1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/CFG.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalVariable.h"
30 #include "llvm/IR/Intrinsics.h"
31 #include "llvm/IR/Module.h"
32 #include <cstdarg>
33 
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37 
38 //===----------------------------------------------------------------------===//
39 //                         Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41 
42 namespace {
43 struct BinOpInfo {
44   Value *LHS;
45   Value *RHS;
46   QualType Ty;  // Computation Type.
47   BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48   bool FPContractable;
49   const Expr *E;      // Entire expr, for error unsupported.  May not be binop.
50 };
51 
52 static bool MustVisitNullValue(const Expr *E) {
53   // If a null pointer expression's type is the C++0x nullptr_t, then
54   // it's not necessarily a simple constant and it must be evaluated
55   // for its potential side effects.
56   return E->getType()->isNullPtrType();
57 }
58 
59 class ScalarExprEmitter
60   : public StmtVisitor<ScalarExprEmitter, Value*> {
61   CodeGenFunction &CGF;
62   CGBuilderTy &Builder;
63   bool IgnoreResultAssign;
64   llvm::LLVMContext &VMContext;
65 public:
66 
67   ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68     : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69       VMContext(cgf.getLLVMContext()) {
70   }
71 
72   //===--------------------------------------------------------------------===//
73   //                               Utilities
74   //===--------------------------------------------------------------------===//
75 
76   bool TestAndClearIgnoreResultAssign() {
77     bool I = IgnoreResultAssign;
78     IgnoreResultAssign = false;
79     return I;
80   }
81 
82   llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
83   LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
84   LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85     return CGF.EmitCheckedLValue(E, TCK);
86   }
87 
88   void EmitBinOpCheck(ArrayRef<std::pair<Value *, SanitizerMask>> Checks,
89                       const BinOpInfo &Info);
90 
91   Value *EmitLoadOfLValue(LValue LV, SourceLocation Loc) {
92     return CGF.EmitLoadOfLValue(LV, Loc).getScalarVal();
93   }
94 
95   void EmitLValueAlignmentAssumption(const Expr *E, Value *V) {
96     const AlignValueAttr *AVAttr = nullptr;
97     if (const auto *DRE = dyn_cast<DeclRefExpr>(E)) {
98       const ValueDecl *VD = DRE->getDecl();
99 
100       if (VD->getType()->isReferenceType()) {
101         if (const auto *TTy =
102             dyn_cast<TypedefType>(VD->getType().getNonReferenceType()))
103           AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
104       } else {
105         // Assumptions for function parameters are emitted at the start of the
106         // function, so there is no need to repeat that here.
107         if (isa<ParmVarDecl>(VD))
108           return;
109 
110         AVAttr = VD->getAttr<AlignValueAttr>();
111       }
112     }
113 
114     if (!AVAttr)
115       if (const auto *TTy =
116           dyn_cast<TypedefType>(E->getType()))
117         AVAttr = TTy->getDecl()->getAttr<AlignValueAttr>();
118 
119     if (!AVAttr)
120       return;
121 
122     Value *AlignmentValue = CGF.EmitScalarExpr(AVAttr->getAlignment());
123     llvm::ConstantInt *AlignmentCI = cast<llvm::ConstantInt>(AlignmentValue);
124     CGF.EmitAlignmentAssumption(V, AlignmentCI->getZExtValue());
125   }
126 
127   /// EmitLoadOfLValue - Given an expression with complex type that represents a
128   /// value l-value, this method emits the address of the l-value, then loads
129   /// and returns the result.
130   Value *EmitLoadOfLValue(const Expr *E) {
131     Value *V = EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load),
132                                 E->getExprLoc());
133 
134     EmitLValueAlignmentAssumption(E, V);
135     return V;
136   }
137 
138   /// EmitConversionToBool - Convert the specified expression value to a
139   /// boolean (i1) truth value.  This is equivalent to "Val != 0".
140   Value *EmitConversionToBool(Value *Src, QualType DstTy);
141 
142   /// \brief Emit a check that a conversion to or from a floating-point type
143   /// does not overflow.
144   void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
145                                 Value *Src, QualType SrcType,
146                                 QualType DstType, llvm::Type *DstTy);
147 
148   /// EmitScalarConversion - Emit a conversion from the specified type to the
149   /// specified destination type, both of which are LLVM scalar types.
150   Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
151 
152   /// EmitComplexToScalarConversion - Emit a conversion from the specified
153   /// complex type to the specified destination type, where the destination type
154   /// is an LLVM scalar type.
155   Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
156                                        QualType SrcTy, QualType DstTy);
157 
158   /// EmitNullValue - Emit a value that corresponds to null for the given type.
159   Value *EmitNullValue(QualType Ty);
160 
161   /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
162   Value *EmitFloatToBoolConversion(Value *V) {
163     // Compare against 0.0 for fp scalars.
164     llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
165     return Builder.CreateFCmpUNE(V, Zero, "tobool");
166   }
167 
168   /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
169   Value *EmitPointerToBoolConversion(Value *V) {
170     Value *Zero = llvm::ConstantPointerNull::get(
171                                       cast<llvm::PointerType>(V->getType()));
172     return Builder.CreateICmpNE(V, Zero, "tobool");
173   }
174 
175   Value *EmitIntToBoolConversion(Value *V) {
176     // Because of the type rules of C, we often end up computing a
177     // logical value, then zero extending it to int, then wanting it
178     // as a logical value again.  Optimize this common case.
179     if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
180       if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
181         Value *Result = ZI->getOperand(0);
182         // If there aren't any more uses, zap the instruction to save space.
183         // Note that there can be more uses, for example if this
184         // is the result of an assignment.
185         if (ZI->use_empty())
186           ZI->eraseFromParent();
187         return Result;
188       }
189     }
190 
191     return Builder.CreateIsNotNull(V, "tobool");
192   }
193 
194   //===--------------------------------------------------------------------===//
195   //                            Visitor Methods
196   //===--------------------------------------------------------------------===//
197 
198   Value *Visit(Expr *E) {
199     ApplyDebugLocation DL(CGF, E);
200     return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
201   }
202 
203   Value *VisitStmt(Stmt *S) {
204     S->dump(CGF.getContext().getSourceManager());
205     llvm_unreachable("Stmt can't have complex result type!");
206   }
207   Value *VisitExpr(Expr *S);
208 
209   Value *VisitParenExpr(ParenExpr *PE) {
210     return Visit(PE->getSubExpr());
211   }
212   Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
213     return Visit(E->getReplacement());
214   }
215   Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
216     return Visit(GE->getResultExpr());
217   }
218 
219   // Leaves.
220   Value *VisitIntegerLiteral(const IntegerLiteral *E) {
221     return Builder.getInt(E->getValue());
222   }
223   Value *VisitFloatingLiteral(const FloatingLiteral *E) {
224     return llvm::ConstantFP::get(VMContext, E->getValue());
225   }
226   Value *VisitCharacterLiteral(const CharacterLiteral *E) {
227     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
228   }
229   Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
230     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
231   }
232   Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
233     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
234   }
235   Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
236     return EmitNullValue(E->getType());
237   }
238   Value *VisitGNUNullExpr(const GNUNullExpr *E) {
239     return EmitNullValue(E->getType());
240   }
241   Value *VisitOffsetOfExpr(OffsetOfExpr *E);
242   Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
243   Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
244     llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
245     return Builder.CreateBitCast(V, ConvertType(E->getType()));
246   }
247 
248   Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
249     return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
250   }
251 
252   Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
253     return CGF.EmitPseudoObjectRValue(E).getScalarVal();
254   }
255 
256   Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
257     if (E->isGLValue())
258       return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E), E->getExprLoc());
259 
260     // Otherwise, assume the mapping is the scalar directly.
261     return CGF.getOpaqueRValueMapping(E).getScalarVal();
262   }
263 
264   // l-values.
265   Value *VisitDeclRefExpr(DeclRefExpr *E) {
266     if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
267       if (result.isReference())
268         return EmitLoadOfLValue(result.getReferenceLValue(CGF, E),
269                                 E->getExprLoc());
270       return result.getValue();
271     }
272     return EmitLoadOfLValue(E);
273   }
274 
275   Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
276     return CGF.EmitObjCSelectorExpr(E);
277   }
278   Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
279     return CGF.EmitObjCProtocolExpr(E);
280   }
281   Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
282     return EmitLoadOfLValue(E);
283   }
284   Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
285     if (E->getMethodDecl() &&
286         E->getMethodDecl()->getReturnType()->isReferenceType())
287       return EmitLoadOfLValue(E);
288     return CGF.EmitObjCMessageExpr(E).getScalarVal();
289   }
290 
291   Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
292     LValue LV = CGF.EmitObjCIsaExpr(E);
293     Value *V = CGF.EmitLoadOfLValue(LV, E->getExprLoc()).getScalarVal();
294     return V;
295   }
296 
297   Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
298   Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
299   Value *VisitConvertVectorExpr(ConvertVectorExpr *E);
300   Value *VisitMemberExpr(MemberExpr *E);
301   Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
302   Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
303     return EmitLoadOfLValue(E);
304   }
305 
306   Value *VisitInitListExpr(InitListExpr *E);
307 
308   Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
309     return EmitNullValue(E->getType());
310   }
311   Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
312     if (E->getType()->isVariablyModifiedType())
313       CGF.EmitVariablyModifiedType(E->getType());
314 
315     if (CGDebugInfo *DI = CGF.getDebugInfo())
316       DI->EmitExplicitCastType(E->getType());
317 
318     return VisitCastExpr(E);
319   }
320   Value *VisitCastExpr(CastExpr *E);
321 
322   Value *VisitCallExpr(const CallExpr *E) {
323     if (E->getCallReturnType(CGF.getContext())->isReferenceType())
324       return EmitLoadOfLValue(E);
325 
326     Value *V = CGF.EmitCallExpr(E).getScalarVal();
327 
328     EmitLValueAlignmentAssumption(E, V);
329     return V;
330   }
331 
332   Value *VisitStmtExpr(const StmtExpr *E);
333 
334   // Unary Operators.
335   Value *VisitUnaryPostDec(const UnaryOperator *E) {
336     LValue LV = EmitLValue(E->getSubExpr());
337     return EmitScalarPrePostIncDec(E, LV, false, false);
338   }
339   Value *VisitUnaryPostInc(const UnaryOperator *E) {
340     LValue LV = EmitLValue(E->getSubExpr());
341     return EmitScalarPrePostIncDec(E, LV, true, false);
342   }
343   Value *VisitUnaryPreDec(const UnaryOperator *E) {
344     LValue LV = EmitLValue(E->getSubExpr());
345     return EmitScalarPrePostIncDec(E, LV, false, true);
346   }
347   Value *VisitUnaryPreInc(const UnaryOperator *E) {
348     LValue LV = EmitLValue(E->getSubExpr());
349     return EmitScalarPrePostIncDec(E, LV, true, true);
350   }
351 
352   llvm::Value *EmitIncDecConsiderOverflowBehavior(const UnaryOperator *E,
353                                                   llvm::Value *InVal,
354                                                   bool IsInc);
355 
356   llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
357                                        bool isInc, bool isPre);
358 
359 
360   Value *VisitUnaryAddrOf(const UnaryOperator *E) {
361     if (isa<MemberPointerType>(E->getType())) // never sugared
362       return CGF.CGM.getMemberPointerConstant(E);
363 
364     return EmitLValue(E->getSubExpr()).getAddress();
365   }
366   Value *VisitUnaryDeref(const UnaryOperator *E) {
367     if (E->getType()->isVoidType())
368       return Visit(E->getSubExpr()); // the actual value should be unused
369     return EmitLoadOfLValue(E);
370   }
371   Value *VisitUnaryPlus(const UnaryOperator *E) {
372     // This differs from gcc, though, most likely due to a bug in gcc.
373     TestAndClearIgnoreResultAssign();
374     return Visit(E->getSubExpr());
375   }
376   Value *VisitUnaryMinus    (const UnaryOperator *E);
377   Value *VisitUnaryNot      (const UnaryOperator *E);
378   Value *VisitUnaryLNot     (const UnaryOperator *E);
379   Value *VisitUnaryReal     (const UnaryOperator *E);
380   Value *VisitUnaryImag     (const UnaryOperator *E);
381   Value *VisitUnaryExtension(const UnaryOperator *E) {
382     return Visit(E->getSubExpr());
383   }
384 
385   // C++
386   Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
387     return EmitLoadOfLValue(E);
388   }
389 
390   Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
391     return Visit(DAE->getExpr());
392   }
393   Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
394     CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
395     return Visit(DIE->getExpr());
396   }
397   Value *VisitCXXThisExpr(CXXThisExpr *TE) {
398     return CGF.LoadCXXThis();
399   }
400 
401   Value *VisitExprWithCleanups(ExprWithCleanups *E) {
402     CGF.enterFullExpression(E);
403     CodeGenFunction::RunCleanupsScope Scope(CGF);
404     return Visit(E->getSubExpr());
405   }
406   Value *VisitCXXNewExpr(const CXXNewExpr *E) {
407     return CGF.EmitCXXNewExpr(E);
408   }
409   Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
410     CGF.EmitCXXDeleteExpr(E);
411     return nullptr;
412   }
413 
414   Value *VisitTypeTraitExpr(const TypeTraitExpr *E) {
415     return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
416   }
417 
418   Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
419     return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
420   }
421 
422   Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
423     return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
424   }
425 
426   Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
427     // C++ [expr.pseudo]p1:
428     //   The result shall only be used as the operand for the function call
429     //   operator (), and the result of such a call has type void. The only
430     //   effect is the evaluation of the postfix-expression before the dot or
431     //   arrow.
432     CGF.EmitScalarExpr(E->getBase());
433     return nullptr;
434   }
435 
436   Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
437     return EmitNullValue(E->getType());
438   }
439 
440   Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
441     CGF.EmitCXXThrowExpr(E);
442     return nullptr;
443   }
444 
445   Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
446     return Builder.getInt1(E->getValue());
447   }
448 
449   // Binary Operators.
450   Value *EmitMul(const BinOpInfo &Ops) {
451     if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
452       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
453       case LangOptions::SOB_Defined:
454         return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
455       case LangOptions::SOB_Undefined:
456         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
457           return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
458         // Fall through.
459       case LangOptions::SOB_Trapping:
460         return EmitOverflowCheckedBinOp(Ops);
461       }
462     }
463 
464     if (Ops.Ty->isUnsignedIntegerType() &&
465         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
466       return EmitOverflowCheckedBinOp(Ops);
467 
468     if (Ops.LHS->getType()->isFPOrFPVectorTy())
469       return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
470     return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
471   }
472   /// Create a binary op that checks for overflow.
473   /// Currently only supports +, - and *.
474   Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
475 
476   // Check for undefined division and modulus behaviors.
477   void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
478                                                   llvm::Value *Zero,bool isDiv);
479   // Common helper for getting how wide LHS of shift is.
