1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCleanup.h" 16 #include "CGCXXABI.h" 17 #include "CGDebugInfo.h" 18 #include "CGObjCRuntime.h" 19 #include "CodeGenModule.h" 20 #include "TargetInfo.h" 21 #include "clang/AST/ASTContext.h" 22 #include "clang/AST/DeclObjC.h" 23 #include "clang/AST/Expr.h" 24 #include "clang/AST/RecordLayout.h" 25 #include "clang/AST/StmtVisitor.h" 26 #include "clang/Basic/TargetInfo.h" 27 #include "clang/Frontend/CodeGenOptions.h" 28 #include "llvm/ADT/Optional.h" 29 #include "llvm/IR/CFG.h" 30 #include "llvm/IR/Constants.h" 31 #include "llvm/IR/DataLayout.h" 32 #include "llvm/IR/Function.h" 33 #include "llvm/IR/GlobalVariable.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Module.h" 36 #include <cstdarg> 37 38 using namespace clang; 39 using namespace CodeGen; 40 using llvm::Value; 41 42 //===----------------------------------------------------------------------===// 43 // Scalar Expression Emitter 44 //===----------------------------------------------------------------------===// 45 46 namespace { 47 struct BinOpInfo { 48 Value *LHS; 49 Value *RHS; 50 QualType Ty; // Computation Type. 51 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform 52 FPOptions FPFeatures; 53 const Expr *E; // Entire expr, for error unsupported. May not be binop. 54 55 /// Check if the binop can result in integer overflow. 56 bool mayHaveIntegerOverflow() const { 57 // Without constant input, we can't rule out overflow. 58 const auto *LHSCI = dyn_cast<llvm::ConstantInt>(LHS); 59 const auto *RHSCI = dyn_cast<llvm::ConstantInt>(RHS); 60 if (!LHSCI || !RHSCI) 61 return true; 62 63 // Assume overflow is possible, unless we can prove otherwise. 64 bool Overflow = true; 65 const auto &LHSAP = LHSCI->getValue(); 66 const auto &RHSAP = RHSCI->getValue(); 67 if (Opcode == BO_Add) { 68 if (Ty->hasSignedIntegerRepresentation()) 69 (void)LHSAP.sadd_ov(RHSAP, Overflow); 70 else 71 (void)LHSAP.uadd_ov(RHSAP, Overflow); 72 } else if (Opcode == BO_Sub) { 73 if (Ty->hasSignedIntegerRepresentation()) 74 (void)LHSAP.ssub_ov(RHSAP, Overflow); 75 else 76 (void)LHSAP.usub_ov(RHSAP, Overflow); 77 } else if (Opcode == BO_Mul) { 78 if (Ty->hasSignedIntegerRepresentation()) 79 (void)LHSAP.smul_ov(RHSAP, Overflow); 80 else 81 (void)LHSAP.umul_ov(RHSAP, Overflow); 82 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 83 if (Ty->hasSignedIntegerRepresentation() && !RHSCI->isZero()) 84 (void)LHSAP.sdiv_ov(RHSAP, Overflow); 85 else 86 return false; 87 } 88 return Overflow; 89 } 90 91 /// Check if the binop computes a division or a remainder. 92 bool isDivremOp() const { 93 return Opcode == BO_Div || Opcode == BO_Rem || Opcode == BO_DivAssign || 94 Opcode == BO_RemAssign; 95 } 96 97 /// Check if the binop can result in an integer division by zero. 98 bool mayHaveIntegerDivisionByZero() const { 99 if (isDivremOp()) 100 if (auto *CI = dyn_cast<llvm::ConstantInt>(RHS)) 101 return CI->isZero(); 102 return true; 103 } 104 105 /// Check if the binop can result in a float division by zero. 106 bool mayHaveFloatDivisionByZero() const { 107 if (isDivremOp()) 108 if (auto *CFP = dyn_cast<llvm::ConstantFP>(RHS)) 109 return CFP->isZero(); 110 return true; 111 } 112 }; 113 114 static bool MustVisitNullValue(const Expr *E) { 115 // If a null pointer expression's type is the C++0x nullptr_t, then 116 // it's not necessarily a simple constant and it must be evaluated 117 // for its potential side effects. 118 return E->getType()->isNullPtrType(); 119 } 120 121 /// If \p E is a widened promoted integer, get its base (unpromoted) type. 122 static llvm::Optional<QualType> getUnwidenedIntegerType(const ASTContext &Ctx, 123 const Expr *E) { 124 const Expr *Base = E->IgnoreImpCasts(); 125 if (E == Base) 126 return llvm::None; 127 128 QualType BaseTy = Base->getType(); 129 if (!BaseTy->isPromotableIntegerType() || 130 Ctx.getTypeSize(BaseTy) >= Ctx.getTypeSize(E->getType())) 131 return llvm::None; 132 133 return BaseTy; 134 } 135 136 /// Check if \p E is a widened promoted integer. 137 static bool IsWidenedIntegerOp(const ASTContext &Ctx, const Expr *E) { 138 return getUnwidenedIntegerType(Ctx, E).hasValue(); 139 } 140 141 /// Check if we can skip the overflow check for \p Op. 142 static bool CanElideOverflowCheck(const ASTContext &Ctx, const BinOpInfo &Op) { 143 assert((isa<UnaryOperator>(Op.E) || isa<BinaryOperator>(Op.E)) && 144 "Expected a unary or binary operator"); 145 146 // If the binop has constant inputs and we can prove there is no overflow, 147 // we can elide the overflow check. 148 if (!Op.mayHaveIntegerOverflow()) 149 return true; 150 151 // If a unary op has a widened operand, the op cannot overflow. 152 if (const auto *UO = dyn_cast<UnaryOperator>(Op.E)) 153 return IsWidenedIntegerOp(Ctx, UO->getSubExpr()); 154 155 // We usually don't need overflow checks for binops with widened operands. 156 // Multiplication with promoted unsigned operands is a special case. 157 const auto *BO = cast<BinaryOperator>(Op.E); 158 auto OptionalLHSTy = getUnwidenedIntegerType(Ctx, BO->getLHS()); 159 if (!OptionalLHSTy) 160 return false; 161 162 auto OptionalRHSTy = getUnwidenedIntegerType(Ctx, BO->getRHS()); 163 if (!OptionalRHSTy) 164 return false; 165 166 QualType LHSTy = *OptionalLHSTy; 167 QualType RHSTy = *OptionalRHSTy; 168 169 // This is the simple case: binops without unsigned multiplication, and with 170 // widened operands. No overflow check is needed here. 171 if ((Op.Opcode != BO_Mul && Op.Opcode != BO_MulAssign) || 172 !LHSTy->isUnsignedIntegerType() || !RHSTy->isUnsignedIntegerType()) 173 return true; 174 175 // For unsigned multiplication the overflow check can be elided if either one 176 // of the unpromoted types are less than half the size of the promoted type. 177 unsigned PromotedSize = Ctx.getTypeSize(Op.E->getType()); 178 return (2 * Ctx.getTypeSize(LHSTy)) < PromotedSize || 179 (2 * Ctx.getTypeSize(RHSTy)) < PromotedSize; 180 } 181 182 /// Update the FastMathFlags of LLVM IR from the FPOptions in LangOptions. 183 static void updateFastMathFlags(llvm::FastMathFlags &FMF, 184 FPOptions FPFeatures) { 185 FMF.setAllowContract(FPFeatures.allowFPContractAcrossStatement()); 186 } 187 188 /// Propagate fast-math flags from \p Op to the instruction in \p V. 189 static Value *propagateFMFlags(Value *V, const BinOpInfo &Op) { 190 if (auto *I = dyn_cast<llvm::Instruction>(V)) { 191 llvm::FastMathFlags FMF = I->getFastMathFlags(); 192 updateFastMathFlags(FMF, Op.FPFeatures); 193 I->setFastMathFlags(FMF); 194 } 195 return V; 196 } 197 198 class ScalarExprEmitter 199 : public StmtVisitor<ScalarExprEmitter, Value*> { 200 CodeGenFunction &CGF; 201 CGBuilderTy &Builder; 202 bool IgnoreResultAssign; 203 llvm::LLVMContext &VMContext; 204 public: 205 206 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false) 207 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira), 208 VMContext(cgf.getLLVMContext()) { 209 } 210 211 //===--------------------------------------------------------------------===// 212 // Utilities 213 //===--------------------------------------------------------------------===// 214 215 bool TestAndClearIgnoreResultAssign() { 216 bool I = IgnoreResultAssign; 217 IgnoreResultAssign = false; 218 return I; 219 } 220 221 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); } 222 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); } 223 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) { 224 return CGF.EmitCheckedLValue(E, TCK); 225 } 226 227 void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks, 228 const BinOpInfo &Info); 229 230 Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) { 231 return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal(); 232 } 233 234 void EmitLValueAlignmentAssumption(const Expr *E, Value *V) { 235 const AlignValueAttr *AVAttr = nullptr; 236 if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) { 237 const ValueDecl *VD = DRE->getDecl(); 238 239 if (VD->getType()->isReferenceType()) { 240 if (const auto *TTy = 241 dyn_cast<TypedefType>(VD->getType().getNonReferenceType())) 242 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 243 } else { 244 // Assumptions for function parameters are emitted at the start of the 245 // function, so there is no need to repeat that here. 246 if (isa<ParmVarDecl>(VD)) 247 return; 248 249 AVAttr = VD->getAttr<AlignValueAttr>(); 250 } 251 } 252 253 if (!AVAttr) 254 if (const auto *TTy = 255 dyn_cast<TypedefType>(E->getType())) 256 AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>(); 257 258 if (!AVAttr) 259 return; 260 261 Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment()); 262 llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue); 263 CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue()); 264 } 265 266 /// EmitLoadOfLValue - Given an expression with complex type that represents a 267 /// value l-value, this method emits the address of the l-value, then loads 268 /// and returns the result. 269 Value *EmitLoadOfLValue(const Expr *E) { 270 Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load), 271 E->getExprLoc()); 272 273 EmitLValueAlignmentAssumption(E, V); 274 return V; 275 } 276 277 /// EmitConversionToBool - Convert the specified expression value to a 278 /// boolean (i1) truth value. This is equivalent to "Val != 0". 279 Value *EmitConversionToBool(Value *Src, QualType DstTy); 280 281 /// Emit a check that a conversion to or from a floating-point type does not 282 /// overflow. 283 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType, 284 Value *Src, QualType SrcType, QualType DstType, 285 llvm::Type *DstTy, SourceLocation Loc); 286 287 /// Emit a conversion from the specified type to the specified destination 288 /// type, both of which are LLVM scalar types. 289 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 290 SourceLocation Loc); 291 292 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy, 293 SourceLocation Loc, bool TreatBooleanAsSigned); 294 295 /// Emit a conversion from the specified complex type to the specified 296 /// destination type, where the destination type is an LLVM scalar type. 297 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src, 298 QualType SrcTy, QualType DstTy, 299 SourceLocation Loc); 300 301 /// EmitNullValue - Emit a value that corresponds to null for the given type. 302 Value *EmitNullValue(QualType Ty); 303 304 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion. 305 Value *EmitFloatToBoolConversion(Value *V) { 306 // Compare against 0.0 for fp scalars. 307 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType()); 308 return Builder.CreateFCmpUNE(V, Zero, "tobool"); 309 } 310 311 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion. 312 Value *EmitPointerToBoolConversion(Value *V, QualType QT) { 313 Value *Zero = CGF.CGM.getNullPointer(cast<llvm::PointerType>(V->getType()), QT); 314 315 return Builder.CreateICmpNE(V, Zero, "tobool"); 316 } 317 318 Value *EmitIntToBoolConversion(Value *V) { 319 // Because of the type rules of C, we often end up computing a 320 // logical value, then zero extending it to int, then wanting it 321 // as a logical value again. Optimize this common case. 322 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) { 323 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) { 324 Value *Result = ZI->getOperand(0); 325 // If there aren't any more uses, zap the instruction to save space. 326 // Note that there can be more uses, for example if this 327 // is the result of an assignment. 328 if (ZI->use_empty()) 329 ZI->eraseFromParent(); 330 return Result; 331 } 332 } 333 334 return Builder.CreateIsNotNull(V, "tobool"); 335 } 336 337 //===--------------------------------------------------------------------===// 338 // Visitor Methods 339 //===--------------------------------------------------------------------===// 340 341 Value *Visit(Expr *E) { 342 ApplyDebugLocation DL(CGF, E); 343 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E); 344 } 345 346 Value *VisitStmt(Stmt *S) { 347 S->dump(CGF.getContext().getSourceManager()); 348 llvm_unreachable("Stmt can't have complex result type!"); 349 } 350 Value *VisitExpr(Expr *S); 351 352 Value *VisitParenExpr(ParenExpr *PE) { 353 return Visit(PE->getSubExpr()); 354 } 355 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) { 356 return Visit(E->getReplacement()); 357 } 358 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 359 return Visit(GE->getResultExpr()); 360 } 361 Value *VisitCoawaitExpr(CoawaitExpr *S) { 362 return CGF.EmitCoawaitExpr(*S).getScalarVal(); 363 } 364 Value *VisitCoyieldExpr(CoyieldExpr *S) { 365 return CGF.EmitCoyieldExpr(*S).getScalarVal(); 366 } 367 Value *VisitUnaryCoawait(const UnaryOperator *E) { 368 return Visit(E->getSubExpr()); 369 } 370 371 // Leaves. 372 Value *VisitIntegerLiteral(const IntegerLiteral *E) { 373 return Builder.getInt(E->getValue()); 374 } 375 Value *VisitFloatingLiteral(const FloatingLiteral *E) { 376 return llvm::ConstantFP::get(VMContext, E->getValue()); 377 } 378 Value *VisitCharacterLiteral(const CharacterLiteral *E) { 379 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 380 } 381 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) { 382 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 383 } 384 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) { 385 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 386 } 387 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) { 388 return EmitNullValue(E->getType()); 389 } 390 Value *VisitGNUNullExpr(const GNUNullExpr *E) { 391 return EmitNullValue(E->getType()); 392 } 393 Value *VisitOffsetOfExpr(OffsetOfExpr *E); 394 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E); 395 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) { 396 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel()); 397 return Builder.CreateBitCast(V, ConvertType(E->getType())); 398 } 399 400 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) { 401 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength()); 402 } 403 404 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) { 405 return CGF.EmitPseudoObjectRValue(E).getScalarVal(); 406 } 407 408 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) { 409 if (E->isGLValue()) 410 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc()); 411 412 // Otherwise, assume the mapping is the scalar directly. 413 return CGF.getOpaqueRValueMapping(E).getScalarVal(); 414 } 415 416 // l-values. 417 Value *VisitDeclRefExpr(DeclRefExpr *E) { 418 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) { 419 if (result.isReference()) 420 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E), 421 E->getExprLoc()); 422 return result.getValue(); 423 } 424 return EmitLoadOfLValue(E); 425 } 426 427 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) { 428 return CGF.EmitObjCSelectorExpr(E); 429 } 430 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) { 431 return CGF.EmitObjCProtocolExpr(E); 432 } 433 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) { 434 return EmitLoadOfLValue(E); 435 } 436 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) { 437 if (E->getMethodDecl() && 438 E->getMethodDecl()->getReturnType()->isReferenceType()) 439 return EmitLoadOfLValue(E); 440 return CGF.EmitObjCMessageExpr(E).getScalarVal(); 441 } 442 443 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) { 444 LValue LV = CGF.EmitObjCIsaExpr(E); 445 Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal(); 446 return V; 447 } 448 449 Value *VisitObjCAvailabilityCheckExpr(ObjCAvailabilityCheckExpr *E) { 450 VersionTuple Version = E->getVersion(); 451 452 // If we're checking for a platform older than our minimum deployment 453 // target, we can fold the check away. 454 if (Version <= CGF.CGM.getTarget().getPlatformMinVersion()) 455 return llvm::ConstantInt::get(Builder.getInt1Ty(), 1); 456 457 Optional<unsigned> Min = Version.getMinor(), SMin = Version.getSubminor(); 458 llvm::Value *Args[] = { 459 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Version.getMajor()), 460 llvm::ConstantInt::get(CGF.CGM.Int32Ty, Min ? *Min : 0), 461 llvm::ConstantInt::get(CGF.CGM.Int32Ty, SMin ? *SMin : 0), 462 }; 463 464 return CGF.EmitBuiltinAvailable(Args); 465 } 466 467 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E); 468 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E); 469 Value *VisitConvertVectorExpr(ConvertVectorExpr *E); 470 Value *VisitMemberExpr(MemberExpr *E); 471 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); } 472 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 473 return EmitLoadOfLValue(E); 474 } 475 476 Value *VisitInitListExpr(InitListExpr *E); 477 478 Value *VisitArrayInitIndexExpr(ArrayInitIndexExpr *E) { 479 assert(CGF.getArrayInitIndex() && 480 "ArrayInitIndexExpr not inside an ArrayInitLoopExpr?"); 481 return CGF.getArrayInitIndex(); 482 } 483 484 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) { 485 return EmitNullValue(E->getType()); 486 } 487 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) { 488 CGF.CGM.EmitExplicitCastExprType(E, &CGF); 489 return VisitCastExpr(E); 490 } 491 Value *VisitCastExpr(CastExpr *E); 492 493 Value *VisitCallExpr(const CallExpr *E) { 494 if (E->getCallReturnType(CGF.getContext())->isReferenceType()) 495 return EmitLoadOfLValue(E); 496 497 Value *V = CGF.EmitCallExpr(E).getScalarVal(); 498 499 EmitLValueAlignmentAssumption(E, V); 500 return V; 501 } 502 503 Value *VisitStmtExpr(const StmtExpr *E); 504 505 // Unary Operators. 