1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGObjCRuntime.h"
16 #include "CodeGenModule.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/DeclObjC.h"
19 #include "clang/AST/RecordLayout.h"
20 #include "clang/AST/StmtVisitor.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/Constants.h"
23 #include "llvm/Function.h"
24 #include "llvm/GlobalVariable.h"
25 #include "llvm/Intrinsics.h"
26 #include "llvm/Module.h"
27 #include "llvm/Support/CFG.h"
28 #include "llvm/Target/TargetData.h"
29 #include <cstdarg>
30 
31 using namespace clang;
32 using namespace CodeGen;
33 using llvm::Value;
34 
35 //===----------------------------------------------------------------------===//
36 //                         Scalar Expression Emitter
37 //===----------------------------------------------------------------------===//
38 
39 struct BinOpInfo {
40   Value *LHS;
41   Value *RHS;
42   QualType Ty;  // Computation Type.
43   const BinaryOperator *E;
44 };
45 
46 namespace {
47 class ScalarExprEmitter
48   : public StmtVisitor<ScalarExprEmitter, Value*> {
49   CodeGenFunction &CGF;
50   CGBuilderTy &Builder;
51   bool IgnoreResultAssign;
52   llvm::LLVMContext &VMContext;
53 public:
54 
55   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
56     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
57       VMContext(cgf.getLLVMContext()) {
58   }
59 
60   //===--------------------------------------------------------------------===//
61   //                               Utilities
62   //===--------------------------------------------------------------------===//
63 
64   bool TestAndClearIgnoreResultAssign() {
65     bool I = IgnoreResultAssign;
66     IgnoreResultAssign = false;
67     return I;
68   }
69 
70   const llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
71   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
72   LValue EmitCheckedLValue(const Expr *E) { return CGF.EmitCheckedLValue(E); }
73 
74   Value *EmitLoadOfLValue(LValue LV, QualType T) {
75     return CGF.EmitLoadOfLValue(LV, T).getScalarVal();
76   }
77 
78   /// EmitLoadOfLValue - Given an expression with complex type that represents a
79   /// value l-value, this method emits the address of the l-value, then loads
80   /// and returns the result.
81   Value *EmitLoadOfLValue(const Expr *E) {
82     return EmitLoadOfLValue(EmitCheckedLValue(E), E->getType());
83   }
84 
85   /// EmitConversionToBool - Convert the specified expression value to a
86   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
87   Value *EmitConversionToBool(Value *Src, QualType DstTy);
88 
89   /// EmitScalarConversion - Emit a conversion from the specified type to the
90   /// specified destination type, both of which are LLVM scalar types.
91   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
92 
93   /// EmitComplexToScalarConversion - Emit a conversion from the specified
94   /// complex type to the specified destination type, where the destination type
95   /// is an LLVM scalar type.
96   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
97                                        QualType SrcTy, QualType DstTy);
98 
99   /// EmitNullValue - Emit a value that corresponds to null for the given type.
100   Value *EmitNullValue(QualType Ty);
101 
102   //===--------------------------------------------------------------------===//
103   //                            Visitor Methods
104   //===--------------------------------------------------------------------===//
105 
106   Value *VisitStmt(Stmt *S) {
107     S->dump(CGF.getContext().getSourceManager());
108     assert(0 && "Stmt can't have complex result type!");
109     return 0;
110   }
111   Value *VisitExpr(Expr *S);
112 
113   Value *VisitParenExpr(ParenExpr *PE) { return Visit(PE->getSubExpr()); }
114 
115   // Leaves.
116   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
117     return llvm::ConstantInt::get(VMContext, E->getValue());
118   }
119   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
120     return llvm::ConstantFP::get(VMContext, E->getValue());
121   }
122   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
123     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
124   }
125   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
126     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
127   }
128   Value *VisitCXXZeroInitValueExpr(const CXXZeroInitValueExpr *E) {
129     return EmitNullValue(E->getType());
130   }
131   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
132     return EmitNullValue(E->getType());
133   }
134   Value *VisitTypesCompatibleExpr(const TypesCompatibleExpr *E) {
135     return llvm::ConstantInt::get(ConvertType(E->getType()),
136                                   CGF.getContext().typesAreCompatible(
137                                     E->getArgType1(), E->getArgType2()));
138   }
139   Value *VisitOffsetOfExpr(const OffsetOfExpr *E);
140   Value *VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E);
141   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
142     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
143     return Builder.CreateBitCast(V, ConvertType(E->getType()));
144   }
145 
146   // l-values.
147   Value *VisitDeclRefExpr(DeclRefExpr *E) {
148     Expr::EvalResult Result;
149     if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
150       assert(!Result.HasSideEffects && "Constant declref with side-effect?!");
151       return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
152     }
153     return EmitLoadOfLValue(E);
154   }
155   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
156     return CGF.EmitObjCSelectorExpr(E);
157   }
158   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
159     return CGF.EmitObjCProtocolExpr(E);
160   }
161   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
162     return EmitLoadOfLValue(E);
163   }
164   Value *VisitObjCPropertyRefExpr(ObjCPropertyRefExpr *E) {
165     return EmitLoadOfLValue(E);
166   }
167   Value *VisitObjCImplicitSetterGetterRefExpr(
168                         ObjCImplicitSetterGetterRefExpr *E) {
169     return EmitLoadOfLValue(E);
170   }
171   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
172     return CGF.EmitObjCMessageExpr(E).getScalarVal();
173   }
174 
175   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
176     LValue LV = CGF.EmitObjCIsaExpr(E);
177     Value *V = CGF.EmitLoadOfLValue(LV, E->getType()).getScalarVal();
178     return V;
179   }
180 
181   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
182   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
183   Value *VisitMemberExpr(MemberExpr *E);
184   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
185   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
186     return EmitLoadOfLValue(E);
187   }
188 
189   Value *VisitInitListExpr(InitListExpr *E);
190 
191   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
192     return CGF.CGM.EmitNullConstant(E->getType());
193   }
194   Value *VisitCastExpr(CastExpr *E) {
195     // Make sure to evaluate VLA bounds now so that we have them for later.
196     if (E->getType()->isVariablyModifiedType())
197       CGF.EmitVLASize(E->getType());
198 
199     return EmitCastExpr(E);
200   }
201   Value *EmitCastExpr(CastExpr *E);
202 
203   Value *VisitCallExpr(const CallExpr *E) {
204     if (E->getCallReturnType()->isReferenceType())
205       return EmitLoadOfLValue(E);
206 
207     return CGF.EmitCallExpr(E).getScalarVal();
208   }
209 
210   Value *VisitStmtExpr(const StmtExpr *E);
211 
212   Value *VisitBlockDeclRefExpr(const BlockDeclRefExpr *E);
213 
214   // Unary Operators.
215   Value *VisitPrePostIncDec(const UnaryOperator *E, bool isInc, bool isPre) {
216     LValue LV = EmitLValue(E->getSubExpr());
217     return CGF.EmitScalarPrePostIncDec(E, LV, isInc, isPre);
218   }
219   Value *VisitUnaryPostDec(const UnaryOperator *E) {
220     return VisitPrePostIncDec(E, false, false);
221   }
222   Value *VisitUnaryPostInc(const UnaryOperator *E) {
223     return VisitPrePostIncDec(E, true, false);
224   }
225   Value *VisitUnaryPreDec(const UnaryOperator *E) {
226     return VisitPrePostIncDec(E, false, true);
227   }
228   Value *VisitUnaryPreInc(const UnaryOperator *E) {
229     return VisitPrePostIncDec(E, true, true);
230   }
231   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
232     return EmitLValue(E->getSubExpr()).getAddress();
233   }
234   Value *VisitUnaryDeref(const Expr *E) { return EmitLoadOfLValue(E); }
235   Value *VisitUnaryPlus(const UnaryOperator *E) {
236     // This differs from gcc, though, most likely due to a bug in gcc.
237     TestAndClearIgnoreResultAssign();
238     return Visit(E->getSubExpr());
239   }
240   Value *VisitUnaryMinus    (const UnaryOperator *E);
241   Value *VisitUnaryNot      (const UnaryOperator *E);
242   Value *VisitUnaryLNot     (const UnaryOperator *E);
243   Value *VisitUnaryReal     (const UnaryOperator *E);
244   Value *VisitUnaryImag     (const UnaryOperator *E);
245   Value *VisitUnaryExtension(const UnaryOperator *E) {
246     return Visit(E->getSubExpr());
247   }
248   Value *VisitUnaryOffsetOf(const UnaryOperator *E);
249 
250   // C++
251   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
252     return Visit(DAE->getExpr());
253   }
254   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
255     return CGF.LoadCXXThis();
256   }
257 
258   Value *VisitCXXExprWithTemporaries(CXXExprWithTemporaries *E) {
259     return CGF.EmitCXXExprWithTemporaries(E).getScalarVal();
260   }
261   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
262     return CGF.EmitCXXNewExpr(E);
263   }
264   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
265     CGF.EmitCXXDeleteExpr(E);
266     return 0;
267   }
268   Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
269     return llvm::ConstantInt::get(Builder.getInt1Ty(),
270                                   E->EvaluateTrait(CGF.getContext()));
271   }
272 
273   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
274     // C++ [expr.pseudo]p1:
275     //   The result shall only be used as the operand for the function call
276     //   operator (), and the result of such a call has type void. The only
277     //   effect is the evaluation of the postfix-expression before the dot or
278     //   arrow.
