversion changed the sign. 1108 return std::make_pair( 1109 ScalarExprEmitter::ICCK_IntegerSignChange, 1110 std::make_pair(Check, SanitizerKind::ImplicitIntegerSignChange)); 1111 } 1112 1113 void ScalarExprEmitter::EmitIntegerSignChangeCheck(Value *Src, QualType SrcType, 1114 Value *Dst, QualType DstType, 1115 SourceLocation Loc) { 1116 if (!CGF.SanOpts.has(SanitizerKind::ImplicitIntegerSignChange)) 1117 return; 1118 1119 llvm::Type *SrcTy = Src->getType(); 1120 llvm::Type *DstTy = Dst->getType(); 1121 1122 // We only care about int->int conversions here. 1123 // We ignore conversions to/from pointer and/or bool. 1124 if (!(SrcType->isIntegerType() && DstType->isIntegerType())) 1125 return; 1126 1127 bool SrcSigned = SrcType->isSignedIntegerOrEnumerationType(); 1128 bool DstSigned = DstType->isSignedIntegerOrEnumerationType(); 1129 unsigned SrcBits = SrcTy->getScalarSizeInBits(); 1130 unsigned DstBits = DstTy->getScalarSizeInBits(); 1131 1132 // Now, we do not need to emit the check in *all* of the cases. 1133 // We can avoid emitting it in some obvious cases where it would have been 1134 // dropped by the opt passes (instcombine) always anyways. 1135 // If it's a cast between effectively the same type, no check. 1136 // NOTE: this is *not* equivalent to checking the canonical types. 1137 if (SrcSigned == DstSigned && SrcBits == DstBits) 1138 return; 1139 // At least one of the values needs to have signed type. 1140 // If both are unsigned, then obviously, neither of them can be negative. 1141 if (!SrcSigned && !DstSigned) 1142 return; 1143 // If the conversion is to *larger* *signed* type, then no check is needed. 1144 // Because either sign-extension happens (so the sign will remain), 1145 // or zero-extension will happen (the sign bit will be zero.) 1146 if ((DstBits > SrcBits) && DstSigned) 1147 return; 1148 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1149 (SrcBits > DstBits) && SrcSigned) { 1150 // If the signed integer truncation sanitizer is enabled, 1151 // and this is a truncation from signed type, then no check is needed. 1152 // Because here sign change check is interchangeable with truncation check. 1153 return; 1154 } 1155 // That's it. We can't rule out any more cases with the data we have. 1156 1157 CodeGenFunction::SanitizerScope SanScope(&CGF); 1158 1159 std::pair<ScalarExprEmitter::ImplicitConversionCheckKind, 1160 std::pair<llvm::Value *, SanitizerMask>> 1161 Check; 1162 1163 // Each of these checks needs to return 'false' when an issue was detected. 1164 ImplicitConversionCheckKind CheckKind; 1165 llvm::SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 1166 // So we can 'and' all the checks together, and still get 'false', 1167 // if at least one of the checks detected an issue. 1168 1169 Check = EmitIntegerSignChangeCheckHelper(Src, SrcType, Dst, DstType, Builder); 1170 CheckKind = Check.first; 1171 Checks.emplace_back(Check.second); 1172 1173 if (CGF.SanOpts.has(SanitizerKind::ImplicitSignedIntegerTruncation) && 1174 (SrcBits > DstBits) && !SrcSigned && DstSigned) { 1175 // If the signed integer truncation sanitizer was enabled, 1176 // and we are truncating from larger unsigned type to smaller signed type, 1177 // let's handle the case we skipped in that check. 1178 Check = 1179 EmitIntegerTruncationCheckHelper(Src, SrcType, Dst, DstType, Builder); 1180 CheckKind = ICCK_SignedIntegerTruncationOrSignChange; 1181 Checks.emplace_back(Check.second); 1182 // If the comparison result is 'i1 false', then the truncation was lossy. 1183 } 1184 1185 llvm::Constant *StaticArgs[] = { 1186 CGF.EmitCheckSourceLocation(Loc), CGF.EmitCheckTypeDescriptor(SrcType), 1187 CGF.EmitCheckTypeDescriptor(DstType), 1188 llvm::ConstantInt::get(Builder.getInt8Ty(), CheckKind)}; 1189 // EmitCheck() will 'and' all the checks together. 1190 CGF.EmitCheck(Checks, SanitizerHandler::ImplicitConversion, StaticArgs, 1191 {Src, Dst}); 1192 } 1193 1194 /// Emit a conversion from the specified type to the specified destination type, 1195 /// both of which are LLVM scalar types. 1196 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 1197 QualType DstType, 1198 SourceLocation Loc, 1199 ScalarConversionOpts Opts) { 1200 // All conversions involving fixed point types should be handled by the 1201 // EmitFixedPoint family functions. This is done to prevent bloating up this 1202 // function more, and although fixed point numbers are represented by 1203 // integers, we do not want to follow any logic that assumes they should be 1204 // treated as integers. 1205 // TODO(leonardchan): When necessary, add another if statement checking for 1206 // conversions to fixed point types from other types. 1207 if (SrcType->isFixedPointType()) { 1208 if (DstType->isFixedPointType()) { 1209 return EmitFixedPointConversion(Src, SrcType, DstType, Loc); 1210 } else if (DstType->isBooleanType()) { 1211 // We do not need to check the padding bit on unsigned types if unsigned 1212 // padding is enabled because overflow into this bit is undefined 1213 // behavior. 1214 return Builder.CreateIsNotNull(Src, "tobool"); 1215 } 1216 1217 llvm_unreachable( 1218 "Unhandled scalar conversion involving a fixed point type."); 1219 } 1220 1221 QualType NoncanonicalSrcType = SrcType; 1222 QualType NoncanonicalDstType = DstType; 1223 1224 SrcType = CGF.getContext().getCanonicalType(SrcType); 1225 DstType = CGF.getContext().getCanonicalType(DstType); 1226 if (SrcType == DstType) return Src; 1227 1228 if (DstType->isVoidType()) return nullptr; 1229 1230 llvm::Value *OrigSrc = Src; 1231 QualType OrigSrcType = SrcType; 1232 llvm::Type *SrcTy = Src->getType(); 1233 1234 // Handle conversions to bool first, they are special: comparisons against 0. 1235 if (DstType->isBooleanType()) 1236 return EmitConversionToBool(Src, SrcType); 1237 1238 llvm::Type *DstTy = ConvertType(DstType); 1239 1240 // Cast from half through float if half isn't a native type. 1241 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1242 // Cast to FP using the intrinsic if the half type itself isn't supported. 1243 if (DstTy->isFloatingPointTy()) { 1244 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1245 return Builder.CreateCall( 1246 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 1247 Src); 1248 } else { 1249 // Cast to other types through float, using either the intrinsic or FPExt, 1250 // depending on whether the half type itself is supported 1251 // (as opposed to operations on half, available with NativeHalfType). 1252 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1253 Src = Builder.CreateCall( 1254 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1255 CGF.CGM.FloatTy), 1256 Src); 1257 } else { 1258 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 1259 } 1260 SrcType = CGF.getContext().FloatTy; 1261 SrcTy = CGF.FloatTy; 1262 } 1263 } 1264 1265 // Ignore conversions like int -> uint. 1266 if (SrcTy == DstTy) { 1267 if (Opts.EmitImplicitIntegerSignChangeChecks) 1268 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Src, 1269 NoncanonicalDstType, Loc); 1270 1271 return Src; 1272 } 1273 1274 // Handle pointer conversions next: pointers can only be converted to/from 1275 // other pointers and integers. Check for pointer types in terms of LLVM, as 1276 // some native types (like Obj-C id) may map to a pointer type. 1277 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 1278 // The source value may be an integer, or a pointer. 1279 if (isa<llvm::PointerType>(SrcTy)) 1280 return Builder.CreateBitCast(Src, DstTy, "conv"); 1281 1282 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 1283 // First, convert to the correct width so that we control the kind of 1284 // extension. 1285 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 1286 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1287 llvm::Value* IntResult = 1288 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1289 // Then, cast to pointer. 1290 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 1291 } 1292 1293 if (isa<llvm::PointerType>(SrcTy)) { 1294 // Must be an ptr to int cast. 1295 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 1296 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 1297 } 1298 1299 // A scalar can be splatted to an extended vector of the same element type 1300 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 1301 // Sema should add casts to make sure that the source expression's type is 1302 // the same as the vector's element type (sans qualifiers) 1303 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 1304 SrcType.getTypePtr() && 1305 "Splatted expr doesn't match with vector element type?"); 1306 1307 // Splat the element across to all elements 1308 unsigned NumElements = DstTy->getVectorNumElements(); 1309 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 1310 } 1311 1312 if (isa<llvm::VectorType>(SrcTy) || isa<llvm::VectorType>(DstTy)) { 1313 // Allow bitcast from vector to integer/fp of the same size. 1314 unsigned SrcSize = SrcTy->getPrimitiveSizeInBits(); 1315 unsigned DstSize = DstTy->getPrimitiveSizeInBits(); 1316 if (SrcSize == DstSize) 1317 return Builder.CreateBitCast(Src, DstTy, "conv"); 1318 1319 // Conversions between vectors of different sizes are not allowed except 1320 // when vectors of half are involved. Operations on storage-only half 1321 // vectors require promoting half vector operands to float vectors and 1322 // truncating the result, which is either an int or float vector, to a 1323 // short or half vector. 1324 1325 // Source and destination are both expected to be vectors. 1326 llvm::Type *SrcElementTy = SrcTy->getVectorElementType(); 1327 llvm::Type *DstElementTy = DstTy->getVectorElementType(); 1328 (void)DstElementTy; 1329 1330 assert(((SrcElementTy->isIntegerTy() && 1331 DstElementTy->isIntegerTy()) || 1332 (SrcElementTy->isFloatingPointTy() && 1333 DstElementTy->isFloatingPointTy())) && 1334 "unexpected conversion between a floating-point vector and an " 1335 "integer vector"); 1336 1337 // Truncate an i32 vector to an i16 vector. 1338 if (SrcElementTy->isIntegerTy()) 1339 return Builder.CreateIntCast(Src, DstTy, false, "conv"); 1340 1341 // Truncate a float vector to a half vector. 1342 if (SrcSize > DstSize) 1343 return Builder.CreateFPTrunc(Src, DstTy, "conv"); 1344 1345 // Promote a half vector to a float vector. 1346 return Builder.CreateFPExt(Src, DstTy, "conv"); 1347 } 1348 1349 // Finally, we have the arithmetic types: real int/float. 1350 Value *Res = nullptr; 1351 llvm::Type *ResTy = DstTy; 1352 1353 // An overflowing conversion has undefined behavior if either the source type 1354 // or the destination type is a floating-point type. 1355 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1356 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1357 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1358 Loc); 1359 1360 // Cast to half through float if half isn't a native type. 1361 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1362 // Make sure we cast in a single step if from another FP type. 1363 if (SrcTy->isFloatingPointTy()) { 1364 // Use the intrinsic if the half type itself isn't supported 1365 // (as opposed to operations on half, available with NativeHalfType). 1366 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) 1367 return Builder.CreateCall( 1368 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1369 // If the half type is supported, just use an fptrunc. 1370 return Builder.CreateFPTrunc(Src, DstTy); 1371 } 1372 DstTy = CGF.FloatTy; 1373 } 1374 1375 if (isa<llvm::IntegerType>(SrcTy)) { 1376 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1377 if (SrcType->isBooleanType() && Opts.TreatBooleanAsSigned) { 1378 InputSigned = true; 1379 } 1380 if (isa<llvm::IntegerType>(DstTy)) 1381 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1382 else if (InputSigned) 1383 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1384 else 1385 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1386 } else if (isa<llvm::IntegerType>(DstTy)) { 1387 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1388 if (DstType->isSignedIntegerOrEnumerationType()) 1389 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1390 else 1391 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1392 } else { 1393 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1394 "Unknown real conversion"); 1395 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1396 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1397 else 1398 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1399 } 1400 1401 if (DstTy != ResTy) { 1402 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 1403 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1404 Res = Builder.CreateCall( 1405 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1406 Res); 1407 } else { 1408 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1409 } 1410 } 1411 1412 if (Opts.EmitImplicitIntegerTruncationChecks) 1413 EmitIntegerTruncationCheck(Src, NoncanonicalSrcType, Res, 1414 NoncanonicalDstType, Loc); 1415 1416 if (Opts.EmitImplicitIntegerSignChangeChecks) 1417 EmitIntegerSignChangeCheck(Src, NoncanonicalSrcType, Res, 1418 NoncanonicalDstType, Loc); 1419 1420 return Res; 1421 } 1422 1423 Value *ScalarExprEmitter::EmitFixedPointConversion(Value *Src, QualType SrcTy, 1424 QualType DstTy, 1425 SourceLocation Loc) { 1426 using llvm::APInt; 1427 using llvm::ConstantInt; 1428 using llvm::Value; 1429 1430 assert(SrcTy->isFixedPointType()); 1431 assert(DstTy->isFixedPointType()); 1432 1433 FixedPointSemantics SrcFPSema = 1434 CGF.getContext().getFixedPointSemantics(SrcTy); 1435 FixedPointSemantics DstFPSema = 1436 CGF.getContext().getFixedPointSemantics(DstTy); 1437 unsigned SrcWidth = SrcFPSema.getWidth(); 1438 unsigned DstWidth = DstFPSema.getWidth(); 1439 unsigned SrcScale = SrcFPSema.getScale(); 1440 unsigned DstScale = DstFPSema.getScale(); 1441 bool SrcIsSigned = SrcFPSema.isSigned(); 1442 bool DstIsSigned = DstFPSema.isSigned(); 1443 1444 llvm::Type *DstIntTy = Builder.getIntNTy(DstWidth); 1445 1446 Value *Result = Src; 1447 unsigned ResultWidth = SrcWidth; 1448 1449 if (!DstFPSema.isSaturated()) { 1450 // Downscale. 1451 if (DstScale < SrcScale) 1452 Result = SrcIsSigned ? 1453 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1454 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1455 1456 // Resize. 1457 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1458 1459 // Upscale. 1460 if (DstScale > SrcScale) 1461 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1462 } else { 1463 // Adjust the number of fractional bits. 1464 if (DstScale > SrcScale) { 1465 ResultWidth = SrcWidth + DstScale - SrcScale; 1466 llvm::Type *UpscaledTy = Builder.getIntNTy(ResultWidth); 1467 Result = Builder.CreateIntCast(Result, UpscaledTy, SrcIsSigned, "resize"); 1468 Result = Builder.CreateShl(Result, DstScale - SrcScale, "upscale"); 1469 } else if (DstScale < SrcScale) { 1470 Result = SrcIsSigned ? 1471 Builder.CreateAShr(Result, SrcScale - DstScale, "downscale") : 1472 Builder.CreateLShr(Result, SrcScale - DstScale, "downscale"); 1473 } 1474 1475 // Handle saturation. 1476 bool LessIntBits = DstFPSema.getIntegralBits() < SrcFPSema.getIntegralBits(); 1477 if (LessIntBits) { 1478 Value *Max = ConstantInt::get( 1479 CGF.getLLVMContext(), 1480 APFixedPoint::getMax(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1481 Value *TooHigh = SrcIsSigned ? Builder.CreateICmpSGT(Result, Max) 1482 : Builder.CreateICmpUGT(Result, Max); 1483 Result = Builder.CreateSelect(TooHigh, Max, Result, "satmax"); 1484 } 1485 // Cannot overflow min to dest type if src is unsigned since all fixed 1486 // point types can cover the unsigned min of 0. 1487 if (SrcIsSigned && (LessIntBits || !DstIsSigned)) { 1488 Value *Min = ConstantInt::get( 1489 CGF.getLLVMContext(), 1490 APFixedPoint::getMin(DstFPSema).getValue().extOrTrunc(ResultWidth)); 1491 Value *TooLow = Builder.CreateICmpSLT(Result, Min); 1492 Result = Builder.CreateSelect(TooLow, Min, Result, "satmin"); 1493 } 1494 1495 // Resize the integer part to get the final destination size. 1496 Result = Builder.CreateIntCast(Result, DstIntTy, SrcIsSigned, "resize"); 1497 } 1498 return Result; 1499 } 1500 1501 /// Emit a conversion from the specified complex type to the specified 1502 /// destination type, where the destination type is an LLVM scalar type. 1503 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1504 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1505 SourceLocation Loc) { 1506 // Get the source element type. 1507 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1508 1509 // Handle conversions to bool first, they are special: comparisons against 0. 