1 //===--- CGExprConstant.cpp - Emit LLVM Code from Constant Expressions ----===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This contains code to emit Constant Expr nodes as LLVM code. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenFunction.h" 15 #include "CGCXXABI.h" 16 #include "CGObjCRuntime.h" 17 #include "CGRecordLayout.h" 18 #include "CodeGenModule.h" 19 #include "clang/AST/APValue.h" 20 #include "clang/AST/ASTContext.h" 21 #include "clang/AST/RecordLayout.h" 22 #include "clang/AST/StmtVisitor.h" 23 #include "clang/Basic/Builtins.h" 24 #include "llvm/IR/Constants.h" 25 #include "llvm/IR/DataLayout.h" 26 #include "llvm/IR/Function.h" 27 #include "llvm/IR/GlobalVariable.h" 28 using namespace clang; 29 using namespace CodeGen; 30 31 //===----------------------------------------------------------------------===// 32 // ConstStructBuilder 33 //===----------------------------------------------------------------------===// 34 35 namespace { 36 class ConstExprEmitter; 37 class ConstStructBuilder { 38 CodeGenModule &CGM; 39 CodeGenFunction *CGF; 40 41 bool Packed; 42 CharUnits NextFieldOffsetInChars; 43 CharUnits LLVMStructAlignment; 44 SmallVector<llvm::Constant *, 32> Elements; 45 public: 46 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CFG, 47 ConstExprEmitter *Emitter, 48 llvm::ConstantStruct *Base, 49 InitListExpr *Updater); 50 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 51 InitListExpr *ILE); 52 static llvm::Constant *BuildStruct(CodeGenModule &CGM, CodeGenFunction *CGF, 53 const APValue &Value, QualType ValTy); 54 55 private: 56 ConstStructBuilder(CodeGenModule &CGM, CodeGenFunction *CGF) 57 : CGM(CGM), CGF(CGF), Packed(false), 58 NextFieldOffsetInChars(CharUnits::Zero()), 59 LLVMStructAlignment(CharUnits::One()) { } 60 61 void AppendField(const FieldDecl *Field, uint64_t FieldOffset, 62 llvm::Constant *InitExpr); 63 64 void AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst); 65 66 void AppendBitField(const FieldDecl *Field, uint64_t FieldOffset, 67 llvm::ConstantInt *InitExpr); 68 69 void AppendPadding(CharUnits PadSize); 70 71 void AppendTailPadding(CharUnits RecordSize); 72 73 void ConvertStructToPacked(); 74 75 bool Build(InitListExpr *ILE); 76 bool Build(ConstExprEmitter *Emitter, llvm::ConstantStruct *Base, 77 InitListExpr *Updater); 78 void Build(const APValue &Val, const RecordDecl *RD, bool IsPrimaryBase, 79 const CXXRecordDecl *VTableClass, CharUnits BaseOffset); 80 llvm::Constant *Finalize(QualType Ty); 81 82 CharUnits getAlignment(const llvm::Constant *C) const { 83 if (Packed) return CharUnits::One(); 84 return CharUnits::fromQuantity( 85 CGM.getDataLayout().getABITypeAlignment(C->getType())); 86 } 87 88 CharUnits getSizeInChars(const llvm::Constant *C) const { 89 return CharUnits::fromQuantity( 90 CGM.getDataLayout().getTypeAllocSize(C->getType())); 91 } 92 }; 93 94 void ConstStructBuilder:: 95 AppendField(const FieldDecl *Field, uint64_t FieldOffset, 96 llvm::Constant *InitCst) { 97 const ASTContext &Context = CGM.getContext(); 98 99 CharUnits FieldOffsetInChars = Context.toCharUnitsFromBits(FieldOffset); 100 101 AppendBytes(FieldOffsetInChars, InitCst); 102 } 103 104 void ConstStructBuilder:: 105 AppendBytes(CharUnits FieldOffsetInChars, llvm::Constant *InitCst) { 106 107 assert(NextFieldOffsetInChars <= FieldOffsetInChars 108 && "Field offset mismatch!"); 109 110 CharUnits FieldAlignment = getAlignment(InitCst); 111 112 // Round up the field offset to the alignment of the field type. 113 CharUnits AlignedNextFieldOffsetInChars = 114 NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); 115 116 if (AlignedNextFieldOffsetInChars < FieldOffsetInChars) { 117 // We need to append padding. 118 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 119 120 assert(NextFieldOffsetInChars == FieldOffsetInChars && 121 "Did not add enough padding!"); 122 123 AlignedNextFieldOffsetInChars = 124 NextFieldOffsetInChars.RoundUpToAlignment(FieldAlignment); 125 } 126 127 if (AlignedNextFieldOffsetInChars > FieldOffsetInChars) { 128 assert(!Packed && "Alignment is wrong even with a packed struct!"); 129 130 // Convert the struct to a packed struct. 131 ConvertStructToPacked(); 132 133 // After we pack the struct, we may need to insert padding. 134 if (NextFieldOffsetInChars < FieldOffsetInChars) { 135 // We need to append padding. 136 AppendPadding(FieldOffsetInChars - NextFieldOffsetInChars); 137 138 assert(NextFieldOffsetInChars == FieldOffsetInChars && 139 "Did not add enough padding!"); 140 } 141 AlignedNextFieldOffsetInChars = NextFieldOffsetInChars; 142 } 143 144 // Add the field. 145 Elements.push_back(InitCst); 146 NextFieldOffsetInChars = AlignedNextFieldOffsetInChars + 147 getSizeInChars(InitCst); 148 149 if (Packed) 150 assert(LLVMStructAlignment == CharUnits::One() && 151 "Packed struct not byte-aligned!"); 152 else 153 LLVMStructAlignment = std::max(LLVMStructAlignment, FieldAlignment); 154 } 155 156 void ConstStructBuilder::AppendBitField(const FieldDecl *Field, 157 uint64_t FieldOffset, 158 llvm::ConstantInt *CI) { 159 const ASTContext &Context = CGM.getContext(); 160 const uint64_t CharWidth = Context.getCharWidth(); 161 uint64_t NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 162 if (FieldOffset > NextFieldOffsetInBits) { 163 // We need to add padding. 164 CharUnits PadSize = Context.toCharUnitsFromBits( 165 llvm::RoundUpToAlignment(FieldOffset - NextFieldOffsetInBits, 166 Context.getTargetInfo().getCharAlign())); 167 168 AppendPadding(PadSize); 169 } 170 171 uint64_t FieldSize = Field->getBitWidthValue(Context); 172 173 llvm::APInt FieldValue = CI->getValue(); 174 175 // Promote the size of FieldValue if necessary 176 // FIXME: This should never occur, but currently it can because initializer 177 // constants are cast to bool, and because clang is not enforcing bitfield 178 // width limits. 179 if (FieldSize > FieldValue.getBitWidth()) 180 FieldValue = FieldValue.zext(FieldSize); 181 182 // Truncate the size of FieldValue to the bit field size. 183 if (FieldSize < FieldValue.getBitWidth()) 184 FieldValue = FieldValue.trunc(FieldSize); 185 186 NextFieldOffsetInBits = Context.toBits(NextFieldOffsetInChars); 187 if (FieldOffset < NextFieldOffsetInBits) { 188 // Either part of the field or the entire field can go into the previous 189 // byte. 190 assert(!Elements.empty() && "Elements can't be empty!"); 191 192 unsigned BitsInPreviousByte = NextFieldOffsetInBits - FieldOffset; 193 194 bool FitsCompletelyInPreviousByte = 195 BitsInPreviousByte >= FieldValue.getBitWidth(); 196 197 llvm::APInt Tmp = FieldValue; 198 199 if (!FitsCompletelyInPreviousByte) { 200 unsigned NewFieldWidth = FieldSize - BitsInPreviousByte; 201 202 if (CGM.getDataLayout().isBigEndian()) { 203 Tmp = Tmp.lshr(NewFieldWidth); 204 Tmp = Tmp.trunc(BitsInPreviousByte); 205 206 // We want the remaining high bits. 207 FieldValue = FieldValue.trunc(NewFieldWidth); 208 } else { 209 Tmp = Tmp.trunc(BitsInPreviousByte); 210 211 // We want the remaining low bits. 212 FieldValue = FieldValue.lshr(BitsInPreviousByte); 213 FieldValue = FieldValue.trunc(NewFieldWidth); 214 } 215 } 216 217 Tmp = Tmp.zext(CharWidth); 218 if (CGM.getDataLayout().isBigEndian()) { 219 if (FitsCompletelyInPreviousByte) 220 Tmp = Tmp.shl(BitsInPreviousByte - FieldValue.getBitWidth()); 221 } else { 222 Tmp = Tmp.shl(CharWidth - BitsInPreviousByte); 223 } 224 225 // 'or' in the bits that go into the previous byte. 226 llvm::Value *LastElt = Elements.back(); 227 if (llvm::ConstantInt *Val = dyn_cast<llvm::ConstantInt>(LastElt)) 228 Tmp |= Val->getValue(); 229 else { 230 assert(isa<llvm::UndefValue>(LastElt)); 231 // If there is an undef field that we're adding to, it can either be a 232 // scalar undef (in which case, we just replace it with our field) or it 233 // is an array. If it is an array, we have to pull one byte off the 234 // array so that the other undef bytes stay around. 