480   static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
481   Value *EmitDiv(const BinOpInfo &Ops);
482   Value *EmitRem(const BinOpInfo &Ops);
483   Value *EmitAdd(const BinOpInfo &Ops);
484   Value *EmitSub(const BinOpInfo &Ops);
485   Value *EmitShl(const BinOpInfo &Ops);
486   Value *EmitShr(const BinOpInfo &Ops);
487   Value *EmitAnd(const BinOpInfo &Ops) {
488     return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
489   }
490   Value *EmitXor(const BinOpInfo &Ops) {
491     return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
492   }
493   Value *EmitOr (const BinOpInfo &Ops) {
494     return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
495   }
496 
497   BinOpInfo EmitBinOps(const BinaryOperator *E);
498   LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
499                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
500                                   Value *&Result);
501 
502   Value *EmitCompoundAssign(const CompoundAssignOperator *E,
503                             Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
504 
505   // Binary operators and binary compound assignment operators.
506 #define HANDLEBINOP(OP) \
507   Value *VisitBin ## OP(const BinaryOperator *E) {                         \
508     return Emit ## OP(EmitBinOps(E));                                      \
509   }                                                                        \
510   Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) {       \
511     return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP);          \
512   }
513   HANDLEBINOP(Mul)
514   HANDLEBINOP(Div)
515   HANDLEBINOP(Rem)
516   HANDLEBINOP(Add)
517   HANDLEBINOP(Sub)
518   HANDLEBINOP(Shl)
519   HANDLEBINOP(Shr)
520   HANDLEBINOP(And)
521   HANDLEBINOP(Xor)
522   HANDLEBINOP(Or)
523 #undef HANDLEBINOP
524 
525   // Comparisons.
526   Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
527                      unsigned SICmpOpc, unsigned FCmpOpc);
528 #define VISITCOMP(CODE, UI, SI, FP) \
529     Value *VisitBin##CODE(const BinaryOperator *E) { \
530       return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
531                          llvm::FCmpInst::FP); }
532   VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
533   VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
534   VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
535   VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
536   VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
537   VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
538 #undef VISITCOMP
539 
540   Value *VisitBinAssign     (const BinaryOperator *E);
541 
542   Value *VisitBinLAnd       (const BinaryOperator *E);
543   Value *VisitBinLOr        (const BinaryOperator *E);
544   Value *VisitBinComma      (const BinaryOperator *E);
545 
546   Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
547   Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
548 
549   // Other Operators.
550   Value *VisitBlockExpr(const BlockExpr *BE);
551   Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
552   Value *VisitChooseExpr(ChooseExpr *CE);
553   Value *VisitVAArgExpr(VAArgExpr *VE);
554   Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
555     return CGF.EmitObjCStringLiteral(E);
556   }
557   Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
558     return CGF.EmitObjCBoxedExpr(E);
559   }
560   Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
561     return CGF.EmitObjCArrayLiteral(E);
562   }
563   Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
564     return CGF.EmitObjCDictionaryLiteral(E);
565   }
566   Value *VisitAsTypeExpr(AsTypeExpr *CE);
567   Value *VisitAtomicExpr(AtomicExpr *AE);
568 };
569 }  // end anonymous namespace.
570 
571 //===----------------------------------------------------------------------===//
572 //                                Utilities
573 //===----------------------------------------------------------------------===//
574 
575 /// EmitConversionToBool - Convert the specified expression value to a
576 /// boolean (i1) truth value.  This is equivalent to "Val != 0".
577 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
578   assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
579 
580   if (SrcType->isRealFloatingType())
581     return EmitFloatToBoolConversion(Src);
582 
583   if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
584     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
585 
586   assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
587          "Unknown scalar type to convert");
588 
589   if (isa<llvm::IntegerType>(Src->getType()))
590     return EmitIntToBoolConversion(Src);
591 
592   assert(isa<llvm::PointerType>(Src->getType()));
593   return EmitPointerToBoolConversion(Src);
594 }
595 
596 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
597                                                  QualType OrigSrcType,
598                                                  Value *Src, QualType SrcType,
599                                                  QualType DstType,
600                                                  llvm::Type *DstTy) {
601   CodeGenFunction::SanitizerScope SanScope(&CGF);
602   using llvm::APFloat;
603   using llvm::APSInt;
604 
605   llvm::Type *SrcTy = Src->getType();
606 
607   llvm::Value *Check = nullptr;
608   if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
609     // Integer to floating-point. This can fail for unsigned short -> __half
610     // or unsigned __int128 -> float.
611     assert(DstType->isFloatingType());
612     bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
613 
614     APFloat LargestFloat =
615       APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
616     APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
617 
618     bool IsExact;
619     if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
620                                       &IsExact) != APFloat::opOK)
621       // The range of representable values of this floating point type includes
622       // all values of this integer type. Don't need an overflow check.
623       return;
624 
625     llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
626     if (SrcIsUnsigned)
627       Check = Builder.CreateICmpULE(Src, Max);
628     else {
629       llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
630       llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
631       llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
632       Check = Builder.CreateAnd(GE, LE);
633     }
634   } else {
635     const llvm::fltSemantics &SrcSema =
636       CGF.getContext().getFloatTypeSemantics(OrigSrcType);
637     if (isa<llvm::IntegerType>(DstTy)) {
638       // Floating-point to integer. This has undefined behavior if the source is
639       // +-Inf, NaN, or doesn't fit into the destination type (after truncation
640       // to an integer).
641       unsigned Width = CGF.getContext().getIntWidth(DstType);
642       bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
643 
644       APSInt Min = APSInt::getMinValue(Width, Unsigned);
645       APFloat MinSrc(SrcSema, APFloat::uninitialized);
646       if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
647           APFloat::opOverflow)
648         // Don't need an overflow check for lower bound. Just check for
649         // -Inf/NaN.
650         MinSrc = APFloat::getInf(SrcSema, true);
651       else
652         // Find the largest value which is too small to represent (before
653         // truncation toward zero).
654         MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
655 
656       APSInt Max = APSInt::getMaxValue(Width, Unsigned);
657       APFloat MaxSrc(SrcSema, APFloat::uninitialized);
658       if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
659           APFloat::opOverflow)
660         // Don't need an overflow check for upper bound. Just check for
661         // +Inf/NaN.
662         MaxSrc = APFloat::getInf(SrcSema, false);
663       else
664         // Find the smallest value which is too large to represent (before
665         // truncation toward zero).
666         MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
667 
668       // If we're converting from __half, convert the range to float to match
669       // the type of src.
670       if (OrigSrcType->isHalfType()) {
671         const llvm::fltSemantics &Sema =
672           CGF.getContext().getFloatTypeSemantics(SrcType);
673         bool IsInexact;
674         MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
675         MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
676       }
677 
678       llvm::Value *GE =
679         Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
680       llvm::Value *LE =
681         Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
682       Check = Builder.CreateAnd(GE, LE);
683     } else {
684       // FIXME: Maybe split this sanitizer out from float-cast-overflow.
685       //
686       // Floating-point to floating-point. This has undefined behavior if the
687       // source is not in the range of representable values of the destination
688       // type. The C and C++ standards are spectacularly unclear here. We
689       // diagnose finite out-of-range conversions, but allow infinities and NaNs
690       // to convert to the corresponding value in the smaller type.
691       //
692       // C11 Annex F gives all such conversions defined behavior for IEC 60559
693       // conforming implementations. Unfortunately, LLVM's fptrunc instruction
694       // does not.
695 
696       // Converting from a lower rank to a higher rank can never have
697       // undefined behavior, since higher-rank types must have a superset
698       // of values of lower-rank types.
699       if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
700         return;
701 
702       assert(!OrigSrcType->isHalfType() &&
703              "should not check conversion from __half, it has the lowest rank");
704 
705       const llvm::fltSemantics &DstSema =
706         CGF.getContext().getFloatTypeSemantics(DstType);
707       APFloat MinBad = APFloat::getLargest(DstSema, false);
708       APFloat MaxBad = APFloat::getInf(DstSema, false);
709 
710       bool IsInexact;
711       MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
712       MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
713 
714       Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
715         CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
716       llvm::Value *GE =
717         Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
718       llvm::Value *LE =
719         Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
720       Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
721     }
722   }
723 
724   // FIXME: Provide a SourceLocation.
725   llvm::Constant *StaticArgs[] = {
726     CGF.EmitCheckTypeDescriptor(OrigSrcType),
727     CGF.EmitCheckTypeDescriptor(DstType)
728   };
729   CGF.EmitCheck(std::make_pair(Check, SanitizerKind::FloatCastOverflow),
730                 "float_cast_overflow", StaticArgs, OrigSrc);
731 }
732 
733 /// EmitScalarConversion - Emit a conversion from the specified type to the
734 /// specified destination type, both of which are LLVM scalar types.
735 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
736                                                QualType DstType) {
737   SrcType = CGF.getContext().getCanonicalType(SrcType);
738   DstType = CGF.getContext().getCanonicalType(DstType);
739   if (SrcType == DstType) return Src;
740 
741   if (DstType->isVoidType()) return nullptr;
742 
743   llvm::Value *OrigSrc = Src;
744   QualType OrigSrcType = SrcType;
745   llvm::Type *SrcTy = Src->getType();
746 
747   // Handle conversions to bool first, they are special: comparisons against 0.
748   if (DstType->isBooleanType())
749     return EmitConversionToBool(Src, SrcType);
750 
751   llvm::Type *DstTy = ConvertType(DstType);
752 
753   // Cast from half through float if half isn't a native type.
754   if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
755     // Cast to FP using the intrinsic if the half type itself isn't supported.
756     if (DstTy->isFloatingPointTy()) {
757       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
758         return Builder.CreateCall(
759             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16, DstTy),
760             Src);
761     } else {
762       // Cast to other types through float, using either the intrinsic or FPExt,
763       // depending on whether the half type itself is supported
764       // (as opposed to operations on half, available with NativeHalfType).
765       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
766         Src = Builder.CreateCall(
767             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
768                                  CGF.CGM.FloatTy),
769             Src);
770       } else {
771         Src = Builder.CreateFPExt(Src, CGF.CGM.FloatTy, "conv");
772       }
773       SrcType = CGF.getContext().FloatTy;
774       SrcTy = CGF.FloatTy;
775     }
776   }
777 
778   // Ignore conversions like int -> uint.
779   if (SrcTy == DstTy)
780     return Src;
781 
782   // Handle pointer conversions next: pointers can only be converted to/from
783   // other pointers and integers. Check for pointer types in terms of LLVM, as
784   // some native types (like Obj-C id) may map to a pointer type.
785   if (isa<llvm::PointerType>(DstTy)) {
786     // The source value may be an integer, or a pointer.
787     if (isa<llvm::PointerType>(SrcTy))
788       return Builder.CreateBitCast(Src, DstTy, "conv");
789 
790     assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
791     // First, convert to the correct width so that we control the kind of
792     // extension.
793     llvm::Type *MiddleTy = CGF.IntPtrTy;
794     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
795     llvm::Value* IntResult =
796         Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
797     // Then, cast to pointer.
798     return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
799   }
800 
801   if (isa<llvm::PointerType>(SrcTy)) {
802     // Must be an ptr to int cast.
803     assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
804     return Builder.CreatePtrToInt(Src, DstTy, "conv");
805   }
806 
807   // A scalar can be splatted to an extended vector of the same element type
808   if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
809     // Cast the scalar to element type
810     QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
811     llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
812 
813     // Splat the element across to all elements
814     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
815     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
816   }
817 
818   // Allow bitcast from vector to integer/fp of the same size.
819   if (isa<llvm::VectorType>(SrcTy) ||
820       isa<llvm::VectorType>(DstTy))
821     return Builder.CreateBitCast(Src, DstTy, "conv");
822 
823   // Finally, we have the arithmetic types: real int/float.
824   Value *Res = nullptr;
825   llvm::Type *ResTy = DstTy;
826 
827   // An overflowing conversion has undefined behavior if either the source type
828   // or the destination type is a floating-point type.
829   if (CGF.SanOpts.has(SanitizerKind::FloatCastOverflow) &&
830       (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
831     EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
832                              DstTy);
833 
834   // Cast to half through float if half isn't a native type.
835   if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
836     // Make sure we cast in a single step if from another FP type.
837     if (SrcTy->isFloatingPointTy()) {
838       // Use the intrinsic if the half type itself isn't supported
839       // (as opposed to operations on half, available with NativeHalfType).
840       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns)
841         return Builder.CreateCall(
842             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, SrcTy), Src);
843       // If the half type is supported, just use an fptrunc.
844       return Builder.CreateFPTrunc(Src, DstTy);
845     }
846     DstTy = CGF.FloatTy;
847   }
848 
849   if (isa<llvm::IntegerType>(SrcTy)) {
850     bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
851     if (isa<llvm::IntegerType>(DstTy))
852       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
853     else if (InputSigned)
854       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
855     else
856       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
857   } else if (isa<llvm::IntegerType>(DstTy)) {
858     assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
859     if (DstType->isSignedIntegerOrEnumerationType())
860       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
861     else
862       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
863   } else {
864     assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
865            "Unknown real conversion");
866     if (DstTy->getTypeID() < SrcTy->getTypeID())
867       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
868     else
869       Res = Builder.CreateFPExt(Src, DstTy, "conv");
870   }
871 
872   if (DstTy != ResTy) {
873     if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
874       assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
875       Res = Builder.CreateCall(
876         CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16, CGF.CGM.FloatTy),
877         Res);
878     } else {
879       Res = Builder.CreateFPTrunc(Res, ResTy, "conv");
880     }
881   }
882 
883   return Res;
884 }
885 
886 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
887 /// type to the specified destination type, where the destination type is an
888 /// LLVM scalar type.
889 Value *ScalarExprEmitter::
890 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
891                               QualType SrcTy, QualType DstTy) {
892   // Get the source element type.
893   SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
894 
895   // Handle conversions to bool first, they are special: comparisons against 0.
896   if (DstTy->isBooleanType()) {
897     //  Complex != 0  -> (Real != 0) | (Imag != 0)
898     Src.first  = EmitScalarConversion(Src.first, SrcTy, DstTy);
899     Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
900     return Builder.CreateOr(Src.first, Src.second, "tobool");
901   }
902 
903   // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
904   // the imaginary part of the complex value is discarded and the value of the
905   // real part is converted according to the conversion rules for the
906   // corresponding real type.
907   return EmitScalarConversion(Src.first, SrcTy, DstTy);
908 }
909 
910 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
911   return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
912 }
913 
914 /// \brief Emit a sanitization check for the given "binary" operation (which
915 /// might actually be a unary increment which has been lowered to a binary
916 /// operation). The check passes if all values in \p Checks (which are \c i1),
917 /// are \c true.
918 void ScalarExprEmitter::EmitBinOpCheck(
919     ArrayRef<std::pair<Value *, SanitizerMask>> Checks, const BinOpInfo &Info) {
920   assert(CGF.IsSanitizerScope);
921   StringRef CheckName;
922   SmallVector<llvm::Constant *, 4> StaticData;
923   SmallVector<llvm::Value *, 2> DynamicData;
924 
925   BinaryOperatorKind Opcode = Info.Opcode;
926   if (BinaryOperator::isCompoundAssignmentOp(Opcode))
927     Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
928 
929   StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
930   const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
931   if (UO && UO->getOpcode() == UO_Minus) {
932     CheckName = "negate_overflow";
933     StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
934     DynamicData.push_back(Info.RHS);
935   } else {
936     if (BinaryOperator::isShiftOp(Opcode)) {
937       // Shift LHS negative or too large, or RHS out of bounds.