279     CGF.EmitScalarExpr(E->getBase());
280     return 0;
281   }
282 
283   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
284     return EmitNullValue(E->getType());
285   }
286 
287   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
288     CGF.EmitCXXThrowExpr(E);
289     return 0;
290   }
291 
292   // Binary Operators.
293   Value *EmitMul(const BinOpInfo &Ops) {
294     if (CGF.getContext().getLangOptions().OverflowChecking
295         && Ops.Ty->isSignedIntegerType())
296       return EmitOverflowCheckedBinOp(Ops);
297     if (Ops.LHS->getType()->isFPOrFPVectorTy())
298       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
299     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
300   }
301   /// Create a binary op that checks for overflow.
302   /// Currently only supports +, - and *.
303   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
304   Value *EmitDiv(const BinOpInfo &Ops);
305   Value *EmitRem(const BinOpInfo &Ops);
306   Value *EmitAdd(const BinOpInfo &Ops);
307   Value *EmitSub(const BinOpInfo &Ops);
308   Value *EmitShl(const BinOpInfo &Ops);
309   Value *EmitShr(const BinOpInfo &Ops);
310   Value *EmitAnd(const BinOpInfo &Ops) {
311     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
312   }
313   Value *EmitXor(const BinOpInfo &Ops) {
314     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
315   }
316   Value *EmitOr (const BinOpInfo &Ops) {
317     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
318   }
319 
320   BinOpInfo EmitBinOps(const BinaryOperator *E);
321   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
322                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
323                                   Value *&BitFieldResult);
324 
325   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
326                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
327 
328   // Binary operators and binary compound assignment operators.
329 #define HANDLEBINOP(OP) \
330   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
331     return Emit ## OP(EmitBinOps(E));                                      \
332   }                                                                        \
333   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
334     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
335   }
336   HANDLEBINOP(Mul)
337   HANDLEBINOP(Div)
338   HANDLEBINOP(Rem)
339   HANDLEBINOP(Add)
340   HANDLEBINOP(Sub)
341   HANDLEBINOP(Shl)
342   HANDLEBINOP(Shr)
343   HANDLEBINOP(And)
344   HANDLEBINOP(Xor)
345   HANDLEBINOP(Or)
346 #undef HANDLEBINOP
347 
348   // Comparisons.
349   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
350                      unsigned SICmpOpc, unsigned FCmpOpc);
351 #define VISITCOMP(CODE, UI, SI, FP) \
352     Value *VisitBin##CODE(const BinaryOperator *E) { \
353       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
354                          llvm::FCmpInst::FP); }
355   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
356   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
357   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
358   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
359   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
360   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
361 #undef VISITCOMP
362 
363   Value *VisitBinAssign     (const BinaryOperator *E);
364 
365   Value *VisitBinLAnd       (const BinaryOperator *E);
366   Value *VisitBinLOr        (const BinaryOperator *E);
367   Value *VisitBinComma      (const BinaryOperator *E);
368 
369   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
370   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
371 
372   // Other Operators.
373   Value *VisitBlockExpr(const BlockExpr *BE);
374   Value *VisitConditionalOperator(const ConditionalOperator *CO);
375   Value *VisitChooseExpr(ChooseExpr *CE);
376   Value *VisitVAArgExpr(VAArgExpr *VE);
377   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
378     return CGF.EmitObjCStringLiteral(E);
379   }
380 };
381 }  // end anonymous namespace.
382 
383 //===----------------------------------------------------------------------===//
384 //                                Utilities
385 //===----------------------------------------------------------------------===//
386 
387 /// EmitConversionToBool - Convert the specified expression value to a
388 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
389 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
390   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
391 
392   if (SrcType->isRealFloatingType()) {
393     // Compare against 0.0 for fp scalars.
394     llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
395     return Builder.CreateFCmpUNE(Src, Zero, "tobool");
396   }
397 
398   if (SrcType->isMemberPointerType()) {
399     // Compare against -1.
400     llvm::Value *NegativeOne = llvm::Constant::getAllOnesValue(Src->getType());
401     return Builder.CreateICmpNE(Src, NegativeOne, "tobool");
402   }
403 
404   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
405          "Unknown scalar type to convert");
406 
407   // Because of the type rules of C, we often end up computing a logical value,
408   // then zero extending it to int, then wanting it as a logical value again.
409   // Optimize this common case.
410   if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(Src)) {
411     if (ZI->getOperand(0)->getType() ==
412         llvm::Type::getInt1Ty(CGF.getLLVMContext())) {
413       Value *Result = ZI->getOperand(0);
414       // If there aren't any more uses, zap the instruction to save space.
415       // Note that there can be more uses, for example if this
416       // is the result of an assignment.
417       if (ZI->use_empty())
418         ZI->eraseFromParent();
419       return Result;
420     }
421   }
422 
423   // Compare against an integer or pointer null.
424   llvm::Value *Zero = llvm::Constant::getNullValue(Src->getType());
425   return Builder.CreateICmpNE(Src, Zero, "tobool");
426 }
427 
428 /// EmitScalarConversion - Emit a conversion from the specified type to the
429 /// specified destination type, both of which are LLVM scalar types.
430 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
431                                                QualType DstType) {
432   SrcType = CGF.getContext().getCanonicalType(SrcType);
433   DstType = CGF.getContext().getCanonicalType(DstType);
434   if (SrcType == DstType) return Src;
435 
436   if (DstType->isVoidType()) return 0;
437 
438   llvm::LLVMContext &VMContext = CGF.getLLVMContext();
439 
440   // Handle conversions to bool first, they are special: comparisons against 0.
441   if (DstType->isBooleanType())
442     return EmitConversionToBool(Src, SrcType);
443 
444   const llvm::Type *DstTy = ConvertType(DstType);
445 
446   // Ignore conversions like int -> uint.
447   if (Src->getType() == DstTy)
448     return Src;
449 
450   // Handle pointer conversions next: pointers can only be converted to/from
451   // other pointers and integers. Check for pointer types in terms of LLVM, as
452   // some native types (like Obj-C id) may map to a pointer type.
453   if (isa<llvm::PointerType>(DstTy)) {
454     // The source value may be an integer, or a pointer.
455     if (isa<llvm::PointerType>(Src->getType()))
456       return Builder.CreateBitCast(Src, DstTy, "conv");
457 
458     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
459     // First, convert to the correct width so that we control the kind of
460     // extension.
461     const llvm::Type *MiddleTy =
462           llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
463     bool InputSigned = SrcType->isSignedIntegerType();
464     llvm::Value* IntResult =
465         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
466     // Then, cast to pointer.
467     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
468   }
469 
470   if (isa<llvm::PointerType>(Src->getType())) {
471     // Must be an ptr to int cast.
472     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
473     return Builder.CreatePtrToInt(Src, DstTy, "conv");
474   }
475 
476   // A scalar can be splatted to an extended vector of the same element type
477   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
478     // Cast the scalar to element type
479     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
480     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
481 
482     // Insert the element in element zero of an undef vector
483     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
484     llvm::Value *Idx =
485         llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
486     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
487 
488     // Splat the element across to all elements
489     llvm::SmallVector<llvm::Constant*, 16> Args;
490     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
491     for (unsigned i = 0; i < NumElements; i++)
492       Args.push_back(llvm::ConstantInt::get(
493                                         llvm::Type::getInt32Ty(VMContext), 0));
494 
495     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
496     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
497     return Yay;
498   }
499 
500   // Allow bitcast from vector to integer/fp of the same size.
501   if (isa<llvm::VectorType>(Src->getType()) ||
502       isa<llvm::VectorType>(DstTy))
503     return Builder.CreateBitCast(Src, DstTy, "conv");
504 
505   // Finally, we have the arithmetic types: real int/float.
506   if (isa<llvm::IntegerType>(Src->getType())) {
507     bool InputSigned = SrcType->isSignedIntegerType();
508     if (isa<llvm::IntegerType>(DstTy))
509       return Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
510     else if (InputSigned)
511       return Builder.CreateSIToFP(Src, DstTy, "conv");
512     else
513       return Builder.CreateUIToFP(Src, DstTy, "conv");
514   }
515 
516   assert(Src->getType()->isFloatingPointTy() && "Unknown real conversion");
517   if (isa<llvm::IntegerType>(DstTy)) {
518     if (DstType->isSignedIntegerType())
519       return Builder.CreateFPToSI(Src, DstTy, "conv");
520     else
521       return Builder.CreateFPToUI(Src, DstTy, "conv");
522   }
523 
524   assert(DstTy->isFloatingPointTy() && "Unknown real conversion");
525   if (DstTy->getTypeID() < Src->getType()->getTypeID())
526     return Builder.CreateFPTrunc(Src, DstTy, "conv");
527   else
528     return Builder.CreateFPExt(Src, DstTy, "conv");
529 }
530 
531 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
532 /// type to the specified destination type, where the destination type is an
533 /// LLVM scalar type.
534 Value *ScalarExprEmitter::
535 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
536                               QualType SrcTy, QualType DstTy) {
537   // Get the source element type.
538   SrcTy = SrcTy->getAs<ComplexType>()->getElementType();
539 
540   // Handle conversions to bool first, they are special: comparisons against 0.
541   if (DstTy->isBooleanType()) {
542     //  Complex != 0  -> (Real != 0) | (Imag != 0)
543     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
544     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
545     return Builder.CreateOr(Src.first, Src.second, "tobool");
546   }
547 
548   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
549   // the imaginary part of the complex value is discarded and the value of the
550   // real part is converted according to the conversion rules for the
551   // corresponding real type.