506 Value *VisitUnaryPostDec(const UnaryOperator *E) { 507 LValue LV = EmitLValue(E->getSubExpr()); 508 return EmitScalarPrePostIncDec(E, LV, false, false); 509 } 510 Value *VisitUnaryPostInc(const UnaryOperator *E) { 511 LValue LV = EmitLValue(E->getSubExpr()); 512 return EmitScalarPrePostIncDec(E, LV, true, false); 513 } 514 Value *VisitUnaryPreDec(const UnaryOperator *E) { 515 LValue LV = EmitLValue(E->getSubExpr()); 516 return EmitScalarPrePostIncDec(E, LV, false, true); 517 } 518 Value *VisitUnaryPreInc(const UnaryOperator *E) { 519 LValue LV = EmitLValue(E->getSubExpr()); 520 return EmitScalarPrePostIncDec(E, LV, true, true); 521 } 522 523 llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E, 524 llvm::Value *InVal, 525 bool IsInc); 526 527 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 528 bool isInc, bool isPre); 529 530 531 Value *VisitUnaryAddrOf(const UnaryOperator *E) { 532 if (isa<MemberPointerType>(E->getType())) // never sugared 533 return CGF.CGM.getMemberPointerConstant(E); 534 535 return EmitLValue(E->getSubExpr()).getPointer(); 536 } 537 Value *VisitUnaryDeref(const UnaryOperator *E) { 538 if (E->getType()->isVoidType()) 539 return Visit(E->getSubExpr()); // the actual value should be unused 540 return EmitLoadOfLValue(E); 541 } 542 Value *VisitUnaryPlus(const UnaryOperator *E) { 543 // This differs from gcc, though, most likely due to a bug in gcc. 544 TestAndClearIgnoreResultAssign(); 545 return Visit(E->getSubExpr()); 546 } 547 Value *VisitUnaryMinus (const UnaryOperator *E); 548 Value *VisitUnaryNot (const UnaryOperator *E); 549 Value *VisitUnaryLNot (const UnaryOperator *E); 550 Value *VisitUnaryReal (const UnaryOperator *E); 551 Value *VisitUnaryImag (const UnaryOperator *E); 552 Value *VisitUnaryExtension(const UnaryOperator *E) { 553 return Visit(E->getSubExpr()); 554 } 555 556 // C++ 557 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) { 558 return EmitLoadOfLValue(E); 559 } 560 561 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 562 return Visit(DAE->getExpr()); 563 } 564 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 565 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF); 566 return Visit(DIE->getExpr()); 567 } 568 Value *VisitCXXThisExpr(CXXThisExpr *TE) { 569 return CGF.LoadCXXThis(); 570 } 571 572 Value *VisitExprWithCleanups(ExprWithCleanups *E); 573 Value *VisitCXXNewExpr(const CXXNewExpr *E) { 574 return CGF.EmitCXXNewExpr(E); 575 } 576 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) { 577 CGF.EmitCXXDeleteExpr(E); 578 return nullptr; 579 } 580 581 Value *VisitTypeTraitExpr(const TypeTraitExpr *E) { 582 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue()); 583 } 584 585 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) { 586 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue()); 587 } 588 589 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) { 590 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue()); 591 } 592 593 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) { 594 // C++ [expr.pseudo]p1: 595 // The result shall only be used as the operand for the function call 596 // operator (), and the result of such a call has type void. The only 597 // effect is the evaluation of the postfix-expression before the dot or 598 // arrow. 599 CGF.EmitScalarExpr(E->getBase()); 600 return nullptr; 601 } 602 603 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) { 604 return EmitNullValue(E->getType()); 605 } 606 607 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) { 608 CGF.EmitCXXThrowExpr(E); 609 return nullptr; 610 } 611 612 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) { 613 return Builder.getInt1(E->getValue()); 614 } 615 616 // Binary Operators. 617 Value *EmitMul(const BinOpInfo &Ops) { 618 if (Ops.Ty->isSignedIntegerOrEnumerationType()) { 619 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 620 case LangOptions::SOB_Defined: 621 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 622 case LangOptions::SOB_Undefined: 623 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 624 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 625 // Fall through. 626 case LangOptions::SOB_Trapping: 627 if (CanElideOverflowCheck(CGF.getContext(), Ops)) 628 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul"); 629 return EmitOverflowCheckedBinOp(Ops); 630 } 631 } 632 633 if (Ops.Ty->isUnsignedIntegerType() && 634 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 635 !CanElideOverflowCheck(CGF.getContext(), Ops)) 636 return EmitOverflowCheckedBinOp(Ops); 637 638 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 639 Value *V = Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul"); 640 return propagateFMFlags(V, Ops); 641 } 642 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul"); 643 } 644 /// Create a binary op that checks for overflow. 645 /// Currently only supports +, - and *. 646 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops); 647 648 // Check for undefined division and modulus behaviors. 649 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops, 650 llvm::Value *Zero,bool isDiv); 651 // Common helper for getting how wide LHS of shift is. 652 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS); 653 Value *EmitDiv(const BinOpInfo &Ops); 654 Value *EmitRem(const BinOpInfo &Ops); 655 Value *EmitAdd(const BinOpInfo &Ops); 656 Value *EmitSub(const BinOpInfo &Ops); 657 Value *EmitShl(const BinOpInfo &Ops); 658 Value *EmitShr(const BinOpInfo &Ops); 659 Value *EmitAnd(const BinOpInfo &Ops) { 660 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and"); 661 } 662 Value *EmitXor(const BinOpInfo &Ops) { 663 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor"); 664 } 665 Value *EmitOr (const BinOpInfo &Ops) { 666 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or"); 667 } 668 669 BinOpInfo EmitBinOps(const BinaryOperator *E); 670 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E, 671 Value *(ScalarExprEmitter::*F)(const BinOpInfo &), 672 Value *&Result); 673 674 Value *EmitCompoundAssign(const CompoundAssignOperator *E, 675 Value *(ScalarExprEmitter::*F)(const BinOpInfo &)); 676 677 // Binary operators and binary compound assignment operators. 678 #define HANDLEBINOP(OP) \ 679 Value *VisitBin ## OP(const BinaryOperator *E) { \ 680 return Emit ## OP(EmitBinOps(E)); \ 681 } \ 682 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \ 683 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \ 684 } 685 HANDLEBINOP(Mul) 686 HANDLEBINOP(Div) 687 HANDLEBINOP(Rem) 688 HANDLEBINOP(Add) 689 HANDLEBINOP(Sub) 690 HANDLEBINOP(Shl) 691 HANDLEBINOP(Shr) 692 HANDLEBINOP(And) 693 HANDLEBINOP(Xor) 694 HANDLEBINOP(Or) 695 #undef HANDLEBINOP 696 697 // Comparisons. 698 Value *EmitCompare(const BinaryOperator *E, llvm::CmpInst::Predicate UICmpOpc, 699 llvm::CmpInst::Predicate SICmpOpc, 700 llvm::CmpInst::Predicate FCmpOpc); 701 #define VISITCOMP(CODE, UI, SI, FP) \ 702 Value *VisitBin##CODE(const BinaryOperator *E) { \ 703 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \ 704 llvm::FCmpInst::FP); } 705 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT) 706 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT) 707 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE) 708 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE) 709 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ) 710 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE) 711 #undef VISITCOMP 712 713 Value *VisitBinAssign (const BinaryOperator *E); 714 715 Value *VisitBinLAnd (const BinaryOperator *E); 716 Value *VisitBinLOr (const BinaryOperator *E); 717 Value *VisitBinComma (const BinaryOperator *E); 718 719 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); } 720 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); } 721 722 // Other Operators. 723 Value *VisitBlockExpr(const BlockExpr *BE); 724 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *); 725 Value *VisitChooseExpr(ChooseExpr *CE); 726 Value *VisitVAArgExpr(VAArgExpr *VE); 727 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) { 728 return CGF.EmitObjCStringLiteral(E); 729 } 730 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) { 731 return CGF.EmitObjCBoxedExpr(E); 732 } 733 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) { 734 return CGF.EmitObjCArrayLiteral(E); 735 } 736 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) { 737 return CGF.EmitObjCDictionaryLiteral(E); 738 } 739 Value *VisitAsTypeExpr(AsTypeExpr *CE); 740 Value *VisitAtomicExpr(AtomicExpr *AE); 741 }; 742 } // end anonymous namespace. 743 744 //===----------------------------------------------------------------------===// 745 // Utilities 746 //===----------------------------------------------------------------------===// 747 748 /// EmitConversionToBool - Convert the specified expression value to a 749 /// boolean (i1) truth value. This is equivalent to "Val != 0". 750 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) { 751 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs"); 752 753 if (SrcType->isRealFloatingType()) 754 return EmitFloatToBoolConversion(Src); 755 756 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType)) 757 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT); 758 759 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) && 760 "Unknown scalar type to convert"); 761 762 if (isa<llvm::IntegerType>(Src->getType())) 763 return EmitIntToBoolConversion(Src); 764 765 assert(isa<llvm::PointerType>(Src->getType())); 766 return EmitPointerToBoolConversion(Src, SrcType); 767 } 768 769 void ScalarExprEmitter::EmitFloatConversionCheck( 770 Value *OrigSrc, QualType OrigSrcType, Value *Src, QualType SrcType, 771 QualType DstType, llvm::Type *DstTy, SourceLocation Loc) { 772 CodeGenFunction::SanitizerScope SanScope(&CGF); 773 using llvm::APFloat; 774 using llvm::APSInt; 775 776 llvm::Type *SrcTy = Src->getType(); 777 778 llvm::Value *Check = nullptr; 779 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) { 780 // Integer to floating-point. This can fail for unsigned short -> __half 781 // or unsigned __int128 -> float. 782 assert(DstType->isFloatingType()); 783 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType(); 784 785 APFloat LargestFloat = 786 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType)); 787 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned); 788 789 bool IsExact; 790 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero, 791 &IsExact) != APFloat::opOK) 792 // The range of representable values of this floating point type includes 793 // all values of this integer type. Don't need an overflow check. 794 return; 795 796 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt); 797 if (SrcIsUnsigned) 798 Check = Builder.CreateICmpULE(Src, Max); 799 else { 800 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt); 801 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min); 802 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max); 803 Check = Builder.CreateAnd(GE, LE); 804 } 805 } else { 806 const llvm::fltSemantics &SrcSema = 807 CGF.getContext().getFloatTypeSemantics(OrigSrcType); 808 if (isa<llvm::IntegerType>(DstTy)) { 809 // Floating-point to integer. This has undefined behavior if the source is 810 // +-Inf, NaN, or doesn't fit into the destination type (after truncation 811 // to an integer). 812 unsigned Width = CGF.getContext().getIntWidth(DstType); 813 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType(); 814 815 APSInt Min = APSInt::getMinValue(Width, Unsigned); 816 APFloat MinSrc(SrcSema, APFloat::uninitialized); 817 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) & 818 APFloat::opOverflow) 819 // Don't need an overflow check for lower bound. Just check for 820 // -Inf/NaN. 821 MinSrc = APFloat::getInf(SrcSema, true); 822 else 823 // Find the largest value which is too small to represent (before 824 // truncation toward zero). 825 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative); 826 827 APSInt Max = APSInt::getMaxValue(Width, Unsigned); 828 APFloat MaxSrc(SrcSema, APFloat::uninitialized); 829 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) & 830 APFloat::opOverflow) 831 // Don't need an overflow check for upper bound. Just check for 832 // +Inf/NaN. 833 MaxSrc = APFloat::getInf(SrcSema, false); 834 else 835 // Find the smallest value which is too large to represent (before 836 // truncation toward zero). 837 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive); 838 839 // If we're converting from __half, convert the range to float to match 840 // the type of src. 841 if (OrigSrcType->isHalfType()) { 842 const llvm::fltSemantics &Sema = 843 CGF.getContext().getFloatTypeSemantics(SrcType); 844 bool IsInexact; 845 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 846 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact); 847 } 848 849 llvm::Value *GE = 850 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc)); 851 llvm::Value *LE = 852 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc)); 853 Check = Builder.CreateAnd(GE, LE); 854 } else { 855 // FIXME: Maybe split this sanitizer out from float-cast-overflow. 856 // 857 // Floating-point to floating-point. This has undefined behavior if the 858 // source is not in the range of representable values of the destination 859 // type. The C and C++ standards are spectacularly unclear here. We 860 // diagnose finite out-of-range conversions, but allow infinities and NaNs 861 // to convert to the corresponding value in the smaller type. 862 // 863 // C11 Annex F gives all such conversions defined behavior for IEC 60559 864 // conforming implementations. Unfortunately, LLVM's fptrunc instruction 865 // does not. 866 867 // Converting from a lower rank to a higher rank can never have 868 // undefined behavior, since higher-rank types must have a superset 869 // of values of lower-rank types. 870 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1) 871 return; 872 873 assert(!OrigSrcType->isHalfType() && 874 "should not check conversion from __half, it has the lowest rank"); 875 876 const llvm::fltSemantics &DstSema = 877 CGF.getContext().getFloatTypeSemantics(DstType); 878 APFloat MinBad = APFloat::getLargest(DstSema, false); 879 APFloat MaxBad = APFloat::getInf(DstSema, false); 880 881 bool IsInexact; 882 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 883 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact); 884 885 Value *AbsSrc = CGF.EmitNounwindRuntimeCall( 886 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src); 887 llvm::Value *GE = 888 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad)); 889 llvm::Value *LE = 890 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad)); 891 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE)); 892 } 893 } 894 895 llvm::Constant *StaticArgs[] = {CGF.EmitCheckSourceLocation(Loc), 896 CGF.EmitCheckTypeDescriptor(OrigSrcType), 897 CGF.EmitCheckTypeDescriptor(DstType)}; 898 CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow), 899 SanitizerHandler::FloatCastOverflow, StaticArgs, OrigSrc); 900 } 901 902 /// Emit a conversion from the specified type to the specified destination type, 903 /// both of which are LLVM scalar types. 904 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 905 QualType DstType, 906 SourceLocation Loc) { 907 return EmitScalarConversion(Src, SrcType, DstType, Loc, false); 908 } 909 910 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType, 911 QualType DstType, 912 SourceLocation Loc, 913 bool TreatBooleanAsSigned) { 914 SrcType = CGF.getContext().getCanonicalType(SrcType); 915 DstType = CGF.getContext().getCanonicalType(DstType); 916 if (SrcType == DstType) return Src; 917 918 if (DstType->isVoidType()) return nullptr; 919 920 llvm::Value *OrigSrc = Src; 921 QualType OrigSrcType = SrcType; 922 llvm::Type *SrcTy = Src->getType(); 923 924 // Handle conversions to bool first, they are special: comparisons against 0. 925 if (DstType->isBooleanType()) 926 return EmitConversionToBool(Src, SrcType); 927 928 llvm::Type *DstTy = ConvertType(DstType); 929 930 // Cast from half through float if half isn't a native type. 931 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 932 // Cast to FP using the intrinsic if the half type itself isn't supported. 933 if (DstTy->isFloatingPointTy()) { 934 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 935 return Builder.CreateCall( 936 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy), 937 Src); 938 } else { 939 // Cast to other types through float, using either the intrinsic or FPExt, 940 // depending on whether the half type itself is supported 941 // (as opposed to operations on half, available with NativeHalfType). 942 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 943 Src = Builder.CreateCall( 944 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 945 CGF.CGM.FloatTy), 946 Src); 947 } else { 948 Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv"); 949 } 950 SrcType = CGF.getContext().FloatTy; 951 SrcTy = CGF.FloatTy; 952 } 953 } 954 955 // Ignore conversions like int -> uint. 956 if (SrcTy == DstTy) 957 return Src; 958 959 // Handle pointer conversions next: pointers can only be converted to/from 960 // other pointers and integers. Check for pointer types in terms of LLVM, as 961 // some native types (like Obj-C id) may map to a pointer type. 962 if (auto DstPT = dyn_cast<llvm::PointerType>(DstTy)) { 963 // The source value may be an integer, or a pointer. 964 if (isa<llvm::PointerType>(SrcTy)) 965 return Builder.CreateBitCast(Src, DstTy, "conv"); 966 967 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?"); 968 // First, convert to the correct width so that we control the kind of 969 // extension. 970 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DstPT); 971 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 972 llvm::Value* IntResult = 973 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 974 // Then, cast to pointer. 