938       CheckName = "shift_out_of_bounds";
939       const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
940       StaticData.push_back(
941         CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
942       StaticData.push_back(
943         CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
944     } else if (Opcode == BO_Div || Opcode == BO_Rem) {
945       // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
946       CheckName = "divrem_overflow";
947       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
948     } else {
949       // Arithmetic overflow (+, -, *).
950       switch (Opcode) {
951       case BO_Add: CheckName = "add_overflow"; break;
952       case BO_Sub: CheckName = "sub_overflow"; break;
953       case BO_Mul: CheckName = "mul_overflow"; break;
954       default: llvm_unreachable("unexpected opcode for bin op check");
955       }
956       StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
957     }
958     DynamicData.push_back(Info.LHS);
959     DynamicData.push_back(Info.RHS);
960   }
961 
962   CGF.EmitCheck(Checks, CheckName, StaticData, DynamicData);
963 }
964 
965 //===----------------------------------------------------------------------===//
966 //                            Visitor Methods
967 //===----------------------------------------------------------------------===//
968 
969 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
970   CGF.ErrorUnsupported(E, "scalar expression");
971   if (E->getType()->isVoidType())
972     return nullptr;
973   return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
974 }
975 
976 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
977   // Vector Mask Case
978   if (E->getNumSubExprs() == 2 ||
979       (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
980     Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
981     Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
982     Value *Mask;
983 
984     llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
985     unsigned LHSElts = LTy->getNumElements();
986 
987     if (E->getNumSubExprs() == 3) {
988       Mask = CGF.EmitScalarExpr(E->getExpr(2));
989 
990       // Shuffle LHS & RHS into one input vector.
991       SmallVector<llvm::Constant*, 32> concat;
992       for (unsigned i = 0; i != LHSElts; ++i) {
993         concat.push_back(Builder.getInt32(2*i));
994         concat.push_back(Builder.getInt32(2*i+1));
995       }
996 
997       Value* CV = llvm::ConstantVector::get(concat);
998       LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
999       LHSElts *= 2;
1000     } else {
1001       Mask = RHS;
1002     }
1003 
1004     llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
1005     llvm::Constant* EltMask;
1006 
1007     EltMask = llvm::ConstantInt::get(MTy->getElementType(),
1008                                      llvm::NextPowerOf2(LHSElts-1)-1);
1009 
1010     // Mask off the high bits of each shuffle index.
1011     Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
1012                                                      EltMask);
1013     Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
1014 
1015     // newv = undef
1016     // mask = mask & maskbits
1017     // for each elt
1018     //   n = extract mask i
1019     //   x = extract val n
1020     //   newv = insert newv, x, i
1021     llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
1022                                                   MTy->getNumElements());
1023     Value* NewV = llvm::UndefValue::get(RTy);
1024     for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
1025       Value *IIndx = llvm::ConstantInt::get(CGF.SizeTy, i);
1026       Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
1027 
1028       Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
1029       NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
1030     }
1031     return NewV;
1032   }
1033 
1034   Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
1035   Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
1036 
1037   SmallVector<llvm::Constant*, 32> indices;
1038   for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
1039     llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
1040     // Check for -1 and output it as undef in the IR.
1041     if (Idx.isSigned() && Idx.isAllOnesValue())
1042       indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
1043     else
1044       indices.push_back(Builder.getInt32(Idx.getZExtValue()));
1045   }
1046 
1047   Value *SV = llvm::ConstantVector::get(indices);
1048   return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
1049 }
1050 
1051 Value *ScalarExprEmitter::VisitConvertVectorExpr(ConvertVectorExpr *E) {
1052   QualType SrcType = E->getSrcExpr()->getType(),
1053            DstType = E->getType();
1054 
1055   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
1056 
1057   SrcType = CGF.getContext().getCanonicalType(SrcType);
1058   DstType = CGF.getContext().getCanonicalType(DstType);
1059   if (SrcType == DstType) return Src;
1060 
1061   assert(SrcType->isVectorType() &&
1062          "ConvertVector source type must be a vector");
1063   assert(DstType->isVectorType() &&
1064          "ConvertVector destination type must be a vector");
1065 
1066   llvm::Type *SrcTy = Src->getType();
1067   llvm::Type *DstTy = ConvertType(DstType);
1068 
1069   // Ignore conversions like int -> uint.
1070   if (SrcTy == DstTy)
1071     return Src;
1072 
1073   QualType SrcEltType = SrcType->getAs<VectorType>()->getElementType(),
1074            DstEltType = DstType->getAs<VectorType>()->getElementType();
1075 
1076   assert(SrcTy->isVectorTy() &&
1077          "ConvertVector source IR type must be a vector");
1078   assert(DstTy->isVectorTy() &&
1079          "ConvertVector destination IR type must be a vector");
1080 
1081   llvm::Type *SrcEltTy = SrcTy->getVectorElementType(),
1082              *DstEltTy = DstTy->getVectorElementType();
1083 
1084   if (DstEltType->isBooleanType()) {
1085     assert((SrcEltTy->isFloatingPointTy() ||
1086             isa<llvm::IntegerType>(SrcEltTy)) && "Unknown boolean conversion");
1087 
1088     llvm::Value *Zero = llvm::Constant::getNullValue(SrcTy);
1089     if (SrcEltTy->isFloatingPointTy()) {
1090       return Builder.CreateFCmpUNE(Src, Zero, "tobool");
1091     } else {
1092       return Builder.CreateICmpNE(Src, Zero, "tobool");
1093     }
1094   }
1095 
1096   // We have the arithmetic types: real int/float.
1097   Value *Res = nullptr;
1098 
1099   if (isa<llvm::IntegerType>(SrcEltTy)) {
1100     bool InputSigned = SrcEltType->isSignedIntegerOrEnumerationType();
1101     if (isa<llvm::IntegerType>(DstEltTy))
1102       Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
1103     else if (InputSigned)
1104       Res = Builder.CreateSIToFP(Src, DstTy, "conv");
1105     else
1106       Res = Builder.CreateUIToFP(Src, DstTy, "conv");
1107   } else if (isa<llvm::IntegerType>(DstEltTy)) {
1108     assert(SrcEltTy->isFloatingPointTy() && "Unknown real conversion");
1109     if (DstEltType->isSignedIntegerOrEnumerationType())
1110       Res = Builder.CreateFPToSI(Src, DstTy, "conv");
1111     else
1112       Res = Builder.CreateFPToUI(Src, DstTy, "conv");
1113   } else {
1114     assert(SrcEltTy->isFloatingPointTy() && DstEltTy->isFloatingPointTy() &&
1115            "Unknown real conversion");
1116     if (DstEltTy->getTypeID() < SrcEltTy->getTypeID())
1117       Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
1118     else
1119       Res = Builder.CreateFPExt(Src, DstTy, "conv");
1120   }
1121 
1122   return Res;
1123 }
1124 
1125 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
1126   llvm::APSInt Value;
1127   if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
1128     if (E->isArrow())
1129       CGF.EmitScalarExpr(E->getBase());
1130     else
1131       EmitLValue(E->getBase());
1132     return Builder.getInt(Value);
1133   }
1134 
1135   return EmitLoadOfLValue(E);
1136 }
1137 
1138 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
1139   TestAndClearIgnoreResultAssign();
1140 
1141   // Emit subscript expressions in rvalue context's.  For most cases, this just
1142   // loads the lvalue formed by the subscript expr.  However, we have to be
1143   // careful, because the base of a vector subscript is occasionally an rvalue,
1144   // so we can't get it as an lvalue.
1145   if (!E->getBase()->getType()->isVectorType())
1146     return EmitLoadOfLValue(E);
1147 
1148   // Handle the vector case.  The base must be a vector, the index must be an
1149   // integer value.
1150   Value *Base = Visit(E->getBase());
1151   Value *Idx  = Visit(E->getIdx());
1152   QualType IdxTy = E->getIdx()->getType();
1153 
1154   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
1155     CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1156 
1157   return Builder.CreateExtractElement(Base, Idx, "vecext");
1158 }
1159 
1160 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1161                                   unsigned Off, llvm::Type *I32Ty) {
1162   int MV = SVI->getMaskValue(Idx);
1163   if (MV == -1)
1164     return llvm::UndefValue::get(I32Ty);
1165   return llvm::ConstantInt::get(I32Ty, Off+MV);
1166 }
1167 
1168 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1169   bool Ignore = TestAndClearIgnoreResultAssign();
1170   (void)Ignore;
1171   assert (Ignore == false && "init list ignored");
1172   unsigned NumInitElements = E->getNumInits();
1173 
1174   if (E->hadArrayRangeDesignator())
1175     CGF.ErrorUnsupported(E, "GNU array range designator extension");
1176 
1177   llvm::VectorType *VType =
1178     dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1179 
1180   if (!VType) {
1181     if (NumInitElements == 0) {
1182       // C++11 value-initialization for the scalar.
1183       return EmitNullValue(E->getType());
1184     }
1185     // We have a scalar in braces. Just use the first element.
1186     return Visit(E->getInit(0));
1187   }
1188 
1189   unsigned ResElts = VType->getNumElements();
1190 
1191   // Loop over initializers collecting the Value for each, and remembering
1192   // whether the source was swizzle (ExtVectorElementExpr).  This will allow
1193   // us to fold the shuffle for the swizzle into the shuffle for the vector
1194   // initializer, since LLVM optimizers generally do not want to touch
1195   // shuffles.
1196   unsigned CurIdx = 0;
1197   bool VIsUndefShuffle = false;
1198   llvm::Value *V = llvm::UndefValue::get(VType);
1199   for (unsigned i = 0; i != NumInitElements; ++i) {
1200     Expr *IE = E->getInit(i);
1201     Value *Init = Visit(IE);
1202     SmallVector<llvm::Constant*, 16> Args;
1203 
1204     llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1205 
1206     // Handle scalar elements.  If the scalar initializer is actually one
1207     // element of a different vector of the same width, use shuffle instead of
1208     // extract+insert.
1209     if (!VVT) {
1210       if (isa<ExtVectorElementExpr>(IE)) {
1211         llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1212 
1213         if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1214           llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1215           Value *LHS = nullptr, *RHS = nullptr;
1216           if (CurIdx == 0) {
1217             // insert into undef -> shuffle (src, undef)
1218             Args.push_back(C);
1219             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1220 
1221             LHS = EI->getVectorOperand();
1222             RHS = V;
1223             VIsUndefShuffle = true;
1224           } else if (VIsUndefShuffle) {
1225             // insert into undefshuffle && size match -> shuffle (v, src)
1226             llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1227             for (unsigned j = 0; j != CurIdx; ++j)
1228               Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1229             Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1230             Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1231 
1232             LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1233             RHS = EI->getVectorOperand();
1234             VIsUndefShuffle = false;
1235           }
1236           if (!Args.empty()) {
1237             llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1238             V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1239             ++CurIdx;
1240             continue;
1241           }
1242         }
1243       }
1244       V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1245                                       "vecinit");
1246       VIsUndefShuffle = false;
1247       ++CurIdx;
1248       continue;
1249     }
1250 
1251     unsigned InitElts = VVT->getNumElements();
1252 
1253     // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1254     // input is the same width as the vector being constructed, generate an
1255     // optimized shuffle of the swizzle input into the result.
1256     unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1257     if (isa<ExtVectorElementExpr>(IE)) {
1258       llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1259       Value *SVOp = SVI->getOperand(0);
1260       llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1261 
1262       if (OpTy->getNumElements() == ResElts) {
1263         for (unsigned j = 0; j != CurIdx; ++j) {
1264           // If the current vector initializer is a shuffle with undef, merge
1265           // this shuffle directly into it.
1266           if (VIsUndefShuffle) {
1267             Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1268                                       CGF.Int32Ty));
1269           } else {
1270             Args.push_back(Builder.getInt32(j));
1271           }
1272         }
1273         for (unsigned j = 0, je = InitElts; j != je; ++j)
1274           Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1275         Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1276 
1277         if (VIsUndefShuffle)
1278           V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1279 
1280         Init = SVOp;
1281       }
1282     }
1283 
1284     // Extend init to result vector length, and then shuffle its contribution
1285     // to the vector initializer into V.
1286     if (Args.empty()) {
1287       for (unsigned j = 0; j != InitElts; ++j)
1288         Args.push_back(Builder.getInt32(j));
1289       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1290       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1291       Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1292                                          Mask, "vext");
1293 
1294       Args.clear();
1295       for (unsigned j = 0; j != CurIdx; ++j)
1296         Args.push_back(Builder.getInt32(j));
1297       for (unsigned j = 0; j != InitElts; ++j)
1298         Args.push_back(Builder.getInt32(j+Offset));
1299       Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1300     }
1301 
1302     // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1303     // merging subsequent shuffles into this one.
1304     if (CurIdx == 0)
1305       std::swap(V, Init);
1306     llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1307     V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1308     VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1309     CurIdx += InitElts;
1310   }
1311 
1312   // FIXME: evaluate codegen vs. shuffling against constant null vector.
1313   // Emit remaining default initializers.
1314   llvm::Type *EltTy = VType->getElementType();
1315 
1316   // Emit remaining default initializers
1317   for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1318     Value *Idx = Builder.getInt32(CurIdx);
1319     llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1320     V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1321   }
1322   return V;
1323 }
1324 
1325 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1326   const Expr *E = CE->getSubExpr();
1327 
1328   if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1329     return false;
1330 
1331   if (isa<CXXThisExpr>(E)) {
1332     // We always assume that 'this' is never null.
1333     return false;
1334   }
1335 
1336   if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1337     // And that glvalue casts are never null.
1338     if (ICE->getValueKind() != VK_RValue)
1339       return false;
1340   }
1341 
1342   return true;
1343 }
1344 
1345 // VisitCastExpr - Emit code for an explicit or implicit cast.  Implicit casts
1346 // have to handle a more broad range of conversions than explicit casts, as they
1347 // handle things like function to ptr-to-function decay etc.
1348 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1349   Expr *E = CE->getSubExpr();
1350   QualType DestTy = CE->getType();
1351   CastKind Kind = CE->getCastKind();
1352 
1353   if (!DestTy->isVoidType())
1354     TestAndClearIgnoreResultAssign();
1355 
1356   // Since almost all cast kinds apply to scalars, this switch doesn't have
1357   // a default case, so the compiler will warn on a missing case.  The cases
1358   // are in the same order as in the CastKind enum.