552   return EmitScalarConversion(Src.first, SrcTy, DstTy);
553 }
554 
555 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
556   const llvm::Type *LTy = ConvertType(Ty);
557 
558   if (!Ty->isMemberPointerType())
559     return llvm::Constant::getNullValue(LTy);
560 
561   assert(!Ty->isMemberFunctionPointerType() &&
562          "member function pointers are not scalar!");
563 
564   // Itanium C++ ABI 2.3:
565   //   A NULL pointer is represented as -1.
566   return llvm::ConstantInt::get(LTy, -1ULL, /*isSigned=*/true);
567 }
568 
569 //===----------------------------------------------------------------------===//
570 //                            Visitor Methods
571 //===----------------------------------------------------------------------===//
572 
573 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
574   CGF.ErrorUnsupported(E, "scalar expression");
575   if (E->getType()->isVoidType())
576     return 0;
577   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
578 }
579 
580 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
581   llvm::SmallVector<llvm::Constant*, 32> indices;
582   for (unsigned i = 2; i < E->getNumSubExprs(); i++) {
583     indices.push_back(cast<llvm::Constant>(CGF.EmitScalarExpr(E->getExpr(i))));
584   }
585   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
586   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
587   Value* SV = llvm::ConstantVector::get(indices.begin(), indices.size());
588   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
589 }
590 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
591   Expr::EvalResult Result;
592   if (E->Evaluate(Result, CGF.getContext()) && Result.Val.isInt()) {
593     if (E->isArrow())
594       CGF.EmitScalarExpr(E->getBase());
595     else
596       EmitLValue(E->getBase());
597     return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
598   }
599   return EmitLoadOfLValue(E);
600 }
601 
602 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
603   TestAndClearIgnoreResultAssign();
604 
605   // Emit subscript expressions in rvalue context's.  For most cases, this just
606   // loads the lvalue formed by the subscript expr.  However, we have to be
607   // careful, because the base of a vector subscript is occasionally an rvalue,
608   // so we can't get it as an lvalue.
609   if (!E->getBase()->getType()->isVectorType())
610     return EmitLoadOfLValue(E);
611 
612   // Handle the vector case.  The base must be a vector, the index must be an
613   // integer value.
614   Value *Base = Visit(E->getBase());
615   Value *Idx  = Visit(E->getIdx());
616   bool IdxSigned = E->getIdx()->getType()->isSignedIntegerType();
617   Idx = Builder.CreateIntCast(Idx,
618                               llvm::Type::getInt32Ty(CGF.getLLVMContext()),
619                               IdxSigned,
620                               "vecidxcast");
621   return Builder.CreateExtractElement(Base, Idx, "vecext");
622 }
623 
624 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
625                                   unsigned Off, const llvm::Type *I32Ty) {
626   int MV = SVI->getMaskValue(Idx);
627   if (MV == -1)
628     return llvm::UndefValue::get(I32Ty);
629   return llvm::ConstantInt::get(I32Ty, Off+MV);
630 }
631 
632 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
633   bool Ignore = TestAndClearIgnoreResultAssign();
634   (void)Ignore;
635   assert (Ignore == false && "init list ignored");
636   unsigned NumInitElements = E->getNumInits();
637 
638   if (E->hadArrayRangeDesignator())
639     CGF.ErrorUnsupported(E, "GNU array range designator extension");
640 
641   const llvm::VectorType *VType =
642     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
643 
644   // We have a scalar in braces. Just use the first element.
645   if (!VType)
646     return Visit(E->getInit(0));
647 
648   unsigned ResElts = VType->getNumElements();
649   const llvm::Type *I32Ty = llvm::Type::getInt32Ty(CGF.getLLVMContext());
650 
651   // Loop over initializers collecting the Value for each, and remembering
652   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
653   // us to fold the shuffle for the swizzle into the shuffle for the vector
654   // initializer, since LLVM optimizers generally do not want to touch
655   // shuffles.
656   unsigned CurIdx = 0;
657   bool VIsUndefShuffle = false;
658   llvm::Value *V = llvm::UndefValue::get(VType);
659   for (unsigned i = 0; i != NumInitElements; ++i) {
660     Expr *IE = E->getInit(i);
661     Value *Init = Visit(IE);
662     llvm::SmallVector<llvm::Constant*, 16> Args;
663 
664     const llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
665 
666     // Handle scalar elements.  If the scalar initializer is actually one
667     // element of a different vector of the same width, use shuffle instead of
668     // extract+insert.
669     if (!VVT) {
670       if (isa<ExtVectorElementExpr>(IE)) {
671         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
672 
673         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
674           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
675           Value *LHS = 0, *RHS = 0;
676           if (CurIdx == 0) {
677             // insert into undef -> shuffle (src, undef)
678             Args.push_back(C);
679             for (unsigned j = 1; j != ResElts; ++j)
680               Args.push_back(llvm::UndefValue::get(I32Ty));
681 
682             LHS = EI->getVectorOperand();
683             RHS = V;
684             VIsUndefShuffle = true;
685           } else if (VIsUndefShuffle) {
686             // insert into undefshuffle && size match -> shuffle (v, src)
687             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
688             for (unsigned j = 0; j != CurIdx; ++j)
689               Args.push_back(getMaskElt(SVV, j, 0, I32Ty));
690             Args.push_back(llvm::ConstantInt::get(I32Ty,
691                                                   ResElts + C->getZExtValue()));
692             for (unsigned j = CurIdx + 1; j != ResElts; ++j)
693               Args.push_back(llvm::UndefValue::get(I32Ty));
694 
695             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
696             RHS = EI->getVectorOperand();
697             VIsUndefShuffle = false;
698           }
699           if (!Args.empty()) {
700             llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
701             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
702             ++CurIdx;
703             continue;
704           }
705         }
706       }
707       Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
708       V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
709       VIsUndefShuffle = false;
710       ++CurIdx;
711       continue;
712     }
713 
714     unsigned InitElts = VVT->getNumElements();
715 
716     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
717     // input is the same width as the vector being constructed, generate an
718     // optimized shuffle of the swizzle input into the result.
719     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
720     if (isa<ExtVectorElementExpr>(IE)) {
721       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
722       Value *SVOp = SVI->getOperand(0);
723       const llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
724 
725       if (OpTy->getNumElements() == ResElts) {
726         for (unsigned j = 0; j != CurIdx; ++j) {
727           // If the current vector initializer is a shuffle with undef, merge
728           // this shuffle directly into it.
729           if (VIsUndefShuffle) {
730             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
731                                       I32Ty));
732           } else {
733             Args.push_back(llvm::ConstantInt::get(I32Ty, j));
734           }
735         }
736         for (unsigned j = 0, je = InitElts; j != je; ++j)
737           Args.push_back(getMaskElt(SVI, j, Offset, I32Ty));
738         for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
739           Args.push_back(llvm::UndefValue::get(I32Ty));
740 
741         if (VIsUndefShuffle)
742           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
743 
744         Init = SVOp;
745       }
746     }
747 
748     // Extend init to result vector length, and then shuffle its contribution
749     // to the vector initializer into V.
750     if (Args.empty()) {
751       for (unsigned j = 0; j != InitElts; ++j)
752         Args.push_back(llvm::ConstantInt::get(I32Ty, j));
753       for (unsigned j = InitElts; j != ResElts; ++j)
754         Args.push_back(llvm::UndefValue::get(I32Ty));
755       llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
756       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
757                                          Mask, "vext");
758 
759       Args.clear();
760       for (unsigned j = 0; j != CurIdx; ++j)
761         Args.push_back(llvm::ConstantInt::get(I32Ty, j));
762       for (unsigned j = 0; j != InitElts; ++j)
763         Args.push_back(llvm::ConstantInt::get(I32Ty, j+Offset));
764       for (unsigned j = CurIdx + InitElts; j != ResElts; ++j)
765         Args.push_back(llvm::UndefValue::get(I32Ty));
766     }
767 
768     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
769     // merging subsequent shuffles into this one.
770     if (CurIdx == 0)
771       std::swap(V, Init);
772     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], ResElts);
773     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
774     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
775     CurIdx += InitElts;
776   }
777 
778   // FIXME: evaluate codegen vs. shuffling against constant null vector.
779   // Emit remaining default initializers.
780   const llvm::Type *EltTy = VType->getElementType();
781 
782   // Emit remaining default initializers
783   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
784     Value *Idx = llvm::ConstantInt::get(I32Ty, CurIdx);
785     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
786     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
787   }
788   return V;
789 }
790 
791 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
792   const Expr *E = CE->getSubExpr();
793 
794   if (CE->getCastKind() == CastExpr::CK_UncheckedDerivedToBase)
795     return false;
796 
797   if (isa<CXXThisExpr>(E)) {
798     // We always assume that 'this' is never null.
799     return false;
800   }
801 
802   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
803     // And that lvalue casts are never null.
804     if (ICE->isLvalueCast())
805       return false;
806   }
807 
808   return true;
809 }
810 
811 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
812 // have to handle a more broad range of conversions than explicit casts, as they
813 // handle things like function to ptr-to-function decay etc.
814 Value *ScalarExprEmitter::EmitCastExpr(CastExpr *CE) {
815   Expr *E = CE->getSubExpr();
816   QualType DestTy = CE->getType();
817   CastExpr::CastKind Kind = CE->getCastKind();
818 
819   if (!DestTy->isVoidType())
820     TestAndClearIgnoreResultAssign();
821 
822   // Since almost all cast kinds apply to scalars, this switch doesn't have
823   // a default case, so the compiler will warn on a missing case.  The cases
824   // are in the same order as in the CastKind enum.
