1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGDebugInfo.h" 17 #include "CGObjCRuntime.h" 18 #include "CodeGenModule.h" 19 #include "TargetInfo.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/DeclObjC.h" 22 #include "clang/AST/RecordLayout.h" 23 #include "clang/AST/StmtVisitor.h" 24 #include "clang/Basic/TargetInfo.h" 25 #include "clang/Frontend/CodeGenOptions.h" 26 #include "llvm/IR/CFG.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DataLayout.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/Intrinsics.h" 32 #include "llvm/IR/Module.h" 33 #include <cstdarg> 34 35 using namespace clang; 36 using namespace CodeGen; 37 using llvm::Value; 38 39 //===----------------------------------------------------------------------===// 40 // Scalar Expression Emitter 41 //===----------------------------------------------------------------------===// 42 43 namespace { 44 struct BinOpInfo { 45 Value *LHS; 46 Value *RHS; 47 QualType Ty; // Computation Type. 48 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 49 bool FPContractable; 50 const Expr *E; // Entire expr, for error unsupported. May not be binop. 51 }; 52 53 static bool MustVisitNullValue(const Expr *E) { 54 // If a null pointer expression's type is the C++0x nullptr_t, then 55 // it's not necessarily a simple constant and it must be evaluated 56 // for its potential side effects. 57 return E->getType()->isNullPtrType(); 58 } 59 60 class ScalarExprEmitter 61 : public StmtVisitor<ScalarExprEmitter, Value*> { 62 CodeGenFunction &CGF; 63 CGBuilderTy &Builder; 64 bool IgnoreResultAssign; 65 llvm::LLVMContext &VMContext; 66 public: 67 68 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 69 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 70 VMContext(cgf.getLLVMContext()) { 71 } 72 73 //===--------------------------------------------------------------------===// 74 // Utilities 75 //===--------------------------------------------------------------------===// 76 77 bool TestAndClearIgnoreResultAssign() { 78 bool I = IgnoreResultAssign; 79 IgnoreResultAssign = false; 80 return I; 81 } 82 83 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 84 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 85 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 86 return CGF.EmitCheckedLValue(E, TCK); 87 } 88 89 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 90 const BinOpInfo &Info); 91 92 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 93 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 94 } 95 96 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 97 const AlignValueAttr *AVAttr = nullptr; 98 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 99 const ValueDecl *VD = DRE->getDecl(); 100 101 if (VD->getType()->isReferenceType()) { 102 if (const auto *TTy = 103 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 104 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 105 } else { 106 // Assumptions for function parameters are emitted at the start of the 107 // function, so there is no need to repeat that here. 108 if (isa<ParmVarDecl>(VD)) 109 return; 110 111 AVAttr = VD->getAttr<AlignValueAttr>(); 112 } 113 } 114 115 if (!AVAttr) 116 if (const auto *TTy = 117 dyn_cast<TypedefType>(E->getType())) 118 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 119 120 if (!AVAttr) 121 return; 122 123 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 124 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 125 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 126 } 127 128 /// EmitLoadOfLValue - Given an expression with complex type that represents a 129 /// value l-value, this method emits the address of the l-value, then loads 130 /// and returns the result. 131 Value *EmitLoadOfLValue(const Expr *E) { 132 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 133 E->getExprLoc()); 134 135 EmitLValueAlignmentAssumption(E, V); 136 return V; 137 } 138 139 /// EmitConversionToBool - Convert the specified expression value to a 140 /// boolean (i1) truth value. This is equivalent to "Val != 0". 141 Value *EmitConversionToBool(Value *Src, QualType DstTy); 142 143 /// \brief Emit a check that a conversion to or from a floating-point type 144 /// does not overflow. 145 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 146 Value *Src, QualType SrcType, 147 QualType DstType, llvm::Type *DstTy); 148 149 /// EmitScalarConversion - Emit a conversion from the specified type to the 150 /// specified destination type, both of which are LLVM scalar types. 151 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy); 152 153 /// EmitComplexToScalarConversion - Emit a conversion from the specified 154 /// complex type to the specified destination type, where the destination type 155 /// is an LLVM scalar type. 156 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 157 QualType SrcTy, QualType DstTy); 158 159 /// EmitNullValue - Emit a value that corresponds to null for the given type. 160 Value *EmitNullValue(QualType Ty); 161 162 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 163 Value *EmitFloatToBoolConversion(Value *V) { 164 // Compare against 0.0 for fp scalars. 165 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 166 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 167 } 168 169 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 170 Value *EmitPointerToBoolConversion(Value *V) { 171 Value *Zero = llvm::ConstantPointerNull::get( 172 cast<llvm::PointerType>(V->getType())); 173 return Builder.CreateICmpNE(V, Zero, "tobool"); 174 } 175 176 Value *EmitIntToBoolConversion(Value *V) { 177 // Because of the type rules of C, we often end up computing a 178 // logical value, then zero extending it to int, then wanting it 179 // as a logical value again. Optimize this common case. 180 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 181 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 182 Value *Result = ZI->getOperand(0); 183 // If there aren't any more uses, zap the instruction to save space. 184 // Note that there can be more uses, for example if this 185 // is the result of an assignment. 186 if (ZI->use_empty()) 187 ZI->eraseFromParent(); 188 return Result; 189 } 190 } 191 192 return Builder.CreateIsNotNull(V, "tobool"); 193 } 194 195 //===--------------------------------------------------------------------===// 196 // Visitor Methods 197 //===--------------------------------------------------------------------===// 198 199 Value *Visit(Expr *E) { 200 ApplyDebugLocation DL(CGF, E); 201 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 202 } 203 204 Value *VisitStmt(Stmt *S) { 205 S->dump(CGF.getContext().getSourceManager()); 206 llvm_unreachable("Stmt can't have complex result type!"); 207 } 208 Value *VisitExpr(Expr *S); 209 210 Value *VisitParenExpr(ParenExpr *PE) { 211 return Visit(PE->getSubExpr()); 212 } 213 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 214 return Visit(E->getReplacement()); 215 } 216 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 217 return Visit(GE->getResultExpr()); 218 } 219 220 // Leaves. 221 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 222 return Builder.getInt(E->getValue()); 223 } 224 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 225 return llvm::ConstantFP::get(VMContext, E->getValue()); 226 } 227 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 228 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 229 } 230 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 231 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 232 } 233 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 234 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 235 } 236 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 237 return EmitNullValue(E->getType()); 238 } 239 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 240 return EmitNullValue(E->getType()); 241 } 242 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 243 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 244 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 245 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 246 return Builder.CreateBitCast(V, ConvertType(E->getType())); 247 } 248 249 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 250 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 251 } 252 253 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 254 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 255 } 256 257 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 258 if (E->isGLValue()) 259 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 260 261 // Otherwise, assume the mapping is the scalar directly. 262 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 263 } 264 265 // l-values. 266 Value *VisitDeclRefExpr(DeclRefExpr *E) { 267 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 268 if (result.isReference()) 269 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 270 E->getExprLoc()); 271 return result.getValue(); 272 } 273 return EmitLoadOfLValue(E); 274 } 275 276 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 277 return CGF.EmitObjCSelectorExpr(E); 278 } 279 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 280 return CGF.EmitObjCProtocolExpr(E); 281 } 282 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 283 return EmitLoadOfLValue(E); 284 } 285 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 286 if (E->getMethodDecl() && 287 E->getMethodDecl()->getReturnType()->isReferenceType()) 288 return EmitLoadOfLValue(E); 289 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 290 } 291 292 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 293 LValue LV = CGF.EmitObjCIsaExpr(E); 294 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 295 return V; 296 } 297 298 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 299 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 300 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 301 Value *VisitMemberExpr(MemberExpr *E); 302 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 303 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 304 return EmitLoadOfLValue(E); 305 } 306 307 Value *VisitInitListExpr(InitListExpr *E); 308 309 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 310 return EmitNullValue(E->getType()); 311 } 312 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 313 if (E->getType()->isVariablyModifiedType()) 314 CGF.EmitVariablyModifiedType(E->getType()); 315 316 if (CGDebugInfo *DI = CGF.getDebugInfo()) 317 DI->EmitExplicitCastType(E->getType()); 318 319 return VisitCastExpr(E); 320 } 321 Value *VisitCastExpr(CastExpr *E); 322 323 Value *VisitCallExpr(const CallExpr *E) { 324 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 325 return EmitLoadOfLValue(E); 326 327 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 328 329 EmitLValueAlignmentAssumption(E, V); 330 return V; 331 } 332 333 Value *VisitStmtExpr(const StmtExpr *E); 334 335 // Unary Operators. 336 Value *VisitUnaryPostDec(const UnaryOperator *E) { 337 LValue LV = EmitLValue(E->getSubExpr()); 338 return EmitScalarPrePostIncDec(E, LV, false, false); 339 } 340 Value *VisitUnaryPostInc(const UnaryOperator *E) { 341 LValue LV = EmitLValue(E->getSubExpr()); 342 return EmitScalarPrePostIncDec(E, LV, true, false); 343 } 344 Value *VisitUnaryPreDec(const UnaryOperator *E) { 345 LValue LV = EmitLValue(E->getSubExpr()); 346 return EmitScalarPrePostIncDec(E, LV, false, true); 347 } 348 Value *VisitUnaryPreInc(const UnaryOperator *E) { 349 LValue LV = EmitLValue(E->getSubExpr()); 350 return EmitScalarPrePostIncDec(E, LV, true, true); 351 } 352 353 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 354 llvm::Value *InVal, 355 bool IsInc); 356 357 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 358 bool isInc, bool isPre); 359 360 361 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 362 if (isa<MemberPointerType>(E->getType())) // never sugared 363 return CGF.CGM.getMemberPointerConstant(E); 364 365 return EmitLValue(E->getSubExpr()).getAddress(); 366 } 367 Value *VisitUnaryDeref(const UnaryOperator *E) { 368 if (E->getType()->isVoidType()) 369 return Visit(E->getSubExpr()); // the actual value should be unused 370 return EmitLoadOfLValue(E); 371 } 372 Value *VisitUnaryPlus(const UnaryOperator *E) { 373 // This differs from gcc, though, most likely due to a bug in gcc. 374 TestAndClearIgnoreResultAssign(); 375 return Visit(E->getSubExpr()); 376 } 377 Value *VisitUnaryMinus (const UnaryOperator *E); 378 Value *VisitUnaryNot (const UnaryOperator *E); 379 Value *VisitUnaryLNot (const UnaryOperator *E); 380 Value *VisitUnaryReal (const UnaryOperator *E); 381 Value *VisitUnaryImag (const UnaryOperator *E); 382 Value *VisitUnaryExtension(const UnaryOperator *E) { 383 return Visit(E->getSubExpr()); 384 } 385 386 // C++ 387 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 388 return EmitLoadOfLValue(E); 389 } 390 391 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 392 return Visit(DAE->getExpr()); 393 } 394 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 395 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 396 return Visit(DIE->getExpr()); 397 } 398 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 399 return CGF.LoadCXXThis(); 400 } 401 402 Value *VisitExprWithCleanups(ExprWithCleanups *E) { 403 CGF.enterFullExpression(E); 404 CodeGenFunction::RunCleanupsScope Scope(CGF); 405 return Visit(E->getSubExpr()); 406 } 407 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 408 return CGF.EmitCXXNewExpr(E); 409 } 410 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 411 CGF.EmitCXXDeleteExpr(E); 412 return nullptr; 413 } 414 415 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 416 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 417 } 418 419 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 420 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 421 } 422 423 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 424 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 425 } 426 427 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 428 // C++ [expr.pseudo]p1: 429 // The result shall only be used as the operand for the function call 430 // operator (), and the result of such a call has type void. The only 431 // effect is the evaluation of the postfix-expression before the dot or 432 // arrow. 433 CGF.EmitScalarExpr(E->getBase()); 434 return nullptr; 435 } 436 437 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 438 return EmitNullValue(E->getType()); 439 } 440 441 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 442 CGF.EmitCXXThrowExpr(E); 443 return nullptr; 444 } 445 446 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 447 return Builder.getInt1(E->getValue()); 448 } 449 450 // Binary Operators. 451 Value *EmitMul(const BinOpInfo &Ops) { 452 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 453 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 454 case LangOptions::SOB_Defined: 455 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 456 case LangOptions::SOB_Undefined: 457 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 458 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 459 // Fall through. 460 case LangOptions::SOB_Trapping: 461 return EmitOverflowCheckedBinOp(Ops); 462 } 463 } 464 465 if (Ops.Ty->isUnsignedIntegerType() && 466 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 467 return EmitOverflowCheckedBinOp(Ops); 468 469 if (Ops.LHS->getType()->isFPOrFPVectorTy()) 470 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 471 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 472 } 473 /// Create a binary op that checks for overflow. 474 /// Currently only supports +, - and *. 475 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 476 477 // Check for undefined division and modulus behaviors. 