1359   switch (Kind) {
1360   case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1361   case CK_BuiltinFnToFnPtr:
1362     llvm_unreachable("builtin functions are handled elsewhere");
1363 
1364   case CK_LValueBitCast:
1365   case CK_ObjCObjectLValueCast: {
1366     Value *V = EmitLValue(E).getAddress();
1367     V = Builder.CreateBitCast(V,
1368                           ConvertType(CGF.getContext().getPointerType(DestTy)));
1369     return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy),
1370                             CE->getExprLoc());
1371   }
1372 
1373   case CK_CPointerToObjCPointerCast:
1374   case CK_BlockPointerToObjCPointerCast:
1375   case CK_AnyPointerToBlockPointerCast:
1376   case CK_BitCast: {
1377     Value *Src = Visit(const_cast<Expr*>(E));
1378     llvm::Type *SrcTy = Src->getType();
1379     llvm::Type *DstTy = ConvertType(DestTy);
1380     if (SrcTy->isPtrOrPtrVectorTy() && DstTy->isPtrOrPtrVectorTy() &&
1381         SrcTy->getPointerAddressSpace() != DstTy->getPointerAddressSpace()) {
1382       llvm_unreachable("wrong cast for pointers in different address spaces"
1383                        "(must be an address space cast)!");
1384     }
1385 
1386     if (CGF.SanOpts.has(SanitizerKind::CFIUnrelatedCast)) {
1387       if (auto PT = DestTy->getAs<PointerType>())
1388         CGF.EmitVTablePtrCheckForCast(PT->getPointeeType(), Src,
1389                                       /*MayBeNull=*/true,
1390                                       CodeGenFunction::CFITCK_UnrelatedCast,
1391                                       CE->getLocStart());
1392     }
1393 
1394     return Builder.CreateBitCast(Src, DstTy);
1395   }
1396   case CK_AddressSpaceConversion: {
1397     Value *Src = Visit(const_cast<Expr*>(E));
1398     return Builder.CreateAddrSpaceCast(Src, ConvertType(DestTy));
1399   }
1400   case CK_AtomicToNonAtomic:
1401   case CK_NonAtomicToAtomic:
1402   case CK_NoOp:
1403   case CK_UserDefinedConversion:
1404     return Visit(const_cast<Expr*>(E));
1405 
1406   case CK_BaseToDerived: {
1407     const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1408     assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1409 
1410     llvm::Value *V = Visit(E);
1411 
1412     llvm::Value *Derived =
1413       CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1414                                    CE->path_begin(), CE->path_end(),
1415                                    ShouldNullCheckClassCastValue(CE));
1416 
1417     // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1418     // performed and the object is not of the derived type.
1419     if (CGF.sanitizePerformTypeCheck())
1420       CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1421                         Derived, DestTy->getPointeeType());
1422 
1423     if (CGF.SanOpts.has(SanitizerKind::CFIDerivedCast))
1424       CGF.EmitVTablePtrCheckForCast(DestTy->getPointeeType(), Derived,
1425                                     /*MayBeNull=*/true,
1426                                     CodeGenFunction::CFITCK_DerivedCast,
1427                                     CE->getLocStart());
1428 
1429     return Derived;
1430   }
1431   case CK_UncheckedDerivedToBase:
1432   case CK_DerivedToBase: {
1433     const CXXRecordDecl *DerivedClassDecl =
1434       E->getType()->getPointeeCXXRecordDecl();
1435     assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1436 
1437     return CGF.GetAddressOfBaseClass(
1438         Visit(E), DerivedClassDecl, CE->path_begin(), CE->path_end(),
1439         ShouldNullCheckClassCastValue(CE), CE->getExprLoc());
1440   }
1441   case CK_Dynamic: {
1442     Value *V = Visit(const_cast<Expr*>(E));
1443     const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1444     return CGF.EmitDynamicCast(V, DCE);
1445   }
1446 
1447   case CK_ArrayToPointerDecay: {
1448     assert(E->getType()->isArrayType() &&
1449            "Array to pointer decay must have array source type!");
1450 
1451     Value *V = EmitLValue(E).getAddress();  // Bitfields can't be arrays.
1452 
1453     // Note that VLA pointers are always decayed, so we don't need to do
1454     // anything here.
1455     if (!E->getType()->isVariableArrayType()) {
1456       assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1457       llvm::Type *NewTy = ConvertType(E->getType());
1458       V = CGF.Builder.CreatePointerCast(
1459           V, NewTy->getPointerTo(V->getType()->getPointerAddressSpace()));
1460 
1461       assert(isa<llvm::ArrayType>(V->getType()->getPointerElementType()) &&
1462              "Expected pointer to array");
1463       V = Builder.CreateStructGEP(NewTy, V, 0, "arraydecay");
1464     }
1465 
1466     // Make sure the array decay ends up being the right type.  This matters if
1467     // the array type was of an incomplete type.
1468     return CGF.Builder.CreatePointerCast(V, ConvertType(CE->getType()));
1469   }
1470   case CK_FunctionToPointerDecay:
1471     return EmitLValue(E).getAddress();
1472 
1473   case CK_NullToPointer:
1474     if (MustVisitNullValue(E))
1475       (void) Visit(E);
1476 
1477     return llvm::ConstantPointerNull::get(
1478                                cast<llvm::PointerType>(ConvertType(DestTy)));
1479 
1480   case CK_NullToMemberPointer: {
1481     if (MustVisitNullValue(E))
1482       (void) Visit(E);
1483 
1484     const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1485     return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1486   }
1487 
1488   case CK_ReinterpretMemberPointer:
1489   case CK_BaseToDerivedMemberPointer:
1490   case CK_DerivedToBaseMemberPointer: {
1491     Value *Src = Visit(E);
1492 
1493     // Note that the AST doesn't distinguish between checked and
1494     // unchecked member pointer conversions, so we always have to
1495     // implement checked conversions here.  This is inefficient when
1496     // actual control flow may be required in order to perform the
1497     // check, which it is for data member pointers (but not member
1498     // function pointers on Itanium and ARM).
1499     return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1500   }
1501 
1502   case CK_ARCProduceObject:
1503     return CGF.EmitARCRetainScalarExpr(E);
1504   case CK_ARCConsumeObject:
1505     return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1506   case CK_ARCReclaimReturnedObject: {
1507     llvm::Value *value = Visit(E);
1508     value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1509     return CGF.EmitObjCConsumeObject(E->getType(), value);
1510   }
1511   case CK_ARCExtendBlockObject:
1512     return CGF.EmitARCExtendBlockObject(E);
1513 
1514   case CK_CopyAndAutoreleaseBlockObject:
1515     return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1516 
1517   case CK_FloatingRealToComplex:
1518   case CK_FloatingComplexCast:
1519   case CK_IntegralRealToComplex:
1520   case CK_IntegralComplexCast:
1521   case CK_IntegralComplexToFloatingComplex:
1522   case CK_FloatingComplexToIntegralComplex:
1523   case CK_ConstructorConversion:
1524   case CK_ToUnion:
1525     llvm_unreachable("scalar cast to non-scalar value");
1526 
1527   case CK_LValueToRValue:
1528     assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1529     assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1530     return Visit(const_cast<Expr*>(E));
1531 
1532   case CK_IntegralToPointer: {
1533     Value *Src = Visit(const_cast<Expr*>(E));
1534 
1535     // First, convert to the correct width so that we control the kind of
1536     // extension.
1537     llvm::Type *MiddleTy = CGF.IntPtrTy;
1538     bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1539     llvm::Value* IntResult =
1540       Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1541 
1542     return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1543   }
1544   case CK_PointerToIntegral:
1545     assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1546     return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1547 
1548   case CK_ToVoid: {
1549     CGF.EmitIgnoredExpr(E);
1550     return nullptr;
1551   }
1552   case CK_VectorSplat: {
1553     llvm::Type *DstTy = ConvertType(DestTy);
1554     Value *Elt = Visit(const_cast<Expr*>(E));
1555     Elt = EmitScalarConversion(Elt, E->getType(),
1556                                DestTy->getAs<VectorType>()->getElementType());
1557 
1558     // Splat the element across to all elements
1559     unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1560     return Builder.CreateVectorSplat(NumElements, Elt, "splat");
1561   }
1562 
1563   case CK_IntegralCast:
1564   case CK_IntegralToFloating:
1565   case CK_FloatingToIntegral:
1566   case CK_FloatingCast:
1567     return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1568   case CK_IntegralToBoolean:
1569     return EmitIntToBoolConversion(Visit(E));
1570   case CK_PointerToBoolean:
1571     return EmitPointerToBoolConversion(Visit(E));
1572   case CK_FloatingToBoolean:
1573     return EmitFloatToBoolConversion(Visit(E));
1574   case CK_MemberPointerToBoolean: {
1575     llvm::Value *MemPtr = Visit(E);
1576     const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1577     return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1578   }
1579 
1580   case CK_FloatingComplexToReal:
1581   case CK_IntegralComplexToReal:
1582     return CGF.EmitComplexExpr(E, false, true).first;
1583 
1584   case CK_FloatingComplexToBoolean:
1585   case CK_IntegralComplexToBoolean: {
1586     CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1587 
1588     // TODO: kill this function off, inline appropriate case here
1589     return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1590   }
1591 
1592   case CK_ZeroToOCLEvent: {
1593     assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non-event type");
1594     return llvm::Constant::getNullValue(ConvertType(DestTy));
1595   }
1596 
1597   }
1598 
1599   llvm_unreachable("unknown scalar cast");
1600 }
1601 
1602 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1603   CodeGenFunction::StmtExprEvaluation eval(CGF);
1604   llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1605                                                 !E->getType()->isVoidType());
1606   if (!RetAlloca)
1607     return nullptr;
1608   return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()),
1609                               E->getExprLoc());
1610 }
1611 
1612 //===----------------------------------------------------------------------===//
1613 //                             Unary Operators
1614 //===----------------------------------------------------------------------===//
1615 
1616 static BinOpInfo createBinOpInfoFromIncDec(const UnaryOperator *E,
1617                                            llvm::Value *InVal, bool IsInc) {
1618   BinOpInfo BinOp;
1619   BinOp.LHS = InVal;
1620   BinOp.RHS = llvm::ConstantInt::get(InVal->getType(), 1, false);
1621   BinOp.Ty = E->getType();
1622   BinOp.Opcode = IsInc ? BO_Add : BO_Sub;
1623   BinOp.FPContractable = false;
1624   BinOp.E = E;
1625   return BinOp;
1626 }
1627 
1628 llvm::Value *ScalarExprEmitter::EmitIncDecConsiderOverflowBehavior(
1629     const UnaryOperator *E, llvm::Value *InVal, bool IsInc) {
1630   llvm::Value *Amount =
1631       llvm::ConstantInt::get(InVal->getType(), IsInc ? 1 : -1, true);
1632   StringRef Name = IsInc ? "inc" : "dec";
1633   switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1634   case LangOptions::SOB_Defined:
1635     return Builder.CreateAdd(InVal, Amount, Name);
1636   case LangOptions::SOB_Undefined:
1637     if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
1638       return Builder.CreateNSWAdd(InVal, Amount, Name);
1639     // Fall through.
1640   case LangOptions::SOB_Trapping:
1641     return EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, InVal, IsInc));
1642   }
1643   llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1644 }
1645 
1646 llvm::Value *
1647 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1648                                            bool isInc, bool isPre) {
1649 
1650   QualType type = E->getSubExpr()->getType();
1651   llvm::PHINode *atomicPHI = nullptr;
1652   llvm::Value *value;
1653   llvm::Value *input;
1654 
1655   int amount = (isInc ? 1 : -1);
1656 
1657   if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1658     type = atomicTy->getValueType();
1659     if (isInc && type->isBooleanType()) {
1660       llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1661       if (isPre) {
1662         Builder.Insert(new llvm::StoreInst(True,
1663               LV.getAddress(), LV.isVolatileQualified(),
1664               LV.getAlignment().getQuantity(),
1665               llvm::SequentiallyConsistent));
1666         return Builder.getTrue();
1667       }
1668       // For atomic bool increment, we just store true and return it for
1669       // preincrement, do an atomic swap with true for postincrement
1670         return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1671             LV.getAddress(), True, llvm::SequentiallyConsistent);
1672     }
1673     // Special case for atomic increment / decrement on integers, emit
1674     // atomicrmw instructions.  We skip this if we want to be doing overflow
1675     // checking, and fall into the slow path with the atomic cmpxchg loop.
1676     if (!type->isBooleanType() && type->isIntegerType() &&
1677         !(type->isUnsignedIntegerType() &&
1678           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
1679         CGF.getLangOpts().getSignedOverflowBehavior() !=
1680             LangOptions::SOB_Trapping) {
1681       llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1682         llvm::AtomicRMWInst::Sub;
1683       llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1684         llvm::Instruction::Sub;
1685       llvm::Value *amt = CGF.EmitToMemory(
1686           llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1687       llvm::Value *old = Builder.CreateAtomicRMW(aop,
1688           LV.getAddress(), amt, llvm::SequentiallyConsistent);
1689       return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1690     }
1691     value = EmitLoadOfLValue(LV, E->getExprLoc());
1692     input = value;
1693     // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1694     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1695     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1696     value = CGF.EmitToMemory(value, type);
1697     Builder.CreateBr(opBB);
1698     Builder.SetInsertPoint(opBB);
1699     atomicPHI = Builder.CreatePHI(value->getType(), 2);
1700     atomicPHI->addIncoming(value, startBB);
1701     value = atomicPHI;
1702   } else {
1703     value = EmitLoadOfLValue(LV, E->getExprLoc());
1704     input = value;
1705   }
1706 
1707   // Special case of integer increment that we have to check first: bool++.
1708   // Due to promotion rules, we get:
1709   //   bool++ -> bool = bool + 1
1710   //          -> bool = (int)bool + 1
1711   //          -> bool = ((int)bool + 1 != 0)
1712   // An interesting aspect of this is that increment is always true.
1713   // Decrement does not have this property.
1714   if (isInc && type->isBooleanType()) {
1715     value = Builder.getTrue();
1716 
1717   // Most common case by far: integer increment.
1718   } else if (type->isIntegerType()) {
1719     // Note that signed integer inc/dec with width less than int can't
1720     // overflow because of promotion rules; we're just eliding a few steps here.
1721     bool CanOverflow = value->getType()->getIntegerBitWidth() >=
1722                        CGF.IntTy->getIntegerBitWidth();
1723     if (CanOverflow && type->isSignedIntegerOrEnumerationType()) {
1724       value = EmitIncDecConsiderOverflowBehavior(E, value, isInc);
1725     } else if (CanOverflow && type->isUnsignedIntegerType() &&
1726                CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) {
1727       value =
1728           EmitOverflowCheckedBinOp(createBinOpInfoFromIncDec(E, value, isInc));
1729     } else {
1730       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1731       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1732     }
1733 
1734   // Next most common: pointer increment.
1735   } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1736     QualType type = ptr->getPointeeType();
1737 
1738     // VLA types don't have constant size.
1739     if (const VariableArrayType *vla
1740           = CGF.getContext().getAsVariableArrayType(type)) {
1741       llvm::Value *numElts = CGF.getVLASize(vla).first;
1742       if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1743       if (CGF.getLangOpts().isSignedOverflowDefined())
1744         value = Builder.CreateGEP(value, numElts, "vla.inc");
1745       else
1746         value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1747 
1748     // Arithmetic on function pointers (!) is just +-1.
1749     } else if (type->isFunctionType()) {
1750       llvm::Value *amt = Builder.getInt32(amount);
1751 
1752       value = CGF.EmitCastToVoidPtr(value);
1753       if (CGF.getLangOpts().isSignedOverflowDefined())
1754         value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1755       else
1756         value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1757       value = Builder.CreateBitCast(value, input->getType());
1758 
1759     // For everything else, we can just do a simple increment.