825   switch (Kind) {
826   case CastExpr::CK_Unknown:
827     // FIXME: All casts should have a known kind!
828     //assert(0 && "Unknown cast kind!");
829     break;
830 
831   case CastExpr::CK_AnyPointerToObjCPointerCast:
832   case CastExpr::CK_AnyPointerToBlockPointerCast:
833   case CastExpr::CK_BitCast: {
834     Value *Src = Visit(const_cast<Expr*>(E));
835     return Builder.CreateBitCast(Src, ConvertType(DestTy));
836   }
837   case CastExpr::CK_NoOp:
838   case CastExpr::CK_UserDefinedConversion:
839     return Visit(const_cast<Expr*>(E));
840 
841   case CastExpr::CK_BaseToDerived: {
842     const CXXRecordDecl *DerivedClassDecl =
843       DestTy->getCXXRecordDeclForPointerType();
844 
845     return CGF.GetAddressOfDerivedClass(Visit(E), DerivedClassDecl,
846                                         CE->getBasePath(),
847                                         ShouldNullCheckClassCastValue(CE));
848   }
849   case CastExpr::CK_UncheckedDerivedToBase:
850   case CastExpr::CK_DerivedToBase: {
851     const RecordType *DerivedClassTy =
852       E->getType()->getAs<PointerType>()->getPointeeType()->getAs<RecordType>();
853     CXXRecordDecl *DerivedClassDecl =
854       cast<CXXRecordDecl>(DerivedClassTy->getDecl());
855 
856     return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
857                                      CE->getBasePath(),
858                                      ShouldNullCheckClassCastValue(CE));
859   }
860   case CastExpr::CK_Dynamic: {
861     Value *V = Visit(const_cast<Expr*>(E));
862     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
863     return CGF.EmitDynamicCast(V, DCE);
864   }
865   case CastExpr::CK_ToUnion:
866     assert(0 && "Should be unreachable!");
867     break;
868 
869   case CastExpr::CK_ArrayToPointerDecay: {
870     assert(E->getType()->isArrayType() &&
871            "Array to pointer decay must have array source type!");
872 
873     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
874 
875     // Note that VLA pointers are always decayed, so we don't need to do
876     // anything here.
877     if (!E->getType()->isVariableArrayType()) {
878       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
879       assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
880                                  ->getElementType()) &&
881              "Expected pointer to array");
882       V = Builder.CreateStructGEP(V, 0, "arraydecay");
883     }
884 
885     return V;
886   }
887   case CastExpr::CK_FunctionToPointerDecay:
888     return EmitLValue(E).getAddress();
889 
890   case CastExpr::CK_NullToMemberPointer:
891     return CGF.CGM.EmitNullConstant(DestTy);
892 
893   case CastExpr::CK_BaseToDerivedMemberPointer:
894   case CastExpr::CK_DerivedToBaseMemberPointer: {
895     Value *Src = Visit(E);
896 
897     // See if we need to adjust the pointer.
898     const CXXRecordDecl *BaseDecl =
899       cast<CXXRecordDecl>(E->getType()->getAs<MemberPointerType>()->
900                           getClass()->getAs<RecordType>()->getDecl());
901     const CXXRecordDecl *DerivedDecl =
902       cast<CXXRecordDecl>(CE->getType()->getAs<MemberPointerType>()->
903                           getClass()->getAs<RecordType>()->getDecl());
904     if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
905       std::swap(DerivedDecl, BaseDecl);
906 
907     if (llvm::Constant *Adj =
908           CGF.CGM.GetNonVirtualBaseClassOffset(DerivedDecl,
909                                                CE->getBasePath())) {
910       if (CE->getCastKind() == CastExpr::CK_DerivedToBaseMemberPointer)
911         Src = Builder.CreateSub(Src, Adj, "adj");
912       else
913         Src = Builder.CreateAdd(Src, Adj, "adj");
914     }
915     return Src;
916   }
917 
918   case CastExpr::CK_ConstructorConversion:
919     assert(0 && "Should be unreachable!");
920     break;
921 
922   case CastExpr::CK_IntegralToPointer: {
923     Value *Src = Visit(const_cast<Expr*>(E));
924 
925     // First, convert to the correct width so that we control the kind of
926     // extension.
927     const llvm::Type *MiddleTy =
928       llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
929     bool InputSigned = E->getType()->isSignedIntegerType();
930     llvm::Value* IntResult =
931       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
932 
933     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
934   }
935   case CastExpr::CK_PointerToIntegral: {
936     Value *Src = Visit(const_cast<Expr*>(E));
937     return Builder.CreatePtrToInt(Src, ConvertType(DestTy));
938   }
939   case CastExpr::CK_ToVoid: {
940     CGF.EmitAnyExpr(E, 0, false, true);
941     return 0;
942   }
943   case CastExpr::CK_VectorSplat: {
944     const llvm::Type *DstTy = ConvertType(DestTy);
945     Value *Elt = Visit(const_cast<Expr*>(E));
946 
947     // Insert the element in element zero of an undef vector
948     llvm::Value *UnV = llvm::UndefValue::get(DstTy);
949     llvm::Value *Idx =
950         llvm::ConstantInt::get(llvm::Type::getInt32Ty(VMContext), 0);
951     UnV = Builder.CreateInsertElement(UnV, Elt, Idx, "tmp");
952 
953     // Splat the element across to all elements
954     llvm::SmallVector<llvm::Constant*, 16> Args;
955     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
956     for (unsigned i = 0; i < NumElements; i++)
957       Args.push_back(llvm::ConstantInt::get(
958                                         llvm::Type::getInt32Ty(VMContext), 0));
959 
960     llvm::Constant *Mask = llvm::ConstantVector::get(&Args[0], NumElements);
961     llvm::Value *Yay = Builder.CreateShuffleVector(UnV, UnV, Mask, "splat");
962     return Yay;
963   }
964   case CastExpr::CK_IntegralCast:
965   case CastExpr::CK_IntegralToFloating:
966   case CastExpr::CK_FloatingToIntegral:
967   case CastExpr::CK_FloatingCast:
968     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
969 
970   case CastExpr::CK_MemberPointerToBoolean:
971     return CGF.EvaluateExprAsBool(E);
972   }
973 
974   // Handle cases where the source is an non-complex type.
975 
976   if (!CGF.hasAggregateLLVMType(E->getType())) {
977     Value *Src = Visit(const_cast<Expr*>(E));
978 
979     // Use EmitScalarConversion to perform the conversion.
980     return EmitScalarConversion(Src, E->getType(), DestTy);
981   }
982 
983   if (E->getType()->isAnyComplexType()) {
984     // Handle cases where the source is a complex type.
985     bool IgnoreImag = true;
986     bool IgnoreImagAssign = true;
987     bool IgnoreReal = IgnoreResultAssign;
988     bool IgnoreRealAssign = IgnoreResultAssign;
989     if (DestTy->isBooleanType())
990       IgnoreImagAssign = IgnoreImag = false;
991     else if (DestTy->isVoidType()) {
992       IgnoreReal = IgnoreImag = false;
993       IgnoreRealAssign = IgnoreImagAssign = true;
994     }
995     CodeGenFunction::ComplexPairTy V
996       = CGF.EmitComplexExpr(E, IgnoreReal, IgnoreImag, IgnoreRealAssign,
997                             IgnoreImagAssign);
998     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
999   }
1000 
1001   // Okay, this is a cast from an aggregate.  It must be a cast to void.  Just
1002   // evaluate the result and return.
1003   CGF.EmitAggExpr(E, 0, false, true);
1004   return 0;
1005 }
1006 
1007 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1008   return CGF.EmitCompoundStmt(*E->getSubStmt(),
1009                               !E->getType()->isVoidType()).getScalarVal();
1010 }
1011 
1012 Value *ScalarExprEmitter::VisitBlockDeclRefExpr(const BlockDeclRefExpr *E) {
1013   llvm::Value *V = CGF.GetAddrOfBlockDecl(E);
1014   if (E->getType().isObjCGCWeak())
1015     return CGF.CGM.getObjCRuntime().EmitObjCWeakRead(CGF, V);
1016   return Builder.CreateLoad(V, "tmp");
1017 }
1018 
1019 //===----------------------------------------------------------------------===//
1020 //                             Unary Operators
1021 //===----------------------------------------------------------------------===//
1022 
1023 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1024   TestAndClearIgnoreResultAssign();
1025   Value *Op = Visit(E->getSubExpr());
1026   if (Op->getType()->isFPOrFPVectorTy())
1027     return Builder.CreateFNeg(Op, "neg");
1028   return Builder.CreateNeg(Op, "neg");
1029 }
1030 
1031 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1032   TestAndClearIgnoreResultAssign();
1033   Value *Op = Visit(E->getSubExpr());
1034   return Builder.CreateNot(Op, "neg");
1035 }
1036 
1037 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1038   // Compare operand to zero.
1039   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1040 
1041   // Invert value.
1042   // TODO: Could dynamically modify easy computations here.  For example, if
1043   // the operand is an icmp ne, turn into icmp eq.
1044   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1045 
1046   // ZExt result to the expr type.
1047   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1048 }
1049 
1050 Value *ScalarExprEmitter::VisitOffsetOfExpr(const OffsetOfExpr *E) {
1051   Expr::EvalResult Result;
1052   if(E->Evaluate(Result, CGF.getContext()))
1053     return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1054 
1055   // FIXME: Cannot support code generation for non-constant offsetof.