235 if (!isa<llvm::IntegerType>(LastElt->getType())) { 236 // The undef padding will be a multibyte array, create a new smaller 237 // padding and then an hole for our i8 to get plopped into. 238 assert(isa<llvm::ArrayType>(LastElt->getType()) && 239 "Expected array padding of undefs"); 240 llvm::ArrayType *AT = cast<llvm::ArrayType>(LastElt->getType()); 241 assert(AT->getElementType()->isIntegerTy(CharWidth) && 242 AT->getNumElements() != 0 && 243 "Expected non-empty array padding of undefs"); 244 245 // Remove the padding array. 246 NextFieldOffsetInChars -= CharUnits::fromQuantity(AT->getNumElements()); 247 Elements.pop_back(); 248 249 // Add the padding back in two chunks. 250 AppendPadding(CharUnits::fromQuantity(AT->getNumElements()-1)); 251 AppendPadding(CharUnits::One()); 252 assert(isa<llvm::UndefValue>(Elements.back()) && 253 Elements.back()->getType()->isIntegerTy(CharWidth) && 254 "Padding addition didn't work right"); 255 } 256 } 257 258 Elements.back() = llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp); 259 260 if (FitsCompletelyInPreviousByte) 261 return; 262 } 263 264 while (FieldValue.getBitWidth() > CharWidth) { 265 llvm::APInt Tmp; 266 267 if (CGM.getDataLayout().isBigEndian()) { 268 // We want the high bits. 269 Tmp = 270 FieldValue.lshr(FieldValue.getBitWidth() - CharWidth).trunc(CharWidth); 271 } else { 272 // We want the low bits. 273 Tmp = FieldValue.trunc(CharWidth); 274 275 FieldValue = FieldValue.lshr(CharWidth); 276 } 277 278 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), Tmp)); 279 ++NextFieldOffsetInChars; 280 281 FieldValue = FieldValue.trunc(FieldValue.getBitWidth() - CharWidth); 282 } 283 284 assert(FieldValue.getBitWidth() > 0 && 285 "Should have at least one bit left!"); 286 assert(FieldValue.getBitWidth() <= CharWidth && 287 "Should not have more than a byte left!"); 288 289 if (FieldValue.getBitWidth() < CharWidth) { 290 if (CGM.getDataLayout().isBigEndian()) { 291 unsigned BitWidth = FieldValue.getBitWidth(); 292 293 FieldValue = FieldValue.zext(CharWidth) << (CharWidth - BitWidth); 294 } else 295 FieldValue = FieldValue.zext(CharWidth); 296 } 297 298 // Append the last element. 299 Elements.push_back(llvm::ConstantInt::get(CGM.getLLVMContext(), 300 FieldValue)); 301 ++NextFieldOffsetInChars; 302 } 303 304 void ConstStructBuilder::AppendPadding(CharUnits PadSize) { 305 if (PadSize.isZero()) 306 return; 307 308 llvm::Type *Ty = CGM.Int8Ty; 309 if (PadSize > CharUnits::One()) 310 Ty = llvm::ArrayType::get(Ty, PadSize.getQuantity()); 311 312 llvm::Constant *C = llvm::UndefValue::get(Ty); 313 Elements.push_back(C); 314 assert(getAlignment(C) == CharUnits::One() && 315 "Padding must have 1 byte alignment!"); 316 317 NextFieldOffsetInChars += getSizeInChars(C); 318 } 319 320 void ConstStructBuilder::AppendTailPadding(CharUnits RecordSize) { 321 assert(NextFieldOffsetInChars <= RecordSize && 322 "Size mismatch!"); 323 324 AppendPadding(RecordSize - NextFieldOffsetInChars); 325 } 326 327 void ConstStructBuilder::ConvertStructToPacked() { 328 SmallVector<llvm::Constant *, 16> PackedElements; 329 CharUnits ElementOffsetInChars = CharUnits::Zero(); 330 331 for (unsigned i = 0, e = Elements.size(); i != e; ++i) { 332 llvm::Constant *C = Elements[i]; 333 334 CharUnits ElementAlign = CharUnits::fromQuantity( 335 CGM.getDataLayout().getABITypeAlignment(C->getType())); 336 CharUnits AlignedElementOffsetInChars = 337 ElementOffsetInChars.RoundUpToAlignment(ElementAlign); 338 339 if (AlignedElementOffsetInChars > ElementOffsetInChars) { 340 // We need some padding. 341 CharUnits NumChars = 342 AlignedElementOffsetInChars - ElementOffsetInChars; 343 344 llvm::Type *Ty = CGM.Int8Ty; 345 if (NumChars > CharUnits::One()) 346 Ty = llvm::ArrayType::get(Ty, NumChars.getQuantity()); 347 348 llvm::Constant *Padding = llvm::UndefValue::get(Ty); 349 PackedElements.push_back(Padding); 350 ElementOffsetInChars += getSizeInChars(Padding); 351 } 352 353 PackedElements.push_back(C); 354 ElementOffsetInChars += getSizeInChars(C); 355 } 356 357 assert(ElementOffsetInChars == NextFieldOffsetInChars && 358 "Packing the struct changed its size!"); 359 360 Elements.swap(PackedElements); 361 LLVMStructAlignment = CharUnits::One(); 362 Packed = true; 363 } 364 365 bool ConstStructBuilder::Build(InitListExpr *ILE) { 366 RecordDecl *RD = ILE->getType()->getAs<RecordType>()->getDecl(); 367 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 368 369 unsigned FieldNo = 0; 370 unsigned ElementNo = 0; 371 372 for (RecordDecl::field_iterator Field = RD->field_begin(), 373 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 374 // If this is a union, skip all the fields that aren't being initialized. 375 if (RD->isUnion() && ILE->getInitializedFieldInUnion() != *Field) 376 continue; 377 378 // Don't emit anonymous bitfields, they just affect layout. 379 if (Field->isUnnamedBitfield()) 380 continue; 381 382 // Get the initializer. A struct can include fields without initializers, 383 // we just use explicit null values for them. 384 llvm::Constant *EltInit; 385 if (ElementNo < ILE->getNumInits()) 386 EltInit = CGM.EmitConstantExpr(ILE->getInit(ElementNo++), 387 Field->getType(), CGF); 388 else 389 EltInit = CGM.EmitNullConstant(Field->getType()); 390 391 if (!EltInit) 392 return false; 393 394 if (!Field->isBitField()) { 395 // Handle non-bitfield members. 396 AppendField(*Field, Layout.getFieldOffset(FieldNo), EltInit); 397 } else { 398 // Otherwise we have a bitfield. 399 if (auto *CI = dyn_cast<llvm::ConstantInt>(EltInit)) { 400 AppendBitField(*Field, Layout.getFieldOffset(FieldNo), CI); 401 } else { 402 // We are trying to initialize a bitfield with a non-trivial constant, 403 // this must require run-time code. 404 return false; 405 } 406 } 407 } 408 409 return true; 410 } 411 412 namespace { 413 struct BaseInfo { 414 BaseInfo(const CXXRecordDecl *Decl, CharUnits Offset, unsigned Index) 415 : Decl(Decl), Offset(Offset), Index(Index) { 416 } 417 418 const CXXRecordDecl *Decl; 419 CharUnits Offset; 420 unsigned Index; 421 422 bool operator<(const BaseInfo &O) const { return Offset < O.Offset; } 423 }; 424 } 425 426 void ConstStructBuilder::Build(const APValue &Val, const RecordDecl *RD, 427 bool IsPrimaryBase, 428 const CXXRecordDecl *VTableClass, 429 CharUnits Offset) { 430 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 431 432 if (const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD)) { 433 // Add a vtable pointer, if we need one and it hasn't already been added. 