1510 if (DstTy->isBooleanType()) { 1511 // Complex != 0 -> (Real != 0) | (Imag != 0) 1512 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1513 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1514 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1515 } 1516 1517 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1518 // the imaginary part of the complex value is discarded and the value of the 1519 // real part is converted according to the conversion rules for the 1520 // corresponding real type. 1521 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1522 } 1523 1524 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1525 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1526 } 1527 1528 /// Emit a sanitization check for the given "binary" operation (which 1529 /// might actually be a unary increment which has been lowered to a binary 1530 /// operation). The check passes if all values in \p Checks (which are \c i1), 1531 /// are \c true. 1532 void ScalarExprEmitter::EmitBinOpCheck( 1533 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1534 assert(CGF.IsSanitizerScope); 1535 SanitizerHandler Check; 1536 SmallVector<llvm::Constant *, 4> StaticData; 1537 SmallVector<llvm::Value *, 2> DynamicData; 1538 1539 BinaryOperatorKind Opcode = Info.Opcode; 1540 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1541 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1542 1543 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1544 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1545 if (UO && UO->getOpcode() == UO_Minus) { 1546 Check = SanitizerHandler::NegateOverflow; 1547 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1548 DynamicData.push_back(Info.RHS); 1549 } else { 1550 if (BinaryOperator::isShiftOp(Opcode)) { 1551 // Shift LHS negative or too large, or RHS out of bounds. 1552 Check = SanitizerHandler::ShiftOutOfBounds; 1553 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1554 StaticData.push_back( 1555 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1556 StaticData.push_back( 1557 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1558 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1559 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1560 Check = SanitizerHandler::DivremOverflow; 1561 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1562 } else { 1563 // Arithmetic overflow (+, -, *). 1564 switch (Opcode) { 1565 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1566 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1567 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1568 default: llvm_unreachable("unexpected opcode for bin op check"); 1569 } 1570 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1571 } 1572 DynamicData.push_back(Info.LHS); 1573 DynamicData.push_back(Info.RHS); 1574 } 1575 1576 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1577 } 1578 1579 //===----------------------------------------------------------------------===// 1580 // Visitor Methods 1581 //===----------------------------------------------------------------------===// 1582 1583 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1584 CGF.ErrorUnsupported(E, "scalar expression"); 1585 if (E->getType()->isVoidType()) 1586 return nullptr; 1587 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1588 } 1589 1590 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1591 // Vector Mask Case 1592 if (E->getNumSubExprs() == 2) { 1593 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1594 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1595 Value *Mask; 1596 1597 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1598 unsigned LHSElts = LTy->getNumElements(); 1599 1600 Mask = RHS; 1601 1602 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1603 1604 // Mask off the high bits of each shuffle index. 1605 Value *MaskBits = 1606 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1607 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1608 1609 // newv = undef 1610 // mask = mask & maskbits 1611 // for each elt 1612 // n = extract mask i 1613 // x = extract val n 1614 // newv = insert newv, x, i 1615 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1616 MTy->getNumElements()); 1617 Value* NewV = llvm::UndefValue::get(RTy); 1618 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1619 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1620 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1621 1622 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1623 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1624 } 1625 return NewV; 1626 } 1627 1628 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1629 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1630 1631 SmallVector<llvm::Constant*, 32> indices; 1632 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1633 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1634 // Check for -1 and output it as undef in the IR. 1635 if (Idx.isSigned() && Idx.isAllOnesValue()) 1636 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1637 else 1638 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1639 } 1640 1641 Value *SV = llvm::ConstantVector::get(indices); 1642 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1643 } 1644 1645 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1646 QualType SrcType = E->getSrcExpr()->getType(), 1647 DstType = E->getType(); 1648 1649 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1650 1651 SrcType = CGF.getContext().getCanonicalType(SrcType); 1652 DstType = CGF.getContext().getCanonicalType(DstType); 1653 if (SrcType == DstType) return Src; 1654 1655 assert(SrcType->isVectorType() && 1656 "ConvertVector source type must be a vector"); 1657 assert(DstType->isVectorType() && 1658 "ConvertVector destination type must be a vector"); 1659 1660 llvm::Type *SrcTy = Src->getType(); 1661 llvm::Type *DstTy = ConvertType(DstType); 1662 1663 // Ignore conversions like int -> uint. 1664 if (SrcTy == DstTy) 1665 return Src; 1666 1667 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1668 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1669 1670 assert(SrcTy->isVectorTy() && 1671 "ConvertVector source IR type must be a vector"); 1672 assert(DstTy->isVectorTy() && 1673 "ConvertVector destination IR type must be a vector"); 1674 1675 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1676 *DstEltTy = DstTy->getVectorElementType(); 1677 1678 if (DstEltType->isBooleanType()) { 1679 assert((SrcEltTy->isFloatingPointTy() || 1680 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1681 1682 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1683 if (SrcEltTy->isFloatingPointTy()) { 1684 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1685 } else { 1686 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1687 } 1688 } 1689 1690 // We have the arithmetic types: real int/float. 1691 Value *Res = nullptr; 1692 1693 if (isa<llvm::IntegerType>(SrcEltTy)) { 1694 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1695 if (isa<llvm::IntegerType>(DstEltTy)) 1696 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1697 else if (InputSigned) 1698 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1699 else 1700 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1701 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1702 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1703 if (DstEltType->isSignedIntegerOrEnumerationType()) 1704 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1705 else 1706 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1707 } else { 1708 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1709 "Unknown real conversion"); 1710 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1711 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1712 else 1713 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1714 } 1715 1716 return Res; 1717 } 1718 1719 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1720 if (CodeGenFunction::ConstantEmission Constant = CGF.tryEmitAsConstant(E)) { 1721 CGF.EmitIgnoredExpr(E->getBase()); 1722 return CGF.emitScalarConstant(Constant, E); 1723 } else { 1724 Expr::EvalResult Result; 1725 if (E->EvaluateAsInt(Result, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1726 llvm::APSInt Value = Result.Val.getInt(); 1727 CGF.EmitIgnoredExpr(E->getBase()); 1728 return Builder.getInt(Value); 1729 } 1730 } 1731 1732 return EmitLoadOfLValue(E); 1733 } 1734 1735 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1736 TestAndClearIgnoreResultAssign(); 1737 1738 // Emit subscript expressions in rvalue context's. For most cases, this just 1739 // loads the lvalue formed by the subscript expr. However, we have to be 1740 // careful, because the base of a vector subscript is occasionally an rvalue, 1741 // so we can't get it as an lvalue. 1742 if (!E->getBase()->getType()->isVectorType()) 1743 return EmitLoadOfLValue(E); 1744 1745 // Handle the vector case. The base must be a vector, the index must be an 1746 // integer value. 1747 Value *Base = Visit(E->getBase()); 1748 Value *Idx = Visit(E->getIdx()); 1749 QualType IdxTy = E->getIdx()->getType(); 1750 1751 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1752 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1753 1754 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1755 } 1756 1757 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1758 unsigned Off, llvm::Type *I32Ty) { 1759 int MV = SVI->getMaskValue(Idx); 1760 if (MV == -1) 1761 return llvm::UndefValue::get(I32Ty); 1762 return llvm::ConstantInt::get(I32Ty, Off+MV); 1763 } 1764 1765 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1766 if (C->getBitWidth() != 32) { 1767 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1768 C->getZExtValue()) && 1769 "Index operand too large for shufflevector mask!"); 1770 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1771 } 1772 return C; 1773 } 1774 1775 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1776 bool Ignore = TestAndClearIgnoreResultAssign(); 1777 (void)Ignore; 1778 assert (Ignore == false && "init list ignored"); 1779 unsigned NumInitElements = E->getNumInits(); 1780 1781 if (E->hadArrayRangeDesignator()) 1782 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1783 1784 llvm::VectorType *VType = 1785 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1786 1787 if (!VType) { 1788 if (NumInitElements == 0) { 1789 // C++11 value-initialization for the scalar. 1790 return EmitNullValue(E->getType()); 1791 } 1792 // We have a scalar in braces. Just use the first element. 1793 return Visit(E->getInit(0)); 1794 } 1795 1796 unsigned ResElts = VType->getNumElements(); 1797 1798 // Loop over initializers collecting the Value for each, and remembering 1799 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1800 // us to fold the shuffle for the swizzle into the shuffle for the vector 1801 // initializer, since LLVM optimizers generally do not want to touch 1802 // shuffles. 1803 unsigned CurIdx = 0; 1804 bool VIsUndefShuffle = false; 1805 llvm::Value *V = llvm::UndefValue::get(VType); 1806 for (unsigned i = 0; i != NumInitElements; ++i) { 1807 Expr *IE = E->getInit(i); 1808 Value *Init = Visit(IE); 1809 SmallVector<llvm::Constant*, 16> Args; 1810 1811 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1812 1813 // Handle scalar elements. If the scalar initializer is actually one 1814 // element of a different vector of the same width, use shuffle instead of 1815 // extract+insert. 1816 if (!VVT) { 1817 if (isa<ExtVectorElementExpr>(IE)) { 1818 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1819 1820 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1821 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1822 Value *LHS = nullptr, *RHS = nullptr; 1823 if (CurIdx == 0) { 1824 // insert into undef -> shuffle (src, undef) 1825 // shufflemask must use an i32 1826 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1827 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1828 1829 LHS = EI->getVectorOperand(); 1830 RHS = V; 1831 VIsUndefShuffle = true; 1832 } else if (VIsUndefShuffle) { 1833 // insert into undefshuffle && size match -> shuffle (v, src) 1834 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1835 for (unsigned j = 0; j != CurIdx; ++j) 1836 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1837 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1838 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1839 1840 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1841 RHS = EI->getVectorOperand(); 1842 VIsUndefShuffle = false; 1843 } 1844 if (!Args.empty()) { 1845 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1846 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1847 ++CurIdx; 1848 continue; 1849 } 1850 } 1851 } 1852 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1853 "vecinit"); 1854 VIsUndefShuffle = false; 1855 ++CurIdx; 1856 continue; 1857 } 1858 1859 unsigned InitElts = VVT->getNumElements(); 1860 1861 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1862 // input is the same width as the vector being constructed, generate an 1863 // optimized shuffle of the swizzle input into the result. 1864 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1865 if (isa<ExtVectorElementExpr>(IE)) { 1866 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1867 Value *SVOp = SVI->getOperand(0); 1868 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1869 1870 if (OpTy->getNumElements() == ResElts) { 1871 for (unsigned j = 0; j != CurIdx; ++j) { 1872 // If the current vector initializer is a shuffle with undef, merge 1873 // this shuffle directly into it. 1874 if (VIsUndefShuffle) { 1875 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1876 CGF.Int32Ty)); 1877 } else { 1878 Args.push_back(Builder.getInt32(j)); 1879 } 1880 } 1881 for (unsigned j = 0, je = InitElts; j != je; ++j) 1882 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1883 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1884 1885 if (VIsUndefShuffle) 1886 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1887 1888 Init = SVOp; 1889 } 1890 } 1891 1892 // Extend init to result vector length, and then shuffle its contribution 1893 // to the vector initializer into V. 1894 if (Args.empty()) { 1895 for (unsigned j = 0; j != InitElts; ++j) 1896 Args.push_back(Builder.getInt32(j)); 1897 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1898 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1899 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1900 Mask, "vext"); 1901 1902 Args.clear(); 1903 for (unsigned j = 0; j != CurIdx; ++j) 1904 Args.push_back(Builder.getInt32(j)); 1905 for (unsigned j = 0; j != InitElts; ++j) 1906 Args.push_back(Builder.getInt32(j+Offset)); 1907 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1908 } 1909 1910 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1911 // merging subsequent shuffles into this one. 1912 if (CurIdx == 0) 1913 std::swap(V, Init); 1914 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1915 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1916 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1917 CurIdx += InitElts; 1918 } 1919 1920 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1921 // Emit remaining default initializers. 