1760     } else {
1761       llvm::Value *amt = Builder.getInt32(amount);
1762       if (CGF.getLangOpts().isSignedOverflowDefined())
1763         value = Builder.CreateGEP(value, amt, "incdec.ptr");
1764       else
1765         value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1766     }
1767 
1768   // Vector increment/decrement.
1769   } else if (type->isVectorType()) {
1770     if (type->hasIntegerRepresentation()) {
1771       llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1772 
1773       value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1774     } else {
1775       value = Builder.CreateFAdd(
1776                   value,
1777                   llvm::ConstantFP::get(value->getType(), amount),
1778                   isInc ? "inc" : "dec");
1779     }
1780 
1781   // Floating point.
1782   } else if (type->isRealFloatingType()) {
1783     // Add the inc/dec to the real part.
1784     llvm::Value *amt;
1785 
1786     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1787       // Another special case: half FP increment should be done via float
1788       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1789         value = Builder.CreateCall(
1790             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16,
1791                                  CGF.CGM.FloatTy),
1792             input, "incdec.conv");
1793       } else {
1794         value = Builder.CreateFPExt(input, CGF.CGM.FloatTy, "incdec.conv");
1795       }
1796     }
1797 
1798     if (value->getType()->isFloatTy())
1799       amt = llvm::ConstantFP::get(VMContext,
1800                                   llvm::APFloat(static_cast<float>(amount)));
1801     else if (value->getType()->isDoubleTy())
1802       amt = llvm::ConstantFP::get(VMContext,
1803                                   llvm::APFloat(static_cast<double>(amount)));
1804     else {
1805       // Remaining types are either Half or LongDouble.  Convert from float.
1806       llvm::APFloat F(static_cast<float>(amount));
1807       bool ignored;
1808       // Don't use getFloatTypeSemantics because Half isn't
1809       // necessarily represented using the "half" LLVM type.
1810       F.convert(value->getType()->isHalfTy()
1811                     ? CGF.getTarget().getHalfFormat()
1812                     : CGF.getTarget().getLongDoubleFormat(),
1813                 llvm::APFloat::rmTowardZero, &ignored);
1814       amt = llvm::ConstantFP::get(VMContext, F);
1815     }
1816     value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1817 
1818     if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1819       if (!CGF.getContext().getLangOpts().HalfArgsAndReturns) {
1820         value = Builder.CreateCall(
1821             CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16,
1822                                  CGF.CGM.FloatTy),
1823             value, "incdec.conv");
1824       } else {
1825         value = Builder.CreateFPTrunc(value, input->getType(), "incdec.conv");
1826       }
1827     }
1828 
1829   // Objective-C pointer types.
1830   } else {
1831     const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1832     value = CGF.EmitCastToVoidPtr(value);
1833 
1834     CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1835     if (!isInc) size = -size;
1836     llvm::Value *sizeValue =
1837       llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1838 
1839     if (CGF.getLangOpts().isSignedOverflowDefined())
1840       value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1841     else
1842       value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1843     value = Builder.CreateBitCast(value, input->getType());
1844   }
1845 
1846   if (atomicPHI) {
1847     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1848     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1849     auto Pair = CGF.EmitAtomicCompareExchange(
1850         LV, RValue::get(atomicPHI), RValue::get(value), E->getExprLoc());
1851     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), type);
1852     llvm::Value *success = Pair.second;
1853     atomicPHI->addIncoming(old, opBB);
1854     Builder.CreateCondBr(success, contBB, opBB);
1855     Builder.SetInsertPoint(contBB);
1856     return isPre ? value : input;
1857   }
1858 
1859   // Store the updated result through the lvalue.
1860   if (LV.isBitField())
1861     CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1862   else
1863     CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1864 
1865   // If this is a postinc, return the value read from memory, otherwise use the
1866   // updated value.
1867   return isPre ? value : input;
1868 }
1869 
1870 
1871 
1872 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1873   TestAndClearIgnoreResultAssign();
1874   // Emit unary minus with EmitSub so we handle overflow cases etc.
1875   BinOpInfo BinOp;
1876   BinOp.RHS = Visit(E->getSubExpr());
1877 
1878   if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1879     BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1880   else
1881     BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1882   BinOp.Ty = E->getType();
1883   BinOp.Opcode = BO_Sub;
1884   BinOp.FPContractable = false;
1885   BinOp.E = E;
1886   return EmitSub(BinOp);
1887 }
1888 
1889 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1890   TestAndClearIgnoreResultAssign();
1891   Value *Op = Visit(E->getSubExpr());
1892   return Builder.CreateNot(Op, "neg");
1893 }
1894 
1895 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1896   // Perform vector logical not on comparison with zero vector.
1897   if (E->getType()->isExtVectorType()) {
1898     Value *Oper = Visit(E->getSubExpr());
1899     Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1900     Value *Result;
1901     if (Oper->getType()->isFPOrFPVectorTy())
1902       Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1903     else
1904       Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1905     return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1906   }
1907 
1908   // Compare operand to zero.
1909   Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1910 
1911   // Invert value.
1912   // TODO: Could dynamically modify easy computations here.  For example, if
1913   // the operand is an icmp ne, turn into icmp eq.
1914   BoolVal = Builder.CreateNot(BoolVal, "lnot");
1915 
1916   // ZExt result to the expr type.
1917   return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1918 }
1919 
1920 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1921   // Try folding the offsetof to a constant.
1922   llvm::APSInt Value;
1923   if (E->EvaluateAsInt(Value, CGF.getContext()))
1924     return Builder.getInt(Value);
1925 
1926   // Loop over the components of the offsetof to compute the value.
1927   unsigned n = E->getNumComponents();
1928   llvm::Type* ResultType = ConvertType(E->getType());
1929   llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1930   QualType CurrentType = E->getTypeSourceInfo()->getType();
1931   for (unsigned i = 0; i != n; ++i) {
1932     OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1933     llvm::Value *Offset = nullptr;
1934     switch (ON.getKind()) {
1935     case OffsetOfExpr::OffsetOfNode::Array: {
1936       // Compute the index
1937       Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1938       llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1939       bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1940       Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1941 
1942       // Save the element type
1943       CurrentType =
1944           CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1945 
1946       // Compute the element size
1947       llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1948           CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1949 
1950       // Multiply out to compute the result
1951       Offset = Builder.CreateMul(Idx, ElemSize);
1952       break;
1953     }
1954 
1955     case OffsetOfExpr::OffsetOfNode::Field: {
1956       FieldDecl *MemberDecl = ON.getField();
1957       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1958       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1959 
1960       // Compute the index of the field in its parent.
1961       unsigned i = 0;
1962       // FIXME: It would be nice if we didn't have to loop here!
1963       for (RecordDecl::field_iterator Field = RD->field_begin(),
1964                                       FieldEnd = RD->field_end();
1965            Field != FieldEnd; ++Field, ++i) {
1966         if (*Field == MemberDecl)
1967           break;
1968       }
1969       assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1970 
1971       // Compute the offset to the field
1972       int64_t OffsetInt = RL.getFieldOffset(i) /
1973                           CGF.getContext().getCharWidth();
1974       Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1975 
1976       // Save the element type.
1977       CurrentType = MemberDecl->getType();
1978       break;
1979     }
1980 
1981     case OffsetOfExpr::OffsetOfNode::Identifier:
1982       llvm_unreachable("dependent __builtin_offsetof");
1983 
1984     case OffsetOfExpr::OffsetOfNode::Base: {
1985       if (ON.getBase()->isVirtual()) {
1986         CGF.ErrorUnsupported(E, "virtual base in offsetof");
1987         continue;
1988       }
1989 
1990       RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1991       const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1992 
1993       // Save the element type.
1994       CurrentType = ON.getBase()->getType();
1995 
1996       // Compute the offset to the base.
1997       const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1998       CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1999       CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
2000       Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
2001       break;
2002     }
2003     }
2004     Result = Builder.CreateAdd(Result, Offset);
2005   }
2006   return Result;
2007 }
2008 
2009 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
2010 /// argument of the sizeof expression as an integer.
2011 Value *
2012 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
2013                               const UnaryExprOrTypeTraitExpr *E) {
2014   QualType TypeToSize = E->getTypeOfArgument();
2015   if (E->getKind() == UETT_SizeOf) {
2016     if (const VariableArrayType *VAT =
2017           CGF.getContext().getAsVariableArrayType(TypeToSize)) {
2018       if (E->isArgumentType()) {
2019         // sizeof(type) - make sure to emit the VLA size.
2020         CGF.EmitVariablyModifiedType(TypeToSize);
2021       } else {
2022         // C99 6.5.3.4p2: If the argument is an expression of type
2023         // VLA, it is evaluated.
2024         CGF.EmitIgnoredExpr(E->getArgumentExpr());
2025       }
2026 
2027       QualType eltType;
2028       llvm::Value *numElts;
2029       std::tie(numElts, eltType) = CGF.getVLASize(VAT);
2030 
2031       llvm::Value *size = numElts;
2032 
2033       // Scale the number of non-VLA elements by the non-VLA element size.
2034       CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
2035       if (!eltSize.isOne())
2036         size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
2037 
2038       return size;
2039     }
2040   }
2041 
2042   // If this isn't sizeof(vla), the result must be constant; use the constant
2043   // folding logic so we don't have to duplicate it here.
2044   return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
2045 }
2046 
2047 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
2048   Expr *Op = E->getSubExpr();
2049   if (Op->getType()->isAnyComplexType()) {
2050     // If it's an l-value, load through the appropriate subobject l-value.
2051     // Note that we have to ask E because Op might be an l-value that
2052     // this won't work for, e.g. an Obj-C property.
2053     if (E->isGLValue())
2054       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2055                                   E->getExprLoc()).getScalarVal();
2056 
2057     // Otherwise, calculate and project.
2058     return CGF.EmitComplexExpr(Op, false, true).first;
2059   }
2060 
2061   return Visit(Op);
2062 }
2063 
2064 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
2065   Expr *Op = E->getSubExpr();
2066   if (Op->getType()->isAnyComplexType()) {
2067     // If it's an l-value, load through the appropriate subobject l-value.
2068     // Note that we have to ask E because Op might be an l-value that
2069     // this won't work for, e.g. an Obj-C property.
2070     if (Op->isGLValue())
2071       return CGF.EmitLoadOfLValue(CGF.EmitLValue(E),
2072                                   E->getExprLoc()).getScalarVal();
2073 
2074     // Otherwise, calculate and project.
2075     return CGF.EmitComplexExpr(Op, true, false).second;
2076   }
2077 
2078   // __imag on a scalar returns zero.  Emit the subexpr to ensure side
2079   // effects are evaluated, but not the actual value.
2080   if (Op->isGLValue())
2081     CGF.EmitLValue(Op);
2082   else
2083     CGF.EmitScalarExpr(Op, true);
2084   return llvm::Constant::getNullValue(ConvertType(E->getType()));
2085 }
2086 
2087 //===----------------------------------------------------------------------===//
2088 //                           Binary Operators
2089 //===----------------------------------------------------------------------===//
2090 
2091 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
2092   TestAndClearIgnoreResultAssign();
2093   BinOpInfo Result;
2094   Result.LHS = Visit(E->getLHS());
2095   Result.RHS = Visit(E->getRHS());
2096   Result.Ty  = E->getType();
2097   Result.Opcode = E->getOpcode();
2098   Result.FPContractable = E->isFPContractable();
2099   Result.E = E;
2100   return Result;
2101 }
2102 
2103 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
2104                                               const CompoundAssignOperator *E,
2105                         Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
2106                                                    Value *&Result) {
2107   QualType LHSTy = E->getLHS()->getType();
2108   BinOpInfo OpInfo;
2109 
2110   if (E->getComputationResultType()->isAnyComplexType())
2111     return CGF.EmitScalarCompoundAssignWithComplex(E, Result);
2112 
2113   // Emit the RHS first.  __block variables need to have the rhs evaluated
2114   // first, plus this should improve codegen a little.
2115   OpInfo.RHS = Visit(E->getRHS());
2116   OpInfo.Ty = E->getComputationResultType();
2117   OpInfo.Opcode = E->getOpcode();
2118   OpInfo.FPContractable = false;
2119   OpInfo.E = E;
2120   // Load/convert the LHS.
2121   LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2122 
2123   llvm::PHINode *atomicPHI = nullptr;
2124   if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
2125     QualType type = atomicTy->getValueType();
2126     if (!type->isBooleanType() && type->isIntegerType() &&
2127         !(type->isUnsignedIntegerType() &&
2128           CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow)) &&
2129         CGF.getLangOpts().getSignedOverflowBehavior() !=
2130             LangOptions::SOB_Trapping) {
2131       llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
2132       switch (OpInfo.Opcode) {
2133         // We don't have atomicrmw operands for *, %, /, <<, >>
2134         case BO_MulAssign: case BO_DivAssign:
2135         case BO_RemAssign:
2136         case BO_ShlAssign:
2137         case BO_ShrAssign:
2138           break;
2139         case BO_AddAssign:
2140           aop = llvm::AtomicRMWInst::Add;
2141           break;
2142         case BO_SubAssign:
2143           aop = llvm::AtomicRMWInst::Sub;
2144           break;
2145         case BO_AndAssign:
2146           aop = llvm::AtomicRMWInst::And;
2147           break;
2148         case BO_XorAssign:
2149           aop = llvm::AtomicRMWInst::Xor;
2150           break;
2151         case BO_OrAssign:
2152           aop = llvm::AtomicRMWInst::Or;
2153           break;
2154         default:
2155           llvm_unreachable("Invalid compound assignment type");
2156       }
2157       if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
2158         llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
2159               E->getRHS()->getType(), LHSTy), LHSTy);
2160         Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
2161             llvm::SequentiallyConsistent);
2162         return LHSLV;
2163       }
2164     }
2165     // FIXME: For floating point types, we should be saving and restoring the
2166     // floating point environment in the loop.
2167     llvm::BasicBlock *startBB = Builder.GetInsertBlock();
2168     llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
2169     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2170     OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
2171     Builder.CreateBr(opBB);
2172     Builder.SetInsertPoint(opBB);
2173     atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
2174     atomicPHI->addIncoming(OpInfo.LHS, startBB);
2175     OpInfo.LHS = atomicPHI;
2176   }
2177   else
2178     OpInfo.LHS = EmitLoadOfLValue(LHSLV, E->getExprLoc());
2179 
2180   OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
2181                                     E->getComputationLHSType());
2182 
2183   // Expand the binary operator.
2184   Result = (this->*Func)(OpInfo);
2185 
2186   // Convert the result back to the LHS type.
2187   Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
2188 
2189   if (atomicPHI) {
2190     llvm::BasicBlock *opBB = Builder.GetInsertBlock();
2191     llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
2192     auto Pair = CGF.EmitAtomicCompareExchange(
2193         LHSLV, RValue::get(atomicPHI), RValue::get(Result), E->getExprLoc());
2194     llvm::Value *old = CGF.EmitToMemory(Pair.first.getScalarVal(), LHSTy);
2195     llvm::Value *success = Pair.second;
2196     atomicPHI->addIncoming(old, opBB);
2197     Builder.CreateCondBr(success, contBB, opBB);
2198     Builder.SetInsertPoint(contBB);
2199     return LHSLV;
2200   }
2201 
2202   // Store the result value into the LHS lvalue. Bit-fields are handled
2203   // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
2204   // 'An assignment expression has the value of the left operand after the
2205   // assignment...'.