975 return Builder.CreateIntToPtr(IntResult, DstTy, "conv"); 976 } 977 978 if (isa<llvm::PointerType>(SrcTy)) { 979 // Must be an ptr to int cast. 980 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?"); 981 return Builder.CreatePtrToInt(Src, DstTy, "conv"); 982 } 983 984 // A scalar can be splatted to an extended vector of the same element type 985 if (DstType->isExtVectorType() && !SrcType->isVectorType()) { 986 // Sema should add casts to make sure that the source expression's type is 987 // the same as the vector's element type (sans qualifiers) 988 assert(DstType->castAs<ExtVectorType>()->getElementType().getTypePtr() == 989 SrcType.getTypePtr() && 990 "Splatted expr doesn't match with vector element type?"); 991 992 // Splat the element across to all elements 993 unsigned NumElements = DstTy->getVectorNumElements(); 994 return Builder.CreateVectorSplat(NumElements, Src, "splat"); 995 } 996 997 // Allow bitcast from vector to integer/fp of the same size. 998 if (isa<llvm::VectorType>(SrcTy) || 999 isa<llvm::VectorType>(DstTy)) 1000 return Builder.CreateBitCast(Src, DstTy, "conv"); 1001 1002 // Finally, we have the arithmetic types: real int/float. 1003 Value *Res = nullptr; 1004 llvm::Type *ResTy = DstTy; 1005 1006 // An overflowing conversion has undefined behavior if either the source type 1007 // or the destination type is a floating-point type. 1008 if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) && 1009 (OrigSrcType->isFloatingType() || DstType->isFloatingType())) 1010 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType, DstTy, 1011 Loc); 1012 1013 // Cast to half through float if half isn't a native type. 1014 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1015 // Make sure we cast in a single step if from another FP type. 1016 if (SrcTy->isFloatingPointTy()) { 1017 // Use the intrinsic if the half type itself isn't supported 1018 // (as opposed to operations on half, available with NativeHalfType). 1019 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) 1020 return Builder.CreateCall( 1021 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src); 1022 // If the half type is supported, just use an fptrunc. 1023 return Builder.CreateFPTrunc(Src, DstTy); 1024 } 1025 DstTy = CGF.FloatTy; 1026 } 1027 1028 if (isa<llvm::IntegerType>(SrcTy)) { 1029 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType(); 1030 if (SrcType->isBooleanType() && TreatBooleanAsSigned) { 1031 InputSigned = true; 1032 } 1033 if (isa<llvm::IntegerType>(DstTy)) 1034 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1035 else if (InputSigned) 1036 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1037 else 1038 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1039 } else if (isa<llvm::IntegerType>(DstTy)) { 1040 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion"); 1041 if (DstType->isSignedIntegerOrEnumerationType()) 1042 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1043 else 1044 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1045 } else { 1046 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() && 1047 "Unknown real conversion"); 1048 if (DstTy->getTypeID() < SrcTy->getTypeID()) 1049 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1050 else 1051 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1052 } 1053 1054 if (DstTy != ResTy) { 1055 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1056 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion"); 1057 Res = Builder.CreateCall( 1058 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy), 1059 Res); 1060 } else { 1061 Res = Builder.CreateFPTrunc(Res, ResTy, "conv"); 1062 } 1063 } 1064 1065 return Res; 1066 } 1067 1068 /// Emit a conversion from the specified complex type to the specified 1069 /// destination type, where the destination type is an LLVM scalar type. 1070 Value *ScalarExprEmitter::EmitComplexToScalarConversion( 1071 CodeGenFunction::ComplexPairTy Src, QualType SrcTy, QualType DstTy, 1072 SourceLocation Loc) { 1073 // Get the source element type. 1074 SrcTy = SrcTy->castAs<ComplexType>()->getElementType(); 1075 1076 // Handle conversions to bool first, they are special: comparisons against 0. 1077 if (DstTy->isBooleanType()) { 1078 // Complex != 0 -> (Real != 0) | (Imag != 0) 1079 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1080 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy, Loc); 1081 return Builder.CreateOr(Src.first, Src.second, "tobool"); 1082 } 1083 1084 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type, 1085 // the imaginary part of the complex value is discarded and the value of the 1086 // real part is converted according to the conversion rules for the 1087 // corresponding real type. 1088 return EmitScalarConversion(Src.first, SrcTy, DstTy, Loc); 1089 } 1090 1091 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) { 1092 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty); 1093 } 1094 1095 /// \brief Emit a sanitization check for the given "binary" operation (which 1096 /// might actually be a unary increment which has been lowered to a binary 1097 /// operation). The check passes if all values in \p Checks (which are \c i1), 1098 /// are \c true. 1099 void ScalarExprEmitter::EmitBinOpCheck( 1100 ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) { 1101 assert(CGF.IsSanitizerScope); 1102 SanitizerHandler Check; 1103 SmallVector<llvm::Constant *, 4> StaticData; 1104 SmallVector<llvm::Value *, 2> DynamicData; 1105 1106 BinaryOperatorKind Opcode = Info.Opcode; 1107 if (BinaryOperator::isCompoundAssignmentOp(Opcode)) 1108 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode); 1109 1110 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc())); 1111 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E); 1112 if (UO && UO->getOpcode() == UO_Minus) { 1113 Check = SanitizerHandler::NegateOverflow; 1114 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType())); 1115 DynamicData.push_back(Info.RHS); 1116 } else { 1117 if (BinaryOperator::isShiftOp(Opcode)) { 1118 // Shift LHS negative or too large, or RHS out of bounds. 1119 Check = SanitizerHandler::ShiftOutOfBounds; 1120 const BinaryOperator *BO = cast<BinaryOperator>(Info.E); 1121 StaticData.push_back( 1122 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType())); 1123 StaticData.push_back( 1124 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType())); 1125 } else if (Opcode == BO_Div || Opcode == BO_Rem) { 1126 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1). 1127 Check = SanitizerHandler::DivremOverflow; 1128 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1129 } else { 1130 // Arithmetic overflow (+, -, *). 1131 switch (Opcode) { 1132 case BO_Add: Check = SanitizerHandler::AddOverflow; break; 1133 case BO_Sub: Check = SanitizerHandler::SubOverflow; break; 1134 case BO_Mul: Check = SanitizerHandler::MulOverflow; break; 1135 default: llvm_unreachable("unexpected opcode for bin op check"); 1136 } 1137 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty)); 1138 } 1139 DynamicData.push_back(Info.LHS); 1140 DynamicData.push_back(Info.RHS); 1141 } 1142 1143 CGF.EmitCheck(Checks, Check, StaticData, DynamicData); 1144 } 1145 1146 //===----------------------------------------------------------------------===// 1147 // Visitor Methods 1148 //===----------------------------------------------------------------------===// 1149 1150 Value *ScalarExprEmitter::VisitExpr(Expr *E) { 1151 CGF.ErrorUnsupported(E, "scalar expression"); 1152 if (E->getType()->isVoidType()) 1153 return nullptr; 1154 return llvm::UndefValue::get(CGF.ConvertType(E->getType())); 1155 } 1156 1157 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) { 1158 // Vector Mask Case 1159 if (E->getNumSubExprs() == 2) { 1160 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0)); 1161 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1)); 1162 Value *Mask; 1163 1164 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType()); 1165 unsigned LHSElts = LTy->getNumElements(); 1166 1167 Mask = RHS; 1168 1169 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType()); 1170 1171 // Mask off the high bits of each shuffle index. 1172 Value *MaskBits = 1173 llvm::ConstantInt::get(MTy, llvm::NextPowerOf2(LHSElts - 1) - 1); 1174 Mask = Builder.CreateAnd(Mask, MaskBits, "mask"); 1175 1176 // newv = undef 1177 // mask = mask & maskbits 1178 // for each elt 1179 // n = extract mask i 1180 // x = extract val n 1181 // newv = insert newv, x, i 1182 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(), 1183 MTy->getNumElements()); 1184 Value* NewV = llvm::UndefValue::get(RTy); 1185 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) { 1186 Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i); 1187 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx"); 1188 1189 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt"); 1190 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins"); 1191 } 1192 return NewV; 1193 } 1194 1195 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0)); 1196 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1)); 1197 1198 SmallVector<llvm::Constant*, 32> indices; 1199 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) { 1200 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2); 1201 // Check for -1 and output it as undef in the IR. 1202 if (Idx.isSigned() && Idx.isAllOnesValue()) 1203 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 1204 else 1205 indices.push_back(Builder.getInt32(Idx.getZExtValue())); 1206 } 1207 1208 Value *SV = llvm::ConstantVector::get(indices); 1209 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle"); 1210 } 1211 1212 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) { 1213 QualType SrcType = E->getSrcExpr()->getType(), 1214 DstType = E->getType(); 1215 1216 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 1217 1218 SrcType = CGF.getContext().getCanonicalType(SrcType); 1219 DstType = CGF.getContext().getCanonicalType(DstType); 1220 if (SrcType == DstType) return Src; 1221 1222 assert(SrcType->isVectorType() && 1223 "ConvertVector source type must be a vector"); 1224 assert(DstType->isVectorType() && 1225 "ConvertVector destination type must be a vector"); 1226 1227 llvm::Type *SrcTy = Src->getType(); 1228 llvm::Type *DstTy = ConvertType(DstType); 1229 1230 // Ignore conversions like int -> uint. 1231 if (SrcTy == DstTy) 1232 return Src; 1233 1234 QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(), 1235 DstEltType = DstType->getAs<VectorType>()->getElementType(); 1236 1237 assert(SrcTy->isVectorTy() && 1238 "ConvertVector source IR type must be a vector"); 1239 assert(DstTy->isVectorTy() && 1240 "ConvertVector destination IR type must be a vector"); 1241 1242 llvm::Type *SrcEltTy = SrcTy->getVectorElementType(), 1243 *DstEltTy = DstTy->getVectorElementType(); 1244 1245 if (DstEltType->isBooleanType()) { 1246 assert((SrcEltTy->isFloatingPointTy() || 1247 isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion"); 1248 1249 llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy); 1250 if (SrcEltTy->isFloatingPointTy()) { 1251 return Builder.CreateFCmpUNE(Src, Zero, "tobool"); 1252 } else { 1253 return Builder.CreateICmpNE(Src, Zero, "tobool"); 1254 } 1255 } 1256 1257 // We have the arithmetic types: real int/float. 1258 Value *Res = nullptr; 1259 1260 if (isa<llvm::IntegerType>(SrcEltTy)) { 1261 bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType(); 1262 if (isa<llvm::IntegerType>(DstEltTy)) 1263 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv"); 1264 else if (InputSigned) 1265 Res = Builder.CreateSIToFP(Src, DstTy, "conv"); 1266 else 1267 Res = Builder.CreateUIToFP(Src, DstTy, "conv"); 1268 } else if (isa<llvm::IntegerType>(DstEltTy)) { 1269 assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion"); 1270 if (DstEltType->isSignedIntegerOrEnumerationType()) 1271 Res = Builder.CreateFPToSI(Src, DstTy, "conv"); 1272 else 1273 Res = Builder.CreateFPToUI(Src, DstTy, "conv"); 1274 } else { 1275 assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() && 1276 "Unknown real conversion"); 1277 if (DstEltTy->getTypeID() < SrcEltTy->getTypeID()) 1278 Res = Builder.CreateFPTrunc(Src, DstTy, "conv"); 1279 else 1280 Res = Builder.CreateFPExt(Src, DstTy, "conv"); 1281 } 1282 1283 return Res; 1284 } 1285 1286 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) { 1287 llvm::APSInt Value; 1288 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) { 1289 if (E->isArrow()) 1290 CGF.EmitScalarExpr(E->getBase()); 1291 else 1292 EmitLValue(E->getBase()); 1293 return Builder.getInt(Value); 1294 } 1295 1296 return EmitLoadOfLValue(E); 1297 } 1298 1299 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) { 1300 TestAndClearIgnoreResultAssign(); 1301 1302 // Emit subscript expressions in rvalue context's. For most cases, this just 1303 // loads the lvalue formed by the subscript expr. However, we have to be 1304 // careful, because the base of a vector subscript is occasionally an rvalue, 1305 // so we can't get it as an lvalue. 1306 if (!E->getBase()->getType()->isVectorType()) 1307 return EmitLoadOfLValue(E); 1308 1309 // Handle the vector case. The base must be a vector, the index must be an 1310 // integer value. 1311 Value *Base = Visit(E->getBase()); 1312 Value *Idx = Visit(E->getIdx()); 1313 QualType IdxTy = E->getIdx()->getType(); 1314 1315 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 1316 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true); 1317 1318 return Builder.CreateExtractElement(Base, Idx, "vecext"); 1319 } 1320 1321 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx, 1322 unsigned Off, llvm::Type *I32Ty) { 1323 int MV = SVI->getMaskValue(Idx); 1324 if (MV == -1) 1325 return llvm::UndefValue::get(I32Ty); 1326 return llvm::ConstantInt::get(I32Ty, Off+MV); 1327 } 1328 1329 static llvm::Constant *getAsInt32(llvm::ConstantInt *C, llvm::Type *I32Ty) { 1330 if (C->getBitWidth() != 32) { 1331 assert(llvm::ConstantInt::isValueValidForType(I32Ty, 1332 C->getZExtValue()) && 1333 "Index operand too large for shufflevector mask!"); 1334 return llvm::ConstantInt::get(I32Ty, C->getZExtValue()); 1335 } 1336 return C; 1337 } 1338 1339 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) { 1340 bool Ignore = TestAndClearIgnoreResultAssign(); 1341 (void)Ignore; 1342 assert (Ignore == false && "init list ignored"); 1343 unsigned NumInitElements = E->getNumInits(); 1344 1345 if (E->hadArrayRangeDesignator()) 1346 CGF.ErrorUnsupported(E, "GNU array range designator extension"); 1347 1348 llvm::VectorType *VType = 1349 dyn_cast<llvm::VectorType>(ConvertType(E->getType())); 1350 1351 if (!VType) { 1352 if (NumInitElements == 0) { 1353 // C++11 value-initialization for the scalar. 1354 return EmitNullValue(E->getType()); 1355 } 1356 // We have a scalar in braces. Just use the first element. 1357 return Visit(E->getInit(0)); 1358 } 1359 1360 unsigned ResElts = VType->getNumElements(); 1361 1362 // Loop over initializers collecting the Value for each, and remembering 1363 // whether the source was swizzle (ExtVectorElementExpr). This will allow 1364 // us to fold the shuffle for the swizzle into the shuffle for the vector 1365 // initializer, since LLVM optimizers generally do not want to touch 1366 // shuffles. 1367 unsigned CurIdx = 0; 1368 bool VIsUndefShuffle = false; 1369 llvm::Value *V = llvm::UndefValue::get(VType); 1370 for (unsigned i = 0; i != NumInitElements; ++i) { 1371 Expr *IE = E->getInit(i); 1372 Value *Init = Visit(IE); 1373 SmallVector<llvm::Constant*, 16> Args; 1374 1375 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType()); 1376 1377 // Handle scalar elements. If the scalar initializer is actually one 1378 // element of a different vector of the same width, use shuffle instead of 1379 // extract+insert. 1380 if (!VVT) { 1381 if (isa<ExtVectorElementExpr>(IE)) { 1382 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init); 1383 1384 if (EI->getVectorOperandType()->getNumElements() == ResElts) { 1385 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand()); 1386 Value *LHS = nullptr, *RHS = nullptr; 1387 if (CurIdx == 0) { 1388 // insert into undef -> shuffle (src, undef) 1389 // shufflemask must use an i32 1390 Args.push_back(getAsInt32(C, CGF.Int32Ty)); 1391 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1392 1393 LHS = EI->getVectorOperand(); 1394 RHS = V; 1395 VIsUndefShuffle = true; 1396 } else if (VIsUndefShuffle) { 1397 // insert into undefshuffle && size match -> shuffle (v, src) 1398 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V); 1399 for (unsigned j = 0; j != CurIdx; ++j) 1400 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty)); 1401 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue())); 1402 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1403 1404 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1405 RHS = EI->getVectorOperand(); 1406 VIsUndefShuffle = false; 1407 } 1408 if (!Args.empty()) { 1409 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1410 V = Builder.CreateShuffleVector(LHS, RHS, Mask); 1411 ++CurIdx; 1412 continue; 1413 } 1414 } 1415 } 1416 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx), 1417 "vecinit"); 1418 VIsUndefShuffle = false; 1419 ++CurIdx; 1420 continue; 1421 } 1422 1423 unsigned InitElts = VVT->getNumElements(); 1424 1425 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's 1426 // input is the same width as the vector being constructed, generate an 1427 // optimized shuffle of the swizzle input into the result. 1428 unsigned Offset = (CurIdx == 0) ? 