1922 llvm::Type *EltTy = VType->getElementType(); 1923 1924 // Emit remaining default initializers 1925 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1926 Value *Idx = Builder.getInt32(CurIdx); 1927 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1928 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1929 } 1930 return V; 1931 } 1932 1933 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1934 const Expr *E = CE->getSubExpr(); 1935 1936 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1937 return false; 1938 1939 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1940 // We always assume that 'this' is never null. 1941 return false; 1942 } 1943 1944 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1945 // And that glvalue casts are never null. 1946 if (ICE->getValueKind() != VK_RValue) 1947 return false; 1948 } 1949 1950 return true; 1951 } 1952 1953 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1954 // have to handle a more broad range of conversions than explicit casts, as they 1955 // handle things like function to ptr-to-function decay etc. 1956 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1957 Expr *E = CE->getSubExpr(); 1958 QualType DestTy = CE->getType(); 1959 CastKind Kind = CE->getCastKind(); 1960 1961 // These cases are generally not written to ignore the result of 1962 // evaluating their sub-expressions, so we clear this now. 1963 bool Ignored = TestAndClearIgnoreResultAssign(); 1964 1965 // Since almost all cast kinds apply to scalars, this switch doesn't have 1966 // a default case, so the compiler will warn on a missing case. The cases 1967 // are in the same order as in the CastKind enum. 1968 switch (Kind) { 1969 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1970 case CK_BuiltinFnToFnPtr: 1971 llvm_unreachable("builtin functions are handled elsewhere"); 1972 1973 case CK_LValueBitCast: 1974 case CK_ObjCObjectLValueCast: { 1975 Address Addr = EmitLValue(E).getAddress(); 1976 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1977 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1978 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1979 } 1980 1981 case CK_CPointerToObjCPointerCast: 1982 case CK_BlockPointerToObjCPointerCast: 1983 case CK_AnyPointerToBlockPointerCast: 1984 case CK_BitCast: { 1985 Value *Src = Visit(const_cast<Expr*>(E)); 1986 llvm::Type *SrcTy = Src->getType(); 1987 llvm::Type *DstTy = ConvertType(DestTy); 1988 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1989 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1990 llvm_unreachable("wrong cast for pointers in different address spaces" 1991 "(must be an address space cast)!"); 1992 } 1993 1994 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1995 if (auto PT = DestTy->getAs<PointerType>()) 1996 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1997 /*MayBeNull=*/true, 1998 CodeGenFunction::CFITCK_UnrelatedCast, 1999 CE->getBeginLoc()); 2000 } 2001 2002 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2003 const QualType SrcType = E->getType(); 2004 2005 if (SrcType.mayBeNotDynamicClass() && DestTy.mayBeDynamicClass()) { 2006 // Casting to pointer that could carry dynamic information (provided by 2007 // invariant.group) requires launder. 2008 Src = Builder.CreateLaunderInvariantGroup(Src); 2009 } else if (SrcType.mayBeDynamicClass() && DestTy.mayBeNotDynamicClass()) { 2010 // Casting to pointer that does not carry dynamic information (provided 2011 // by invariant.group) requires stripping it. Note that we don't do it 2012 // if the source could not be dynamic type and destination could be 2013 // dynamic because dynamic information is already laundered. It is 2014 // because launder(strip(src)) == launder(src), so there is no need to 2015 // add extra strip before launder. 2016 Src = Builder.CreateStripInvariantGroup(Src); 2017 } 2018 } 2019 2020 return Builder.CreateBitCast(Src, DstTy); 2021 } 2022 case CK_AddressSpaceConversion: { 2023 Expr::EvalResult Result; 2024 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 2025 Result.Val.isNullPointer()) { 2026 // If E has side effect, it is emitted even if its final result is a 2027 // null pointer. In that case, a DCE pass should be able to 2028 // eliminate the useless instructions emitted during translating E. 2029 if (Result.HasSideEffects) 2030 Visit(E); 2031 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 2032 ConvertType(DestTy)), DestTy); 2033 } 2034 // Since target may map different address spaces in AST to the same address 2035 // space, an address space conversion may end up as a bitcast. 2036 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 2037 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 2038 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 2039 } 2040 case CK_AtomicToNonAtomic: 2041 case CK_NonAtomicToAtomic: 2042 case CK_NoOp: 2043 case CK_UserDefinedConversion: 2044 return Visit(const_cast<Expr*>(E)); 2045 2046 case CK_BaseToDerived: { 2047 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 2048 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 2049 2050 Address Base = CGF.EmitPointerWithAlignment(E); 2051 Address Derived = 2052 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 2053 CE->path_begin(), CE->path_end(), 2054 CGF.ShouldNullCheckClassCastValue(CE)); 2055 2056 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 2057 // performed and the object is not of the derived type. 2058 if (CGF.sanitizePerformTypeCheck()) 2059 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 2060 Derived.getPointer(), DestTy->getPointeeType()); 2061 2062 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 2063 CGF.EmitVTablePtrCheckForCast( 2064 DestTy->getPointeeType(), Derived.getPointer(), 2065 /*MayBeNull=*/true, CodeGenFunction::CFITCK_DerivedCast, 2066 CE->getBeginLoc()); 2067 2068 return Derived.getPointer(); 2069 } 2070 case CK_UncheckedDerivedToBase: 2071 case CK_DerivedToBase: { 2072 // The EmitPointerWithAlignment path does this fine; just discard 2073 // the alignment. 2074 return CGF.EmitPointerWithAlignment(CE).getPointer(); 2075 } 2076 2077 case CK_Dynamic: { 2078 Address V = CGF.EmitPointerWithAlignment(E); 2079 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 2080 return CGF.EmitDynamicCast(V, DCE); 2081 } 2082 2083 case CK_ArrayToPointerDecay: 2084 return CGF.EmitArrayToPointerDecay(E).getPointer(); 2085 case CK_FunctionToPointerDecay: 2086 return EmitLValue(E).getPointer(); 2087 2088 case CK_NullToPointer: 2089 if (MustVisitNullValue(E)) 2090 (void) Visit(E); 2091 2092 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 2093 DestTy); 2094 2095 case CK_NullToMemberPointer: { 2096 if (MustVisitNullValue(E)) 2097 (void) Visit(E); 2098 2099 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 2100 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 2101 } 2102 2103 case CK_ReinterpretMemberPointer: 2104 case CK_BaseToDerivedMemberPointer: 2105 case CK_DerivedToBaseMemberPointer: { 2106 Value *Src = Visit(E); 2107 2108 // Note that the AST doesn't distinguish between checked and 2109 // unchecked member pointer conversions, so we always have to 2110 // implement checked conversions here. This is inefficient when 2111 // actual control flow may be required in order to perform the 2112 // check, which it is for data member pointers (but not member 2113 // function pointers on Itanium and ARM). 2114 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 2115 } 2116 2117 case CK_ARCProduceObject: 2118 return CGF.EmitARCRetainScalarExpr(E); 2119 case CK_ARCConsumeObject: 2120 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 2121 case CK_ARCReclaimReturnedObject: 2122 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 2123 case CK_ARCExtendBlockObject: 2124 return CGF.EmitARCExtendBlockObject(E); 2125 2126 case CK_CopyAndAutoreleaseBlockObject: 2127 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 2128 2129 case CK_FloatingRealToComplex: 2130 case CK_FloatingComplexCast: 2131 case CK_IntegralRealToComplex: 2132 case CK_IntegralComplexCast: 2133 case CK_IntegralComplexToFloatingComplex: 2134 case CK_FloatingComplexToIntegralComplex: 2135 case CK_ConstructorConversion: 2136 case CK_ToUnion: 2137 llvm_unreachable("scalar cast to non-scalar value"); 2138 2139 case CK_LValueToRValue: 2140 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 2141 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 2142 return Visit(const_cast<Expr*>(E)); 2143 2144 case CK_IntegralToPointer: { 2145 Value *Src = Visit(const_cast<Expr*>(E)); 2146 2147 // First, convert to the correct width so that we control the kind of 2148 // extension. 2149 auto DestLLVMTy = ConvertType(DestTy); 2150 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 2151 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 2152 llvm::Value* IntResult = 2153 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 2154 2155 auto *IntToPtr = Builder.CreateIntToPtr(IntResult, DestLLVMTy); 2156 2157 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2158 // Going from integer to pointer that could be dynamic requires reloading 2159 // dynamic information from invariant.group. 2160 if (DestTy.mayBeDynamicClass()) 2161 IntToPtr = Builder.CreateLaunderInvariantGroup(IntToPtr); 2162 } 2163 return IntToPtr; 2164 } 2165 case CK_PointerToIntegral: { 2166 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 2167 auto *PtrExpr = Visit(E); 2168 2169 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers) { 2170 const QualType SrcType = E->getType(); 2171 2172 // Casting to integer requires stripping dynamic information as it does 2173 // not carries it. 2174 if (SrcType.mayBeDynamicClass()) 2175 PtrExpr = Builder.CreateStripInvariantGroup(PtrExpr); 2176 } 2177 2178 return Builder.CreatePtrToInt(PtrExpr, ConvertType(DestTy)); 2179 } 2180 case CK_ToVoid: { 2181 CGF.EmitIgnoredExpr(E); 2182 return nullptr; 2183 } 2184 case CK_VectorSplat: { 2185 llvm::Type *DstTy = ConvertType(DestTy); 2186 Value *Elt = Visit(const_cast<Expr*>(E)); 2187 // Splat the element across to all elements 2188 unsigned NumElements = DstTy->getVectorNumElements(); 2189 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 2190 } 2191 2192 case CK_FixedPointCast: 2193 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2194 CE->getExprLoc()); 2195 2196 case CK_FixedPointToBoolean: 2197 assert(E->getType()->isFixedPointType() && 2198 "Expected src type to be fixed point type"); 2199 assert(DestTy->isBooleanType() && "Expected dest type to be boolean type"); 2200 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2201 CE->getExprLoc()); 2202 2203 case CK_IntegralCast: { 2204 ScalarConversionOpts Opts; 2205 if (auto *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 2206 if (!ICE->isPartOfExplicitCast()) 2207 Opts = ScalarConversionOpts(CGF.SanOpts); 2208 } 2209 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2210 CE->getExprLoc(), Opts); 2211 } 2212 case CK_IntegralToFloating: 2213 case CK_FloatingToIntegral: 2214 case CK_FloatingCast: 2215 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2216 CE->getExprLoc()); 2217 case CK_BooleanToSignedIntegral: { 2218 ScalarConversionOpts Opts; 2219 Opts.TreatBooleanAsSigned = true; 2220 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 2221 CE->getExprLoc(), Opts); 2222 } 2223 case CK_IntegralToBoolean: 2224 return EmitIntToBoolConversion(Visit(E)); 2225 case CK_PointerToBoolean: 2226 return EmitPointerToBoolConversion(Visit(E), E->getType()); 2227 case CK_FloatingToBoolean: 2228 return EmitFloatToBoolConversion(Visit(E)); 2229 case CK_MemberPointerToBoolean: { 2230 llvm::Value *MemPtr = Visit(E); 2231 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 2232 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 2233 } 2234 2235 case CK_FloatingComplexToReal: 2236 case CK_IntegralComplexToReal: 2237 return CGF.EmitComplexExpr(E, false, true).first; 2238 2239 case CK_FloatingComplexToBoolean: 2240 case CK_IntegralComplexToBoolean: { 2241 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 2242 2243 // TODO: kill this function off, inline appropriate case here 2244 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 2245 CE->getExprLoc()); 2246 } 2247 2248 case CK_ZeroToOCLOpaqueType: { 2249 assert((DestTy->isEventT() || DestTy->isQueueT() || 2250 DestTy->isOCLIntelSubgroupAVCType()) && 2251 "CK_ZeroToOCLEvent cast on non-event type"); 2252 return llvm::Constant::getNullValue(ConvertType(DestTy)); 2253 } 2254 2255 case CK_IntToOCLSampler: 2256 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 2257 2258 } // end of switch 2259 2260 llvm_unreachable("unknown scalar cast"); 2261 } 2262 2263 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 2264 CodeGenFunction::StmtExprEvaluation eval(CGF); 2265 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 2266 !E->getType()->isVoidType()); 2267 if (!RetAlloca.isValid()) 2268 return nullptr; 2269 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 2270 E->getExprLoc()); 2271 } 2272 2273 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 2274 CGF.enterFullExpression(E); 2275 CodeGenFunction::RunCleanupsScope Scope(CGF); 2276 Value *V = Visit(E->getSubExpr()); 2277 // Defend against dominance problems caused by jumps out of expression 2278 // evaluation through the shared cleanup block. 2279 Scope.ForceCleanup({&V}); 2280 return V; 2281 } 2282 2283 //===----------------------------------------------------------------------===// 2284 // Unary Operators 2285 //===----------------------------------------------------------------------===// 2286 2287 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 2288 llvm::Value *InVal, bool IsInc) { 2289 BinOpInfo BinOp; 2290 BinOp.LHS = InVal; 2291 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 2292 BinOp.Ty = E->getType(); 2293 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 2294 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2295 BinOp.E = E; 2296 return BinOp; 2297 } 2298 2299 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 2300 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 2301 llvm::Value *Amount = 2302 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 2303 StringRef Name = IsInc ? "inc" : "dec"; 2304 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2305 case LangOptions::SOB_Defined: 2306 return Builder.CreateAdd(InVal, Amount, Name); 2307 case LangOptions::SOB_Undefined: 2308 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2309 return Builder.CreateNSWAdd(InVal, Amount, Name); 2310 LLVM_FALLTHROUGH; 2311 case LangOptions::SOB_Trapping: 2312 if (!E->canOverflow()) 2313 return Builder.CreateNSWAdd(InVal, Amount, Name); 2314 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 2315 } 2316 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 2317 } 2318 2319 llvm::Value * 2320 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 2321 bool isInc, bool isPre) { 2322 2323 QualType type = E->getSubExpr()->getType(); 2324 llvm::PHINode *atomicPHI = nullptr; 2325 llvm::Value *value; 2326 llvm::Value *input; 2327 2328 int amount = (isInc ? 1 : -1); 2329 bool isSubtraction = !isInc; 2330 2331 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 2332 type = atomicTy->getValueType(); 2333 if (isInc && type->isBooleanType()) { 2334 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 2335 if (isPre) { 2336 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 2337 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 2338 return Builder.getTrue(); 2339 } 2340 // For atomic bool increment, we just store true and return it for 2341 // preincrement, do an atomic swap with true for postincrement 2342 return Builder.CreateAtomicRMW( 2343 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 2344 llvm::AtomicOrdering::SequentiallyConsistent); 2345 } 2346 // Special case for atomic increment / decrement on integers, emit 2347 // atomicrmw instructions. We skip this if we want to be doing overflow 2348 // checking, and fall into the slow path with the atomic cmpxchg loop. 2349 if (!type->isBooleanType() && type->isIntegerType() && 2350 !