478 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 479 llvm::Value *Zero,bool isDiv); 480 // Common helper for getting how wide LHS of shift is. 481 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 482 Value *EmitDiv(const BinOpInfo &Ops); 483 Value *EmitRem(const BinOpInfo &Ops); 484 Value *EmitAdd(const BinOpInfo &Ops); 485 Value *EmitSub(const BinOpInfo &Ops); 486 Value *EmitShl(const BinOpInfo &Ops); 487 Value *EmitShr(const BinOpInfo &Ops); 488 Value *EmitAnd(const BinOpInfo &Ops) { 489 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 490 } 491 Value *EmitXor(const BinOpInfo &Ops) { 492 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 493 } 494 Value *EmitOr (const BinOpInfo &Ops) { 495 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 496 } 497 498 BinOpInfo EmitBinOps(const BinaryOperator *E); 499 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 500 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 501 Value *&Result); 502 503 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 504 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 505 506 // Binary operators and binary compound assignment operators. 507 #define HANDLEBINOP(OP) \ 508 Value *VisitBin ## OP(const BinaryOperator *E) { \ 509 return Emit ## OP(EmitBinOps(E)); \ 510 } \ 511 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 512 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 513 } 514 HANDLEBINOP(Mul) 515 HANDLEBINOP(Div) 516 HANDLEBINOP(Rem) 517 HANDLEBINOP(Add) 518 HANDLEBINOP(Sub) 519 HANDLEBINOP(Shl) 520 HANDLEBINOP(Shr) 521 HANDLEBINOP(And) 522 HANDLEBINOP(Xor) 523 HANDLEBINOP(Or) 524 #undef HANDLEBINOP 525 526 // Comparisons. 527 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc, 528 unsigned SICmpOpc, unsigned FCmpOpc); 529 #define VISITCOMP(CODE, UI, SI, FP) \ 530 Value *VisitBin##CODE(const BinaryOperator *E) { \ 531 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 532 llvm::FCmpInst::FP); } 533 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 534 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 535 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 536 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 537 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 538 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 539 #undef VISITCOMP 540 541 Value *VisitBinAssign (const BinaryOperator *E); 542 543 Value *VisitBinLAnd (const BinaryOperator *E); 544 Value *VisitBinLOr (const BinaryOperator *E); 545 Value *VisitBinComma (const BinaryOperator *E); 546 547 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 548 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 549 550 // Other Operators. 551 Value *VisitBlockExpr(const BlockExpr *BE); 552 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 553 Value *VisitChooseExpr(ChooseExpr *CE); 554 Value *VisitVAArgExpr(VAArgExpr *VE); 555 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 556 return CGF.EmitObjCStringLiteral(E); 557 } 558 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 559 return CGF.EmitObjCBoxedExpr(E); 560 } 561 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 562 return CGF.EmitObjCArrayLiteral(E); 563 } 564 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 565 return CGF.EmitObjCDictionaryLiteral(E); 566 } 567 Value *VisitAsTypeExpr(AsTypeExpr *CE); 568 Value *VisitAtomicExpr(AtomicExpr *AE); 569 }; 570 } // end anonymous namespace. 571 572 //===----------------------------------------------------------------------===// 573 // Utilities 574 //===----------------------------------------------------------------------===// 575 576 /// EmitConversionToBool - Convert the specified expression value to a 577 /// boolean (i1) truth value. This is equivalent to "Val != 0". 578 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 579 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 580 581 if (SrcType->isRealFloatingType()) 582 return EmitFloatToBoolConversion(Src); 583 584 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 585 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 586 587 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 588 "Unknown scalar type to convert"); 589 590 if (isa<llvm::IntegerType>(Src->getType())) 591 return EmitIntToBoolConversion(Src); 592 593 assert(isa<llvm::PointerType>(Src->getType())); 594 return EmitPointerToBoolConversion(Src); 595 } 596 597 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc, 598 QualType OrigSrcType, 599 Value *Src, QualType SrcType, 600 QualType DstType, 601 llvm::Type *DstTy) { 602 CodeGenFunction::SanitizerScope SanScope(&CGF); 603 using llvm::APFloat; 604 using llvm::APSInt; 605 606 llvm::Type *SrcTy = Src->getType(); 607 608 llvm::Value *Check = nullptr; 609 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 610 // Integer to floating-point. This can fail for unsigned short -> __half 611 // or unsigned __int128 -> float. 612 assert(DstType->isFloatingType()); 613 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 614 615 APFloat LargestFloat = 616 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 617 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 618 619 bool IsExact; 620 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 621 &IsExact) != APFloat::opOK) 622 // The range of representable values of this floating point type includes 623 // all values of this integer type. Don't need an overflow check. 624 return; 625 626 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 627 if (SrcIsUnsigned) 628 Check = Builder.CreateICmpULE(Src, Max); 629 else { 630 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 631 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 632 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 633 Check = Builder.CreateAnd(GE, LE); 634 } 635 } else { 636 const llvm::fltSemantics &SrcSema = 637 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 638 if (isa<llvm::IntegerType>(DstTy)) { 639 // Floating-point to integer. This has undefined behavior if the source is 640 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 641 // to an integer). 642 unsigned Width = CGF.getContext().getIntWidth(DstType); 643 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 644 645 APSInt Min = APSInt::getMinValue(Width, Unsigned); 646 APFloat MinSrc(SrcSema, APFloat::uninitialized); 647 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 648 APFloat::opOverflow) 649 // Don't need an overflow check for lower bound. Just check for 650 // -Inf/NaN. 651 MinSrc = APFloat::getInf(SrcSema, true); 652 else 653 // Find the largest value which is too small to represent (before 654 // truncation toward zero). 655 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 656 657 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 658 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 659 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 660 APFloat::opOverflow) 661 // Don't need an overflow check for upper bound. Just check for 662 // +Inf/NaN. 663 MaxSrc = APFloat::getInf(SrcSema, false); 664 else 665 // Find the smallest value which is too large to represent (before 666 // truncation toward zero). 667 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 668 669 // If we're converting from __half, convert the range to float to match 670 // the type of src. 671 if (OrigSrcType->isHalfType()) { 672 const llvm::fltSemantics &Sema = 673 CGF.getContext().getFloatTypeSemantics(SrcType); 674 bool IsInexact; 675 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 676 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 677 } 678 679 llvm::Value *GE = 680 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 681 llvm::Value *LE = 682 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 683 Check = Builder.CreateAnd(GE, LE); 684 } else { 685 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 686 // 687 // Floating-point to floating-point. This has undefined behavior if the 688 // source is not in the range of representable values of the destination 689 // type. The C and C++ standards are spectacularly unclear here. We 690 // diagnose finite out-of-range conversions, but allow infinities and NaNs 691 // to convert to the corresponding value in the smaller type. 692 // 693 // C11 Annex F gives all such conversions defined behavior for IEC 60559 694 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 695 // does not. 696 697 // Converting from a lower rank to a higher rank can never have 698 // undefined behavior, since higher-rank types must have a superset 699 // of values of lower-rank types. 700 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 701 return; 702 703 assert(!OrigSrcType->isHalfType() && 704 "should not check conversion from __half, it has the lowest rank"); 705 706 const llvm::fltSemantics &DstSema = 707 CGF.getContext().getFloatTypeSemantics(DstType); 708 APFloat MinBad = APFloat::getLargest(DstSema, false); 709 APFloat MaxBad = APFloat::getInf(DstSema, false); 710 711 bool IsInexact; 712 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 713 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 714 715 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 716 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 717 llvm::Value *GE = 718 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 719 llvm::Value *LE = 720 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 721 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 722 } 723 } 724 725 // FIXME: Provide a SourceLocation. 726 llvm::Constant *StaticArgs[] = { 727 CGF.EmitCheckTypeDescriptor(OrigSrcType), 728 CGF.EmitCheckTypeDescriptor(DstType) 729 }; 730 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 731 "float_cast_overflow", StaticArgs, OrigSrc); 732 } 733 734 /// EmitScalarConversion - Emit a conversion from the specified type to the 735 /// specified destination type, both of which are LLVM scalar types. 736 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 737 QualType DstType) { 738 SrcType = CGF.getContext().getCanonicalType(SrcType); 739 DstType = CGF.getContext().getCanonicalType(DstType); 740 if (SrcType == DstType) return Src; 741 742 if (DstType->isVoidType()) return nullptr; 743 744 llvm::Value *OrigSrc = Src; 745 QualType OrigSrcType = SrcType; 746 llvm::Type *SrcTy = Src->getType(); 747 748 // Handle conversions to bool first, they are special: comparisons against 0. 749 if (DstType->isBooleanType()) 750 return EmitConversionToBool(Src, SrcType); 751 752 llvm::Type *DstTy = ConvertType(DstType); 753 754 // Cast from half through float if half isn't a native type. 755 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 756 // Cast to FP using the intrinsic if the half type itself isn't supported. 757 if (DstTy->isFloatingPointTy()) { 758 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 759 return Builder.CreateCall( 760 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 761 Src); 762 } else { 763 // Cast to other types through float, using either the intrinsic or FPExt, 764 // depending on whether the half type itself is supported 765 // (as opposed to operations on half, available with NativeHalfType). 766 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 767 Src = Builder.CreateCall( 768 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 769 CGF.CGM.FloatTy), 770 Src); 771 } else { 772 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 773 } 774 SrcType = CGF.getContext().FloatTy; 775 SrcTy = CGF.FloatTy; 776 } 777 } 778 779 // Ignore conversions like int -> uint. 780 if (SrcTy == DstTy) 781 return Src; 782 783 // Handle pointer conversions next: pointers can only be converted to/from 784 // other pointers and integers. Check for pointer types in terms of LLVM, as 785 // some native types (like Obj-C id) may map to a pointer type. 786 if (isa<llvm::PointerType>(DstTy)) { 787 // The source value may be an integer, or a pointer. 788 if (isa<llvm::PointerType>(SrcTy)) 789 return Builder.CreateBitCast(Src, DstTy, "conv"); 790 791 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 792 // First, convert to the correct width so that we control the kind of 793 // extension. 794 llvm::Type *MiddleTy = CGF.IntPtrTy; 795 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 796 llvm::Value* IntResult = 797 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 798 // Then, cast to pointer. 799 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 800 } 801 802 if (isa<llvm::PointerType>(SrcTy)) { 803 // Must be an ptr to int cast. 804 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 805 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 806 } 807 808 // A scalar can be splatted to an extended vector of the same element type 809 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 810 // Cast the scalar to element type 811 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType(); 812 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy); 813 814 // Splat the element across to all elements 815 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 816 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 817 } 818 819 // Allow bitcast from vector to integer/fp of the same size. 820 if (isa<llvm::VectorType>(SrcTy) || 821 isa<llvm::VectorType>(DstTy)) 822 return Builder.CreateBitCast(Src, DstTy, "conv"); 823 824 // Finally, we have the arithmetic types: real int/float. 825 Value *Res = nullptr; 826 llvm::Type *ResTy = DstTy; 827 828 // An overflowing conversion has undefined behavior if either the source type 829 // or the destination type is a floating-point type. 830 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 831 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 832 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, 833 DstTy); 834 835 // Cast to half through float if half isn't a native type. 836 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 837 // Make sure we cast in a single step if from another FP type. 838 if (SrcTy->isFloatingPointTy()) { 839 // Use the intrinsic if the half type itself isn't supported 840 // (as opposed to operations on half, available with NativeHalfType). 841 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 842 return Builder.CreateCall( 843 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 844 // If the half type is supported, just use an fptrunc. 845 return Builder.CreateFPTrunc(Src, DstTy); 846 } 847 DstTy = CGF.FloatTy; 848 } 849 850 if (isa<llvm::IntegerType>(SrcTy)) { 851 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 852 if (isa<llvm::IntegerType>(DstTy)) 853 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 854 else if (InputSigned) 855 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 856 else 857 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 858 } else if (isa<llvm::IntegerType>(DstTy)) { 859 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 860 if (DstType->isSignedIntegerOrEnumerationType()) 861 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 862 else 863 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 864 } else { 865 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 866 "Unknown real conversion"); 867 if (DstTy->getTypeID() < SrcTy->getTypeID()) 868 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 869 else 870 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 871 } 872 873 if (DstTy != ResTy) { 874 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 875 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 876 Res = Builder.CreateCall( 877 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 878 Res); 879 } else { 880 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 881 } 882 } 883 884 return Res; 885 } 886 887 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 888 /// type to the specified destination type, where the destination type is an 889 /// LLVM scalar type. 890 Value *ScalarExprEmitter:: 891 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 892 QualType SrcTy, QualType DstTy) { 893 // Get the source element type. 894 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 895 896 // Handle conversions to bool first, they are special: comparisons against 0. 