1056   unsigned DiagID = CGF.CGM.getDiags().getCustomDiagID(Diagnostic::Error,
1057                              "cannot compile non-constant __builtin_offsetof");
1058   CGF.CGM.getDiags().Report(CGF.getContext().getFullLoc(E->getLocStart()),
1059                             DiagID)
1060     << E->getSourceRange();
1061 
1062   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1063 }
1064 
1065 /// VisitSizeOfAlignOfExpr - Return the size or alignment of the type of
1066 /// argument of the sizeof expression as an integer.
1067 Value *
1068 ScalarExprEmitter::VisitSizeOfAlignOfExpr(const SizeOfAlignOfExpr *E) {
1069   QualType TypeToSize = E->getTypeOfArgument();
1070   if (E->isSizeOf()) {
1071     if (const VariableArrayType *VAT =
1072           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1073       if (E->isArgumentType()) {
1074         // sizeof(type) - make sure to emit the VLA size.
1075         CGF.EmitVLASize(TypeToSize);
1076       } else {
1077         // C99 6.5.3.4p2: If the argument is an expression of type
1078         // VLA, it is evaluated.
1079         CGF.EmitAnyExpr(E->getArgumentExpr());
1080       }
1081 
1082       return CGF.GetVLASize(VAT);
1083     }
1084   }
1085 
1086   // If this isn't sizeof(vla), the result must be constant; use the constant
1087   // folding logic so we don't have to duplicate it here.
1088   Expr::EvalResult Result;
1089   E->Evaluate(Result, CGF.getContext());
1090   return llvm::ConstantInt::get(VMContext, Result.Val.getInt());
1091 }
1092 
1093 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1094   Expr *Op = E->getSubExpr();
1095   if (Op->getType()->isAnyComplexType())
1096     return CGF.EmitComplexExpr(Op, false, true, false, true).first;
1097   return Visit(Op);
1098 }
1099 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1100   Expr *Op = E->getSubExpr();
1101   if (Op->getType()->isAnyComplexType())
1102     return CGF.EmitComplexExpr(Op, true, false, true, false).second;
1103 
1104   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
1105   // effects are evaluated, but not the actual value.
1106   if (E->isLvalue(CGF.getContext()) == Expr::LV_Valid)
1107     CGF.EmitLValue(Op);
1108   else
1109     CGF.EmitScalarExpr(Op, true);
1110   return llvm::Constant::getNullValue(ConvertType(E->getType()));
1111 }
1112 
1113 Value *ScalarExprEmitter::VisitUnaryOffsetOf(const UnaryOperator *E) {
1114   Value* ResultAsPtr = EmitLValue(E->getSubExpr()).getAddress();
1115   const llvm::Type* ResultType = ConvertType(E->getType());
1116   return Builder.CreatePtrToInt(ResultAsPtr, ResultType, "offsetof");
1117 }
1118 
1119 //===----------------------------------------------------------------------===//
1120 //                           Binary Operators
1121 //===----------------------------------------------------------------------===//
1122 
1123 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1124   TestAndClearIgnoreResultAssign();
1125   BinOpInfo Result;
1126   Result.LHS = Visit(E->getLHS());
1127   Result.RHS = Visit(E->getRHS());
1128   Result.Ty  = E->getType();
1129   Result.E = E;
1130   return Result;
1131 }
1132 
1133 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1134                                               const CompoundAssignOperator *E,
1135                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1136                                                    Value *&BitFieldResult) {
1137   QualType LHSTy = E->getLHS()->getType();
1138   BitFieldResult = 0;
1139   BinOpInfo OpInfo;
1140 
1141   if (E->getComputationResultType()->isAnyComplexType()) {
1142     // This needs to go through the complex expression emitter, but it's a tad
1143     // complicated to do that... I'm leaving it out for now.  (Note that we do
1144     // actually need the imaginary part of the RHS for multiplication and
1145     // division.)
1146     CGF.ErrorUnsupported(E, "complex compound assignment");
1147     llvm::UndefValue::get(CGF.ConvertType(E->getType()));
1148     return LValue();
1149   }
1150 
1151   // Emit the RHS first.  __block variables need to have the rhs evaluated
1152   // first, plus this should improve codegen a little.
1153   OpInfo.RHS = Visit(E->getRHS());
1154   OpInfo.Ty = E->getComputationResultType();
1155   OpInfo.E = E;
1156   // Load/convert the LHS.
1157   LValue LHSLV = EmitCheckedLValue(E->getLHS());
1158   OpInfo.LHS = EmitLoadOfLValue(LHSLV, LHSTy);
1159   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1160                                     E->getComputationLHSType());
1161 
1162   // Expand the binary operator.
1163   Value *Result = (this->*Func)(OpInfo);
1164 
1165   // Convert the result back to the LHS type.
1166   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1167 
1168   // Store the result value into the LHS lvalue. Bit-fields are handled
1169   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1170   // 'An assignment expression has the value of the left operand after the
1171   // assignment...'.
1172   if (LHSLV.isBitField()) {
1173     if (!LHSLV.isVolatileQualified()) {
1174       CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy,
1175                                          &Result);
1176       BitFieldResult = Result;
1177       return LHSLV;
1178     } else
1179       CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, LHSTy);
1180   } else
1181     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV, LHSTy);
1182   return LHSLV;
1183 }
1184 
1185 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
1186                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
1187   bool Ignore = TestAndClearIgnoreResultAssign();
1188   Value *BitFieldResult;
1189   LValue LHSLV = EmitCompoundAssignLValue(E, Func, BitFieldResult);
1190   if (BitFieldResult)
1191     return BitFieldResult;
1192 
1193   if (Ignore)
1194     return 0;
1195   return EmitLoadOfLValue(LHSLV, E->getType());
1196 }
1197 
1198 
1199 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
1200   if (Ops.LHS->getType()->isFPOrFPVectorTy())
1201     return Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
1202   else if (Ops.Ty->isUnsignedIntegerType())
1203     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
1204   else
1205     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
1206 }
1207 
1208 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
1209   // Rem in C can't be a floating point type: C99 6.5.5p2.
1210   if (Ops.Ty->isUnsignedIntegerType())
1211     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
1212   else
1213     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
1214 }
1215 
1216 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
1217   unsigned IID;
1218   unsigned OpID = 0;
1219 
1220   switch (Ops.E->getOpcode()) {
1221   case BinaryOperator::Add:
1222   case BinaryOperator::AddAssign:
1223     OpID = 1;
1224     IID = llvm::Intrinsic::sadd_with_overflow;
1225     break;
1226   case BinaryOperator::Sub:
1227   case BinaryOperator::SubAssign:
1228     OpID = 2;
1229     IID = llvm::Intrinsic::ssub_with_overflow;
1230     break;
1231   case BinaryOperator::Mul:
1232   case BinaryOperator::MulAssign:
1233     OpID = 3;
1234     IID = llvm::Intrinsic::smul_with_overflow;
1235     break;
1236   default:
1237     assert(false && "Unsupported operation for overflow detection");
1238     IID = 0;
1239   }
1240   OpID <<= 1;
1241   OpID |= 1;
1242 
1243   const llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
1244 
1245   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, &opTy, 1);
1246 
1247   Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
1248   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
1249   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
1250 
1251   // Branch in case of overflow.
1252   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
1253   llvm::BasicBlock *overflowBB =
1254     CGF.createBasicBlock("overflow", CGF.CurFn);
1255   llvm::BasicBlock *continueBB =
1256     CGF.createBasicBlock("overflow.continue", CGF.CurFn);
1257 
1258   Builder.CreateCondBr(overflow, overflowBB, continueBB);
1259 
1260   // Handle overflow
1261 
1262   Builder.SetInsertPoint(overflowBB);
1263 
1264   // Handler is:
1265   // long long *__overflow_handler)(long long a, long long b, char op,
1266   // char width)
1267   std::vector<const llvm::Type*> handerArgTypes;
1268   handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1269   handerArgTypes.push_back(llvm::Type::getInt64Ty(VMContext));
1270   handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1271   handerArgTypes.push_back(llvm::Type::getInt8Ty(VMContext));
1272   llvm::FunctionType *handlerTy = llvm::FunctionType::get(
1273       llvm::Type::getInt64Ty(VMContext), handerArgTypes, false);
1274   llvm::Value *handlerFunction =
1275     CGF.CGM.getModule().getOrInsertGlobal("__overflow_handler",
1276         llvm::PointerType::getUnqual(handlerTy));
1277   handlerFunction = Builder.CreateLoad(handlerFunction);
1278 
1279   llvm::Value *handlerResult = Builder.CreateCall4(handlerFunction,
1280       Builder.CreateSExt(Ops.LHS, llvm::Type::getInt64Ty(VMContext)),
1281       Builder.CreateSExt(Ops.RHS, llvm::Type::getInt64Ty(VMContext)),
1282       llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext), OpID),
1283       llvm::ConstantInt::get(llvm::Type::getInt8Ty(VMContext),
1284         cast<llvm::IntegerType>(opTy)->getBitWidth()));
1285 
1286   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
1287 
1288   Builder.CreateBr(continueBB);
1289 
1290   // Set up the continuation
1291   Builder.SetInsertPoint(continueBB);
1292   // Get the correct result
1293   llvm::PHINode *phi = Builder.CreatePHI(opTy);
1294   phi->reserveOperandSpace(2);
1295   phi->addIncoming(result, initialBB);
1296   phi->addIncoming(handlerResult, overflowBB);
1297 
1298   return phi;
1299 }
1300 
1301 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &Ops) {
1302   if (!Ops.Ty->isAnyPointerType()) {
1303     if (CGF.getContext().getLangOptions().OverflowChecking &&
1304         Ops.Ty->isSignedIntegerType())
1305       return EmitOverflowCheckedBinOp(Ops);
1306 
1307     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1308       return Builder.CreateFAdd(Ops.LHS, Ops.RHS, "add");
1309 
1310     // Signed integer overflow is undefined behavior.