0 : ResElts; 1429 if (isa<ExtVectorElementExpr>(IE)) { 1430 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init); 1431 Value *SVOp = SVI->getOperand(0); 1432 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType()); 1433 1434 if (OpTy->getNumElements() == ResElts) { 1435 for (unsigned j = 0; j != CurIdx; ++j) { 1436 // If the current vector initializer is a shuffle with undef, merge 1437 // this shuffle directly into it. 1438 if (VIsUndefShuffle) { 1439 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0, 1440 CGF.Int32Ty)); 1441 } else { 1442 Args.push_back(Builder.getInt32(j)); 1443 } 1444 } 1445 for (unsigned j = 0, je = InitElts; j != je; ++j) 1446 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty)); 1447 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1448 1449 if (VIsUndefShuffle) 1450 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0); 1451 1452 Init = SVOp; 1453 } 1454 } 1455 1456 // Extend init to result vector length, and then shuffle its contribution 1457 // to the vector initializer into V. 1458 if (Args.empty()) { 1459 for (unsigned j = 0; j != InitElts; ++j) 1460 Args.push_back(Builder.getInt32(j)); 1461 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1462 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1463 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT), 1464 Mask, "vext"); 1465 1466 Args.clear(); 1467 for (unsigned j = 0; j != CurIdx; ++j) 1468 Args.push_back(Builder.getInt32(j)); 1469 for (unsigned j = 0; j != InitElts; ++j) 1470 Args.push_back(Builder.getInt32(j+Offset)); 1471 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty)); 1472 } 1473 1474 // If V is undef, make sure it ends up on the RHS of the shuffle to aid 1475 // merging subsequent shuffles into this one. 1476 if (CurIdx == 0) 1477 std::swap(V, Init); 1478 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 1479 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit"); 1480 VIsUndefShuffle = isa<llvm::UndefValue>(Init); 1481 CurIdx += InitElts; 1482 } 1483 1484 // FIXME: evaluate codegen vs. shuffling against constant null vector. 1485 // Emit remaining default initializers. 1486 llvm::Type *EltTy = VType->getElementType(); 1487 1488 // Emit remaining default initializers 1489 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) { 1490 Value *Idx = Builder.getInt32(CurIdx); 1491 llvm::Value *Init = llvm::Constant::getNullValue(EltTy); 1492 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit"); 1493 } 1494 return V; 1495 } 1496 1497 bool CodeGenFunction::ShouldNullCheckClassCastValue(const CastExpr *CE) { 1498 const Expr *E = CE->getSubExpr(); 1499 1500 if (CE->getCastKind() == CK_UncheckedDerivedToBase) 1501 return false; 1502 1503 if (isa<CXXThisExpr>(E->IgnoreParens())) { 1504 // We always assume that 'this' is never null. 1505 return false; 1506 } 1507 1508 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) { 1509 // And that glvalue casts are never null. 1510 if (ICE->getValueKind() != VK_RValue) 1511 return false; 1512 } 1513 1514 return true; 1515 } 1516 1517 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts 1518 // have to handle a more broad range of conversions than explicit casts, as they 1519 // handle things like function to ptr-to-function decay etc. 1520 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) { 1521 Expr *E = CE->getSubExpr(); 1522 QualType DestTy = CE->getType(); 1523 CastKind Kind = CE->getCastKind(); 1524 1525 // These cases are generally not written to ignore the result of 1526 // evaluating their sub-expressions, so we clear this now. 1527 bool Ignored = TestAndClearIgnoreResultAssign(); 1528 1529 // Since almost all cast kinds apply to scalars, this switch doesn't have 1530 // a default case, so the compiler will warn on a missing case. The cases 1531 // are in the same order as in the CastKind enum. 1532 switch (Kind) { 1533 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!"); 1534 case CK_BuiltinFnToFnPtr: 1535 llvm_unreachable("builtin functions are handled elsewhere"); 1536 1537 case CK_LValueBitCast: 1538 case CK_ObjCObjectLValueCast: { 1539 Address Addr = EmitLValue(E).getAddress(); 1540 Addr = Builder.CreateElementBitCast(Addr, CGF.ConvertTypeForMem(DestTy)); 1541 LValue LV = CGF.MakeAddrLValue(Addr, DestTy); 1542 return EmitLoadOfLValue(LV, CE->getExprLoc()); 1543 } 1544 1545 case CK_CPointerToObjCPointerCast: 1546 case CK_BlockPointerToObjCPointerCast: 1547 case CK_AnyPointerToBlockPointerCast: 1548 case CK_BitCast: { 1549 Value *Src = Visit(const_cast<Expr*>(E)); 1550 llvm::Type *SrcTy = Src->getType(); 1551 llvm::Type *DstTy = ConvertType(DestTy); 1552 if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() && 1553 SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) { 1554 llvm_unreachable("wrong cast for pointers in different address spaces" 1555 "(must be an address space cast)!"); 1556 } 1557 1558 if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) { 1559 if (auto PT = DestTy->getAs<PointerType>()) 1560 CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src, 1561 /*MayBeNull=*/true, 1562 CodeGenFunction::CFITCK_UnrelatedCast, 1563 CE->getLocStart()); 1564 } 1565 1566 return Builder.CreateBitCast(Src, DstTy); 1567 } 1568 case CK_AddressSpaceConversion: { 1569 Expr::EvalResult Result; 1570 if (E->EvaluateAsRValue(Result, CGF.getContext()) && 1571 Result.Val.isNullPointer()) { 1572 // If E has side effect, it is emitted even if its final result is a 1573 // null pointer. In that case, a DCE pass should be able to 1574 // eliminate the useless instructions emitted during translating E. 1575 if (Result.HasSideEffects) 1576 Visit(E); 1577 return CGF.CGM.getNullPointer(cast<llvm::PointerType>( 1578 ConvertType(DestTy)), DestTy); 1579 } 1580 // Since target may map different address spaces in AST to the same address 1581 // space, an address space conversion may end up as a bitcast. 1582 return CGF.CGM.getTargetCodeGenInfo().performAddrSpaceCast( 1583 CGF, Visit(E), E->getType()->getPointeeType().getAddressSpace(), 1584 DestTy->getPointeeType().getAddressSpace(), ConvertType(DestTy)); 1585 } 1586 case CK_AtomicToNonAtomic: 1587 case CK_NonAtomicToAtomic: 1588 case CK_NoOp: 1589 case CK_UserDefinedConversion: 1590 return Visit(const_cast<Expr*>(E)); 1591 1592 case CK_BaseToDerived: { 1593 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl(); 1594 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!"); 1595 1596 Address Base = CGF.EmitPointerWithAlignment(E); 1597 Address Derived = 1598 CGF.GetAddressOfDerivedClass(Base, DerivedClassDecl, 1599 CE->path_begin(), CE->path_end(), 1600 CGF.ShouldNullCheckClassCastValue(CE)); 1601 1602 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is 1603 // performed and the object is not of the derived type. 1604 if (CGF.sanitizePerformTypeCheck()) 1605 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(), 1606 Derived.getPointer(), DestTy->getPointeeType()); 1607 1608 if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast)) 1609 CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), 1610 Derived.getPointer(), 1611 /*MayBeNull=*/true, 1612 CodeGenFunction::CFITCK_DerivedCast, 1613 CE->getLocStart()); 1614 1615 return Derived.getPointer(); 1616 } 1617 case CK_UncheckedDerivedToBase: 1618 case CK_DerivedToBase: { 1619 // The EmitPointerWithAlignment path does this fine; just discard 1620 // the alignment. 1621 return CGF.EmitPointerWithAlignment(CE).getPointer(); 1622 } 1623 1624 case CK_Dynamic: { 1625 Address V = CGF.EmitPointerWithAlignment(E); 1626 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE); 1627 return CGF.EmitDynamicCast(V, DCE); 1628 } 1629 1630 case CK_ArrayToPointerDecay: 1631 return CGF.EmitArrayToPointerDecay(E).getPointer(); 1632 case CK_FunctionToPointerDecay: 1633 return EmitLValue(E).getPointer(); 1634 1635 case CK_NullToPointer: 1636 if (MustVisitNullValue(E)) 1637 (void) Visit(E); 1638 1639 return CGF.CGM.getNullPointer(cast<llvm::PointerType>(ConvertType(DestTy)), 1640 DestTy); 1641 1642 case CK_NullToMemberPointer: { 1643 if (MustVisitNullValue(E)) 1644 (void) Visit(E); 1645 1646 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>(); 1647 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT); 1648 } 1649 1650 case CK_ReinterpretMemberPointer: 1651 case CK_BaseToDerivedMemberPointer: 1652 case CK_DerivedToBaseMemberPointer: { 1653 Value *Src = Visit(E); 1654 1655 // Note that the AST doesn't distinguish between checked and 1656 // unchecked member pointer conversions, so we always have to 1657 // implement checked conversions here. This is inefficient when 1658 // actual control flow may be required in order to perform the 1659 // check, which it is for data member pointers (but not member 1660 // function pointers on Itanium and ARM). 1661 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src); 1662 } 1663 1664 case CK_ARCProduceObject: 1665 return CGF.EmitARCRetainScalarExpr(E); 1666 case CK_ARCConsumeObject: 1667 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E)); 1668 case CK_ARCReclaimReturnedObject: 1669 return CGF.EmitARCReclaimReturnedObject(E, /*allowUnsafe*/ Ignored); 1670 case CK_ARCExtendBlockObject: 1671 return CGF.EmitARCExtendBlockObject(E); 1672 1673 case CK_CopyAndAutoreleaseBlockObject: 1674 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType()); 1675 1676 case CK_FloatingRealToComplex: 1677 case CK_FloatingComplexCast: 1678 case CK_IntegralRealToComplex: 1679 case CK_IntegralComplexCast: 1680 case CK_IntegralComplexToFloatingComplex: 1681 case CK_FloatingComplexToIntegralComplex: 1682 case CK_ConstructorConversion: 1683 case CK_ToUnion: 1684 llvm_unreachable("scalar cast to non-scalar value"); 1685 1686 case CK_LValueToRValue: 1687 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy)); 1688 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!"); 1689 return Visit(const_cast<Expr*>(E)); 1690 1691 case CK_IntegralToPointer: { 1692 Value *Src = Visit(const_cast<Expr*>(E)); 1693 1694 // First, convert to the correct width so that we control the kind of 1695 // extension. 1696 auto DestLLVMTy = ConvertType(DestTy); 1697 llvm::Type *MiddleTy = CGF.CGM.getDataLayout().getIntPtrType(DestLLVMTy); 1698 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType(); 1699 llvm::Value* IntResult = 1700 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv"); 1701 1702 return Builder.CreateIntToPtr(IntResult, DestLLVMTy); 1703 } 1704 case CK_PointerToIntegral: 1705 assert(!DestTy->isBooleanType() && "bool should use PointerToBool"); 1706 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy)); 1707 1708 case CK_ToVoid: { 1709 CGF.EmitIgnoredExpr(E); 1710 return nullptr; 1711 } 1712 case CK_VectorSplat: { 1713 llvm::Type *DstTy = ConvertType(DestTy); 1714 Value *Elt = Visit(const_cast<Expr*>(E)); 1715 // Splat the element across to all elements 1716 unsigned NumElements = DstTy->getVectorNumElements(); 1717 return Builder.CreateVectorSplat(NumElements, Elt, "splat"); 1718 } 1719 1720 case CK_IntegralCast: 1721 case CK_IntegralToFloating: 1722 case CK_FloatingToIntegral: 1723 case CK_FloatingCast: 1724 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1725 CE->getExprLoc()); 1726 case CK_BooleanToSignedIntegral: 1727 return EmitScalarConversion(Visit(E), E->getType(), DestTy, 1728 CE->getExprLoc(), 1729 /*TreatBooleanAsSigned=*/true); 1730 case CK_IntegralToBoolean: 1731 return EmitIntToBoolConversion(Visit(E)); 1732 case CK_PointerToBoolean: 1733 return EmitPointerToBoolConversion(Visit(E), E->getType()); 1734 case CK_FloatingToBoolean: 1735 return EmitFloatToBoolConversion(Visit(E)); 1736 case CK_MemberPointerToBoolean: { 1737 llvm::Value *MemPtr = Visit(E); 1738 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>(); 1739 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT); 1740 } 1741 1742 case CK_FloatingComplexToReal: 1743 case CK_IntegralComplexToReal: 1744 return CGF.EmitComplexExpr(E, false, true).first; 1745 1746 case CK_FloatingComplexToBoolean: 1747 case CK_IntegralComplexToBoolean: { 1748 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E); 1749 1750 // TODO: kill this function off, inline appropriate case here 1751 return EmitComplexToScalarConversion(V, E->getType(), DestTy, 1752 CE->getExprLoc()); 1753 } 1754 1755 case CK_ZeroToOCLEvent: { 1756 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type"); 1757 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1758 } 1759 1760 case CK_ZeroToOCLQueue: { 1761 assert(DestTy->isQueueT() && "CK_ZeroToOCLQueue cast on non queue_t type"); 1762 return llvm::Constant::getNullValue(ConvertType(DestTy)); 1763 } 1764 1765 case CK_IntToOCLSampler: 1766 return CGF.CGM.createOpenCLIntToSamplerConversion(E, CGF); 1767 1768 } // end of switch 1769 1770 llvm_unreachable("unknown scalar cast"); 1771 } 1772 1773 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) { 1774 CodeGenFunction::StmtExprEvaluation eval(CGF); 1775 Address RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(), 1776 !E->getType()->isVoidType()); 1777 if (!RetAlloca.isValid()) 1778 return nullptr; 1779 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()), 1780 E->getExprLoc()); 1781 } 1782 1783 Value *ScalarExprEmitter::VisitExprWithCleanups(ExprWithCleanups *E) { 1784 CGF.enterFullExpression(E); 1785 CodeGenFunction::RunCleanupsScope Scope(CGF); 1786 Value *V = Visit(E->getSubExpr()); 1787 // Defend against dominance problems caused by jumps out of expression 1788 // evaluation through the shared cleanup block. 1789 Scope.ForceCleanup({&V}); 1790 return V; 1791 } 1792 1793 //===----------------------------------------------------------------------===// 1794 // Unary Operators 1795 //===----------------------------------------------------------------------===// 1796 1797 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E, 1798 llvm::Value *InVal, bool IsInc) { 1799 BinOpInfo BinOp; 1800 BinOp.LHS = InVal; 1801 BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false); 1802 BinOp.Ty = E->getType(); 1803 BinOp.Opcode = IsInc ? BO_Add : BO_Sub; 1804 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 1805 BinOp.E = E; 1806 return BinOp; 1807 } 1808 1809 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior( 1810 const UnaryOperator *E, llvm::Value *InVal, bool IsInc) { 1811 llvm::Value *Amount = 1812 llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true); 1813 StringRef Name = IsInc ? "inc" : "dec"; 1814 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 1815 case LangOptions::SOB_Defined: 1816 return Builder.CreateAdd(InVal, Amount, Name); 1817 case LangOptions::SOB_Undefined: 1818 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 1819 return Builder.CreateNSWAdd(InVal, Amount, Name); 1820 // Fall through. 1821 case LangOptions::SOB_Trapping: 1822 if (IsWidenedIntegerOp(CGF.getContext(), E->getSubExpr())) 1823 return Builder.CreateNSWAdd(InVal, Amount, Name); 1824 return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc)); 1825 } 1826 llvm_unreachable("Unknown SignedOverflowBehaviorTy"); 1827 } 1828 1829 llvm::Value * 1830 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 1831 bool isInc, bool isPre) { 1832 1833 QualType type = E->getSubExpr()->getType(); 1834 llvm::PHINode *atomicPHI = nullptr; 1835 llvm::Value *value; 1836 llvm::Value *input; 1837 1838 int amount = (isInc ? 1 : -1); 1839 1840 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) { 1841 type = atomicTy->getValueType(); 1842 if (isInc && type->isBooleanType()) { 1843 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type); 1844 if (isPre) { 1845 Builder.CreateStore(True, LV.getAddress(), LV.isVolatileQualified()) 1846 ->setAtomic(llvm::AtomicOrdering::SequentiallyConsistent); 1847 return Builder.getTrue(); 1848 } 1849 // For atomic bool increment, we just store true and return it for 1850 // preincrement, do an atomic swap with true for postincrement 1851 return Builder.CreateAtomicRMW( 1852 llvm::AtomicRMWInst::Xchg, LV.getPointer(), True, 1853 llvm::AtomicOrdering::SequentiallyConsistent); 1854 } 1855 // Special case for atomic increment / decrement on integers, emit 1856 // atomicrmw instructions. We skip this if we want to be doing overflow 1857 // checking, and fall into the slow path with the atomic cmpxchg loop. 1858 if (!type->isBooleanType() && type->isIntegerType() && 1859 !(type->isUnsignedIntegerType() && 1860 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 1861 CGF.getLangOpts().getSignedOverflowBehavior() != 1862 LangOptions::SOB_Trapping) { 1863 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add : 1864 llvm::AtomicRMWInst::Sub; 1865 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add : 1866 llvm::Instruction::Sub; 1867 llvm::Value *amt = CGF.EmitToMemory( 1868 llvm::ConstantInt::get(ConvertType(type), 1, true), type); 1869 llvm::Value *old = Builder.CreateAtomicRMW(aop, 1870 LV.getPointer(), amt, llvm::AtomicOrdering::SequentiallyConsistent); 1871 return isPre ? Builder.CreateBinOp(op, old, amt) : old; 1872 } 1873 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1874 input = value; 1875 // For every other atomic operation, we need to emit a load-op-cmpxchg loop 1876 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 1877 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 1878 value = CGF.EmitToMemory(value, type); 1879 Builder.CreateBr(opBB); 1880 Builder.SetInsertPoint(opBB); 1881 atomicPHI = Builder.CreatePHI(value->getType(), 2); 1882 atomicPHI->addIncoming(value, startBB); 1883 value = atomicPHI; 1884 } else { 1885 value = EmitLoadOfLValue(LV, E->getExprLoc()); 1886 input = value; 1887 } 1888 1889 // Special case of integer increment that we have to check first: bool++. 1890 // Due to promotion rules, we get: 1891 // bool++ -> bool = bool + 1 1892 // -> bool = (int)bool + 1 1893 // -> bool = ((int)bool + 1 != 0) 1894 // An interesting aspect of this is that increment is always true. 1895 // Decrement does not have this property. 1896 if (isInc && type->isBooleanType()) { 1897 value = Builder.getTrue(); 1898 1899 // Most common case by far: integer increment. 1900 } else if (type->isIntegerType()) { 1901 // Note that signed integer inc/dec with width less than int can't 1902 // overflow because of promotion rules; we're just eliding a few steps here. 1903 bool CanOverflow = value->getType()->getIntegerBitWidth() >= 1904 CGF.IntTy->getIntegerBitWidth(); 1905 if (CanOverflow && type->isSignedIntegerOrEnumerationType()) { 1906 value = EmitIncDecConsiderOverflowBehavior(E, value, isInc); 1907 } else if (CanOverflow && type->isUnsignedIntegerType() && 1908 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) { 1909 value = 1910 EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc)); 1911 } else { 1912 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true); 1913 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1914 } 1915 1916 // Next most common: pointer increment. 