897 if (DstTy->isBooleanType()) { 898 // Complex != 0 -> (Real != 0) | (Imag != 0) 899 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy); 900 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy); 901 return Builder.CreateOr(Src.first, Src.second, "tobool"); 902 } 903 904 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 905 // the imaginary part of the complex value is discarded and the value of the 906 // real part is converted according to the conversion rules for the 907 // corresponding real type. 908 return EmitScalarConversion(Src.first, SrcTy, DstTy); 909 } 910 911 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 912 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 913 } 914 915 /// \brief Emit a sanitization check for the given "binary" operation (which 916 /// might actually be a unary increment which has been lowered to a binary 917 /// operation). The check passes if all values in \p Checks (which are \c i1), 918 /// are \c true. 919 void ScalarExprEmitter::EmitBinOpCheck( 920 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 921 assert(CGF.IsSanitizerScope); 922 StringRef CheckName; 923 SmallVector<llvm::Constant *, 4> StaticData; 924 SmallVector<llvm::Value *, 2> DynamicData; 925 926 BinaryOperatorKind Opcode = Info.Opcode; 927 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 928 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 929 930 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 931 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 932 if (UO && UO->getOpcode() == UO_Minus) { 933 CheckName = "negate_overflow"; 934 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 935 DynamicData.push_back(Info.RHS); 936 } else { 937 if (BinaryOperator::isShiftOp(Opcode)) { 938 // Shift LHS negative or too large, or RHS out of bounds. 939 CheckName = "shift_out_of_bounds"; 940 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 941 StaticData.push_back( 942 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 943 StaticData.push_back( 944 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 945 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 946 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 947 CheckName = "divrem_overflow"; 948 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 949 } else { 950 // Arithmetic overflow (+, -, *). 951 switch (Opcode) { 952 case BO_Add: CheckName = "add_overflow"; break; 953 case BO_Sub: CheckName = "sub_overflow"; break; 954 case BO_Mul: CheckName = "mul_overflow"; break; 955 default: llvm_unreachable("unexpected opcode for bin op check"); 956 } 957 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 958 } 959 DynamicData.push_back(Info.LHS); 960 DynamicData.push_back(Info.RHS); 961 } 962 963 CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData); 964 } 965 966 //===----------------------------------------------------------------------===// 967 // Visitor Methods 968 //===----------------------------------------------------------------------===// 969 970 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 971 CGF.ErrorUnsupported(E, "scalar expression"); 972 if (E->getType()->isVoidType()) 973 return nullptr; 974 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 975 } 976 977 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 978 // Vector Mask Case 979 if (E->getNumSubExprs() == 2 || 980 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) { 981 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 982 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 983 Value *Mask; 984 985 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 986 unsigned LHSElts = LTy->getNumElements(); 987 988 if (E->getNumSubExprs() == 3) { 989 Mask = CGF.EmitScalarExpr(E->getExpr(2)); 990 991 // Shuffle LHS & RHS into one input vector. 992 SmallVector<llvm::Constant*, 32> concat; 993 for (unsigned i = 0; i != LHSElts; ++i) { 994 concat.push_back(Builder.getInt32(2*i)); 995 concat.push_back(Builder.getInt32(2*i+1)); 996 } 997 998 Value* CV = llvm::ConstantVector::get(concat); 999 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat"); 1000 LHSElts *= 2; 1001 } else { 1002 Mask = RHS; 1003 } 1004 1005 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1006 llvm::Constant* EltMask; 1007 1008 EltMask = llvm::ConstantInt::get(MTy->getElementType(), 1009 llvm::NextPowerOf2(LHSElts-1)-1); 1010 1011 // Mask off the high bits of each shuffle index. 1012 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(), 1013 EltMask); 1014 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1015 1016 // newv = undef 1017 // mask = mask & maskbits 1018 // for each elt 1019 // n = extract mask i 1020 // x = extract val n 1021 // newv = insert newv, x, i 1022 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1023 MTy->getNumElements()); 1024 Value* NewV = llvm::UndefValue::get(RTy); 1025 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1026 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1027 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1028 1029 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1030 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1031 } 1032 return NewV; 1033 } 1034 1035 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1036 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1037 1038 SmallVector<llvm::Constant*, 32> indices; 1039 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1040 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1041 // Check for -1 and output it as undef in the IR. 1042 if (Idx.isSigned() && Idx.isAllOnesValue()) 1043 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1044 else 1045 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1046 } 1047 1048 Value *SV = llvm::ConstantVector::get(indices); 1049 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1050 } 1051 1052 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1053 QualType SrcType = E->getSrcExpr()->getType(), 1054 DstType = E->getType(); 1055 1056 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1057 1058 SrcType = CGF.getContext().getCanonicalType(SrcType); 1059 DstType = CGF.getContext().getCanonicalType(DstType); 1060 if (SrcType == DstType) return Src; 1061 1062 assert(SrcType->isVectorType() && 1063 "ConvertVector source type must be a vector"); 1064 assert(DstType->isVectorType() && 1065 "ConvertVector destination type must be a vector"); 1066 1067 llvm::Type *SrcTy = Src->getType(); 1068 llvm::Type *DstTy = ConvertType(DstType); 1069 1070 // Ignore conversions like int -> uint. 1071 if (SrcTy == DstTy) 1072 return Src; 1073 1074 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1075 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1076 1077 assert(SrcTy->isVectorTy() && 1078 "ConvertVector source IR type must be a vector"); 1079 assert(DstTy->isVectorTy() && 1080 "ConvertVector destination IR type must be a vector"); 1081 1082 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1083 *DstEltTy = DstTy->getVectorElementType(); 1084 1085 if (DstEltType->isBooleanType()) { 1086 assert((SrcEltTy->isFloatingPointTy() || 1087 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1088 1089 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1090 if (SrcEltTy->isFloatingPointTy()) { 1091 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1092 } else { 1093 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1094 } 1095 } 1096 1097 // We have the arithmetic types: real int/float. 1098 Value *Res = nullptr; 1099 1100 if (isa<llvm::IntegerType>(SrcEltTy)) { 1101 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1102 if (isa<llvm::IntegerType>(DstEltTy)) 1103 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1104 else if (InputSigned) 1105 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1106 else 1107 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1108 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1109 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1110 if (DstEltType->isSignedIntegerOrEnumerationType()) 1111 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1112 else 1113 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1114 } else { 1115 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1116 "Unknown real conversion"); 1117 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1118 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1119 else 1120 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1121 } 1122 1123 return Res; 1124 } 1125 1126 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1127 llvm::APSInt Value; 1128 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1129 if (E->isArrow()) 1130 CGF.EmitScalarExpr(E->getBase()); 1131 else 1132 EmitLValue(E->getBase()); 1133 return Builder.getInt(Value); 1134 } 1135 1136 return EmitLoadOfLValue(E); 1137 } 1138 1139 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1140 TestAndClearIgnoreResultAssign(); 1141 1142 // Emit subscript expressions in rvalue context's. For most cases, this just 1143 // loads the lvalue formed by the subscript expr. However, we have to be 1144 // careful, because the base of a vector subscript is occasionally an rvalue, 1145 // so we can't get it as an lvalue. 1146 if (!E->getBase()->getType()->isVectorType()) 1147 return EmitLoadOfLValue(E); 1148 1149 // Handle the vector case. The base must be a vector, the index must be an 1150 // integer value. 1151 Value *Base = Visit(E->getBase()); 1152 Value *Idx = Visit(E->getIdx()); 1153 QualType IdxTy = E->getIdx()->getType(); 1154 1155 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1156 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1157 1158 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1159 } 1160 1161 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1162 unsigned Off, llvm::Type *I32Ty) { 1163 int MV = SVI->getMaskValue(Idx); 1164 if (MV == -1) 1165 return llvm::UndefValue::get(I32Ty); 1166 return llvm::ConstantInt::get(I32Ty, Off+MV); 1167 } 1168 1169 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1170 if (C->getBitWidth() != 32) { 1171 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1172 C->getZExtValue()) && 1173 "Index operand too large for shufflevector mask!"); 1174 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1175 } 1176 return C; 1177 } 1178 1179 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1180 bool Ignore = TestAndClearIgnoreResultAssign(); 1181 (void)Ignore; 1182 assert (Ignore == false && "init list ignored"); 1183 unsigned NumInitElements = E->getNumInits(); 1184 1185 if (E->hadArrayRangeDesignator()) 1186 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1187 1188 llvm::VectorType *VType = 1189 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1190 1191 if (!VType) { 1192 if (NumInitElements == 0) { 1193 // C++11 value-initialization for the scalar. 1194 return EmitNullValue(E->getType()); 1195 } 1196 // We have a scalar in braces. Just use the first element. 1197 return Visit(E->getInit(0)); 1198 } 1199 1200 unsigned ResElts = VType->getNumElements(); 1201 1202 // Loop over initializers collecting the Value for each, and remembering 1203 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1204 // us to fold the shuffle for the swizzle into the shuffle for the vector 1205 // initializer, since LLVM optimizers generally do not want to touch 1206 // shuffles. 1207 unsigned CurIdx = 0; 1208 bool VIsUndefShuffle = false; 1209 llvm::Value *V = llvm::UndefValue::get(VType); 1210 for (unsigned i = 0; i != NumInitElements; ++i) { 1211 Expr *IE = E->getInit(i); 1212 Value *Init = Visit(IE); 1213 SmallVector<llvm::Constant*, 16> Args; 1214 1215 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1216 1217 // Handle scalar elements. If the scalar initializer is actually one 1218 // element of a different vector of the same width, use shuffle instead of 1219 // extract+insert. 1220 if (!VVT) { 1221 if (isa<ExtVectorElementExpr>(IE)) { 1222 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1223 1224 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1225 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1226 Value *LHS = nullptr, *RHS = nullptr; 1227 if (CurIdx == 0) { 1228 // insert into undef -> shuffle (src, undef) 1229 // shufflemask must use an i32 1230 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1231 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1232 1233 LHS = EI->getVectorOperand(); 1234 RHS = V; 1235 VIsUndefShuffle = true; 1236 } else if (VIsUndefShuffle) { 1237 // insert into undefshuffle && size match -> shuffle (v, src) 1238 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1239 for (unsigned j = 0; j != CurIdx; ++j) 1240 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1241 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1242 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1243 1244 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1245 RHS = EI->getVectorOperand(); 1246 VIsUndefShuffle = false; 1247 } 1248 if (!Args.empty()) { 1249 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1250 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1251 ++CurIdx; 1252 continue; 1253 } 1254 } 1255 } 1256 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1257 "vecinit"); 1258 VIsUndefShuffle = false; 1259 ++CurIdx; 1260 continue; 1261 } 1262 1263 unsigned InitElts = VVT->getNumElements(); 1264 1265 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1266 // input is the same width as the vector being constructed, generate an 1267 // optimized shuffle of the swizzle input into the result. 1268 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1269 if (isa<ExtVectorElementExpr>(IE)) { 1270 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1271 Value *SVOp = SVI->getOperand(0); 1272 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1273 1274 if (OpTy->getNumElements() == ResElts) { 1275 for (unsigned j = 0; j != CurIdx; ++j) { 1276 // If the current vector initializer is a shuffle with undef, merge 1277 // this shuffle directly into it. 1278 if (VIsUndefShuffle) { 1279 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1280 CGF.Int32Ty)); 1281 } else { 1282 Args.push_back(Builder.getInt32(j)); 1283 } 1284 } 1285 for (unsigned j = 0, je = InitElts; j != je; ++j) 1286 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1287 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1288 1289 if (VIsUndefShuffle) 1290 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1291 1292 Init = SVOp; 1293 } 1294 } 1295 1296 // Extend init to result vector length, and then shuffle its contribution 1297 // to the vector initializer into V. 1298 if (Args.empty()) { 1299 for (unsigned j = 0; j != InitElts; ++j) 1300 Args.push_back(Builder.getInt32(j)); 1301 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1302 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1303 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1304 Mask, "vext"); 1305 1306 Args.clear(); 1307 for (unsigned j = 0; j != CurIdx; ++j) 1308 Args.push_back(Builder.getInt32(j)); 1309 for (unsigned j = 0; j != InitElts; ++j) 1310 Args.push_back(Builder.getInt32(j+Offset)); 1311 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1312 } 1313 1314 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1315 // merging subsequent shuffles into this one. 1316 if (CurIdx == 0) 1317 std::swap(V, Init); 1318 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1319 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1320 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1321 CurIdx += InitElts; 1322 } 1323 1324 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1325 // Emit remaining default initializers. 