1311     if (Ops.Ty->isSignedIntegerType())
1312       return Builder.CreateNSWAdd(Ops.LHS, Ops.RHS, "add");
1313 
1314     return Builder.CreateAdd(Ops.LHS, Ops.RHS, "add");
1315   }
1316 
1317   if (Ops.Ty->isPointerType() &&
1318       Ops.Ty->getAs<PointerType>()->isVariableArrayType()) {
1319     // The amount of the addition needs to account for the VLA size
1320     CGF.ErrorUnsupported(Ops.E, "VLA pointer addition");
1321   }
1322   Value *Ptr, *Idx;
1323   Expr *IdxExp;
1324   const PointerType *PT = Ops.E->getLHS()->getType()->getAs<PointerType>();
1325   const ObjCObjectPointerType *OPT =
1326     Ops.E->getLHS()->getType()->getAs<ObjCObjectPointerType>();
1327   if (PT || OPT) {
1328     Ptr = Ops.LHS;
1329     Idx = Ops.RHS;
1330     IdxExp = Ops.E->getRHS();
1331   } else {  // int + pointer
1332     PT = Ops.E->getRHS()->getType()->getAs<PointerType>();
1333     OPT = Ops.E->getRHS()->getType()->getAs<ObjCObjectPointerType>();
1334     assert((PT || OPT) && "Invalid add expr");
1335     Ptr = Ops.RHS;
1336     Idx = Ops.LHS;
1337     IdxExp = Ops.E->getLHS();
1338   }
1339 
1340   unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1341   if (Width < CGF.LLVMPointerWidth) {
1342     // Zero or sign extend the pointer value based on whether the index is
1343     // signed or not.
1344     const llvm::Type *IdxType =
1345         llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1346     if (IdxExp->getType()->isSignedIntegerType())
1347       Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1348     else
1349       Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1350   }
1351   const QualType ElementType = PT ? PT->getPointeeType() : OPT->getPointeeType();
1352   // Handle interface types, which are not represented with a concrete type.
1353   if (const ObjCObjectType *OIT = ElementType->getAs<ObjCObjectType>()) {
1354     llvm::Value *InterfaceSize =
1355       llvm::ConstantInt::get(Idx->getType(),
1356           CGF.getContext().getTypeSizeInChars(OIT).getQuantity());
1357     Idx = Builder.CreateMul(Idx, InterfaceSize);
1358     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1359     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1360     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1361     return Builder.CreateBitCast(Res, Ptr->getType());
1362   }
1363 
1364   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
1365   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
1366   // future proof.
1367   if (ElementType->isVoidType() || ElementType->isFunctionType()) {
1368     const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1369     Value *Casted = Builder.CreateBitCast(Ptr, i8Ty);
1370     Value *Res = Builder.CreateGEP(Casted, Idx, "add.ptr");
1371     return Builder.CreateBitCast(Res, Ptr->getType());
1372   }
1373 
1374   return Builder.CreateInBoundsGEP(Ptr, Idx, "add.ptr");
1375 }
1376 
1377 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &Ops) {
1378   if (!isa<llvm::PointerType>(Ops.LHS->getType())) {
1379     if (CGF.getContext().getLangOptions().OverflowChecking
1380         && Ops.Ty->isSignedIntegerType())
1381       return EmitOverflowCheckedBinOp(Ops);
1382 
1383     if (Ops.LHS->getType()->isFPOrFPVectorTy())
1384       return Builder.CreateFSub(Ops.LHS, Ops.RHS, "sub");
1385 
1386     // Signed integer overflow is undefined behavior.
1387     if (Ops.Ty->isSignedIntegerType())
1388       return Builder.CreateNSWSub(Ops.LHS, Ops.RHS, "sub");
1389 
1390     return Builder.CreateSub(Ops.LHS, Ops.RHS, "sub");
1391   }
1392 
1393   if (Ops.E->getLHS()->getType()->isPointerType() &&
1394       Ops.E->getLHS()->getType()->getAs<PointerType>()->isVariableArrayType()) {
1395     // The amount of the addition needs to account for the VLA size for
1396     // ptr-int
1397     // The amount of the division needs to account for the VLA size for
1398     // ptr-ptr.
1399     CGF.ErrorUnsupported(Ops.E, "VLA pointer subtraction");
1400   }
1401 
1402   const QualType LHSType = Ops.E->getLHS()->getType();
1403   const QualType LHSElementType = LHSType->getPointeeType();
1404   if (!isa<llvm::PointerType>(Ops.RHS->getType())) {
1405     // pointer - int
1406     Value *Idx = Ops.RHS;
1407     unsigned Width = cast<llvm::IntegerType>(Idx->getType())->getBitWidth();
1408     if (Width < CGF.LLVMPointerWidth) {
1409       // Zero or sign extend the pointer value based on whether the index is
1410       // signed or not.
1411       const llvm::Type *IdxType =
1412           llvm::IntegerType::get(VMContext, CGF.LLVMPointerWidth);
1413       if (Ops.E->getRHS()->getType()->isSignedIntegerType())
1414         Idx = Builder.CreateSExt(Idx, IdxType, "idx.ext");
1415       else
1416         Idx = Builder.CreateZExt(Idx, IdxType, "idx.ext");
1417     }
1418     Idx = Builder.CreateNeg(Idx, "sub.ptr.neg");
1419 
1420     // Handle interface types, which are not represented with a concrete type.
1421     if (const ObjCObjectType *OIT = LHSElementType->getAs<ObjCObjectType>()) {
1422       llvm::Value *InterfaceSize =
1423         llvm::ConstantInt::get(Idx->getType(),
1424                                CGF.getContext().
1425                                  getTypeSizeInChars(OIT).getQuantity());
1426       Idx = Builder.CreateMul(Idx, InterfaceSize);
1427       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1428       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1429       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "add.ptr");
1430       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1431     }
1432 
1433     // Explicitly handle GNU void* and function pointer arithmetic
1434     // extensions. The GNU void* casts amount to no-ops since our void* type is
1435     // i8*, but this is future proof.
1436     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1437       const llvm::Type *i8Ty = llvm::Type::getInt8PtrTy(VMContext);
1438       Value *LHSCasted = Builder.CreateBitCast(Ops.LHS, i8Ty);
1439       Value *Res = Builder.CreateGEP(LHSCasted, Idx, "sub.ptr");
1440       return Builder.CreateBitCast(Res, Ops.LHS->getType());
1441     }
1442 
1443     return Builder.CreateInBoundsGEP(Ops.LHS, Idx, "sub.ptr");
1444   } else {
1445     // pointer - pointer
1446     Value *LHS = Ops.LHS;
1447     Value *RHS = Ops.RHS;
1448 
1449     CharUnits ElementSize;
1450 
1451     // Handle GCC extension for pointer arithmetic on void* and function pointer
1452     // types.
1453     if (LHSElementType->isVoidType() || LHSElementType->isFunctionType()) {
1454       ElementSize = CharUnits::One();
1455     } else {
1456       ElementSize = CGF.getContext().getTypeSizeInChars(LHSElementType);
1457     }
1458 
1459     const llvm::Type *ResultType = ConvertType(Ops.Ty);
1460     LHS = Builder.CreatePtrToInt(LHS, ResultType, "sub.ptr.lhs.cast");
1461     RHS = Builder.CreatePtrToInt(RHS, ResultType, "sub.ptr.rhs.cast");
1462     Value *BytesBetween = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
1463 
1464     // Optimize out the shift for element size of 1.
1465     if (ElementSize.isOne())
1466       return BytesBetween;
1467 
1468     // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
1469     // pointer difference in C is only defined in the case where both operands
1470     // are pointing to elements of an array.
1471     Value *BytesPerElt =
1472         llvm::ConstantInt::get(ResultType, ElementSize.getQuantity());
1473     return Builder.CreateExactSDiv(BytesBetween, BytesPerElt, "sub.ptr.div");
1474   }
1475 }
1476 
1477 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
1478   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1479   // RHS to the same size as the LHS.
1480   Value *RHS = Ops.RHS;
1481   if (Ops.LHS->getType() != RHS->getType())
1482     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1483 
1484   if (CGF.CatchUndefined
1485       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1486     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1487     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1488     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1489                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1490                              Cont, CGF.getTrapBB());
1491     CGF.EmitBlock(Cont);
1492   }
1493 
1494   return Builder.CreateShl(Ops.LHS, RHS, "shl");
1495 }
1496 
1497 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
1498   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
1499   // RHS to the same size as the LHS.