(type->isUnsignedIntegerType() && 2351 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2352 CGF.getLangOpts().getSignedOverflowBehavior() != 2353 LangOptions::SOB_Trapping) { 2354 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 2355 llvm::AtomicRMWInst::Sub; 2356 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 2357 llvm::Instruction::Sub; 2358 llvm::Value *amt = CGF.EmitToMemory( 2359 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 2360 llvm::Value *old = Builder.CreateAtomicRMW(aop, 2361 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 2362 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 2363 } 2364 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2365 input = value; 2366 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 2367 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2368 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2369 value = CGF.EmitToMemory(value, type); 2370 Builder.CreateBr(opBB); 2371 Builder.SetInsertPoint(opBB); 2372 atomicPHI = Builder.CreatePHI(value->getType(), 2); 2373 atomicPHI->addIncoming(value, startBB); 2374 value = atomicPHI; 2375 } else { 2376 value = EmitLoadOfLValue(LV, E->getExprLoc()); 2377 input = value; 2378 } 2379 2380 // Special case of integer increment that we have to check first: bool++. 2381 // Due to promotion rules, we get: 2382 // bool++ -> bool = bool + 1 2383 // -> bool = (int)bool + 1 2384 // -> bool = ((int)bool + 1 != 0) 2385 // An interesting aspect of this is that increment is always true. 2386 // Decrement does not have this property. 2387 if (isInc && type->isBooleanType()) { 2388 value = Builder.getTrue(); 2389 2390 // Most common case by far: integer increment. 2391 } else if (type->isIntegerType()) { 2392 // Note that signed integer inc/dec with width less than int can't 2393 // overflow because of promotion rules; we're just eliding a few steps here. 2394 if (E->canOverflow() && type->isSignedIntegerOrEnumerationType()) { 2395 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 2396 } else if (E->canOverflow() && type->isUnsignedIntegerType() && 2397 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 2398 value = 2399 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 2400 } else { 2401 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 2402 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2403 } 2404 2405 // Next most common: pointer increment. 2406 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 2407 QualType type = ptr->getPointeeType(); 2408 2409 // VLA types don't have constant size. 2410 if (const VariableArrayType *vla 2411 = CGF.getContext().getAsVariableArrayType(type)) { 2412 llvm::Value *numElts = CGF.getVLASize(vla).NumElts; 2413 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 2414 if (CGF.getLangOpts().isSignedOverflowDefined()) 2415 value = Builder.CreateGEP(value, numElts, "vla.inc"); 2416 else 2417 value = CGF.EmitCheckedInBoundsGEP( 2418 value, numElts, /*SignedIndices=*/false, isSubtraction, 2419 E->getExprLoc(), "vla.inc"); 2420 2421 // Arithmetic on function pointers (!) is just +-1. 2422 } else if (type->isFunctionType()) { 2423 llvm::Value *amt = Builder.getInt32(amount); 2424 2425 value = CGF.EmitCastToVoidPtr(value); 2426 if (CGF.getLangOpts().isSignedOverflowDefined()) 2427 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 2428 else 2429 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2430 isSubtraction, E->getExprLoc(), 2431 "incdec.funcptr"); 2432 value = Builder.CreateBitCast(value, input->getType()); 2433 2434 // For everything else, we can just do a simple increment. 2435 } else { 2436 llvm::Value *amt = Builder.getInt32(amount); 2437 if (CGF.getLangOpts().isSignedOverflowDefined()) 2438 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 2439 else 2440 value = CGF.EmitCheckedInBoundsGEP(value, amt, /*SignedIndices=*/false, 2441 isSubtraction, E->getExprLoc(), 2442 "incdec.ptr"); 2443 } 2444 2445 // Vector increment/decrement. 2446 } else if (type->isVectorType()) { 2447 if (type->hasIntegerRepresentation()) { 2448 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 2449 2450 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 2451 } else { 2452 value = Builder.CreateFAdd( 2453 value, 2454 llvm::ConstantFP::get(value->getType(), amount), 2455 isInc ? "inc" : "dec"); 2456 } 2457 2458 // Floating point. 2459 } else if (type->isRealFloatingType()) { 2460 // Add the inc/dec to the real part. 2461 llvm::Value *amt; 2462 2463 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2464 // Another special case: half FP increment should be done via float 2465 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2466 value = Builder.CreateCall( 2467 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 2468 CGF.CGM.FloatTy), 2469 input, "incdec.conv"); 2470 } else { 2471 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 2472 } 2473 } 2474 2475 if (value->getType()->isFloatTy()) 2476 amt = llvm::ConstantFP::get(VMContext, 2477 llvm::APFloat(static_cast<float>(amount))); 2478 else if (value->getType()->isDoubleTy()) 2479 amt = llvm::ConstantFP::get(VMContext, 2480 llvm::APFloat(static_cast<double>(amount))); 2481 else { 2482 // Remaining types are Half, LongDouble or __float128. Convert from float. 2483 llvm::APFloat F(static_cast<float>(amount)); 2484 bool ignored; 2485 const llvm::fltSemantics *FS; 2486 // Don't use getFloatTypeSemantics because Half isn't 2487 // necessarily represented using the "half" LLVM type. 2488 if (value->getType()->isFP128Ty()) 2489 FS = &CGF.getTarget().getFloat128Format(); 2490 else if (value->getType()->isHalfTy()) 2491 FS = &CGF.getTarget().getHalfFormat(); 2492 else 2493 FS = &CGF.getTarget().getLongDoubleFormat(); 2494 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2495 amt = llvm::ConstantFP::get(VMContext, F); 2496 } 2497 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2498 2499 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2500 if (CGF.getContext().getTargetInfo().useFP16ConversionIntrinsics()) { 2501 value = Builder.CreateCall( 2502 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2503 CGF.CGM.FloatTy), 2504 value, "incdec.conv"); 2505 } else { 2506 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2507 } 2508 } 2509 2510 // Objective-C pointer types. 2511 } else { 2512 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2513 value = CGF.EmitCastToVoidPtr(value); 2514 2515 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2516 if (!isInc) size = -size; 2517 llvm::Value *sizeValue = 2518 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2519 2520 if (CGF.getLangOpts().isSignedOverflowDefined()) 2521 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2522 else 2523 value = CGF.EmitCheckedInBoundsGEP(value, sizeValue, 2524 /*SignedIndices=*/false, isSubtraction, 2525 E->getExprLoc(), "incdec.objptr"); 2526 value = Builder.CreateBitCast(value, input->getType()); 2527 } 2528 2529 if (atomicPHI) { 2530 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2531 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2532 auto Pair = CGF.EmitAtomicCompareExchange( 2533 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2534 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2535 llvm::Value *success = Pair.second; 2536 atomicPHI->addIncoming(old, opBB); 2537 Builder.CreateCondBr(success, contBB, opBB); 2538 Builder.SetInsertPoint(contBB); 2539 return isPre ? value : input; 2540 } 2541 2542 // Store the updated result through the lvalue. 2543 if (LV.isBitField()) 2544 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2545 else 2546 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2547 2548 // If this is a postinc, return the value read from memory, otherwise use the 2549 // updated value. 2550 return isPre ? value : input; 2551 } 2552 2553 2554 2555 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2556 TestAndClearIgnoreResultAssign(); 2557 // Emit unary minus with EmitSub so we handle overflow cases etc. 2558 BinOpInfo BinOp; 2559 BinOp.RHS = Visit(E->getSubExpr()); 2560 2561 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2562 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2563 else 2564 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2565 BinOp.Ty = E->getType(); 2566 BinOp.Opcode = BO_Sub; 2567 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2568 BinOp.E = E; 2569 return EmitSub(BinOp); 2570 } 2571 2572 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2573 TestAndClearIgnoreResultAssign(); 2574 Value *Op = Visit(E->getSubExpr()); 2575 return Builder.CreateNot(Op, "neg"); 2576 } 2577 2578 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2579 // Perform vector logical not on comparison with zero vector. 2580 if (E->getType()->isExtVectorType()) { 2581 Value *Oper = Visit(E->getSubExpr()); 2582 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2583 Value *Result; 2584 if (Oper->getType()->isFPOrFPVectorTy()) 2585 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2586 else 2587 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2588 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2589 } 2590 2591 // Compare operand to zero. 2592 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2593 2594 // Invert value. 2595 // TODO: Could dynamically modify easy computations here. For example, if 2596 // the operand is an icmp ne, turn into icmp eq. 2597 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2598 2599 // ZExt result to the expr type. 2600 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2601 } 2602 2603 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2604 // Try folding the offsetof to a constant. 2605 Expr::EvalResult EVResult; 2606 if (E->EvaluateAsInt(EVResult, CGF.getContext())) { 2607 llvm::APSInt Value = EVResult.Val.getInt(); 2608 return Builder.getInt(Value); 2609 } 2610 2611 // Loop over the components of the offsetof to compute the value. 2612 unsigned n = E->getNumComponents(); 2613 llvm::Type* ResultType = ConvertType(E->getType()); 2614 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2615 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2616 for (unsigned i = 0; i != n; ++i) { 2617 OffsetOfNode ON = E->getComponent(i); 2618 llvm::Value *Offset = nullptr; 2619 switch (ON.getKind()) { 2620 case OffsetOfNode::Array: { 2621 // Compute the index 2622 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2623 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2624 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2625 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2626 2627 // Save the element type 2628 CurrentType = 2629 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2630 2631 // Compute the element size 2632 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2633 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2634 2635 // Multiply out to compute the result 2636 Offset = Builder.CreateMul(Idx, ElemSize); 2637 break; 2638 } 2639 2640 case OffsetOfNode::Field: { 2641 FieldDecl *MemberDecl = ON.getField(); 2642 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2643 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2644 2645 // Compute the index of the field in its parent. 2646 unsigned i = 0; 2647 // FIXME: It would be nice if we didn't have to loop here! 2648 for (RecordDecl::field_iterator Field = RD->field_begin(), 2649 FieldEnd = RD->field_end(); 2650 Field != FieldEnd; ++Field, ++i) { 2651 if (*Field == MemberDecl) 2652 break; 2653 } 2654 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2655 2656 // Compute the offset to the field 2657 int64_t OffsetInt = RL.getFieldOffset(i) / 2658 CGF.getContext().getCharWidth(); 2659 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2660 2661 // Save the element type. 2662 CurrentType = MemberDecl->getType(); 2663 break; 2664 } 2665 2666 case OffsetOfNode::Identifier: 2667 llvm_unreachable("dependent __builtin_offsetof"); 2668 2669 case OffsetOfNode::Base: { 2670 if (ON.getBase()->isVirtual()) { 2671 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2672 continue; 2673 } 2674 2675 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2676 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2677 2678 // Save the element type. 2679 CurrentType = ON.getBase()->getType(); 2680 2681 // Compute the offset to the base. 2682 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2683 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2684 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2685 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2686 break; 2687 } 2688 } 2689 Result = Builder.CreateAdd(Result, Offset); 2690 } 2691 return Result; 2692 } 2693 2694 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2695 /// argument of the sizeof expression as an integer. 2696 Value * 2697 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2698 const UnaryExprOrTypeTraitExpr *E) { 2699 QualType TypeToSize = E->getTypeOfArgument(); 2700 if (E->getKind() == UETT_SizeOf) { 2701 if (const VariableArrayType *VAT = 2702 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2703 if (E->isArgumentType()) { 2704 // sizeof(type) - make sure to emit the VLA size. 2705 CGF.EmitVariablyModifiedType(TypeToSize); 2706 } else { 2707 // C99 6.5.3.4p2: If the argument is an expression of type 2708 // VLA, it is evaluated. 2709 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2710 } 2711 2712 auto VlaSize = CGF.getVLASize(VAT); 2713 llvm::Value *size = VlaSize.NumElts; 2714 2715 // Scale the number of non-VLA elements by the non-VLA element size. 2716 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(VlaSize.Type); 2717 if (!eltSize.isOne()) 2718 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), size); 2719 2720 return size; 2721 } 2722 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2723 auto Alignment = 2724 CGF.getContext() 2725 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2726 E->getTypeOfArgument()->getPointeeType())) 2727 .getQuantity(); 2728 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2729 } 2730 2731 // If this isn't sizeof(vla), the result must be constant; use the constant 2732 // folding logic so we don't have to duplicate it here. 2733 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2734 } 2735 2736 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2737 Expr *Op = E->getSubExpr(); 2738 if (Op->getType()->isAnyComplexType()) { 2739 // If it's an l-value, load through the appropriate subobject l-value. 2740 // Note that we have to ask E because Op might be an l-value that 2741 // this won't work for, e.g. an Obj-C property. 2742 if (E->isGLValue()) 2743 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2744 E->getExprLoc()).getScalarVal(); 2745 2746 // Otherwise, calculate and project. 2747 return CGF.EmitComplexExpr(Op, false, true).first; 2748 } 2749 2750 return Visit(Op); 2751 } 2752 2753 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2754 Expr *Op = E->getSubExpr(); 2755 if (Op->getType()->isAnyComplexType()) { 2756 // If it's an l-value, load through the appropriate subobject l-value. 2757 // Note that we have to ask E because Op might be an l-value that 2758 // this won't work for, e.g. an Obj-C property. 2759 if (Op->isGLValue()) 2760 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2761 E->getExprLoc()).getScalarVal(); 2762 2763 // Otherwise, calculate and project. 2764 return CGF.EmitComplexExpr(Op, true, false).second; 2765 } 2766 2767 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2768 // effects are evaluated, but not the actual value. 2769 if (Op->isGLValue()) 2770 CGF.EmitLValue(Op); 2771 else 2772 CGF.EmitScalarExpr(Op, true); 2773 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2774 } 2775 2776 //===----------------------------------------------------------------------===// 2777 // Binary Operators 2778 //===----------------------------------------------------------------------===// 2779 2780 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2781 TestAndClearIgnoreResultAssign(); 2782 BinOpInfo Result; 2783 Result.LHS = Visit(E->getLHS()); 2784 Result.RHS = Visit(E->getRHS()); 2785 Result.Ty = E->getType(); 2786 Result.Opcode = E->getOpcode(); 2787 Result.FPFeatures = E->getFPFeatures(); 2788 Result.E = E; 2789 return Result; 2790 } 2791 2792 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2793 const CompoundAssignOperator *E, 2794 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2795 Value *&Result) { 2796 QualType LHSTy = E->getLHS()->getType(); 2797 BinOpInfo OpInfo; 2798 2799 if (E->getComputationResultType()->isAnyComplexType()) 2800 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2801 2802 // Emit the RHS first. __block variables need to have the rhs evaluated 2803 // first, plus this should improve codegen a little. 