1326 llvm::Type *EltTy = VType->getElementType(); 1327 1328 // Emit remaining default initializers 1329 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1330 Value *Idx = Builder.getInt32(CurIdx); 1331 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1332 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1333 } 1334 return V; 1335 } 1336 1337 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) { 1338 const Expr *E = CE->getSubExpr(); 1339 1340 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1341 return false; 1342 1343 if (isa<CXXThisExpr>(E)) { 1344 // We always assume that 'this' is never null. 1345 return false; 1346 } 1347 1348 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1349 // And that glvalue casts are never null. 1350 if (ICE->getValueKind() != VK_RValue) 1351 return false; 1352 } 1353 1354 return true; 1355 } 1356 1357 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1358 // have to handle a more broad range of conversions than explicit casts, as they 1359 // handle things like function to ptr-to-function decay etc. 1360 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1361 Expr *E = CE->getSubExpr(); 1362 QualType DestTy = CE->getType(); 1363 CastKind Kind = CE->getCastKind(); 1364 1365 if (!DestTy->isVoidType()) 1366 TestAndClearIgnoreResultAssign(); 1367 1368 // Since almost all cast kinds apply to scalars, this switch doesn't have 1369 // a default case, so the compiler will warn on a missing case. The cases 1370 // are in the same order as in the CastKind enum. 1371 switch (Kind) { 1372 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1373 case CK_BuiltinFnToFnPtr: 1374 llvm_unreachable("builtin functions are handled elsewhere"); 1375 1376 case CK_LValueBitCast: 1377 case CK_ObjCObjectLValueCast: { 1378 Value *V = EmitLValue(E).getAddress(); 1379 V = Builder.CreateBitCast(V, 1380 ConvertType(CGF.getContext().getPointerType(DestTy))); 1381 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy), 1382 CE->getExprLoc()); 1383 } 1384 1385 case CK_CPointerToObjCPointerCast: 1386 case CK_BlockPointerToObjCPointerCast: 1387 case CK_AnyPointerToBlockPointerCast: 1388 case CK_BitCast: { 1389 Value *Src = Visit(const_cast<Expr*>(E)); 1390 llvm::Type *SrcTy = Src->getType(); 1391 llvm::Type *DstTy = ConvertType(DestTy); 1392 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1393 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1394 llvm_unreachable("wrong cast for pointers in different address spaces" 1395 "(must be an address space cast)!"); 1396 } 1397 1398 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1399 if (auto PT = DestTy->getAs<PointerType>()) 1400 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1401 /*MayBeNull=*/true, 1402 CodeGenFunction::CFITCK_UnrelatedCast, 1403 CE->getLocStart()); 1404 } 1405 1406 return Builder.CreateBitCast(Src, DstTy); 1407 } 1408 case CK_AddressSpaceConversion: { 1409 Value *Src = Visit(const_cast<Expr*>(E)); 1410 return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy)); 1411 } 1412 case CK_AtomicToNonAtomic: 1413 case CK_NonAtomicToAtomic: 1414 case CK_NoOp: 1415 case CK_UserDefinedConversion: 1416 return Visit(const_cast<Expr*>(E)); 1417 1418 case CK_BaseToDerived: { 1419 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1420 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1421 1422 llvm::Value *V = Visit(E); 1423 1424 llvm::Value *Derived = 1425 CGF.GetAddressOfDerivedClass(V, DerivedClassDecl, 1426 CE->path_begin(), CE->path_end(), 1427 ShouldNullCheckClassCastValue(CE)); 1428 1429 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1430 // performed and the object is not of the derived type. 1431 if (CGF.sanitizePerformTypeCheck()) 1432 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1433 Derived, DestTy->getPointeeType()); 1434 1435 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1436 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived, 1437 /*MayBeNull=*/true, 1438 CodeGenFunction::CFITCK_DerivedCast, 1439 CE->getLocStart()); 1440 1441 return Derived; 1442 } 1443 case CK_UncheckedDerivedToBase: 1444 case CK_DerivedToBase: { 1445 const CXXRecordDecl *DerivedClassDecl = 1446 E->getType()->getPointeeCXXRecordDecl(); 1447 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!"); 1448 1449 return CGF.GetAddressOfBaseClass( 1450 Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(), 1451 ShouldNullCheckClassCastValue(CE), CE->getExprLoc()); 1452 } 1453 case CK_Dynamic: { 1454 Value *V = Visit(const_cast<Expr*>(E)); 1455 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1456 return CGF.EmitDynamicCast(V, DCE); 1457 } 1458 1459 case CK_ArrayToPointerDecay: { 1460 assert(E->getType()->isArrayType() && 1461 "Array to pointer decay must have array source type!"); 1462 1463 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays. 1464 1465 // Note that VLA pointers are always decayed, so we don't need to do 1466 // anything here. 1467 if (!E->getType()->isVariableArrayType()) { 1468 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer"); 1469 llvm::Type *NewTy = ConvertType(E->getType()); 1470 V = CGF.Builder.CreatePointerCast( 1471 V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace())); 1472 1473 assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) && 1474 "Expected pointer to array"); 1475 V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay"); 1476 } 1477 1478 // Make sure the array decay ends up being the right type. This matters if 1479 // the array type was of an incomplete type. 1480 return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType())); 1481 } 1482 case CK_FunctionToPointerDecay: 1483 return EmitLValue(E).getAddress(); 1484 1485 case CK_NullToPointer: 1486 if (MustVisitNullValue(E)) 1487 (void) Visit(E); 1488 1489 return llvm::ConstantPointerNull::get( 1490 cast<llvm::PointerType>(ConvertType(DestTy))); 1491 1492 case CK_NullToMemberPointer: { 1493 if (MustVisitNullValue(E)) 1494 (void) Visit(E); 1495 1496 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1497 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1498 } 1499 1500 case CK_ReinterpretMemberPointer: 1501 case CK_BaseToDerivedMemberPointer: 1502 case CK_DerivedToBaseMemberPointer: { 1503 Value *Src = Visit(E); 1504 1505 // Note that the AST doesn't distinguish between checked and 1506 // unchecked member pointer conversions, so we always have to 1507 // implement checked conversions here. This is inefficient when 1508 // actual control flow may be required in order to perform the 1509 // check, which it is for data member pointers (but not member 1510 // function pointers on Itanium and ARM). 1511 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1512 } 1513 1514 case CK_ARCProduceObject: 1515 return CGF.EmitARCRetainScalarExpr(E); 1516 case CK_ARCConsumeObject: 1517 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1518 case CK_ARCReclaimReturnedObject: { 1519 llvm::Value *value = Visit(E); 1520 value = CGF.EmitARCRetainAutoreleasedReturnValue(value); 1521 return CGF.EmitObjCConsumeObject(E->getType(), value); 1522 } 1523 case CK_ARCExtendBlockObject: 1524 return CGF.EmitARCExtendBlockObject(E); 1525 1526 case CK_CopyAndAutoreleaseBlockObject: 1527 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1528 1529 case CK_FloatingRealToComplex: 1530 case CK_FloatingComplexCast: 1531 case CK_IntegralRealToComplex: 1532 case CK_IntegralComplexCast: 1533 case CK_IntegralComplexToFloatingComplex: 1534 case CK_FloatingComplexToIntegralComplex: 1535 case CK_ConstructorConversion: 1536 case CK_ToUnion: 1537 llvm_unreachable("scalar cast to non-scalar value"); 1538 1539 case CK_LValueToRValue: 1540 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1541 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1542 return Visit(const_cast<Expr*>(E)); 1543 1544 case CK_IntegralToPointer: { 1545 Value *Src = Visit(const_cast<Expr*>(E)); 1546 1547 // First, convert to the correct width so that we control the kind of 1548 // extension. 1549 llvm::Type *MiddleTy = CGF.IntPtrTy; 1550 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1551 llvm::Value* IntResult = 1552 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1553 1554 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy)); 1555 } 1556 case CK_PointerToIntegral: 1557 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1558 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1559 1560 case CK_ToVoid: { 1561 CGF.EmitIgnoredExpr(E); 1562 return nullptr; 1563 } 1564 case CK_VectorSplat: { 1565 llvm::Type *DstTy = ConvertType(DestTy); 1566 Value *Elt = Visit(const_cast<Expr*>(E)); 1567 Elt = EmitScalarConversion(Elt, E->getType(), 1568 DestTy->getAs<VectorType>()->getElementType()); 1569 1570 // Splat the element across to all elements 1571 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements(); 1572 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1573 } 1574 1575 case CK_IntegralCast: 1576 case CK_IntegralToFloating: 1577 case CK_FloatingToIntegral: 1578 case CK_FloatingCast: 1579 return EmitScalarConversion(Visit(E), E->getType(), DestTy); 1580 case CK_IntegralToBoolean: 1581 return EmitIntToBoolConversion(Visit(E)); 1582 case CK_PointerToBoolean: 1583 return EmitPointerToBoolConversion(Visit(E)); 1584 case CK_FloatingToBoolean: 1585 return EmitFloatToBoolConversion(Visit(E)); 1586 case CK_MemberPointerToBoolean: { 1587 llvm::Value *MemPtr = Visit(E); 1588 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1589 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1590 } 1591 1592 case CK_FloatingComplexToReal: 1593 case CK_IntegralComplexToReal: 1594 return CGF.EmitComplexExpr(E, false, true).first; 1595 1596 case CK_FloatingComplexToBoolean: 1597 case CK_IntegralComplexToBoolean: { 1598 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1599 1600 // TODO: kill this function off, inline appropriate case here 1601 return EmitComplexToScalarConversion(V, E->getType(), DestTy); 1602 } 1603 1604 case CK_ZeroToOCLEvent: { 1605 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1606 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1607 } 1608 1609 } 1610 1611 llvm_unreachable("unknown scalar cast"); 1612 } 1613 1614 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1615 CodeGenFunction::StmtExprEvaluation eval(CGF); 1616 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1617 !E->getType()->isVoidType()); 1618 if (!RetAlloca) 1619 return nullptr; 1620 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1621 E->getExprLoc()); 1622 } 1623 1624 //===----------------------------------------------------------------------===// 1625 // Unary Operators 1626 //===----------------------------------------------------------------------===// 1627 1628 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1629 llvm::Value *InVal, bool IsInc) { 1630 BinOpInfo BinOp; 1631 BinOp.LHS = InVal; 1632 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1633 BinOp.Ty = E->getType(); 1634 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1635 BinOp.FPContractable = false; 1636 BinOp.E = E; 1637 return BinOp; 1638 } 1639 1640 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1641 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1642 llvm::Value *Amount = 1643 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1644 StringRef Name = IsInc ? "inc" : "dec"; 1645 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1646 case LangOptions::SOB_Defined: 1647 return Builder.CreateAdd(InVal, Amount, Name); 1648 case LangOptions::SOB_Undefined: 1649 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1650 return Builder.CreateNSWAdd(InVal, Amount, Name); 1651 // Fall through. 1652 case LangOptions::SOB_Trapping: 1653 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1654 } 1655 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1656 } 1657 1658 llvm::Value * 1659 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1660 bool isInc, bool isPre) { 1661 1662 QualType type = E->getSubExpr()->getType(); 1663 llvm::PHINode *atomicPHI = nullptr; 1664 llvm::Value *value; 1665 llvm::Value *input; 1666 1667 int amount = (isInc ? 1 : -1); 1668 1669 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1670 type = atomicTy->getValueType(); 1671 if (isInc && type->isBooleanType()) { 1672 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1673 if (isPre) { 1674 Builder.Insert(new llvm::StoreInst(True, 1675 LV.getAddress(), LV.isVolatileQualified(), 1676 LV.getAlignment().getQuantity(), 1677 llvm::SequentiallyConsistent)); 1678 return Builder.getTrue(); 1679 } 1680 // For atomic bool increment, we just store true and return it for 1681 // preincrement, do an atomic swap with true for postincrement 1682 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg, 1683 LV.getAddress(), True, llvm::SequentiallyConsistent); 1684 } 1685 // Special case for atomic increment / decrement on integers, emit 1686 // atomicrmw instructions. We skip this if we want to be doing overflow 1687 // checking, and fall into the slow path with the atomic cmpxchg loop. 1688 if (!type->isBooleanType() && type->isIntegerType() && 1689 !(type->isUnsignedIntegerType() && 1690 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1691 CGF.getLangOpts().getSignedOverflowBehavior() != 1692 LangOptions::SOB_Trapping) { 1693 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1694 llvm::AtomicRMWInst::Sub; 1695 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1696 llvm::Instruction::Sub; 1697 llvm::Value *amt = CGF.EmitToMemory( 1698 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1699 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1700 LV.getAddress(), amt, llvm::SequentiallyConsistent); 1701 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1702 } 1703 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1704 input = value; 1705 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1706 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1707 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1708 value = CGF.EmitToMemory(value, type); 1709 Builder.CreateBr(opBB); 1710 Builder.SetInsertPoint(opBB); 1711 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1712 atomicPHI->addIncoming(value, startBB); 1713 value = atomicPHI; 1714 } else { 1715 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1716 input = value; 1717 } 1718 1719 // Special case of integer increment that we have to check first: bool++. 1720 // Due to promotion rules, we get: 1721 // bool++ -> bool = bool + 1 1722 // -> bool = (int)bool + 1 1723 // -> bool = ((int)bool + 1 != 0) 1724 // An interesting aspect of this is that increment is always true. 1725 // Decrement does not have this property. 1726 if (isInc && type->isBooleanType()) { 1727 value = Builder.getTrue(); 1728 1729 // Most common case by far: integer increment. 1730 } else if (type->isIntegerType()) { 1731 // Note that signed integer inc/dec with width less than int can't 1732 // overflow because of promotion rules; we're just eliding a few steps here. 1733 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1734 CGF.IntTy->getIntegerBitWidth(); 1735 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1736 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1737 } else if (CanOverflow && type->isUnsignedIntegerType() && 1738 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1739 value = 1740 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1741 } else { 1742 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1743 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1744 } 1745 1746 // Next most common: pointer increment. 1747 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1748 QualType type = ptr->getPointeeType(); 1749 1750 // VLA types don't have constant size. 1751 if (const VariableArrayType *vla 1752 = CGF.getContext().getAsVariableArrayType(type)) { 1753 llvm::Value *numElts = CGF.getVLASize(vla).first; 1754 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1755 if (CGF.getLangOpts().isSignedOverflowDefined()) 1756 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1757 else 1758 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1759 1760 // Arithmetic on function pointers (!) is just +-1. 1761 } else if (type->isFunctionType()) { 1762 llvm::Value *amt = Builder.getInt32(amount); 1763 1764 value = CGF.EmitCastToVoidPtr(value); 1765 if (CGF.getLangOpts().isSignedOverflowDefined()) 1766 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1767 else 1768 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1769 value = Builder.CreateBitCast(value, input->getType()); 1770 1771 // For everything else, we can just do a simple increment. 1772 } else { 1773 llvm::Value *amt = Builder.getInt32(amount); 1774 if (CGF.getLangOpts().isSignedOverflowDefined()) 1775 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1776 else 1777 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1778 } 1779 1780 // Vector increment/decrement. 1781 } else if (type->isVectorType()) { 1782 if (type->hasIntegerRepresentation()) { 1783 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1784 1785 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1786 } else { 1787 value = Builder.CreateFAdd( 1788 value, 1789 llvm::ConstantFP::get(value->getType(), amount), 1790 isInc ? "inc" : "dec"); 1791 } 1792 1793 // Floating point. 