1917 } else if (const PointerType *ptr = type->getAs<PointerType>()) { 1918 QualType type = ptr->getPointeeType(); 1919 1920 // VLA types don't have constant size. 1921 if (const VariableArrayType *vla 1922 = CGF.getContext().getAsVariableArrayType(type)) { 1923 llvm::Value *numElts = CGF.getVLASize(vla).first; 1924 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize"); 1925 if (CGF.getLangOpts().isSignedOverflowDefined()) 1926 value = Builder.CreateGEP(value, numElts, "vla.inc"); 1927 else 1928 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc"); 1929 1930 // Arithmetic on function pointers (!) is just +-1. 1931 } else if (type->isFunctionType()) { 1932 llvm::Value *amt = Builder.getInt32(amount); 1933 1934 value = CGF.EmitCastToVoidPtr(value); 1935 if (CGF.getLangOpts().isSignedOverflowDefined()) 1936 value = Builder.CreateGEP(value, amt, "incdec.funcptr"); 1937 else 1938 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr"); 1939 value = Builder.CreateBitCast(value, input->getType()); 1940 1941 // For everything else, we can just do a simple increment. 1942 } else { 1943 llvm::Value *amt = Builder.getInt32(amount); 1944 if (CGF.getLangOpts().isSignedOverflowDefined()) 1945 value = Builder.CreateGEP(value, amt, "incdec.ptr"); 1946 else 1947 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr"); 1948 } 1949 1950 // Vector increment/decrement. 1951 } else if (type->isVectorType()) { 1952 if (type->hasIntegerRepresentation()) { 1953 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount); 1954 1955 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec"); 1956 } else { 1957 value = Builder.CreateFAdd( 1958 value, 1959 llvm::ConstantFP::get(value->getType(), amount), 1960 isInc ? "inc" : "dec"); 1961 } 1962 1963 // Floating point. 1964 } else if (type->isRealFloatingType()) { 1965 // Add the inc/dec to the real part. 1966 llvm::Value *amt; 1967 1968 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 1969 // Another special case: half FP increment should be done via float 1970 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 1971 value = Builder.CreateCall( 1972 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, 1973 CGF.CGM.FloatTy), 1974 input, "incdec.conv"); 1975 } else { 1976 value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv"); 1977 } 1978 } 1979 1980 if (value->getType()->isFloatTy()) 1981 amt = llvm::ConstantFP::get(VMContext, 1982 llvm::APFloat(static_cast<float>(amount))); 1983 else if (value->getType()->isDoubleTy()) 1984 amt = llvm::ConstantFP::get(VMContext, 1985 llvm::APFloat(static_cast<double>(amount))); 1986 else { 1987 // Remaining types are Half, LongDouble or __float128. Convert from float. 1988 llvm::APFloat F(static_cast<float>(amount)); 1989 bool ignored; 1990 const llvm::fltSemantics *FS; 1991 // Don't use getFloatTypeSemantics because Half isn't 1992 // necessarily represented using the "half" LLVM type. 1993 if (value->getType()->isFP128Ty()) 1994 FS = &CGF.getTarget().getFloat128Format(); 1995 else if (value->getType()->isHalfTy()) 1996 FS = &CGF.getTarget().getHalfFormat(); 1997 else 1998 FS = &CGF.getTarget().getLongDoubleFormat(); 1999 F.convert(*FS, llvm::APFloat::rmTowardZero, &ignored); 2000 amt = llvm::ConstantFP::get(VMContext, F); 2001 } 2002 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec"); 2003 2004 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) { 2005 if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) { 2006 value = Builder.CreateCall( 2007 CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, 2008 CGF.CGM.FloatTy), 2009 value, "incdec.conv"); 2010 } else { 2011 value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv"); 2012 } 2013 } 2014 2015 // Objective-C pointer types. 2016 } else { 2017 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>(); 2018 value = CGF.EmitCastToVoidPtr(value); 2019 2020 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType()); 2021 if (!isInc) size = -size; 2022 llvm::Value *sizeValue = 2023 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity()); 2024 2025 if (CGF.getLangOpts().isSignedOverflowDefined()) 2026 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr"); 2027 else 2028 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr"); 2029 value = Builder.CreateBitCast(value, input->getType()); 2030 } 2031 2032 if (atomicPHI) { 2033 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2034 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2035 auto Pair = CGF.EmitAtomicCompareExchange( 2036 LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc()); 2037 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type); 2038 llvm::Value *success = Pair.second; 2039 atomicPHI->addIncoming(old, opBB); 2040 Builder.CreateCondBr(success, contBB, opBB); 2041 Builder.SetInsertPoint(contBB); 2042 return isPre ? value : input; 2043 } 2044 2045 // Store the updated result through the lvalue. 2046 if (LV.isBitField()) 2047 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value); 2048 else 2049 CGF.EmitStoreThroughLValue(RValue::get(value), LV); 2050 2051 // If this is a postinc, return the value read from memory, otherwise use the 2052 // updated value. 2053 return isPre ? value : input; 2054 } 2055 2056 2057 2058 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) { 2059 TestAndClearIgnoreResultAssign(); 2060 // Emit unary minus with EmitSub so we handle overflow cases etc. 2061 BinOpInfo BinOp; 2062 BinOp.RHS = Visit(E->getSubExpr()); 2063 2064 if (BinOp.RHS->getType()->isFPOrFPVectorTy()) 2065 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType()); 2066 else 2067 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType()); 2068 BinOp.Ty = E->getType(); 2069 BinOp.Opcode = BO_Sub; 2070 // FIXME: once UnaryOperator carries FPFeatures, copy it here. 2071 BinOp.E = E; 2072 return EmitSub(BinOp); 2073 } 2074 2075 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) { 2076 TestAndClearIgnoreResultAssign(); 2077 Value *Op = Visit(E->getSubExpr()); 2078 return Builder.CreateNot(Op, "neg"); 2079 } 2080 2081 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) { 2082 // Perform vector logical not on comparison with zero vector. 2083 if (E->getType()->isExtVectorType()) { 2084 Value *Oper = Visit(E->getSubExpr()); 2085 Value *Zero = llvm::Constant::getNullValue(Oper->getType()); 2086 Value *Result; 2087 if (Oper->getType()->isFPOrFPVectorTy()) 2088 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp"); 2089 else 2090 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp"); 2091 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 2092 } 2093 2094 // Compare operand to zero. 2095 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr()); 2096 2097 // Invert value. 2098 // TODO: Could dynamically modify easy computations here. For example, if 2099 // the operand is an icmp ne, turn into icmp eq. 2100 BoolVal = Builder.CreateNot(BoolVal, "lnot"); 2101 2102 // ZExt result to the expr type. 2103 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext"); 2104 } 2105 2106 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) { 2107 // Try folding the offsetof to a constant. 2108 llvm::APSInt Value; 2109 if (E->EvaluateAsInt(Value, CGF.getContext())) 2110 return Builder.getInt(Value); 2111 2112 // Loop over the components of the offsetof to compute the value. 2113 unsigned n = E->getNumComponents(); 2114 llvm::Type* ResultType = ConvertType(E->getType()); 2115 llvm::Value* Result = llvm::Constant::getNullValue(ResultType); 2116 QualType CurrentType = E->getTypeSourceInfo()->getType(); 2117 for (unsigned i = 0; i != n; ++i) { 2118 OffsetOfNode ON = E->getComponent(i); 2119 llvm::Value *Offset = nullptr; 2120 switch (ON.getKind()) { 2121 case OffsetOfNode::Array: { 2122 // Compute the index 2123 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex()); 2124 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr); 2125 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType(); 2126 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv"); 2127 2128 // Save the element type 2129 CurrentType = 2130 CGF.getContext().getAsArrayType(CurrentType)->getElementType(); 2131 2132 // Compute the element size 2133 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType, 2134 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity()); 2135 2136 // Multiply out to compute the result 2137 Offset = Builder.CreateMul(Idx, ElemSize); 2138 break; 2139 } 2140 2141 case OffsetOfNode::Field: { 2142 FieldDecl *MemberDecl = ON.getField(); 2143 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2144 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2145 2146 // Compute the index of the field in its parent. 2147 unsigned i = 0; 2148 // FIXME: It would be nice if we didn't have to loop here! 2149 for (RecordDecl::field_iterator Field = RD->field_begin(), 2150 FieldEnd = RD->field_end(); 2151 Field != FieldEnd; ++Field, ++i) { 2152 if (*Field == MemberDecl) 2153 break; 2154 } 2155 assert(i < RL.getFieldCount() && "offsetof field in wrong type"); 2156 2157 // Compute the offset to the field 2158 int64_t OffsetInt = RL.getFieldOffset(i) / 2159 CGF.getContext().getCharWidth(); 2160 Offset = llvm::ConstantInt::get(ResultType, OffsetInt); 2161 2162 // Save the element type. 2163 CurrentType = MemberDecl->getType(); 2164 break; 2165 } 2166 2167 case OffsetOfNode::Identifier: 2168 llvm_unreachable("dependent __builtin_offsetof"); 2169 2170 case OffsetOfNode::Base: { 2171 if (ON.getBase()->isVirtual()) { 2172 CGF.ErrorUnsupported(E, "virtual base in offsetof"); 2173 continue; 2174 } 2175 2176 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl(); 2177 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD); 2178 2179 // Save the element type. 2180 CurrentType = ON.getBase()->getType(); 2181 2182 // Compute the offset to the base. 2183 const RecordType *BaseRT = CurrentType->getAs<RecordType>(); 2184 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl()); 2185 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD); 2186 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity()); 2187 break; 2188 } 2189 } 2190 Result = Builder.CreateAdd(Result, Offset); 2191 } 2192 return Result; 2193 } 2194 2195 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of 2196 /// argument of the sizeof expression as an integer. 2197 Value * 2198 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr( 2199 const UnaryExprOrTypeTraitExpr *E) { 2200 QualType TypeToSize = E->getTypeOfArgument(); 2201 if (E->getKind() == UETT_SizeOf) { 2202 if (const VariableArrayType *VAT = 2203 CGF.getContext().getAsVariableArrayType(TypeToSize)) { 2204 if (E->isArgumentType()) { 2205 // sizeof(type) - make sure to emit the VLA size. 2206 CGF.EmitVariablyModifiedType(TypeToSize); 2207 } else { 2208 // C99 6.5.3.4p2: If the argument is an expression of type 2209 // VLA, it is evaluated. 2210 CGF.EmitIgnoredExpr(E->getArgumentExpr()); 2211 } 2212 2213 QualType eltType; 2214 llvm::Value *numElts; 2215 std::tie(numElts, eltType) = CGF.getVLASize(VAT); 2216 2217 llvm::Value *size = numElts; 2218 2219 // Scale the number of non-VLA elements by the non-VLA element size. 2220 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType); 2221 if (!eltSize.isOne()) 2222 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts); 2223 2224 return size; 2225 } 2226 } else if (E->getKind() == UETT_OpenMPRequiredSimdAlign) { 2227 auto Alignment = 2228 CGF.getContext() 2229 .toCharUnitsFromBits(CGF.getContext().getOpenMPDefaultSimdAlign( 2230 E->getTypeOfArgument()->getPointeeType())) 2231 .getQuantity(); 2232 return llvm::ConstantInt::get(CGF.SizeTy, Alignment); 2233 } 2234 2235 // If this isn't sizeof(vla), the result must be constant; use the constant 2236 // folding logic so we don't have to duplicate it here. 2237 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext())); 2238 } 2239 2240 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) { 2241 Expr *Op = E->getSubExpr(); 2242 if (Op->getType()->isAnyComplexType()) { 2243 // If it's an l-value, load through the appropriate subobject l-value. 2244 // Note that we have to ask E because Op might be an l-value that 2245 // this won't work for, e.g. an Obj-C property. 2246 if (E->isGLValue()) 2247 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2248 E->getExprLoc()).getScalarVal(); 2249 2250 // Otherwise, calculate and project. 2251 return CGF.EmitComplexExpr(Op, false, true).first; 2252 } 2253 2254 return Visit(Op); 2255 } 2256 2257 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) { 2258 Expr *Op = E->getSubExpr(); 2259 if (Op->getType()->isAnyComplexType()) { 2260 // If it's an l-value, load through the appropriate subobject l-value. 2261 // Note that we have to ask E because Op might be an l-value that 2262 // this won't work for, e.g. an Obj-C property. 2263 if (Op->isGLValue()) 2264 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E), 2265 E->getExprLoc()).getScalarVal(); 2266 2267 // Otherwise, calculate and project. 2268 return CGF.EmitComplexExpr(Op, true, false).second; 2269 } 2270 2271 // __imag on a scalar returns zero. Emit the subexpr to ensure side 2272 // effects are evaluated, but not the actual value. 2273 if (Op->isGLValue()) 2274 CGF.EmitLValue(Op); 2275 else 2276 CGF.EmitScalarExpr(Op, true); 2277 return llvm::Constant::getNullValue(ConvertType(E->getType())); 2278 } 2279 2280 //===----------------------------------------------------------------------===// 2281 // Binary Operators 2282 //===----------------------------------------------------------------------===// 2283 2284 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) { 2285 TestAndClearIgnoreResultAssign(); 2286 BinOpInfo Result; 2287 Result.LHS = Visit(E->getLHS()); 2288 Result.RHS = Visit(E->getRHS()); 2289 Result.Ty = E->getType(); 2290 Result.Opcode = E->getOpcode(); 2291 Result.FPFeatures = E->getFPFeatures(); 2292 Result.E = E; 2293 return Result; 2294 } 2295 2296 LValue ScalarExprEmitter::EmitCompoundAssignLValue( 2297 const CompoundAssignOperator *E, 2298 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &), 2299 Value *&Result) { 2300 QualType LHSTy = E->getLHS()->getType(); 2301 BinOpInfo OpInfo; 2302 2303 if (E->getComputationResultType()->isAnyComplexType()) 2304 return CGF.EmitScalarCompoundAssignWithComplex(E, Result); 2305 2306 // Emit the RHS first. __block variables need to have the rhs evaluated 2307 // first, plus this should improve codegen a little. 2308 OpInfo.RHS = Visit(E->getRHS()); 2309 OpInfo.Ty = E->getComputationResultType(); 2310 OpInfo.Opcode = E->getOpcode(); 2311 OpInfo.FPFeatures = E->getFPFeatures(); 2312 OpInfo.E = E; 2313 // Load/convert the LHS. 2314 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 2315 2316 llvm::PHINode *atomicPHI = nullptr; 2317 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) { 2318 QualType type = atomicTy->getValueType(); 2319 if (!type->isBooleanType() && type->isIntegerType() && 2320 !(type->isUnsignedIntegerType() && 2321 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) && 2322 CGF.getLangOpts().getSignedOverflowBehavior() != 2323 LangOptions::SOB_Trapping) { 2324 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP; 2325 switch (OpInfo.Opcode) { 2326 // We don't have atomicrmw operands for *, %, /, <<, >> 2327 case BO_MulAssign: case BO_DivAssign: 2328 case BO_RemAssign: 2329 case BO_ShlAssign: 2330 case BO_ShrAssign: 2331 break; 2332 case BO_AddAssign: 2333 aop = llvm::AtomicRMWInst::Add; 2334 break; 2335 case BO_SubAssign: 2336 aop = llvm::AtomicRMWInst::Sub; 2337 break; 2338 case BO_AndAssign: 2339 aop = llvm::AtomicRMWInst::And; 2340 break; 2341 case BO_XorAssign: 2342 aop = llvm::AtomicRMWInst::Xor; 2343 break; 2344 case BO_OrAssign: 2345 aop = llvm::AtomicRMWInst::Or; 2346 break; 2347 default: 2348 llvm_unreachable("Invalid compound assignment type"); 2349 } 2350 if (aop != llvm::AtomicRMWInst::BAD_BINOP) { 2351 llvm::Value *amt = CGF.EmitToMemory( 2352 EmitScalarConversion(OpInfo.RHS, E->getRHS()->getType(), LHSTy, 2353 E->getExprLoc()), 2354 LHSTy); 2355 Builder.CreateAtomicRMW(aop, LHSLV.getPointer(), amt, 2356 llvm::AtomicOrdering::SequentiallyConsistent); 2357 return LHSLV; 2358 } 2359 } 2360 // FIXME: For floating point types, we should be saving and restoring the 2361 // floating point environment in the loop. 2362 llvm::BasicBlock *startBB = Builder.GetInsertBlock(); 2363 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn); 2364 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2365 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type); 2366 Builder.CreateBr(opBB); 2367 Builder.SetInsertPoint(opBB); 2368 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2); 2369 atomicPHI->addIncoming(OpInfo.LHS, startBB); 2370 OpInfo.LHS = atomicPHI; 2371 } 2372 else 2373 OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc()); 2374 2375 SourceLocation Loc = E->getExprLoc(); 2376 OpInfo.LHS = 2377 EmitScalarConversion(OpInfo.LHS, LHSTy, E->getComputationLHSType(), Loc); 2378 2379 // Expand the binary operator. 2380 Result = (this->*Func)(OpInfo); 2381 2382 // Convert the result back to the LHS type. 2383 Result = 2384 EmitScalarConversion(Result, E->getComputationResultType(), LHSTy, Loc); 2385 2386 if (atomicPHI) { 2387 llvm::BasicBlock *opBB = Builder.GetInsertBlock(); 2388 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn); 2389 auto Pair = CGF.EmitAtomicCompareExchange( 2390 LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc()); 2391 llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy); 2392 llvm::Value *success = Pair.second; 2393 atomicPHI->addIncoming(old, opBB); 2394 Builder.CreateCondBr(success, contBB, opBB); 2395 Builder.SetInsertPoint(contBB); 2396 return LHSLV; 2397 } 2398 2399 // Store the result value into the LHS lvalue. Bit-fields are handled 2400 // specially because the result is altered by the store, i.e., [C99 6.5.16p1] 2401 // 'An assignment expression has the value of the left operand after the 2402 // assignment...'. 