434 if (CD->isDynamicClass() && !IsPrimaryBase) { 435 llvm::Constant *VTableAddressPoint = 436 CGM.getCXXABI().getVTableAddressPointForConstExpr( 437 BaseSubobject(CD, Offset), VTableClass); 438 AppendBytes(Offset, VTableAddressPoint); 439 } 440 441 // Accumulate and sort bases, in order to visit them in address order, which 442 // may not be the same as declaration order. 443 SmallVector<BaseInfo, 8> Bases; 444 Bases.reserve(CD->getNumBases()); 445 unsigned BaseNo = 0; 446 for (CXXRecordDecl::base_class_const_iterator Base = CD->bases_begin(), 447 BaseEnd = CD->bases_end(); Base != BaseEnd; ++Base, ++BaseNo) { 448 assert(!Base->isVirtual() && "should not have virtual bases here"); 449 const CXXRecordDecl *BD = Base->getType()->getAsCXXRecordDecl(); 450 CharUnits BaseOffset = Layout.getBaseClassOffset(BD); 451 Bases.push_back(BaseInfo(BD, BaseOffset, BaseNo)); 452 } 453 std::stable_sort(Bases.begin(), Bases.end()); 454 455 for (unsigned I = 0, N = Bases.size(); I != N; ++I) { 456 BaseInfo &Base = Bases[I]; 457 458 bool IsPrimaryBase = Layout.getPrimaryBase() == Base.Decl; 459 Build(Val.getStructBase(Base.Index), Base.Decl, IsPrimaryBase, 460 VTableClass, Offset + Base.Offset); 461 } 462 } 463 464 unsigned FieldNo = 0; 465 uint64_t OffsetBits = CGM.getContext().toBits(Offset); 466 467 for (RecordDecl::field_iterator Field = RD->field_begin(), 468 FieldEnd = RD->field_end(); Field != FieldEnd; ++Field, ++FieldNo) { 469 // If this is a union, skip all the fields that aren't being initialized. 470 if (RD->isUnion() && Val.getUnionField() != *Field) 471 continue; 472 473 // Don't emit anonymous bitfields, they just affect layout. 474 if (Field->isUnnamedBitfield()) 475 continue; 476 477 // Emit the value of the initializer. 478 const APValue &FieldValue = 479 RD->isUnion() ? Val.getUnionValue() : Val.getStructField(FieldNo); 480 llvm::Constant *EltInit = 481 CGM.EmitConstantValueForMemory(FieldValue, Field->getType(), CGF); 482 assert(EltInit && "EmitConstantValue can't fail"); 483 484 if (!Field->isBitField()) { 485 // Handle non-bitfield members. 486 AppendField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, EltInit); 487 } else { 488 // Otherwise we have a bitfield. 489 AppendBitField(*Field, Layout.getFieldOffset(FieldNo) + OffsetBits, 490 cast<llvm::ConstantInt>(EltInit)); 491 } 492 } 493 } 494 495 llvm::Constant *ConstStructBuilder::Finalize(QualType Ty) { 496 RecordDecl *RD = Ty->getAs<RecordType>()->getDecl(); 497 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 498 499 CharUnits LayoutSizeInChars = Layout.getSize(); 500 501 if (NextFieldOffsetInChars > LayoutSizeInChars) { 502 // If the struct is bigger than the size of the record type, 503 // we must have a flexible array member at the end. 504 assert(RD->hasFlexibleArrayMember() && 505 "Must have flexible array member if struct is bigger than type!"); 506 507 // No tail padding is necessary. 508 } else { 509 // Append tail padding if necessary. 510 CharUnits LLVMSizeInChars = 511 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 512 513 if (LLVMSizeInChars != LayoutSizeInChars) 514 AppendTailPadding(LayoutSizeInChars); 515 516 LLVMSizeInChars = 517 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 518 519 // Check if we need to convert the struct to a packed struct. 520 if (NextFieldOffsetInChars <= LayoutSizeInChars && 521 LLVMSizeInChars > LayoutSizeInChars) { 522 assert(!Packed && "Size mismatch!"); 523 524 ConvertStructToPacked(); 525 assert(NextFieldOffsetInChars <= LayoutSizeInChars && 526 "Converting to packed did not help!"); 527 } 528 529 LLVMSizeInChars = 530 NextFieldOffsetInChars.RoundUpToAlignment(LLVMStructAlignment); 531 532 assert(LayoutSizeInChars == LLVMSizeInChars && 533 "Tail padding mismatch!"); 534 } 535 536 // Pick the type to use. If the type is layout identical to the ConvertType 537 // type then use it, otherwise use whatever the builder produced for us. 538 llvm::StructType *STy = 539 llvm::ConstantStruct::getTypeForElements(CGM.getLLVMContext(), 540 Elements, Packed); 541 llvm::Type *ValTy = CGM.getTypes().ConvertType(Ty); 542 if (llvm::StructType *ValSTy = dyn_cast<llvm::StructType>(ValTy)) { 543 if (ValSTy->isLayoutIdentical(STy)) 544 STy = ValSTy; 545 } 546 547 llvm::Constant *Result = llvm::ConstantStruct::get(STy, Elements); 548 549 assert(NextFieldOffsetInChars.RoundUpToAlignment(getAlignment(Result)) == 550 getSizeInChars(Result) && "Size mismatch!"); 551 552 return Result; 553 } 554 555 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 556 CodeGenFunction *CGF, 557 ConstExprEmitter *Emitter, 558 llvm::ConstantStruct *Base, 559 InitListExpr *Updater) { 560 ConstStructBuilder Builder(CGM, CGF); 561 if (!Builder.Build(Emitter, Base, Updater)) 562 return nullptr; 563 return Builder.Finalize(Updater->getType()); 564 } 565 566 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 567 CodeGenFunction *CGF, 568 InitListExpr *ILE) { 569 ConstStructBuilder Builder(CGM, CGF); 570 571 if (!Builder.Build(ILE)) 572 return nullptr; 573 574 return Builder.Finalize(ILE->getType()); 575 } 576 577 llvm::Constant *ConstStructBuilder::BuildStruct(CodeGenModule &CGM, 578 CodeGenFunction *CGF, 579 const APValue &Val, 580 QualType ValTy) { 581 ConstStructBuilder Builder(CGM, CGF); 582 583 const RecordDecl *RD = ValTy->castAs<RecordType>()->getDecl(); 584 const CXXRecordDecl *CD = dyn_cast<CXXRecordDecl>(RD); 585 Builder.Build(Val, RD, false, CD, CharUnits::Zero()); 586 587 return Builder.Finalize(ValTy); 588 } 589 590 591 //===----------------------------------------------------------------------===// 592 // ConstExprEmitter 593 //===----------------------------------------------------------------------===// 594 595 /// This class only needs to handle two cases: 596 /// 1) Literals (this is used by APValue emission to emit literals). 597 /// 2) Arrays, structs and unions (outside C++11 mode, we don't currently 598 /// constant fold these types). 