1794 } else if (type->isRealFloatingType()) { 1795 // Add the inc/dec to the real part. 1796 llvm::Value *amt; 1797 1798 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1799 // Another special case: half FP increment should be done via float 1800 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1801 value = Builder.CreateCall( 1802 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1803 CGF.CGM.FloatTy), 1804 input, "incdec.conv"); 1805 } else { 1806 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1807 } 1808 } 1809 1810 if (value->getType()->isFloatTy()) 1811 amt = llvm::ConstantFP::get(VMContext, 1812 llvm::APFloat(static_cast<float>(amount))); 1813 else if (value->getType()->isDoubleTy()) 1814 amt = llvm::ConstantFP::get(VMContext, 1815 llvm::APFloat(static_cast<double>(amount))); 1816 else { 1817 // Remaining types are either Half or LongDouble. Convert from float. 1818 llvm::APFloat F(static_cast<float>(amount)); 1819 bool ignored; 1820 // Don't use getFloatTypeSemantics because Half isn't 1821 // necessarily represented using the "half" LLVM type. 1822 F.convert(value->getType()->isHalfTy() 1823 ? CGF.getTarget().getHalfFormat() 1824 : CGF.getTarget().getLongDoubleFormat(), 1825 llvm::APFloat::rmTowardZero, &ignored); 1826 amt = llvm::ConstantFP::get(VMContext, F); 1827 } 1828 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 1829 1830 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1831 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1832 value = Builder.CreateCall( 1833 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 1834 CGF.CGM.FloatTy), 1835 value, "incdec.conv"); 1836 } else { 1837 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 1838 } 1839 } 1840 1841 // Objective-C pointer types. 1842 } else { 1843 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 1844 value = CGF.EmitCastToVoidPtr(value); 1845 1846 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 1847 if (!isInc) size = -size; 1848 llvm::Value *sizeValue = 1849 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 1850 1851 if (CGF.getLangOpts().isSignedOverflowDefined()) 1852 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 1853 else 1854 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 1855 value = Builder.CreateBitCast(value, input->getType()); 1856 } 1857 1858 if (atomicPHI) { 1859 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 1860 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 1861 auto Pair = CGF.EmitAtomicCompareExchange( 1862 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 1863 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 1864 llvm::Value *success = Pair.second; 1865 atomicPHI->addIncoming(old, opBB); 1866 Builder.CreateCondBr(success, contBB, opBB); 1867 Builder.SetInsertPoint(contBB); 1868 return isPre ? value : input; 1869 } 1870 1871 // Store the updated result through the lvalue. 1872 if (LV.isBitField()) 1873 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 1874 else 1875 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 1876 1877 // If this is a postinc, return the value read from memory, otherwise use the 1878 // updated value. 1879 return isPre ? value : input; 1880 } 1881 1882 1883 1884 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 1885 TestAndClearIgnoreResultAssign(); 1886 // Emit unary minus with EmitSub so we handle overflow cases etc. 1887 BinOpInfo BinOp; 1888 BinOp.RHS = Visit(E->getSubExpr()); 1889 1890 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 1891 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 1892 else 1893 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 1894 BinOp.Ty = E->getType(); 1895 BinOp.Opcode = BO_Sub; 1896 BinOp.FPContractable = false; 1897 BinOp.E = E; 1898 return EmitSub(BinOp); 1899 } 1900 1901 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 1902 TestAndClearIgnoreResultAssign(); 1903 Value *Op = Visit(E->getSubExpr()); 1904 return Builder.CreateNot(Op, "neg"); 1905 } 1906 1907 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 1908 // Perform vector logical not on comparison with zero vector. 1909 if (E->getType()->isExtVectorType()) { 1910 Value *Oper = Visit(E->getSubExpr()); 1911 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 1912 Value *Result; 1913 if (Oper->getType()->isFPOrFPVectorTy()) 1914 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 1915 else 1916 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 1917 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 1918 } 1919 1920 // Compare operand to zero. 1921 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 1922 1923 // Invert value. 1924 // TODO: Could dynamically modify easy computations here. For example, if 1925 // the operand is an icmp ne, turn into icmp eq. 1926 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 1927 1928 // ZExt result to the expr type. 1929 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 1930 } 1931 1932 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 1933 // Try folding the offsetof to a constant. 1934 llvm::APSInt Value; 1935 if (E->EvaluateAsInt(Value, CGF.getContext())) 1936 return Builder.getInt(Value); 1937 1938 // Loop over the components of the offsetof to compute the value. 1939 unsigned n = E->getNumComponents(); 1940 llvm::Type* ResultType = ConvertType(E->getType()); 1941 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 1942 QualType CurrentType = E->getTypeSourceInfo()->getType(); 1943 for (unsigned i = 0; i != n; ++i) { 1944 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i); 1945 llvm::Value *Offset = nullptr; 1946 switch (ON.getKind()) { 1947 case OffsetOfExpr::OffsetOfNode::Array: { 1948 // Compute the index 1949 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 1950 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 1951 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 1952 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 1953 1954 // Save the element type 1955 CurrentType = 1956 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 1957 1958 // Compute the element size 1959 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 1960 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 1961 1962 // Multiply out to compute the result 1963 Offset = Builder.CreateMul(Idx, ElemSize); 1964 break; 1965 } 1966 1967 case OffsetOfExpr::OffsetOfNode::Field: { 1968 FieldDecl *MemberDecl = ON.getField(); 1969 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 1970 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 1971 1972 // Compute the index of the field in its parent. 1973 unsigned i = 0; 1974 // FIXME: It would be nice if we didn't have to loop here! 1975 for (RecordDecl::field_iterator Field = RD->field_begin(), 1976 FieldEnd = RD->field_end(); 1977 Field != FieldEnd; ++Field, ++i) { 1978 if (*Field == MemberDecl) 1979 break; 1980 } 1981 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 1982 1983 // Compute the offset to the field 1984 int64_t OffsetInt = RL.getFieldOffset(i) / 1985 CGF.getContext().getCharWidth(); 1986 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 1987 1988 // Save the element type. 1989 CurrentType = MemberDecl->getType(); 1990 break; 1991 } 1992 1993 case OffsetOfExpr::OffsetOfNode::Identifier: 1994 llvm_unreachable("dependent __builtin_offsetof"); 1995 1996 case OffsetOfExpr::OffsetOfNode::Base: { 1997 if (ON.getBase()->isVirtual()) { 1998 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 1999 continue; 2000 } 2001 2002 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2003 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2004 2005 // Save the element type. 2006 CurrentType = ON.getBase()->getType(); 2007 2008 // Compute the offset to the base. 2009 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2010 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2011 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2012 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2013 break; 2014 } 2015 } 2016 Result = Builder.CreateAdd(Result, Offset); 2017 } 2018 return Result; 2019 } 2020 2021 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2022 /// argument of the sizeof expression as an integer. 2023 Value * 2024 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2025 const UnaryExprOrTypeTraitExpr *E) { 2026 QualType TypeToSize = E->getTypeOfArgument(); 2027 if (E->getKind() == UETT_SizeOf) { 2028 if (const VariableArrayType *VAT = 2029 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2030 if (E->isArgumentType()) { 2031 // sizeof(type) - make sure to emit the VLA size. 2032 CGF.EmitVariablyModifiedType(TypeToSize); 2033 } else { 2034 // C99 6.5.3.4p2: If the argument is an expression of type 2035 // VLA, it is evaluated. 2036 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2037 } 2038 2039 QualType eltType; 2040 llvm::Value *numElts; 2041 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2042 2043 llvm::Value *size = numElts; 2044 2045 // Scale the number of non-VLA elements by the non-VLA element size. 2046 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2047 if (!eltSize.isOne()) 2048 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2049 2050 return size; 2051 } 2052 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2053 auto Alignment = 2054 CGF.getContext() 2055 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2056 E->getTypeOfArgument()->getPointeeType())) 2057 .getQuantity(); 2058 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2059 } 2060 2061 // If this isn't sizeof(vla), the result must be constant; use the constant 2062 // folding logic so we don't have to duplicate it here. 2063 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2064 } 2065 2066 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2067 Expr *Op = E->getSubExpr(); 2068 if (Op->getType()->isAnyComplexType()) { 2069 // If it's an l-value, load through the appropriate subobject l-value. 2070 // Note that we have to ask E because Op might be an l-value that 2071 // this won't work for, e.g. an Obj-C property. 2072 if (E->isGLValue()) 2073 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2074 E->getExprLoc()).getScalarVal(); 2075 2076 // Otherwise, calculate and project. 2077 return CGF.EmitComplexExpr(Op, false, true).first; 2078 } 2079 2080 return Visit(Op); 2081 } 2082 2083 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2084 Expr *Op = E->getSubExpr(); 2085 if (Op->getType()->isAnyComplexType()) { 2086 // If it's an l-value, load through the appropriate subobject l-value. 2087 // Note that we have to ask E because Op might be an l-value that 2088 // this won't work for, e.g. an Obj-C property. 2089 if (Op->isGLValue()) 2090 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2091 E->getExprLoc()).getScalarVal(); 2092 2093 // Otherwise, calculate and project. 2094 return CGF.EmitComplexExpr(Op, true, false).second; 2095 } 2096 2097 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2098 // effects are evaluated, but not the actual value. 2099 if (Op->isGLValue()) 2100 CGF.EmitLValue(Op); 2101 else 2102 CGF.EmitScalarExpr(Op, true); 2103 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2104 } 2105 2106 //===----------------------------------------------------------------------===// 2107 // Binary Operators 2108 //===----------------------------------------------------------------------===// 2109 2110 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2111 TestAndClearIgnoreResultAssign(); 2112 BinOpInfo Result; 2113 Result.LHS = Visit(E->getLHS()); 2114 Result.RHS = Visit(E->getRHS()); 2115 Result.Ty = E->getType(); 2116 Result.Opcode = E->getOpcode(); 2117 Result.FPContractable = E->isFPContractable(); 2118 Result.E = E; 2119 return Result; 2120 } 2121 2122 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2123 const CompoundAssignOperator *E, 2124 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2125 Value *&Result) { 2126 QualType LHSTy = E->getLHS()->getType(); 2127 BinOpInfo OpInfo; 2128 2129 if (E->getComputationResultType()->isAnyComplexType()) 2130 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2131 2132 // Emit the RHS first. __block variables need to have the rhs evaluated 2133 // first, plus this should improve codegen a little. 2134 OpInfo.RHS = Visit(E->getRHS()); 2135 OpInfo.Ty = E->getComputationResultType(); 2136 OpInfo.Opcode = E->getOpcode(); 2137 OpInfo.FPContractable = false; 2138 OpInfo.E = E; 2139 // Load/convert the LHS. 2140 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2141 2142 llvm::PHINode *atomicPHI = nullptr; 2143 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2144 QualType type = atomicTy->getValueType(); 2145 if (!type->isBooleanType() && type->isIntegerType() && 2146 !(type->isUnsignedIntegerType() && 2147 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2148 CGF.getLangOpts().getSignedOverflowBehavior() != 2149 LangOptions::SOB_Trapping) { 2150 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2151 switch (OpInfo.Opcode) { 2152 // We don't have atomicrmw operands for *, %, /, <<, >> 2153 case BO_MulAssign: case BO_DivAssign: 2154 case BO_RemAssign: 2155 case BO_ShlAssign: 2156 case BO_ShrAssign: 2157 break; 2158 case BO_AddAssign: 2159 aop = llvm::AtomicRMWInst::Add; 2160 break; 2161 case BO_SubAssign: 2162 aop = llvm::AtomicRMWInst::Sub; 2163 break; 2164 case BO_AndAssign: 2165 aop = llvm::AtomicRMWInst::And; 2166 break; 2167 case BO_XorAssign: 2168 aop = llvm::AtomicRMWInst::Xor; 2169 break; 2170 case BO_OrAssign: 2171 aop = llvm::AtomicRMWInst::Or; 2172 break; 2173 default: 2174 llvm_unreachable("Invalid compound assignment type"); 2175 } 2176 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2177 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS, 2178 E->getRHS()->getType(), LHSTy), LHSTy); 2179 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt, 2180 llvm::SequentiallyConsistent); 2181 return LHSLV; 2182 } 2183 } 2184 // FIXME: For floating point types, we should be saving and restoring the 2185 // floating point environment in the loop. 2186 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2187 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2188 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2189 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2190 Builder.CreateBr(opBB); 2191 Builder.SetInsertPoint(opBB); 2192 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2193 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2194 OpInfo.LHS = atomicPHI; 2195 } 2196 else 2197 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2198 2199 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy, 2200 E->getComputationLHSType()); 2201 2202 // Expand the binary operator. 2203 Result = (this->*Func)(OpInfo); 2204 2205 // Convert the result back to the LHS type. 2206 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy); 2207 2208 if (atomicPHI) { 2209 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2210 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2211 auto Pair = CGF.EmitAtomicCompareExchange( 2212 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2213 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2214 llvm::Value *success = Pair.second; 2215 atomicPHI->addIncoming(old, opBB); 2216 Builder.CreateCondBr(success, contBB, opBB); 2217 Builder.SetInsertPoint(contBB); 2218 return LHSLV; 2219 } 2220 2221 // Store the result value into the LHS lvalue. Bit-fields are handled 2222 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2223 // 'An assignment expression has the value of the left operand after the 2224 // assignment...'. 2225 if (LHSLV.isBitField()) 2226 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2227 else 2228 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2229 2230 return LHSLV; 2231 } 2232 2233 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2234 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2235 bool Ignore = TestAndClearIgnoreResultAssign(); 2236 Value *RHS; 2237 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2238 2239 // If the result is clearly ignored, return now. 2240 if (Ignore) 2241 return nullptr; 2242 2243 // The result of an assignment in C is the assigned r-value. 2244 if (!CGF.getLangOpts().CPlusPlus) 2245 return RHS; 2246 2247 // If the lvalue is non-volatile, return the computed value of the assignment. 