2403 if (LHSLV.isBitField()) 2404 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result); 2405 else 2406 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV); 2407 2408 return LHSLV; 2409 } 2410 2411 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E, 2412 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) { 2413 bool Ignore = TestAndClearIgnoreResultAssign(); 2414 Value *RHS; 2415 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS); 2416 2417 // If the result is clearly ignored, return now. 2418 if (Ignore) 2419 return nullptr; 2420 2421 // The result of an assignment in C is the assigned r-value. 2422 if (!CGF.getLangOpts().CPlusPlus) 2423 return RHS; 2424 2425 // If the lvalue is non-volatile, return the computed value of the assignment. 2426 if (!LHS.isVolatileQualified()) 2427 return RHS; 2428 2429 // Otherwise, reload the value. 2430 return EmitLoadOfLValue(LHS, E->getExprLoc()); 2431 } 2432 2433 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck( 2434 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) { 2435 SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks; 2436 2437 if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) { 2438 Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero), 2439 SanitizerKind::IntegerDivideByZero)); 2440 } 2441 2442 const auto *BO = cast<BinaryOperator>(Ops.E); 2443 if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) && 2444 Ops.Ty->hasSignedIntegerRepresentation() && 2445 !IsWidenedIntegerOp(CGF.getContext(), BO->getLHS()) && 2446 Ops.mayHaveIntegerOverflow()) { 2447 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType()); 2448 2449 llvm::Value *IntMin = 2450 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth())); 2451 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL); 2452 2453 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin); 2454 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne); 2455 llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or"); 2456 Checks.push_back( 2457 std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow)); 2458 } 2459 2460 if (Checks.size() > 0) 2461 EmitBinOpCheck(Checks, Ops); 2462 } 2463 2464 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) { 2465 { 2466 CodeGenFunction::SanitizerScope SanScope(&CGF); 2467 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2468 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2469 Ops.Ty->isIntegerType() && 2470 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2471 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2472 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true); 2473 } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) && 2474 Ops.Ty->isRealFloatingType() && 2475 Ops.mayHaveFloatDivisionByZero()) { 2476 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2477 llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero); 2478 EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero), 2479 Ops); 2480 } 2481 } 2482 2483 if (Ops.LHS->getType()->isFPOrFPVectorTy()) { 2484 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div"); 2485 if (CGF.getLangOpts().OpenCL && 2486 !CGF.CGM.getCodeGenOpts().CorrectlyRoundedDivSqrt) { 2487 // OpenCL v1.1 s7.4: minimum accuracy of single precision / is 2.5ulp 2488 // OpenCL v1.2 s5.6.4.2: The -cl-fp32-correctly-rounded-divide-sqrt 2489 // build option allows an application to specify that single precision 2490 // floating-point divide (x/y and 1/x) and sqrt used in the program 2491 // source are correctly rounded. 2492 llvm::Type *ValTy = Val->getType(); 2493 if (ValTy->isFloatTy() || 2494 (isa<llvm::VectorType>(ValTy) && 2495 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy())) 2496 CGF.SetFPAccuracy(Val, 2.5); 2497 } 2498 return Val; 2499 } 2500 else if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2501 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div"); 2502 else 2503 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div"); 2504 } 2505 2506 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) { 2507 // Rem in C can't be a floating point type: C99 6.5.5p2. 2508 if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) || 2509 CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) && 2510 Ops.Ty->isIntegerType() && 2511 (Ops.mayHaveIntegerDivisionByZero() || Ops.mayHaveIntegerOverflow())) { 2512 CodeGenFunction::SanitizerScope SanScope(&CGF); 2513 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty)); 2514 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false); 2515 } 2516 2517 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 2518 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem"); 2519 else 2520 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem"); 2521 } 2522 2523 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) { 2524 unsigned IID; 2525 unsigned OpID = 0; 2526 2527 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType(); 2528 switch (Ops.Opcode) { 2529 case BO_Add: 2530 case BO_AddAssign: 2531 OpID = 1; 2532 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow : 2533 llvm::Intrinsic::uadd_with_overflow; 2534 break; 2535 case BO_Sub: 2536 case BO_SubAssign: 2537 OpID = 2; 2538 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow : 2539 llvm::Intrinsic::usub_with_overflow; 2540 break; 2541 case BO_Mul: 2542 case BO_MulAssign: 2543 OpID = 3; 2544 IID = isSigned ? llvm::Intrinsic::smul_with_overflow : 2545 llvm::Intrinsic::umul_with_overflow; 2546 break; 2547 default: 2548 llvm_unreachable("Unsupported operation for overflow detection"); 2549 } 2550 OpID <<= 1; 2551 if (isSigned) 2552 OpID |= 1; 2553 2554 CodeGenFunction::SanitizerScope SanScope(&CGF); 2555 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty); 2556 2557 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy); 2558 2559 Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS}); 2560 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0); 2561 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1); 2562 2563 // Handle overflow with llvm.trap if no custom handler has been specified. 2564 const std::string *handlerName = 2565 &CGF.getLangOpts().OverflowHandler; 2566 if (handlerName->empty()) { 2567 // If the signed-integer-overflow sanitizer is enabled, emit a call to its 2568 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap. 2569 if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) { 2570 llvm::Value *NotOverflow = Builder.CreateNot(overflow); 2571 SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow 2572 : SanitizerKind::UnsignedIntegerOverflow; 2573 EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops); 2574 } else 2575 CGF.EmitTrapCheck(Builder.CreateNot(overflow)); 2576 return result; 2577 } 2578 2579 // Branch in case of overflow. 2580 llvm::BasicBlock *initialBB = Builder.GetInsertBlock(); 2581 llvm::BasicBlock *continueBB = 2582 CGF.createBasicBlock("nooverflow", CGF.CurFn, initialBB->getNextNode()); 2583 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn); 2584 2585 Builder.CreateCondBr(overflow, overflowBB, continueBB); 2586 2587 // If an overflow handler is set, then we want to call it and then use its 2588 // result, if it returns. 2589 Builder.SetInsertPoint(overflowBB); 2590 2591 // Get the overflow handler. 2592 llvm::Type *Int8Ty = CGF.Int8Ty; 2593 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty }; 2594 llvm::FunctionType *handlerTy = 2595 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true); 2596 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName); 2597 2598 // Sign extend the args to 64-bit, so that we can use the same handler for 2599 // all types of overflow. 2600 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty); 2601 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty); 2602 2603 // Call the handler with the two arguments, the operation, and the size of 2604 // the result. 2605 llvm::Value *handlerArgs[] = { 2606 lhs, 2607 rhs, 2608 Builder.getInt8(OpID), 2609 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth()) 2610 }; 2611 llvm::Value *handlerResult = 2612 CGF.EmitNounwindRuntimeCall(handler, handlerArgs); 2613 2614 // Truncate the result back to the desired size. 2615 handlerResult = Builder.CreateTrunc(handlerResult, opTy); 2616 Builder.CreateBr(continueBB); 2617 2618 Builder.SetInsertPoint(continueBB); 2619 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2); 2620 phi->addIncoming(result, initialBB); 2621 phi->addIncoming(handlerResult, overflowBB); 2622 2623 return phi; 2624 } 2625 2626 /// Emit pointer + index arithmetic. 2627 static Value *emitPointerArithmetic(CodeGenFunction &CGF, 2628 const BinOpInfo &op, 2629 bool isSubtraction) { 2630 // Must have binary (not unary) expr here. Unary pointer 2631 // increment/decrement doesn't use this path. 2632 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2633 2634 Value *pointer = op.LHS; 2635 Expr *pointerOperand = expr->getLHS(); 2636 Value *index = op.RHS; 2637 Expr *indexOperand = expr->getRHS(); 2638 2639 // In a subtraction, the LHS is always the pointer. 2640 if (!isSubtraction && !pointer->getType()->isPointerTy()) { 2641 std::swap(pointer, index); 2642 std::swap(pointerOperand, indexOperand); 2643 } 2644 2645 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth(); 2646 auto &DL = CGF.CGM.getDataLayout(); 2647 auto PtrTy = cast<llvm::PointerType>(pointer->getType()); 2648 if (width != DL.getTypeSizeInBits(PtrTy)) { 2649 // Zero-extend or sign-extend the pointer value according to 2650 // whether the index is signed or not. 2651 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType(); 2652 index = CGF.Builder.CreateIntCast(index, DL.getIntPtrType(PtrTy), isSigned, 2653 "idx.ext"); 2654 } 2655 2656 // If this is subtraction, negate the index. 2657 if (isSubtraction) 2658 index = CGF.Builder.CreateNeg(index, "idx.neg"); 2659 2660 if (CGF.SanOpts.has(SanitizerKind::ArrayBounds)) 2661 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(), 2662 /*Accessed*/ false); 2663 2664 const PointerType *pointerType 2665 = pointerOperand->getType()->getAs<PointerType>(); 2666 if (!pointerType) { 2667 QualType objectType = pointerOperand->getType() 2668 ->castAs<ObjCObjectPointerType>() 2669 ->getPointeeType(); 2670 llvm::Value *objectSize 2671 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType)); 2672 2673 index = CGF.Builder.CreateMul(index, objectSize); 2674 2675 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2676 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2677 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2678 } 2679 2680 QualType elementType = pointerType->getPointeeType(); 2681 if (const VariableArrayType *vla 2682 = CGF.getContext().getAsVariableArrayType(elementType)) { 2683 // The element count here is the total number of non-VLA elements. 2684 llvm::Value *numElements = CGF.getVLASize(vla).first; 2685 2686 // Effectively, the multiply by the VLA size is part of the GEP. 2687 // GEP indexes are signed, and scaling an index isn't permitted to 2688 // signed-overflow, so we use the same semantics for our explicit 2689 // multiply. We suppress this if overflow is not undefined behavior. 2690 if (CGF.getLangOpts().isSignedOverflowDefined()) { 2691 index = CGF.Builder.CreateMul(index, numElements, "vla.index"); 2692 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2693 } else { 2694 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index"); 2695 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2696 } 2697 return pointer; 2698 } 2699 2700 // Explicitly handle GNU void* and function pointer arithmetic extensions. The 2701 // GNU void* casts amount to no-ops since our void* type is i8*, but this is 2702 // future proof. 2703 if (elementType->isVoidType() || elementType->isFunctionType()) { 2704 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy); 2705 result = CGF.Builder.CreateGEP(result, index, "add.ptr"); 2706 return CGF.Builder.CreateBitCast(result, pointer->getType()); 2707 } 2708 2709 if (CGF.getLangOpts().isSignedOverflowDefined()) 2710 return CGF.Builder.CreateGEP(pointer, index, "add.ptr"); 2711 2712 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr"); 2713 } 2714 2715 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and 2716 // Addend. Use negMul and negAdd to negate the first operand of the Mul or 2717 // the add operand respectively. This allows fmuladd to represent a*b-c, or 2718 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to 2719 // efficient operations. 2720 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend, 2721 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2722 bool negMul, bool negAdd) { 2723 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set."); 2724 2725 Value *MulOp0 = MulOp->getOperand(0); 2726 Value *MulOp1 = MulOp->getOperand(1); 2727 if (negMul) { 2728 MulOp0 = 2729 Builder.CreateFSub( 2730 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0, 2731 "neg"); 2732 } else if (negAdd) { 2733 Addend = 2734 Builder.CreateFSub( 2735 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend, 2736 "neg"); 2737 } 2738 2739 Value *FMulAdd = Builder.CreateCall( 2740 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()), 2741 {MulOp0, MulOp1, Addend}); 2742 MulOp->eraseFromParent(); 2743 2744 return FMulAdd; 2745 } 2746 2747 // Check whether it would be legal to emit an fmuladd intrinsic call to 2748 // represent op and if so, build the fmuladd. 2749 // 2750 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on. 2751 // Does NOT check the type of the operation - it's assumed that this function 2752 // will be called from contexts where it's known that the type is contractable. 2753 static Value* tryEmitFMulAdd(const BinOpInfo &op, 2754 const CodeGenFunction &CGF, CGBuilderTy &Builder, 2755 bool isSub=false) { 2756 2757 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign || 2758 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) && 2759 "Only fadd/fsub can be the root of an fmuladd."); 2760 2761 // Check whether this op is marked as fusable. 2762 if (!op.FPFeatures.allowFPContractWithinStatement()) 2763 return nullptr; 2764 2765 // We have a potentially fusable op. Look for a mul on one of the operands. 2766 // Also, make sure that the mul result isn't used directly. In that case, 2767 // there's no point creating a muladd operation. 2768 if (auto *LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) { 2769 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul && 2770 LHSBinOp->use_empty()) 2771 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub); 2772 } 2773 if (auto *RHSBinOp = dyn_cast<llvm::BinaryOperator>(op.RHS)) { 2774 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul && 2775 RHSBinOp->use_empty()) 2776 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false); 2777 } 2778 2779 return nullptr; 2780 } 2781 2782 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) { 2783 if (op.LHS->getType()->isPointerTy() || 2784 op.RHS->getType()->isPointerTy()) 2785 return emitPointerArithmetic(CGF, op, /*subtraction*/ false); 2786 2787 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2788 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2789 case LangOptions::SOB_Defined: 2790 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2791 case LangOptions::SOB_Undefined: 2792 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2793 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2794 // Fall through. 2795 case LangOptions::SOB_Trapping: 2796 if (CanElideOverflowCheck(CGF.getContext(), op)) 2797 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add"); 2798 return EmitOverflowCheckedBinOp(op); 2799 } 2800 } 2801 2802 if (op.Ty->isUnsignedIntegerType() && 2803 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2804 !CanElideOverflowCheck(CGF.getContext(), op)) 2805 return EmitOverflowCheckedBinOp(op); 2806 2807 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2808 // Try to form an fmuladd. 2809 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder)) 2810 return FMulAdd; 2811 2812 Value *V = Builder.CreateFAdd(op.LHS, op.RHS, "add"); 2813 return propagateFMFlags(V, op); 2814 } 2815 2816 return Builder.CreateAdd(op.LHS, op.RHS, "add"); 2817 } 2818 2819 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) { 2820 // The LHS is always a pointer if either side is. 2821 if (!op.LHS->getType()->isPointerTy()) { 2822 if (op.Ty->isSignedIntegerOrEnumerationType()) { 2823 switch (CGF.getLangOpts().getSignedOverflowBehavior()) { 2824 case LangOptions::SOB_Defined: 2825 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2826 case LangOptions::SOB_Undefined: 2827 if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) 2828 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2829 // Fall through. 2830 case LangOptions::SOB_Trapping: 2831 if (CanElideOverflowCheck(CGF.getContext(), op)) 2832 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub"); 2833 return EmitOverflowCheckedBinOp(op); 2834 } 2835 } 2836 2837 if (op.Ty->isUnsignedIntegerType() && 2838 CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow) && 2839 !CanElideOverflowCheck(CGF.getContext(), op)) 2840 return EmitOverflowCheckedBinOp(op); 2841 2842 if (op.LHS->getType()->isFPOrFPVectorTy()) { 2843 // Try to form an fmuladd. 2844 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true)) 2845 return FMulAdd; 2846 Value *V = Builder.CreateFSub(op.LHS, op.RHS, "sub"); 2847 return propagateFMFlags(V, op); 2848 } 2849 2850 return Builder.CreateSub(op.LHS, op.RHS, "sub"); 2851 } 2852 2853 // If the RHS is not a pointer, then we have normal pointer 2854 // arithmetic. 2855 if (!op.RHS->getType()->isPointerTy()) 2856 return emitPointerArithmetic(CGF, op, /*subtraction*/ true); 2857 2858 // Otherwise, this is a pointer subtraction. 2859 2860 // Do the raw subtraction part. 2861 llvm::Value *LHS 2862 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast"); 2863 llvm::Value *RHS 2864 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast"); 2865 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub"); 2866 2867 // Okay, figure out the element size. 2868 const BinaryOperator *expr = cast<BinaryOperator>(op.E); 2869 QualType elementType = expr->getLHS()->getType()->getPointeeType(); 2870 2871 llvm::Value *divisor = nullptr; 2872 2873 // For a variable-length array, this is going to be non-constant. 