599 class ConstExprEmitter : 600 public StmtVisitor<ConstExprEmitter, llvm::Constant*> { 601 CodeGenModule &CGM; 602 CodeGenFunction *CGF; 603 llvm::LLVMContext &VMContext; 604 public: 605 ConstExprEmitter(CodeGenModule &cgm, CodeGenFunction *cgf) 606 : CGM(cgm), CGF(cgf), VMContext(cgm.getLLVMContext()) { 607 } 608 609 //===--------------------------------------------------------------------===// 610 // Visitor Methods 611 //===--------------------------------------------------------------------===// 612 613 llvm::Constant *VisitStmt(Stmt *S) { 614 return nullptr; 615 } 616 617 llvm::Constant *VisitParenExpr(ParenExpr *PE) { 618 return Visit(PE->getSubExpr()); 619 } 620 621 llvm::Constant * 622 VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *PE) { 623 return Visit(PE->getReplacement()); 624 } 625 626 llvm::Constant *VisitGenericSelectionExpr(GenericSelectionExpr *GE) { 627 return Visit(GE->getResultExpr()); 628 } 629 630 llvm::Constant *VisitChooseExpr(ChooseExpr *CE) { 631 return Visit(CE->getChosenSubExpr()); 632 } 633 634 llvm::Constant *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) { 635 return Visit(E->getInitializer()); 636 } 637 638 llvm::Constant *VisitCastExpr(CastExpr* E) { 639 if (const auto *ECE = dyn_cast<ExplicitCastExpr>(E)) 640 CGM.EmitExplicitCastExprType(ECE, CGF); 641 Expr *subExpr = E->getSubExpr(); 642 llvm::Constant *C = CGM.EmitConstantExpr(subExpr, subExpr->getType(), CGF); 643 if (!C) return nullptr; 644 645 llvm::Type *destType = ConvertType(E->getType()); 646 647 switch (E->getCastKind()) { 648 case CK_ToUnion: { 649 // GCC cast to union extension 650 assert(E->getType()->isUnionType() && 651 "Destination type is not union type!"); 652 653 // Build a struct with the union sub-element as the first member, 654 // and padded to the appropriate size 655 SmallVector<llvm::Constant*, 2> Elts; 656 SmallVector<llvm::Type*, 2> Types; 657 Elts.push_back(C); 658 Types.push_back(C->getType()); 659 unsigned CurSize = CGM.getDataLayout().getTypeAllocSize(C->getType()); 660 unsigned TotalSize = CGM.getDataLayout().getTypeAllocSize(destType); 661 662 assert(CurSize <= TotalSize && "Union size mismatch!"); 663 if (unsigned NumPadBytes = TotalSize - CurSize) { 664 llvm::Type *Ty = CGM.Int8Ty; 665 if (NumPadBytes > 1) 666 Ty = llvm::ArrayType::get(Ty, NumPadBytes); 667 668 Elts.push_back(llvm::UndefValue::get(Ty)); 669 Types.push_back(Ty); 670 } 671 672 llvm::StructType* STy = 673 llvm::StructType::get(C->getType()->getContext(), Types, false); 674 return llvm::ConstantStruct::get(STy, Elts); 675 } 676 677 case CK_AddressSpaceConversion: 678 return llvm::ConstantExpr::getAddrSpaceCast(C, destType); 679 680 case CK_LValueToRValue: 681 case CK_AtomicToNonAtomic: 682 case CK_NonAtomicToAtomic: 683 case CK_NoOp: 684 case CK_ConstructorConversion: 685 return C; 686 687 case CK_Dependent: llvm_unreachable("saw dependent cast!"); 688 689 case CK_BuiltinFnToFnPtr: 690 llvm_unreachable("builtin functions are handled elsewhere"); 691 692 case CK_ReinterpretMemberPointer: 693 case CK_DerivedToBaseMemberPointer: 694 case CK_BaseToDerivedMemberPointer: 695 return CGM.getCXXABI().EmitMemberPointerConversion(E, C); 696 697 // These will never be supported. 698 case CK_ObjCObjectLValueCast: 699 case CK_ARCProduceObject: 700 case CK_ARCConsumeObject: 701 case CK_ARCReclaimReturnedObject: 702 case CK_ARCExtendBlockObject: 703 case CK_CopyAndAutoreleaseBlockObject: 704 return nullptr; 705 706 // These don't need to be handled here because Evaluate knows how to 707 // evaluate them in the cases where they can be folded. 708 case CK_BitCast: 709 case CK_ToVoid: 710 case CK_Dynamic: 711 case CK_LValueBitCast: 712 case CK_NullToMemberPointer: 713 case CK_UserDefinedConversion: 714 case CK_CPointerToObjCPointerCast: 715 case CK_BlockPointerToObjCPointerCast: 716 case CK_AnyPointerToBlockPointerCast: 717 case CK_ArrayToPointerDecay: 718 case CK_FunctionToPointerDecay: 719 case CK_BaseToDerived: 720 case CK_DerivedToBase: 721 case CK_UncheckedDerivedToBase: 722 case CK_MemberPointerToBoolean: 723 case CK_VectorSplat: 724 case CK_FloatingRealToComplex: 725 case CK_FloatingComplexToReal: 726 case CK_FloatingComplexToBoolean: 727 case CK_FloatingComplexCast: 728 case CK_FloatingComplexToIntegralComplex: 729 case CK_IntegralRealToComplex: 730 case CK_IntegralComplexToReal: 731 case CK_IntegralComplexToBoolean: 732 case CK_IntegralComplexCast: 733 case CK_IntegralComplexToFloatingComplex: 734 case CK_PointerToIntegral: 735 case CK_PointerToBoolean: 736 case CK_NullToPointer: 737 case CK_IntegralCast: 738 case CK_BooleanToSignedIntegral: 739 case CK_IntegralToPointer: 740 case CK_IntegralToBoolean: 741 case CK_IntegralToFloating: 742 case CK_FloatingToIntegral: 743 case CK_FloatingToBoolean: 744 case CK_FloatingCast: 745 case CK_ZeroToOCLEvent: 746 return nullptr; 747 } 748 llvm_unreachable("Invalid CastKind"); 749 } 750 751 llvm::Constant *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) { 752 return Visit(DAE->getExpr()); 753 } 754 755 llvm::Constant *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) { 756 // No need for a DefaultInitExprScope: we don't handle 'this' in a 757 // constant expression. 758 return Visit(DIE->getExpr()); 759 } 760 761 llvm::Constant *VisitMaterializeTemporaryExpr(MaterializeTemporaryExpr *E) { 762 return Visit(E->GetTemporaryExpr()); 763 } 764 765 llvm::Constant *EmitArrayInitialization(InitListExpr *ILE) { 766 if (ILE->isStringLiteralInit()) 767 return Visit(ILE->getInit(0)); 768 769 llvm::ArrayType *AType = 770 cast<llvm::ArrayType>(ConvertType(ILE->getType())); 771 llvm::Type *ElemTy = AType->getElementType(); 772 unsigned NumInitElements = ILE->getNumInits(); 773 unsigned NumElements = AType->getNumElements(); 774 775 // Initialising an array requires us to automatically 776 // initialise any elements that have not been initialised explicitly 777 unsigned NumInitableElts = std::min(NumInitElements, NumElements); 778 779 // Initialize remaining array elements. 780 // FIXME: This doesn't handle member pointers correctly! 781 llvm::Constant *fillC; 782 if (Expr *filler = ILE->getArrayFiller()) 783 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 784 else 785 fillC = llvm::Constant::getNullValue(ElemTy); 786 if (!fillC) 787 return nullptr; 788 789 // Try to use a ConstantAggregateZero if we can. 790 if (fillC->isNullValue() && !NumInitableElts) 791 return llvm::ConstantAggregateZero::get(AType); 792 793 // Copy initializer elements. 794 std::vector<llvm::Constant*> Elts; 795 Elts.reserve(NumInitableElts + NumElements); 796 797 bool RewriteType = false; 798 for (unsigned i = 0; i < NumInitableElts; ++i) { 799 Expr *Init = ILE->getInit(i); 800 llvm::Constant *C = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 801 if (!C) 802 return nullptr; 803 RewriteType |= (C->getType() != ElemTy); 804 Elts.push_back(C); 805 } 806 807 RewriteType |= (fillC->getType() != ElemTy); 808 Elts.resize(NumElements, fillC); 809 810 if (RewriteType) { 811 // FIXME: Try to avoid packing the array 812 std::vector<llvm::Type*> Types; 813 Types.reserve(NumInitableElts + NumElements); 814 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 815 Types.push_back(Elts[i]->getType()); 816 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 817 Types, true); 818 return llvm::ConstantStruct::get(SType, Elts); 819 } 820 821 return llvm::ConstantArray::get(AType, Elts); 822 } 823 824 llvm::Constant *EmitRecordInitialization(InitListExpr *ILE) { 825 return ConstStructBuilder::BuildStruct(CGM, CGF, ILE); 826 } 827 828 llvm::Constant *VisitImplicitValueInitExpr(ImplicitValueInitExpr* E) { 829 return CGM.EmitNullConstant(E->getType()); 830 } 831 832 llvm::Constant *VisitInitListExpr(InitListExpr *ILE) { 833 if (ILE->getType()->isArrayType()) 834 return EmitArrayInitialization(ILE); 835 836 if (ILE->getType()->isRecordType()) 837 return EmitRecordInitialization(ILE); 838 839 return nullptr; 840 } 841 842 llvm::Constant *EmitDesignatedInitUpdater(llvm::Constant *Base, 843 InitListExpr *Updater) { 844 QualType ExprType = Updater->getType(); 845 846 if (ExprType->isArrayType()) { 847 llvm::ArrayType *AType = cast<llvm::ArrayType>(ConvertType(ExprType)); 848 llvm::Type *ElemType = AType->getElementType(); 849 850 unsigned NumInitElements = Updater->getNumInits(); 851 unsigned NumElements = AType->getNumElements(); 852 853 std::vector<llvm::Constant *> Elts; 854 Elts.reserve(NumElements); 855 856 if (llvm::ConstantDataArray *DataArray = 857 dyn_cast<llvm::ConstantDataArray>(Base)) 858 for (unsigned i = 0; i != NumElements; ++i) 859 Elts.push_back(DataArray->getElementAsConstant(i)); 860 else if (llvm::ConstantArray *Array = 861 dyn_cast<llvm::ConstantArray>(Base)) 862 for (unsigned i = 0; i != NumElements; ++i) 863 Elts.push_back(Array->getOperand(i)); 864 else 865 return nullptr; // FIXME: other array types not implemented 866 867 llvm::Constant *fillC = nullptr; 868 if (Expr *filler = Updater->getArrayFiller()) 869 if (!isa<NoInitExpr>(filler)) 870 fillC = CGM.EmitConstantExpr(filler, filler->getType(), CGF); 871 bool RewriteType = (fillC && fillC->getType() != ElemType); 872 873 for (unsigned i = 0; i != NumElements; ++i) { 874 Expr *Init = nullptr; 875 if (i < NumInitElements) 876 Init = Updater->getInit(i); 877 878 if (!Init && fillC) 879 Elts[i] = fillC; 880 else if (!Init || isa<NoInitExpr>(Init)) 881 ; // Do nothing. 882 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 883 Elts[i] = EmitDesignatedInitUpdater(Elts[i], ChildILE); 884 else 885 Elts[i] = CGM.EmitConstantExpr(Init, Init->getType(), CGF); 886 887 if (!Elts[i]) 888 return nullptr; 889 RewriteType |= (Elts[i]->getType() != ElemType); 890 } 891 892 if (RewriteType) { 893 std::vector<llvm::Type *> Types; 894 Types.reserve(NumElements); 895 for (unsigned i = 0; i != NumElements; ++i) 896 Types.push_back(Elts[i]->getType()); 897 llvm::StructType *SType = llvm::StructType::get(AType->getContext(), 898 Types, true); 899 return llvm::ConstantStruct::get(SType, Elts); 900 } 901 902 return llvm::ConstantArray::get(AType, Elts); 903 } 904 905 if (ExprType->isRecordType()) 906 return ConstStructBuilder::BuildStruct(CGM, CGF, this, 907 dyn_cast<llvm::ConstantStruct>(Base), Updater); 908 909 return nullptr; 910 } 911 912 llvm::Constant *VisitDesignatedInitUpdateExpr(DesignatedInitUpdateExpr *E) { 913 return EmitDesignatedInitUpdater( 914 CGM.EmitConstantExpr(E->getBase(), E->getType(), CGF), 915 E->getUpdater()); 916 } 917 918 llvm::Constant *VisitCXXConstructExpr(CXXConstructExpr *E) { 919 if (!E->getConstructor()->isTrivial()) 920 return nullptr; 921 922 QualType Ty = E->getType(); 923 924 // FIXME: We should not have to call getBaseElementType here. 925 const RecordType *RT = 926 CGM.getContext().getBaseElementType(Ty)->getAs<RecordType>(); 927 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 928 929 // If the class doesn't have a trivial destructor, we can't emit it as a 930 // constant expr. 931 if (!RD->hasTrivialDestructor()) 932 return nullptr; 933 934 // Only copy and default constructors can be trivial. 935 936 937 if (E->getNumArgs()) { 938 assert(E->getNumArgs() == 1 && "trivial ctor with > 1 argument"); 939 assert(E->getConstructor()->isCopyOrMoveConstructor() && 940 "trivial ctor has argument but isn't a copy/move ctor"); 941 942 Expr *Arg = E->getArg(0); 943 assert(CGM.getContext().hasSameUnqualifiedType(Ty, Arg->getType()) && 944 "argument to copy ctor is of wrong type"); 945 946 return Visit(Arg); 947 } 948 949 return CGM.EmitNullConstant(Ty); 950 } 951 952 llvm::Constant *VisitStringLiteral(StringLiteral *E) { 953 return CGM.GetConstantArrayFromStringLiteral(E); 954 } 955 956 llvm::Constant *VisitObjCEncodeExpr(ObjCEncodeExpr *E) { 957 // This must be an @encode initializing an array in a static initializer. 958 // Don't emit it as the address of the string, emit the string data itself 959 // as an inline array. 960 std::string Str; 961 CGM.getContext().getObjCEncodingForType(E->getEncodedType(), Str); 962 QualType T = E->getType(); 963 if (T->getTypeClass() == Type::TypeOfExpr) 964 T = cast<TypeOfExprType>(T)->getUnderlyingExpr()->getType(); 965 const ConstantArrayType *CAT = cast<ConstantArrayType>(T); 966 967 // Resize the string to the right size, adding zeros at the end, or 968 // truncating as needed. 969 Str.resize(CAT->getSize().getZExtValue(), '\0'); 970 return llvm::ConstantDataArray::getString(VMContext, Str, false); 971 } 972 973 llvm::Constant *VisitUnaryExtension(const UnaryOperator *E) { 974 return Visit(E->getSubExpr()); 975 } 976 977 // Utility methods 978 llvm::Type *ConvertType(QualType T) { 979 return CGM.getTypes().ConvertType(T); 980 } 981 982 public: 983 ConstantAddress EmitLValue(APValue::LValueBase LVBase) { 984 if (const ValueDecl *Decl = LVBase.dyn_cast<const ValueDecl*>()) { 985 if (Decl->hasAttr<WeakRefAttr>()) 986 return CGM.GetWeakRefReference(Decl); 987 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(Decl)) 988 return ConstantAddress(CGM.GetAddrOfFunction(FD), CharUnits::One()); 989 if (const VarDecl* VD = dyn_cast<VarDecl>(Decl)) { 990 // We can never refer to a variable with local storage. 991 if (!VD->hasLocalStorage()) { 992 CharUnits Align = CGM.getContext().getDeclAlign(VD); 993 if (VD->isFileVarDecl() || VD->hasExternalStorage()) 994 return ConstantAddress(CGM.GetAddrOfGlobalVar(VD), Align); 995 else if (VD->isLocalVarDecl()) { 996 auto Ptr = CGM.getOrCreateStaticVarDecl( 997 *VD, CGM.getLLVMLinkageVarDefinition(VD, /*isConstant=*/false)); 998 return ConstantAddress(Ptr, Align); 999 } 1000 } 1001 } 1002 return ConstantAddress::invalid(); 1003 } 1004 1005 Expr *E = const_cast<Expr*>(LVBase.get<const Expr*>()); 1006 switch (E->getStmtClass()) { 1007 default: break; 1008 case Expr::CompoundLiteralExprClass: { 1009 // Note that due to the nature of compound literals, this is guaranteed 1010 // to be the only use of the variable, so we just generate it here. 1011 CompoundLiteralExpr *CLE = cast<CompoundLiteralExpr>(E); 1012 llvm::Constant* C = CGM.EmitConstantExpr(CLE->getInitializer(), 1013 CLE->getType(), CGF); 1014 // FIXME: "Leaked" on failure. 