2206   if (LHSLV.isBitField())
2207     CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2208   else
2209     CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2210 
2211   return LHSLV;
2212 }
2213 
2214 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2215                       Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2216   bool Ignore = TestAndClearIgnoreResultAssign();
2217   Value *RHS;
2218   LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2219 
2220   // If the result is clearly ignored, return now.
2221   if (Ignore)
2222     return nullptr;
2223 
2224   // The result of an assignment in C is the assigned r-value.
2225   if (!CGF.getLangOpts().CPlusPlus)
2226     return RHS;
2227 
2228   // If the lvalue is non-volatile, return the computed value of the assignment.
2229   if (!LHS.isVolatileQualified())
2230     return RHS;
2231 
2232   // Otherwise, reload the value.
2233   return EmitLoadOfLValue(LHS, E->getExprLoc());
2234 }
2235 
2236 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2237     const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2238   SmallVector<std::pair<llvm::Value *, SanitizerMask>, 2> Checks;
2239 
2240   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2241     Checks.push_back(std::make_pair(Builder.CreateICmpNE(Ops.RHS, Zero),
2242                                     SanitizerKind::IntegerDivideByZero));
2243   }
2244 
2245   if (CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow) &&
2246       Ops.Ty->hasSignedIntegerRepresentation()) {
2247     llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2248 
2249     llvm::Value *IntMin =
2250       Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2251     llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2252 
2253     llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2254     llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2255     llvm::Value *NotOverflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2256     Checks.push_back(
2257         std::make_pair(NotOverflow, SanitizerKind::SignedIntegerOverflow));
2258   }
2259 
2260   if (Checks.size() > 0)
2261     EmitBinOpCheck(Checks, Ops);
2262 }
2263 
2264 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2265   {
2266     CodeGenFunction::SanitizerScope SanScope(&CGF);
2267     if ((CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero) ||
2268          CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) &&
2269         Ops.Ty->isIntegerType()) {
2270       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2271       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2272     } else if (CGF.SanOpts.has(SanitizerKind::FloatDivideByZero) &&
2273                Ops.Ty->isRealFloatingType()) {
2274       llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2275       llvm::Value *NonZero = Builder.CreateFCmpUNE(Ops.RHS, Zero);
2276       EmitBinOpCheck(std::make_pair(NonZero, SanitizerKind::FloatDivideByZero),
2277                      Ops);
2278     }
2279   }
2280 
2281   if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2282     llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2283     if (CGF.getLangOpts().OpenCL) {
2284       // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2285       llvm::Type *ValTy = Val->getType();
2286       if (ValTy->isFloatTy() ||
2287           (isa<llvm::VectorType>(ValTy) &&
2288            cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2289         CGF.SetFPAccuracy(Val, 2.5);
2290     }
2291     return Val;
2292   }
2293   else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2294     return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2295   else
2296     return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2297 }
2298 
2299 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2300   // Rem in C can't be a floating point type: C99 6.5.5p2.
2301   if (CGF.SanOpts.has(SanitizerKind::IntegerDivideByZero)) {
2302     CodeGenFunction::SanitizerScope SanScope(&CGF);
2303     llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2304 
2305     if (Ops.Ty->isIntegerType())
2306       EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2307   }
2308 
2309   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2310     return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2311   else
2312     return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2313 }
2314 
2315 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2316   unsigned IID;
2317   unsigned OpID = 0;
2318 
2319   bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2320   switch (Ops.Opcode) {
2321   case BO_Add:
2322   case BO_AddAssign:
2323     OpID = 1;
2324     IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2325                      llvm::Intrinsic::uadd_with_overflow;
2326     break;
2327   case BO_Sub:
2328   case BO_SubAssign:
2329     OpID = 2;
2330     IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2331                      llvm::Intrinsic::usub_with_overflow;
2332     break;
2333   case BO_Mul:
2334   case BO_MulAssign:
2335     OpID = 3;
2336     IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2337                      llvm::Intrinsic::umul_with_overflow;
2338     break;
2339   default:
2340     llvm_unreachable("Unsupported operation for overflow detection");
2341   }
2342   OpID <<= 1;
2343   if (isSigned)
2344     OpID |= 1;
2345 
2346   llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2347 
2348   llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2349 
2350   Value *resultAndOverflow = Builder.CreateCall(intrinsic, {Ops.LHS, Ops.RHS});
2351   Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2352   Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2353 
2354   // Handle overflow with llvm.trap if no custom handler has been specified.
2355   const std::string *handlerName =
2356     &CGF.getLangOpts().OverflowHandler;
2357   if (handlerName->empty()) {
2358     // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2359     // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2360     if (!isSigned || CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow)) {
2361       CodeGenFunction::SanitizerScope SanScope(&CGF);
2362       llvm::Value *NotOverflow = Builder.CreateNot(overflow);
2363       SanitizerMask Kind = isSigned ? SanitizerKind::SignedIntegerOverflow
2364                               : SanitizerKind::UnsignedIntegerOverflow;
2365       EmitBinOpCheck(std::make_pair(NotOverflow, Kind), Ops);
2366     } else
2367       CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2368     return result;
2369   }
2370 
2371   // Branch in case of overflow.
2372   llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2373   llvm::Function::iterator insertPt = initialBB;
2374   llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2375                                                       std::next(insertPt));
2376   llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2377 
2378   Builder.CreateCondBr(overflow, overflowBB, continueBB);
2379 
2380   // If an overflow handler is set, then we want to call it and then use its
2381   // result, if it returns.
2382   Builder.SetInsertPoint(overflowBB);
2383 
2384   // Get the overflow handler.
2385   llvm::Type *Int8Ty = CGF.Int8Ty;
2386   llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2387   llvm::FunctionType *handlerTy =
2388       llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2389   llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2390 
2391   // Sign extend the args to 64-bit, so that we can use the same handler for
2392   // all types of overflow.
2393   llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2394   llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2395 
2396   // Call the handler with the two arguments, the operation, and the size of
2397   // the result.
2398   llvm::Value *handlerArgs[] = {
2399     lhs,
2400     rhs,
2401     Builder.getInt8(OpID),
2402     Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2403   };
2404   llvm::Value *handlerResult =
2405     CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2406 
2407   // Truncate the result back to the desired size.
2408   handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2409   Builder.CreateBr(continueBB);
2410 
2411   Builder.SetInsertPoint(continueBB);
2412   llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2413   phi->addIncoming(result, initialBB);
2414   phi->addIncoming(handlerResult, overflowBB);
2415 
2416   return phi;
2417 }
2418 
2419 /// Emit pointer + index arithmetic.
2420 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2421                                     const BinOpInfo &op,
2422                                     bool isSubtraction) {
2423   // Must have binary (not unary) expr here.  Unary pointer
2424   // increment/decrement doesn't use this path.
2425   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2426 
2427   Value *pointer = op.LHS;
2428   Expr *pointerOperand = expr->getLHS();
2429   Value *index = op.RHS;
2430   Expr *indexOperand = expr->getRHS();
2431 
2432   // In a subtraction, the LHS is always the pointer.
2433   if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2434     std::swap(pointer, index);
2435     std::swap(pointerOperand, indexOperand);
2436   }
2437 
2438   unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2439   if (width != CGF.PointerWidthInBits) {
2440     // Zero-extend or sign-extend the pointer value according to
2441     // whether the index is signed or not.
2442     bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2443     index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2444                                       "idx.ext");
2445   }
2446 
2447   // If this is subtraction, negate the index.
2448   if (isSubtraction)
2449     index = CGF.Builder.CreateNeg(index, "idx.neg");
2450 
2451   if (CGF.SanOpts.has(SanitizerKind::ArrayBounds))
2452     CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2453                         /*Accessed*/ false);
2454 
2455   const PointerType *pointerType
2456     = pointerOperand->getType()->getAs<PointerType>();
2457   if (!pointerType) {
2458     QualType objectType = pointerOperand->getType()
2459                                         ->castAs<ObjCObjectPointerType>()
2460                                         ->getPointeeType();
2461     llvm::Value *objectSize
2462       = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2463 
2464     index = CGF.Builder.CreateMul(index, objectSize);
2465 
2466     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2467     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2468     return CGF.Builder.CreateBitCast(result, pointer->getType());
2469   }
2470 
2471   QualType elementType = pointerType->getPointeeType();
2472   if (const VariableArrayType *vla
2473         = CGF.getContext().getAsVariableArrayType(elementType)) {
2474     // The element count here is the total number of non-VLA elements.
2475     llvm::Value *numElements = CGF.getVLASize(vla).first;
2476 
2477     // Effectively, the multiply by the VLA size is part of the GEP.
2478     // GEP indexes are signed, and scaling an index isn't permitted to
2479     // signed-overflow, so we use the same semantics for our explicit
2480     // multiply.  We suppress this if overflow is not undefined behavior.
2481     if (CGF.getLangOpts().isSignedOverflowDefined()) {
2482       index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2483       pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2484     } else {
2485       index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2486       pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2487     }
2488     return pointer;
2489   }
2490 
2491   // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2492   // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2493   // future proof.
2494   if (elementType->isVoidType() || elementType->isFunctionType()) {
2495     Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2496     result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2497     return CGF.Builder.CreateBitCast(result, pointer->getType());
2498   }
2499 
2500   if (CGF.getLangOpts().isSignedOverflowDefined())
2501     return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2502 
2503   return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2504 }
2505 
2506 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2507 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2508 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2509 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2510 // efficient operations.
2511 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2512                            const CodeGenFunction &CGF, CGBuilderTy &Builder,
2513                            bool negMul, bool negAdd) {
2514   assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2515 
2516   Value *MulOp0 = MulOp->getOperand(0);
2517   Value *MulOp1 = MulOp->getOperand(1);
2518   if (negMul) {
2519     MulOp0 =
2520       Builder.CreateFSub(
2521         llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2522         "neg");
2523   } else if (negAdd) {
2524     Addend =
2525       Builder.CreateFSub(
2526         llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2527         "neg");
2528   }
2529 
2530   Value *FMulAdd = Builder.CreateCall(
2531       CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2532       {MulOp0, MulOp1, Addend});
2533    MulOp->eraseFromParent();
2534 
2535    return FMulAdd;
2536 }
2537 
2538 // Check whether it would be legal to emit an fmuladd intrinsic call to
2539 // represent op and if so, build the fmuladd.
2540 //
2541 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2542 // Does NOT check the type of the operation - it's assumed that this function
2543 // will be called from contexts where it's known that the type is contractable.
2544 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2545                          const CodeGenFunction &CGF, CGBuilderTy &Builder,
2546                          bool isSub=false) {
2547 
2548   assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2549           op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2550          "Only fadd/fsub can be the root of an fmuladd.");
2551 
2552   // Check whether this op is marked as fusable.
2553   if (!op.FPContractable)
2554     return nullptr;
2555 
2556   // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2557   // either disabled, or handled entirely by the LLVM backend).
2558   if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2559     return nullptr;
2560 
2561   // We have a potentially fusable op. Look for a mul on one of the operands.
2562   if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2563     if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2564       assert(LHSBinOp->getNumUses() == 0 &&
2565              "Operations with multiple uses shouldn't be contracted.");
2566       return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2567     }
2568   } else if (llvm::BinaryOperator* RHSBinOp =
2569                dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2570     if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2571       assert(RHSBinOp->getNumUses() == 0 &&
2572              "Operations with multiple uses shouldn't be contracted.");
2573       return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2574     }
2575   }
2576 
2577   return nullptr;
2578 }
2579 
2580 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2581   if (op.LHS->getType()->isPointerTy() ||
2582       op.RHS->getType()->isPointerTy())
2583     return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2584 
2585   if (op.Ty->isSignedIntegerOrEnumerationType()) {
2586     switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2587     case LangOptions::SOB_Defined:
2588       return Builder.CreateAdd(op.LHS, op.RHS, "add");
2589     case LangOptions::SOB_Undefined:
2590       if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2591         return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2592       // Fall through.
2593     case LangOptions::SOB_Trapping:
2594       return EmitOverflowCheckedBinOp(op);
2595     }
2596   }
2597 
2598   if (op.Ty->isUnsignedIntegerType() &&
2599       CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2600     return EmitOverflowCheckedBinOp(op);
2601 
2602   if (op.LHS->getType()->isFPOrFPVectorTy()) {
2603     // Try to form an fmuladd.
2604     if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2605       return FMulAdd;
2606 
2607     return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2608   }
2609 
2610   return Builder.CreateAdd(op.LHS, op.RHS, "add");
2611 }
2612 
2613 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2614   // The LHS is always a pointer if either side is.
2615   if (!op.LHS->getType()->isPointerTy()) {
2616     if (op.Ty->isSignedIntegerOrEnumerationType()) {
2617       switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2618       case LangOptions::SOB_Defined:
2619         return Builder.CreateSub(op.LHS, op.RHS, "sub");
2620       case LangOptions::SOB_Undefined:
2621         if (!CGF.SanOpts.has(SanitizerKind::SignedIntegerOverflow))
2622           return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2623         // Fall through.
2624       case LangOptions::SOB_Trapping:
2625         return EmitOverflowCheckedBinOp(op);
2626       }
2627     }
2628 
2629     if (op.Ty->isUnsignedIntegerType() &&
2630         CGF.SanOpts.has(SanitizerKind::UnsignedIntegerOverflow))
2631       return EmitOverflowCheckedBinOp(op);
2632 
2633     if (op.LHS->getType()->isFPOrFPVectorTy()) {
2634       // Try to form an fmuladd.
2635       if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2636         return FMulAdd;
2637       return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2638     }
2639 
2640     return Builder.CreateSub(op.LHS, op.RHS, "sub");
2641   }
2642 
2643   // If the RHS is not a pointer, then we have normal pointer
2644   // arithmetic.
2645   if (!op.RHS->getType()->isPointerTy())
2646     return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2647 
2648   // Otherwise, this is a pointer subtraction.
2649 
2650   // Do the raw subtraction part.
2651   llvm::Value *LHS
2652     = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2653   llvm::Value *RHS
2654     = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2655   Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2656 
2657   // Okay, figure out the element size.
2658   const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2659   QualType elementType = expr->getLHS()->getType()->getPointeeType();
2660 
2661   llvm::Value *divisor = nullptr;
2662 
2663   // For a variable-length array, this is going to be non-constant.
2664   if (const VariableArrayType *vla
2665         = CGF.getContext().getAsVariableArrayType(elementType)) {
2666     llvm::Value *numElements;
2667     std::tie(numElements, elementType) = CGF.getVLASize(vla);
2668 
2669     divisor = numElements;
2670 
2671     // Scale the number of non-VLA elements by the non-VLA element size.
2672     CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2673     if (!eltSize.isOne())
2674       divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2675 
2676   // For everything elese, we can just compute it, safe in the
2677   // assumption that Sema won't let anything through that we can't
2678   // safely compute the size of.