2874 if (const VariableArrayType *vla 2875 = CGF.getContext().getAsVariableArrayType(elementType)) { 2876 llvm::Value *numElements; 2877 std::tie(numElements, elementType) = CGF.getVLASize(vla); 2878 2879 divisor = numElements; 2880 2881 // Scale the number of non-VLA elements by the non-VLA element size. 2882 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType); 2883 if (!eltSize.isOne()) 2884 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor); 2885 2886 // For everything elese, we can just compute it, safe in the 2887 // assumption that Sema won't let anything through that we can't 2888 // safely compute the size of. 2889 } else { 2890 CharUnits elementSize; 2891 // Handle GCC extension for pointer arithmetic on void* and 2892 // function pointer types. 2893 if (elementType->isVoidType() || elementType->isFunctionType()) 2894 elementSize = CharUnits::One(); 2895 else 2896 elementSize = CGF.getContext().getTypeSizeInChars(elementType); 2897 2898 // Don't even emit the divide for element size of 1. 2899 if (elementSize.isOne()) 2900 return diffInChars; 2901 2902 divisor = CGF.CGM.getSize(elementSize); 2903 } 2904 2905 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since 2906 // pointer difference in C is only defined in the case where both operands 2907 // are pointing to elements of an array. 2908 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div"); 2909 } 2910 2911 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) { 2912 llvm::IntegerType *Ty; 2913 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType())) 2914 Ty = cast<llvm::IntegerType>(VT->getElementType()); 2915 else 2916 Ty = cast<llvm::IntegerType>(LHS->getType()); 2917 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1); 2918 } 2919 2920 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) { 2921 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2922 // RHS to the same size as the LHS. 2923 Value *RHS = Ops.RHS; 2924 if (Ops.LHS->getType() != RHS->getType()) 2925 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2926 2927 bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) && 2928 Ops.Ty->hasSignedIntegerRepresentation() && 2929 !CGF.getLangOpts().isSignedOverflowDefined(); 2930 bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent); 2931 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2932 if (CGF.getLangOpts().OpenCL) 2933 RHS = 2934 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask"); 2935 else if ((SanitizeBase || SanitizeExponent) && 2936 isa<llvm::IntegerType>(Ops.LHS->getType())) { 2937 CodeGenFunction::SanitizerScope SanScope(&CGF); 2938 SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks; 2939 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, Ops.RHS); 2940 llvm::Value *ValidExponent = Builder.CreateICmpULE(Ops.RHS, WidthMinusOne); 2941 2942 if (SanitizeExponent) { 2943 Checks.push_back( 2944 std::make_pair(ValidExponent, SanitizerKind::ShiftExponent)); 2945 } 2946 2947 if (SanitizeBase) { 2948 // Check whether we are shifting any non-zero bits off the top of the 2949 // integer. We only emit this check if exponent is valid - otherwise 2950 // instructions below will have undefined behavior themselves. 2951 llvm::BasicBlock *Orig = Builder.GetInsertBlock(); 2952 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont"); 2953 llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check"); 2954 Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont); 2955 llvm::Value *PromotedWidthMinusOne = 2956 (RHS == Ops.RHS) ? WidthMinusOne 2957 : GetWidthMinusOneValue(Ops.LHS, RHS); 2958 CGF.EmitBlock(CheckShiftBase); 2959 llvm::Value *BitsShiftedOff = Builder.CreateLShr( 2960 Ops.LHS, Builder.CreateSub(PromotedWidthMinusOne, RHS, "shl.zeros", 2961 /*NUW*/ true, /*NSW*/ true), 2962 "shl.check"); 2963 if (CGF.getLangOpts().CPlusPlus) { 2964 // In C99, we are not permitted to shift a 1 bit into the sign bit. 2965 // Under C++11's rules, shifting a 1 bit into the sign bit is 2966 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't 2967 // define signed left shifts, so we use the C99 and C++11 rules there). 2968 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1); 2969 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One); 2970 } 2971 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0); 2972 llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero); 2973 CGF.EmitBlock(Cont); 2974 llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2); 2975 BaseCheck->addIncoming(Builder.getTrue(), Orig); 2976 BaseCheck->addIncoming(ValidBase, CheckShiftBase); 2977 Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase)); 2978 } 2979 2980 assert(!Checks.empty()); 2981 EmitBinOpCheck(Checks, Ops); 2982 } 2983 2984 return Builder.CreateShl(Ops.LHS, RHS, "shl"); 2985 } 2986 2987 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) { 2988 // LLVM requires the LHS and RHS to be the same type: promote or truncate the 2989 // RHS to the same size as the LHS. 2990 Value *RHS = Ops.RHS; 2991 if (Ops.LHS->getType() != RHS->getType()) 2992 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom"); 2993 2994 // OpenCL 6.3j: shift values are effectively % word size of LHS. 2995 if (CGF.getLangOpts().OpenCL) 2996 RHS = 2997 Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask"); 2998 else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) && 2999 isa<llvm::IntegerType>(Ops.LHS->getType())) { 3000 CodeGenFunction::SanitizerScope SanScope(&CGF); 3001 llvm::Value *Valid = 3002 Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)); 3003 EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops); 3004 } 3005 3006 if (Ops.Ty->hasUnsignedIntegerRepresentation()) 3007 return Builder.CreateLShr(Ops.LHS, RHS, "shr"); 3008 return Builder.CreateAShr(Ops.LHS, RHS, "shr"); 3009 } 3010 3011 enum IntrinsicType { VCMPEQ, VCMPGT }; 3012 // return corresponding comparison intrinsic for given vector type 3013 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT, 3014 BuiltinType::Kind ElemKind) { 3015 switch (ElemKind) { 3016 default: llvm_unreachable("unexpected element type"); 3017 case BuiltinType::Char_U: 3018 case BuiltinType::UChar: 3019 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3020 llvm::Intrinsic::ppc_altivec_vcmpgtub_p; 3021 case BuiltinType::Char_S: 3022 case BuiltinType::SChar: 3023 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p : 3024 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p; 3025 case BuiltinType::UShort: 3026 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3027 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p; 3028 case BuiltinType::Short: 3029 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p : 3030 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p; 3031 case BuiltinType::UInt: 3032 case BuiltinType::ULong: 3033 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3034 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p; 3035 case BuiltinType::Int: 3036 case BuiltinType::Long: 3037 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p : 3038 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p; 3039 case BuiltinType::Float: 3040 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p : 3041 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p; 3042 } 3043 } 3044 3045 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E, 3046 llvm::CmpInst::Predicate UICmpOpc, 3047 llvm::CmpInst::Predicate SICmpOpc, 3048 llvm::CmpInst::Predicate FCmpOpc) { 3049 TestAndClearIgnoreResultAssign(); 3050 Value *Result; 3051 QualType LHSTy = E->getLHS()->getType(); 3052 QualType RHSTy = E->getRHS()->getType(); 3053 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) { 3054 assert(E->getOpcode() == BO_EQ || 3055 E->getOpcode() == BO_NE); 3056 Value *LHS = CGF.EmitScalarExpr(E->getLHS()); 3057 Value *RHS = CGF.EmitScalarExpr(E->getRHS()); 3058 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison( 3059 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE); 3060 } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) { 3061 Value *LHS = Visit(E->getLHS()); 3062 Value *RHS = Visit(E->getRHS()); 3063 3064 // If AltiVec, the comparison results in a numeric type, so we use 3065 // intrinsics comparing vectors and giving 0 or 1 as a result 3066 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) { 3067 // constants for mapping CR6 register bits to predicate result 3068 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6; 3069 3070 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic; 3071 3072 // in several cases vector arguments order will be reversed 3073 Value *FirstVecArg = LHS, 3074 *SecondVecArg = RHS; 3075 3076 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType(); 3077 const BuiltinType *BTy = ElTy->getAs<BuiltinType>(); 3078 BuiltinType::Kind ElementKind = BTy->getKind(); 3079 3080 switch(E->getOpcode()) { 3081 default: llvm_unreachable("is not a comparison operation"); 3082 case BO_EQ: 3083 CR6 = CR6_LT; 3084 ID = GetIntrinsic(VCMPEQ, ElementKind); 3085 break; 3086 case BO_NE: 3087 CR6 = CR6_EQ; 3088 ID = GetIntrinsic(VCMPEQ, ElementKind); 3089 break; 3090 case BO_LT: 3091 CR6 = CR6_LT; 3092 ID = GetIntrinsic(VCMPGT, ElementKind); 3093 std::swap(FirstVecArg, SecondVecArg); 3094 break; 3095 case BO_GT: 3096 CR6 = CR6_LT; 3097 ID = GetIntrinsic(VCMPGT, ElementKind); 3098 break; 3099 case BO_LE: 3100 if (ElementKind == BuiltinType::Float) { 3101 CR6 = CR6_LT; 3102 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3103 std::swap(FirstVecArg, SecondVecArg); 3104 } 3105 else { 3106 CR6 = CR6_EQ; 3107 ID = GetIntrinsic(VCMPGT, ElementKind); 3108 } 3109 break; 3110 case BO_GE: 3111 if (ElementKind == BuiltinType::Float) { 3112 CR6 = CR6_LT; 3113 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p; 3114 } 3115 else { 3116 CR6 = CR6_EQ; 3117 ID = GetIntrinsic(VCMPGT, ElementKind); 3118 std::swap(FirstVecArg, SecondVecArg); 3119 } 3120 break; 3121 } 3122 3123 Value *CR6Param = Builder.getInt32(CR6); 3124 llvm::Function *F = CGF.CGM.getIntrinsic(ID); 3125 Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg}); 3126 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3127 E->getExprLoc()); 3128 } 3129 3130 if (LHS->getType()->isFPOrFPVectorTy()) { 3131 Result = Builder.CreateFCmp(FCmpOpc, LHS, RHS, "cmp"); 3132 } else if (LHSTy->hasSignedIntegerRepresentation()) { 3133 Result = Builder.CreateICmp(SICmpOpc, LHS, RHS, "cmp"); 3134 } else { 3135 // Unsigned integers and pointers. 3136 Result = Builder.CreateICmp(UICmpOpc, LHS, RHS, "cmp"); 3137 } 3138 3139 // If this is a vector comparison, sign extend the result to the appropriate 3140 // vector integer type and return it (don't convert to bool). 3141 if (LHSTy->isVectorType()) 3142 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext"); 3143 3144 } else { 3145 // Complex Comparison: can only be an equality comparison. 3146 CodeGenFunction::ComplexPairTy LHS, RHS; 3147 QualType CETy; 3148 if (auto *CTy = LHSTy->getAs<ComplexType>()) { 3149 LHS = CGF.EmitComplexExpr(E->getLHS()); 3150 CETy = CTy->getElementType(); 3151 } else { 3152 LHS.first = Visit(E->getLHS()); 3153 LHS.second = llvm::Constant::getNullValue(LHS.first->getType()); 3154 CETy = LHSTy; 3155 } 3156 if (auto *CTy = RHSTy->getAs<ComplexType>()) { 3157 RHS = CGF.EmitComplexExpr(E->getRHS()); 3158 assert(CGF.getContext().hasSameUnqualifiedType(CETy, 3159 CTy->getElementType()) && 3160 "The element types must always match."); 3161 (void)CTy; 3162 } else { 3163 RHS.first = Visit(E->getRHS()); 3164 RHS.second = llvm::Constant::getNullValue(RHS.first->getType()); 3165 assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) && 3166 "The element types must always match."); 3167 } 3168 3169 Value *ResultR, *ResultI; 3170 if (CETy->isRealFloatingType()) { 3171 ResultR = Builder.CreateFCmp(FCmpOpc, LHS.first, RHS.first, "cmp.r"); 3172 ResultI = Builder.CreateFCmp(FCmpOpc, LHS.second, RHS.second, "cmp.i"); 3173 } else { 3174 // Complex comparisons can only be equality comparisons. As such, signed 3175 // and unsigned opcodes are the same. 3176 ResultR = Builder.CreateICmp(UICmpOpc, LHS.first, RHS.first, "cmp.r"); 3177 ResultI = Builder.CreateICmp(UICmpOpc, LHS.second, RHS.second, "cmp.i"); 3178 } 3179 3180 if (E->getOpcode() == BO_EQ) { 3181 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri"); 3182 } else { 3183 assert(E->getOpcode() == BO_NE && 3184 "Complex comparison other than == or != ?"); 3185 Result = Builder.CreateOr(ResultR, ResultI, "or.ri"); 3186 } 3187 } 3188 3189 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType(), 3190 E->getExprLoc()); 3191 } 3192 3193 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) { 3194 bool Ignore = TestAndClearIgnoreResultAssign(); 3195 3196 Value *RHS; 3197 LValue LHS; 3198 3199 switch (E->getLHS()->getType().getObjCLifetime()) { 3200 case Qualifiers::OCL_Strong: 3201 std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore); 3202 break; 3203 3204 case Qualifiers::OCL_Autoreleasing: 3205 std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E); 3206 break; 3207 3208 case Qualifiers::OCL_ExplicitNone: 3209 std::tie(LHS, RHS) = CGF.EmitARCStoreUnsafeUnretained(E, Ignore); 3210 break; 3211 3212 case Qualifiers::OCL_Weak: 3213 RHS = Visit(E->getRHS()); 3214 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3215 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore); 3216 break; 3217 3218 case Qualifiers::OCL_None: 3219 // __block variables need to have the rhs evaluated first, plus 3220 // this should improve codegen just a little. 3221 RHS = Visit(E->getRHS()); 3222 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store); 3223 3224 // Store the value into the LHS. Bit-fields are handled specially 3225 // because the result is altered by the store, i.e., [C99 6.5.16p1] 3226 // 'An assignment expression has the value of the left operand after 3227 // the assignment...'. 3228 if (LHS.isBitField()) { 3229 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS); 3230 } else { 3231 CGF.EmitNullabilityCheck(LHS, RHS, E->getExprLoc()); 3232 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS); 3233 } 3234 } 3235 3236 // If the result is clearly ignored, return now. 3237 if (Ignore) 3238 return nullptr; 3239 3240 // The result of an assignment in C is the assigned r-value. 3241 if (!CGF.getLangOpts().CPlusPlus) 3242 return RHS; 3243 3244 // If the lvalue is non-volatile, return the computed value of the assignment. 3245 if (!LHS.isVolatileQualified()) 3246 return RHS; 3247 3248 // Otherwise, reload the value. 3249 return EmitLoadOfLValue(LHS, E->getExprLoc()); 3250 } 3251 3252 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) { 3253 // Perform vector logical and on comparisons with zero vectors. 3254 if (E->getType()->isVectorType()) { 3255 CGF.incrementProfileCounter(E); 3256 3257 Value *LHS = Visit(E->getLHS()); 3258 Value *RHS = Visit(E->getRHS()); 3259 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3260 if (LHS->getType()->isFPOrFPVectorTy()) { 3261 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3262 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3263 } else { 3264 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3265 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3266 } 3267 Value *And = Builder.CreateAnd(LHS, RHS); 3268 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext"); 3269 } 3270 3271 llvm::Type *ResTy = ConvertType(E->getType()); 3272 3273 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0. 3274 // If we have 1 && X, just emit X without inserting the control flow. 3275 bool LHSCondVal; 3276 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3277 if (LHSCondVal) { // If we have 1 && X, just emit X. 3278 CGF.incrementProfileCounter(E); 3279 3280 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3281 // ZExt result to int or bool. 3282 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext"); 3283 } 3284 3285 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false. 3286 if (!CGF.ContainsLabel(E->getRHS())) 3287 return llvm::Constant::getNullValue(ResTy); 3288 } 3289 3290 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end"); 3291 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs"); 3292 3293 CodeGenFunction::ConditionalEvaluation eval(CGF); 3294 3295 // Branch on the LHS first. If it is false, go to the failure (cont) block. 3296 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock, 3297 CGF.getProfileCount(E->getRHS())); 3298 3299 // Any edges into the ContBlock are now from an (indeterminate number of) 3300 // edges from this first condition. All of these values will be false. Start 3301 // setting up the PHI node in the Cont Block for this. 3302 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3303 "", ContBlock); 3304 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3305 PI != PE; ++PI) 3306 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI); 3307 3308 eval.begin(CGF); 3309 CGF.EmitBlock(RHSBlock); 3310 CGF.incrementProfileCounter(E); 3311 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3312 eval.end(CGF); 3313 3314 // Reaquire the RHS block, as there may be subblocks inserted. 3315 RHSBlock = Builder.GetInsertBlock(); 3316 3317 // Emit an unconditional branch from this block to ContBlock. 3318 { 3319 // There is no need to emit line number for unconditional branch. 3320 auto NL = ApplyDebugLocation::CreateEmpty(CGF); 3321 CGF.EmitBlock(ContBlock); 3322 } 3323 // Insert an entry into the phi node for the edge with the value of RHSCond. 3324 PN->addIncoming(RHSCond, RHSBlock); 3325 3326 // ZExt result to int. 3327 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext"); 3328 } 3329 3330 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) { 3331 // Perform vector logical or on comparisons with zero vectors. 