2804 OpInfo.RHS = Visit(E->getRHS()); 2805 OpInfo.Ty = E->getComputationResultType(); 2806 OpInfo.Opcode = E->getOpcode(); 2807 OpInfo.FPFeatures = E->getFPFeatures(); 2808 OpInfo.E = E; 2809 // Load/convert the LHS. 2810 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2811 2812 llvm::PHINode *atomicPHI = nullptr; 2813 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2814 QualType type = atomicTy->getValueType(); 2815 if (!type->isBooleanType() && type->isIntegerType() && 2816 !(type->isUnsignedIntegerType() && 2817 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2818 CGF.getLangOpts().getSignedOverflowBehavior() != 2819 LangOptions::SOB_Trapping) { 2820 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2821 switch (OpInfo.Opcode) { 2822 // We don't have atomicrmw operands for *, %, /, <<, >> 2823 case BO_MulAssign: case BO_DivAssign: 2824 case BO_RemAssign: 2825 case BO_ShlAssign: 2826 case BO_ShrAssign: 2827 break; 2828 case BO_AddAssign: 2829 aop = llvm::AtomicRMWInst::Add; 2830 break; 2831 case BO_SubAssign: 2832 aop = llvm::AtomicRMWInst::Sub; 2833 break; 2834 case BO_AndAssign: 2835 aop = llvm::AtomicRMWInst::And; 2836 break; 2837 case BO_XorAssign: 2838 aop = llvm::AtomicRMWInst::Xor; 2839 break; 2840 case BO_OrAssign: 2841 aop = llvm::AtomicRMWInst::Or; 2842 break; 2843 default: 2844 llvm_unreachable("Invalid compound assignment type"); 2845 } 2846 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2847 llvm::Value *amt = CGF.EmitToMemory( 2848 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2849 E->getExprLoc()), 2850 LHSTy); 2851 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2852 llvm::AtomicOrdering::SequentiallyConsistent); 2853 return LHSLV; 2854 } 2855 } 2856 // FIXME: For floating point types, we should be saving and restoring the 2857 // floating point environment in the loop. 2858 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2859 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2860 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2861 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2862 Builder.CreateBr(opBB); 2863 Builder.SetInsertPoint(opBB); 2864 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2865 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2866 OpInfo.LHS = atomicPHI; 2867 } 2868 else 2869 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2870 2871 SourceLocation Loc = E->getExprLoc(); 2872 OpInfo.LHS = 2873 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2874 2875 // Expand the binary operator. 2876 Result = (this->*Func)(OpInfo); 2877 2878 // Convert the result back to the LHS type, 2879 // potentially with Implicit Conversion sanitizer check. 2880 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, 2881 Loc, ScalarConversionOpts(CGF.SanOpts)); 2882 2883 if (atomicPHI) { 2884 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2885 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2886 auto Pair = CGF.EmitAtomicCompareExchange( 2887 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2888 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2889 llvm::Value *success = Pair.second; 2890 atomicPHI->addIncoming(old, opBB); 2891 Builder.CreateCondBr(success, contBB, opBB); 2892 Builder.SetInsertPoint(contBB); 2893 return LHSLV; 2894 } 2895 2896 // Store the result value into the LHS lvalue. Bit-fields are handled 2897 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2898 // 'An assignment expression has the value of the left operand after the 2899 // assignment...'. 2900 if (LHSLV.isBitField()) 2901 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2902 else 2903 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2904 2905 return LHSLV; 2906 } 2907 2908 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2909 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2910 bool Ignore = TestAndClearIgnoreResultAssign(); 2911 Value *RHS; 2912 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2913 2914 // If the result is clearly ignored, return now. 2915 if (Ignore) 2916 return nullptr; 2917 2918 // The result of an assignment in C is the assigned r-value. 2919 if (!CGF.getLangOpts().CPlusPlus) 2920 return RHS; 2921 2922 // If the lvalue is non-volatile, return the computed value of the assignment. 2923 if (!LHS.isVolatileQualified()) 2924 return RHS; 2925 2926 // Otherwise, reload the value. 2927 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2928 } 2929 2930 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2931 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2932 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2933 2934 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2935 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2936 SanitizerKind::IntegerDivideByZero)); 2937 } 2938 2939 const auto *BO = cast<BinaryOperator>(Ops.E); 2940 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2941 Ops.Ty->hasSignedIntegerRepresentation() && 2942 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2943 Ops.mayHaveIntegerOverflow()) { 2944 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2945 2946 llvm::Value *IntMin = 2947 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2948 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2949 2950 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2951 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2952 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2953 Checks.push_back( 2954 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2955 } 2956 2957 if (Checks.size() > 0) 2958 EmitBinOpCheck(Checks, Ops); 2959 } 2960 2961 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2962 { 2963 CodeGenFunction::SanitizerScope SanScope(&CGF); 2964 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2965 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2966 Ops.Ty->isIntegerType() && 2967 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2968 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2969 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2970 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2971 Ops.Ty->isRealFloatingType() && 2972 Ops.mayHaveFloatDivisionByZero()) { 2973 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2974 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2975 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2976 Ops); 2977 } 2978 } 2979 2980 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2981 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2982 if (CGF.getLangOpts().OpenCL && 2983 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2984 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2985 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2986 // build option allows an application to specify that single precision 2987 // floating-point divide (x/y and 1/x) and sqrt used in the program 2988 // source are correctly rounded. 2989 llvm::Type *ValTy = Val->getType(); 2990 if (ValTy->isFloatTy() || 2991 (isa<llvm::VectorType>(ValTy) && 2992 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2993 CGF.SetFPAccuracy(Val, 2.5); 2994 } 2995 return Val; 2996 } 2997 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2998 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2999 else 3000 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 3001 } 3002 3003 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 3004 // Rem in C can't be a floating point type: C99 6.5.5p2. 3005 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 3006 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 3007 Ops.Ty->isIntegerType() && 3008 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 3009 CodeGenFunction::SanitizerScope SanScope(&CGF); 3010 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 3011 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 3012 } 3013 3014 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3015 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 3016 else 3017 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 3018 } 3019 3020 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 3021 unsigned IID; 3022 unsigned OpID = 0; 3023 3024 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 3025 switch (Ops.Opcode) { 3026 case BO_Add: 3027 case BO_AddAssign: 3028 OpID = 1; 3029 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 3030 llvm::Intrinsic::uadd_with_overflow; 3031 break; 3032 case BO_Sub: 3033 case BO_SubAssign: 3034 OpID = 2; 3035 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 3036 llvm::Intrinsic::usub_with_overflow; 3037 break; 3038 case BO_Mul: 3039 case BO_MulAssign: 3040 OpID = 3; 3041 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 3042 llvm::Intrinsic::umul_with_overflow; 3043 break; 3044 default: 3045 llvm_unreachable("Unsupported operation for overflow detection"); 3046 } 3047 OpID <<= 1; 3048 if (isSigned) 3049 OpID |= 1; 3050 3051 CodeGenFunction::SanitizerScope SanScope(&CGF); 3052 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 3053 3054 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 3055 3056 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 3057 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 3058 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 3059 3060 // Handle overflow with llvm.trap if no custom handler has been specified. 3061 const std::string *handlerName = 3062 &CGF.getLangOpts().OverflowHandler; 3063 if (handlerName->empty()) { 3064 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 3065 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 3066 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 3067 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 3068 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 3069 : SanitizerKind::UnsignedIntegerOverflow; 3070 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 3071 } else 3072 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 3073 return result; 3074 } 3075 3076 // Branch in case of overflow. 3077 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 3078 llvm::BasicBlock *continueBB = 3079 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 3080 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 3081 3082 Builder.CreateCondBr(overflow, overflowBB, continueBB); 3083 3084 // If an overflow handler is set, then we want to call it and then use its 3085 // result, if it returns. 3086 Builder.SetInsertPoint(overflowBB); 3087 3088 // Get the overflow handler. 3089 llvm::Type *Int8Ty = CGF.Int8Ty; 3090 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 3091 llvm::FunctionType *handlerTy = 3092 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 3093 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 3094 3095 // Sign extend the args to 64-bit, so that we can use the same handler for 3096 // all types of overflow. 3097 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 3098 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 3099 3100 // Call the handler with the two arguments, the operation, and the size of 3101 // the result. 3102 llvm::Value *handlerArgs[] = { 3103 lhs, 3104 rhs, 3105 Builder.getInt8(OpID), 3106 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 3107 }; 3108 llvm::Value *handlerResult = 3109 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 3110 3111 // Truncate the result back to the desired size. 3112 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 3113 Builder.CreateBr(continueBB); 3114 3115 Builder.SetInsertPoint(continueBB); 3116 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 3117 phi->addIncoming(result, initialBB); 3118 phi->addIncoming(handlerResult, overflowBB); 3119 3120 return phi; 3121 } 3122 3123 /// Emit pointer + index arithmetic. 3124 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 3125 const BinOpInfo &op, 3126 bool isSubtraction) { 3127 // Must have binary (not unary) expr here. Unary pointer 3128 // increment/decrement doesn't use this path. 3129 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3130 3131 Value *pointer = op.LHS; 3132 Expr *pointerOperand = expr->getLHS(); 3133 Value *index = op.RHS; 3134 Expr *indexOperand = expr->getRHS(); 3135 3136 // In a subtraction, the LHS is always the pointer. 3137 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 3138 std::swap(pointer, index); 3139 std::swap(pointerOperand, indexOperand); 3140 } 3141 3142 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 3143 3144 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 3145 auto &DL = CGF.CGM.getDataLayout(); 3146 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 3147 3148 // Some versions of glibc and gcc use idioms (particularly in their malloc 3149 // routines) that add a pointer-sized integer (known to be a pointer value) 3150 // to a null pointer in order to cast the value back to an integer or as 3151 // part of a pointer alignment algorithm. This is undefined behavior, but 3152 // we'd like to be able to compile programs that use it. 3153 // 3154 // Normally, we'd generate a GEP with a null-pointer base here in response 3155 // to that code, but it's also UB to dereference a pointer created that 3156 // way. Instead (as an acknowledged hack to tolerate the idiom) we will 3157 // generate a direct cast of the integer value to a pointer. 3158 // 3159 // The idiom (p = nullptr + N) is not met if any of the following are true: 3160 // 3161 // The operation is subtraction. 3162 // The index is not pointer-sized. 3163 // The pointer type is not byte-sized. 3164 // 3165 if (BinaryOperator::isNullPointerArithmeticExtension(CGF.getContext(), 3166 op.Opcode, 3167 expr->getLHS(), 3168 expr->getRHS())) 3169 return CGF.Builder.CreateIntToPtr(index, pointer->getType()); 3170 3171 if (width != DL.getTypeSizeInBits(PtrTy)) { 3172 // Zero-extend or sign-extend the pointer value according to 3173 // whether the index is signed or not. 3174 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 3175 "idx.ext"); 3176 } 3177 3178 // If this is subtraction, negate the index. 3179 if (isSubtraction) 3180 index = CGF.Builder.CreateNeg(index, "idx.neg"); 3181 3182 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 3183 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 3184 /*Accessed*/ false); 3185 3186 const PointerType *pointerType 3187 = pointerOperand->getType()->getAs<PointerType>(); 3188 if (!pointerType) { 3189 QualType objectType = pointerOperand->getType() 3190 ->castAs<ObjCObjectPointerType>() 3191 ->getPointeeType(); 3192 llvm::Value *objectSize 3193 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 3194 3195 index = CGF.Builder.CreateMul(index, objectSize); 3196 3197 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3198 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3199 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3200 } 3201 3202 QualType elementType = pointerType->getPointeeType(); 3203 if (const VariableArrayType *vla 3204 = CGF.getContext().getAsVariableArrayType(elementType)) { 3205 // The element count here is the total number of non-VLA elements. 3206 llvm::Value *numElements = CGF.getVLASize(vla).NumElts; 3207 3208 // Effectively, the multiply by the VLA size is part of the GEP. 3209 // GEP indexes are signed, and scaling an index isn't permitted to 3210 // signed-overflow, so we use the same semantics for our explicit 3211 // multiply. We suppress this if overflow is not undefined behavior. 3212 if (CGF.getLangOpts().isSignedOverflowDefined()) { 3213 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 3214 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3215 } else { 3216 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 3217 pointer = 3218 CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3219 op.E->getExprLoc(), "add.ptr"); 3220 } 3221 return pointer; 3222 } 3223 3224 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 3225 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 3226 // future proof. 