2248 if (!LHS.isVolatileQualified()) 2249 return RHS; 2250 2251 // Otherwise, reload the value. 2252 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2253 } 2254 2255 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2256 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2257 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2258 2259 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2260 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2261 SanitizerKind::IntegerDivideByZero)); 2262 } 2263 2264 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2265 Ops.Ty->hasSignedIntegerRepresentation()) { 2266 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2267 2268 llvm::Value *IntMin = 2269 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2270 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2271 2272 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2273 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2274 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2275 Checks.push_back( 2276 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2277 } 2278 2279 if (Checks.size() > 0) 2280 EmitBinOpCheck(Checks, Ops); 2281 } 2282 2283 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2284 { 2285 CodeGenFunction::SanitizerScope SanScope(&CGF); 2286 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2287 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2288 Ops.Ty->isIntegerType()) { 2289 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2290 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2291 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2292 Ops.Ty->isRealFloatingType()) { 2293 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2294 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2295 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2296 Ops); 2297 } 2298 } 2299 2300 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2301 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2302 if (CGF.getLangOpts().OpenCL) { 2303 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp 2304 llvm::Type *ValTy = Val->getType(); 2305 if (ValTy->isFloatTy() || 2306 (isa<llvm::VectorType>(ValTy) && 2307 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2308 CGF.SetFPAccuracy(Val, 2.5); 2309 } 2310 return Val; 2311 } 2312 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2313 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2314 else 2315 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2316 } 2317 2318 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2319 // Rem in C can't be a floating point type: C99 6.5.5p2. 2320 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2321 CodeGenFunction::SanitizerScope SanScope(&CGF); 2322 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2323 2324 if (Ops.Ty->isIntegerType()) 2325 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2326 } 2327 2328 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2329 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2330 else 2331 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2332 } 2333 2334 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2335 unsigned IID; 2336 unsigned OpID = 0; 2337 2338 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2339 switch (Ops.Opcode) { 2340 case BO_Add: 2341 case BO_AddAssign: 2342 OpID = 1; 2343 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2344 llvm::Intrinsic::uadd_with_overflow; 2345 break; 2346 case BO_Sub: 2347 case BO_SubAssign: 2348 OpID = 2; 2349 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2350 llvm::Intrinsic::usub_with_overflow; 2351 break; 2352 case BO_Mul: 2353 case BO_MulAssign: 2354 OpID = 3; 2355 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2356 llvm::Intrinsic::umul_with_overflow; 2357 break; 2358 default: 2359 llvm_unreachable("Unsupported operation for overflow detection"); 2360 } 2361 OpID <<= 1; 2362 if (isSigned) 2363 OpID |= 1; 2364 2365 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2366 2367 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2368 2369 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2370 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2371 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2372 2373 // Handle overflow with llvm.trap if no custom handler has been specified. 2374 const std::string *handlerName = 2375 &CGF.getLangOpts().OverflowHandler; 2376 if (handlerName->empty()) { 2377 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2378 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2379 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2380 CodeGenFunction::SanitizerScope SanScope(&CGF); 2381 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2382 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2383 : SanitizerKind::UnsignedIntegerOverflow; 2384 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2385 } else 2386 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2387 return result; 2388 } 2389 2390 // Branch in case of overflow. 2391 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2392 llvm::Function::iterator insertPt = initialBB; 2393 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn, 2394 std::next(insertPt)); 2395 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2396 2397 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2398 2399 // If an overflow handler is set, then we want to call it and then use its 2400 // result, if it returns. 2401 Builder.SetInsertPoint(overflowBB); 2402 2403 // Get the overflow handler. 2404 llvm::Type *Int8Ty = CGF.Int8Ty; 2405 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2406 llvm::FunctionType *handlerTy = 2407 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2408 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2409 2410 // Sign extend the args to 64-bit, so that we can use the same handler for 2411 // all types of overflow. 2412 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2413 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2414 2415 // Call the handler with the two arguments, the operation, and the size of 2416 // the result. 2417 llvm::Value *handlerArgs[] = { 2418 lhs, 2419 rhs, 2420 Builder.getInt8(OpID), 2421 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2422 }; 2423 llvm::Value *handlerResult = 2424 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2425 2426 // Truncate the result back to the desired size. 2427 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2428 Builder.CreateBr(continueBB); 2429 2430 Builder.SetInsertPoint(continueBB); 2431 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2432 phi->addIncoming(result, initialBB); 2433 phi->addIncoming(handlerResult, overflowBB); 2434 2435 return phi; 2436 } 2437 2438 /// Emit pointer + index arithmetic. 2439 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2440 const BinOpInfo &op, 2441 bool isSubtraction) { 2442 // Must have binary (not unary) expr here. Unary pointer 2443 // increment/decrement doesn't use this path. 2444 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2445 2446 Value *pointer = op.LHS; 2447 Expr *pointerOperand = expr->getLHS(); 2448 Value *index = op.RHS; 2449 Expr *indexOperand = expr->getRHS(); 2450 2451 // In a subtraction, the LHS is always the pointer. 2452 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2453 std::swap(pointer, index); 2454 std::swap(pointerOperand, indexOperand); 2455 } 2456 2457 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2458 if (width != CGF.PointerWidthInBits) { 2459 // Zero-extend or sign-extend the pointer value according to 2460 // whether the index is signed or not. 2461 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2462 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned, 2463 "idx.ext"); 2464 } 2465 2466 // If this is subtraction, negate the index. 2467 if (isSubtraction) 2468 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2469 2470 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2471 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2472 /*Accessed*/ false); 2473 2474 const PointerType *pointerType 2475 = pointerOperand->getType()->getAs<PointerType>(); 2476 if (!pointerType) { 2477 QualType objectType = pointerOperand->getType() 2478 ->castAs<ObjCObjectPointerType>() 2479 ->getPointeeType(); 2480 llvm::Value *objectSize 2481 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2482 2483 index = CGF.Builder.CreateMul(index, objectSize); 2484 2485 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2486 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2487 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2488 } 2489 2490 QualType elementType = pointerType->getPointeeType(); 2491 if (const VariableArrayType *vla 2492 = CGF.getContext().getAsVariableArrayType(elementType)) { 2493 // The element count here is the total number of non-VLA elements. 2494 llvm::Value *numElements = CGF.getVLASize(vla).first; 2495 2496 // Effectively, the multiply by the VLA size is part of the GEP. 2497 // GEP indexes are signed, and scaling an index isn't permitted to 2498 // signed-overflow, so we use the same semantics for our explicit 2499 // multiply. We suppress this if overflow is not undefined behavior. 2500 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2501 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2502 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2503 } else { 2504 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2505 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2506 } 2507 return pointer; 2508 } 2509 2510 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2511 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2512 // future proof. 2513 if (elementType->isVoidType() || elementType->isFunctionType()) { 2514 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2515 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2516 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2517 } 2518 2519 if (CGF.getLangOpts().isSignedOverflowDefined()) 2520 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2521 2522 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2523 } 2524 2525 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2526 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2527 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2528 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2529 // efficient operations. 2530 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2531 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2532 bool negMul, bool negAdd) { 2533 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2534 2535 Value *MulOp0 = MulOp->getOperand(0); 2536 Value *MulOp1 = MulOp->getOperand(1); 2537 if (negMul) { 2538 MulOp0 = 2539 Builder.CreateFSub( 2540 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2541 "neg"); 2542 } else if (negAdd) { 2543 Addend = 2544 Builder.CreateFSub( 2545 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2546 "neg"); 2547 } 2548 2549 Value *FMulAdd = Builder.CreateCall( 2550 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2551 {MulOp0, MulOp1, Addend}); 2552 MulOp->eraseFromParent(); 2553 2554 return FMulAdd; 2555 } 2556 2557 // Check whether it would be legal to emit an fmuladd intrinsic call to 2558 // represent op and if so, build the fmuladd. 2559 // 2560 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2561 // Does NOT check the type of the operation - it's assumed that this function 2562 // will be called from contexts where it's known that the type is contractable. 2563 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2564 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2565 bool isSub=false) { 2566 2567 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2568 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2569 "Only fadd/fsub can be the root of an fmuladd."); 2570 2571 // Check whether this op is marked as fusable. 2572 if (!op.FPContractable) 2573 return nullptr; 2574 2575 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is 2576 // either disabled, or handled entirely by the LLVM backend). 2577 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On) 2578 return nullptr; 2579 2580 // We have a potentially fusable op. Look for a mul on one of the operands. 2581 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2582 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2583 assert(LHSBinOp->getNumUses() == 0 && 2584 "Operations with multiple uses shouldn't be contracted."); 2585 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2586 } 2587 } else if (llvm::BinaryOperator* RHSBinOp = 2588 dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2589 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) { 2590 assert(RHSBinOp->getNumUses() == 0 && 2591 "Operations with multiple uses shouldn't be contracted."); 2592 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2593 } 2594 } 2595 2596 return nullptr; 2597 } 2598 2599 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2600 if (op.LHS->getType()->isPointerTy() || 2601 op.RHS->getType()->isPointerTy()) 2602 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2603 2604 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2605 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2606 case LangOptions::SOB_Defined: 2607 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2608 case LangOptions::SOB_Undefined: 2609 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2610 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2611 // Fall through. 2612 case LangOptions::SOB_Trapping: 2613 return EmitOverflowCheckedBinOp(op); 2614 } 2615 } 2616 2617 if (op.Ty->isUnsignedIntegerType() && 2618 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2619 return EmitOverflowCheckedBinOp(op); 2620 2621 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2622 // Try to form an fmuladd. 2623 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2624 return FMulAdd; 2625 2626 return Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2627 } 2628 2629 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2630 } 2631 2632 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2633 // The LHS is always a pointer if either side is. 2634 if (!op.LHS->getType()->isPointerTy()) { 2635 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2636 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2637 case LangOptions::SOB_Defined: 2638 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2639 case LangOptions::SOB_Undefined: 2640 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2641 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2642 // Fall through. 2643 case LangOptions::SOB_Trapping: 2644 return EmitOverflowCheckedBinOp(op); 2645 } 2646 } 2647 2648 if (op.Ty->isUnsignedIntegerType() && 2649 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) 2650 return EmitOverflowCheckedBinOp(op); 2651 2652 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2653 // Try to form an fmuladd. 2654 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2655 return FMulAdd; 2656 return Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2657 } 2658 2659 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2660 } 2661 2662 // If the RHS is not a pointer, then we have normal pointer 2663 // arithmetic. 2664 if (!op.RHS->getType()->isPointerTy()) 2665 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2666 2667 // Otherwise, this is a pointer subtraction. 2668 2669 // Do the raw subtraction part. 2670 llvm::Value *LHS 2671 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2672 llvm::Value *RHS 2673 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2674 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2675 2676 // Okay, figure out the element size. 2677 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2678 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2679 2680 llvm::Value *divisor = nullptr; 2681 2682 // For a variable-length array, this is going to be non-constant. 