3332 if (E->getType()->isVectorType()) { 3333 CGF.incrementProfileCounter(E); 3334 3335 Value *LHS = Visit(E->getLHS()); 3336 Value *RHS = Visit(E->getRHS()); 3337 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType()); 3338 if (LHS->getType()->isFPOrFPVectorTy()) { 3339 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp"); 3340 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp"); 3341 } else { 3342 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp"); 3343 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp"); 3344 } 3345 Value *Or = Builder.CreateOr(LHS, RHS); 3346 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext"); 3347 } 3348 3349 llvm::Type *ResTy = ConvertType(E->getType()); 3350 3351 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1. 3352 // If we have 0 || X, just emit X without inserting the control flow. 3353 bool LHSCondVal; 3354 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) { 3355 if (!LHSCondVal) { // If we have 0 || X, just emit X. 3356 CGF.incrementProfileCounter(E); 3357 3358 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3359 // ZExt result to int or bool. 3360 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext"); 3361 } 3362 3363 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true. 3364 if (!CGF.ContainsLabel(E->getRHS())) 3365 return llvm::ConstantInt::get(ResTy, 1); 3366 } 3367 3368 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end"); 3369 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs"); 3370 3371 CodeGenFunction::ConditionalEvaluation eval(CGF); 3372 3373 // Branch on the LHS first. If it is true, go to the success (cont) block. 3374 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock, 3375 CGF.getCurrentProfileCount() - 3376 CGF.getProfileCount(E->getRHS())); 3377 3378 // Any edges into the ContBlock are now from an (indeterminate number of) 3379 // edges from this first condition. All of these values will be true. Start 3380 // setting up the PHI node in the Cont Block for this. 3381 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2, 3382 "", ContBlock); 3383 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock); 3384 PI != PE; ++PI) 3385 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI); 3386 3387 eval.begin(CGF); 3388 3389 // Emit the RHS condition as a bool value. 3390 CGF.EmitBlock(RHSBlock); 3391 CGF.incrementProfileCounter(E); 3392 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS()); 3393 3394 eval.end(CGF); 3395 3396 // Reaquire the RHS block, as there may be subblocks inserted. 3397 RHSBlock = Builder.GetInsertBlock(); 3398 3399 // Emit an unconditional branch from this block to ContBlock. Insert an entry 3400 // into the phi node for the edge with the value of RHSCond. 3401 CGF.EmitBlock(ContBlock); 3402 PN->addIncoming(RHSCond, RHSBlock); 3403 3404 // ZExt result to int. 3405 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext"); 3406 } 3407 3408 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) { 3409 CGF.EmitIgnoredExpr(E->getLHS()); 3410 CGF.EnsureInsertPoint(); 3411 return Visit(E->getRHS()); 3412 } 3413 3414 //===----------------------------------------------------------------------===// 3415 // Other Operators 3416 //===----------------------------------------------------------------------===// 3417 3418 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified 3419 /// expression is cheap enough and side-effect-free enough to evaluate 3420 /// unconditionally instead of conditionally. This is used to convert control 3421 /// flow into selects in some cases. 3422 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E, 3423 CodeGenFunction &CGF) { 3424 // Anything that is an integer or floating point constant is fine. 3425 return E->IgnoreParens()->isEvaluatable(CGF.getContext()); 3426 3427 // Even non-volatile automatic variables can't be evaluated unconditionally. 3428 // Referencing a thread_local may cause non-trivial initialization work to 3429 // occur. If we're inside a lambda and one of the variables is from the scope 3430 // outside the lambda, that function may have returned already. Reading its 3431 // locals is a bad idea. Also, these reads may introduce races there didn't 3432 // exist in the source-level program. 3433 } 3434 3435 3436 Value *ScalarExprEmitter:: 3437 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) { 3438 TestAndClearIgnoreResultAssign(); 3439 3440 // Bind the common expression if necessary. 3441 CodeGenFunction::OpaqueValueMapping binding(CGF, E); 3442 3443 Expr *condExpr = E->getCond(); 3444 Expr *lhsExpr = E->getTrueExpr(); 3445 Expr *rhsExpr = E->getFalseExpr(); 3446 3447 // If the condition constant folds and can be elided, try to avoid emitting 3448 // the condition and the dead arm. 3449 bool CondExprBool; 3450 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) { 3451 Expr *live = lhsExpr, *dead = rhsExpr; 3452 if (!CondExprBool) std::swap(live, dead); 3453 3454 // If the dead side doesn't have labels we need, just emit the Live part. 3455 if (!CGF.ContainsLabel(dead)) { 3456 if (CondExprBool) 3457 CGF.incrementProfileCounter(E); 3458 Value *Result = Visit(live); 3459 3460 // If the live part is a throw expression, it acts like it has a void 3461 // type, so evaluating it returns a null Value*. However, a conditional 3462 // with non-void type must return a non-null Value*. 3463 if (!Result && !E->getType()->isVoidType()) 3464 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType())); 3465 3466 return Result; 3467 } 3468 } 3469 3470 // OpenCL: If the condition is a vector, we can treat this condition like 3471 // the select function. 3472 if (CGF.getLangOpts().OpenCL 3473 && condExpr->getType()->isVectorType()) { 3474 CGF.incrementProfileCounter(E); 3475 3476 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr); 3477 llvm::Value *LHS = Visit(lhsExpr); 3478 llvm::Value *RHS = Visit(rhsExpr); 3479 3480 llvm::Type *condType = ConvertType(condExpr->getType()); 3481 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType); 3482 3483 unsigned numElem = vecTy->getNumElements(); 3484 llvm::Type *elemType = vecTy->getElementType(); 3485 3486 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy); 3487 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec); 3488 llvm::Value *tmp = Builder.CreateSExt(TestMSB, 3489 llvm::VectorType::get(elemType, 3490 numElem), 3491 "sext"); 3492 llvm::Value *tmp2 = Builder.CreateNot(tmp); 3493 3494 // Cast float to int to perform ANDs if necessary. 3495 llvm::Value *RHSTmp = RHS; 3496 llvm::Value *LHSTmp = LHS; 3497 bool wasCast = false; 3498 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType()); 3499 if (rhsVTy->getElementType()->isFloatingPointTy()) { 3500 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType()); 3501 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType()); 3502 wasCast = true; 3503 } 3504 3505 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2); 3506 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp); 3507 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond"); 3508 if (wasCast) 3509 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType()); 3510 3511 return tmp5; 3512 } 3513 3514 // If this is a really simple expression (like x ? 4 : 5), emit this as a 3515 // select instead of as control flow. We can only do this if it is cheap and 3516 // safe to evaluate the LHS and RHS unconditionally. 3517 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) && 3518 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) { 3519 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr); 3520 llvm::Value *StepV = Builder.CreateZExtOrBitCast(CondV, CGF.Int64Ty); 3521 3522 CGF.incrementProfileCounter(E, StepV); 3523 3524 llvm::Value *LHS = Visit(lhsExpr); 3525 llvm::Value *RHS = Visit(rhsExpr); 3526 if (!LHS) { 3527 // If the conditional has void type, make sure we return a null Value*. 3528 assert(!RHS && "LHS and RHS types must match"); 3529 return nullptr; 3530 } 3531 return Builder.CreateSelect(CondV, LHS, RHS, "cond"); 3532 } 3533 3534 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true"); 3535 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false"); 3536 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end"); 3537 3538 CodeGenFunction::ConditionalEvaluation eval(CGF); 3539 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock, 3540 CGF.getProfileCount(lhsExpr)); 3541 3542 CGF.EmitBlock(LHSBlock); 3543 CGF.incrementProfileCounter(E); 3544 eval.begin(CGF); 3545 Value *LHS = Visit(lhsExpr); 3546 eval.end(CGF); 3547 3548 LHSBlock = Builder.GetInsertBlock(); 3549 Builder.CreateBr(ContBlock); 3550 3551 CGF.EmitBlock(RHSBlock); 3552 eval.begin(CGF); 3553 Value *RHS = Visit(rhsExpr); 3554 eval.end(CGF); 3555 3556 RHSBlock = Builder.GetInsertBlock(); 3557 CGF.EmitBlock(ContBlock); 3558 3559 // If the LHS or RHS is a throw expression, it will be legitimately null. 3560 if (!LHS) 3561 return RHS; 3562 if (!RHS) 3563 return LHS; 3564 3565 // Create a PHI node for the real part. 3566 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond"); 3567 PN->addIncoming(LHS, LHSBlock); 3568 PN->addIncoming(RHS, RHSBlock); 3569 return PN; 3570 } 3571 3572 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) { 3573 return Visit(E->getChosenSubExpr()); 3574 } 3575 3576 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) { 3577 QualType Ty = VE->getType(); 3578 3579 if (Ty->isVariablyModifiedType()) 3580 CGF.EmitVariablyModifiedType(Ty); 3581 3582 Address ArgValue = Address::invalid(); 3583 Address ArgPtr = CGF.EmitVAArg(VE, ArgValue); 3584 3585 llvm::Type *ArgTy = ConvertType(VE->getType()); 3586 3587 // If EmitVAArg fails, emit an error. 3588 if (!ArgPtr.isValid()) { 3589 CGF.ErrorUnsupported(VE, "va_arg expression"); 3590 return llvm::UndefValue::get(ArgTy); 3591 } 3592 3593 // FIXME Volatility. 3594 llvm::Value *Val = Builder.CreateLoad(ArgPtr); 3595 3596 // If EmitVAArg promoted the type, we must truncate it. 3597 if (ArgTy != Val->getType()) { 3598 if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy()) 3599 Val = Builder.CreateIntToPtr(Val, ArgTy); 3600 else 3601 Val = Builder.CreateTrunc(Val, ArgTy); 3602 } 3603 3604 return Val; 3605 } 3606 3607 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) { 3608 return CGF.EmitBlockLiteral(block); 3609 } 3610 3611 // Convert a vec3 to vec4, or vice versa. 3612 static Value *ConvertVec3AndVec4(CGBuilderTy &Builder, CodeGenFunction &CGF, 3613 Value *Src, unsigned NumElementsDst) { 3614 llvm::Value *UnV = llvm::UndefValue::get(Src->getType()); 3615 SmallVector<llvm::Constant*, 4> Args; 3616 Args.push_back(Builder.getInt32(0)); 3617 Args.push_back(Builder.getInt32(1)); 3618 Args.push_back(Builder.getInt32(2)); 3619 if (NumElementsDst == 4) 3620 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty)); 3621 llvm::Constant *Mask = llvm::ConstantVector::get(Args); 3622 return Builder.CreateShuffleVector(Src, UnV, Mask); 3623 } 3624 3625 // Create cast instructions for converting LLVM value \p Src to LLVM type \p 3626 // DstTy. \p Src has the same size as \p DstTy. Both are single value types 3627 // but could be scalar or vectors of different lengths, and either can be 3628 // pointer. 3629 // There are 4 cases: 3630 // 1. non-pointer -> non-pointer : needs 1 bitcast 3631 // 2. pointer -> pointer : needs 1 bitcast or addrspacecast 3632 // 3. pointer -> non-pointer 3633 // a) pointer -> intptr_t : needs 1 ptrtoint 3634 // b) pointer -> non-intptr_t : needs 1 ptrtoint then 1 bitcast 3635 // 4. non-pointer -> pointer 3636 // a) intptr_t -> pointer : needs 1 inttoptr 3637 // b) non-intptr_t -> pointer : needs 1 bitcast then 1 inttoptr 3638 // Note: for cases 3b and 4b two casts are required since LLVM casts do not 3639 // allow casting directly between pointer types and non-integer non-pointer 3640 // types. 3641 static Value *createCastsForTypeOfSameSize(CGBuilderTy &Builder, 3642 const llvm::DataLayout &DL, 3643 Value *Src, llvm::Type *DstTy, 3644 StringRef Name = "") { 3645 auto SrcTy = Src->getType(); 3646 3647 // Case 1. 3648 if (!SrcTy->isPointerTy() && !DstTy->isPointerTy()) 3649 return Builder.CreateBitCast(Src, DstTy, Name); 3650 3651 // Case 2. 3652 if (SrcTy->isPointerTy() && DstTy->isPointerTy()) 3653 return Builder.CreatePointerBitCastOrAddrSpaceCast(Src, DstTy, Name); 3654 3655 // Case 3. 3656 if (SrcTy->isPointerTy() && !DstTy->isPointerTy()) { 3657 // Case 3b. 3658 if (!DstTy->isIntegerTy()) 3659 Src = Builder.CreatePtrToInt(Src, DL.getIntPtrType(SrcTy)); 3660 // Cases 3a and 3b. 3661 return Builder.CreateBitOrPointerCast(Src, DstTy, Name); 3662 } 3663 3664 // Case 4b. 3665 if (!SrcTy->isIntegerTy()) 3666 Src = Builder.CreateBitCast(Src, DL.getIntPtrType(DstTy)); 3667 // Cases 4a and 4b. 3668 return Builder.CreateIntToPtr(Src, DstTy, Name); 3669 } 3670 3671 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) { 3672 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr()); 3673 llvm::Type *DstTy = ConvertType(E->getType()); 3674 3675 llvm::Type *SrcTy = Src->getType(); 3676 unsigned NumElementsSrc = isa<llvm::VectorType>(SrcTy) ? 3677 cast<llvm::VectorType>(SrcTy)->getNumElements() : 0; 3678 unsigned NumElementsDst = isa<llvm::VectorType>(DstTy) ? 3679 cast<llvm::VectorType>(DstTy)->getNumElements() : 0; 3680 3681 // Going from vec3 to non-vec3 is a special case and requires a shuffle 3682 // vector to get a vec4, then a bitcast if the target type is different. 3683 if (NumElementsSrc == 3 && NumElementsDst != 3) { 3684 Src = ConvertVec3AndVec4(Builder, CGF, Src, 4); 3685 3686 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3687 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3688 DstTy); 3689 } 3690 3691 Src->setName("astype"); 3692 return Src; 3693 } 3694 3695 // Going from non-vec3 to vec3 is a special case and requires a bitcast 3696 // to vec4 if the original type is not vec4, then a shuffle vector to 3697 // get a vec3. 3698 if (NumElementsSrc != 3 && NumElementsDst == 3) { 3699 if (!CGF.CGM.getCodeGenOpts().PreserveVec3Type) { 3700 auto Vec4Ty = llvm::VectorType::get(DstTy->getVectorElementType(), 4); 3701 Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), Src, 3702 Vec4Ty); 3703 } 3704 3705 Src = ConvertVec3AndVec4(Builder, CGF, Src, 3); 3706 Src->setName("astype"); 3707 return Src; 3708 } 3709 3710 return Src = createCastsForTypeOfSameSize(Builder, CGF.CGM.getDataLayout(), 3711 Src, DstTy, "astype"); 3712 } 3713 3714 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) { 3715 return CGF.EmitAtomicExpr(E).getScalarVal(); 3716 } 3717 3718 //===----------------------------------------------------------------------===// 3719 // Entry Point into this File 3720 //===----------------------------------------------------------------------===// 3721 3722 /// Emit the computation of the specified expression of scalar type, ignoring 3723 /// the result. 3724 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) { 3725 assert(E && hasScalarEvaluationKind(E->getType()) && 3726 "Invalid scalar expression to emit"); 3727 3728 return ScalarExprEmitter(*this, IgnoreResultAssign) 3729 .Visit(const_cast<Expr *>(E)); 3730 } 3731 3732 /// Emit a conversion from the specified type to the specified destination type, 3733 /// both of which are LLVM scalar types. 3734 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy, 3735 QualType DstTy, 3736 SourceLocation Loc) { 3737 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) && 3738 "Invalid scalar expression to emit"); 3739 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy, Loc); 3740 } 3741 3742 /// Emit a conversion from the specified complex type to the specified 3743 /// destination type, where the destination type is an LLVM scalar type. 3744 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src, 3745 QualType SrcTy, 3746 QualType DstTy, 3747 SourceLocation Loc) { 3748 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) && 3749 "Invalid complex -> scalar conversion"); 3750 return ScalarExprEmitter(*this) 3751 .EmitComplexToScalarConversion(Src, SrcTy, DstTy, Loc); 3752 } 3753 3754 3755 llvm::Value *CodeGenFunction:: 3756 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV, 3757 bool isInc, bool isPre) { 3758 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre); 3759 } 3760 3761 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) { 3762 // object->isa or (*object).isa 3763 // Generate code as for: *(Class*)object 3764 3765 Expr *BaseExpr = E->getBase(); 3766 Address Addr = Address::invalid(); 3767 if (BaseExpr->isRValue()) { 3768 Addr = Address(EmitScalarExpr(BaseExpr), getPointerAlign()); 3769 } else { 3770 Addr = EmitLValue(BaseExpr).getAddress(); 3771 } 3772 3773 // Cast the address to Class*. 3774 Addr = Builder.CreateElementBitCast(Addr, ConvertType(E->getType())); 3775 return MakeAddrLValue(Addr, E->getType()); 3776 } 3777 3778 3779 LValue CodeGenFunction::EmitCompoundAssignmentLValue( 3780 const CompoundAssignOperator *E) { 3781 ScalarExprEmitter Scalar(*this); 3782 Value *Result = nullptr; 3783 switch (E->getOpcode()) { 3784 #define COMPOUND_OP(Op) \ 3785 case BO_##Op##Assign: \ 3786 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \ 3787 Result) 3788 COMPOUND_OP(Mul); 3789 COMPOUND_OP(Div); 3790 COMPOUND_OP(Rem); 3791 COMPOUND_OP(Add); 3792 COMPOUND_OP(Sub); 3793 COMPOUND_OP(Shl); 3794 COMPOUND_OP(Shr); 3795 COMPOUND_OP(And); 3796 COMPOUND_OP(Xor); 3797 COMPOUND_OP(Or); 3798 #undef COMPOUND_OP 3799 3800 case BO_PtrMemD: 3801 case BO_PtrMemI: 3802 case BO_Mul: 3803 case BO_Div: 3804 case BO_Rem: 3805 case BO_Add: 3806 case BO_Sub: 3807 case BO_Shl: 3808 case BO_Shr: 3809 case BO_LT: 3810 case BO_GT: 3811 case BO_LE: 3812 case BO_GE: 3813 case BO_EQ: 3814 case BO_NE: 3815 case BO_And: 3816 case BO_Xor: 3817 case BO_Or: 3818 case BO_LAnd: 3819 case BO_LOr: 3820 case BO_Assign: 3821 case BO_Comma: 3822 llvm_unreachable("Not valid compound assignment operators"); 3823 } 3824 3825 llvm_unreachable("Unhandled compound assignment operator"); 3826 } 3827