3227 if (elementType->isVoidType() || elementType->isFunctionType()) { 3228 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 3229 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 3230 return CGF.Builder.CreateBitCast(result, pointer->getType()); 3231 } 3232 3233 if (CGF.getLangOpts().isSignedOverflowDefined()) 3234 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 3235 3236 return CGF.EmitCheckedInBoundsGEP(pointer, index, isSigned, isSubtraction, 3237 op.E->getExprLoc(), "add.ptr"); 3238 } 3239 3240 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 3241 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 3242 // the add operand respectively. This allows fmuladd to represent a*b-c, or 3243 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 3244 // efficient operations. 3245 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 3246 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3247 bool negMul, bool negAdd) { 3248 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 3249 3250 Value *MulOp0 = MulOp->getOperand(0); 3251 Value *MulOp1 = MulOp->getOperand(1); 3252 if (negMul) { 3253 MulOp0 = 3254 Builder.CreateFSub( 3255 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 3256 "neg"); 3257 } else if (negAdd) { 3258 Addend = 3259 Builder.CreateFSub( 3260 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 3261 "neg"); 3262 } 3263 3264 Value *FMulAdd = Builder.CreateCall( 3265 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 3266 {MulOp0, MulOp1, Addend}); 3267 MulOp->eraseFromParent(); 3268 3269 return FMulAdd; 3270 } 3271 3272 // Check whether it would be legal to emit an fmuladd intrinsic call to 3273 // represent op and if so, build the fmuladd. 3274 // 3275 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 3276 // Does NOT check the type of the operation - it's assumed that this function 3277 // will be called from contexts where it's known that the type is contractable. 3278 static Value* tryEmitFMulAdd(const BinOpInfo &op, 3279 const CodeGenFunction &CGF, CGBuilderTy &Builder, 3280 bool isSub=false) { 3281 3282 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 3283 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 3284 "Only fadd/fsub can be the root of an fmuladd."); 3285 3286 // Check whether this op is marked as fusable. 3287 if (!op.FPFeatures.allowFPContractWithinStatement()) 3288 return nullptr; 3289 3290 // We have a potentially fusable op. Look for a mul on one of the operands. 3291 // Also, make sure that the mul result isn't used directly. In that case, 3292 // there's no point creating a muladd operation. 3293 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 3294 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 3295 LHSBinOp->use_empty()) 3296 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 3297 } 3298 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 3299 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 3300 RHSBinOp->use_empty()) 3301 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 3302 } 3303 3304 return nullptr; 3305 } 3306 3307 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 3308 if (op.LHS->getType()->isPointerTy() || 3309 op.RHS->getType()->isPointerTy()) 3310 return emitPointerArithmetic(CGF, op, CodeGenFunction::NotSubtraction); 3311 3312 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3313 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3314 case LangOptions::SOB_Defined: 3315 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3316 case LangOptions::SOB_Undefined: 3317 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3318 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3319 LLVM_FALLTHROUGH; 3320 case LangOptions::SOB_Trapping: 3321 if (CanElideOverflowCheck(CGF.getContext(), op)) 3322 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 3323 return EmitOverflowCheckedBinOp(op); 3324 } 3325 } 3326 3327 if (op.Ty->isUnsignedIntegerType() && 3328 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3329 !CanElideOverflowCheck(CGF.getContext(), op)) 3330 return EmitOverflowCheckedBinOp(op); 3331 3332 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3333 // Try to form an fmuladd. 3334 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 3335 return FMulAdd; 3336 3337 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 3338 return propagateFMFlags(V, op); 3339 } 3340 3341 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 3342 } 3343 3344 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 3345 // The LHS is always a pointer if either side is. 3346 if (!op.LHS->getType()->isPointerTy()) { 3347 if (op.Ty->isSignedIntegerOrEnumerationType()) { 3348 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 3349 case LangOptions::SOB_Defined: 3350 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3351 case LangOptions::SOB_Undefined: 3352 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 3353 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3354 LLVM_FALLTHROUGH; 3355 case LangOptions::SOB_Trapping: 3356 if (CanElideOverflowCheck(CGF.getContext(), op)) 3357 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 3358 return EmitOverflowCheckedBinOp(op); 3359 } 3360 } 3361 3362 if (op.Ty->isUnsignedIntegerType() && 3363 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 3364 !CanElideOverflowCheck(CGF.getContext(), op)) 3365 return EmitOverflowCheckedBinOp(op); 3366 3367 if (op.LHS->getType()->isFPOrFPVectorTy()) { 3368 // Try to form an fmuladd. 3369 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 3370 return FMulAdd; 3371 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 3372 return propagateFMFlags(V, op); 3373 } 3374 3375 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 3376 } 3377 3378 // If the RHS is not a pointer, then we have normal pointer 3379 // arithmetic. 3380 if (!op.RHS->getType()->isPointerTy()) 3381 return emitPointerArithmetic(CGF, op, CodeGenFunction::IsSubtraction); 3382 3383 // Otherwise, this is a pointer subtraction. 3384 3385 // Do the raw subtraction part. 3386 llvm::Value *LHS 3387 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 3388 llvm::Value *RHS 3389 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 3390 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 3391 3392 // Okay, figure out the element size. 3393 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 3394 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 3395 3396 llvm::Value *divisor = nullptr; 3397 3398 // For a variable-length array, this is going to be non-constant. 3399 if (const VariableArrayType *vla 3400 = CGF.getContext().getAsVariableArrayType(elementType)) { 3401 auto VlaSize = CGF.getVLASize(vla); 3402 elementType = VlaSize.Type; 3403 divisor = VlaSize.NumElts; 3404 3405 // Scale the number of non-VLA elements by the non-VLA element size. 3406 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 3407 if (!eltSize.isOne()) 3408 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 3409 3410 // For everything elese, we can just compute it, safe in the 3411 // assumption that Sema won't let anything through that we can't 3412 // safely compute the size of. 3413 } else { 3414 CharUnits elementSize; 3415 // Handle GCC extension for pointer arithmetic on void* and 3416 // function pointer types. 3417 if (elementType->isVoidType() || elementType->isFunctionType()) 3418 elementSize = CharUnits::One(); 3419 else 3420 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 3421 3422 // Don't even emit the divide for element size of 1. 3423 if (elementSize.isOne()) 3424 return diffInChars; 3425 3426 divisor = CGF.CGM.getSize(elementSize); 3427 } 3428 3429 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 3430 // pointer difference in C is only defined in the case where both operands 3431 // are pointing to elements of an array. 3432 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 3433 } 3434 3435 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 3436 llvm::IntegerType *Ty; 3437 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 3438 Ty = cast<llvm::IntegerType>(VT->getElementType()); 3439 else 3440 Ty = cast<llvm::IntegerType>(LHS->getType()); 3441 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 3442 } 3443 3444 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 3445 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3446 // RHS to the same size as the LHS. 3447 Value *RHS = Ops.RHS; 3448 if (Ops.LHS->getType() != RHS->getType()) 3449 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3450 3451 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 3452 Ops.Ty->hasSignedIntegerRepresentation() && 3453 !CGF.getLangOpts().isSignedOverflowDefined(); 3454 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 3455 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3456 if (CGF.getLangOpts().OpenCL) 3457 RHS = 3458 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 3459 else if ((SanitizeBase || SanitizeExponent) && 3460 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3461 CodeGenFunction::SanitizerScope SanScope(&CGF); 3462 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 3463 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 3464 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 3465 3466 if (SanitizeExponent) { 3467 Checks.push_back( 3468 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 3469 } 3470 3471 if (SanitizeBase) { 3472 // Check whether we are shifting any non-zero bits off the top of the 3473 // integer. We only emit this check if exponent is valid - otherwise 3474 // instructions below will have undefined behavior themselves. 3475 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 3476 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 3477 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 3478 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 3479 llvm::Value *PromotedWidthMinusOne = 3480 (RHS == Ops.RHS) ? WidthMinusOne 3481 : GetWidthMinusOneValue(Ops.LHS, RHS); 3482 CGF.EmitBlock(CheckShiftBase); 3483 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 3484 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 3485 /*NUW*/ true, /*NSW*/ true), 3486 "shl.check"); 3487 if (CGF.getLangOpts().CPlusPlus) { 3488 // In C99, we are not permitted to shift a 1 bit into the sign bit. 3489 // Under C++11's rules, shifting a 1 bit into the sign bit is 3490 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 3491 // define signed left shifts, so we use the C99 and C++11 rules there). 3492 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 3493 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 3494 } 3495 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 3496 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 3497 CGF.EmitBlock(Cont); 3498 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 3499 BaseCheck->addIncoming(Builder.getTrue(), Orig); 3500 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 3501 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 3502 } 3503 3504 assert(!Checks.empty()); 3505 EmitBinOpCheck(Checks, Ops); 3506 } 3507 3508 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 3509 } 3510 3511 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 3512 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 3513 // RHS to the same size as the LHS. 3514 Value *RHS = Ops.RHS; 3515 if (Ops.LHS->getType() != RHS->getType()) 3516 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 3517 3518 // OpenCL 6.3j: shift values are effectively % word size of LHS. 3519 if (CGF.getLangOpts().OpenCL) 3520 RHS = 3521 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 3522 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 3523 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3524 CodeGenFunction::SanitizerScope SanScope(&CGF); 3525 llvm::Value *Valid = 3526 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3527 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3528 } 3529 3530 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3531 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3532 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3533 } 3534 3535 enum IntrinsicType { VCMPEQ, VCMPGT }; 3536 // return corresponding comparison intrinsic for given vector type 3537 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3538 BuiltinType::Kind ElemKind) { 3539 switch (ElemKind) { 3540 default: llvm_unreachable("unexpected element type"); 3541 case BuiltinType::Char_U: 3542 case BuiltinType::UChar: 3543 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3544 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3545 case BuiltinType::Char_S: 3546 case BuiltinType::SChar: 3547 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3548 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3549 case BuiltinType::UShort: 3550 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3551 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3552 case BuiltinType::Short: 3553 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3554 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3555 case BuiltinType::UInt: 3556 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3557 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3558 case BuiltinType::Int: 3559 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3560 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3561 case BuiltinType::ULong: 3562 case BuiltinType::ULongLong: 3563 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3564 llvm::Intrinsic::ppc_altivec_vcmpgtud_p; 3565 case BuiltinType::Long: 3566 case BuiltinType::LongLong: 3567 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequd_p : 3568 llvm::Intrinsic::ppc_altivec_vcmpgtsd_p; 3569 case BuiltinType::Float: 3570 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3571 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3572 case BuiltinType::Double: 3573 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_vsx_xvcmpeqdp_p : 3574 llvm::Intrinsic::ppc_vsx_xvcmpgtdp_p; 3575 } 3576 } 3577 3578 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3579 llvm::CmpInst::Predicate UICmpOpc, 3580 llvm::CmpInst::Predicate SICmpOpc, 3581 llvm::CmpInst::Predicate FCmpOpc) { 3582 TestAndClearIgnoreResultAssign(); 3583 Value *Result; 3584 QualType LHSTy = E->getLHS()->getType(); 3585 QualType RHSTy = E->getRHS()->getType(); 3586 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3587 assert(E->getOpcode() == BO_EQ || 3588 E->getOpcode() == BO_NE); 3589 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3590 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3591 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3592 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3593 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3594 Value *LHS = Visit(E->getLHS()); 3595 Value *RHS = Visit(E->getRHS()); 3596 3597 // If AltiVec, the comparison results in a numeric type, so we use 3598 // intrinsics comparing vectors and giving 0 or 1 as a result 3599 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3600 // constants for mapping CR6 register bits to predicate result 3601 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3602 3603 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3604 3605 // in several cases vector arguments order will be reversed 3606 Value *FirstVecArg = LHS, 3607 *SecondVecArg = RHS; 3608 3609 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3610 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3611 BuiltinType::Kind ElementKind = BTy->getKind(); 3612 3613 switch(E->getOpcode()) { 3614 default: llvm_unreachable("is not a comparison operation"); 3615 case BO_EQ: 3616 CR6 = CR6_LT; 3617 ID = GetIntrinsic(VCMPEQ, ElementKind); 3618 break; 3619 case BO_NE: 3620 CR6 = CR6_EQ; 3621 ID = GetIntrinsic(VCMPEQ, ElementKind); 3622 break; 3623 case BO_LT: 3624 CR6 = CR6_LT; 3625 ID = GetIntrinsic(VCMPGT, ElementKind); 3626 std::swap(FirstVecArg, SecondVecArg); 3627 break; 3628 case BO_GT: 3629 CR6 = CR6_LT; 3630 ID = GetIntrinsic(VCMPGT, ElementKind); 3631 break; 3632 case BO_LE: 3633 if (ElementKind == BuiltinType::Float) { 3634 CR6 = CR6_LT; 3635 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3636 std::swap(FirstVecArg, SecondVecArg); 3637 } 3638 else { 3639 CR6 = CR6_EQ; 3640 ID = GetIntrinsic(VCMPGT, ElementKind); 3641 } 3642 break; 3643 case BO_GE: 3644 if (ElementKind == BuiltinType::Float) { 3645 CR6 = CR6_LT; 3646 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3647 } 3648 else { 3649 CR6 = CR6_EQ; 3650 ID = GetIntrinsic(VCMPGT, ElementKind); 3651 std::swap(FirstVecArg, SecondVecArg); 3652 } 3653 break; 3654 } 3655 3656 Value *CR6Param = Builder.getInt32(CR6); 3657 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3658 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3659 3660 // The result type of intrinsic may not be same as E->getType(). 