1015 if (!C) return ConstantAddress::invalid(); 1016 1017 CharUnits Align = CGM.getContext().getTypeAlignInChars(E->getType()); 1018 1019 auto GV = new llvm::GlobalVariable(CGM.getModule(), C->getType(), 1020 E->getType().isConstant(CGM.getContext()), 1021 llvm::GlobalValue::InternalLinkage, 1022 C, ".compoundliteral", nullptr, 1023 llvm::GlobalVariable::NotThreadLocal, 1024 CGM.getContext().getTargetAddressSpace(E->getType())); 1025 GV->setAlignment(Align.getQuantity()); 1026 return ConstantAddress(GV, Align); 1027 } 1028 case Expr::StringLiteralClass: 1029 return CGM.GetAddrOfConstantStringFromLiteral(cast<StringLiteral>(E)); 1030 case Expr::ObjCEncodeExprClass: 1031 return CGM.GetAddrOfConstantStringFromObjCEncode(cast<ObjCEncodeExpr>(E)); 1032 case Expr::ObjCStringLiteralClass: { 1033 ObjCStringLiteral* SL = cast<ObjCStringLiteral>(E); 1034 ConstantAddress C = 1035 CGM.getObjCRuntime().GenerateConstantString(SL->getString()); 1036 return C.getElementBitCast(ConvertType(E->getType())); 1037 } 1038 case Expr::PredefinedExprClass: { 1039 unsigned Type = cast<PredefinedExpr>(E)->getIdentType(); 1040 if (CGF) { 1041 LValue Res = CGF->EmitPredefinedLValue(cast<PredefinedExpr>(E)); 1042 return cast<ConstantAddress>(Res.getAddress()); 1043 } else if (Type == PredefinedExpr::PrettyFunction) { 1044 return CGM.GetAddrOfConstantCString("top level", ".tmp"); 1045 } 1046 1047 return CGM.GetAddrOfConstantCString("", ".tmp"); 1048 } 1049 case Expr::AddrLabelExprClass: { 1050 assert(CGF && "Invalid address of label expression outside function."); 1051 llvm::Constant *Ptr = 1052 CGF->GetAddrOfLabel(cast<AddrLabelExpr>(E)->getLabel()); 1053 Ptr = llvm::ConstantExpr::getBitCast(Ptr, ConvertType(E->getType())); 1054 return ConstantAddress(Ptr, CharUnits::One()); 1055 } 1056 case Expr::CallExprClass: { 1057 CallExpr* CE = cast<CallExpr>(E); 1058 unsigned builtin = CE->getBuiltinCallee(); 1059 if (builtin != 1060 Builtin::BI__builtin___CFStringMakeConstantString && 1061 builtin != 1062 Builtin::BI__builtin___NSStringMakeConstantString) 1063 break; 1064 const Expr *Arg = CE->getArg(0)->IgnoreParenCasts(); 1065 const StringLiteral *Literal = cast<StringLiteral>(Arg); 1066 if (builtin == 1067 Builtin::BI__builtin___NSStringMakeConstantString) { 1068 return CGM.getObjCRuntime().GenerateConstantString(Literal); 1069 } 1070 // FIXME: need to deal with UCN conversion issues. 1071 return CGM.GetAddrOfConstantCFString(Literal); 1072 } 1073 case Expr::BlockExprClass: { 1074 std::string FunctionName; 1075 if (CGF) 1076 FunctionName = CGF->CurFn->getName(); 1077 else 1078 FunctionName = "global"; 1079 1080 // This is not really an l-value. 1081 llvm::Constant *Ptr = 1082 CGM.GetAddrOfGlobalBlock(cast<BlockExpr>(E), FunctionName.c_str()); 1083 return ConstantAddress(Ptr, CGM.getPointerAlign()); 1084 } 1085 case Expr::CXXTypeidExprClass: { 1086 CXXTypeidExpr *Typeid = cast<CXXTypeidExpr>(E); 1087 QualType T; 1088 if (Typeid->isTypeOperand()) 1089 T = Typeid->getTypeOperand(CGM.getContext()); 1090 else 1091 T = Typeid->getExprOperand()->getType(); 1092 return ConstantAddress(CGM.GetAddrOfRTTIDescriptor(T), 1093 CGM.getPointerAlign()); 1094 } 1095 case Expr::CXXUuidofExprClass: { 1096 return CGM.GetAddrOfUuidDescriptor(cast<CXXUuidofExpr>(E)); 1097 } 1098 case Expr::MaterializeTemporaryExprClass: { 1099 MaterializeTemporaryExpr *MTE = cast<MaterializeTemporaryExpr>(E); 1100 assert(MTE->getStorageDuration() == SD_Static); 1101 SmallVector<const Expr *, 2> CommaLHSs; 1102 SmallVector<SubobjectAdjustment, 2> Adjustments; 1103 const Expr *Inner = MTE->GetTemporaryExpr() 1104 ->skipRValueSubobjectAdjustments(CommaLHSs, Adjustments); 1105 return CGM.GetAddrOfGlobalTemporary(MTE, Inner); 1106 } 1107 } 1108 1109 return ConstantAddress::invalid(); 1110 } 1111 }; 1112 1113 } // end anonymous namespace. 1114 1115 bool ConstStructBuilder::Build(ConstExprEmitter *Emitter, 1116 llvm::ConstantStruct *Base, 1117 InitListExpr *Updater) { 1118 assert(Base && "base expression should not be empty"); 1119 1120 QualType ExprType = Updater->getType(); 1121 RecordDecl *RD = ExprType->getAs<RecordType>()->getDecl(); 1122 const ASTRecordLayout &Layout = CGM.getContext().getASTRecordLayout(RD); 1123 const llvm::StructLayout *BaseLayout = CGM.getDataLayout().getStructLayout( 1124 Base->getType()); 1125 unsigned FieldNo = -1; 1126 unsigned ElementNo = 0; 1127 1128 for (FieldDecl *Field : RD->fields()) { 1129 ++FieldNo; 1130 1131 if (RD->isUnion() && Updater->getInitializedFieldInUnion() != Field) 1132 continue; 1133 1134 // Skip anonymous bitfields. 1135 if (Field->isUnnamedBitfield()) 1136 continue; 1137 1138 llvm::Constant *EltInit = Base->getOperand(ElementNo); 1139 1140 // Bail out if the type of the ConstantStruct does not have the same layout 1141 // as the type of the InitListExpr. 1142 if (CGM.getTypes().ConvertType(Field->getType()) != EltInit->getType() || 1143 Layout.getFieldOffset(ElementNo) != 1144 BaseLayout->getElementOffsetInBits(ElementNo)) 1145 return false; 1146 1147 // Get the initializer. If we encounter an empty field or a NoInitExpr, 1148 // we use values from the base expression. 1149 Expr *Init = nullptr; 1150 if (ElementNo < Updater->getNumInits()) 1151 Init = Updater->getInit(ElementNo); 1152 1153 if (!Init || isa<NoInitExpr>(Init)) 1154 ; // Do nothing. 1155 else if (InitListExpr *ChildILE = dyn_cast<InitListExpr>(Init)) 1156 EltInit = Emitter->EmitDesignatedInitUpdater(EltInit, ChildILE); 1157 else 1158 EltInit = CGM.EmitConstantExpr(Init, Field->getType(), CGF); 1159 1160 ++ElementNo; 1161 1162 if (!EltInit) 1163 return false; 1164 1165 if (!Field->isBitField()) 1166 AppendField(Field, Layout.getFieldOffset(FieldNo), EltInit); 1167 else if (llvm::ConstantInt *CI = dyn_cast<llvm::ConstantInt>(EltInit)) 1168 AppendBitField(Field, Layout.getFieldOffset(FieldNo), CI); 1169 else 1170 // Initializing a bitfield with a non-trivial constant? 1171 return false; 1172 } 1173 1174 return true; 1175 } 1176 1177 llvm::Constant *CodeGenModule::EmitConstantInit(const VarDecl &D, 1178 CodeGenFunction *CGF) { 1179 // Make a quick check if variable can be default NULL initialized 1180 // and avoid going through rest of code which may do, for c++11, 1181 // initialization of memory to all NULLs. 1182 if (!D.hasLocalStorage()) { 1183 QualType Ty = D.getType(); 1184 if (Ty->isArrayType()) 1185 Ty = Context.getBaseElementType(Ty); 1186 if (Ty->isRecordType()) 1187 if (const CXXConstructExpr *E = 1188 dyn_cast_or_null<CXXConstructExpr>(D.getInit())) { 1189 const CXXConstructorDecl *CD = E->getConstructor(); 1190 if (CD->isTrivial() && CD->isDefaultConstructor()) 1191 return EmitNullConstant(D.getType()); 1192 } 1193 } 1194 1195 if (const APValue *Value = D.evaluateValue()) 1196 return EmitConstantValueForMemory(*Value, D.getType(), CGF); 1197 1198 // FIXME: Implement C++11 [basic.start.init]p2: if the initializer of a 1199 // reference is a constant expression, and the reference binds to a temporary, 1200 // then constant initialization is performed. ConstExprEmitter will 1201 // incorrectly emit a prvalue constant in this case, and the calling code 1202 // interprets that as the (pointer) value of the reference, rather than the 1203 // desired value of the referee. 1204 if (D.getType()->isReferenceType()) 1205 return nullptr; 1206 1207 const Expr *E = D.getInit(); 1208 assert(E && "No initializer to emit"); 1209 1210 llvm::Constant* C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1211 if (C && C->getType()->isIntegerTy(1)) { 1212 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1213 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1214 } 1215 return C; 1216 } 1217 1218 llvm::Constant *CodeGenModule::EmitConstantExpr(const Expr *E, 1219 QualType DestType, 1220 CodeGenFunction *CGF) { 1221 Expr::EvalResult Result; 1222 1223 bool Success = false; 1224 1225 if (DestType->isReferenceType()) 1226 Success = E->EvaluateAsLValue(Result, Context); 1227 else 1228 Success = E->EvaluateAsRValue(Result, Context); 1229 1230 llvm::Constant *C = nullptr; 1231 if (Success && !Result.HasSideEffects) 1232 C = EmitConstantValue(Result.Val, DestType, CGF); 1233 else 1234 C = ConstExprEmitter(*this, CGF).Visit(const_cast<Expr*>(E)); 1235 1236 if (C && C->getType()->isIntegerTy(1)) { 1237 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(E->getType()); 1238 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1239 } 1240 return C; 1241 } 1242 1243 llvm::Constant *CodeGenModule::EmitConstantValue(const APValue &Value, 1244 QualType DestType, 1245 CodeGenFunction *CGF) { 1246 // For an _Atomic-qualified constant, we may need to add tail padding. 