2683 if (const VariableArrayType *vla 2684 = CGF.getContext().getAsVariableArrayType(elementType)) { 2685 llvm::Value *numElements; 2686 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2687 2688 divisor = numElements; 2689 2690 // Scale the number of non-VLA elements by the non-VLA element size. 2691 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2692 if (!eltSize.isOne()) 2693 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2694 2695 // For everything elese, we can just compute it, safe in the 2696 // assumption that Sema won't let anything through that we can't 2697 // safely compute the size of. 2698 } else { 2699 CharUnits elementSize; 2700 // Handle GCC extension for pointer arithmetic on void* and 2701 // function pointer types. 2702 if (elementType->isVoidType() || elementType->isFunctionType()) 2703 elementSize = CharUnits::One(); 2704 else 2705 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2706 2707 // Don't even emit the divide for element size of 1. 2708 if (elementSize.isOne()) 2709 return diffInChars; 2710 2711 divisor = CGF.CGM.getSize(elementSize); 2712 } 2713 2714 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2715 // pointer difference in C is only defined in the case where both operands 2716 // are pointing to elements of an array. 2717 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2718 } 2719 2720 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2721 llvm::IntegerType *Ty; 2722 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2723 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2724 else 2725 Ty = cast<llvm::IntegerType>(LHS->getType()); 2726 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2727 } 2728 2729 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2730 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2731 // RHS to the same size as the LHS. 2732 Value *RHS = Ops.RHS; 2733 if (Ops.LHS->getType() != RHS->getType()) 2734 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2735 2736 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2737 Ops.Ty->hasSignedIntegerRepresentation(); 2738 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2739 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2740 if (CGF.getLangOpts().OpenCL) 2741 RHS = 2742 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2743 else if ((SanitizeBase || SanitizeExponent) && 2744 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2745 CodeGenFunction::SanitizerScope SanScope(&CGF); 2746 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2747 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS); 2748 llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne); 2749 2750 if (SanitizeExponent) { 2751 Checks.push_back( 2752 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2753 } 2754 2755 if (SanitizeBase) { 2756 // Check whether we are shifting any non-zero bits off the top of the 2757 // integer. We only emit this check if exponent is valid - otherwise 2758 // instructions below will have undefined behavior themselves. 2759 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2760 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2761 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2762 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2763 CGF.EmitBlock(CheckShiftBase); 2764 llvm::Value *BitsShiftedOff = 2765 Builder.CreateLShr(Ops.LHS, 2766 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros", 2767 /*NUW*/true, /*NSW*/true), 2768 "shl.check"); 2769 if (CGF.getLangOpts().CPlusPlus) { 2770 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2771 // Under C++11's rules, shifting a 1 bit into the sign bit is 2772 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2773 // define signed left shifts, so we use the C99 and C++11 rules there). 2774 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2775 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2776 } 2777 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2778 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2779 CGF.EmitBlock(Cont); 2780 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2781 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2782 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2783 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2784 } 2785 2786 assert(!Checks.empty()); 2787 EmitBinOpCheck(Checks, Ops); 2788 } 2789 2790 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2791 } 2792 2793 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2794 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2795 // RHS to the same size as the LHS. 2796 Value *RHS = Ops.RHS; 2797 if (Ops.LHS->getType() != RHS->getType()) 2798 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2799 2800 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2801 if (CGF.getLangOpts().OpenCL) 2802 RHS = 2803 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2804 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2805 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2806 CodeGenFunction::SanitizerScope SanScope(&CGF); 2807 llvm::Value *Valid = 2808 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 2809 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 2810 } 2811 2812 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2813 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 2814 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 2815 } 2816 2817 enum IntrinsicType { VCMPEQ, VCMPGT }; 2818 // return corresponding comparison intrinsic for given vector type 2819 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 2820 BuiltinType::Kind ElemKind) { 2821 switch (ElemKind) { 2822 default: llvm_unreachable("unexpected element type"); 2823 case BuiltinType::Char_U: 2824 case BuiltinType::UChar: 2825 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2826 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 2827 case BuiltinType::Char_S: 2828 case BuiltinType::SChar: 2829 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 2830 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 2831 case BuiltinType::UShort: 2832 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2833 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 2834 case BuiltinType::Short: 2835 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 2836 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 2837 case BuiltinType::UInt: 2838 case BuiltinType::ULong: 2839 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2840 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 2841 case BuiltinType::Int: 2842 case BuiltinType::Long: 2843 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 2844 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 2845 case BuiltinType::Float: 2846 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 2847 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 2848 } 2849 } 2850 2851 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc, 2852 unsigned SICmpOpc, unsigned FCmpOpc) { 2853 TestAndClearIgnoreResultAssign(); 2854 Value *Result; 2855 QualType LHSTy = E->getLHS()->getType(); 2856 QualType RHSTy = E->getRHS()->getType(); 2857 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 2858 assert(E->getOpcode() == BO_EQ || 2859 E->getOpcode() == BO_NE); 2860 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 2861 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 2862 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 2863 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 2864 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 2865 Value *LHS = Visit(E->getLHS()); 2866 Value *RHS = Visit(E->getRHS()); 2867 2868 // If AltiVec, the comparison results in a numeric type, so we use 2869 // intrinsics comparing vectors and giving 0 or 1 as a result 2870 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 2871 // constants for mapping CR6 register bits to predicate result 2872 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 2873 2874 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 2875 2876 // in several cases vector arguments order will be reversed 2877 Value *FirstVecArg = LHS, 2878 *SecondVecArg = RHS; 2879 2880 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 2881 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 2882 BuiltinType::Kind ElementKind = BTy->getKind(); 2883 2884 switch(E->getOpcode()) { 2885 default: llvm_unreachable("is not a comparison operation"); 2886 case BO_EQ: 2887 CR6 = CR6_LT; 2888 ID = GetIntrinsic(VCMPEQ, ElementKind); 2889 break; 2890 case BO_NE: 2891 CR6 = CR6_EQ; 2892 ID = GetIntrinsic(VCMPEQ, ElementKind); 2893 break; 2894 case BO_LT: 2895 CR6 = CR6_LT; 2896 ID = GetIntrinsic(VCMPGT, ElementKind); 2897 std::swap(FirstVecArg, SecondVecArg); 2898 break; 2899 case BO_GT: 2900 CR6 = CR6_LT; 2901 ID = GetIntrinsic(VCMPGT, ElementKind); 2902 break; 2903 case BO_LE: 2904 if (ElementKind == BuiltinType::Float) { 2905 CR6 = CR6_LT; 2906 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2907 std::swap(FirstVecArg, SecondVecArg); 2908 } 2909 else { 2910 CR6 = CR6_EQ; 2911 ID = GetIntrinsic(VCMPGT, ElementKind); 2912 } 2913 break; 2914 case BO_GE: 2915 if (ElementKind == BuiltinType::Float) { 2916 CR6 = CR6_LT; 2917 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 2918 } 2919 else { 2920 CR6 = CR6_EQ; 2921 ID = GetIntrinsic(VCMPGT, ElementKind); 2922 std::swap(FirstVecArg, SecondVecArg); 2923 } 2924 break; 2925 } 2926 2927 Value *CR6Param = Builder.getInt32(CR6); 2928 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 2929 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 2930 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 2931 } 2932 2933 if (LHS->getType()->isFPOrFPVectorTy()) { 2934 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc, 2935 LHS, RHS, "cmp"); 2936 } else if (LHSTy->hasSignedIntegerRepresentation()) { 2937 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc, 2938 LHS, RHS, "cmp"); 2939 } else { 2940 // Unsigned integers and pointers. 2941 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2942 LHS, RHS, "cmp"); 2943 } 2944 2945 // If this is a vector comparison, sign extend the result to the appropriate 2946 // vector integer type and return it (don't convert to bool). 2947 if (LHSTy->isVectorType()) 2948 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2949 2950 } else { 2951 // Complex Comparison: can only be an equality comparison. 2952 CodeGenFunction::ComplexPairTy LHS, RHS; 2953 QualType CETy; 2954 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 2955 LHS = CGF.EmitComplexExpr(E->getLHS()); 2956 CETy = CTy->getElementType(); 2957 } else { 2958 LHS.first = Visit(E->getLHS()); 2959 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 2960 CETy = LHSTy; 2961 } 2962 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 2963 RHS = CGF.EmitComplexExpr(E->getRHS()); 2964 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 2965 CTy->getElementType()) && 2966 "The element types must always match."); 2967 (void)CTy; 2968 } else { 2969 RHS.first = Visit(E->getRHS()); 2970 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 2971 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 2972 "The element types must always match."); 2973 } 2974 2975 Value *ResultR, *ResultI; 2976 if (CETy->isRealFloatingType()) { 2977 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2978 LHS.first, RHS.first, "cmp.r"); 2979 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc, 2980 LHS.second, RHS.second, "cmp.i"); 2981 } else { 2982 // Complex comparisons can only be equality comparisons. As such, signed 2983 // and unsigned opcodes are the same. 2984 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2985 LHS.first, RHS.first, "cmp.r"); 2986 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc, 2987 LHS.second, RHS.second, "cmp.i"); 2988 } 2989 2990 if (E->getOpcode() == BO_EQ) { 2991 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 2992 } else { 2993 assert(E->getOpcode() == BO_NE && 2994 "Complex comparison other than == or != ?"); 2995 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 2996 } 2997 } 2998 2999 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType()); 3000 } 3001 3002 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3003 bool Ignore = TestAndClearIgnoreResultAssign(); 3004 3005 Value *RHS; 3006 LValue LHS; 3007 3008 switch (E->getLHS()->getType().getObjCLifetime()) { 3009 case Qualifiers::OCL_Strong: 3010 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3011 break; 3012 3013 case Qualifiers::OCL_Autoreleasing: 3014 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3015 break; 3016 3017 case Qualifiers::OCL_Weak: 3018 RHS = Visit(E->getRHS()); 3019 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3020 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3021 break; 3022 3023 // No reason to do any of these differently. 3024 case Qualifiers::OCL_None: 3025 case Qualifiers::OCL_ExplicitNone: 3026 // __block variables need to have the rhs evaluated first, plus 3027 // this should improve codegen just a little. 3028 RHS = Visit(E->getRHS()); 3029 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3030 3031 // Store the value into the LHS. Bit-fields are handled specially 3032 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3033 // 'An assignment expression has the value of the left operand after 3034 // the assignment...'. 3035 if (LHS.isBitField()) 3036 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3037 else 3038 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3039 } 3040 3041 // If the result is clearly ignored, return now. 3042 if (Ignore) 3043 return nullptr; 3044 3045 // The result of an assignment in C is the assigned r-value. 3046 if (!CGF.getLangOpts().CPlusPlus) 3047 return RHS; 3048 3049 // If the lvalue is non-volatile, return the computed value of the assignment. 3050 if (!LHS.isVolatileQualified()) 3051 return RHS; 3052 3053 // Otherwise, reload the value. 3054 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3055 } 3056 3057 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3058 // Perform vector logical and on comparisons with zero vectors. 3059 if (E->getType()->isVectorType()) { 3060 CGF.incrementProfileCounter(E); 3061 3062 Value *LHS = Visit(E->getLHS()); 3063 Value *RHS = Visit(E->getRHS()); 3064 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3065 if (LHS->getType()->isFPOrFPVectorTy()) { 3066 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3067 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3068 } else { 3069 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3070 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3071 } 3072 Value *And = Builder.CreateAnd(LHS, RHS); 3073 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3074 } 3075 3076 llvm::Type *ResTy = ConvertType(E->getType()); 3077 3078 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3079 // If we have 1 && X, just emit X without inserting the control flow. 3080 bool LHSCondVal; 3081 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3082 if (LHSCondVal) { // If we have 1 && X, just emit X. 3083 CGF.incrementProfileCounter(E); 3084 3085 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3086 // ZExt result to int or bool. 3087 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3088 } 3089 3090 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3091 if (!CGF.ContainsLabel(E->getRHS())) 3092 return llvm::Constant::getNullValue(ResTy); 3093 } 3094 3095 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3096 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3097 3098 CodeGenFunction::ConditionalEvaluation eval(CGF); 3099 3100 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3101 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3102 CGF.getProfileCount(E->getRHS())); 3103 3104 // Any edges into the ContBlock are now from an (indeterminate number of) 3105 // edges from this first condition. All of these values will be false. Start 3106 // setting up the PHI node in the Cont Block for this. 3107 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3108 "", ContBlock); 3109 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3110 PI != PE; ++PI) 3111 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3112 3113 eval.begin(CGF); 3114 CGF.EmitBlock(RHSBlock); 3115 CGF.incrementProfileCounter(E); 3116 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3117 eval.end(CGF); 3118 3119 // Reaquire the RHS block, as there may be subblocks inserted. 