3661 // If E->getType() is not BoolTy, EmitScalarConversion will do the 3662 // conversion work. If E->getType() is BoolTy, EmitScalarConversion will 3663 // do nothing, if ResultTy is not i1 at the same time, it will cause 3664 // crash later. 3665 llvm::IntegerType *ResultTy = cast<llvm::IntegerType>(Result->getType()); 3666 if (ResultTy->getBitWidth() > 1 && 3667 E->getType() == CGF.getContext().BoolTy) 3668 Result = Builder.CreateTrunc(Result, Builder.getInt1Ty()); 3669 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3670 E->getExprLoc()); 3671 } 3672 3673 if (LHS->getType()->isFPOrFPVectorTy()) { 3674 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3675 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3676 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3677 } else { 3678 // Unsigned integers and pointers. 3679 3680 if (CGF.CGM.getCodeGenOpts().StrictVTablePointers && 3681 !isa<llvm::ConstantPointerNull>(LHS) && 3682 !isa<llvm::ConstantPointerNull>(RHS)) { 3683 3684 // Dynamic information is required to be stripped for comparisons, 3685 // because it could leak the dynamic information. Based on comparisons 3686 // of pointers to dynamic objects, the optimizer can replace one pointer 3687 // with another, which might be incorrect in presence of invariant 3688 // groups. Comparison with null is safe because null does not carry any 3689 // dynamic information. 3690 if (LHSTy.mayBeDynamicClass()) 3691 LHS = Builder.CreateStripInvariantGroup(LHS); 3692 if (RHSTy.mayBeDynamicClass()) 3693 RHS = Builder.CreateStripInvariantGroup(RHS); 3694 } 3695 3696 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3697 } 3698 3699 // If this is a vector comparison, sign extend the result to the appropriate 3700 // vector integer type and return it (don't convert to bool). 3701 if (LHSTy->isVectorType()) 3702 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3703 3704 } else { 3705 // Complex Comparison: can only be an equality comparison. 3706 CodeGenFunction::ComplexPairTy LHS, RHS; 3707 QualType CETy; 3708 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3709 LHS = CGF.EmitComplexExpr(E->getLHS()); 3710 CETy = CTy->getElementType(); 3711 } else { 3712 LHS.first = Visit(E->getLHS()); 3713 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3714 CETy = LHSTy; 3715 } 3716 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3717 RHS = CGF.EmitComplexExpr(E->getRHS()); 3718 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3719 CTy->getElementType()) && 3720 "The element types must always match."); 3721 (void)CTy; 3722 } else { 3723 RHS.first = Visit(E->getRHS()); 3724 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3725 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3726 "The element types must always match."); 3727 } 3728 3729 Value *ResultR, *ResultI; 3730 if (CETy->isRealFloatingType()) { 3731 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3732 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3733 } else { 3734 // Complex comparisons can only be equality comparisons. As such, signed 3735 // and unsigned opcodes are the same. 3736 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3737 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3738 } 3739 3740 if (E->getOpcode() == BO_EQ) { 3741 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3742 } else { 3743 assert(E->getOpcode() == BO_NE && 3744 "Complex comparison other than == or != ?"); 3745 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3746 } 3747 } 3748 3749 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3750 E->getExprLoc()); 3751 } 3752 3753 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3754 bool Ignore = TestAndClearIgnoreResultAssign(); 3755 3756 Value *RHS; 3757 LValue LHS; 3758 3759 switch (E->getLHS()->getType().getObjCLifetime()) { 3760 case Qualifiers::OCL_Strong: 3761 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3762 break; 3763 3764 case Qualifiers::OCL_Autoreleasing: 3765 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3766 break; 3767 3768 case Qualifiers::OCL_ExplicitNone: 3769 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3770 break; 3771 3772 case Qualifiers::OCL_Weak: 3773 RHS = Visit(E->getRHS()); 3774 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3775 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3776 break; 3777 3778 case Qualifiers::OCL_None: 3779 // __block variables need to have the rhs evaluated first, plus 3780 // this should improve codegen just a little. 3781 RHS = Visit(E->getRHS()); 3782 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3783 3784 // Store the value into the LHS. Bit-fields are handled specially 3785 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3786 // 'An assignment expression has the value of the left operand after 3787 // the assignment...'. 3788 if (LHS.isBitField()) { 3789 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3790 } else { 3791 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3792 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3793 } 3794 } 3795 3796 // If the result is clearly ignored, return now. 3797 if (Ignore) 3798 return nullptr; 3799 3800 // The result of an assignment in C is the assigned r-value. 3801 if (!CGF.getLangOpts().CPlusPlus) 3802 return RHS; 3803 3804 // If the lvalue is non-volatile, return the computed value of the assignment. 3805 if (!LHS.isVolatileQualified()) 3806 return RHS; 3807 3808 // Otherwise, reload the value. 3809 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3810 } 3811 3812 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3813 // Perform vector logical and on comparisons with zero vectors. 3814 if (E->getType()->isVectorType()) { 3815 CGF.incrementProfileCounter(E); 3816 3817 Value *LHS = Visit(E->getLHS()); 3818 Value *RHS = Visit(E->getRHS()); 3819 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3820 if (LHS->getType()->isFPOrFPVectorTy()) { 3821 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3822 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3823 } else { 3824 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3825 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3826 } 3827 Value *And = Builder.CreateAnd(LHS, RHS); 3828 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3829 } 3830 3831 llvm::Type *ResTy = ConvertType(E->getType()); 3832 3833 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3834 // If we have 1 && X, just emit X without inserting the control flow. 3835 bool LHSCondVal; 3836 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3837 if (LHSCondVal) { // If we have 1 && X, just emit X. 3838 CGF.incrementProfileCounter(E); 3839 3840 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3841 // ZExt result to int or bool. 3842 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3843 } 3844 3845 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3846 if (!CGF.ContainsLabel(E->getRHS())) 3847 return llvm::Constant::getNullValue(ResTy); 3848 } 3849 3850 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3851 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3852 3853 CodeGenFunction::ConditionalEvaluation eval(CGF); 3854 3855 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3856 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3857 CGF.getProfileCount(E->getRHS())); 3858 3859 // Any edges into the ContBlock are now from an (indeterminate number of) 3860 // edges from this first condition. All of these values will be false. Start 3861 // setting up the PHI node in the Cont Block for this. 3862 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3863 "", ContBlock); 3864 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3865 PI != PE; ++PI) 3866 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3867 3868 eval.begin(CGF); 3869 CGF.EmitBlock(RHSBlock); 3870 CGF.incrementProfileCounter(E); 3871 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3872 eval.end(CGF); 3873 3874 // Reaquire the RHS block, as there may be subblocks inserted. 3875 RHSBlock = Builder.GetInsertBlock(); 3876 3877 // Emit an unconditional branch from this block to ContBlock. 3878 { 3879 // There is no need to emit line number for unconditional branch. 3880 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3881 CGF.EmitBlock(ContBlock); 3882 } 3883 // Insert an entry into the phi node for the edge with the value of RHSCond. 3884 PN->addIncoming(RHSCond, RHSBlock); 3885 3886 // Artificial location to preserve the scope information 3887 { 3888 auto NL = ApplyDebugLocation::CreateArtificial(CGF); 3889 PN->setDebugLoc(Builder.getCurrentDebugLocation()); 3890 } 3891 3892 // ZExt result to int. 3893 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3894 } 3895 3896 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3897 // Perform vector logical or on comparisons with zero vectors. 3898 if (E->getType()->isVectorType()) { 3899 CGF.incrementProfileCounter(E); 3900 3901 Value *LHS = Visit(E->getLHS()); 3902 Value *RHS = Visit(E->getRHS()); 3903 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3904 if (LHS->getType()->isFPOrFPVectorTy()) { 3905 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3906 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3907 } else { 3908 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3909 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3910 } 3911 Value *Or = Builder.CreateOr(LHS, RHS); 3912 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3913 } 3914 3915 llvm::Type *ResTy = ConvertType(E->getType()); 3916 3917 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3918 // If we have 0 || X, just emit X without inserting the control flow. 3919 bool LHSCondVal; 3920 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3921 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3922 CGF.incrementProfileCounter(E); 3923 3924 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3925 // ZExt result to int or bool. 3926 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3927 } 3928 3929 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3930 if (!CGF.ContainsLabel(E->getRHS())) 3931 return llvm::ConstantInt::get(ResTy, 1); 3932 } 3933 3934 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3935 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3936 3937 CodeGenFunction::ConditionalEvaluation eval(CGF); 3938 3939 // Branch on the LHS first. If it is true, go to the success (cont) block. 3940 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3941 CGF.getCurrentProfileCount() - 3942 CGF.getProfileCount(E->getRHS())); 3943 3944 // Any edges into the ContBlock are now from an (indeterminate number of) 3945 // edges from this first condition. All of these values will be true. Start 3946 // setting up the PHI node in the Cont Block for this. 3947 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3948 "", ContBlock); 3949 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3950 PI != PE; ++PI) 3951 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3952 3953 eval.begin(CGF); 3954 3955 // Emit the RHS condition as a bool value. 3956 CGF.EmitBlock(RHSBlock); 3957 CGF.incrementProfileCounter(E); 3958 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3959 3960 eval.end(CGF); 3961 3962 // Reaquire the RHS block, as there may be subblocks inserted. 3963 RHSBlock = Builder.GetInsertBlock(); 3964 3965 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3966 // into the phi node for the edge with the value of RHSCond. 3967 CGF.EmitBlock(ContBlock); 3968 PN->addIncoming(RHSCond, RHSBlock); 3969 3970 // ZExt result to int. 3971 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3972 } 3973 3974 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3975 CGF.EmitIgnoredExpr(E->getLHS()); 3976 CGF.EnsureInsertPoint(); 3977 return Visit(E->getRHS()); 3978 } 3979 3980 //===----------------------------------------------------------------------===// 3981 // Other Operators 3982 //===----------------------------------------------------------------------===// 3983 3984 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3985 /// expression is cheap enough and side-effect-free enough to evaluate 3986 /// unconditionally instead of conditionally. This is used to convert control 3987 /// flow into selects in some cases. 3988 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3989 CodeGenFunction &CGF) { 3990 // Anything that is an integer or floating point constant is fine. 3991 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3992 3993 // Even non-volatile automatic variables can't be evaluated unconditionally. 3994 // Referencing a thread_local may cause non-trivial initialization work to 3995 // occur. If we're inside a lambda and one of the variables is from the scope 3996 // outside the lambda, that function may have returned already. Reading its 3997 // locals is a bad idea. Also, these reads may introduce races there didn't 3998 // exist in the source-level program. 3999 } 4000 4001 4002 Value *ScalarExprEmitter:: 4003 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 4004 TestAndClearIgnoreResultAssign(); 4005 4006 // Bind the common expression if necessary. 4007 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 4008 4009 Expr *condExpr = E->getCond(); 4010 Expr *lhsExpr = E->getTrueExpr(); 4011 Expr *rhsExpr = E->getFalseExpr(); 4012 4013 // If the condition constant folds and can be elided, try to avoid emitting 4014 // the condition and the dead arm. 4015 bool CondExprBool; 4016 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 4017 Expr *live = lhsExpr, *dead = rhsExpr; 4018 if (!CondExprBool) std::swap(live, dead); 4019 4020 // If the dead side doesn't have labels we need, just emit the Live part. 4021 if (!CGF.ContainsLabel(dead)) { 4022 if (CondExprBool) 4023 CGF.incrementProfileCounter(E); 4024 Value *Result = Visit(live); 4025 4026 // If the live part is a throw expression, it acts like it has a void 4027 // type, so evaluating it returns a null Value*. However, a conditional 4028 // with non-void type must return a non-null Value*. 4029 if (!Result && !E->getType()->isVoidType()) 4030 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 4031 4032 return Result; 4033 } 4034 } 4035 4036 // OpenCL: If the condition is a vector, we can treat this condition like 4037 // the select function. 4038 if (CGF.getLangOpts().OpenCL 4039 && condExpr->getType()->isVectorType()) { 4040 CGF.incrementProfileCounter(E); 4041 4042 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 4043 llvm::Value *LHS = Visit(lhsExpr); 4044 llvm::Value *RHS = Visit(rhsExpr); 4045 4046 llvm::Type *condType = ConvertType(condExpr->getType()); 4047 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 4048 4049 unsigned numElem = vecTy->getNumElements(); 4050 llvm::Type *elemType = vecTy->getElementType(); 4051 4052 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 4053 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 4054 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 4055 llvm::VectorType::get(elemType, 4056 numElem), 4057 "sext"); 4058 llvm::Value *tmp2 = Builder.CreateNot(tmp); 4059 4060 // Cast float to int to perform ANDs if necessary. 4061 llvm::Value *RHSTmp = RHS; 4062 llvm::Value *LHSTmp = LHS; 4063 bool wasCast = false; 4064 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 4065 if (rhsVTy->getElementType()->isFloatingPointTy()) { 4066 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 4067 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 4068 wasCast = true; 4069 } 4070 4071 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 4072 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 4073 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 4074 if (wasCast) 4075 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 4076 4077 return tmp5; 4078 } 4079 4080 // If this is a really simple expression (like x ? 