1247 if (auto *AT = DestType->getAs<AtomicType>()) { 1248 QualType InnerType = AT->getValueType(); 1249 auto *Inner = EmitConstantValue(Value, InnerType, CGF); 1250 1251 uint64_t InnerSize = Context.getTypeSize(InnerType); 1252 uint64_t OuterSize = Context.getTypeSize(DestType); 1253 if (InnerSize == OuterSize) 1254 return Inner; 1255 1256 assert(InnerSize < OuterSize && "emitted over-large constant for atomic"); 1257 llvm::Constant *Elts[] = { 1258 Inner, 1259 llvm::ConstantAggregateZero::get( 1260 llvm::ArrayType::get(Int8Ty, (OuterSize - InnerSize) / 8)) 1261 }; 1262 return llvm::ConstantStruct::getAnon(Elts); 1263 } 1264 1265 switch (Value.getKind()) { 1266 case APValue::Uninitialized: 1267 llvm_unreachable("Constant expressions should be initialized."); 1268 case APValue::LValue: { 1269 llvm::Type *DestTy = getTypes().ConvertTypeForMem(DestType); 1270 llvm::Constant *Offset = 1271 llvm::ConstantInt::get(Int64Ty, Value.getLValueOffset().getQuantity()); 1272 1273 llvm::Constant *C = nullptr; 1274 if (APValue::LValueBase LVBase = Value.getLValueBase()) { 1275 // An array can be represented as an lvalue referring to the base. 1276 if (isa<llvm::ArrayType>(DestTy)) { 1277 assert(Offset->isNullValue() && "offset on array initializer"); 1278 return ConstExprEmitter(*this, CGF).Visit( 1279 const_cast<Expr*>(LVBase.get<const Expr*>())); 1280 } 1281 1282 C = ConstExprEmitter(*this, CGF).EmitLValue(LVBase).getPointer(); 1283 1284 // Apply offset if necessary. 1285 if (!Offset->isNullValue()) { 1286 unsigned AS = C->getType()->getPointerAddressSpace(); 1287 llvm::Type *CharPtrTy = Int8Ty->getPointerTo(AS); 1288 llvm::Constant *Casted = llvm::ConstantExpr::getBitCast(C, CharPtrTy); 1289 Casted = llvm::ConstantExpr::getGetElementPtr(Int8Ty, Casted, Offset); 1290 C = llvm::ConstantExpr::getPointerCast(Casted, C->getType()); 1291 } 1292 1293 // Convert to the appropriate type; this could be an lvalue for 1294 // an integer. 1295 if (isa<llvm::PointerType>(DestTy)) 1296 return llvm::ConstantExpr::getPointerCast(C, DestTy); 1297 1298 return llvm::ConstantExpr::getPtrToInt(C, DestTy); 1299 } else { 1300 C = Offset; 1301 1302 // Convert to the appropriate type; this could be an lvalue for 1303 // an integer. 1304 if (isa<llvm::PointerType>(DestTy)) 1305 return llvm::ConstantExpr::getIntToPtr(C, DestTy); 1306 1307 // If the types don't match this should only be a truncate. 1308 if (C->getType() != DestTy) 1309 return llvm::ConstantExpr::getTrunc(C, DestTy); 1310 1311 return C; 1312 } 1313 } 1314 case APValue::Int: 1315 return llvm::ConstantInt::get(VMContext, Value.getInt()); 1316 case APValue::ComplexInt: { 1317 llvm::Constant *Complex[2]; 1318 1319 Complex[0] = llvm::ConstantInt::get(VMContext, 1320 Value.getComplexIntReal()); 1321 Complex[1] = llvm::ConstantInt::get(VMContext, 1322 Value.getComplexIntImag()); 1323 1324 // FIXME: the target may want to specify that this is packed. 1325 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1326 Complex[1]->getType(), 1327 nullptr); 1328 return llvm::ConstantStruct::get(STy, Complex); 1329 } 1330 case APValue::Float: { 1331 const llvm::APFloat &Init = Value.getFloat(); 1332 if (&Init.getSemantics() == &llvm::APFloat::IEEEhalf && 1333 !Context.getLangOpts().NativeHalfType && 1334 !Context.getLangOpts().HalfArgsAndReturns) 1335 return llvm::ConstantInt::get(VMContext, Init.bitcastToAPInt()); 1336 else 1337 return llvm::ConstantFP::get(VMContext, Init); 1338 } 1339 case APValue::ComplexFloat: { 1340 llvm::Constant *Complex[2]; 1341 1342 Complex[0] = llvm::ConstantFP::get(VMContext, 1343 Value.getComplexFloatReal()); 1344 Complex[1] = llvm::ConstantFP::get(VMContext, 1345 Value.getComplexFloatImag()); 1346 1347 // FIXME: the target may want to specify that this is packed. 1348 llvm::StructType *STy = llvm::StructType::get(Complex[0]->getType(), 1349 Complex[1]->getType(), 1350 nullptr); 1351 return llvm::ConstantStruct::get(STy, Complex); 1352 } 1353 case APValue::Vector: { 1354 unsigned NumElts = Value.getVectorLength(); 1355 SmallVector<llvm::Constant *, 4> Inits(NumElts); 1356 1357 for (unsigned I = 0; I != NumElts; ++I) { 1358 const APValue &Elt = Value.getVectorElt(I); 1359 if (Elt.isInt()) 1360 Inits[I] = llvm::ConstantInt::get(VMContext, Elt.getInt()); 1361 else if (Elt.isFloat()) 1362 Inits[I] = llvm::ConstantFP::get(VMContext, Elt.getFloat()); 1363 else 1364 llvm_unreachable("unsupported vector element type"); 1365 } 1366 return llvm::ConstantVector::get(Inits); 1367 } 1368 case APValue::AddrLabelDiff: { 1369 const AddrLabelExpr *LHSExpr = Value.getAddrLabelDiffLHS(); 1370 const AddrLabelExpr *RHSExpr = Value.getAddrLabelDiffRHS(); 1371 llvm::Constant *LHS = EmitConstantExpr(LHSExpr, LHSExpr->getType(), CGF); 1372 llvm::Constant *RHS = EmitConstantExpr(RHSExpr, RHSExpr->getType(), CGF); 1373 1374 // Compute difference 1375 llvm::Type *ResultType = getTypes().ConvertType(DestType); 1376 LHS = llvm::ConstantExpr::getPtrToInt(LHS, IntPtrTy); 1377 RHS = llvm::ConstantExpr::getPtrToInt(RHS, IntPtrTy); 1378 llvm::Constant *AddrLabelDiff = llvm::ConstantExpr::getSub(LHS, RHS); 1379 1380 // LLVM is a bit sensitive about the exact format of the 1381 // address-of-label difference; make sure to truncate after 1382 // the subtraction. 1383 return llvm::ConstantExpr::getTruncOrBitCast(AddrLabelDiff, ResultType); 1384 } 1385 case APValue::Struct: 1386 case APValue::Union: 1387 return ConstStructBuilder::BuildStruct(*this, CGF, Value, DestType); 1388 case APValue::Array: { 1389 const ArrayType *CAT = Context.getAsArrayType(DestType); 1390 unsigned NumElements = Value.getArraySize(); 1391 unsigned NumInitElts = Value.getArrayInitializedElts(); 1392 1393 // Emit array filler, if there is one. 1394 llvm::Constant *Filler = nullptr; 1395 if (Value.hasArrayFiller()) 1396 Filler = EmitConstantValueForMemory(Value.getArrayFiller(), 1397 CAT->getElementType(), CGF); 1398 1399 // Emit initializer elements. 