2679   } else {
2680     CharUnits elementSize;
2681     // Handle GCC extension for pointer arithmetic on void* and
2682     // function pointer types.
2683     if (elementType->isVoidType() || elementType->isFunctionType())
2684       elementSize = CharUnits::One();
2685     else
2686       elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2687 
2688     // Don't even emit the divide for element size of 1.
2689     if (elementSize.isOne())
2690       return diffInChars;
2691 
2692     divisor = CGF.CGM.getSize(elementSize);
2693   }
2694 
2695   // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2696   // pointer difference in C is only defined in the case where both operands
2697   // are pointing to elements of an array.
2698   return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2699 }
2700 
2701 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2702   llvm::IntegerType *Ty;
2703   if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2704     Ty = cast<llvm::IntegerType>(VT->getElementType());
2705   else
2706     Ty = cast<llvm::IntegerType>(LHS->getType());
2707   return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2708 }
2709 
2710 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2711   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2712   // RHS to the same size as the LHS.
2713   Value *RHS = Ops.RHS;
2714   if (Ops.LHS->getType() != RHS->getType())
2715     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2716 
2717   bool SanitizeBase = CGF.SanOpts.has(SanitizerKind::ShiftBase) &&
2718                       Ops.Ty->hasSignedIntegerRepresentation();
2719   bool SanitizeExponent = CGF.SanOpts.has(SanitizerKind::ShiftExponent);
2720   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2721   if (CGF.getLangOpts().OpenCL)
2722     RHS =
2723         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2724   else if ((SanitizeBase || SanitizeExponent) &&
2725            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2726     CodeGenFunction::SanitizerScope SanScope(&CGF);
2727     SmallVector<std::pair<Value *, SanitizerMask>, 2> Checks;
2728     llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2729     llvm::Value *ValidExponent = Builder.CreateICmpULE(RHS, WidthMinusOne);
2730 
2731     if (SanitizeExponent) {
2732       Checks.push_back(
2733           std::make_pair(ValidExponent, SanitizerKind::ShiftExponent));
2734     }
2735 
2736     if (SanitizeBase) {
2737       // Check whether we are shifting any non-zero bits off the top of the
2738       // integer. We only emit this check if exponent is valid - otherwise
2739       // instructions below will have undefined behavior themselves.
2740       llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2741       llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2742       llvm::BasicBlock *CheckShiftBase = CGF.createBasicBlock("check");
2743       Builder.CreateCondBr(ValidExponent, CheckShiftBase, Cont);
2744       CGF.EmitBlock(CheckShiftBase);
2745       llvm::Value *BitsShiftedOff =
2746         Builder.CreateLShr(Ops.LHS,
2747                            Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2748                                              /*NUW*/true, /*NSW*/true),
2749                            "shl.check");
2750       if (CGF.getLangOpts().CPlusPlus) {
2751         // In C99, we are not permitted to shift a 1 bit into the sign bit.
2752         // Under C++11's rules, shifting a 1 bit into the sign bit is
2753         // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2754         // define signed left shifts, so we use the C99 and C++11 rules there).
2755         llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2756         BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2757       }
2758       llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2759       llvm::Value *ValidBase = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2760       CGF.EmitBlock(Cont);
2761       llvm::PHINode *BaseCheck = Builder.CreatePHI(ValidBase->getType(), 2);
2762       BaseCheck->addIncoming(Builder.getTrue(), Orig);
2763       BaseCheck->addIncoming(ValidBase, CheckShiftBase);
2764       Checks.push_back(std::make_pair(BaseCheck, SanitizerKind::ShiftBase));
2765     }
2766 
2767     assert(!Checks.empty());
2768     EmitBinOpCheck(Checks, Ops);
2769   }
2770 
2771   return Builder.CreateShl(Ops.LHS, RHS, "shl");
2772 }
2773 
2774 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2775   // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2776   // RHS to the same size as the LHS.
2777   Value *RHS = Ops.RHS;
2778   if (Ops.LHS->getType() != RHS->getType())
2779     RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2780 
2781   // OpenCL 6.3j: shift values are effectively % word size of LHS.
2782   if (CGF.getLangOpts().OpenCL)
2783     RHS =
2784         Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2785   else if (CGF.SanOpts.has(SanitizerKind::ShiftExponent) &&
2786            isa<llvm::IntegerType>(Ops.LHS->getType())) {
2787     CodeGenFunction::SanitizerScope SanScope(&CGF);
2788     llvm::Value *Valid =
2789         Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS));
2790     EmitBinOpCheck(std::make_pair(Valid, SanitizerKind::ShiftExponent), Ops);
2791   }
2792 
2793   if (Ops.Ty->hasUnsignedIntegerRepresentation())
2794     return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2795   return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2796 }
2797 
2798 enum IntrinsicType { VCMPEQ, VCMPGT };
2799 // return corresponding comparison intrinsic for given vector type
2800 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2801                                         BuiltinType::Kind ElemKind) {
2802   switch (ElemKind) {
2803   default: llvm_unreachable("unexpected element type");
2804   case BuiltinType::Char_U:
2805   case BuiltinType::UChar:
2806     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2807                             llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2808   case BuiltinType::Char_S:
2809   case BuiltinType::SChar:
2810     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2811                             llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2812   case BuiltinType::UShort:
2813     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2814                             llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2815   case BuiltinType::Short:
2816     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2817                             llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2818   case BuiltinType::UInt:
2819   case BuiltinType::ULong:
2820     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2821                             llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2822   case BuiltinType::Int:
2823   case BuiltinType::Long:
2824     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2825                             llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2826   case BuiltinType::Float:
2827     return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2828                             llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2829   }
2830 }
2831 
2832 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2833                                       unsigned SICmpOpc, unsigned FCmpOpc) {
2834   TestAndClearIgnoreResultAssign();
2835   Value *Result;
2836   QualType LHSTy = E->getLHS()->getType();
2837   QualType RHSTy = E->getRHS()->getType();
2838   if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2839     assert(E->getOpcode() == BO_EQ ||
2840            E->getOpcode() == BO_NE);
2841     Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2842     Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2843     Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2844                    CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2845   } else if (!LHSTy->isAnyComplexType() && !RHSTy->isAnyComplexType()) {
2846     Value *LHS = Visit(E->getLHS());
2847     Value *RHS = Visit(E->getRHS());
2848 
2849     // If AltiVec, the comparison results in a numeric type, so we use
2850     // intrinsics comparing vectors and giving 0 or 1 as a result
2851     if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2852       // constants for mapping CR6 register bits to predicate result
2853       enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2854 
2855       llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2856 
2857       // in several cases vector arguments order will be reversed
2858       Value *FirstVecArg = LHS,
2859             *SecondVecArg = RHS;
2860 
2861       QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2862       const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2863       BuiltinType::Kind ElementKind = BTy->getKind();
2864 
2865       switch(E->getOpcode()) {
2866       default: llvm_unreachable("is not a comparison operation");
2867       case BO_EQ:
2868         CR6 = CR6_LT;
2869         ID = GetIntrinsic(VCMPEQ, ElementKind);
2870         break;
2871       case BO_NE:
2872         CR6 = CR6_EQ;
2873         ID = GetIntrinsic(VCMPEQ, ElementKind);
2874         break;
2875       case BO_LT:
2876         CR6 = CR6_LT;
2877         ID = GetIntrinsic(VCMPGT, ElementKind);
2878         std::swap(FirstVecArg, SecondVecArg);
2879         break;
2880       case BO_GT:
2881         CR6 = CR6_LT;
2882         ID = GetIntrinsic(VCMPGT, ElementKind);
2883         break;
2884       case BO_LE:
2885         if (ElementKind == BuiltinType::Float) {
2886           CR6 = CR6_LT;
2887           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2888           std::swap(FirstVecArg, SecondVecArg);
2889         }
2890         else {
2891           CR6 = CR6_EQ;
2892           ID = GetIntrinsic(VCMPGT, ElementKind);
2893         }
2894         break;
2895       case BO_GE:
2896         if (ElementKind == BuiltinType::Float) {
2897           CR6 = CR6_LT;
2898           ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2899         }
2900         else {
2901           CR6 = CR6_EQ;
2902           ID = GetIntrinsic(VCMPGT, ElementKind);
2903           std::swap(FirstVecArg, SecondVecArg);
2904         }
2905         break;
2906       }
2907 
2908       Value *CR6Param = Builder.getInt32(CR6);
2909       llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2910       Result = Builder.CreateCall(F, {CR6Param, FirstVecArg, SecondVecArg});
2911       return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2912     }
2913 
2914     if (LHS->getType()->isFPOrFPVectorTy()) {
2915       Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2916                                   LHS, RHS, "cmp");
2917     } else if (LHSTy->hasSignedIntegerRepresentation()) {
2918       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2919                                   LHS, RHS, "cmp");
2920     } else {
2921       // Unsigned integers and pointers.
2922       Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2923                                   LHS, RHS, "cmp");
2924     }
2925 
2926     // If this is a vector comparison, sign extend the result to the appropriate
2927     // vector integer type and return it (don't convert to bool).
2928     if (LHSTy->isVectorType())
2929       return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2930 
2931   } else {
2932     // Complex Comparison: can only be an equality comparison.
2933     CodeGenFunction::ComplexPairTy LHS, RHS;
2934     QualType CETy;
2935     if (auto *CTy = LHSTy->getAs<ComplexType>()) {
2936       LHS = CGF.EmitComplexExpr(E->getLHS());
2937       CETy = CTy->getElementType();
2938     } else {
2939       LHS.first = Visit(E->getLHS());
2940       LHS.second = llvm::Constant::getNullValue(LHS.first->getType());
2941       CETy = LHSTy;
2942     }
2943     if (auto *CTy = RHSTy->getAs<ComplexType>()) {
2944       RHS = CGF.EmitComplexExpr(E->getRHS());
2945       assert(CGF.getContext().hasSameUnqualifiedType(CETy,
2946                                                      CTy->getElementType()) &&
2947              "The element types must always match.");
2948       (void)CTy;
2949     } else {
2950       RHS.first = Visit(E->getRHS());
2951       RHS.second = llvm::Constant::getNullValue(RHS.first->getType());
2952       assert(CGF.getContext().hasSameUnqualifiedType(CETy, RHSTy) &&
2953              "The element types must always match.");
2954     }
2955 
2956     Value *ResultR, *ResultI;
2957     if (CETy->isRealFloatingType()) {
2958       ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2959                                    LHS.first, RHS.first, "cmp.r");
2960       ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2961                                    LHS.second, RHS.second, "cmp.i");
2962     } else {
2963       // Complex comparisons can only be equality comparisons.  As such, signed
2964       // and unsigned opcodes are the same.
2965       ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2966                                    LHS.first, RHS.first, "cmp.r");
2967       ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2968                                    LHS.second, RHS.second, "cmp.i");
2969     }
2970 
2971     if (E->getOpcode() == BO_EQ) {
2972       Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2973     } else {
2974       assert(E->getOpcode() == BO_NE &&
2975              "Complex comparison other than == or != ?");
2976       Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2977     }
2978   }
2979 
2980   return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2981 }
2982 
2983 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2984   bool Ignore = TestAndClearIgnoreResultAssign();
2985 
2986   Value *RHS;
2987   LValue LHS;
2988 
2989   switch (E->getLHS()->getType().getObjCLifetime()) {
2990   case Qualifiers::OCL_Strong:
2991     std::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2992     break;
2993 
2994   case Qualifiers::OCL_Autoreleasing:
2995     std::tie(LHS, RHS) = CGF.EmitARCStoreAutoreleasing(E);
2996     break;
2997 
2998   case Qualifiers::OCL_Weak:
2999     RHS = Visit(E->getRHS());
3000     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3001     RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
3002     break;
3003 
3004   // No reason to do any of these differently.
3005   case Qualifiers::OCL_None:
3006   case Qualifiers::OCL_ExplicitNone:
3007     // __block variables need to have the rhs evaluated first, plus
3008     // this should improve codegen just a little.
3009     RHS = Visit(E->getRHS());
3010     LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
3011 
3012     // Store the value into the LHS.  Bit-fields are handled specially
3013     // because the result is altered by the store, i.e., [C99 6.5.16p1]
3014     // 'An assignment expression has the value of the left operand after
3015     // the assignment...'.
3016     if (LHS.isBitField())
3017       CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
3018     else
3019       CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
3020   }
3021 
3022   // If the result is clearly ignored, return now.
3023   if (Ignore)
3024     return nullptr;
3025 
3026   // The result of an assignment in C is the assigned r-value.
3027   if (!CGF.getLangOpts().CPlusPlus)
3028     return RHS;
3029 
3030   // If the lvalue is non-volatile, return the computed value of the assignment.
3031   if (!LHS.isVolatileQualified())
3032     return RHS;
3033 
3034   // Otherwise, reload the value.
3035   return EmitLoadOfLValue(LHS, E->getExprLoc());
3036 }
3037 
3038 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
3039   // Perform vector logical and on comparisons with zero vectors.
3040   if (E->getType()->isVectorType()) {
3041     CGF.incrementProfileCounter(E);
3042 
3043     Value *LHS = Visit(E->getLHS());
3044     Value *RHS = Visit(E->getRHS());
3045     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3046     if (LHS->getType()->isFPOrFPVectorTy()) {
3047       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3048       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3049     } else {
3050       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3051       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3052     }
3053     Value *And = Builder.CreateAnd(LHS, RHS);
3054     return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
3055   }
3056 
3057   llvm::Type *ResTy = ConvertType(E->getType());
3058 
3059   // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
3060   // If we have 1 && X, just emit X without inserting the control flow.
3061   bool LHSCondVal;
3062   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3063     if (LHSCondVal) { // If we have 1 && X, just emit X.
3064       CGF.incrementProfileCounter(E);
3065 
3066       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3067       // ZExt result to int or bool.
3068       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
3069     }
3070 
3071     // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
3072     if (!CGF.ContainsLabel(E->getRHS()))
3073       return llvm::Constant::getNullValue(ResTy);
3074   }
3075 
3076   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
3077   llvm::BasicBlock *RHSBlock  = CGF.createBasicBlock("land.rhs");
3078 
3079   CodeGenFunction::ConditionalEvaluation eval(CGF);
3080 
3081   // Branch on the LHS first.  If it is false, go to the failure (cont) block.
3082   CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock,
3083                            CGF.getProfileCount(E->getRHS()));
3084 
3085   // Any edges into the ContBlock are now from an (indeterminate number of)
3086   // edges from this first condition.  All of these values will be false.  Start
3087   // setting up the PHI node in the Cont Block for this.
3088   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3089                                             "", ContBlock);
3090   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3091        PI != PE; ++PI)
3092     PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
3093 
3094   eval.begin(CGF);
3095   CGF.EmitBlock(RHSBlock);
3096   CGF.incrementProfileCounter(E);
3097   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3098   eval.end(CGF);
3099 
3100   // Reaquire the RHS block, as there may be subblocks inserted.
3101   RHSBlock = Builder.GetInsertBlock();
3102 
3103   // Emit an unconditional branch from this block to ContBlock.
3104   {
3105     // There is no need to emit line number for unconditional branch.