1500   Value *RHS = Ops.RHS;
1501   if (Ops.LHS->getType() != RHS->getType())
1502     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
1503 
1504   if (CGF.CatchUndefined
1505       && isa<llvm::IntegerType>(Ops.LHS->getType())) {
1506     unsigned Width = cast<llvm::IntegerType>(Ops.LHS->getType())->getBitWidth();
1507     llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
1508     CGF.Builder.CreateCondBr(Builder.CreateICmpULT(RHS,
1509                                  llvm::ConstantInt::get(RHS->getType(), Width)),
1510                              Cont, CGF.getTrapBB());
1511     CGF.EmitBlock(Cont);
1512   }
1513 
1514   if (Ops.Ty->isUnsignedIntegerType())
1515     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
1516   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
1517 }
1518 
1519 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
1520                                       unsigned SICmpOpc, unsigned FCmpOpc) {
1521   TestAndClearIgnoreResultAssign();
1522   Value *Result;
1523   QualType LHSTy = E->getLHS()->getType();
1524   if (LHSTy->isMemberFunctionPointerType()) {
1525     Value *LHSPtr = CGF.EmitAnyExprToTemp(E->getLHS()).getAggregateAddr();
1526     Value *RHSPtr = CGF.EmitAnyExprToTemp(E->getRHS()).getAggregateAddr();
1527     llvm::Value *LHSFunc = Builder.CreateStructGEP(LHSPtr, 0);
1528     LHSFunc = Builder.CreateLoad(LHSFunc);
1529     llvm::Value *RHSFunc = Builder.CreateStructGEP(RHSPtr, 0);
1530     RHSFunc = Builder.CreateLoad(RHSFunc);
1531     Value *ResultF = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1532                                         LHSFunc, RHSFunc, "cmp.func");
1533     Value *NullPtr = llvm::Constant::getNullValue(LHSFunc->getType());
1534     Value *ResultNull = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1535                                            LHSFunc, NullPtr, "cmp.null");
1536     llvm::Value *LHSAdj = Builder.CreateStructGEP(LHSPtr, 1);
1537     LHSAdj = Builder.CreateLoad(LHSAdj);
1538     llvm::Value *RHSAdj = Builder.CreateStructGEP(RHSPtr, 1);
1539     RHSAdj = Builder.CreateLoad(RHSAdj);
1540     Value *ResultA = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1541                                         LHSAdj, RHSAdj, "cmp.adj");
1542     if (E->getOpcode() == BinaryOperator::EQ) {
1543       Result = Builder.CreateOr(ResultNull, ResultA, "or.na");
1544       Result = Builder.CreateAnd(Result, ResultF, "and.f");
1545     } else {
1546       assert(E->getOpcode() == BinaryOperator::NE &&
1547              "Member pointer comparison other than == or != ?");
1548       Result = Builder.CreateAnd(ResultNull, ResultA, "and.na");
1549       Result = Builder.CreateOr(Result, ResultF, "or.f");
1550     }
1551   } else if (!LHSTy->isAnyComplexType()) {
1552     Value *LHS = Visit(E->getLHS());
1553     Value *RHS = Visit(E->getRHS());
1554 
1555     if (LHS->getType()->isFPOrFPVectorTy()) {
1556       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
1557                                   LHS, RHS, "cmp");
1558     } else if (LHSTy->isSignedIntegerType()) {
1559       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
1560                                   LHS, RHS, "cmp");
1561     } else {
1562       // Unsigned integers and pointers.
1563       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1564                                   LHS, RHS, "cmp");
1565     }
1566 
1567     // If this is a vector comparison, sign extend the result to the appropriate
1568     // vector integer type and return it (don't convert to bool).
1569     if (LHSTy->isVectorType())
1570       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1571 
1572   } else {
1573     // Complex Comparison: can only be an equality comparison.
1574     CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
1575     CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
1576 
1577     QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
1578 
1579     Value *ResultR, *ResultI;
1580     if (CETy->isRealFloatingType()) {
1581       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1582                                    LHS.first, RHS.first, "cmp.r");
1583       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
1584                                    LHS.second, RHS.second, "cmp.i");
1585     } else {
1586       // Complex comparisons can only be equality comparisons.  As such, signed
1587       // and unsigned opcodes are the same.
1588       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1589                                    LHS.first, RHS.first, "cmp.r");
1590       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
1591                                    LHS.second, RHS.second, "cmp.i");
1592     }
1593 
1594     if (E->getOpcode() == BinaryOperator::EQ) {
1595       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
1596     } else {
1597       assert(E->getOpcode() == BinaryOperator::NE &&
1598              "Complex comparison other than == or != ?");
1599       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
1600     }
1601   }
1602 
1603   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
1604 }
1605 
1606 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
1607   bool Ignore = TestAndClearIgnoreResultAssign();
1608 
1609   // __block variables need to have the rhs evaluated first, plus this should
1610   // improve codegen just a little.
1611   Value *RHS = Visit(E->getRHS());
1612   LValue LHS = EmitCheckedLValue(E->getLHS());
1613 
1614   // Store the value into the LHS.  Bit-fields are handled specially
1615   // because the result is altered by the store, i.e., [C99 6.5.16p1]
1616   // 'An assignment expression has the value of the left operand after
1617   // the assignment...'.
1618   if (LHS.isBitField()) {
1619     if (!LHS.isVolatileQualified()) {
1620       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType(),
1621                                          &RHS);
1622       return RHS;
1623     } else
1624       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, E->getType());
1625   } else
1626     CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS, E->getType());
1627   if (Ignore)
1628     return 0;
1629   return EmitLoadOfLValue(LHS, E->getType());
1630 }
1631 
1632 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
1633   const llvm::Type *ResTy = ConvertType(E->getType());
1634 
1635   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
1636   // If we have 1 && X, just emit X without inserting the control flow.
1637   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1638     if (Cond == 1) { // If we have 1 && X, just emit X.
1639       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1640       // ZExt result to int or bool.
1641       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
1642     }
1643 
1644     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
1645     if (!CGF.ContainsLabel(E->getRHS()))
1646       return llvm::Constant::getNullValue(ResTy);
1647   }
1648 
1649   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
1650   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
1651 
1652   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
1653   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
1654 
1655   // Any edges into the ContBlock are now from an (indeterminate number of)
1656   // edges from this first condition.  All of these values will be false.  Start
1657   // setting up the PHI node in the Cont Block for this.
1658   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1659                                             "", ContBlock);
1660   PN->reserveOperandSpace(2);  // Normal case, two inputs.
1661   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1662        PI != PE; ++PI)
1663     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
1664 
1665   CGF.BeginConditionalBranch();
1666   CGF.EmitBlock(RHSBlock);
1667   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1668   CGF.EndConditionalBranch();
1669 
1670   // Reaquire the RHS block, as there may be subblocks inserted.
1671   RHSBlock = Builder.GetInsertBlock();
1672 
1673   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1674   // into the phi node for the edge with the value of RHSCond.
1675   CGF.EmitBlock(ContBlock);
1676   PN->addIncoming(RHSCond, RHSBlock);
1677 
1678   // ZExt result to int.
1679   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
1680 }
1681 
1682 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
1683   const llvm::Type *ResTy = ConvertType(E->getType());
1684 
1685   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
1686   // If we have 0 || X, just emit X without inserting the control flow.
1687   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getLHS())) {
1688     if (Cond == -1) { // If we have 0 || X, just emit X.
1689       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1690       // ZExt result to int or bool.
1691       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
1692     }
1693 
1694     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
1695     if (!CGF.ContainsLabel(E->getRHS()))
1696       return llvm::ConstantInt::get(ResTy, 1);
1697   }
1698 
1699   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
1700   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
1701 
1702   // Branch on the LHS first.  If it is true, go to the success (cont) block.
1703   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
1704 
1705   // Any edges into the ContBlock are now from an (indeterminate number of)
1706   // edges from this first condition.  All of these values will be true.  Start
1707   // setting up the PHI node in the Cont Block for this.
1708   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext),
1709                                             "", ContBlock);
1710   PN->reserveOperandSpace(2);  // Normal case, two inputs.
1711   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
1712        PI != PE; ++PI)
1713     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
1714 
1715   CGF.BeginConditionalBranch();
1716 
1717   // Emit the RHS condition as a bool value.
1718   CGF.EmitBlock(RHSBlock);
1719   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
1720 
1721   CGF.EndConditionalBranch();
1722 
1723   // Reaquire the RHS block, as there may be subblocks inserted.
1724   RHSBlock = Builder.GetInsertBlock();
1725 
1726   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
1727   // into the phi node for the edge with the value of RHSCond.
1728   CGF.EmitBlock(ContBlock);
1729   PN->addIncoming(RHSCond, RHSBlock);
1730 
1731   // ZExt result to int.
1732   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
1733 }
1734 
1735 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
1736   CGF.EmitStmt(E->getLHS());
1737   CGF.EnsureInsertPoint();
1738   return Visit(E->getRHS());
1739 }
1740 
1741 //===----------------------------------------------------------------------===//
1742 //                             Other Operators
1743 //===----------------------------------------------------------------------===//
1744 
1745 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
1746 /// expression is cheap enough and side-effect-free enough to evaluate
1747 /// unconditionally instead of conditionally.  This is used to convert control
1748 /// flow into selects in some cases.
1749 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
1750                                                    CodeGenFunction &CGF) {
1751   if (const ParenExpr *PE = dyn_cast<ParenExpr>(E))
1752     return isCheapEnoughToEvaluateUnconditionally(PE->getSubExpr(), CGF);
1753 
1754   // TODO: Allow anything we can constant fold to an integer or fp constant.
1755   if (isa<IntegerLiteral>(E) || isa<CharacterLiteral>(E) ||
1756       isa<FloatingLiteral>(E))
1757     return true;
1758 
1759   // Non-volatile automatic variables too, to get "cond ? X : Y" where
1760   // X and Y are local variables.
1761   if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
1762     if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
1763       if (VD->hasLocalStorage() && !(CGF.getContext()
1764                                      .getCanonicalType(VD->getType())
1765                                      .isVolatileQualified()))
1766         return true;
1767 
1768   return false;
1769 }
1770 
1771 
1772 Value *ScalarExprEmitter::
1773 VisitConditionalOperator(const ConditionalOperator *E) {
1774   TestAndClearIgnoreResultAssign();
1775   // If the condition constant folds and can be elided, try to avoid emitting
1776   // the condition and the dead arm.