4 : 5), emit this as a 4081 // select instead of as control flow. We can only do this if it is cheap and 4082 // safe to evaluate the LHS and RHS unconditionally. 4083 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 4084 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 4085 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 4086 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 4087 4088 CGF.incrementProfileCounter(E, StepV); 4089 4090 llvm::Value *LHS = Visit(lhsExpr); 4091 llvm::Value *RHS = Visit(rhsExpr); 4092 if (!LHS) { 4093 // If the conditional has void type, make sure we return a null Value*. 4094 assert(!RHS && "LHS and RHS types must match"); 4095 return nullptr; 4096 } 4097 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 4098 } 4099 4100 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 4101 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 4102 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 4103 4104 CodeGenFunction::ConditionalEvaluation eval(CGF); 4105 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 4106 CGF.getProfileCount(lhsExpr)); 4107 4108 CGF.EmitBlock(LHSBlock); 4109 CGF.incrementProfileCounter(E); 4110 eval.begin(CGF); 4111 Value *LHS = Visit(lhsExpr); 4112 eval.end(CGF); 4113 4114 LHSBlock = Builder.GetInsertBlock(); 4115 Builder.CreateBr(ContBlock); 4116 4117 CGF.EmitBlock(RHSBlock); 4118 eval.begin(CGF); 4119 Value *RHS = Visit(rhsExpr); 4120 eval.end(CGF); 4121 4122 RHSBlock = Builder.GetInsertBlock(); 4123 CGF.EmitBlock(ContBlock); 4124 4125 // If the LHS or RHS is a throw expression, it will be legitimately null. 4126 if (!LHS) 4127 return RHS; 4128 if (!RHS) 4129 return LHS; 4130 4131 // Create a PHI node for the real part. 4132 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 4133 PN->addIncoming(LHS, LHSBlock); 4134 PN->addIncoming(RHS, RHSBlock); 4135 return PN; 4136 } 4137 4138 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 4139 return Visit(E->getChosenSubExpr()); 4140 } 4141 4142 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 4143 QualType Ty = VE->getType(); 4144 4145 if (Ty->isVariablyModifiedType()) 4146 CGF.EmitVariablyModifiedType(Ty); 4147 4148 Address ArgValue = Address::invalid(); 4149 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 4150 4151 llvm::Type *ArgTy = ConvertType(VE->getType()); 4152 4153 // If EmitVAArg fails, emit an error. 4154 if (!ArgPtr.isValid()) { 4155 CGF.ErrorUnsupported(VE, "va_arg expression"); 4156 return llvm::UndefValue::get(ArgTy); 4157 } 4158 4159 // FIXME Volatility. 4160 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 4161 4162 // If EmitVAArg promoted the type, we must truncate it. 4163 if (ArgTy != Val->getType()) { 4164 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 4165 Val = Builder.CreateIntToPtr(Val, ArgTy); 4166 else 4167 Val = Builder.CreateTrunc(Val, ArgTy); 4168 } 4169 4170 return Val; 4171 } 4172 4173 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 4174 return CGF.EmitBlockLiteral(block); 4175 } 4176 4177 // Convert a vec3 to vec4, or vice versa. 4178 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 4179 Value *Src, unsigned NumElementsDst) { 4180 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 4181 SmallVector<llvm::Constant*, 4> Args; 4182 Args.push_back(Builder.getInt32(0)); 4183 Args.push_back(Builder.getInt32(1)); 4184 Args.push_back(Builder.getInt32(2)); 4185 if (NumElementsDst == 4) 4186 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 4187 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 4188 return Builder.CreateShuffleVector(Src, UnV, Mask); 4189 } 4190 4191 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 4192 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 4193 // but could be scalar or vectors of different lengths, and either can be 4194 // pointer. 4195 // There are 4 cases: 4196 // 1. non-pointer -> non-pointer : needs 1 bitcast 4197 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 4198 // 3. pointer -> non-pointer 4199 // a) pointer -> intptr_t : needs 1 ptrtoint 4200 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 4201 // 4. non-pointer -> pointer 4202 // a) intptr_t -> pointer : needs 1 inttoptr 4203 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 4204 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 4205 // allow casting directly between pointer types and non-integer non-pointer 4206 // types. 4207 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 4208 const llvm::DataLayout &DL, 4209 Value *Src, llvm::Type *DstTy, 4210 StringRef Name = "") { 4211 auto SrcTy = Src->getType(); 4212 4213 // Case 1. 4214 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 4215 return Builder.CreateBitCast(Src, DstTy, Name); 4216 4217 // Case 2. 4218 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 4219 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 4220 4221 // Case 3. 4222 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 4223 // Case 3b. 4224 if (!DstTy->isIntegerTy()) 4225 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 4226 // Cases 3a and 3b. 4227 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 4228 } 4229 4230 // Case 4b. 4231 if (!SrcTy->isIntegerTy()) 4232 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 4233 // Cases 4a and 4b. 4234 return Builder.CreateIntToPtr(Src, DstTy, Name); 4235 } 4236 4237 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 4238 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 4239 llvm::Type *DstTy = ConvertType(E->getType()); 4240 4241 llvm::Type *SrcTy = Src->getType(); 4242 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 4243 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 4244 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 4245 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 4246 4247 // Going from vec3 to non-vec3 is a special case and requires a shuffle 4248 // vector to get a vec4, then a bitcast if the target type is different. 4249 if (NumElementsSrc == 3 && NumElementsDst != 3) { 4250 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 4251 4252 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4253 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4254 DstTy); 4255 } 4256 4257 Src->setName("astype"); 4258 return Src; 4259 } 4260 4261 // Going from non-vec3 to vec3 is a special case and requires a bitcast 4262 // to vec4 if the original type is not vec4, then a shuffle vector to 4263 // get a vec3. 4264 if (NumElementsSrc != 3 && NumElementsDst == 3) { 4265 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 4266 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 4267 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 4268 Vec4Ty); 4269 } 4270 4271 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 4272 Src->setName("astype"); 4273 return Src; 4274 } 4275 4276 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 4277 Src, DstTy, "astype"); 4278 } 4279 4280 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 4281 return CGF.EmitAtomicExpr(E).getScalarVal(); 4282 } 4283 4284 //===----------------------------------------------------------------------===// 4285 // Entry Point into this File 4286 //===----------------------------------------------------------------------===// 4287 4288 /// Emit the computation of the specified expression of scalar type, ignoring 4289 /// the result. 4290 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 4291 assert(E && hasScalarEvaluationKind(E->getType()) && 4292 "Invalid scalar expression to emit"); 4293 4294 return ScalarExprEmitter(*this, IgnoreResultAssign) 4295 .Visit(const_cast<Expr *>(E)); 4296 } 4297 4298 /// Emit a conversion from the specified type to the specified destination type, 4299 /// both of which are LLVM scalar types. 4300 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 4301 QualType DstTy, 4302 SourceLocation Loc) { 4303 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 4304 "Invalid scalar expression to emit"); 4305 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 4306 } 4307 4308 /// Emit a conversion from the specified complex type to the specified 4309 /// destination type, where the destination type is an LLVM scalar type. 4310 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 4311 QualType SrcTy, 4312 QualType DstTy, 4313 SourceLocation Loc) { 4314 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 4315 "Invalid complex -> scalar conversion"); 4316 return ScalarExprEmitter(*this) 4317 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 4318 } 4319 4320 4321 llvm::Value *CodeGenFunction:: 4322 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 4323 bool isInc, bool isPre) { 4324 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 4325 } 4326 4327 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 4328 // object->isa or (*object).isa 4329 // Generate code as for: *(Class*)object 4330 4331 Expr *BaseExpr = E->getBase(); 4332 Address Addr = Address::invalid(); 4333 if (BaseExpr->isRValue()) { 4334 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 4335 } else { 4336 Addr = EmitLValue(BaseExpr).getAddress(); 4337 } 4338 4339 // Cast the address to Class*. 4340 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 4341 return MakeAddrLValue(Addr, E->getType()); 4342 } 4343 4344 4345 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 4346 const CompoundAssignOperator *E) { 4347 ScalarExprEmitter Scalar(*this); 4348 Value *Result = nullptr; 4349 switch (E->getOpcode()) { 4350 #define COMPOUND_OP(Op) \ 4351 case BO_##Op##Assign: \ 4352 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 4353 Result) 4354 COMPOUND_OP(Mul); 4355 COMPOUND_OP(Div); 4356 COMPOUND_OP(Rem); 4357 COMPOUND_OP(Add); 4358 COMPOUND_OP(Sub); 4359 COMPOUND_OP(Shl); 4360 COMPOUND_OP(Shr); 4361 COMPOUND_OP(And); 4362 COMPOUND_OP(Xor); 4363 COMPOUND_OP(Or); 4364 #undef COMPOUND_OP 4365 4366 case BO_PtrMemD: 4367 case BO_PtrMemI: 4368 case BO_Mul: 4369 case BO_Div: 4370 case BO_Rem: 4371 case BO_Add: 4372 case BO_Sub: 4373 case BO_Shl: 4374 case BO_Shr: 4375 case BO_LT: 4376 case BO_GT: 4377 case BO_LE: 4378 case BO_GE: 4379 case BO_EQ: 4380 case BO_NE: 4381 case BO_Cmp: 4382 case BO_And: 4383 case BO_Xor: 4384 case BO_Or: 4385 case BO_LAnd: 4386 case BO_LOr: 4387 case BO_Assign: 4388 case BO_Comma: 4389 llvm_unreachable("Not valid compound assignment operators"); 4390 } 4391 4392 llvm_unreachable("Unhandled compound assignment operator"); 4393 } 4394 4395 Value *CodeGenFunction::EmitCheckedInBoundsGEP(Value *Ptr, 4396 ArrayRef<Value *> IdxList, 4397 bool SignedIndices, 4398 bool IsSubtraction, 4399 SourceLocation Loc, 4400 const Twine &Name) { 4401 Value *GEPVal = Builder.CreateInBoundsGEP(Ptr, IdxList, Name); 4402 4403 // If the pointer overflow sanitizer isn't enabled, do nothing. 4404 if (!SanOpts.has(SanitizerKind::PointerOverflow)) 4405 return GEPVal; 4406 4407 // If the GEP has already been reduced to a constant, leave it be. 4408 if (isa<llvm::Constant>(GEPVal)) 4409 return GEPVal; 4410 4411 // Only check for overflows in the default address space. 4412 if (GEPVal->getType()->getPointerAddressSpace()) 4413 return GEPVal; 4414 4415 auto *GEP = cast<llvm::GEPOperator>(GEPVal); 4416 assert(GEP->isInBounds() && "Expected inbounds GEP"); 4417 4418 SanitizerScope SanScope(this); 4419 auto &VMContext = getLLVMContext(); 4420 const auto &DL = CGM.getDataLayout(); 4421 auto *IntPtrTy = DL.getIntPtrType(GEP->getPointerOperandType()); 4422 4423 // Grab references to the signed add/mul overflow intrinsics for intptr_t. 4424 auto *Zero = llvm::ConstantInt::getNullValue(IntPtrTy); 4425 auto *SAddIntrinsic = 4426 CGM.getIntrinsic(llvm::Intrinsic::sadd_with_overflow, IntPtrTy); 4427 auto *SMulIntrinsic = 4428 CGM.getIntrinsic(llvm::Intrinsic::smul_with_overflow, IntPtrTy); 4429 4430 // The total (signed) byte offset for the GEP. 4431 llvm::Value *TotalOffset = nullptr; 4432 // The offset overflow flag - true if the total offset overflows. 4433 llvm::Value *OffsetOverflows = Builder.getFalse(); 4434 4435 /// Return the result of the given binary operation. 4436 auto eval = [&](BinaryOperator::Opcode Opcode, llvm::Value *LHS, 4437 llvm::Value *RHS) -> llvm::Value * { 4438 assert((Opcode == BO_Add || Opcode == BO_Mul) && "Can't eval binop"); 4439 4440 // If the operands are constants, return a constant result. 4441 if (auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS)) { 4442 if (auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS)) { 4443 llvm::APInt N; 4444 bool HasOverflow = mayHaveIntegerOverflow(LHSCI, RHSCI, Opcode, 4445 /*Signed=*/true, N); 4446 if (HasOverflow) 4447 OffsetOverflows = Builder.getTrue(); 4448 return llvm::ConstantInt::get(VMContext, N); 4449 } 4450 } 4451 4452 // Otherwise, compute the result with checked arithmetic. 4453 auto *ResultAndOverflow = Builder.CreateCall( 4454 (Opcode == BO_Add) ? SAddIntrinsic : SMulIntrinsic, {LHS, RHS}); 4455 OffsetOverflows = Builder.CreateOr( 4456 Builder.CreateExtractValue(ResultAndOverflow, 1), OffsetOverflows); 4457 return Builder.CreateExtractValue(ResultAndOverflow, 0); 4458 }; 4459 4460 // Determine the total byte offset by looking at each GEP operand. 4461 for (auto GTI = llvm::gep_type_begin(GEP), GTE = llvm::gep_type_end(GEP); 4462 GTI != GTE; ++GTI) { 4463 llvm::Value *LocalOffset; 4464 auto *Index = GTI.getOperand(); 4465 // Compute the local offset contributed by this indexing step: 4466 if (auto *STy = GTI.getStructTypeOrNull()) { 4467 // For struct indexing, the local offset is the byte position of the 4468 // specified field. 4469 unsigned FieldNo = cast<llvm::ConstantInt>(Index)->getZExtValue(); 4470 LocalOffset = llvm::ConstantInt::get( 4471 IntPtrTy, DL.getStructLayout(STy)->getElementOffset(FieldNo)); 4472 } else { 4473 // Otherwise this is array-like indexing. The local offset is the index 4474 // multiplied by the element size. 4475 auto *ElementSize = llvm::ConstantInt::get( 4476 IntPtrTy, DL.getTypeAllocSize(GTI.getIndexedType())); 4477 auto *IndexS = Builder.CreateIntCast(Index, IntPtrTy, /*isSigned=*/true); 4478 LocalOffset = eval(BO_Mul, ElementSize, IndexS); 4479 } 4480 4481 // If this is the first offset, set it as the total offset. Otherwise, add 4482 // the local offset into the running total. 4483 if (!TotalOffset || TotalOffset == Zero) 4484 TotalOffset = LocalOffset; 4485 else 4486 TotalOffset = eval(BO_Add, TotalOffset, LocalOffset); 4487 } 4488 4489 // Common case: if the total offset is zero, don't emit a check. 4490 if (TotalOffset == Zero) 4491 return GEPVal; 4492 4493 // Now that we've computed the total offset, add it to the base pointer (with 4494 // wrapping semantics). 4495 auto *IntPtr = Builder.CreatePtrToInt(GEP->getPointerOperand(), IntPtrTy); 4496 auto *ComputedGEP = Builder.CreateAdd(IntPtr, TotalOffset); 4497 4498 // The GEP is valid if: 4499 // 1) The total offset doesn't overflow, and 4500 // 2) The sign of the difference between the computed address and the base 4501 // pointer matches the sign of the total offset. 4502 llvm::Value *ValidGEP; 4503 auto *NoOffsetOverflow = Builder.CreateNot(OffsetOverflows); 4504 if (SignedIndices) { 4505 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4506 auto *PosOrZeroOffset = Builder.CreateICmpSGE(TotalOffset, Zero); 4507 llvm::Value *NegValid = Builder.CreateICmpULT(ComputedGEP, IntPtr); 4508 ValidGEP = Builder.CreateAnd( 4509 Builder.CreateSelect(PosOrZeroOffset, PosOrZeroValid, NegValid), 4510 NoOffsetOverflow); 4511 } else if (!SignedIndices && !IsSubtraction) { 4512 auto *PosOrZeroValid = Builder.CreateICmpUGE(ComputedGEP, IntPtr); 4513 ValidGEP = Builder.CreateAnd(PosOrZeroValid, NoOffsetOverflow); 4514 } else { 4515 auto *NegOrZeroValid = Builder.CreateICmpULE(ComputedGEP, IntPtr); 4516 ValidGEP = Builder.CreateAnd(NegOrZeroValid, NoOffsetOverflow); 4517 } 4518 4519 llvm::Constant *StaticArgs[] = {EmitCheckSourceLocation(Loc)}; 4520 // Pass the computed GEP to the runtime to avoid emitting poisoned arguments. 4521 llvm::Value *DynamicArgs[] = {IntPtr, ComputedGEP}; 4522 EmitCheck(std::make_pair(ValidGEP, SanitizerKind::PointerOverflow), 4523 SanitizerHandler::PointerOverflow, StaticArgs, DynamicArgs); 4524 4525 return GEPVal; 4526 } 4527