3106     auto NL = ApplyDebugLocation::CreateEmpty(CGF);
3107     CGF.EmitBlock(ContBlock);
3108   }
3109   // Insert an entry into the phi node for the edge with the value of RHSCond.
3110   PN->addIncoming(RHSCond, RHSBlock);
3111 
3112   // ZExt result to int.
3113   return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
3114 }
3115 
3116 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
3117   // Perform vector logical or on comparisons with zero vectors.
3118   if (E->getType()->isVectorType()) {
3119     CGF.incrementProfileCounter(E);
3120 
3121     Value *LHS = Visit(E->getLHS());
3122     Value *RHS = Visit(E->getRHS());
3123     Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
3124     if (LHS->getType()->isFPOrFPVectorTy()) {
3125       LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
3126       RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
3127     } else {
3128       LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
3129       RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
3130     }
3131     Value *Or = Builder.CreateOr(LHS, RHS);
3132     return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
3133   }
3134 
3135   llvm::Type *ResTy = ConvertType(E->getType());
3136 
3137   // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
3138   // If we have 0 || X, just emit X without inserting the control flow.
3139   bool LHSCondVal;
3140   if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
3141     if (!LHSCondVal) { // If we have 0 || X, just emit X.
3142       CGF.incrementProfileCounter(E);
3143 
3144       Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3145       // ZExt result to int or bool.
3146       return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
3147     }
3148 
3149     // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
3150     if (!CGF.ContainsLabel(E->getRHS()))
3151       return llvm::ConstantInt::get(ResTy, 1);
3152   }
3153 
3154   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
3155   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
3156 
3157   CodeGenFunction::ConditionalEvaluation eval(CGF);
3158 
3159   // Branch on the LHS first.  If it is true, go to the success (cont) block.
3160   CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock,
3161                            CGF.getCurrentProfileCount() -
3162                                CGF.getProfileCount(E->getRHS()));
3163 
3164   // Any edges into the ContBlock are now from an (indeterminate number of)
3165   // edges from this first condition.  All of these values will be true.  Start
3166   // setting up the PHI node in the Cont Block for this.
3167   llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
3168                                             "", ContBlock);
3169   for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
3170        PI != PE; ++PI)
3171     PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
3172 
3173   eval.begin(CGF);
3174 
3175   // Emit the RHS condition as a bool value.
3176   CGF.EmitBlock(RHSBlock);
3177   CGF.incrementProfileCounter(E);
3178   Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
3179 
3180   eval.end(CGF);
3181 
3182   // Reaquire the RHS block, as there may be subblocks inserted.
3183   RHSBlock = Builder.GetInsertBlock();
3184 
3185   // Emit an unconditional branch from this block to ContBlock.  Insert an entry
3186   // into the phi node for the edge with the value of RHSCond.
3187   CGF.EmitBlock(ContBlock);
3188   PN->addIncoming(RHSCond, RHSBlock);
3189 
3190   // ZExt result to int.
3191   return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
3192 }
3193 
3194 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
3195   CGF.EmitIgnoredExpr(E->getLHS());
3196   CGF.EnsureInsertPoint();
3197   return Visit(E->getRHS());
3198 }
3199 
3200 //===----------------------------------------------------------------------===//
3201 //                             Other Operators
3202 //===----------------------------------------------------------------------===//
3203 
3204 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
3205 /// expression is cheap enough and side-effect-free enough to evaluate
3206 /// unconditionally instead of conditionally.  This is used to convert control
3207 /// flow into selects in some cases.
3208 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
3209                                                    CodeGenFunction &CGF) {
3210   // Anything that is an integer or floating point constant is fine.
3211   return E->IgnoreParens()->isEvaluatable(CGF.getContext());
3212 
3213   // Even non-volatile automatic variables can't be evaluated unconditionally.
3214   // Referencing a thread_local may cause non-trivial initialization work to
3215   // occur. If we're inside a lambda and one of the variables is from the scope
3216   // outside the lambda, that function may have returned already. Reading its
3217   // locals is a bad idea. Also, these reads may introduce races there didn't
3218   // exist in the source-level program.
3219 }
3220 
3221 
3222 Value *ScalarExprEmitter::
3223 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
3224   TestAndClearIgnoreResultAssign();
3225 
3226   // Bind the common expression if necessary.
3227   CodeGenFunction::OpaqueValueMapping binding(CGF, E);
3228 
3229   Expr *condExpr = E->getCond();
3230   Expr *lhsExpr = E->getTrueExpr();
3231   Expr *rhsExpr = E->getFalseExpr();
3232 
3233   // If the condition constant folds and can be elided, try to avoid emitting
3234   // the condition and the dead arm.
3235   bool CondExprBool;
3236   if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
3237     Expr *live = lhsExpr, *dead = rhsExpr;
3238     if (!CondExprBool) std::swap(live, dead);
3239 
3240     // If the dead side doesn't have labels we need, just emit the Live part.
3241     if (!CGF.ContainsLabel(dead)) {
3242       if (CondExprBool)
3243         CGF.incrementProfileCounter(E);
3244       Value *Result = Visit(live);
3245 
3246       // If the live part is a throw expression, it acts like it has a void
3247       // type, so evaluating it returns a null Value*.  However, a conditional
3248       // with non-void type must return a non-null Value*.
3249       if (!Result && !E->getType()->isVoidType())
3250         Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
3251 
3252       return Result;
3253     }
3254   }
3255 
3256   // OpenCL: If the condition is a vector, we can treat this condition like
3257   // the select function.
3258   if (CGF.getLangOpts().OpenCL
3259       && condExpr->getType()->isVectorType()) {
3260     CGF.incrementProfileCounter(E);
3261 
3262     llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
3263     llvm::Value *LHS = Visit(lhsExpr);
3264     llvm::Value *RHS = Visit(rhsExpr);
3265 
3266     llvm::Type *condType = ConvertType(condExpr->getType());
3267     llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3268 
3269     unsigned numElem = vecTy->getNumElements();
3270     llvm::Type *elemType = vecTy->getElementType();
3271 
3272     llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3273     llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3274     llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3275                                           llvm::VectorType::get(elemType,
3276                                                                 numElem),
3277                                           "sext");
3278     llvm::Value *tmp2 = Builder.CreateNot(tmp);
3279 
3280     // Cast float to int to perform ANDs if necessary.
3281     llvm::Value *RHSTmp = RHS;
3282     llvm::Value *LHSTmp = LHS;
3283     bool wasCast = false;
3284     llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3285     if (rhsVTy->getElementType()->isFloatingPointTy()) {
3286       RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3287       LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3288       wasCast = true;
3289     }
3290 
3291     llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3292     llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3293     llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3294     if (wasCast)
3295       tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3296 
3297     return tmp5;
3298   }
3299 
3300   // If this is a really simple expression (like x ? 4 : 5), emit this as a
3301   // select instead of as control flow.  We can only do this if it is cheap and
3302   // safe to evaluate the LHS and RHS unconditionally.
3303   if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3304       isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3305     CGF.incrementProfileCounter(E);
3306 
3307     llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3308     llvm::Value *LHS = Visit(lhsExpr);
3309     llvm::Value *RHS = Visit(rhsExpr);
3310     if (!LHS) {
3311       // If the conditional has void type, make sure we return a null Value*.
3312       assert(!RHS && "LHS and RHS types must match");
3313       return nullptr;
3314     }
3315     return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3316   }
3317 
3318   llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3319   llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3320   llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3321 
3322   CodeGenFunction::ConditionalEvaluation eval(CGF);
3323   CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock,
3324                            CGF.getProfileCount(lhsExpr));
3325 
3326   CGF.EmitBlock(LHSBlock);
3327   CGF.incrementProfileCounter(E);
3328   eval.begin(CGF);
3329   Value *LHS = Visit(lhsExpr);
3330   eval.end(CGF);
3331 
3332   LHSBlock = Builder.GetInsertBlock();
3333   Builder.CreateBr(ContBlock);
3334 
3335   CGF.EmitBlock(RHSBlock);
3336   eval.begin(CGF);
3337   Value *RHS = Visit(rhsExpr);
3338   eval.end(CGF);
3339 
3340   RHSBlock = Builder.GetInsertBlock();
3341   CGF.EmitBlock(ContBlock);
3342 
3343   // If the LHS or RHS is a throw expression, it will be legitimately null.
3344   if (!LHS)
3345     return RHS;
3346   if (!RHS)
3347     return LHS;
3348 
3349   // Create a PHI node for the real part.
3350   llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3351   PN->addIncoming(LHS, LHSBlock);
3352   PN->addIncoming(RHS, RHSBlock);
3353   return PN;
3354 }
3355 
3356 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3357   return Visit(E->getChosenSubExpr());
3358 }
3359 
3360 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3361   QualType Ty = VE->getType();
3362 
3363   if (Ty->isVariablyModifiedType())
3364     CGF.EmitVariablyModifiedType(Ty);
3365 
3366   llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3367   llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3368   llvm::Type *ArgTy = ConvertType(VE->getType());
3369 
3370   // If EmitVAArg fails, we fall back to the LLVM instruction.
3371   if (!ArgPtr)
3372     return Builder.CreateVAArg(ArgValue, ArgTy);
3373 
3374   // FIXME Volatility.
3375   llvm::Value *Val = Builder.CreateLoad(ArgPtr);
3376 
3377   // If EmitVAArg promoted the type, we must truncate it.
3378   if (ArgTy != Val->getType()) {
3379     if (ArgTy->isPointerTy() && !Val->getType()->isPointerTy())
3380       Val = Builder.CreateIntToPtr(Val, ArgTy);
3381     else
3382       Val = Builder.CreateTrunc(Val, ArgTy);
3383   }
3384 
3385   return Val;
3386 }
3387 
3388 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3389   return CGF.EmitBlockLiteral(block);
3390 }
3391 
3392 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3393   Value *Src  = CGF.EmitScalarExpr(E->getSrcExpr());
3394   llvm::Type *DstTy = ConvertType(E->getType());
3395 
3396   // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3397   // a shuffle vector instead of a bitcast.
3398   llvm::Type *SrcTy = Src->getType();
3399   if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3400     unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3401     unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3402     if ((numElementsDst == 3 && numElementsSrc == 4)
3403         || (numElementsDst == 4 && numElementsSrc == 3)) {
3404 
3405 
3406       // In the case of going from int4->float3, a bitcast is needed before
3407       // doing a shuffle.
3408       llvm::Type *srcElemTy =
3409       cast<llvm::VectorType>(SrcTy)->getElementType();
3410       llvm::Type *dstElemTy =
3411       cast<llvm::VectorType>(DstTy)->getElementType();
3412 
3413       if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3414           || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3415         // Create a float type of the same size as the source or destination.
3416         llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3417                                                                  numElementsSrc);
3418 
3419         Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3420       }
3421 
3422       llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3423 
3424       SmallVector<llvm::Constant*, 3> Args;
3425       Args.push_back(Builder.getInt32(0));
3426       Args.push_back(Builder.getInt32(1));
3427       Args.push_back(Builder.getInt32(2));
3428 
3429       if (numElementsDst == 4)
3430         Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3431 
3432       llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3433 
3434       return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3435     }
3436   }
3437 
3438   return Builder.CreateBitCast(Src, DstTy, "astype");
3439 }
3440 
3441 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3442   return CGF.EmitAtomicExpr(E).getScalarVal();
3443 }
3444 
3445 //===----------------------------------------------------------------------===//
3446 //                         Entry Point into this File
3447 //===----------------------------------------------------------------------===//
3448 
3449 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3450 /// type, ignoring the result.
3451 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3452   assert(E && hasScalarEvaluationKind(E->getType()) &&
3453          "Invalid scalar expression to emit");
3454 
3455   return ScalarExprEmitter(*this, IgnoreResultAssign)
3456       .Visit(const_cast<Expr *>(E));
3457 }
3458 
3459 /// EmitScalarConversion - Emit a conversion from the specified type to the
3460 /// specified destination type, both of which are LLVM scalar types.
3461 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3462                                              QualType DstTy) {
3463   assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3464          "Invalid scalar expression to emit");
3465   return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3466 }
3467 
3468 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3469 /// type to the specified destination type, where the destination type is an
3470 /// LLVM scalar type.
3471 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3472                                                       QualType SrcTy,
3473                                                       QualType DstTy) {
3474   assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3475          "Invalid complex -> scalar conversion");
3476   return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3477                                                                 DstTy);
3478 }
3479 
3480 
3481 llvm::Value *CodeGenFunction::
3482 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3483                         bool isInc, bool isPre) {
3484   return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3485 }
3486 
3487 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3488   llvm::Value *V;
3489   // object->isa or (*object).isa
3490   // Generate code as for: *(Class*)object
3491   // build Class* type
3492   llvm::Type *ClassPtrTy = ConvertType(E->getType());
3493 
3494   Expr *BaseExpr = E->getBase();
3495   if (BaseExpr->isRValue()) {
3496     V = CreateMemTemp(E->getType(), "resval");
3497     llvm::Value *Src = EmitScalarExpr(BaseExpr);
3498     Builder.CreateStore(Src, V);
3499     V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3500       MakeNaturalAlignAddrLValue(V, E->getType()), E->getExprLoc());
3501   } else {
3502     if (E->isArrow())
3503       V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3504     else
3505       V = EmitLValue(BaseExpr).getAddress();
3506   }
3507 
3508   // build Class* type
3509   ClassPtrTy = ClassPtrTy->getPointerTo();
3510   V = Builder.CreateBitCast(V, ClassPtrTy);
3511   return MakeNaturalAlignAddrLValue(V, E->getType());
3512 }
3513 
3514 
3515 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3516                                             const CompoundAssignOperator *E) {
3517   ScalarExprEmitter Scalar(*this);
3518   Value *Result = nullptr;
3519   switch (E->getOpcode()) {
3520 #define COMPOUND_OP(Op)                                                       \
3521     case BO_##Op##Assign:                                                     \
3522       return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3523                                              Result)
3524   COMPOUND_OP(Mul);
3525   COMPOUND_OP(Div);
3526   COMPOUND_OP(Rem);
3527   COMPOUND_OP(Add);
3528   COMPOUND_OP(Sub);
3529   COMPOUND_OP(Shl);
3530   COMPOUND_OP(Shr);
3531   COMPOUND_OP(And);
3532   COMPOUND_OP(Xor);
3533   COMPOUND_OP(Or);
3534 #undef COMPOUND_OP
3535 
3536   case BO_PtrMemD:
3537   case BO_PtrMemI:
3538   case BO_Mul:
3539   case BO_Div:
3540   case BO_Rem:
3541   case BO_Add:
3542   case BO_Sub:
3543   case BO_Shl:
3544   case BO_Shr:
3545   case BO_LT:
3546   case BO_GT:
3547   case BO_LE:
3548   case BO_GE:
3549   case BO_EQ:
3550   case BO_NE:
3551   case BO_And:
3552   case BO_Xor:
3553   case BO_Or:
3554   case BO_LAnd:
3555   case BO_LOr:
3556   case BO_Assign:
3557   case BO_Comma:
3558     llvm_unreachable("Not valid compound assignment operators");
3559   }
3560 
3561   llvm_unreachable("Unhandled compound assignment operator");
3562 }
3563