1777   if (int Cond = CGF.ConstantFoldsToSimpleInteger(E->getCond())){
1778     Expr *Live = E->getLHS(), *Dead = E->getRHS();
1779     if (Cond == -1)
1780       std::swap(Live, Dead);
1781 
1782     // If the dead side doesn't have labels we need, and if the Live side isn't
1783     // the gnu missing ?: extension (which we could handle, but don't bother
1784     // to), just emit the Live part.
1785     if ((!Dead || !CGF.ContainsLabel(Dead)) &&  // No labels in dead part
1786         Live)                                   // Live part isn't missing.
1787       return Visit(Live);
1788   }
1789 
1790 
1791   // If this is a really simple expression (like x ? 4 : 5), emit this as a
1792   // select instead of as control flow.  We can only do this if it is cheap and
1793   // safe to evaluate the LHS and RHS unconditionally.
1794   if (E->getLHS() && isCheapEnoughToEvaluateUnconditionally(E->getLHS(),
1795                                                             CGF) &&
1796       isCheapEnoughToEvaluateUnconditionally(E->getRHS(), CGF)) {
1797     llvm::Value *CondV = CGF.EvaluateExprAsBool(E->getCond());
1798     llvm::Value *LHS = Visit(E->getLHS());
1799     llvm::Value *RHS = Visit(E->getRHS());
1800     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
1801   }
1802 
1803 
1804   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
1805   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
1806   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
1807   Value *CondVal = 0;
1808 
1809   // If we don't have the GNU missing condition extension, emit a branch on bool
1810   // the normal way.
1811   if (E->getLHS()) {
1812     // Otherwise, just use EmitBranchOnBoolExpr to get small and simple code for
1813     // the branch on bool.
1814     CGF.EmitBranchOnBoolExpr(E->getCond(), LHSBlock, RHSBlock);
1815   } else {
1816     // Otherwise, for the ?: extension, evaluate the conditional and then
1817     // convert it to bool the hard way.  We do this explicitly because we need
1818     // the unconverted value for the missing middle value of the ?:.
1819     CondVal = CGF.EmitScalarExpr(E->getCond());
1820 
1821     // In some cases, EmitScalarConversion will delete the "CondVal" expression
1822     // if there are no extra uses (an optimization).  Inhibit this by making an
1823     // extra dead use, because we're going to add a use of CondVal later.  We
1824     // don't use the builder for this, because we don't want it to get optimized
1825     // away.  This leaves dead code, but the ?: extension isn't common.
1826     new llvm::BitCastInst(CondVal, CondVal->getType(), "dummy?:holder",
1827                           Builder.GetInsertBlock());
1828 
1829     Value *CondBoolVal =
1830       CGF.EmitScalarConversion(CondVal, E->getCond()->getType(),
1831                                CGF.getContext().BoolTy);
1832     Builder.CreateCondBr(CondBoolVal, LHSBlock, RHSBlock);
1833   }
1834 
1835   CGF.BeginConditionalBranch();
1836   CGF.EmitBlock(LHSBlock);
1837 
1838   // Handle the GNU extension for missing LHS.
1839   Value *LHS;
1840   if (E->getLHS())
1841     LHS = Visit(E->getLHS());
1842   else    // Perform promotions, to handle cases like "short ?: int"
1843     LHS = EmitScalarConversion(CondVal, E->getCond()->getType(), E->getType());
1844 
1845   CGF.EndConditionalBranch();
1846   LHSBlock = Builder.GetInsertBlock();
1847   CGF.EmitBranch(ContBlock);
1848 
1849   CGF.BeginConditionalBranch();
1850   CGF.EmitBlock(RHSBlock);
1851 
1852   Value *RHS = Visit(E->getRHS());
1853   CGF.EndConditionalBranch();
1854   RHSBlock = Builder.GetInsertBlock();
1855   CGF.EmitBranch(ContBlock);
1856 
1857   CGF.EmitBlock(ContBlock);
1858 
1859   // If the LHS or RHS is a throw expression, it will be legitimately null.
1860   if (!LHS)
1861     return RHS;
1862   if (!RHS)
1863     return LHS;
1864 
1865   // Create a PHI node for the real part.
1866   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), "cond");
1867   PN->reserveOperandSpace(2);
1868   PN->addIncoming(LHS, LHSBlock);
1869   PN->addIncoming(RHS, RHSBlock);
1870   return PN;
1871 }
1872 
1873 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
1874   return Visit(E->getChosenSubExpr(CGF.getContext()));
1875 }
1876 
1877 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
1878   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
1879   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
1880 
1881   // If EmitVAArg fails, we fall back to the LLVM instruction.
1882   if (!ArgPtr)
1883     return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
1884 
1885   // FIXME Volatility.
1886   return Builder.CreateLoad(ArgPtr);
1887 }
1888 
1889 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *BE) {
1890   return CGF.BuildBlockLiteralTmp(BE);
1891 }
1892 
1893 //===----------------------------------------------------------------------===//
1894 //                         Entry Point into this File
1895 //===----------------------------------------------------------------------===//
1896 
1897 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
1898 /// type, ignoring the result.
1899 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
1900   assert(E && !hasAggregateLLVMType(E->getType()) &&
1901          "Invalid scalar expression to emit");
1902 
1903   return ScalarExprEmitter(*this, IgnoreResultAssign)
1904     .Visit(const_cast<Expr*>(E));
1905 }
1906 
1907 /// EmitScalarConversion - Emit a conversion from the specified type to the
1908 /// specified destination type, both of which are LLVM scalar types.
1909 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
1910                                              QualType DstTy) {
1911   assert(!hasAggregateLLVMType(SrcTy) && !hasAggregateLLVMType(DstTy) &&
1912          "Invalid scalar expression to emit");
1913   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
1914 }
1915 
1916 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
1917 /// type to the specified destination type, where the destination type is an
1918 /// LLVM scalar type.
1919 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
1920                                                       QualType SrcTy,
1921                                                       QualType DstTy) {
1922   assert(SrcTy->isAnyComplexType() && !hasAggregateLLVMType(DstTy) &&
1923          "Invalid complex -> scalar conversion");
1924   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
1925                                                                 DstTy);
1926 }
1927 
1928 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
1929   llvm::Value *V;
1930   // object->isa or (*object).isa
1931   // Generate code as for: *(Class*)object
1932   // build Class* type
1933   const llvm::Type *ClassPtrTy = ConvertType(E->getType());
1934 
1935   Expr *BaseExpr = E->getBase();
1936   if (BaseExpr->isLvalue(getContext()) != Expr::LV_Valid) {
1937     V = CreateTempAlloca(ClassPtrTy, "resval");
1938     llvm::Value *Src = EmitScalarExpr(BaseExpr);
1939     Builder.CreateStore(Src, V);
1940     LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1941     V = ScalarExprEmitter(*this).EmitLoadOfLValue(LV, E->getType());
1942   }
1943   else {
1944       if (E->isArrow())
1945         V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
1946       else
1947         V  = EmitLValue(BaseExpr).getAddress();
1948   }
1949 
1950   // build Class* type
1951   ClassPtrTy = ClassPtrTy->getPointerTo();
1952   V = Builder.CreateBitCast(V, ClassPtrTy);
1953   LValue LV = LValue::MakeAddr(V, MakeQualifiers(E->getType()));
1954   return LV;
1955 }
1956 
1957 
1958 LValue CodeGenFunction::EmitCompoundAssignOperatorLValue(
1959                                             const CompoundAssignOperator *E) {
1960   ScalarExprEmitter Scalar(*this);
1961   Value *BitFieldResult = 0;
1962   switch (E->getOpcode()) {
1963 #define COMPOUND_OP(Op)                                                       \
1964     case BinaryOperator::Op##Assign:                                          \
1965       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
1966                                              BitFieldResult)
1967   COMPOUND_OP(Mul);
1968   COMPOUND_OP(Div);
1969   COMPOUND_OP(Rem);
1970   COMPOUND_OP(Add);
1971   COMPOUND_OP(Sub);
1972   COMPOUND_OP(Shl);
1973   COMPOUND_OP(Shr);
1974   COMPOUND_OP(And);
1975   COMPOUND_OP(Xor);
1976   COMPOUND_OP(Or);
1977 #undef COMPOUND_OP
1978 
1979   case BinaryOperator::PtrMemD:
1980   case BinaryOperator::PtrMemI:
1981   case BinaryOperator::Mul:
1982   case BinaryOperator::Div:
1983   case BinaryOperator::Rem:
1984   case BinaryOperator::Add:
1985   case BinaryOperator::Sub:
1986   case BinaryOperator::Shl:
1987   case BinaryOperator::Shr:
1988   case BinaryOperator::LT:
1989   case BinaryOperator::GT:
1990   case BinaryOperator::LE:
1991   case BinaryOperator::GE:
1992   case BinaryOperator::EQ:
1993   case BinaryOperator::NE:
1994   case BinaryOperator::And:
1995   case BinaryOperator::Xor:
1996   case BinaryOperator::Or:
1997   case BinaryOperator::LAnd:
1998   case BinaryOperator::LOr:
1999   case BinaryOperator::Assign:
2000   case BinaryOperator::Comma:
2001     assert(false && "Not valid compound assignment operators");
2002     break;
2003   }
2004 
2005   llvm_unreachable("Unhandled compound assignment operator");
2006 }
2007