1400 llvm::Type *CommonElementType = 1401 getTypes().ConvertType(CAT->getElementType()); 1402 1403 // Try to use a ConstantAggregateZero if we can. 1404 if (Filler && Filler->isNullValue() && !NumInitElts) { 1405 llvm::ArrayType *AType = 1406 llvm::ArrayType::get(CommonElementType, NumElements); 1407 return llvm::ConstantAggregateZero::get(AType); 1408 } 1409 1410 std::vector<llvm::Constant*> Elts; 1411 Elts.reserve(NumElements); 1412 for (unsigned I = 0; I < NumElements; ++I) { 1413 llvm::Constant *C = Filler; 1414 if (I < NumInitElts) 1415 C = EmitConstantValueForMemory(Value.getArrayInitializedElt(I), 1416 CAT->getElementType(), CGF); 1417 else 1418 assert(Filler && "Missing filler for implicit elements of initializer"); 1419 if (I == 0) 1420 CommonElementType = C->getType(); 1421 else if (C->getType() != CommonElementType) 1422 CommonElementType = nullptr; 1423 Elts.push_back(C); 1424 } 1425 1426 if (!CommonElementType) { 1427 // FIXME: Try to avoid packing the array 1428 std::vector<llvm::Type*> Types; 1429 Types.reserve(NumElements); 1430 for (unsigned i = 0, e = Elts.size(); i < e; ++i) 1431 Types.push_back(Elts[i]->getType()); 1432 llvm::StructType *SType = llvm::StructType::get(VMContext, Types, true); 1433 return llvm::ConstantStruct::get(SType, Elts); 1434 } 1435 1436 llvm::ArrayType *AType = 1437 llvm::ArrayType::get(CommonElementType, NumElements); 1438 return llvm::ConstantArray::get(AType, Elts); 1439 } 1440 case APValue::MemberPointer: 1441 return getCXXABI().EmitMemberPointer(Value, DestType); 1442 } 1443 llvm_unreachable("Unknown APValue kind"); 1444 } 1445 1446 llvm::Constant * 1447 CodeGenModule::EmitConstantValueForMemory(const APValue &Value, 1448 QualType DestType, 1449 CodeGenFunction *CGF) { 1450 llvm::Constant *C = EmitConstantValue(Value, DestType, CGF); 1451 if (C->getType()->isIntegerTy(1)) { 1452 llvm::Type *BoolTy = getTypes().ConvertTypeForMem(DestType); 1453 C = llvm::ConstantExpr::getZExt(C, BoolTy); 1454 } 1455 return C; 1456 } 1457 1458 ConstantAddress 1459 CodeGenModule::GetAddrOfConstantCompoundLiteral(const CompoundLiteralExpr *E) { 1460 assert(E->isFileScope() && "not a file-scope compound literal expr"); 1461 return ConstExprEmitter(*this, nullptr).EmitLValue(E); 1462 } 1463 1464 llvm::Constant * 1465 CodeGenModule::getMemberPointerConstant(const UnaryOperator *uo) { 1466 // Member pointer constants always have a very particular form. 1467 const MemberPointerType *type = cast<MemberPointerType>(uo->getType()); 1468 const ValueDecl *decl = cast<DeclRefExpr>(uo->getSubExpr())->getDecl(); 1469 1470 // A member function pointer. 1471 if (const CXXMethodDecl *method = dyn_cast<CXXMethodDecl>(decl)) 1472 return getCXXABI().EmitMemberFunctionPointer(method); 1473 1474 // Otherwise, a member data pointer. 1475 uint64_t fieldOffset = getContext().getFieldOffset(decl); 1476 CharUnits chars = getContext().toCharUnitsFromBits((int64_t) fieldOffset); 1477 return getCXXABI().EmitMemberDataPointer(type, chars); 1478 } 1479 1480 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1481 llvm::Type *baseType, 1482 const CXXRecordDecl *base); 1483 1484 static llvm::Constant *EmitNullConstant(CodeGenModule &CGM, 1485 const CXXRecordDecl *record, 1486 bool asCompleteObject) { 1487 const CGRecordLayout &layout = CGM.getTypes().getCGRecordLayout(record); 1488 llvm::StructType *structure = 1489 (asCompleteObject ? layout.getLLVMType() 1490 : layout.getBaseSubobjectLLVMType()); 1491 1492 unsigned numElements = structure->getNumElements(); 1493 std::vector<llvm::Constant *> elements(numElements); 1494 1495 // Fill in all the bases. 1496 for (const auto &I : record->bases()) { 1497 if (I.isVirtual()) { 1498 // Ignore virtual bases; if we're laying out for a complete 1499 // object, we'll lay these out later. 1500 continue; 1501 } 1502 1503 const CXXRecordDecl *base = 1504 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1505 1506 // Ignore empty bases. 1507 if (base->isEmpty()) 1508 continue; 1509 1510 unsigned fieldIndex = layout.getNonVirtualBaseLLVMFieldNo(base); 1511 llvm::Type *baseType = structure->getElementType(fieldIndex); 1512 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1513 } 1514 1515 // Fill in all the fields. 1516 for (const auto *Field : record->fields()) { 1517 // Fill in non-bitfields. (Bitfields always use a zero pattern, which we 1518 // will fill in later.) 1519 if (!Field->isBitField()) { 1520 unsigned fieldIndex = layout.getLLVMFieldNo(Field); 1521 elements[fieldIndex] = CGM.EmitNullConstant(Field->getType()); 1522 } 1523 1524 // For unions, stop after the first named field. 1525 if (record->isUnion()) { 1526 if (Field->getIdentifier()) 1527 break; 1528 if (const auto *FieldRD = 1529 dyn_cast_or_null<RecordDecl>(Field->getType()->getAsTagDecl())) 1530 if (FieldRD->findFirstNamedDataMember()) 1531 break; 1532 } 1533 } 1534 1535 // Fill in the virtual bases, if we're working with the complete object. 1536 if (asCompleteObject) { 1537 for (const auto &I : record->vbases()) { 1538 const CXXRecordDecl *base = 1539 cast<CXXRecordDecl>(I.getType()->castAs<RecordType>()->getDecl()); 1540 1541 // Ignore empty bases. 1542 if (base->isEmpty()) 1543 continue; 1544 1545 unsigned fieldIndex = layout.getVirtualBaseIndex(base); 1546 1547 // We might have already laid this field out. 1548 if (elements[fieldIndex]) continue; 1549 1550 llvm::Type *baseType = structure->getElementType(fieldIndex); 1551 elements[fieldIndex] = EmitNullConstantForBase(CGM, baseType, base); 1552 } 1553 } 1554 1555 // Now go through all other fields and zero them out. 1556 for (unsigned i = 0; i != numElements; ++i) { 1557 if (!elements[i]) 1558 elements[i] = llvm::Constant::getNullValue(structure->getElementType(i)); 1559 } 1560 1561 return llvm::ConstantStruct::get(structure, elements); 1562 } 1563 1564 /// Emit the null constant for a base subobject. 1565 static llvm::Constant *EmitNullConstantForBase(CodeGenModule &CGM, 1566 llvm::Type *baseType, 1567 const CXXRecordDecl *base) { 1568 const CGRecordLayout &baseLayout = CGM.getTypes().getCGRecordLayout(base); 1569 1570 // Just zero out bases that don't have any pointer to data members. 1571 if (baseLayout.isZeroInitializableAsBase()) 1572 return llvm::Constant::getNullValue(baseType); 1573 1574 // Otherwise, we can just use its null constant. 1575 return EmitNullConstant(CGM, base, /*asCompleteObject=*/false); 1576 } 1577 1578 llvm::Constant *CodeGenModule::EmitNullConstant(QualType T) { 1579 if (getTypes().isZeroInitializable(T)) 1580 return llvm::Constant::getNullValue(getTypes().ConvertTypeForMem(T)); 1581 1582 if (const ConstantArrayType *CAT = Context.getAsConstantArrayType(T)) { 1583 llvm::ArrayType *ATy = 1584 cast<llvm::ArrayType>(getTypes().ConvertTypeForMem(T)); 1585 1586 QualType ElementTy = CAT->getElementType(); 1587 1588 llvm::Constant *Element = EmitNullConstant(ElementTy); 1589 unsigned NumElements = CAT->getSize().getZExtValue(); 1590 SmallVector<llvm::Constant *, 8> Array(NumElements, Element); 1591 return llvm::ConstantArray::get(ATy, Array); 1592 } 1593 1594 if (const RecordType *RT = T->getAs<RecordType>()) { 1595 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl()); 1596 return ::EmitNullConstant(*this, RD, /*complete object*/ true); 1597 } 1598 1599 assert(T->isMemberDataPointerType() && 1600 "Should only see pointers to data members here!"); 1601 1602 return getCXXABI().EmitNullMemberPointer(T->castAs<MemberPointerType>()); 1603 } 1604 1605 llvm::Constant * 1606 CodeGenModule::EmitNullConstantForBase(const CXXRecordDecl *Record) { 1607 return ::EmitNullConstant(*this, Record, false); 1608 } 1609