3120 RHSBlock = Builder.GetInsertBlock(); 3121 3122 // Emit an unconditional branch from this block to ContBlock. 3123 { 3124 // There is no need to emit line number for unconditional branch. 3125 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3126 CGF.EmitBlock(ContBlock); 3127 } 3128 // Insert an entry into the phi node for the edge with the value of RHSCond. 3129 PN->addIncoming(RHSCond, RHSBlock); 3130 3131 // ZExt result to int. 3132 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3133 } 3134 3135 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3136 // Perform vector logical or on comparisons with zero vectors. 3137 if (E->getType()->isVectorType()) { 3138 CGF.incrementProfileCounter(E); 3139 3140 Value *LHS = Visit(E->getLHS()); 3141 Value *RHS = Visit(E->getRHS()); 3142 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3143 if (LHS->getType()->isFPOrFPVectorTy()) { 3144 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3145 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3146 } else { 3147 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3148 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3149 } 3150 Value *Or = Builder.CreateOr(LHS, RHS); 3151 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3152 } 3153 3154 llvm::Type *ResTy = ConvertType(E->getType()); 3155 3156 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3157 // If we have 0 || X, just emit X without inserting the control flow. 3158 bool LHSCondVal; 3159 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3160 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3161 CGF.incrementProfileCounter(E); 3162 3163 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3164 // ZExt result to int or bool. 3165 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3166 } 3167 3168 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3169 if (!CGF.ContainsLabel(E->getRHS())) 3170 return llvm::ConstantInt::get(ResTy, 1); 3171 } 3172 3173 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3174 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3175 3176 CodeGenFunction::ConditionalEvaluation eval(CGF); 3177 3178 // Branch on the LHS first. If it is true, go to the success (cont) block. 3179 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3180 CGF.getCurrentProfileCount() - 3181 CGF.getProfileCount(E->getRHS())); 3182 3183 // Any edges into the ContBlock are now from an (indeterminate number of) 3184 // edges from this first condition. All of these values will be true. Start 3185 // setting up the PHI node in the Cont Block for this. 3186 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3187 "", ContBlock); 3188 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3189 PI != PE; ++PI) 3190 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3191 3192 eval.begin(CGF); 3193 3194 // Emit the RHS condition as a bool value. 3195 CGF.EmitBlock(RHSBlock); 3196 CGF.incrementProfileCounter(E); 3197 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3198 3199 eval.end(CGF); 3200 3201 // Reaquire the RHS block, as there may be subblocks inserted. 3202 RHSBlock = Builder.GetInsertBlock(); 3203 3204 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3205 // into the phi node for the edge with the value of RHSCond. 3206 CGF.EmitBlock(ContBlock); 3207 PN->addIncoming(RHSCond, RHSBlock); 3208 3209 // ZExt result to int. 3210 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3211 } 3212 3213 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3214 CGF.EmitIgnoredExpr(E->getLHS()); 3215 CGF.EnsureInsertPoint(); 3216 return Visit(E->getRHS()); 3217 } 3218 3219 //===----------------------------------------------------------------------===// 3220 // Other Operators 3221 //===----------------------------------------------------------------------===// 3222 3223 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3224 /// expression is cheap enough and side-effect-free enough to evaluate 3225 /// unconditionally instead of conditionally. This is used to convert control 3226 /// flow into selects in some cases. 3227 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3228 CodeGenFunction &CGF) { 3229 // Anything that is an integer or floating point constant is fine. 3230 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3231 3232 // Even non-volatile automatic variables can't be evaluated unconditionally. 3233 // Referencing a thread_local may cause non-trivial initialization work to 3234 // occur. If we're inside a lambda and one of the variables is from the scope 3235 // outside the lambda, that function may have returned already. Reading its 3236 // locals is a bad idea. Also, these reads may introduce races there didn't 3237 // exist in the source-level program. 3238 } 3239 3240 3241 Value *ScalarExprEmitter:: 3242 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3243 TestAndClearIgnoreResultAssign(); 3244 3245 // Bind the common expression if necessary. 3246 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3247 3248 Expr *condExpr = E->getCond(); 3249 Expr *lhsExpr = E->getTrueExpr(); 3250 Expr *rhsExpr = E->getFalseExpr(); 3251 3252 // If the condition constant folds and can be elided, try to avoid emitting 3253 // the condition and the dead arm. 3254 bool CondExprBool; 3255 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3256 Expr *live = lhsExpr, *dead = rhsExpr; 3257 if (!CondExprBool) std::swap(live, dead); 3258 3259 // If the dead side doesn't have labels we need, just emit the Live part. 3260 if (!CGF.ContainsLabel(dead)) { 3261 if (CondExprBool) 3262 CGF.incrementProfileCounter(E); 3263 Value *Result = Visit(live); 3264 3265 // If the live part is a throw expression, it acts like it has a void 3266 // type, so evaluating it returns a null Value*. However, a conditional 3267 // with non-void type must return a non-null Value*. 3268 if (!Result && !E->getType()->isVoidType()) 3269 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3270 3271 return Result; 3272 } 3273 } 3274 3275 // OpenCL: If the condition is a vector, we can treat this condition like 3276 // the select function. 3277 if (CGF.getLangOpts().OpenCL 3278 && condExpr->getType()->isVectorType()) { 3279 CGF.incrementProfileCounter(E); 3280 3281 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3282 llvm::Value *LHS = Visit(lhsExpr); 3283 llvm::Value *RHS = Visit(rhsExpr); 3284 3285 llvm::Type *condType = ConvertType(condExpr->getType()); 3286 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3287 3288 unsigned numElem = vecTy->getNumElements(); 3289 llvm::Type *elemType = vecTy->getElementType(); 3290 3291 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3292 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3293 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3294 llvm::VectorType::get(elemType, 3295 numElem), 3296 "sext"); 3297 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3298 3299 // Cast float to int to perform ANDs if necessary. 3300 llvm::Value *RHSTmp = RHS; 3301 llvm::Value *LHSTmp = LHS; 3302 bool wasCast = false; 3303 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3304 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3305 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3306 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3307 wasCast = true; 3308 } 3309 3310 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3311 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3312 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3313 if (wasCast) 3314 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3315 3316 return tmp5; 3317 } 3318 3319 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3320 // select instead of as control flow. We can only do this if it is cheap and 3321 // safe to evaluate the LHS and RHS unconditionally. 3322 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3323 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3324 CGF.incrementProfileCounter(E); 3325 3326 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3327 llvm::Value *LHS = Visit(lhsExpr); 3328 llvm::Value *RHS = Visit(rhsExpr); 3329 if (!LHS) { 3330 // If the conditional has void type, make sure we return a null Value*. 3331 assert(!RHS && "LHS and RHS types must match"); 3332 return nullptr; 3333 } 3334 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3335 } 3336 3337 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3338 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3339 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3340 3341 CodeGenFunction::ConditionalEvaluation eval(CGF); 3342 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3343 CGF.getProfileCount(lhsExpr)); 3344 3345 CGF.EmitBlock(LHSBlock); 3346 CGF.incrementProfileCounter(E); 3347 eval.begin(CGF); 3348 Value *LHS = Visit(lhsExpr); 3349 eval.end(CGF); 3350 3351 LHSBlock = Builder.GetInsertBlock(); 3352 Builder.CreateBr(ContBlock); 3353 3354 CGF.EmitBlock(RHSBlock); 3355 eval.begin(CGF); 3356 Value *RHS = Visit(rhsExpr); 3357 eval.end(CGF); 3358 3359 RHSBlock = Builder.GetInsertBlock(); 3360 CGF.EmitBlock(ContBlock); 3361 3362 // If the LHS or RHS is a throw expression, it will be legitimately null. 3363 if (!LHS) 3364 return RHS; 3365 if (!RHS) 3366 return LHS; 3367 3368 // Create a PHI node for the real part. 3369 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3370 PN->addIncoming(LHS, LHSBlock); 3371 PN->addIncoming(RHS, RHSBlock); 3372 return PN; 3373 } 3374 3375 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3376 return Visit(E->getChosenSubExpr()); 3377 } 3378 3379 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3380 QualType Ty = VE->getType(); 3381 3382 if (Ty->isVariablyModifiedType()) 3383 CGF.EmitVariablyModifiedType(Ty); 3384 3385 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr()); 3386 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType()); 3387 llvm::Type *ArgTy = ConvertType(VE->getType()); 3388 3389 // If EmitVAArg fails, we fall back to the LLVM instruction. 3390 if (!ArgPtr) 3391 return Builder.CreateVAArg(ArgValue, ArgTy); 3392 3393 // FIXME Volatility. 3394 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3395 3396 // If EmitVAArg promoted the type, we must truncate it. 3397 if (ArgTy != Val->getType()) { 3398 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3399 Val = Builder.CreateIntToPtr(Val, ArgTy); 3400 else 3401 Val = Builder.CreateTrunc(Val, ArgTy); 3402 } 3403 3404 return Val; 3405 } 3406 3407 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3408 return CGF.EmitBlockLiteral(block); 3409 } 3410 3411 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3412 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3413 llvm::Type *DstTy = ConvertType(E->getType()); 3414 3415 // Going from vec4->vec3 or vec3->vec4 is a special case and requires 3416 // a shuffle vector instead of a bitcast. 3417 llvm::Type *SrcTy = Src->getType(); 3418 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) { 3419 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements(); 3420 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements(); 3421 if ((numElementsDst == 3 && numElementsSrc == 4) 3422 || (numElementsDst == 4 && numElementsSrc == 3)) { 3423 3424 3425 // In the case of going from int4->float3, a bitcast is needed before 3426 // doing a shuffle. 3427 llvm::Type *srcElemTy = 3428 cast<llvm::VectorType>(SrcTy)->getElementType(); 3429 llvm::Type *dstElemTy = 3430 cast<llvm::VectorType>(DstTy)->getElementType(); 3431 3432 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy()) 3433 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) { 3434 // Create a float type of the same size as the source or destination. 3435 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy, 3436 numElementsSrc); 3437 3438 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast"); 3439 } 3440 3441 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3442 3443 SmallVector<llvm::Constant*, 3> Args; 3444 Args.push_back(Builder.getInt32(0)); 3445 Args.push_back(Builder.getInt32(1)); 3446 Args.push_back(Builder.getInt32(2)); 3447 3448 if (numElementsDst == 4) 3449 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3450 3451 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3452 3453 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype"); 3454 } 3455 } 3456 3457 return Builder.CreateBitCast(Src, DstTy, "astype"); 3458 } 3459 3460 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3461 return CGF.EmitAtomicExpr(E).getScalarVal(); 3462 } 3463 3464 //===----------------------------------------------------------------------===// 3465 // Entry Point into this File 3466 //===----------------------------------------------------------------------===// 3467 3468 /// EmitScalarExpr - Emit the computation of the specified expression of scalar 3469 /// type, ignoring the result. 3470 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3471 assert(E && hasScalarEvaluationKind(E->getType()) && 3472 "Invalid scalar expression to emit"); 3473 3474 return ScalarExprEmitter(*this, IgnoreResultAssign) 3475 .Visit(const_cast<Expr *>(E)); 3476 } 3477 3478 /// EmitScalarConversion - Emit a conversion from the specified type to the 3479 /// specified destination type, both of which are LLVM scalar types. 3480 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3481 QualType DstTy) { 3482 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3483 "Invalid scalar expression to emit"); 3484 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy); 3485 } 3486 3487 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex 3488 /// type to the specified destination type, where the destination type is an 3489 /// LLVM scalar type. 3490 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3491 QualType SrcTy, 3492 QualType DstTy) { 3493 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3494 "Invalid complex -> scalar conversion"); 3495 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy, 3496 DstTy); 3497 } 3498 3499 3500 llvm::Value *CodeGenFunction:: 3501 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3502 bool isInc, bool isPre) { 3503 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3504 } 3505 3506 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3507 llvm::Value *V; 3508 // object->isa or (*object).isa 3509 // Generate code as for: *(Class*)object 3510 // build Class* type 3511 llvm::Type *ClassPtrTy = ConvertType(E->getType()); 3512 3513 Expr *BaseExpr = E->getBase(); 3514 if (BaseExpr->isRValue()) { 3515 V = CreateMemTemp(E->getType(), "resval"); 3516 llvm::Value *Src = EmitScalarExpr(BaseExpr); 3517 Builder.CreateStore(Src, V); 3518 V = ScalarExprEmitter(*this).EmitLoadOfLValue( 3519 MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc()); 3520 } else { 3521 if (E->isArrow()) 3522 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr); 3523 else 3524 V = EmitLValue(BaseExpr).getAddress(); 3525 } 3526 3527 // build Class* type 3528 ClassPtrTy = ClassPtrTy->getPointerTo(); 3529 V = Builder.CreateBitCast(V, ClassPtrTy); 3530 return MakeNaturalAlignAddrLValue(V, E->getType()); 3531 } 3532 3533 3534 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3535 const CompoundAssignOperator *E) { 3536 ScalarExprEmitter Scalar(*this); 3537 Value *Result = nullptr; 3538 switch (E->getOpcode()) { 3539 #define COMPOUND_OP(Op) \ 3540 case BO_##Op##Assign: \ 3541 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3542 Result) 3543 COMPOUND_OP(Mul); 3544 COMPOUND_OP(Div); 3545 COMPOUND_OP(Rem); 3546 COMPOUND_OP(Add); 3547 COMPOUND_OP(Sub); 3548 COMPOUND_OP(Shl); 3549 COMPOUND_OP(Shr); 3550 COMPOUND_OP(And); 3551 COMPOUND_OP(Xor); 3552 COMPOUND_OP(Or); 3553 #undef COMPOUND_OP 3554 3555 case BO_PtrMemD: 3556 case BO_PtrMemI: 3557 case BO_Mul: 3558 case BO_Div: 3559 case BO_Rem: 3560 case BO_Add: 3561 case BO_Sub: 3562 case BO_Shl: 3563 case BO_Shr: 3564 case BO_LT: 3565 case BO_GT: 3566 case BO_LE: 3567 case BO_GE: 3568 case BO_EQ: 3569 case BO_NE: 3570 case BO_And: 3571 case BO_Xor: 3572 case BO_Or: 3573 case BO_LAnd: 3574 case BO_LOr: 3575 case BO_Assign: 3576 case BO_Comma: 3577 llvm_unreachable("Not valid compound assignment operators"); 3578 } 3579 3580 llvm_unreachable("Unhandled compound assignment operator"); 3581 } 3582